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Figure 8.13  Development of excess pore pressure due to stimulation. 

Figure 8.14  Injection pressure vs. injection rate profile. 

Figure 8.15  Pressure distribution and shear slippage failure location at 

time = 9 hour on the center slice (z = 0). 

Figure 8.16  Shear slippage failure location (accumulative) at time = 9 

hour at the center plane. 

Figure 8.17 Pore pressure distributions of fractured reservoirs, in 

which natural fractures are generated from different 

random data sets with same stochastic parameters. 

Figure 8.18  a) Reservoir geometry and in-situ stress state. b) Details 

on natural fracture network and hydraulic fracture. 

Figure 8.19  Slipped fractures’ normal directions are plotted as colored 

squares. Gray circles show all the normal directions of 

natural fractures. 

Figure 8.20  Slipped fractures and magnitude of the induced micro 

seismicity. a) x-y plane view. b) y-z plane view.  

Figure 8.21  Pore pressure distributions in individual fractures at time 

= 1 hour and time=10 hour. 

Figure 8.22  The permeability enhancement of fracture network. y-z 

plane view. Thick black line indicates location of the 

hydraulic fracture. 

Figure 8.23 Improvement of averaged permeability of elements, low 

permeability zone (< 2.0×10
-10

 m
2
/s) has been blank out. 

y-z plane slice at x = 450.0 m (center of fracture 

network). 

Figure 8.24  Temperature variation during injection at Time = 1 hour 

and Time = 44 hour. 
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ABSTRACT 

Unconventional reservoirs are gaining more and more attention in recently years. 

Pore pressure and temperature variations in unconventional reservoirs during 

stimulation are of great importance in reservoir exploration and development. 

Fluid injection is one of the most commonly used permeability enhancement 

technique, which induces significant changes in the stress, pore pressure and 

temperature fields of reservoir rock. Coupled thermo-hydro-mechanical (THM) 

processes are involved in those changes. In this work, three-dimensional finite 

element methods (FEM) are developed and applied to simulate the response of 

unconventional reservoirs to fluid injection. The FEM model is assisted with 

continuum damage mechanics and stochastic fracture network model, which 

simulates the intact rock failure process and natural fracture networks 

deformation during stimulation, respectively. 

Numerical simulations using the current model are present in this dissertation, 

and applied to analyzing different aspect of reservoir response to fluid injection, 

such as, wellbore instability, intact rock failure, natural fracture deformation, 

permeability enhancement, and injection induced micro-seismicity.  The results 

indicate the important roles of rock heterogeneity and natural fractures’ 
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distribution in influencing the stimulation effect. The correlation among 

damaged zone, permeability enhanced volume, and induced MEQ distribution is 

shown in the results.  The influences of injection plan, boundary conditions, and 

in-situ stress states on the stimulation results are also illustrated in the modeling 

examples. 

Key words: natural fracture network; rock heterogeneity; stress dependent 

permeability; induced micro-seismicity; EGS. 
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1 

INTRODUCTION 

Unconventional reservoirs, in both petroleum and geothermal energy, are of 

great interest in recent years. One of the most important tasks for 

unconventional reservoir development is enhancing rock mass permeability and 

predicting its variation with reservoir development. When external forces, for 

example, mechanical loading, fluid injection and production, and heating, are 

applied to the rock mass, it will deform and pore fluid diffusion and heat 

transport will occur. These physical processes in the reservoir will result in 

changes of state, e.g. the resultant stress distribution, induced pore pressure and 

temperature fields. All of these state variables are inter-related and need to be 

considered simultaneously. Change of the stress state can lead to rock failure, 

fracture slippage, and changes of behavior of both fluid and heat flow, which are 

critical issues when planning the exploration strategy. Rock failure, fracture 

slippage, and heating/cooling induced permeability development and rock 

degradation have significant impact on reservoir behavior during injection and 

production. 
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Reservoir rock has complex properties. All rocks in earth’s crust are fractured to 

some extent. In addition, intact rock usually has heterogeneous poroelastic 

modulus, strength, permeability, and thermal conductivity. The existence of 

natural fractures and heterogeneity significantly influence the reservoir response 

to injection and production. The analysis of fractured rock behavior generally 

contains three components, namely: 1) fracture network and rock heterogeneity 

characterization; 2) stress and failure analysis of fractured rock in response to 

the stimulation; 3) stress dependent permeability and rock damage evolution. 

This process involves identification and modeling of fractures and elemental 

rock properties, thermal-poroelastic analysis of the response of rock, fluid flow, 

and heat transfer in the heterogeneous and fractured rock mass (Figure 1.1). 

 

Figure 1.1 Work flow of the fully coupled THM model 

Fracture modeling Property characterization 

Thermal-hydro-mechanical (THM) 

analysis of fractured rock mass 

Rock failure Fracture deformation 

Stress dependent variables 

Update parameters 
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A fundamental step in understanding and predicting natural fracture 

performance is identifying and characterizing fractures. The literature on various 

methods of treating fracture networks is extensive. These approaches can be 

summarized into two categories based on how they represent the fractures: 1) 

deterministic fracture network models locate fractures (or major fractures) 

explicitly (Hicks et al. 1996; Kolditz and Clauser 1998; Ghassemi and Kurma 

2007; Safari and Ghassemi 2011); 2) stochastic fracture network models 

determine the types of patterns or the fracture’s statistical properties (Cladhuous 

et al. 2011; Bruel et al. 1994; Willis-Richards et al. 1996; Tezuka et al. 2005). 

According to the simulation approaches of fluid flow in the fracture systems, the 

previous models can also be described as equivalent continuum model (Carrera 

et al. 1990) or discrete fracture network model (DFN) (Hudson and La Pointe 

1980; Long et al. 1982; Dershowitz 1984; Smith and Schwartz 1984). In this 

thesis, a hybrid method is developed by using the discrete stochastic networks in 

building a continuum approximation.  

Similarly to modeling natural fractures, the stochastic approach has also been 

applied to rock heterogeneity study. There are different stochastic functions 

have been proposed in the literature to describe the distribution of rock 

properties. In this work, Weibull’s distribution function (Weibull 1961) is used 

for heterogeneity distribution, such as the distribution of young’s modulus, 

strength, Poisson’s ratio and permeability.  
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Stress and failure analysis of reservoir has been gaining extensive attention, and 

laboratory and numerical models have been developed and utilized in reservoir 

engineering practice for decades. From the geomechanical point of view, the 

deformation of fractures and rock mass and the variation of pore pressure and 

temperature, in response to the fluid injection, are key factors in reservoir 

stimulation design and control. In previous models for fractured rocks, the 

thermo-poroelastic coupling process has been either neglected or simplified to 

empirical correlations (Cladhuous et al. 2011; Bruel 2002; Willis-Richards et al. 

1996). Three-dimensional coupled thermo-poroelastic (THM) models have been 

developed and applied to reservoir stimulation, development, and well bore 

stability analysis. However, the reservoir rock mostly has been treated as 

continuous with possibly a few major fractures (Zhou and Ghassemi 2009; Lee 

and Ghassemi 2011; Huang and Ghassemi 2011).  

This work develops a fully coupled thermal-poroelastic FEM model with 

stochastic fracture networks to address the impact of the presence of a fracture 

network on stimulation results. In this dissertation, after coupled finite element 

analysis, updated stress, pore pressure and temperature are obtained from model 

results, which are used next for rock failure and fracture deformation analysis. 

Continuum damage models, on the basis of the stress-strain behavior of rocks in 

experimental test, are used for intact rock failure analysis. On the other hand, for 
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fracture deformation, joint model and penny-shaped fracture model are used to 

study the fracture aperture change. Rock failure and increase of fracture aperture 

are related to permeability enhancement and induce micro-seismicity (Figure 

1.1). Thereafter, rock properties such as elastic modulus, poroelastic coefficients 

and permeability, and fracture geometry are updated and applied to the finite 

element analysis for the next time step. Induced micro-seismic events obtained 

at the end of every time step is used to estimate the growth of stimulated volume 

and stress reorientation, since they reflect the released earthquake energy where 

failure takes place. Since the FEM formula used in this work is non-linear, a 

convergence check is conducted at the end of every time step, in order to 

confirm that the updated rock and fracture properties are matched with the 

stimulation results at current time step. 

1.1. Motivation and objectives 

Predicting the response of a heterogeneous fractured rock to injection is 

challenging. Rock heterogeneity and natural fractures add complexity to the 

mechanical and flow responses of the reservoir rock. In addition, the mechanical 

and flow responses are coupled and need to be simultaneously solved. Given the 

complexity of the problem, an advanced numerical is needed to able to consider 

the influence of rock heterogeneity and natural fractures on rock deformation 

and fluid and heat flow. It should also be able to simulate the thermal-hydro-



6 
 

mechanical (THM) interactions and their impact on damage evolution and thus, 

permeability change of the reservoir rock. The model should show be capable of 

estimating stimulation result, such as stimulated reservoir volume, permeability 

enhancement and improved fracture connectivity. Induced micro-seismicity is 

one of the promising approaches for indicating the growth of stimulated 

reservoir volume and the evolution of rock damage. In addition, extensive 

induced seismicity is not desirable in reservoir development operations. 

Therefore, a real-time distribution of induced micro-seismicity events is 

desirable.  These important issues are addressed in this work with emphasize on 

the influence of rock heterogeneity and natural fracture properties on the 

stimulation results.  

1.2. Dissertation outline 

This dissertation will first introduce and explain the theoretical foundations of 

the work with respect to four sub-models: 1) discrete fracture network model; 2) 

rock heterogeneity model and continuum damage model; 3) fully coupled 

geomechanics model (thermo-poroelasticity theory); and 4) the three-

dimensional Finite Element model. Then, three categories of numerical 

simulations are given to illustrate the model application on predicting different 

aspect of reservoir responses due to fluid injection for heterogeneous and 
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naturally fractured reservoirs. These three cases represent different reservoir 

conditions and scales.  

Chapter 2 first provides a general review of the state-of-the-art of fracture 

network models, including the physical characteristics of fracture patterns and 

development of conceptual and mathematical models. Then physical properties 

and fundamental process in fractures and of fractured rock mass are addressed, 

including the mechanical and hydraulic properties of fractured rock, and the 

features of fracture flow model used in this work. 

Chapter 3 states the current research on rock heterogeneity distribution, based on 

which, the continuum damaged model is applied to capture the rock failure 

process owing to change of stresses during fluid injection. A brief introduction 

to Weibull’s distribution and Weibull damage development theory is presented, 

and then the continuum elastic damage model based on Weibull theory and lab 

tests is reviewed. Scenario of how to relate Weibull theory with lab test results 

to determine the heterogeneity distribution parameters is also explained.  

Chapter 4 contains the basic theories of thermo-poroelasticity applied in the 

subsequent chapters for the numerical modeling of reservoir stimulation. This 

chapter briefly illustrates the derivation of governing equations of thermo-poro-

elastic processes in the reservoir during stimulation. Modifications are made 

according conditions and assumptions of problems studied in this dissertation. 
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The necessary modifications for developing field equations which are suitable 

for Finite Element analysis are also discussed. 

Chapter 5 explains the procedure of developing a Finite Element model which 

can simulate the fully coupled thermo-poroelastic processes, taking into account 

natural fracture networks and rock heterogeneity. The Finite Element model 

used in this dissertation also considers the non-linearity of the rock properties 

during the THM process so that elastic modulus, hydraulic parameters, and 

poroelastic parameters are made stress dependent in this model.  

Chapter 6 provides the results of near wellbore rock failure analysis during well 

operation. Mohr-Coulomb failure criterion is used to determine the instability 

status of the rock near wellbore. Common failure zone shapes of a vertical 

borehole under different in-situ stress state and well conditions are illustrated; 

Influence of stress reorientation, well pressure, and cooling effect on wellbore 

failure mode are pointed out. Recommendations of wellbore stabilization are 

provided also. 

Chapter 7 presents the simulation results of the fully coupled FEM analysis of 

heterogeneous reservoirs considering rock damage and permeability 

enhancement. Two simulation examples are provided, the first aims to study the 

near well-bore during stimulation, and the second shows the large scale reservoir 
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response due to a point source injection. The important role of rock 

heterogeneity is emphasized in this chapter. 

Chapter 8 consists of application of the current model to predicting the 

geothermal reservoir stimulation results. In this chapter, stochastic fracture 

networks are introduced to the geothermal reservoir system, and fracture flow 

and deformation models are embedded into the Finite Element model. Similarly 

to Chapter 7, near well-bore response and the larger scale reservoir response are 

studied. The influence of natural fractures and their deformation to stimulation 

results are addressed.  

Finally, in chapter 9, a summary of the studies conducted in this dissertation is 

given, and the major contributions of this work are outlined. Based on the 

current study, recommendations and discussions are proposed on potentially 

important future work.  
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2 

NATURAL FRACTURE NETWORK MODEL 

All rocks in earth’s crust are fractured to some extent and these fractures are 

important in oil/gas, geothermal, and ground water reservoirs. Fractures serve as 

fluid flow paths, and play important roles in the stability of wellbores, as well as 

occurrence of seismicity. The presence of natural fractures in the reservoir poses 

challenges in exploration, evaluation, stimulation, and modeling of the reservoir. 

Major challenges for numerical modeling include but are not limited to: 1) 

identifying and characterizing natural fractures; 2) quantifying flow and 

transport through them; and 3) predicting and controlling changes in fracture 

systems. These challenges are dealt with in this work by 1) developing a 

conceptual model to represent the geometry of the fracture network; 2) 

developing a mathematical model to represent fluid flow and solute transport in 

fractured media; 3) building a hydro-mechanical model which can analyze the 

coupled fluid and solid response, and simulate the fracture deformation and 

porous rock response simultaneously.  
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2.1. Natural fracture network models 

There are generally two classes of fracture models, stochastic fracture models 

(Cladhuous et al. 2011; Bruel et al. 1994; Willis-Richards et al. 1996; Tezuka et 

al. 2005) and deterministic models (Kolditz and Clauser 1998; Ghassemi et al. 

2007; Safari and Ghassemi 2011). On the cases of the treatment of fluid flow 

through fracture systems, fracture models can also be classified in to equivalent 

continuum models (Carrera et al. 1990) and discrete fracture models (Hudson 

and La Pointe 1980; Long et al. 1982). In this work a hybrid method is 

developed, using discrete stochastic networks to build a continuum 

approximation.  

In a conventional equivalent continuum model, the induced rock heterogeneity 

by fractures is modeled using sub-regions with different local properties. 

Individual fractures are not explicitly present unless their scale is large enough 

to be considered separately as a determined unit in the model. Each sub-region 

has uniform properties, such as poro-mechanical parameters and permeability, 

which are resulted from the volume-averaged behavior of many fractures inside 

the sub-region. For example, flow through a sub-region is calculated in every 

direction and is used to form the equivalent permeability tensor for the sub-

region. In this work, a sub-region is viewed as one finite element in the FEM 

(Finite Element Method). For instance, each element in the simulated domain 
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has its own elemental properties tensors, which is calculated using equivalent 

continuum technique that will be discussed later in this chapter.  

If the properties for the equivalent continuum are known with certainty, the 

model is deterministic. If the properties and coefficients are viewed as randomly 

distributed with a probability, the model is stochastic (Long et al. 1982; 

Robinson 1984; Dershowitz 1984; Hudson and LaPointe 1980). In the stochastic 

framework, fractures are reproduced only in a statistical sense to capture the 

overall connectivity of the entire region, but not to represent the local in-situ 

connectivity. In other words, the model is developed to simulate the overall 

behavior of the entire reservoir, such as predicting the injection rate vs. pressure 

profile, estimating stimulated reservoir volume, and anticipating induced micro-

seismicity. However, the stochastic fracture model is not aimed to accurately 

approximate the local properties of a sub-region, such as the permeability of a 

particular element or the local connectivity of several fractures. It is important to 

note that, in order to approximate the conductive fracture geometry (the inner 

connection between fractures), interference testing and tracer testing is critical to 

see how the system is interconnected in the field (National Research Council 

1996). 
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2.2. Stochastic fracture network models 

In a stochastic fracture network model, the fracture network consists of series of 

penny-shaped fractures, the distributions of which is determined by the 

statistical descriptions of fracture density, size, and orientation. The stochastic 

distribution functions of fracture network properties can be fitted from field 

survey data or experience. In this work, the fracture network generation 

approach is adopted from Cacas et al. (1990). The fracture density, size, and 

orientation are described by Poisson distribution, log-normal distribution, and 

Fisher-von Mises distribution, respectively. Parameters for these three 

distributions are obtained from field data. However, slight modification can be 

made to the distribution function on a case-by-case basis. For example, 

AltaRock (2011) suggested an elliptical Fisher distribution fits better for field 

data from Newberry site. The initial fracture aperture is related to the fracture 

size (r) with a coefficient Tezuka and Watanabe 2000: 

nr                                                                                                              (2.1) 

where  is the initial aperture.equals 0.004, estimated from average virgin 

permeability (Willis-Richards 1996).is a field dependent factor and requires 

careful evaluation. We use n = 0.5, which is adopted from Tezuka and Watanabe 

2000. 
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A fracture network with five hundred penny-shaped fractures is shown in Figure 

2.1. The geometry algorithms for the visualization of 3D penny-shaped fractures 

network is presented in the Appendix.  

 

 

Figure 2.1 A stochastic fracture network with 500 penny-shaped fractures. 

2.2.1. Fracture locations (density) 

The distribution of fracture centers follows Poisson distribution (Equation 2.2) 

in this work. Poisson distribution is a discrete probability distribution that 

describes the probability of a given number of events occurring in a fixed 

domain (time or space). In this work, the expected value (EX =  for Poisson 

process) of x in Equation (2.2) is the expected number of fractures in our 

modeling domain, i.e. the fracture density (Cacas et al. 1990; Bruel 2002).  
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Fracture location can be obtained by randomly generating center coordinates 

following Equation (2.2). Figure 2.2 shows examples of fracture center 

distributions with different density parameters in a 500×500×500 m
3
 volume. 

 

Figure 2.2 Fracture center distributions with different density parameters. 



16 
 

 The density parameter (), from logging, well-imaging, or other methods, 

usually indicates one dimensional fracture density, i.e., number of fractures per 

length. In this work, three random arrays, representing x-, y-, z- coordinates of 

the centers, are generated simultaneously using the same parameter (), by 

assuming the fracture distribution has the same density in x-, y-, and z- 

directions. More realistic three-dimensional distribution can be obtained by well 

correlation (Kelkar and Perez 2002), which is not considered in this study.  

2.2.2. Fracture size 

In this work, fracture sizes are generated following log-normal distribution. The 

two parameters of the log-normal distribution are the mean () and standard 

deviation () of the fracture radius’s natural logarithm. We assume the sizes of 

all fractures in the simulated domain follow one single distribution with one set 

of parameters. However, sub-sets or different distributions can always be 

applied using similar algorithms, when suggested by field data (Cacas et al. 

1996). Figure 2.3 shows examples of penny-shaped fractures having same 

location ( = 10) and orientation (k = 2.8) but different size distribution. 
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Figure 2.3 Fracture networks with different size parameters. 

2.2.3. Fracture orientation 

Fisher von Mises distribution is usually used in directional statistics to describe 

the distribution of directions on a sphere (Mardia 1999). Figure 2.4 shows 

examples of Fisher von Mises distribution with mean direction at (-1, 1, 1) and 

different k parameters.  
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In this work, modified Fisher von Mises distribution (Equation 2.3) is used 

(Cacas et al. 1990).  

)sin())cos(exp(
)(2

)(  k
ksh

k
f                                                                  (2.3) 

where  is the angle between fracture normal and the mean direction. First, an 

array of direction angles is generated randomly. Then, these values are 

substituted into Equation 2.3, converting to the fracture orientations. Finally, 

direction angles that fall outside the range of fracture orientations are eliminated. 

Figure 2.5 shows comparisons of fracture networks with different orientation 

distribution parameters. 
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Figure 2.4. Fisher von Mises distributions with mean direction at (-1, 1, 1) and k 

= ½, 1, 4, and 8. 
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Figure 2.5 Fracture networks with different orientation distributions. 

2.3. Hydraulic properties of fractured rock 

The rock blocks contain natural fractures are convert into a continuum media, 

the permeability of which is equivalent to the fractured rock. The fracture flow 

model is based on the assumptions that fluid moves through the reservoir body 

within an interconnected fracture network, and that leakage from fractures to the 
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rock matrix is negligible in comparison with the flow in the fracture (Figure 2.6). 

Therefore, within one elemental volume, we consider fracture flow and matrix 

flow separately, and superpose these two parts together at the end of elemental 

evaluation. In this finite element model, local equivalent permeability is 

evaluated at element interfaces (indicating the connectivity between elements, 

Figure 2.6), using the conservation of directional volumetric flow rate (e.g. x- 

directional flow in Figure 2.6) through the interface (Equation 2.4 – 2.8).  

mf QQQ                                                                                                       (2.4) 

We use Darcy’s law for matrix flow calculation: 

pA
k

Q m
m

m 


                                                                                                  (2.5) 

The fluid flow in the parallel-wall fracture (Figure 2.6) is assumed to be 

governed by the cubic law (Witherspoon et al. 1980): 

p
la

Q f 
12

3

                                                                                                                 (2.6) 

Therefore, Equation (2.4) can be written as: 

pA
A

laAk
Q mm 






12/3

                                                                                  (2.7) 
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In above equations, Q is the volumetric flow rate in m
3
/s, l is the length of 

intersection line between fracture and element interface in meter; a is the 

aperture of the fracture in meter;    is the fluid viscosity in Pa·s;     is the 

pressure gradient in Pa/m. A is the interface area in m
2
. The equivalent 

permeability at interface A is obtained from Equation (2.7): 

A

AakA
k

fm )12/( 2
                                                                                       (2.8) 

In numerical simulations, the reservoir block is divided into small elements as 

shown in Figure 2.7. Each element usually contains more than one fracture 

(n >1).  Each fracture in the element has apertures (ai) and an intersection length 

(li). The directional conductivity (e.g. x- direction) of the element can be 

expressed in the following way (Rahman et al. 2002): 
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iimn
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

 1

1

3

12
                                                                         (2.9)                                                                          

In this work, the rock matrix’s permeability is very low, i.e. several orders (10
4
-

10
6
) lower than the fracture permeability. And the fracture cross-section area Af 

(in mm
2
) is much smaller than the area of the element interface Ax (in m

2
). 

Therefore, the last term in Equation (2.9) is a higher order term and ignored in 

this work. 
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Geometry algorisms for calculation intersections between penny-shaped 

fractures and element faces can be found in the Appendix at the end of this 

dissertation. 

 

Figure 2.6 Illustration of x- directional flow through an interface. 
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(a) Fracture i intersects element x-interface (b) Notations used in Eq. 2.9

A – area of element face

ai – fracture aperture

li – intersection length

 

Figure 2.7 Conversion of fracture permeability into equivalent permeability of 

FEM element. 

The equivalent permeability technique converts fracture networks into a 

continuum media with an equivalent permeability. The conductivity of the 
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resulting continuous media is dramatically influenced by the connectivity of the 

fracture network, and is also affected by the finite element mesh selection. An 

example is shown here to analyze the parameter sensitivity of fractures 

connectivity and to test the mesh sensitivity of the equivalent permeability 

technique. In the following example, a network of 500 fractures is created within 

the domain matrix block using different fracture orientation parameters, i.e. 

Fisher von Mises distribution (used in this study) vs. random distribution (used 

in Rhaman et al. 2002). Three different sizes of finite element mesh were used to 

investigate the impact of the mesh. 

Figure 2.8A-D shows the influence of fracture orientations on the fracture 

network directional conductivities. The blue color shows the connectivity of 

fracture networks whose orientations are derived using the Fisher von Mises 

distribution (FVM) (group I) and the random distribution (group II). We can see 

that the fracture network with random orientations has a higher conductivity in 

x- and y- directions and a lower conductivity in the z- direction when compared 

with Fisher von Mises distributed fracture networks. Considering the geometric 

average conductivity (Figure 2.8D), group (II) fractures also show higher values 

than group (I). These two groups have the same number of fractures, and the 

same size distributions. The finite element meshes are the same as well. By 

comparison, we can see the connectivity of fracture networks is significantly 

influenced by the fracture orientations. 
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Figure 2.8A The equivalent x- directional connectivity on FEM mesh of 

networks with Fisher von Mises (above, k = 2.8) and random orientation 

distribution (below). 
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Figure 2.8B The equivalent y- directional connectivity on FEM mesh of 

networks with Fisher von Mises (above, k = 2.8) and random orientation 

distribution (below). 

I 

II 
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Figure 2.8C The equivalent z- directional connectivity on FEM mesh of 

networks with Fisher von Mises (above, k = 2.8) and random orientation 

distribution (below). 

I 

II 
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Figure 2.8D The equivalent elemental average connectivity on FEM mesh of 

networks with Fisher von Mises (above, k = 2.8) and random orientation 

distribution (below). 

I 

II 
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The equivalent permeability is evaluated on each element’s surfaces. Figure 

2.9A-B shows the effect of mesh size on the permeability evaluation. The same 

two fracture groups as above are used. The matrix block is discretized in to 1000, 

8000, and 27000 elements for three test cases, respectively (I, II, III series in 

Figure 2.9A and B). We can see that after the fractures and the matrix elements 

are converted to a continuous media, the patterns of heterogeneity of the element 

conductivity are similar in all three cases (I, II, III) with different mesh sizes. 

However, as the mesh becomes finer, connectivity deteriorates. For the mesh 

with 27000 elements, most of the high conductivity zones are isolated. The 

isolated high conductivity zones will negatively impact fluid flow and heat 

transfer in the model. Comparing plots in Figure 2.9A (Fisher von Mises 

distribution) with those in Figure 2.9B (random distribution), we can see that the 

randomly distributed cases have higher connectivity for all three mesh sizes. 
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Figure 2.9A The equivalent fracture connectivity on different mesh sized of 

networks with Fisher von Mises orientation distribution (k = 2.8). 
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Figure 2.9B The equivalent fracture connectivity on different mesh sized of 

networks with random orientation distribution. 
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The average permeability of the entire reservoir is used to evaluate the mesh size 

effect on fracture connectivity. Harmonic mean, geometric mean, and arithmetic 

mean are commonly used for permeability averaging of a heterogeneous 

reservoir. In practice, harmonic mean is used to obtain the effective permeability 

for layered-vertical flow (Henritte et al. 1989; Amyx et al. 1960). For a system 

with log-normal permeability distribution, the geometric mean approximation is 

better than harmonic or arithmetic averages (Warren and Price 1961). However, 

some studies suggested that the effective permeability of 3D composite is a 1/3 

power average (Equation 2.10) for log-normal system (Neotinger 1994; 

Hristopulos and Christokos 1999): 
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K                                                                                       (2.10) 

where Ki is the variable of each elements, nels is the total number of elements. 

We use the 1/3 power average to approximate the average permeability of the 

entire block, and to quantify the mesh size effect on fracture connectivity. Figure 

2.10 shows the correlation between mesh size and effective permeability of the 

entire reservoir. Two fracture networks with same stochastic parameters as in 

group (I) of Figure 2.8 are analyzed (fracture network with FVM orientation 

distribution). As the mesh becomes finer, the average permeability decreases 

and converges to some smaller value. Also, the curves for the two stochastic 
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fracture networks in Figure 2.10 show that the horizontal permeability (x- and y- 

directions) is slightly higher than the vertical permeability (z- direction), which 

is consistent with the results from Figure 2.8. 

 

Figure 2.10 Change of overall average permeability with mesh size. 

2.4. Mechanical properties of fractured rock 

In simulations, the simulated domain is discretized into finite elements 

(meshing). Each element is required to have its individual properties input to the 

model, such as Young’s modulus, Poisson’s ratio, and permeability, etc. In 

modeling of rock heterogeneity (Chapter 3), we statistically distribute the local 

properties into individual elements. In some cases when rock mass with natural 
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fractures are considered, it is necessary to calculate the equivalent elemental 

mechanical properties of the elements that contain fracture(s) before conducting 

Finite Element analysis. In this work, for intact rock, we assume isotropic 

Young’s modulus and Poisson’s ratio, and the variation of Poisson’s ratio after 

fracturing is small for isotropic material. Therefore, Poisson’s ratio is kept 

constant in this model. In the following, equivalent technique for Young’s 

modulus of a fractured sample is presented. As conservation of flow rate is used 

in permeability conversion, the balance of displacement is used accordingly for 

the equivalent Young’s modulus. The overall displacement of the fractured rock 

is equal to the displacement of converted continuum mass with equivalent 

Young’s modulus under the same external loading. Rosso 1976 illustrated 

correlations among joint stiffness, axial and transverse strains of rock sample, 

and Young’s modulus of intact rock during a triaxial test (Figure 2.11): 
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Shear stress:  cossin)( 31   

Normal stress:    2
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Figure 2.11 Illustration of relations between variables in triaxial test of a 

fractured specimen. 

In above correlations and Figure 2.11, 1 is axial strain; 2 is small transverse 

strain; 3 is large transverse strain; D is sample diameter;  is angle between the 

joint surface and the sample axis; L is sample length; E is elastic modulus 

determined from the competent specimen; 1 is axial stress; 3 is confining 

pressure. 
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From above relations, we can derive an expression of vertical equivalent 

Young’s modulus in terms of properties of intact rock and fracture.  

ELKLKLKE s

d

nn

dd 123

3

'
cossin

sinsin 



                                           (2.11) 

where deviatory stress 
31  d
; E’ is equivalent  Young’s modulus of the 

fractured sample; and other parameters are same as defined above. Here we 

assume the fracture properties and intact rock properties are known. Figure 2.12 

shows the comparison between lab test result and calculated result using 

Equation (2.11). We can see that that equation approximates the lab test result 

well in elastic part.  

Equation (2.11) is an approximation of Young’s modulus in axial direction for 

an element which contains only one cut-through fracture, for example, elements 

in simulation case presented in Chapter 8.3, which are cut by a single hydraulic 

fracture (Figure 8.18).  When more than one fracture are included in one 

element, fracture interactions need to be examined, which are not considered in 

this dissertation. The cutting-through angle  in equation 2.11 is subject to 

change when the Young’s modulus of other direction is calculated, which 

indicates that the fractured element may have anisotropic Young’s modulus after 

equivalent continuum conversion.  
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Figure 2.12 Comparison between Equation 2.11 results with laboratory data. 

2.5. Heat transfer via fracture flow  

In some cases, heat transfer can be de-coupled from mechanical response 

analysis. For example, heat flow (convection) in interconnected fracture network 

takes place so rapidly that the convection from adjacent rock to fracture can be 

ignored during the simulation time.  The heat transfer model includes two parts: 
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1) 1D linear heat conduction from adjacent rock matrix into the fracture; and 2) 

1D linear heat convection through channels formed by interconnected fractures 

(Figure 2.13; Equation 2.12). In this model, it is assumed that 1) fluid flow (heat 

convection) primarily occurs in channels within fractures; 2) heat conduction 

develops perpendicular to the fracture face; and 3) no heat is retained by the 

volume of fluid with in the fractures (Bruel 2002). In decoupled heat transfer 

calculations, the water flow through the rock matrix is ignored; therefore, the 

heat convection is confined within the interconnected fracture network. The 

energy conservation is obtained (Bruel 2002) at each fracture center by 

balancing the heat convection (via fluid flow) and heat conduction between 

adjacent rock mass and the fluid in the fracture (Figure 2.13; Equation 2.12). 

   
in

j

out

k

fkikfffjijffi tTqCtTqCE                                                       (2.12) 

Where t
dy

dT
SkE y

m
imi  0)(  denotes the energy from the heat flux at fracture 

walls which is governed by conduction (diffusive equation, Equation 2.13). qij 

and qik represents the fluxes flow in a given fracture i, from fracture j and flow 

out to fracture k with temperature fj and fi, respectively (Figure 2.13). The 

fluid exits to the fracture k having the same temperature as the current 

temperature in fracture i. Similarly, fluid flows from fracture j to fracture i 

having the same temperature as the current temperature in fracture j.  
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Figure 2.13 Energy conservation of fracture i. 

The heat exchange across the fracture face can be described as (Bruel 2002): 
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The above diffusive equation is solved using the finite difference method. Given 

the fracture temperature at time t, the solution will return the temperature 

distribution from the fracture face to the other end of the rock cylinder. After 

that, the heat flux i can be obtained and the energy exchanged (Ei) calculated. 

At each fracture center, one energy balance equation is set up, and the set of 

equations is solved for fiq  at each time step. Parameters that appear in the above 
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equations are f  and m  are the fluid and rock density respectively, Cm is the 

solid heat capacity, m is the heat diffusivity of rock mass, 
iS is the fracture face 

area, and km is the heat conductivity of rock mass.  

The shape of the heat source rock block is assumed to be cylindrical with a 

radius equal to the fracture radius (Figure 2.14). The length of the cylinder is 

chosen so that the temperature on the other end of the cylinder remains 

unchanged during stimulation (Marin 2010). The results show that the 

temperature changes will not develop at a long distance within test time period. 

Therefore, the cylinder to cylinder interaction and the thermal stress effects are 

ignored at this stage. According to characteristic length definition (Marin 2010), 

the characteristic length of a cylinder of rock with a heat diffusivity of 1.15x10
-6

 

m
2
/s, is approximately 12 m/year. This length ensures the temperature on the 

opposite end of the matrix block is unchanged during one year of heat transfer. 

The 1D heat diffusive equation (2.12) for heat conduction can be written as 

t

T

y

T

C

k mm

mm

m









2

2


                                                                                           (2.14) 

Defining 
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   , then equation (2.13) becomes: 
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Figure 2.14 Heat transfer in interconnected fracture network. 

It is easier to solve above equation using Finite Difference Method (FDM) than 

using FEM. The right hand side can be discretized in y- coordinate direction as 
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The one dimensional heat conduction takes place in a cylinder which has a cross 

section area of A = r
2
. Therefore, the volume of each element (i) has a volume 

of Vi = r
2yi. We can then write the discretized form of Equation (2.14) as 
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If we use uniform element size, i.e. y = const., then according to central 

differentiation, we can denote the coefficients as  
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And finally the diffusion equation can be written in matrix form as 

)0()1()1( tTtTtK mmT                                                                                  (2.19) 

The temperature distribution (m|y) in the rock cylinder at time t can then be 

calculated. The temperature gradient dm/ dy at fracture wall is needed in the 

heat convection calculation as the heat gain of the fracture from adjacent rock. 

In this model it is approximated by (m1-m0)|t /y.  

For uncoupled heat transfer analysis, we assume the fluid flow is confined 

within the connected fracture networks. Therefore, it is necessary to find out the 

inter-connected fractures. A search algorithm is used to determine the 

connectivity. Every fracture is checked whether or not it belongs to a connected 

flow path. Then, dead ends and isolated fractures are removed. An iterative 

analysis is employed to do the searching (Appendix). 

In order to solve the system of equation for heat transfer, the fluid flow in 

fracture network need to be solved first. As explained in the equivalent 

permeability section (2.3) fluid flow is confined within fracture networks. Fluid 

flow in fractures is assumed to be similar to that of parallel surfaces. Then the 
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cubic law provides the volumetric flux (m
3
/s) through a fracture with aperture a  

and length l:  

dl

dpla
Q

12

3
                                                                                                    (2.20) 

The flow network considers each connected fracture as a 1D pipe linking the 

centers of adjacent fractures (Figure 2.15). Let ki and kj represent the 

conductivity of fracture i and j, and let pi and pj be the pore pressure at each 

fracture center. Li and Lj are the channel length in fracture i and j, respectively. 

The volumetric flow rate between fractures i and j can be write as (Cacas et al. 

1990): 
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Conductivity of each fracture can be obtained from the modified cubic law: 
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Figure 2.15 Flow channel between two connected fractures. Ci and Cj are centers 

of fractures i and j, Li and Lj are the channel lengths in fractures i and j, 

respectively. 

The system of equation for solving fluid flow between fractures can be 

generalized as following using the fact flow-in equals to flow-out 

 
i

ij sourceQ 0                                                                                                             (2.23) 

][]][[[ QpKT                                                                                                                      (2.24) 

 

Figure 2.16 An example of pipe model for interconnected fracture network. 
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Taking node 4 in Figure 2.16 as an example, the above matrix equation can be 

expanded as  

 
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47

47

46

46

45

45

34

34

L

K

L

K

L

K

L

K

L

K

ji

ji
 ; 

 10987654321 ,,,,,,,,,][ pppppppppppi  ; 

 outini qqQ ,0,0,0,0,0,0,0,0,][  . 

After obtaining the nodal pore pressure, using Equation (2.21) we can find out 

the qij terms in Equation (2.12). And finally we can solve for the temperatures in 

each fracture. Figure 2.17 shows the result of a 2D pipe network example, and 

Figure 2.18 shows the result of a 3D pipe network example. All interconnected 

fractures are represented as pipes. 
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Figure 2.17 Temperature distribution in 2D channels formed by 1D pipes. 

 

Figure 2.18 Temperature distribution of a 3D pipe network. 
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3 

DISTRIBUTION OF ROCK HETEROGENEITY IN 

NUMERICAL MODELS 

In general, all materials are more or less non-homogeneous because of the 

existence of micro-defects, such as pores, micro-cracks, different mineral grains, 

flaws, etc. These heterogeneities significantly affect the mechanical and flow 

behaviors of the material. In some cases, it is critical to take heterogeneities into 

consideration when the conventional homogeneous model is not sufficient to 

explain physical processes for the macro-scale heterogeneous materials, such as 

the strain-softening process of some rock. In this work, it is assumed that the 

initial distributions of the material properties are heterogeneous, which is 

described by Weibull distribution function whose parameters are obtained 

through comparing numerical stress-strain curves with laboratory test results. 

Three-steps are followed to produce the numerical stress-strain curve: 1) build a 

heterogeneous numerical sample in which the elemental properties’ distribution 

follow Weibull distribution; 2) Derive the stress-strain curves (find initial 

Young’s modulus, peak strength, threshold strain, residual stress and strain, etc.) 

of each element using it’s elemental properties on the basis of continuum 
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damage model; 3) Use the FEM model to compute the stress-strain behavior of 

the entire numerical sample (Liang 2005). Applications of Weibull distribution 

and the continuum damage model, and the correlation between these two 

theories are introduced and explained in this chapter. 

3.1. Weibull distribution 

Weibull distribution (Weibull 1961) is widely used for modeling reliability and 

residual life data. Weibull models have been used to describe various types of 

observed failures of components and phenomena (Hallinan 1993; Johnson et al. 

1994; Murthy et al. 2003). However, the Weibull distribution was initially used 

to model the distribution of breaking strength of materials (Weibull 1939). 

Weibull distribution has been modified and justified to be more applicable for 

the degradation of geo-materials in its later applications (Krajcinovic and Silva 

1982; Chen et al. 2003; Cao et al. 2004; Wong et al. 2006). In the strength 

model, the distribution describes that the stress is a function of strain, similar as 

the time-life correlation in reliability models. In this situation, the probability 

density function (PDF) of two-parameter Weibull distribution of material 

strength (T) can be written as: 
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And the cumulative distribution function (CDF), which can be viewed as 

damage ratio (the ratio between the numbers of damaged element and total 

element), is: 

])(exp[1)(
0

m

T

T
TF                                                                                      (3.2) 

In above, the parameters of two-parameter Weibull distribution are: m the shape 

parameter and T0 the characteristic material strength. Figure 3.1 and 3.2 give the 

PDF and CDF of two-parameter Weibull distribution for different parameters, 

from which one can get a sense of the physical meaning of m and T0. The shape 

factor m controls the distribution of variables around the characteristic material 

strength T0, which is the threshold strain at peak stress.  
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Figure 3.1 PFD of 2-parameter Weibull distribution. 
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Figure 3.2 CFD of 2-parameter Weibull distribution. 
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3.2. Continuum damage mechanics and its illustration in uniaxial constitutive 

laws 

Continuum damage mechanics has been developed continuously since it was 

first proposed by Kachanov (1958) and Rabotonov (1969). Various models have 

been reported in the literature, based on different concepts of damage 

measurement (Krempl 1977; Murakami and Ohno 1980; Lemaitre 1985). 

Generally, continuum mechanics is accepted to describe the undamaged (elastic) 

stress-strain constitutive relation of a heterogeneous material, even if the pre-

existing micro-void, grains, and micro-defects makes the material not really 

continuum. The degradation process of most geo-materials consists of the 

initiation of micro-cracks, stress-strain concentration around micro-defects, and 

dislocation of grains, is considered irreversible even in generally considered 

elastic period.  The progressive material degradation is caused by local damages, 

which initiate micro-fractures. Kachanove (1958) brought out the remarkable 

concept of macroscopic damage variable D as a measurement of damage of the 

entire structure (Figure 3.3A).  Duvaut (1976) introduce the concept of 

measuring the material damage through the change in the mechanical behavior 

of the material, which can be interpreted through the “effective stress” concept 

(not to be confused with Terzaghi/Biot effective stress) is the stress (
eff

), with 

higher than average () value acting on the undamaged cross-section area 

(Figure 3.3B).  
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Figure 3.3 Schematic of a) area reduction due to damage; b) effective stress on 

un-damaged area A(1-D). 
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From the effective stress concept, for ductile material, the damage variable can 

be considered as the degradation of the material elastic modulus (Lemaitre 

1985).  
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D ranges from zero for the undamaged rock to one for ultimately damaged rock. 

Figure 3.4 shows the theoretical uniaxial stress-strain curve with both 

compressive and tensile behavior. According to the definition of damage 

variable D (Equation 3.5), after peak strength, the degraded material will have a 

lower Young’s modulus, Ed, and lower strength, Figure 3.4. In this work, it 

is assumed that the curve will go back to initial state with a slope of Ed when 

unloading (Li et al. 2012). According to Equation (3.5), the damage variable can 

also be expressed in terms stress of undamaged material and stress of damaged 

material: 

E

E
D d




1                                                                                                        (3.6) 

Applying Equation (3.6) onto the constitutive relation (Figure 3.4): 

1) If damage occurs as compressive failure, the damage variable, D, can be 

expressed in terms of strain, peak stress (uniaxial compressive strength), and 

residual compressive strength of the sample (Figure 3.4): 
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where r and r are the residual compressive strength and strain, and c and c 

are the compressive stress and strain at peak.  is the current compressive axial 

strain. E0 is the undamaged Young’s modulus. 

2) In tensile loading, the damage variable can be written as (Figure 3.4): 
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where, similar as compressive damage, t and t are the tensile stress and strain 

at peak.  is the current tensile axial strain. E0 is the undamaged Young’s 

modulus.  

 

Figure 3.4 Constitutive law of uniaxial test. 
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3.3. Combination of continuum damage mechanics and Weibull failure theory  

As a load is applied to a rock sample, the stresses gradually increase and an 

individual element may fail when the local stress reaches the elemental strength. 

First, it is assumed that each element is homogeneous and will be completely 

failed (i.e. elemental damage variable De = 1) when elemental stress reaches the 

ultimate strain, i.e. no residual strength (Figure 3.6). The distribution of 

elemental strengths follows the Weibull probability density function (Chen et al. 

2006): 
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where m is a shape parameter related to the material homogeneity, 0 is a scale 

parameter related to the average local uniaxial strength, and x is the uniaxial 

strain strength for an individual element. 

The damage variable D of the entire sample, indicating the ratio of the number 

of damaged FEM elements to the total number of elements in this study, is the 

cumulative density function (CDF) of Weibull distribution (Equation 3.2):  


1

0
)(



dxxfD                                                                                                   (3.9) 

1 is the current uniaxial strain of the rock specimen. Combining Equation (3.8) 

and (3.9) provides: 
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                                                                                        (3.10) 

For uniaxial test, )1(/11 DE  . Therefore, the uniaxial constitutive equation 

can be written as: 

])/(exp[ 0111

mE                                                                                    (3.11) 

Figure 3.5 shows a typical theoretical stress-strain curve of a uniaxial test. At 

peak load, the derivative of above equation with respect to strain equals zero, 

yielding: 
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At the peak point, the stress and strain are given by the uniaxial strength (c) and 

threshold strain (c) from laboratory test curve. Then it can be shown that (Chen 

et al. 2006): 

)/ln(

1

co EE
m  ; and c

mm  /1

0                                                                      (3.13)  

where E0 and Ec are the initial tangent modulus and the secant modulus of rock 

in uniaxial compression stress-strain curve. Finally, with parameters obtained 

from laboratory test curve (Equation 3.13), the theoretical stress-strain curve 

calculated using Weibull theory (Equation 3.8) for the heterogeneous rock 
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sample is plotted in Figure 3.5. It can be observed that the theoretical curve fits 

well with the pre-peek part of the lab curve. In order to better approximate the 

post peak softening behavior, the post peak behavior of each individual element 

needs to be modified.  

 

Figure 3.5 Typical complete stress-strain curve of a stress softening rock and the 

theoretical Weibull fit of the curve. 

In the theoretical damage constitutive law derivation, the damaged element is 

assumed to have complete failure and has no residual strength. However, 

damaged element in the sample still has some strength, due to the confinement 
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strength (stress) to each element; hence change the elemental constitutive law 

from Figure 3.6 to Figure 3.7. The value of residual strength is determined by 

trial and error as shown in Figure 3.8. 

After this modification, we can produce better fitted stress-strain curves (Figure 

3.8) by combining continuum damage mechanics and Weibull distribution. For 

instance, in the heterogeneity modeling, four steps are followed: 1) use 

Weibull’s distribution Equation (3.8), with parameters calculated from 

constitutive correlation of continuum damage mechanics (Equation 3.13), to 

assign the heterogeneous properties to each element. 2) at each load increment, 

apply modified constitutive correlations (Figure 3.7) to each element for 

elemental failure analysis, by calculating elemental damage variables (Equation 

3.7), and hence obtain the degraded material properties for next load increment; 

4) at the end of loading process, plot the complete stress-strain curve of the 

entire sample; 5) compare to laboratory test curve, make adjustment to 

constitutive correlations if necessary until satisfactory fit, i.e., adjust the value of 

elemental residual strength and ultimate strain. In Figure 3.8 the numerical 

stress-strain curves with different residual strengths and ultimate strains (post 

peek behavior) are plotted. The parameter m (shape factor) for heterogeneous 

distribution is 4.5; the average undamaged Young’s modulus, uniaxial strength, 

and Poisson’s ratio are 4.2 GPa, 27 MPa, and 0.2, respectively. One can find that 
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the curve with 40% residual strength and 2.5c ultimate strain gives a good 

match to the laboratory test curve. 

 

Figure 3.6 Schematic of uniaxial constitutive law with no residual strength.

 

Figure 3.7 Schematic of uniaxial constitutive law with residual strength. 
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Figure 3.8 Numerically fitting lab test stress-strain curve using Weibull Theory 

and continuum damage mechanics.  
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4 

THERMO-POROELASTICITY 

Governing equations for coupled rock deformation-fluid flow problems have 

been developed and improved for decades. Terzaghi (1923) proposed the 

concept of effective stress considering the pore pressure effect on soil 

consolidation. Biot (1941) systematically developed the fundamental poroelastic 

theory, or Biot theory, that illustrates the coupling effect between fluid and solid. 

Rice and Cleary (1976) reformulated Biot theory by using more familiar elastic 

constants. More recently, thermal-poroelastic theory has been extended from 

Cleary theory (McTigue 1986; Kurashige 1989). These theories are extensively 

used nowadays in research and application. Extensions according to problem 

definitions have also been made, for example, effect of chemical potential on 

rock deformation has been studied and thermal-chemo-poroelastic formulation 

has been developed (Mody and Hale 1993; Heidug and Wong 1996; Ghassemi 

and Diek 2003). In this thesis, Kurashige’s formulation of thermo-poroelasticity 

is adopted which considers the coupling effect among mechanical stress, fluid 

pressure and thermal stress, and the coupling between fluid flow and heat 

transfer. The sign convention is tension positive.   
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4.1. Constitutive equations 

The coupling between solid and fluid is reflected in the interaction between rock 

deformation and pore fluid diffusion, in other words, the change of pore pressure 

causes rock deformation and also rock could deformed by fluid flow. Similarly, 

temperature change causes rock deformation and fluid diffusion, and fluid flow 

lead to heat convection. In this work, the thermal effect of rock deformation and 

fluid compression is ignored. The 3D constitutive equations of the fluid 

saturated thermoelastic porous material can be written as: 

 TpBC Tl

ijijklijklij                                                                                           (4.1) 

TDpB T

pklkl                                                                                               (4.2) 

Equations (4.1 - 4.2) show the influences of stresses, pressure and temperature on the 

deformation of solid phase and fluid phase. For instance, tensile stress, increase of pore 

pressure, and increase of temperature will cause expansion of the solid phase. Similarly, 

compression, decreasing pore pressure, and cooling of pore fluid will lead to shrinkage 

of the pore space.  

For isotropic materials: 
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ij                                                                                                          (4.7) 

Where, , G, K, , and Tl

m  are the porosity, shear modulus, bulk modulus, 

Poisson’s ratio, and the linear thermal expansion coefficient of the rock, 

respectively. And u is the corresponding undrained Poisson’s ratio. Kf is the 

bulk modulus of pore fluid; Ks
’
 is the effective bulk modulus of the solid 

constituent. 
T

p is the volumetric thermal expansion coefficient of the pore space. 

B in Equation (4.5) is Skempton’s pore coefficient, and is related to Biot’s 

coefficient  as: 
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                                                                                        (4.8) 

With above expressions, equation (2.1) and (2.2) can be rewrite as: 
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T

m  is the volumetric thermal expansion coefficient of the rock, assuming 3/T

m

Tl

m   . 

If the pores expand with their shapes remaining similar, as the pours matrix expands 

thermally, coefficient 
T

p  can be expressed as  T

m . For thermal expansion, we 

assume the same temperature increment for both rock and pore fluid because local heat 
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change between both components may be rapid enough in comparison with global heat 

and fluid diffusions (Kurashige 1989).  

For a unit bulk volume, the mass content of pore fluid can be expressed as: 

 fm                                                                                                            (4.11) 

Therefore, the change of fluid mass content for the unit volume of material is: 

 ffm                                                                                          (4.12) 

In above expressions, f is the fluid density. The change in fluid density due to 

pore pressure and temperature variation can be expressed as: 

T
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                                                                                           (4.13) 

where 
T

f  is the volumetric thermal expansion coefficient of the pore fluid. 

Substituting (4.10) and (4.13) into (4.12) yields: 
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Presenting (4.14) in terms of the change of fluid volume content per unit 

reference volume  , yields: 
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by applying the following relation between material properties and (4.8): 
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Equations (4.9) and (4.15) are convenient versions of the constitutive relations 

for thermo-poroelastic analysis. Next, the constitutive relations associated with 

the heat and fluid diffusion are considered. As noted by to Cleary 1976, by 

identifying the consequence of positive entropy production as implied by 

existing relationship between the fluxes and their driving forces, the following 

coupled Fourier-Darcy laws (Kurashige 1989): 

jijjijfi TLpq ,,                                                                                         (4.17) 

jijj

T

iji pLTh ,, '                                                                                          (4.18) 

where ih  and iq are the heat flux and fluid flux, respectively. ijL  and ijL' are the 

cross-effect coefficients, which are neglected in this work because they are 

generally much smaller than the first terms in the right hand side of (4.17) and 

(4.18). Therefore, the constitutive relations for mass and heat diffusion in this 

work can be simplified as: 

jijfi pq ,                                                                                                  (4.19) 

j

T

iji Th ,                                                                                                       (4.20) 

where ij  and 
T

ij are hydraulic and thermal conductivity, respectively. 

4.2. Conservation laws 

There are three conservation laws used to solve stress, pressure and temperature 

field, namely,  
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1) The equilibrium equation: 

0, jij                                                                                                            (4.21) 

2) The fluid mass conservation equation: 

iiq
t

m
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                                                                                                     (4.22) 

Substituting (4.19) into (4.22), one obtains: 
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3) The energy conservation equation: 

iifiitt TqCh
t

T
C ,, 




                                                                                  (4.25) 

where t and tC  are the total mass density and specific heat for the bulk 

material, and fC  is the specific heat of pore fluid. The first term on the right 

hand side represents the conductive heat transfer through the porous material, 

and the second term represents the convective heat transfer via the pore fluid 
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flow. Similarly as thermal expansion, we assume same temperature increment 

for both rock and fluid. This is based on an assumption that the fluid velocity in 

the porous medium is low enough to maintain the equality of temperature 

between fluid and solid phase in an elementary volume (Li 1996). The 

occurrence of significant temperature differences between the two phases are 

possible when the fluid velocity is high, which will be discussed in heat transfer 

of fracture flow later. 

4.3. Field equations 

4.3.1. Deformation field equation 

Substituting compatibility equation (4.26) for small deformations into (4.9), the 

Navier’s equation for displacements (4.27) is obtained: 
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4.3.2. Fluid diffusion field equation 

Differentiating (4.15) with respect to time, one obtains: 
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Using the following relation between material properties and (4.24): 
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Equation (4.29) can be rewritten as: 
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Differentiating (4.9) with respect to time yields: 
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Substituting (4.32) back into (4.31), then rearranging, one obtains: 
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4.3.3. Thermal diffusion field equation 

Substituting (4.19) and (4.20) into (4.25), one obtains: 

iiffjj

T

tt TpCTk
t

T
C ,,, )(  




                                                                     (4.36) 

Rearranging (4.36) and defining the following, one can get the thermal diffusion 

field equation as (4.39): 
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Three field equations we obtained previously are summarized as follows: 
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From the above field equations, it can be seen that in this work the displacement 

field is completely coupled with the pore pressure and temperature fields. Also, 

pore pressure is coupled with displacement and temperature fields.  

The above fully coupled thermo-poroelastic field equations are derived for 

continuum fields of homogeneous and isotropic material. Extension of these 

equations for the usage in heterogeneous anisotropic rock will be discussed later 

in next chapter (Chapter 5) by applying finite element method (FEM).   
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5 

FINITE ELEMENT METHOD AND ITS APPLICATIONS IN 

GEOMECHANICS PROBLEMS 

Governing equations for thermo-poroelasticity are a set of partial differential 

equations with respect to space and time. Analytical solutions exist for relatively 

simple geometries and material properties, and are generally subjected to many 

strict assumptions (homogeneous, continuum, simple boundary, etc.). When 

realistic physical conditions such as heterogeneity, nonlinearity, and complex 

geometries are considered, numerical solutions have to be sought. There are few 

numerical methods available for solving a set of partial differential equations. 

Finite element method (FEM) and Finite difference method (FDM) are among 

the most popular numerical methods. Comparing to traditional FDM, FEM is 

better in dealing with arbitrary geometries, and has greater capability for higher 

order boundary conditions.  

5.1. Fundamental aspects of PDE discretization in FEM  

The finite element method is a technique for solving partial differential 

equations (PDE) by first discretizing these equations in their space domain 
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(discretization) and to a system of elemental equations. The representative small 

regions are called the finite elements, which has simple but irregular geometry 

with finite number of degree of freedom. In order to solve equations over large 

regions, the discretized matrix equations for the smaller sub-region (elemental 

equation) can be summed node by node, resulting in global matrix equations 

(assemble).   

In the finite element method, continuous spatial variables in these PDEs such as 

displacement u, pore pressure p, and temperature T can be approximated by 

interpolation functions (u(x, y, z), p(x, y, z), and T(x, y, z)) in terms of their nodal 

values ( iu~ , ip~ , and 
iT

~
) respectively by assigning appropriate coefficients iN  

(shape functions) to each node value. For example, considering a three-

dimensional brick element (8 nodes) (Figure 5.1), the interpolation functions can 

be written as:  
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where u , p , and T are the polynomial interpolations of continuous 

displacement, pore pressure and temperature functions. Ni is the interpolation 

coefficient and is generally referred to as shape function where subscript denotes 

the corresponding node. iu~ , ip~ , and iT
~

 denote the function values on 

corresponding nodes. 

 

Figure 5.1 Commonly used 2D and 3D FEM Elements 

The accuracy of the finite element solution depends on the order of interpolation 

error and is generally called residual. Many methods could be used to minimize 

the residual, for example collocation, subdomain, Galerkin, and least square 

technique (Griffiths and Smith 1991). Of these, Galerkin’s method is the most 

triangular element quadrilateral element 

tetrahedron element hexahedron element 

2-D 

3-D 
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widely used in finite element work. For illustration simplicity, the following 

example for Galerkin’s method considers a one-dimensional rod element (Figure 

5.2). 

 

Figure 5.2 Example for interpolation of continuous displacement using nodal 

variable and shape function in 1D FEM element.  

Figure 5.2 shows a 1D solid element with end nodes 1 and 2. The element has 

length L and a cross sectional area A, and Young’s modulus of E. u is the 

longitudinal displacement which is a function of space variable (x in this case). 

The differential equation for displacement of this element under external force F 

can be written as (Smith and Griffiths 2004): 
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After discretization, Equation (5.4) becomes: 
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where 
L

x
N 11 , 

L

x
N 2 , R =  residual                                                        (5.6) 

In the Galerkin’s method or so the called weighted residual method the values of 

u1 and u2 are widely selected to minimize the residual. The process basically 

consists of multiplying the residual by each shape function in turn, integrating 

over the element and equating to zero. Thus:  
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In the present example, since linear shape functions are used, double 

differentiation would lead them to vanish. But typically, by applying Green’s 

theorem (integration by parts) integrals terms with double differentiation can be 

calculated as: 

 











dx

x

N

x

N
dx

x

N
N

jij

i 2

2

 + boundary terms                                                    (5.8) 

Therefore, assuming E, A, and F are not functions of x for this element, 

Equation (5.7) becomes: 
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The resulted  u~ from above equation full fill the minimal residual. Typically, 

the discretized elastic differentiation equation will take the form of Equation 

(5.9), and can be write using matrix notation as: 

     fuK
~~                                                                                                     (5.10) 

where  K  is the element stiffness matrix,  u~  is the element nodal displacement 

vector, and  f
~

 is the element nodal force vector. 

5.2. Shape functions and their mathematical properties 

With the knowledge of Galerkin’s formulation, the key part of discretization is 

the differentiation and integration of shape functions with respect to space 

variables Equation (5.8). Therefore, before discretization, it is necessary to study 

the shape function of different finite elements and their mathematical properties 

of the in terms of differentiation and integration. The following table gives 

commonly used finite elements and their shape functions (Table 5.1) (Smith and 

Griffiths 2004; Dhondt 2004). Shape functions have the property that they equal 

to one at a specific node and zero at all others. 
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Table 5.1 Shape functions for commonly used FEM elements  
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Previously, it was shown that integral of double differentiation of variables to be 

discretized would result in a product of two first order differentiations of shape 

functions when applying Galerkin’s technique (Equation 5.8). In practice, higher 

order of differentiation is present at times, e.g. second order differentiation of a 

linear shape function. Green’s theorem is used to avoid the difficulty of the 

vanishing of shape function under higher order of differentiation. By doing so, 

Table 5.2 gives general remarks on the discretization process. 

Table 5.2 Typical resulting term in matrix equation from term in differential 

equation (Smith and Griffiths 2004) 

Term in differential equation Typical term in matrix equation 

u   dxNN ji  

dx

du
  dx

dx

dN
N

j

i  

2

2

dx

ud
  dx

dx

dN

dx

dN ji  

4

4

dx

ud
  dx

dx

Nd

dx

Nd ji

2

2

2

2

 

 

5.3. Discretization of three-dimensional thermo-poroelasticity equations 

Writing out again the field equations of thermo-poroelasticity used in this work 

(tension positive): 
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0)
3

( ,1,,,  jjjijjji Tpu
G

KGu                                                              (5.11) 
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dt
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p
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t
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kk 
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                                                                     (5.12) 

0)( ,,, 



ii

T

jj

T TpTc
t

T
                                                                                (5.13) 

The above equations are to be discretized in the solution domain. In this section, 

the generally used 8-node finite brick element is used to illustrate the 

discretization process. From Equations (5.1), (5.2), and (5.3), the numerical 

interpolation of displacement, pore pressure, and temperature in the above PDEs 

can be expressed as 

  uNu u
~                                                                                                       (5.14) 

  pNp p
~                                                                                                      (5.15) 

  TNT T

~
                                                                                                       (5.16) 

where  T
zyx uuuu  , p, and T are displacement, pore pressure, and 

temperature field variables. 

   Tzyxzyx uuuuuuu 888111 ~~~...~~~~                                                              (5.17) 
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   Tppp 81 ~...~~                                                                                           (5.18) 

   TTTT 81 ~
...

~~
                                                                                           (5.19) 

are nodal values of displacement, pore pressure, and temperature. 
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   81 ... ppp NNN                                                                                         (5.21) 

   81 ... TTT NNN                                                                                         (5.22) 

are shape function matrices. 

According to Table 5.2, after discretization, double and single differentiation of 

variables can be expressed as: 

    uBu
~                                                                                                     (5.23) 

    pBp pj
~

,                                                                                                   (5.24) 

    TBT Tj

~
,                                                                                                    (5.25) 

While double differentiations will take the following form: 
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      pBBp p

T

pjj
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,                                                                                        (5.26)   

where  B calculate the derivatives of shape functions: 
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 Thus, after discretization, Equations (5.11), (5.12), and (5.13) become (Li 1998; 

Zhou and Ghassemi 2009; Smith and Griffiths 2004): 

uuTupu FTCpCuK 
~~~                                                                                  (5.30) 

qoutpTppppu F
dt

Td
C

dt

pd
CpK

dt

ud
C 

~~
~

~
                                                     (5.31) 
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houtcvTcdTTT FTKTK
dt

Td
C 

~~
~

                                                                    (5.32) 

where uF , qF , and hF  are the external force, fluid and heat sink/source terms. 
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 (5.36) 

 

 TI 000111                                                                                  (5.37) 
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Differentiating both sides of Equation (5.30) with time and rearranging, the 

system of equations can be expressed in matrix form as: 
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Since the problem of interest is also time dependent, we need both spatial and 

temporal discretization. In this work, the Crank-Nicolson type of approximation 

is used to discretize the temporal domain (Crank and Nicolson 1947). 

t

pp

dt

dp ttt




 )1( 

                                                                                    (5.39) 

where  is a scalar parameter which can vary between 0.5 and 1.0.   

Applying Equation (5.39) onto (5.38) and multiply both side with t , one 

obtains: 
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Finally, the FEM matrix formula used in this work can be written as (Zhou and 

Ghassemi, 2009; Lee and Ghassemi 2011): 
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                                 (5.41) 

In Equation (5.41), u , p , and T are primary unknowns we need to solve, 

which are the increments of displacement, pore pressure, and temperature 

between successive steps. t denotes the time step size.  

5.4. FEM modeling of heterogeneous and fractured reservoir 

In the modeling of a heterogeneous and/or fractured reservoir, elemental 

properties are assigned in the first place. Equation (5.41) represents a set of 40 

equations for one element, which includes 3 equations for displacement (ux, uy, 

and uz), 1 equation for pore pressure (p), and 1 equation for temperature (T) for 

each of the eight nodes. Matrix equation of each element, each node, and each 

degree of freedom in the FEM mesh can be written out explicitly. FEM 

discretizes the simulation domain into elements, and elemental matrix equation 

is formulated explicitly. Hence, it is capable of assigning different properties 

(heterogeneity distribution) element by element using previously described 

Weibull’s distribution (Chapter 3).  Similarly, natural fractures are mapped to 

the FEM mesh element by element too using equivalent continuum conversion 
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(Chapter 2). Coefficient matrices composited by elemental properties, such as 

Young’s modulus (E), drained and undrained Poisson’s ratio ( and u), Biot’s 

coefficient (),and hydraulic and thermal conductivities,  in the left side of 

Equation (5.41) can be anisotropic as needed, since they are represented as 

tensors in the formula. After elemental properties are distributed and obtained 

from heterogeneity and fracture characterization, coefficient matrices are formed 

using Equation (5.33 – 5.35). Next, Boundary conditions, such as injection 

pressure/rate, far field boundary pressure and stress, and drainage condition, and 

initial conditions, such as in-situ stresses, initial pressure, and initial temperature 

are imposed to the FEM model. As explained previously, the primary results 

from FEM analysis are u , p , and T . At each time step, rock failure 

analysis and fracture deformation analysis are conducted after FEM analysis 

finds the unknowns. 

In the numerical calculations of this dissertation, the damage variable (as 

discussed in Chapter 3 and Chapter 7), is computed after each time step of the 

coupled FEM analysis. However, the equation system (Equation 5.41) is 

nonlinear and the coefficient matrix is subject to change according to damage 

evolution and fracture deformation. Therefore, an iterative method is used to 

solve the non-linear system of equations. In each iteration step within a given 

time step, the value of coefficient matrix from the last time step is used as the 



88 
 

initial guess (Equation 5.41) to obtain an initial damage variable, di. The initial 

damage variable is used to evaluate the current coefficient matrix and to obtain 

the new damage variable di+1. The iteration continues until d is close enough to 

those obtained in last iteration within a prescribed tolerance (0.01 in this work, 

as in chapter 7), i.e.: 






)1(

1

i

ii

d

dd
 where i = number of iteration step. (1-di) is used in the 

denominator due to the fact that d can be zero at some data points. The solution 

then advances to the next time step and is repeated for as many steps as needed. 

Different from failure analysis of the intact rock, which is an integral part of the 

FEM solution, the fracture deformation is carried out as a post-processing step at 

each time step, and solution convergence is not checked for fracture 

deformation (permeability change). Therefore, the fracture deformation is not 

coupled with the FEM analysis in this work. In other words, the fracture 

deformation analysis (Chapter 8) is a sequential process after FEM analysis and 

as such it does not impact stress distribution in the FEM analysis.  

The fracture deformation analysis consists of three steps: for fractured element 

at each time step, 1) the effective stress applied on fracture surface is solved 

from the FEM analysis, 2) fracture deformation (aperture change) is calculated 

using effective stresses, 3) the fracture permeability enhancement is obtained 
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from aperture change, and converted to equivalent elemental permeability for 

next finite element solution step. The fracture deformation is decoupled from 

finite element displacement calculation. For simplicity, and given that the 

aperture change (~ 10
-4

 m) is much smaller than the element size (~10
1
 m), the 

fracture dilation induced elemental strain is ignored in this work. Only fracture 

permeability is updated at the end of fracture deformation analysis. 

Sophisticated fracture deformation and propagation models (e.g. Huang et al. 

2011) can simulate the coupling between fracture deformation and element 

strain in detail, which is not considered in the current study. The implementation 

of this model in heterogeneous fractured reservoir simulation is illustrated in 

Chapters 7 and 8. 

5.5. Applications of FEM model in geomechanics problems 

5.5.1. Transient problems (Uncoupled) 

Uncoupled first order transient problems must be analyzed in many physical 

processes, for example in the case of Terzaghi “consolidation”, transient flow 

(heat or fluid) analysis, or mode II loading in wellbore problem. In this section, 

the usage of Finite Element Method to solve transient equation has been verified 

by compared to analytical solutions of Terzaghi 1-D consolidation theory. The 

governing diffusion equation of above mentioned problems can take a 

generalized form as: 
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t

p
pc




2                                                                                                      (5.42) 

The discretized matrix form used in FEM is: 

    }{}{}{ q
dt

dp
mpkc                                                                                     (5.43) 

where {p} represents the pore pressure, {q} is the source/sink term,  [kc] is the 

matrix of coefficient of consolidation or diffusivity matrix as [KcdT] in Equation 

(5.32), and [m] is the matrix resulted from discretization of variable p on to 

nodes, taking the same form as [CTT] in Equation (5.32). 


V

T dVNNm ][][][                                                                                          (5.44) 

 
V

T

c dVNcNk ][][][                                                                                  (5.45) 

Considering a time step size Δt from t0 to t1, the matrix equation can be written 

at time “0” and “1” as follows: 

    000 }{}{}{ q
dt

dp
mpkc                                                                               (5.46) 

    111 }{}{}{ q
dt

dp
mpkc                                                                                 (5.47) 
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And Crank-Nicolson method is used in this work for discretization in time 

domain, thus: 

)}{}){1((}{}{ 1001
dt

dp

dt

dp
tpp                                                          (5.48) 

Multiply (1-) to Equation (5.46), multiply to Equation (5.47), and sum them 

up to eliminate 0}{
dt

dp
 and 1}{

dt

dp
, yields: 

0101 }{)1(}{}]){[)1(]([}]){[]([ qtqtpktmpktm cc        (5.49) 

If fully implicit method ( = 1) is used in the time domain, and assuming no 

sink/source for the moment, Equation (5.48) becomes: 

01 }]{[}]){[]([ pmpktm c                                                                           (5.50) 

The analytical solution of surface displacement of Terzaghi 1D consolidation is 

(Jaeger et al. 2007): 
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where cv is the vertical consolidation coefficient, and h is the drainage length 

(thickness), w∞ is the ultimate  surface settlement. The average degree of 

consolidation (U) as a function of time (t) can be expressed as: 
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1D finite element (rod element) is used to represent a horizontal layer in this 1D 

consolidation problem. The model setup is shown in Figure 5.3. For validation 

purpose, parameters have been normalized by defining time factor 
2h

tc
T v . As 

can be seen from Figure 5.3, the consolidation coefficient (cv) takes a unit value 

of 1.0 m
2
/s. Drained length (h) (single side drain) is also unit and equals to one 

meter, and is uniformly divided in to 10 line elements (0.1 m each). Time step 

size ΔT = 0.001, and there are 2000 steps. The initial pore pressure in the 

domain is set to be 100 Pa. The surface pore pressure is set to be 0 Pa when the 

simulation begins and is kept at 0 Pa during the entire simulation (the surface is 

a drained boundary and bottom is an undrained boundary). It can be seen from 

Equation (5.50) that the primary variable resulted from Finite Element Analysis 

(FEA) is pore pressure at every node. The relation between average degree of 

consolidation and pore pressure is: 






h

h

dzp

dztzp
tU

0
0

0
),(

1)(                                                                                      (5.53) 

Therefore, after FEA a numerical integration of pore pressure over drained 

length is conducted. In above equation, p (z, t) is the value of pore pressure at a 
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location at time t.  p0 is the initial pore pressure which is uniform and given. 

After post-processing, the FEA result of U(t) can be obtained. Analytically, we 

can calculate the average degree of consolidation using Equation (5.53) at each 

T. Figure 5.4 shows comparison between analytical solution and FEA, showing 

excellent agreement. The pore pressure distribution along the depth at T = 1 is 

also plotted out and compared with analytical solution, as shown in Figure 5.5.  
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Figure 5.3 Mesh and model setup for FEA of Terzaghi’s consolidation. 
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Figure 5.4 Comparison of FEA results with Terzaghi’s consolidation theory (U). 

 

Figure 5.5 Comparison of FEA results with Terzaghi’s consolidation theory (p). 
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5.5.2. Mandel’s problem (Poroelastic) 

Mandel’s problem (normal mode) has been used as a standard problem to 

validating numerical codes. The initial problem solved by Mandel considers a 

poroelastic sample between two rigid impermeable plates under constant 

compressive force (Figure 5.6). The original Mandel’s problem assumes 

incompressible fluid and solid grain, and gives the pore pressure solution 

(Mandel 1953). Later Cheng and Detournay (1988) extended the solution to all 

field quantities, and generalized to the compressible solid case. The following is 

the pore pressure and displacement solution provided by Cheng and Detournay: 
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where, i

u

i 








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1
tan . The average degree of consolidation for Mandel’s 

problem can be expressed as: 
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where GFaux 2/),(  , and GFau ux 2/)0,(   

The average degrees of consolidation for x- and y- direction are proved to be 

identical (Cheng and Detournay, 1988). 

 

Figure 5.6 Mandel’s problem for normal mode. 

Finite element analysis of poroelastic equations (5.58 - 5.59) is to solve a system 

of matrix equations (5.60) as explained previously. 
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In above Equation (5.58) - (5.60), all parameters and matrices are as defined 

previously in the context. 

The Finite Element mesh set up for numerical analysis of Mandel’s problem is 

shown in Figure 5.7. 

 

Rigid displacement @ top 

F = 1 MPa @ all time

Undrained condition (top & bottom)

Drained condition (lateral boundary) 

Zero displacement (bottom)

1
 m

2 m

 

Figure 5.7 Finite Element mesh and model set up for Mandel’s problem. 
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Table 5.3 Parameters used in Mandel’s problem 

Shear modulus, G 12 GPa 

Poisson’s ratio  0.15 

Undrained Poisson’s ratio, u 0.29 

Boit’s coefficient,  1 

Permeability, k 0.005 md 

Fluid viscosity,  3.0×10
-4

 Pa·s 

 

Figure 5.8 and Figure 5.9 show comparisons between analytical solution and 

FEA results, showing excellent agreement. Table 5.3 gives parameters used in 

calculation.  

 

Figure 5.8 Comparison of pore pressure results from FEA with Mendel’s 

solution.  
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Figure 5.9 Comparison of average degree of consolidation results from FEA 

with Mendel’s solution. 

5.5.3. Three-dimensional stress field around a penny-shape crack 

When the solution of fracture-rock interaction is being pursued using the FEM 

part of the numerical model, it is important to know the capability of the model 

in calculating stress distribution in the vicinity of a penny shape fracture. As 

analytical solution, Sneddon’s solution (1946) is explained in this part for an 

internal penny shape crack under pressure, and Westmann’s (1965) solution is 

used for a fracture under surface shear. At the end, comparison is made between 

analytical solution and results from 3D Finite Element model.  
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5.5.3.1. Analytical solutions of stress field around a penny-shape crack 

Sneddon (1946) provided the analytical solution of 3D stress distribution of a 

circular fracture under uniform loading, which is similar to the Boussinesq 

problem of a cylinder footing on a semi-infinite half space (Sneddon 1946). In 

Sneddon’s work, he defined new variables (and ) in cylindrical coordinate 

system due to the axisymmetric of the problem. And three un-vanished stresses 

(z, r, and ) can be expressed in terms of these two variables, as follows. 

Definition of C and S terms in Sneddon’s solution (Equation 5.62-5.64) can be 

found in Appendix. 

z
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fractuer

Horizontal axis

d
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p
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Figure 5.10 Illustration of Sneddon 1946 problem. 
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In Westmann 1965, a half-space is considered on which the surface interior to 

the circle r = a is subjected to a uniform shearing stress S in the  = - direction 

(Figure 5.11). Exterior to the circle the surface displacements u, v are zero; the 

entire surface is assumed to be free from normal tractions (pure shear).  

z

y

x

s
Uniform shear



 

Figure 5.11 Illustration of Westmann 1965 problem. 
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The solution for stresses in cylindrical coordinates when z ≠ 0 is:  
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Definition of I terms in Westmann’s solution can be found in Appendix. 

When z = 0, adopting Heaviside step function H(x):  
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5.5.3.2. Numerical modeling of stress field in the vicinity of a penny-shape 

fracture 

A pressurized circular crack of r = 80 m in an elastic and homogeneous domain 

of 800 m × 800 m ×350 m  has been simulated (Figure 5.12). The elastic 

modulus of the domain are E = 10 GPa, v = 0.219. In the Finite Element mesh 

(224,000 FEM brick elements), the fracture is approximated using elements 
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which are fully included (all four nodes are with-in the 80 m radius) in the 

circular area (Figure 5.12). Fluid pressure inside fracture is pnet = 10 MPa. 
8

0
0

 m

80
0 

m

350 m

Figure 5.12 FEM set up for stress distribution calculation around a pressurized 

penny shape fracture. 

Figure 5.13 shows a slice from the 3-D stress fields. The slice is made on z = 

400 m plane through the fracture center. Figure 5.14 and Figure 5.15 compare 

the analytical solution and numerical results of the stress distribution on lines 

located arbitrarily in the stress filed, showing excellent agreement.  

 

 

z 

x 

y 
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Figure 5.13 Three-dimensional stress fields in the vicinity of a penny shape 

fracture. Slices are made at z = 400 m, perpendicular to the crack plane. 
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Figure 5.14 Comparison of analytical solution and numerical results of the stress 

distribution on line parallel to fracture plane.  

 

Figure 5.15 Comparison of analytical solution and numerical results of the stress 

distribution on line perpendicular to fracture plane. 
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6 

NEAR WELLBORE ROCK FAILURE ANALYSIS USING 

FEM MODEL  

During the operation of an oil or gas well, the orientation and magnitude of rock 

stresses are alternated. Short-term and long-term stress and pore pressure 

analysis need to be carried out, accounting for undrained or drained poroelastic 

effects and isothermal or non-isothermal conditions.  Another important factor 

of wellbore stability analysis is the thermal effects, especially when dealing with 

tight reservoirs where thermal conductivity is significantly higher than hydraulic 

conductivity. The rotation and relative magnitude of three principal stresses are 

critical when determining the failure mode and failure planes. In this work, 

three-dimensional THM (thermal-hydro-mechanical) analysis of instability 

around a wellbore during drilling and production under different in-situ stress 

conditions is carried out using a 3D FEM.  

There have been research studies on the effect of horizontal stress anisotropy on 

wellbore stability (Detournay and Cheng 1988; Li et al. 1998), and suggestions 

have been made to ensure wellbore stability under different conditions (Maury 
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and Sauzay 1987). Two-dimensional analytical solutions for simple poroelastic 

well conditions are available (Carter and Booker 1982; Detournay and Cheng 

1988). Analytical solutions are obtained using strong assumption and strict 

boundary conditions that will not always be satisfied. When more complicated 

problem, for example, transient state, poroelastic effect, thermal effect, and rock 

heterogeneity are considered, numerical simulation is necessary.  Two 

dimensional numerical analysis of wellbore stability have been study 

extensively (Zhou and Ghassemi 2009; Ghassemi et al. 1999). Stress 

concentration due to anisotropic horizontal stresses is a well-known 

phenomenon. Thermal-mechanical and chemo-mechanical interaction have also 

been studied (Ghassemi and Diek 2003; Ekbote and Abousleiman 2006). 

However, quantitative studies on the extension of failure zone and extent of 

wellbore rock damage, especially the three-dimensional layout of failure planes 

have seldom been done. According to Mohr-Coulomb failure criterion, the shear 

failure plane is parallel to the intermediate principal stress (2) direction and 

perpendicular to 1 - 3 plane. It is known those three principal stress axes in the 

rock surrounding the wellbore are subject to rotation during well operation. 

Therefore, a rigorous calculation is necessary to obtain the three-dimensional 

geometry of failure zone.  
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Simulation result shows that the reorientation of principal stresses due to 

excavation mostly controls the failure plane orientation. The pressure and 

temperature difference between well and formation have significant influence on 

wellbore stability. Also the anisotropy of in-situ lateral stresses will affect the 

shape of failure zone as does the wellbore, and the formation flow conditions. 

The heterogeneity of rock property will locally alter the shape of failure zone. 

This chapter systematically studies the wellbore instability under different in-

situ stress and well pressure/temperature conditions and provides reference to 

field operations. Elastic, poroelastic, and thermo-poroelastic simulation are 

presented. The simulation cases illustrate the capability of the fully coupled 3D 

FEM model in predicting the mechanical, fluid flow and thermal responses of 

the reservoir rock to external load, and the coupling between them. 

6.1. Model setup 

The simulation domain is 16 m × 16 m × 2 m, and has been divided into 40,000 

hexahedron finite elements (Figure 6.1). There are 80 elements in the tangential 

direction and 50 elements in the radial direction. There are 10 layers of elements 

in the vertical direction. A vertical wellbore with radius r = 0.125 m is located at 

the center of the domain, and the horizontal extension of the domain is 50 times 

of well radius. And the vertical dimension is 16 times of wellbore radius, which 

is selected according to experience to minimize the boundary effects on stress 
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distribution near the center part of the borehole, without adding extensive 

computation time. For all simulation cases, the far field boundary conditions are 

zero displacement, and zero fluid and heat flow. Top and bottom of the domain 

are constant stress boundaries, and in-situ vertical stress is applied on top and 

bottom surface of the model. For homogenous rock analysis, the rock properties 

are listed in Table 6.1.    

 

Figure 6.1 Finite element mesh used in the computation. 
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Table 6.1 Rock properties used in the instable zone computation. 

Young’s modulus 10 GPa 

Poisson’s ratio 
0.219 (); 

0.461(u) 

Skempton’s coefficient 0.915 

Thermal expansion coefficient of solid 1.8×10-5 K-1 

Thermal expansion coefficient of fluid 3.0×10-4 K-1 

Thermal diffusivity 1.6×10-6 m2/s 

Permeability 10-7 darcy 

Porosity  0.2989 

Internal friction angle 30° 

Uniaxial compressive strength (unconfined) 50 MPa 

Uniaxial tensile strength 5 MPa 

6.2. Elastic analysis 

In elastic analysis, only mechanical components of the governing equation 

(Equation 4.40) are considered. Wellbore mechanical loading can be 

decomposed into mean stress (m) loading and deviatory stress (d) loading. The 

applied traction boundary condition on wellbore for elastic simulation can be 

written as follows (Equation 6.1) (tension positive). tx and ty are applied uniform 

forces on wellbore elements surface. is the angle between the vector of 

element center and x axis (counter clock wise positive). 





cos2sinsin)2cos(

sin2sincos)2cos(

ddmy

ddmx

t

t




                                                    (6.1) 
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Both isotropic and anisotropic horizontal stresses states have been simulated. 

The in-situ stresses for isotropic case are v = y = x = 15 MPa (m = 15 MPa, 

d = 0 MPa). And for anisotropic case, v = 15 MPa, y = 12 MPa, and x = 8 

MPa ((m = 10 MPa, d = 2 MPa). Magnitude (compression positive) and 

direction of principal stresses of both cases have been calculated and plotted in 

Figure 6.2 - 6.4. For isotropic stress case, after removing the radial support from 

the wellbore wall, the principal stresses become radial (3), vertical (2) and 

tangential (1) stresses. The radial stress (3) at wellbore wall is zero (Figure 

6.4A). For anisotropic case, a rotation of principal stress orientation occurs near 

wellbore.  Due to high stress concentration at and near the wellbore wall in the 

minimum in-situ stress direction (x- direction), there are out of plane rotation of 

1 and 2. In the stress concentration zone, local 1 gradually rotate from lateral 

to vertical; and local 2 gradually rotate from vertical to lateral accordingly from 

x-direction to y-direction. Outside the stress concentration zone, 2 has in-plane 

rotation from tangential to y-direction, and 3 has in-plane rotation from radial 

to x-direction. Figure 6.5 shows the contour of Mohr-Coulomb function value 

(fmc) and the normal directions of maximum shear planes. The magnitude of fmc 

represents the failure tendency of the element. Positive fmc indicates failure. 

According to Mohr-Coulomb theory there are two possible failure planes for one 

element. The normal of failure planes has an angle of ± (45°+/2) from 1 
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direction on 1-3 plane, and failure planes are parallel to 2 direction. Therefore, 

comparing Figure 6.5 to Figure 6.3, we can see two crossing normal direction 

lines on x-y plane in zones where 2 is vertical, indicating the maximum shear 

planes are vertical. Therefore, for isotropic case, all maximum shear planes are 

vertical, and for anisotropic case, maximum shear plane in stress concentration 

zones are vertical. Elsewhere except the compression zone (x-direction) in 

Figure 6.5B, the projections of two normal direction lines on x-y plane are 

collinear indicating2 is coplanar with x-y plane, as is proved in Figure 6.3B. 

For each element, the intersection line of the maximum shear plane and x-y 

plane should be perpendicular to the collinear projection lines shown in Figure 

6.5B. Knowing this, sketches of failure planes for above two situations are 

presented in Figure 6.6. Figure 6.7 illustrates the wellbore deformation for both 

isotropic and anisotropic cases. The wellbore has a uniform radial inward 

displacement of 0.0225 cm under 15 MPa of isotropic horizontal in-situ stresses. 

For anisotropic case, the wellbore becomes elliptic, with a radial inward 

displacement of 0.0087 cm in x-direction (h) and 0.0214 cm in y-direction (H). 

One should notice that in Figure 6.7 the wellbore displacements have been 

magnified 100 times for illustration purpose. 
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Figure 6.2 Magnitude and orientation of maximum principal stresses (1). A) 

Isotropic horizontal stress case. B) Anisotropic horizontal stress case. 

A 

B 
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Figure 6.3 Magnitude and orientation of intermediate principal stresses (2). A) 

Isotropic horizontal stress case. B) Anisotropic horizontal stress case 

A 
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Figure 6.4 Magnitude and orientation of minimum principal stresses (3). A) 

Isotropic horizontal stress case. B) Anisotropic horizontal stress case. 
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Figure 6.5 Value of Mohr-Coulomb function and orientation of potential failure 

planes (= ± 30° from 1). A) Isotropic horizontal stress case. B) Anisotropic 

horizontal stress case. 

A 
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Figure 6.6 Sketches of vertical failure planes. A) v = 30MPa, H = 25 MPa, h 

=25 MPa; B) v = 30MPa, H = 40 MPa, h =10 MPa. Color zones indicating 

fmc > 0. 

A 

B 
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Figure 6.7 Illustration of the wellbore deformation. The borehole has radial 

shrinkage after drilling. Dotted mesh is before drilling, and solid mesh is after 

drilling. A) Isotropic horizontal stress case. B) Anisotropic horizontal stress case. 

The wellbore displacements have been magnified 100 times for illustration 

purpose. 

B 

A 
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Failure tendency of stress conditions with d = 2 MPa, 5 MPa, 10 MPa, and 13 

MPa are calculated. Contour plots of failure tendency (value of fmc) are shown in 

Figure 6.8. As deviatory stress increases, failure zones appear at the top and 

bottom of the wellbore (y-direction). The development of failure tendency with 

the increasing horizontal stress anisotropy can be observed. One should notice 

that, the stress state of the simulation case for d = 13 MPa is reverse faulting 

regime (v = 15 MPa, H = 28 MPa, h =2 MPa). The cross-section shape of the 

failure zone for the reverse faulting stress regime does not show significant 

difference from the one of normal faulting stress regime. However, as discussed 

in Figure 6.6, the failure planes orientation is noticeably different between these 

two situations. Therefore, the three-dimensional shape for failure zones of 

different stress regimes are different as summarized later in Figure 6.18. There 

are tensile and compressive failure types in the failure zones, as shown in Figure 

6.9. For the given stress condition and rock type, compressive failure occurs 

approximately 30°- 50° between the direction of H and h, and tensile failure 

occurs in the direction of H. The angle of failure range on wellbore is 67.5° as 

observed from Figure 6.9. Regarding the influence of horizontal stress 

anisotropy on wellbore deformation, Figure 6.10 shows the comparison among 

five different simulation cases presented in this section. Relative wellbore 

displacement and corresponding stress states are also stated in the figure. The 

deformed wellbore is more elliptic under higher horizontal stress anisotropy. It 
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should be noted that the relative displacement has been magnified 100 times for 

illustration purpose. The mesh shows the undeformed wellbore.  
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Figure 6.8 Elastic analysis of failure zones under different in-situ stresses. fmc is 

the value of Mohr-Coulomb failure function. Positive value indicates failure.  
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Figure 6.9 Failure types. v = 15MPa, H = 28 MPa, h =2 MPa. Red zones 

represent compressive failure and blue zones represent tensile failure. 

 

Relative displacement (r = 0.125m)

1: ux = 0.0087cm; uy = 0.0214cm

2: ux = 0.0225cm; uy = 0.0225cm

3: ux = -0.0007cm; uy = 0.0308cm

4: ux = -0.0135cm; uy = 0.0497cm

5: ux = -0.0185cm; uy = 0.0637cm

In-situ stress states

1: x = 8MPa; y = 12MPa; v = 15MPa;

2: x = 15MPa; y = 15MPa; v = 15MPa;

3: x = 5MPa; y = 15MPa; v = 25MPa;

4: x = 2MPa; y = 22MPa; v = 25MPa;

5: x = 2MPa; y = 28MPa; v = 15MPa;

 

Figure 6.10 Wellbore deformation under different in-situ stresses. The wellbore 

displacements have been magnified 100 times for illustration purpose. 
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6.3. Poroelastic analysis 

In poroelastic analysis, first two governing equation (Equation 4.40-4.41) are 

solved, neglecting the thermal effect terms. When pore pressure effect is 

considered, the wellbore boundary condition can be written in terms of in-situ 

total stress, initial pore pressure and mud pressure, as follows: 

Mechanical force boundary condition: 





cos2sinsin)2cos(

sin2sincos)2cos(

ddmmudy

ddmmudx

pt

pt




                                         (6.2) 

Fluid boundary condition: 

inimud ppp 
                                                                                                  (6.3) 

The fluid-rock coupled response in 34 hours after drilling is analyzed, and 

results are shown in Figure 6.11-13. Two conditions with different mud-

pressures are calculated for same in-situ stress states of z = 15 MPa, y(H) = 12 

MPa, x(h) = 8 MPa, and initial pore pressure pini = 6 MPa. Plots in left side of 

Figure 6.11 - 6.13 represent condition with pmud = 0 MPa, while right side plots 

represent condition with pmud = 8 MPa. The drilling induced wellbore 

deformation with pmud = 0 MPa is larger than that with pmud = 8 MPa. The 

problem is assuming instantaneous drilling of the wellbore. The deformation of 

wellbore during 34 hours after drilling is insignificant for both cases, as can be 
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seen from Figure 6.11, the maximum incremental displacement 34 hours after 

drilling is 0.0012 cm. It is noticed that the wellbore has small elongation at 

minimum horizontal stress direction for pmud = 8 MPa case. From Figure 6.12, a 

short term release of stress concentration at minimum horizontal stress direction 

is observed when increasing the mud weight. However, tensile stress 

concentration occurs at maximum horizontal stress direction for higher mud 

pressure case. After 34 hours of fluid diffusion, two cases show different 

development pattern. The stress concentration zones for zero mud pressure 

disappear after 34 hours of drainage (pmud < pini). But the failure tendency for 

pmud = 8 MPa becomes more significant after 34 hours of injection (pmud > pini). 

High failure tendency zones show similar shape as those in Figure 6.8. 
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Figure 6.11 Poroelastic analysis: Illustration of wellbore deformation in 34 

hours after drilling. pini = 6 MPa. A) pmud = 0 MPa. B) pmud = 8 MPa,  

v = 15 MPa 
pmud = 0 MPa 
p0 = 6MPa 
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Figure 6.12 Poroelastic analysis: Development of failure tendency at 1 hour after 

drilling. A) pmud = 0 MPa. B) pmud = 8 MPa.  fmc is the value of Mohr-Coulomb 

failure function. Positive value indicates failure. 
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Figure 6.13 Poroelastic analysis: Development of failure tendency at 33.8 hour 

after drilling. A) pmud = 0 MPa. B) pmud = 8 MPa.  fmc is the value of Mohr-

Coulomb failure function. Positive value indicates failure. 
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In order to study the influence of well condition and stress state on well 

instability, comparison analyses have been done for 6 simulation examples as 

shown in Figure 6.14 - 6.15. Slight differences are shown between normal 

faulting stresses regime (Figure 6.14 series I) and reverse faulting stress regime 

(Figure 6.14 series II) regarding the failure zone shapes.  The series I of plots 

have slight higher fmc value than those of series II in Figure 6.14. However when 

examine the failure plane orientation, significant differences have been noticed 

between two stress regimes (Figure 6.15). As described previously in this paper, 

directions shown in Figure 6.15B (reverse faulting regime) represents vertical 

failure planes. And directions shown in Figure 6.15A (normal faulting regime) 

indicates failure planes that intersect with x-y plane at some angle and distribute 

symmetrically with z-axis. 

Plots in Figure 6.14 are the result for three different well conditions. Shapes of 

failure zones for drained and undrained conditions are similar. Undrained 

condition results in higher failure tendency, which is consistent to previous 

simulation example. The drainage of pore fluid can reduce the stress 

concentration at minimum horizontal stress direction. However, failure zones for 

uncoupled analysis (Figure 6.14 I-3 and II-3) are more similar to the elastic 

results (Figure 6.8), and showing failure zone at y-direction. Uncoupled analysis 

is calculated by assuming no excess pore pressure is generated by applied 

mechanical force.    
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Figure 6.14 Failure zones under normal (I) and reverse (II) faulting stress 

regimes, from drained at 1 minute (I-1 and II-1), undrained (I-2 and II-2), and 

uncoupled analysis (I-3 and II-3).  
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Figure 6.15 Potential failure planes of normal (A) and reverse (B) stress regimes 

from uncoupled analysis. Color zones represent failure zones.  fmc is the value of 

Mohr-Coulomb failure function. 
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When excess pore pressure is considered and well pressure present, different 

failure modes can occur. Modes shown in Figure 6.6 happen at conditions that 

well pressure is low or neglectable and the vertical stress is the intermediate 

principal stress after drilling. Failure mode shown in Figure 6.6A will occur at 

isotropic horizontal stress situation. And failure mode shown in Figure 6.6B will 

occur at anisotropic horizontal stress situation. When well pressure is extremely 

high, the wellbore will fail as hydraulic fracturing perpendicular to minimum 

horizontal stress direction.  Otherwise, basic modes for cases with medium well 

pressure are shown in Figure 6.16 and Figure 6.17. Comparing Figure 6.16, 6.17 

and Figure 6.6, we can find that same failure zones can have different failure 

mode and shear planes. Failure zone cross-sections in Figure 6.6A and Figure 

6.16 have similar symmetric ring shape, but the 3D failure modes are very 

different. Same results can be seen from comparison between Figure 6.6B and 

Figure 6.17 too. Figure 6.18 summarizes commonly shapes (cross-section and 

three-dimensional) of failure zones near wellbore under different in-situ stress 

and well-pressure conditions. 
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Figure 6.16 Sketch of vertical failure planes. v = 50 MPa, H = 30 MPa, h =30 

MPa, pini = 19 MPa, pmud = 10 MPa. Color zones indicating fmc > 0. 

 

Figure 6.17 Sketch of vertical failure planes. v = 50 MPa, H = 35 MPa, h =25 

MPa, pini = 19 MPa, pmud = 10 MPa. Undrained boundary condition. Color zones 

indicating fmc > 0. 
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a) Normal faulting stress regime:v = 30 MPa, H = 25 MPa, h = 25 MPa, pwell= 0 

MPa.; isotropic horizontal stresses; low well pressure; 2vnear wellbore. 

(Figure 6.6A) 

 

 

 

 

 

 

 

 

b) Reverse faulting stress regime:v = 30 MPa, H = 40 MPa, h = 10 MPa, pwell= 

0 MPa.; anisotropic horizontal stresses; low well pressure; 2vnear wellbore. 

(Figure 6.6B) 
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c) Normal faulting stress regime:v = 50 MPa, H = 30 MPa, h = 30 MPa, pwell= 

19 MPa.; isotropic horizontal stresses; medium well pressure; 2near 

wellbore.(Figure 6.16)  

 

           

d) Normal faulting stress regime:v = 50 MPa, H = 35 MPa, h = 25 MPa, pwell= 

19 MPa.; anisotropic horizontal stresses; medium well pressure; near wellbore. 

2rotates from vertical to tangential.Figure 6.17) 
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e) Reverse faulting stress regime:v = 50 MPa, H = 56 MPa, h = 30 MPa, pwell= 

28 MPa.; anisotropic horizontal stresses; high well pressure; near 

wellbore2v.  (Figure 6.15B) 

         

f) Normal faulting stress regime:v = 60 MPa, H = 40 MPa, h = 20 MPa, pwell= 

19 MPa.; anisotropic horizontal stresses; high well pressure; near 

wellbore2rotates from vertical to tangential. (Figure 6.15A) 

Figure 6.18 Cross-sectional and three-dimensional view of failure zone shapes 

near wellbore under different in-situ stress regimes and well pressure. 
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6.4. Fully-coupled THM Analysis 

Thermal stress can be significant even if the thermal effect on wellbore 

deformation is not obvious, as can be seen from the comparison between the 

deformation results (Figure 6.19 and Figure 6.11B) and thermal stress results 

(Figure 6.12B, 6.13B, and Figure 6.20A-B) of poroelastic and THM analysis. 

Lower mud temperature than formation temperature will decrease the stress 

concentration at wellbore wall in minimum horizontal stress direction. Therefore, 

the wellbore is temporarily stable at the beginning. This hydrostatic reduction of 

wellbore stress may lead to tensile failure in the maximum horizontal stress 

direction (Figure 6.20A). With time, the cooling effect will go further into the 

formation, which will induce higher failure tendency to the tensile zones (Figure 

6.20B). On the another hand, if the well is shut-down and mud is heated up by 

the formation with time, the compressive stress concentration in minimum 

horizontal stress direction will appear again. Figure 21-23 compare the effects of 

different temperature differences under same in-situ stresses and mud pressure. 

We can see from Figure 6.22 that for short term, at t = 1 hour, the near wellbore 

failure tendency is much lower for t = -55°C than t = 0°C. For both cases, 

failure zones switched from x- direction (t =1 hour) to y- direction (t = 33.8 hour) 

after 34 hours. The slight decrease of failure tendency for no temperature change 

case at 33.8 hour is caused by the decrease of pore pressure in the compression 

zone with time (x-direction), which moves the Mohr-circle away from the 
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failure envelope. The significant increase of failure tendency for t = -55°C at 

33.8 hour is due to the diffusion of cooling effect. Although with different 

failure mechanisms, both simulation examples show small failure zones in y-

direction at 33.8 hour (Figure 6.23). t = -55°C plot shows slight larger failure 

zone than t = 0°C plot. For the current simulation conditions, a lower mud 

pressure and small temperature difference will maintain the well bore stability.  

 

Figure 6.19 THM analysis: Illustration of wellbore deformation in 34 hours after 

drilling. pmud = 8 MPa, pini = 6 MPa, T = -55 °C. 
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Figure 6.20 THM analysis: Development of failure tendency in 34 hours after 

drilling. pmud = 8 MPa, pini = 6 MPa,T = -55 °C. fmc is the value of Mohr-

Coulomb failure function. Positive value indicates failure. 
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Figure 6.21 THM analysis: Wellbore deformation under different temperature 

boundary conditions. Left: -55 °C temperature difference between drilling mud 

and formation. Right: No temperature difference between drilling mud and 

formation. 
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Figure 6.22 THM analysis: Development of failure tendency under different 

temperature boundary conditions in 34 hour after drilling. Left: -55°C 

temperature difference between drilling mud and formation. Right: No 

temperature difference between drilling mud and formation.  
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Figure 6.23 THM analyses: ranges of failure zone under different temperature 

boundary conditions at 34 hour after drilling. Left: -55°C temperature difference 

between drilling mud and formation. Right: No temperature difference between 

drilling mud and formation. 
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6.5. Effect of rock heterogeneity 

Heterogeneity of rock properties is one of the essential factors that should be 

considered in stability analysis. Rocks are normally heterogeneous and 

moreover, properties in the stressed zone can be altered from original values, 

which will introduce induced heterogeneity in the rock. Rock properties can be 

time and stress dependent. In another world, non-linear stability analysis is 

necessary. Weibull distribution as discussed in Chapter 3 is used in this section 

to model the rock heterogeneity and provide simulation examples that show the 

effect of heterogeneity on borehole stability. The distributions of every rock 

properties should be compactable to each other. This section is not aimed to 

explain the correlation among different rock properties. Therefore, in the 

following simulation, only Young’s modulus is set to be heterogeneous for 

illustration simplicity. Other properties, such as Poisson’s ratio, porosity, 

strengths, and so on, can be introduced to the model using same method, as in 

next section. To prepare a numerical rock sample, we first assume the 

distribution of Young’s modulus follows Weibull’s distribution with parameter 

= 10 GPa and m = 5 (Equation 6.4):  

mx

k e
xm

xf
)(

1)()( 




                                                                                     (6.4) 
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The simulation domain is divided to 16000 grid blocks, and the unit grid size is 

0.4 m x 0.4 m x 0.2 m. 16000 random numbers following Equation 6.4 is 

generated and distributed to these grid blocks. Then, the Young’s modulus for 

each element of the mesh is obtained using numerical interpolation. Here, it is 

ensured that the wellbore does not cut through blocks with different Young’s 

modulus in each layer of mesh. The distribution of Young’s modulus in FEM 

mesh is shown in Figure 6.24. All other properties are kept uniform as listed in 

Table 6.1. Elastic response of wellbore under in-situ stress v = 15 MPa, H = 

28 MPa,h = 2 MPa is calculated.  The in-situ stresses are same as the 

simulation case shown in Figure 6.9. Three slices (top, middle, and bottom) of 

failure tendency plot and Young’s modulus distribution plot are shown in Figure 

6.25. Warm color represents higher Young’s modulus. It is noticed from the 

result that the failure tendency is higher for larger Young’s modulus at wellbore 

wall. Some failure zones show discontinuity. Although the general distribution 

of failure zone is along the maximum horizontal direction, the heterogeneity 

influences the local development of failure zone.  Figure 6.26 shows a 3D view 

of the failure zone and the types of failure in the failure zone. Red color 

represents compressive failure, and blue color represents tensile failure. Tensile 

failure is observed in far distance comparing to Figure 6.9 where tensile failure 

only occurs at wellbore wall.  
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Figure 6.24 Heterogeneous distribution of Young’s modulus. Weibull’s 

distribution: = 10 GPa, m = 5. Element size for distribution is 0.4 m × 0.4 m × 

0.2 m. 

 

Figure 6.25 Top: Views of bottom, middle, and top slices of failure zones. 

Bottom: distribution of Young’s modulus of bottom, middle, and top layer of 

matrix corresponding to failure zone slices.   

Bottom Middle Top 
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Figure 6.26 Left: 3-dimension view of failure zones. Color represents the Mohr-

Coulomb function value. Right: Failure types. Red zones represent compressive 

failure, and blue zones represent tensile failure. 

 

28 

2 

v = 25 MPa 



150 
 

6.6. Case summary  

Borehole behavior has been analyzed using current three-dimensional finite 

element model. Numerical simulations for cases with different stress states and 

well conditions have been done. The results show effects of pore pressure, 

temperature difference, drainage condition, and stress regimes on wellbore 

instability. Failure modes, type, orientation of failure plane have also been 

calculated. Mohr-coulomb theory is used to show the failure tendency under 

difference conditions.  

High mud pressure and cool mud temperature will reduce the compression stress 

concentration at wellbore in minimum horizontal stress direction, but increase 

the tensile failure tendency in maximum horizontal stress direction. The increase 

of tensile failure tendency grows with time. Drainage of fluid will lower the 

failure tendency at wellbore uniformly. Uncouple analysis results in different 

failure zone than coupled poroelastic analysis. Failure zones of normal and 

reverse stress regime have similar cross-section shape but different three-

dimensional shape. For low permeability reservoir, thermal effect is significant 

comparing to pore pressure effect. Rock heterogeneity will alter the local failure 

tendency, but the general failure behavior is mainly depends on stress condition. 
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7  

THREE-DIMENSIONAL FULLY COUPLED FEM ANALYSIS 

OF HETEROGENEOUS RESERVOIR CONSIDERING ROCK 

DAMAGE AND PERMEABILITY ENHANCEMENT 

Fluid injection is a commonly used stimulation approach in geothermal and 

oil/gas reservoirs development. The injection process involves coupled rock 

deformation and fluid flow as described in poroelastic theory (Biot 1946). The 

effect of thermal stresses and thermally-driven flow can also be significant in 

some cases. These physical processes in the reservoir will result in stress state, 

pore pressure, and temperature changes. The variations of these state variables 

are inter-related and their interaction needs to be considered. These changes can 

also lead to rock failure, fracture slippage, and changes in both fluid and heat 

flow, which are critical when planning the exploration strategy. In this chapter, 

the result of application of the FEM model of Chapter 5 are presented to study 

the influence of thermo-poro-mechanical coupling and rock heterogeneity on 

rock failure evolution, permeability variation and potential for occurrence of 

micro-seismicity. The modeling and interpretation of injection induced micro-
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seismicity is important as it can be used to assess the stimulation results and to 

also perform risk analysis. 

The influence of stress alteration and damage evolution on permeability has 

been studied by many researchers (Kiyama et al. 1996; Shipping et al. 1994; 

Tang et al. 2002; Li et al 2005). In this section, a non-linear FEM formula 

(Equation 5.41) is used to model the stress-dependent permeability. In addition, 

micro-seismicity which is often observed during or after fluid stimulation is 

considered. The occurrence and locations of potential induced-seismic events 

are related to the failure process of reservoir rock. After description of the 

theoretical basis and modeling strategy, we present a few example simulations to 

illustrate the THM coupled response of a heterogeneous reservoir to fluid 

injection under different in-situ stresses and with different injection plans.     

As stress state changes, micro-cracks and voids can form inside the rock, and 

irreversible damage occurs. In this work, permeability and elastic modulus of 

the rock are also considered to depend on the damage level. Continuum damage 

mechanics is used to capture the rock post-peak softening behavior observed in 

triaxial tests (Tang et al. 2002) and bi-linear damage evolution law is applied to 

every rock element in the simulation zone. The continuum damage model is 

based on the assumption that the strength characteristics of rock follows Weibull 

distribution, which relates the damage evolution with degradation of rock due to 
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micro-crack initiation, micro-void growth, and micro-fracture propagation, i.e., 

the process which depend on the heterogeneity distribution. The distribution of 

rock heterogeneity here consists of “weak” zones, “soft” zones, and “high-

permeability” zones, expressed in terms of rock properties used in this model, 

i.e., rock strength, elastic modulus, and permeability. The parameters of 

heterogeneity distribution are calibrated using stress-strain constitutive law 

obtained from lab test results of reservoir rock samples (Li et al. 2011) and 

previous work (Fujii et al. 1999) on constitutive relations for brittle rocks. The 

same laboratory-derived rock mechanical parameters are also used to build the 

damage evolution law. Damage variable “d” is introduced in to the context, 

which represents the damage level of the material, and has a value between 0 

and 1.  

7.1.  Elemental damage evolution  for triaxial test condition 

When the elemental block is under uniaxial stress, the constitutive law presented 

in Figure 7.1 is adopted. The degraded Young’s modulus after damage is 

assumed to be (Tang et al. 2002): 

oEdE )1(                                                                                                     (7.1) 

where d is the damage variable, and E0 is the original Young’s modulus of 

undamaged material.  
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Figure 7.1 Elastic-brittle tensile damage and elastic-softening compression 

damage constitutive law of element subject to uniaxial stress. 

Using Hooke’s law, stress-strain relationship of triaxial state under principal 

stresses can be written as: 
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The maximum tensile stress criterion is adopted for tensile failure, that is, failure 

occurs when the largest principal stress exceed the uniaxial tensile strength. The 

maximum principal tensile stress and strain are denoted by 3  and 3  in this 

model. The constitutive relationship (Equation 7.2) in terms of 3  and 3  can 

be written as: 
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It is assumed that isotropic degradation of the elemental block and the change of 

Poisson’s ratio after degradation are small for isotropic material. Therefore, 

during the failure process, Poisson’s ratio is kept constant. Rearranging Equation 

(7.3) one obtains the Young’s modulus for a triaxial stress state: 

)
21

/()1( 33 vE 






                                                                           (7.4) 

Then, the damage variable can be calculated as: 
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where tf  is the uniaxial tensile strength and trf  is the residual strength after 

complete failure. And tr  is the tensile strain at complete failure. 

The Mohr-Coulomb criterion is used for compression failure criterion: 

mcfC  31                                                                                             (7.6) 

where 
f
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                                                    (7.7) 

fc  is the uniaxial compressive strength. Substituting generalized Hook’s law 

into Equation (7.6), yields 
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Consider equivalent stress as C 31  , the equivalent strain can then 

be expressed as: 
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Therefore, damage variable becomes: 
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; crc                        (7.10) 

)/(1 31 Cfd cr   ;  cr                                                               (7.11) 

where cf  is the uniaxial compression strength and crf  is the residual stress after 

complete failure. c  is the compressive strain at peak stress and cr  is the 

compression strain at complete failure. 

As explained in Chapter 5, an iterative method is used to solve the non-linear 

system of equations (5.41). The iteration continues until d is close enough to 

those obtained in last iteration within a prescribed tolerance (0.01), i.e.: 
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 where i = number of iteration step. (1-di) is used in the 

denominator due to the fact that d can be zero at some data points.  

7.2. Stress dependent permeability evolution 

Permeability is a stress dependent variable, and develops with damage evolution. 

Before failure, the stress dependent permeability is calculated as (Tang et al. 

2002): 

))3/(exp(0 pkk ii                                                                           (7.12) 

It is assumed that the volumetric change (V) of a damaged element leads to 

three orthogonal fractures that have parallel walls (Li et al. 2012). The aperture 

of each fracture can be approximated as:  

333

3

3 2

V

V

V

A

V
a vv 
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

  , V is the element volume, A is surface area.      (7.13) 

According to cubic law, permeability of a parallel plate fracture as described 

above (Equation 7.13) can be calculated as: 


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 108
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d                                                                                   (7.14) 
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7.3. Distribution of heterogeneity 

In this simulation, the distribution of elemental strength, elastic modulus, and 

permeability is assumed to follow Weibull’s distribution (Weibull, 1961), and it 

is assumed all three distributions have the same Weibull’s shape factor. To 

determine the shape factor of Weibull distribution, a heterogeneous sample (40 

cm × 40 cm × 40 cm) is considered for numerical uniaxial compression 

experiments. The mean values of the uniaxial compressive strength, elastic 

modulus, and Poisson’s ratio are 50 MPa, 10 GPa, and 0.25, respectively (Table 

6.2), which are the scale parameters of Weibull distributions. Figure 7.2 shows 

the comparison of the complete stress-strain curves obtained from numerical 

simulation and experimental work. The shape parameter for numerical 

simulation in Figure 7.2 is 5.0. The damage model (Figure 7.1) is applied to 

each element in the numerical model. And the following experimentally 

determined values are used in the simulations: fc = 50 MPa, fcr = 40% fc, c = 

0.0005, cr = 2.5c. It can be seen that the numerical result agree well with the 

experimental results. One should notice here the complete stress-strain curve 

(solid line) is a representative curve processed from lab test results of reservoir 

rock samples (Li et al. 2011) and Fujii et al. research on constitutive relations for 

brittle rocks (Fujii et al. 1999). 
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Figure 7.2 Comparison between simulated complete stress-strain curve and 

experimental results.  

7.4. Simulation setup 

The numerical model has previously been verified by analytical solutions 

(Chapter 5). Therefore, the focus of this section is on some case studies. A 
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represent an EGS. The domain is discretized into 32000 eight-node brick 

elements and 35301 element nodes. A point injection source is used in this study, 
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simulation. The injection time is 48 hours.  The rock heterogeneity, including 

Young’s modulus, permeability, tensile and compression strengths, is distributed 

using Weibull function with a shape parameter of 5.0. The mean value for the 

distributions are E = 10 GPa (Young’s modulus), k = 1 md (permeability), ftr = 5 

MPa (tensile strength), and fcr = 50 MPa (compression strength). The domain is 

large enough so that the injection induced disturbances do not reach the 

boundary within the computation time period. A zero displacement and no fluid 

and heat flux boundary conditions are used in this study. The injection 

temperature is set to 25 °C, but this restriction is removed and the well fluid is 

allowed to be warmed up in the shut-in phase. The initial temperature of the 

domain is 115°C, and the initial pore pressure is 10 MPa.  
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Figure 7.3 Model set-up for the heterogeneous reservoir. Unit: Young’s modulus 

in Pascal (Pa), length in meter (m). 
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Table 7.1 Parameters used in the heterogeneous rock simulation. 

Rock and fluid properties 

Young’s modulus, E (mean) 10 GPa  

Fluid viscosity,  3.0x10
-4

 Pa·s 

Permeability, k (mean) 1 md 

Rock density 2400 kg/m
3
 

Porosity  0.2989 

Poisson’s ratio,  0.25 

Undrained Poisson’s ratio 0.461 

Skempton coefficient, B 0.915 

Fluid density 1000kg/m
3
 

Thermal expansion coefficient of solid, m 1.8x10
-5

 K
-1

 

Thermal expansion coefficient of fluid, f 3.0x10
-4

 K
-1

 

Thermal diffusivity, c
T
 1.6x10

-6
 m

2
/s 

7.5.  Influence of rock heterogeneity 

A normal faulting in-situ stress regime is used for calculation in this section: xx 

= 15 MPa (h), yy = 45 MPa (H), and zz = 50 MPa (v), pini = 10 MPa.  There 

are 8 data points (Gauss point) for each element, and the failure events at these 

points are recorded and reported as a potential micro-seismic event. 

First consider the profiles of injection pressure and failure events with time, 

resulting from injection into a homogeneous rock as shown in Figure 7.4 and 7.5. 

The damage magnitude is shown by the value of damage variable, d. Events for 

a homogeneous rock occur only during  several time steps, with similar damage 

magnitude for each time step. The number in brackets in Figure 7.4 indicates the 
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number of events which occurred at the corresponding time. One can notice that, 

failure occurs when the pore pressure at a point is greater than ~15 MPa, which 

is the critical pressure at which the rock element experiences tension (Sh = 15 

MPa). 

The failure events for homogeneous rock form two layers of circular zones in 

the y-z plane. This is to be expected when rock properties are assumed to be 

isotropic. When plotted on y-z plane, these two layers will overlap as shown in 

Figure 7.5. Colors distinguish time steps when events occur. The centered gray 

square indicates the location of the injection point. A regular pattern of failure 

evolution can be observed. The circles in Figure 7.5 can be viewed as the critical 

pressure front, which is the pore pressure to cause failure. Therefore, one can 

predict the failure locations at any time based on the arrival time of the critical 

pore pressure (black circle) front. For homogeneous rock under isotropic in-situ 

stresses, the pore pressure diffusion length is a function of the rock diffusivity 

and time, and can be analytically calculated. There are also studies on relations 

between the location and time of the failure events for anisotropic stress state 

(Schoenball et al. 2010). However, these analytical relations do not apply in real 

situations where rock damage, stress variation and rock heterogeneity are the 

norm. As can been seen from Figure 7.6-7.7, the distribution of events in a 

heterogeneous reservoir spreads in time and space in an irregular fashion. Also, 

the damage magnitude varies much in the process (Figure 7.6). According to the 
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failure criteria used in this study, the initiation of a failure event is governed by 

the local strength and effective stress changes. Therefore, locations at a long 

distance from the injection source with low local strength can fail prior to those 

stronger elements located closer to the source. Also, since the effective stress 

values at short distances experience a large pore pressure and stress disturbances, 

a higher strength zones near the source can fail earlier than a weak zone far from 

the source.  

The results show that because of the heterogeneity and rock damage evolution, 

analytical resolution of pore pressure diffusion and failure initiation is not 

adequate and numerical modeling of heterogeneity and failure process is 

necessary. As can be seen from the result, the location and initiation of failure 

events is more influenced by local heterogeneity, rather than the overall 

diffusivity and time. Due to the small contrast between vertical stress and the 

maximum horizontal stress (5 MPa) and the isotropy of permeability (kh = kV), 

the failure zone does not display an elliptical shape often reported for 

homogeneous models.  

By comparing Figures 7.4-7.7, it can be seen that the distributions of failure 

events for the two cases develop differently; in the homogeneous isotropic case, 

the event distribution is symmetric around the injection source. Events only 

occur at t = 5, 6, 20 hour, when the injection induced pore pressure increment is 
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sufficient to initiate a failure. Examination of the failure types reveals that all 

events at t = 5 hrs. and t = 20 hrs. are tensile failures, and all events at t = 6 hrs. 

are shear failures. Also, all events at t = 40 hrs. are also of the tensile type.  This 

phenomenon shows that, for the homogeneous isotropic rock, elements reaching 

a critical state will fail in the same manner given the same pore pressure 

increment. The events distribution for heterogeneous rock in Figure 7.7 is more 

disseminated. As described previously, there are weak zones distributed in the 

simulation domain. Thus, the potential of both failure types also varies element 

by element. Both failure types occur during the same time step. More tensile 

type failure is observed from the results. The ratio is 34(tensile):11(shear) in the 

two-stage injection case (Figure 7.15), 48 (tensile):15(shear)) in 48 hour non-

stop injection case (Figure 7.6), 60(tensile):33(shear) in 48 hour non-stop 

injection case for large in-situ stresses (section 7.7). It is reasonable to have 

more tensile failure events in this simulation. The tensile strength of modeled 

rock is much smaller than the compression strength. Also, the h stress is 

relatively small and it is easy to create tensile stress by a small pore pressure 

increase.  
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Figure 7.4 Profile of pressure at injection source and failure events for 

homogeneous model. Numbers in brackets show the number of events occur at 

corresponding time step. 
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Figure 7.5 Distribution of failure events in space of homogeneous model. x = 

512.5 plane indicates the plane on which the failure events are distributed.  
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Figure 7.6 Profile of pressure at injection source and failure events for 

heterogeneous model.  

 

Figure 7.7 Distribution of failure events in space of heterogeneous model, and 

different direction of views of the distributions. 
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The preferred orientation of damage evolution and permeability development 

along the maximum horizontal stress can be observed in Figure 7.8-7.9. The 

tendency is more obvious for the homogeneous case. The gray circles in Figure 

7.8-7.9 indicate the location of injection source. For homogeneous case, both 

permeability and damage develop symmetrically, which is not the case for the 

heterogeneous case, underscoring the importance of stress and rock 

heterogeneity in stimulation.  

For the case a heterogeneous reservoir, the center of the contours or the highest 

values of permeability increment and damage variable are not located at or very 

near the injection point. This is because there is a weak zone around (x = 500 m, 

y = 500 m). The threshold tensile strain of this zone is 0.29x10
-3

, while, the 

average threshold strain is 0.5x10
-3

. Tensile failure at t = 2 hour in this weak 

zone (x = 505 m, y = 505 m) is observed as can be seen from the failure events 

plot (Figure 7.7). Another observation is that the damage is more spread from 

the injection source in the heterogeneous case, which causes a slightly larger 

permeability enhancement zone compared to the homogeneous case. However, 

the maximum permeability enhancement is slightly higher in homogeneous case.  

Figure 7.10 plots failure events with permeability development. The rock failure 

increases the permeability directly by forming micro-fracture (Equation 7.14), 

and will change the stress-strain correlation of the rock which indirectly affects 
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the stress dependent permeability. Because the peak strength and Young’s 

modulus of rock will decrease with damage, rock will subsequently experience 

larger strains at lower stresses. Large strain and further failure will lead to higher 

permeability enhancement. The location of failure is consistent with the 

stimulated zone distribution for both cases in Figure 7.10. 

 

Figure 7.8 The distribution of stimulated permeability at t = 40 hour for 

homogeneous model (left) and heterogeneous model (right). 
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Figure 7.9 The distribution of damage variable at t = 48 hour for homogeneous 

model (left) and heterogeneous model (right). Slices are made at z = 250 m.  
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Figure 7.10 Stimulated permeability distribution and failure event locations at 

the end of injection for homogeneous model (left) and heterogeneous model 

(right). Slices are made at z = 250 m. 

 

 

 



173 
 

7.6. Rock response after shut-in and re-injection 

Micro-seismic events have been observed after shut-in in some field injection 

tests (e.g., Schoenball and Kohl 2013). To simulate this phenomenon, the 

injection is stopped at t = 24 hour for both cases reservoir stimulation considered. 

The bottom-hole pressure and failure event profiles are shown in Figure 7.11 

and 7.12.  In these simulations, no failure events are observed during 24 – 48 

hours after shut-in in either homogeneous or heterogeneous cases. For the 

homogeneous case, it is reasonable to not have failure events after shut-in. 

Because the diffused pore pressure cannot exceed the shut-in pressure that 

initiated failure events, unless the shut-in pressure is higher than the critical pore 

pressure due to high viscosity or existence of natural fractures which have lower 

shear strength.  The maximum pore pressure change during shut-in hour in 

diffusion area is less than 0.5 MPa (Figure 7.13). The maximum absolute pore 

pressure in the diffusion area after shut in is 14.33 MPa when t = 25 hour at 50 

m from the injection source (Figure 7.13). Accordingly, the failure function (fmc, 

Equation 7.6) at 50 m attains the highest values (nearest value to the failure 

envelop) at t = 25 hour (Figure 7.14). The value of fmc is -1.05 with an 

incremental of 0.2 after shut-in. The fmc has increased from initial value of -3.08 

to -1.25 during 24 hour of injection with ≈ 5 MPa of pore pressure increment. 

By comparison of these quantities, the diffused pore pressure increment is far 

from sufficient to initiate an event.  
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The post shut-in failure and seismicity that has been observed in the field could 

be attributed to slip on joints and faults. In numerical simulations, post shut-in 

failure could happen in a heterogeneous rock when a weak zone is present along 

the pore pressure diffusion path. The strength of the weak zone should be high 

enough so as to not fail before shut-in, but should be low enough to fail by a 

small pore pressure increase after shut-in (i.e., it should be critically-stressed). 

Another possible cause of post shut-in events can be the induced poroelastic 

stress in small distance ahead the pressure front immediately after shut-in. Also, 

in current simulations, failure will not happen in a previously pressurized zone, 

because after shut-in, the pore pressure in the pressurized zone will decrease and 

the Mohr-Column circle will move away from the failure envelope.  

When injection re-starts at the same injection rate, new failure events occur 

several hours later when the induced pore pressure reaches the critical level 

(Figure 7.15). It is found that the new events (after re-injection) occur at the 

same locations as those when the injection is continuous, but at a later time than 

the non-stop injection case. For example, black circles in Figure 7.16B occur at 

times = 41, 44, 45, 46, and 48 hour for the two-stage injection test, while they 

occur  at 20, 23, 24, 26, and 27 hours for the of non-stop 48 hour injection test 

(the two groups of events occur at the same locations). This is because the 

damage model and constitutive law used in this study are elastic (Chapter 3). 

The gray middle-size events in Figure 7.16A are events from a later time step 
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when t > 27 hour. We see no failure after shut–in and re-injection (at the same 

rate).  

The damage evolution history depends on the induced pore pressure. It is 

observed that the damage zone of the two-stage test at 48 hour has the same 

shape as the damage zone of non-stop test at 27 hour, as shown in Figure 7.17. It 

is reasonable to predict the future events in the two-stage test will tend to occur 

at locations indicated by gray middle-size events in Figure 7.16A.  

 

Figure 7.11 Profile of pressure at injection source and failure events for 

homogeneous model. The injection is shut down at t = 24 hour. 
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Figure 7.12 Profile of pressure at injection source and failure events for 

heterogeneous model. The injection is shut down at t = 24 hour. 
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Figure 7.13 Pore pressure diffusion after shut in for homogeneous model. 
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Figure 7.14 Variation of Mohr-Column function value fmc at 50 m from injection 

source. Initial value of  fmc  is -3.08 MPa under in-situ stress. 

 

Figure 7.15 Profile of pressure at injection source and failure events for 
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Figure 7.16 Comparison between failure events distribution of 48 hour non-stop 

injection (left) and of two-stage injection (shut-in at 20 hour and re-injection at 

30 hour) (right). 
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Figure 7.17 Comparison between damage distribution at 27 hour of 48 hour non-

stop injection (left) and at 40 hour of two-stage injection (shut-in at 20 hour and 

re-injection at 30 hour) (right). Slices are made at z = 250 m. 
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7.7. Influence of different in-situ stresses 

Damage zone development for three in-situ stress states has been simulated. The 

three in-situ stresses sets are: a normal faulting regime as used in previous 

simulations (v = 50 MPa, H = 45 MPa, h = 15 MPa); a normal faulting 

regime with higher stress values (v = 65 MPa, H = 50 MPa, and h = 35 MPa); 

and a strike-slip regime (v = 50 MPa, H = 65 MPa, and h = 35 MPa). For 

comparison, the middle horizontal slices of damage zones for low (set I) and 

high (set II) in-situ stress magnitudes are plotted in Figure 7.18. It can be seen 

that the damage level is higher and damage zone is larger for the high magnitude 

normal regime in-situ stresses. However, similar pattern of damage evolution 

can be observed in both cases. When comparing failure zones of normal faulting 

regime (set II) and strike-slip faulting regime (set III), the difference of damage 

evolution pattern is found to be more significant (Figure 7.19). These results 

shows that given the same heterogeneous distribution and injection rate, the 

shape of the damage zone is mainly controlled by in-situ stress orientation, and 

the size of the damage zone is mainly controlled by the magnitude of in-situ 

stresses. A comparison of permeability enhancement between two different in-

situ stresses regimes (set II and set III) is shown in Figure 7.20. The enhanced 

permeability zone has the similar shape as damage zone.  
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Figure 7.18 Comparison between damage distributions of different in-situ 

stresses (x = 15 (h), y = 45 (H), z = 50 MPa (V)) (left) and (x = 35 (h), 

y = 50 (H), and z = 65 MPa (V)) (right). Slices are made at z = 250 m. 
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Figure 7.19 Comparison between damage distributions of different in-situ 

stresses (x = 35 (h), y = 50 (H), z = 65 MPa (V)) (left) and (x = 35 (h), 

y = 65 (H), and z = 50 MPa (V)) (right). Slices are made at z = 250 m. 
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Figure 7.20 Comparison between permeability distributions of different in-situ 

stresses (x = 35 (h), y = 50 (H), z = 65 (V) MPa) (left) and (x = 35 (h), 

y = 65 (H), and z = 50 (V) MPa) (right). Slices are made at z = 250 m. 
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7.8.  Thermal effect in point injection case 

The temperature results for the current case show that the temperature changes 

will not develop at long distances within the simulation time period (Figure 

7.21). Note that flow and transport is based in equivalent permeability and 

fracture flow and transport is not exclusively considered. For rock mass has a 

thermal diffusivity of 1.6×10
-6

 m
2
/s, the characteristic time of 10 meter diffusion 

distance is 2 years. Although, heat convection within the rock matrix is 

considered in this work, the heat transfer within injection period is not very large. 

7.9. Case summary 

A finite element model has been developed to implement the fully coupled 

thermal-poroelastic response of homogeneous and heterogeneous rock to 

injection. In this model, the nodal displacement, pore pressure and temperature 

are taken as primary variables. The stress and strain fields are calculated after 

finite element analysis, and damage evolution is evaluated using the stress and 

strain results. In the finite element analysis, stiffness matrix is stress dependent 

and subject to change with time. The resulting damage zone and enhanced 

permeability of different stimulation cases are compared to study the influence 

of in-situ stresses, heterogeneity, and injection plan on stimulation result. 

The numerical results show that rock transport and mechanical heterogeneity has 

significant influence on the location and initiation of failure events. The 
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distribution of failure events in heterogeneous reservoir is scattered and depends 

on the local heterogeneity distribution, other than symmetrically distributing 

around the injection source for homogeneous reservoir. For the injection plan 

and heterogeneity distribution used in this study, no failure event has been 

observed after shut-in. It is found that after re-injection the failure event profile 

follows the history of non-stop injection when the pore pressure restored up to 

critical value. The stimulation result is also influenced by in-situ stresses. It is 

found that the in-situ stress orientation has major control on the shape of 

stimulated zone, and the magnitude of in-situ stresses has influence on 

stimulated volume. Higher in-situ stresses tend to result into high level damage. 

The stimulated zone is smaller and the average damage level is lower under low 

in-situ stresses. Heat conduction and convection are considered in this work. 

However, the thermal effect is not obvious for this tight reservoir during the 

computation time period (48 hour).  
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Figure 7.21 Comparison between temperature distributions of rocks with 

different thermal conductivities. Slices are made at z = 250 m. 
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THREE-DIMENSIONAL FULLY COUPLED FEM ANALYSIS 

OF GEOTHERMAL RESERVOIRS WITH STOCHASTIC 

FRACTURE NETWORKS 

Simulation of the response of an engineered geothermal system (EGS) requires 

analyzing the THM response of the reservoir rock, which are generally fractured 

and to some extent have heterogeneous properties.  The THM response of the 

reservoir rock includes the opening, slip, and possibly propagation of natural 

fractures, and the failure process of intact rock. To assess the mechanical 

(deformation) and hydraulic (permeability enhancement) response of fractured 

rock during stimulation, three sub-models are required: a fracture network 

model, a rock heterogeneity model, and a coupled THM model. The rock 

heterogeneity model and the FEM THM model have been explained in detail 

previously (Chapter 5 and Chapter 6). This chapter will focus on the fracture 

network model and its implementation in the current FEM model. 

As discussed in Chapter 2, there are generally two classes of fracture models, 

stochastic fracture models and deterministic models. There are also works that 
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utilize combined deterministic and stochastic fracture networks. In most 

reservoir stimulation and fracture modeling, the thermo-poroelastic coupling 

process has been either neglected or simplified to empirical correlations 

(Cladouhos et al. 2001; Willis-Richards et al. 1996; Bruel, 2002). Three-

dimensional THM models have been developed and applied to reservoir 

stimulation, development, and well bore stability analyses (Zhou and Ghassemi 

2009; Lee and Ghassemi 2011). However, the reservoir rock was modeled as 

continuous porous media with possibly a few major fractures.  

In this work, a fracture network is introduced into a coupled poroelastic model 

with heat transport. Poroelastic stresses in the rock matrix are computed at each 

time step, and are interpolated onto the natural fracture faces when calculation 

the fracture apertures change. The overall permeability of fractured rock is 

estimated using the equivalent permeability (Tezuka and Watanabe 2000). An 

iterative method is employed to retrieve the stress-dependent permeability at 

each time step. Considering the problem complexity and the computational cost, 

the rock strain and fracture geometry changes are considered independent from 

the thermal response. The heat transport in the reservoir is assumed to occur via 

fluid flow within the fractures, and the heat conduction from the rock matrix to 

the fracture fluid. Compared to heat convection via fracture flow, heat 

convection within the rock matrix is insignificant in early stage of injection and 
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is neglect in this work (Delaney 1982). The heat conduction from rock matrix to 

the fracture fluid is assumed to be linear and governed by 1-D diffusive equation. 

8.1. Fracture deformation and induced permeability enhancement 

Fracture dilates during shear slippage. As the shear stress acting on fracture 

surface exceeds fracture shear strength, shear failure occurs and induces rock 

deformation of the surface of rupture. This permanent displacement is referred 

as shear displacement which has significant influence on permeability 

improvement of natural fractures. Shear slippage criterion can be derived from 

the theory of shear failure using the linear Mohr-Coulomb criterion. Using 

Patton’s method (Patton 1966), the shear strength of the fracture can be 

calculated as: 

 eff

dilbasicp   tan'                                                                                     (8.1) 

where    is the effective normal stress acting on fracture surface. basic  is the 

basic friction angle which is a material property of the fracture surface, usually 

varies between 30˚ and 40˚ (Barton and Choubey 1977). eff

dil is the effective 

shear dilation angle which is related to the roughness of fractures, can be 

calculate from laboratory-measured dilation angle, dil  as: 

nref

dileff

dil





/91 
                                                                                          (8.2) 
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nref is the effective normal stress which causes 90% closure of the compliant 

aperture. When the shear stress on fracture surface exceeds the shear strength, 

shear slippage occurs. And the resulted shear displacement can be estimated by: 

s

pn

s
K

U
 

                                                                                                      (8.3) 

n is the shear stress applied on fracture surface. p is the shear strength 

described above. sK  is the fracture shear stiffness, can be expressed as: 

r

G
K s                                                                                                            (8.4) 

 is a geometric parameter that can be treat as an measure of the ability of the 

matrix to accommodate the deformation, which is used as 
24
7  in this model 

(Eshelby 1957). r is the penny shape fracture radius. G is the surrounding 

material shear modulus. 

The change in aperture (dilation) due to excess shear stress can be calculated 

from shear displacement, as (Willis-Richards et al. 1996): 

)tan( eff

dilss Ua                                                                                                (8.5) 

When the fracture surfaces are in contact, the “in contact” fracture aperture is 

given by: 

ress

nref

aa
a

a 



91

0                                                                                (8.6) 
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where resa  represents the residual aperture at high effective stress, taken to be 

zero in this model. 0a  is the initial total compliant aperture of the fracture. And 

sa  is the aperture change due to shear slippage, as discussed above. 

For fully open fractures, the opening aperture is the normal displacement (of one 

face) multiplied by 2. For a circular shape fracture of radius   under normal 

stress n, the normal displacement of any point of the crack surface is given by 

(Jaeger and Cook 1969): 

22)1(2
)( rR

G
ru 







                                                                                   (8.7) 

Resulting in the maximum width at the center 

G

R
a



)1(4 
                                                                                                     (8.8) 

The volume of the penny shaped crack is obtained from: 

G

R
dr

G

R
rV n

R

3

)1(8
)

)1(4
(2

3

0












                                                             (8.9) 

Indicating an average aperture of: 

G

R
RVa n






3

)1(8
/ 2 

                                                                              (8.10) 

The new aperture due to updated stress distribution will be input for the 

equivalent permeability calculation of next time step as described previously.  
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To estimate the scale of the micro-earthquake (MEQ) caused by fracture slip, 

the methodology of  McGarr et al. 1979 and Hanks and Kanamori 1979 is used 

to calculate the magnitude of radiated elastic energy. The seismic moment due 

to slip “ sU ” over the slip area, can be obtained from 

 


 dAGUM s0                                                                                               (8.11) 

G is the shear modulus of the rock. The magnitude of a micro-earthquake 

generated by the slippage can then be estimated as: 

 7.10log)
3

2
( 010  MM                                                                                 (8.12) 

8.2. Analysis  of near wellbore reservoir response 

This simulation focuses on utilizing a stochastic fracture network and 

poroelasticity to simulate the thermal-hydro-mechanical response of a near 

wellbore fractured zone during the fluid injection process, and to assess the 

permeability enhancement in the stimulated zone. In order to investigate the near 

wellbore reaction to injection, a small scale reservoir model of size 40 m × 40 m 

× 20 m is considered. The fractured geothermal reservoir is modeled using a 

system of rock blocks some of which contain stochastically-distributed fractures 

and fractured zones. The effect of the fractures on permeability is introduced 

into the model by using the equivalent permeability approach (Chapter 2). The 
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rock matrix is assumed to be poroelastic and the fractures are allowed to deform 

and to slip. Heat transport within the fractured rock and the associated thermal 

stress on the rock is also considered (fully-coupled analysis, Chapter 5). A series 

of simulations are carried out to analyze the rock mechanical response and 

permeability evolution for a Newberry-type reservoir. In fractured reservoirs, 

like Newberry tuff, the overall fluid flow pattern is dominated by flow within 

the interconnected natural fracture network, since the conductivity of fractures is 

much higher than intact rock. However, the heat energy is stored in the rock 

mass surrounding the fractures, and it takes time to heat-up the fracture fluid to a 

desirable temperature. Therefore, to engineer a geothermal system, one need to 

enhance the permeability/connectivity of the pre-existing natural fractures 

without creating massive hydraulic fractures.   

8.2.1. Stochastic fracture network 

A natural fracture network of 500 penny-shape cracks is introduced into the 

poroelastic model (Figure 8.1). The 3D hydraulically conductive fracture 

network is generated using stochastic descriptions of its characteristics (Chapter 

2) namely, Poisson distribution for fracture location, log-normal distribution for 

fracture size, and Fisher von-Mises distribution for fracture orientation. The 

parameters of these distributions are usually found from field tests or 

experimental data. The fracture data can be complied to form a network by 

defining location, size, and orientation of the fractures. One of such stochastic 
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fracture network (Table 8.1) is shown in Figure 8.1. The parameters of the 

fracture distribution used herein are from fracture analysis of Newbery field 

(AltaRock 2011), and from empirical suggestions (Cacas et al. 1990). Fracture 

apertures are assigned following the relationship with the fracture size (Tezuka 

2005): 

ra                                                                                                           (8.13) 

where   is the initial aperture.  can be estimated from average virgin 

permeability (Willis-Richards 1996), which is evaluated to be 0.004 in this study. 

is a field dependent factor and requires careful evaluation. The power n is 

decided to be ½ in this study, adopted from Tezuka and Watanabe (2000). 

Table 8.1 Parameters of the probability functions of stochastic fractures in 

Figure 8.1 

Density [m
-1

] 1.0 

Mean of the log(radius) [radius in meters] 0 

Standard deviation of the log(radius) [radius 

in meters] 
0.7 

Fisher von Mises distribution parameter 2.8 

 

4.0 X10
-3

 

Number of fractures 500 


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Figure 8.1 A stochastic fracture network. 

8.2.2. Model set-up 

Figure 8.2 shows the simulation domain with selected finite element mesh, and 

Figure 8.3 shows the fractured zone that contains 500 stochastic fractures (half 

domain). Rock properties are from experiment conducted on Newbery tuff core 

plugs (Li et al. 2012). A constant wellbore pressure boundary condition is 

applied to this model. The outer boundary of the reservoir block is assumed to 

be a no flow boundary. 
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Table 8.2 Parameters used in near wellbore simulation. 

Rock properties Fracture properties 

Model size (m3) 40 x 40 x 20 Fracture density(m-1) 1 

Young’s modulus(GPa) 27.24 Fisher parameter,  2.8 

Poisson’s ratio 0.4 
Mean fracture radial 

(lognormal) 
0 

Skempton’s coefficient 1 
Standard deviation of fracture 

radial, s 
0.7 Matrix permeability 

(md) 
5  

Porosity  0.025 Fracture basic friction angle (˚) 50.2 

Fluid density (kg/m3) 1000  Stress State 

Fluid bulk modulus 

(MPa) 
3291  Vertical stress (MPa) 67 

Fluid viscosity (Pa s) 1.0 x 10-4  
Maximum horizontal stress 

(MPa) 
62 

Fluid viscosity (Pa s) 1.0 x 10-4  
Minimum horizontal stress 

(MPa) 
41 

Shear dilation angle (˚) 3.0 In-situ pore pressure (MPa) 25  

90% closure stress 

(MPa) 
100 Injection pressure (MPa) 5 

 

 
Figure 8.2 Finite Element mesh of a small scale reservoir model. 
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Figure 8.3 Fractured zones shown in half domain. Color bar shows the 

equivalent permeability of the fractured zone in Darcy units. 

8.2.3. Simulations and results 

Pore pressure development after 2 hours of injection, and the corresponding 

micro-seismic events are plotted in Figures 8.4 and 8.5, respectively. Figure 8.4 

shows the pore pressure distribution of three fracture networks with different 

stochastic parameters. In these figures,  is the fracture orientation parameter 

and s is the fracture size parameter (Table 8.2). We can see from both the pore 

pressure and the seismic clouds that the fracture properties dramatically 

influence the stimulation results. The seismic events of the fracture network with 

fisher von Mises orientation distribution are limited near the injection well. The 
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randomly distributed fracture network has a larger zone of micro-seismic events 

and higher pore pressure build up. The fracture size also has influence on the 

permeability improvement result (Figure 8.5B and C). The location of shear 

slippage is different from each case. This phenomenon indicates the important 

role of characterizing fracture properties for reservoir stimulation modeling and 

design. 

 

A 

 = 2.8 

s = 0.7 
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Figure 8.4 Pore pressure development at t = 2 hour in the fractured reservoir. 

 = random 

s = 0.7 

B 

C 

 = random 

s = 0.5 
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Time = 2 hr; Pinj = 5 MPa 

 = 2.8; s = 0.7 

Time = 2 hr; Pinj = 5 MPa 

 = random; s = 0.7 

A 

B 
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Figure 8.5 Micro-seismic events at t = 2 hour of three blocks with different 

fracture properties. 

To illustrate the permeability improvement, Figure 8.6 shows the comparison of 

injection in two reservoirs having the same fracture networks, but with different 

rock type. One of them (group B) is assumed to consist of a rigid rock matrix 

which does not easily fail during the injection. The other one (group A) has the 

same rock type as used in previous simulation (Table 8.2) and is weaker. We can 

see that before shear dilation, the pore pressure distributions are the same in both 

reservoirs. After shear dilation, the pore pressure distribution in rock A is 

affected by the updated permeability, and higher pore pressure is shown in the 

upper zone (Figure 8.6 A2). We can see from Figure 8.6 A3 and B3, after 10 

Time = 2 hr; Pinj = 5 MPa 

 = random; s = 0.5 

C 
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hours of injection, the pore pressure built-up in reservoir A has been delayed. 

Higher reservoir pressure is shown in Figure 8.6 B3. This observation resulted 

from the fracture opening and permeability increasing in reservoir A. 

 

 

A1 

B1 
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A2 

B2 
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Figure 8.6 Iso-surfaces of pore pressure distribution for reservoirs with (A) and 

without (B) permeability improvement at (1) t = 0 hour, (2) t = 2 hour, and (3) t 

= 10 hour of injection. 

A3 

B3 
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The flow rate vs. time profile of the above two reservoirs is shown in Figure 8.7. 

The green line shows the flow rate profile of the reservoir with improved 

permeability caused by fracture aperture increase. Red line shows the flow rate 

profile of stronger reservoir. We can see that, in the stimulated reservoir, the 

flow rate increases quickly after the shear dilation.  

Figure 8.8 shows the seismic events at t = 5 hour, when a large of flow rate is 

observed in Figure 8.7. Large shear slippages are recorded, which is one of the 

reasons for the large increase of flow rate at t = 5 hour (the well pressure is 

maintained constant during injection). The flow rate will also increase when the 

injection fluid front reaches the higher permeability zones. Therefore, we can 

see periodic increase of flow rate from both curves. To show the permeability 

improvement, slices of permeability contours of the reservoir A at t = 4 hour and 

t = 5 hour are plotted in Figure 8.9. Permeability changes at all locations of 

shear slippage shown in Figure 8.8. But, all the change cannot be shown in a 

single contour map because of the rather broad range of permeability values (5 × 

10
-16

 m
2
 to 6.2 × 10

-8 
m

2
) with the simulation domain. Therefore, only the values 

in the range of 2.5 × 10
-13

 m
2
 to 8.5 × 10

-11 
m

2
 are plotted in Figure 8.9 for 

illustration purpose. We can observe permeability increase in various locations 

in Figure 8.9. The results show the correlations between seismic events, 

permeability improvement, and flow rate increase.  
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Figure 8.7 Wellbore flow rate profiles with time for reservoirs with (A) and 

without (B) permeability improvement.  

 

Figure 8.8 Micro-seismic events plot at t = 5 hours. Bubble size indicates the 

shear slippage value. 

A 

B 

1 mm opening 
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Figure 8.9 Near-well permeability development, showing the center layer at t = 

4 hours and t = 5 hours. Only 25 Darcy to 850 Darcy permeability range is 

plotted for the best illustration. 

t = 4 hour 

t = 5 hour 
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8.2.4. Near well response using line injection source 

Larger scale stimulation cases are also carried out to obtain a general view of the 

stimulation outcome. The reservoir domain is 100 m ×100 m ×100 m size. 

Considering the scale of the simulation domain and the computational cost, the 

injection well section is represented as three vertical injection elements serving 

as a line source (15 m vertical interval) (Figure 8.10). Instead of using a 

wellbore mesh, a mesh with a uniform grid mesh 50 × 50 ×50 is used. The far 

field boundary is set to be no flow, and traction specified boundary. The 

injection rate of the line source is specified (per unit volume) and well pressure 

during the injection will be calculated. The far field tractions are equal to the in-

situ stresses. The rock properties are the same as Table 8.2. The fracture 

properties are as Table 8.3. And one of the fracture geometry is shown in Figure 

8.11. Figure 8.12 shows the resulting high permeability fractured zone. 
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Figure 8.10 Model size and setup for large scale simulation test. 

Table 8.3 Parameters used in line source simulation. 

Fracture properties 

Fracture density(m
-1

) 1 

Fisher parameter,  1.7 

Mean fracture radial (lognormal) 0 

Standard deviation of fracture radial, s 0.7 

3 well elements 

No flow boundary 



215 
 

 

Figure 8.11 Fracture geometry of a fracture network with 1000 fractures.

 

Figure 8.12 Fractured zone permeability heterogeneity due to the fracture 

network shown in Figure 8.11. 
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Figure 8.13 shows the pore pressure distribution development at 1 hr., 3 hr., 6 

hr., and 9 hr. during the stimulation of 12 hours. Figure 8.14 shows the injection 

well pressure profile with prescribed injection rate. The results show that in this 

case the shear slip of natural fractures do not have significant influence on the 

injection pressure vs. injection rate profile. This is reasonable, considering the 

size disparity of reservoir and injection source, as well as the highly fractured 

nature of the reservoir.  Figure 8.15 shoes the pressure distribution and shear 

slippage failure location at time = 9 hour on the center slice (z = 0). We can see 

that the stimulated zone indicated by micro-seismicity cloud shows similar 

shape as pore-pressure developed zone. In this model, the injection pore 

pressure, which will induce poroelastic stress in the domain, is the only 

disturbance to the initially balanced in-situ state. Therefore, the stress changes 

and hence the displacement of the fractures can only happen where the pore 

pressure develops. Figure 8.16 gives a 3D view of the potential micro-seismicity 

cloud at 9 hours, which indicates the stimulated zone volume at that time. 
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t = 1 hr. 

t = 3 hr. 
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Figure 8.13 Development of excess pore pressure due to stimulation. 

t = 6 hr. 

t = 9 hr. 
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Figure 8.14 Injection pressure vs. injection rate profile. 

 

Figure 8.15 Pressure distribution and shear slippage failure location at time = 9 

hour on the center slice (z = 0). 
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Figure 8.16 Shear slippage failure events (accumulative) at time = 9 hour. 

Monte- Carlo tests are usually required for models using stochastic distributions, 

because different random data set can deliver varying results. Stochastic data 

analysis is out of the scope of this study, but it is necessary to verify that the 

influence of data set selection on the simulation results. Figure 8.17 shows the 

pore pressure distributions at 9 hours for two models, in which the fracture 

networks are generated using the same stochastic parameters but different 

random seeds. We can see that the overall results, such as induced pore pressure, 

pressurized zone shape and stimulated volume, show consistency. Local 

inconsistencies can be caused by the different distribution of fractures in the two 
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networks. Figure 8.17 compares the well pressure profiles of two sets. The 

overall patterns of the profiles are similar. The fact that set 1 has slightly higher 

well pressure (0.38 MPa) than set 2 (0.34 MPa) indicates set 1 has smaller 

overall fracture conductivity, because fluid is difficult to diffuse to the reservoir 

and builds up higher well pressure. However, the difference is with-in practical 

error tolerance. 

 

Figure 8.17 Pore pressure distributions of fractured reservoirs, in which natural 

fractures are generated from different random data sets with same stochastic 

parameters. 

Set 1 

Set 2 
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8.2.5. case summary 

This simulation example shows different aspects of permeability enhancement 

in EGS. The model is shown to be capable of analyzing the stress variations, 

pore pressure distributions, and potential injection induced micro-seismicity. 

From the results, we have seen the important role of fracture network properties 

(fracture distribution, orientation, and fracture network connectivity) in 

geothermal reservoir design and development. The fracture aperture changes 

with stress variations associated with injection, and directly influence the 

reservoir permeability evolution. The orientation of the fractures in the reservoir 

dramatically influences the fracture network connectivity, hence the 

permeability development. In a fractured reservoir, properties of fracture 

network have a significant impact on pore pressure and seismic events 

distribution. Results also show a correlation between pore pressure increase, 

fractures slip and MEQs. A comparison with field/lab test needs to be conducted 

in the future work. Calibration of fracture distribution parameters and damage 

induced permeability change will be reported in the following context. 

8.3. Large scale reservoir response analysis 

8.3.1.  Model set up 

This model is also applied to a fractured geothermal reservoir, in which the 

natural fracture network is to be connected to the injection well via a hydraulic 

fracture, as shown in Figure 8.18. A one-wing elliptical hydraulic fracture on x-z 
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plane is centered at coordinates (670.0 m, 242.5 m, 250.0 m). The elliptical 

crack has a major axis (x-direction) of 300 meters and a miner axis (z-direction) 

of 150 meters. The elliptical fracture has a uniform width of 5 mm. The modeled 

reservoir has a length of 1000 meters in x-direction, a width of 500 meters in y-

direction, and a thickness of 500 meters in z-direction. The injection well is set 

vertically along the minor axis of hydraulic fracture, and the open-hole injection 

section is 160 m (140 m-300 m). The injection rate is held at 26.56 l/s for 40 

hours. The injection water temperature is set to be 50°C and the reservoir 

temperature is 115°C. The whole domain is selected large enough to eliminate 

boundary effects. We assume fixed displacement and no flow boundary 

condition at far field. This domain is discretized into 20,000 uniform finite 

element bricks and subject into the fully coupled FEM model. The in-situ stress 

state is indicated in Figure 8.18A also. The maximum horizontal stress is in x-

direction, and this is a normal regime stress state where the largest in-situ stress 

is vertical. A cluster of 1000 natural fractures is located in front of the hydraulic 

fracture. The coordinates of the center of the natural fracture network is (450 m, 

250.0 m, 250.0 m), and the fractured zone is 500 m X 500 m X 500 m. Figure 

8.18B shows more details about natural fracture network and hydraulic fracture. 

Rock properties and fracture network parameters are listed in Table 8.4. Rock 

and fracture properties are from AltaRock (2011) Newberry reservoir and Li et 

al. 2012. 
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Figure 8.18 a) Reservoir geometry and in-situ stress state. b) Details of natural 

fracture network and hydraulic fracture. 

 

 

 

SH = 45 MPa Sh = 30 MPa 

SV = 50 MPa 
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Table 8.4 Rock and natural fracture properties used in large scale simulation. 

Rock density 2700 kg/m
3
 

Fluid density 1000 kg/m
3
 

Rock permeability 3.24 X 10
-12

 m
2
/s 

Rock porosity 0.2989 

Young’s Modulus 10 GPa 

Boit’s coefficient 0.915 

Poisson’s ratio 0.219 (drain), 0.461(undrain) 

Bulk Modulus (fluid) 3.291GPa 

Number of fractures 1000 

Fracture size (Log EX) 0.0 

Fracture orientation,  2.8 

Fluid viscosity 3.0X10
-4

 Pa s 

Basic friction angle 0.698 

Dilation angle 0.052 

90% closure stress 100 MPa 

Thermal expansion coefficient (solid) 1.8 X 10
-5

 K
-1

 

Thermal expansion coefficient (fluid) 3.0 X10
-4

 K
-1

 

Thermal diffusivity 6.0 X 10
-12

 m
2
/s 

Fracture density 1.5 m
-1 

Fracture size (Log SD) 1.0 

size-aperture coefficient  4.0 X 10
-3

 

 

8.3.2. Simulations and results 

The response of natural fracture network to injection is analyzed. At first, two 

sets of fractures are tested individually. These two sets of fractures have the 
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same distribution and orientations, with different sizes and apertures. The 

resulting micro-seismic events location is the same for both sets. This shows the 

significant influence of fracture orientation on the occurrence of shear slippage. 

Figure 8.19 is a plot of the normal to the slipped fractures and their 

corresponding MEQ events at time = 10 hour. Gray circles represent all the 

fractures, while color rectangles are the slipped fractures. The color bar gives the 

magnitude of slippage induced micro-seismicity. It can be seen that shear 

slippage happens on fractures whose normal orientations fall into a certain range 

as indicated in the plot. The direction cosines of a fracture plane can be written 

in terms of its fracture dip and azimuth. From Figure 8.19, we can see that most 

fractures with azimuth between (-30°, 30°) slip after 10 hours of injection. 

Slipped fractures are sorted and plotted in Figure 8.20. Colors on fractures 

indicate the magnitude of MEQ events. It is evident from the figure that the 

event magnitudes are not strongly related to the fracture orientation, size, or the 

distance to the injection source. We observe the same magnitude of events on 

different size of fractures. We also observe higher magnitude of events on 

fracture far from the injection source than the near ones. And from Figure 8.19, 

we can see the same magnitude events occur on fractures with large range of 

azimuth angles. However, due to our assumption of the dependency of fracture 

aperture and size (aperture is 10
-4

 of fracture size, Equation 8.13), the correlation 

between the fracture aperture and event magnitude is not evident. In order to 
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characterize the sensitivity of fracture slip to injection, fluid gravity and vertical 

stress gradient are ignored in this work, and we can see slippage occur on 

shallower fractures (Figure 8.20). By adding fluid gravity, the lower part of 

reservoir would be pressurized first, as discussed in Wang and Ghassemi 2012b. 

Pore pressure distributions within fracture network from time = 1 hour and time 

= 10 hour are shown in Figure 8.21. It can be seen that injection fluid mainly 

pressurizes the interconnected fractures, and only a small amount of fluid is 

transported through the low permeability matrix. We can see from the results 

that the pore pressure development is mostly controlled by the connectivity, and 

there is less pore pressure development in some isolated fractures near the 

injection source (hydraulic fracture). This is reasonable because the rock 

permeability is much lower (two orders of magnitude) than fracture permeability, 

and injected fluid mostly goes into high permeable zones.   
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Figure 8.19 Slipped fractures’ normal directions are plotted as colored squares. 

Gray circles show all the normal directions of natural fractures. 
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Figure 8.20 Slipped fractures and magnitude of the induced micro seismicity. a) 

x-y plane view. b) y-z plane view.  

Hydraulic Fracture 

Hydraulic Fracture 
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Figure 8.21 Pore pressure distributions in individual fractures at time = 1 hour 

and time = 10 hour. 

Hydraulic Fracture 

Hydraulic Fracture 
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Figure 8.22 The permeability enhancement of fracture network. y-z plane view. 

Thick black line indicates location of the hydraulic fracture. 
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Figure 8.23 Improvement of averaged permeability of elements, low 

permeability zone (< 2.0×10
-10

 m
2
/s) has been blank out. y-z plane slice at x = 

450.0 m (center of fracture network). 
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In the fracture deformation mechanism, there are two sources of permeability 

improvement: fracture opening and shear dilation.  By comparing slipped 

fractures in Figure 8.20 and fracture permeability enhancement in Figure 8.22, 

much of the large permeability increases occur where no slippage is observed. 

For example, the permeability of the fracture located on 270Y-300Z in Figure 

8.22B, has been enhanced by approximately one order of magnitude. No shear 

slippage events are observed on this fracture in Figure 8.20B. Therefore, it can 

be concluded the permeability enhancement of this fracture is caused by fracture 

opening by pressurization (and thus eventual mode I propagation). There are 

also fractures where permeability decreases near the lower part of the hydraulic 

fracture zone. This decrease can be caused by fracture closing or “shear 

squeezing”, which could lead to aperture reduction.     

In this model, not all the natural fractures have been utilized in calculation 

(when small fractures are contained totally within one element their attribution 

of the permeability is not take into account). As discussed previously, only 

fractures that intersect the finite element mesh faces are considered for 

permeability evaluation. Figure 8.23 shows the permeability improvement in 

terms of equivalent permeability of finite elements at time = 1 hour and time = 

10 hour, respectively. It can be seen that there are zones where permeability is 

increased after injection. Also, there are zones where permeability is decreasing 

during injection. In this study, the fracture deformation is assumed to be elastic 
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and reversible. As can be seen in the figures, the maximum accumulate 

permeability enhancement is approximately four fold.  

The thermal effects during injection are also examined. The results show that 

during stimulation, the temperature variation in the stimulation time period (~2 

days) is very little due to low thermal conductivity of the rock material, as can 

be seen from Figure 8.24. The reservoir temperature is 115°C, and the injection 

fluid temperature is 20°C. 
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Figure 8.24 Temperature variation during injection at Time = 1 hour and Time = 

44 hour. 
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8.3.3. case summary 

The 3D thermal and poroelastic model developed in this work calculates the 

performance of fractured reservoir during stimulation. The permeability 

enhancement of the natural fracture network and the corresponding slippage-

induced MEQ events has been analyzed. The results show that fractures 

orientations have a major influence on the initiation of shear slippage. From 

permeability improvement, we can conclude that as the pressure field changes 

during injection, fracture permeability can be enhanced. Also, induced effective 

stress change on fracture surface can also cause fracture closure, hence decrease 

the local permeability. Shear slippage does not necessary indicates permeability 

enhancement according to the simulation results. Some fractures’ aperture 

decreases while shear slipping.  Since the zone of temperature disturbance is so 

small (does not even reach the fractured zone as shown in Figure 8.21) for the 

given injection rate, and permeability, we do not observe cooling effect in this 

case study.  

This model is useful to analyze the geothermal reservoir response during 

stimulation. It can give assistance when design an injection schedule and to 

predict the effects of the stimulation. By comparing simulation result and field 

observations, this model can also be used to evaluate the fracture network 

models. 
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9 

SUMMARY  

9.1.Conclusions 

The coupling THM process of rocks is one of the most important phenomena in 

unconventional reservoir development. In order to properly interpret the 

coupling behavior during injection and production, this dissertation has 

employed a finite element method (FEM) in developing a fully-coupled thermo-

poroelastic model, which considers the effect of heterogeneous rock damage and 

natural fracture deformation. The current method has been used to study the near 

wellbore rock instability/failure. The important role of the variation and 

reorientation of principle stresses in determining the wellbore failure mode has 

been presented in Chapter 6. The cooling effect on wellbore stability is 

illustrated too. The current method has also been applied to heterogeneous, 

naturally fractured reservoir stimulations for evaluating the permeability 

enhancement and understanding the injection induced micro-seismicity. The 

important influences of heterogeneity, rock damage, and natural fracture 

deformation on the reservoir response during stimulation have been illustrated 

through several numerical examples. The results show that: 
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 The current model is capable of predicting different aspects of reservoir 

response to fluid injection. Given the robust functionality of the well-

established FEM formulation, this numerical model is compatible with 

various concept models, such as fully-coupled reservoir simulation 

model, decoupled fluid flow and heat transfer model, wellbore stability 

model, rock damage evolution model, and natural fracture network 

model.  

 Rock failure and fracture deformation induced permeability development 

and rock degradation have significant impact on the mechanical and flow 

behavior of the reservoir. Simulation examples in this dissertation have 

shown the correlation among pore pressure distribution, stress alternation, 

rock damage evolution, and stimulated volume development. The non-

linear FEM model is capable of predict the real-time stimulation results, 

such as stress-dependent permeability and injection induced micro-

seismicity. 

 Redistribution and reorientation of stresses after drilling mostly control 

the failure tendency and failure mode of the near wellbore rock. The 

variation of the magnitude and orientation of stresses can be resulted 

from excavation (mechanical loading/unloading), higher/lower than 

formation well pressure (fluid loading), or cooling effect (thermal 
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loading). The in-situ stress state also has significant influence on the 

borehole stability. Simulation examples in Chapter 6 comprehensively 

reveal the ability of current model in predicting the rock failure under 

various different conditions.  

 Distributions of initial heterogeneous properties are very important in the 

determination of rock degradation ratio and the initiation of local failure. 

It also plays important role in the redistribution of stress and pressure 

field during injection. Results in Chapter 7 also show the effect of 

heterogeneity on real-time development of stresses, pore pressure, 

permeability enhancement, and induced MEQ in the reservoir during 

injection.  

 Natural fractures have important roles in the development of pore-

pressure fields, stimulated zones, and the induced MEQ during fluid 

injection and their important impact has been captured using this FEM 

model combining with fracture deformation model, as shown in detail in 

Chapter 8. The hydraulic conductivity of the natural fractures highly 

depends on fracture distribution parameters. The selection of FEM also 

has influence on the fracture network conductivity evaluation. Fracture 

orientation plays a major role in the shear slippage and dilation of natural 

fractures, as shown in Chapter 8. Another result is that the natural 
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fractures dominant the fluid flow pattern and stimulated volume 

development in the reservoir.  

 Micro-seismic events are related to rock failure, fracture slippage, and 

permeability enhancement, from which the stimulated reservoir volume 

can be calculated. Each event is related to one failed finite element, and 

the event magnitude is calculated according to the damage level of the 

element. For slippage induced MEQ events, the magnitude is related to 

the shear displacement of the fracture. Rock failure and fracture 

deformation induced permeability enhancement has been studied in 

Chapter 7 and 8. The results show consistency among MEQ events, 

enhanced permeability zone, and stimulated reservoir volume. 

9.2.Contributions  

This dissertation combines discrete fracture model and equivalent continuum 

model to develop a hybrid model, which use discrete stochastic network in 

building a continuum approximation. The implantation of stochastic fracture 

network into the existing thermo-poroelastic model extends the capability of 

current thermo-poroelastic model into predicting the coupling behavior of 

naturally fractured reservoirs, in both oil/gas and geothermal energy. 

Applications and limitations of the natural fracture network model have been 

illustrated in this dissertation, providing useful guidance when the consideration 
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of natural fractures is essential in reservoir modeling. The deformation of 

fractures has been related to reservoir permeability enhancement and the 

induced micro-seismic events. Both shear dilation and opening of the fractures 

have been considered, where joint model and penny shape fracture model are 

used.  

Continuum damage mechanics binding with rock heterogeneity distribution are 

utilized to modeling the rock failure process. The failure induced rock 

degradation and permeability enhancement have been used in the THM model to 

simulate the non-linearity of coupled process. Weibull theory is used for 

distributing rock heterogeneity, the parameters of which is related to the damage 

evolution curve of continuum damage mechanics. Combing these two theories, 

this dissertation is able to reproduce complete stress-strain curves of 

heterogeneous rock samples under triaxial test condition, which implies a more 

applicable modeling of rock heterogeneity. 

This dissertation provides various examples to illustrate the different shapes and 

types of wellbore failure zones, and emphasizes the role of rotation and 

magnitude of induced principal stresses in determining wellbore failure modes. 

The importance of poroelastic effect and thermal effect is also pointed out. 

Three-dimensional comprehensive description of failure conditions is provided 

in Chapter 6, which explains typical failure modes observed in practice. 
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Influence of rock heterogeneity on stimulation response has been extensively 

studied in Chapter 7, which gives an integrated interpretation on different 

aspects of heterogeneous rock’s behavior during fluid injection. The 

permeability enhancement and occurrence of micro-seismicity have been related 

to the damage of rock mass. Effects of different injection plans are also 

presented. 

Models of reservoirs with both fractures and heterogeneous rock mass are 

presented in Chapter 8, which shows the dominating role of fracture flow in 

fluid diffusion in unconventional reservoir. Most of the fluid goes in to fractured 

zone by penetrating the intact rock between fractures and the injection source. 

The result also shows the significance of fracture network connectivity and 

fracture orientation for shear slippage induced permeability enhancement. The 

observation is that fluid is mostly confined in interconnected fractures, and only 

fractures whose orientation falls into certain range may have shear slippage.  

9.3.Recommendations  

The natural fracture model needs to be valid case by case for its accuracy in 

representing the in-situ local connectivity, since stochastic models simulate the 

fracture network in a way of representing the overall conductivity behavior of 

the reservoir. 
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Multiple simulations of random samples from the same distribution need to be 

conducted for statistical modeling approaches, due to the non-unique nature of 

the random data set. Simulation conclusions should always be drawn from cases 

using representative date set(s). The concept model will need to be re-examined 

when conflicting results are obtained from different random samples. 

Conditional statistical distributions of heterogeneous rock properties and natural 

fractures would lead the current model to be more realistic.  High quality and 

adequate interpretation of field data will also increase the accuracy of the model 

prediction.        

Development of a mature damage model based on 3D stress-strain constitutive 

relations considering the plastic strain during the failure process is 

recommended. Most of current continuum damage models are based on 

observations of constitutive relations from uniaxial test.  

Robust methods for modeling the propagation and interaction of large amount of 

fractures is required to depict more realistic geothermal reservoir simulation. A 

more sophisticated fracture deformation and propagation model is needed. The 

efficiency of using finite element method to simulate fractures and its 

propagation, comparing to boundary element method, needs to be improved.  
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APPENDIX 

A1. Algorisms of introducing fracture network into finite element mesh 

When numerically embed penny shaped fractures into finite element mesh, one 

need to superpose properties of penny shaped fractures onto finite elements, and 

interpolate results from finite element node to fracture surface. Fundamental 

routines of computational geometry is needed in, for instance, 1) determination 

and visualization of  the fracture network pattern;  2) algorisms of finding 

intersection lines between fractures and element interfaces; 3) searching for 

conductive channels assembled by interconnected fractures and excluding 

isolated fractures from fracture network. In this section, a library of geometry 

recipes used in this work is gathered. And all methods are explained in a manner 

likely to be adopted in FORTRAN programming, or most likely to find an 

available FORTRAN subroutine. 

Geometrical figures in three dimensions in three-dimensional space can be 

described using a series of points defined by a set of rectangular coordinates (x, 

y, z) with respect to a set of orthogonal axes. The point can also be represented 

by cylindrical coordinates (, , z) or spherical coordinates (r, , ) under the 

circumstances. The main task of the recipes shown in this section is to represents 

the target geometry using points coordinates.   
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A1.1. Intersection line between a circle and a quadrilateral  in space 

In equivalent permeability calculation, the length of intersection line (L) 

between the penny shape fracture (F) and finite element interface (A) is required 

(Figure A1). To calculate the length of a line segment, we need to find the 

coordinates of two end points Pa(x1, y1, z1) and Pb (x2, y2, z2). 

2

21

2

21

2

21 )()()( zzyyxxLength                                                    (A1) 

Several steps need to be followed to obtain the coordinates of two end points. 1)  

The quadrilateral is dissembled into two triangles. 2) Intersect-line (l) between 

the plane of 3D circle (F) (fracture) and each triangle (T1) is obtained.  3) 

Intersection points (P1, P2) of the line (l) and three edges of the triangle (T1) can 

be found. 4) Intersection points (P3, P4) of the intersection line and the circle can 

also be found. 5) Determining the two end points (P2, P3) out of four intersect-

points (P1, P2, P3, and P4), and calculate length1 in first triangle (T1). 6) Do step 

2-5 for another triangle, and calculate length2 in second triangle. 7) Adding 

length1 and length2 up will yield length of the target line segment, which we 

looked for in the beginning. 
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Figure A1 Schematic of intersection line calculation between fracture and FEM 

element surface. 

A1.2. Intersection between a plane and a triangle in 3D 

It is convenient to take the normal form of the fracture plane, since one point on 

the plane (the fracture center) (xp, yp, zp) and normal vector to the plane (xn, yn, zn) 

are given. Let V1 (x1, y1, z1), V2(x2, y2, z2) and V3(x3, y3, z3) be the coordinates of 
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the vertices of the triangle. We can first calculate the signed distances between 

the vertices and the plane in the following way: 

pnpnpn zzyyxxd   

dzzyyxxdist nnn  1111  

dzzyyxxdist nnn  2212  

dzzyyxxdist nnn  3333                                                                             (A2) 

We can examine these distances two by two. If the signed distances of the two 

vertices have opposite signs, and then there is a point of intersection between 

them. There are special cases that one or both of the vertices is on the plane, 

which can be identified by having a zero distance. If an intersection point exists, 

we can find its coordinates (x, y, z) by using the following linear interpolation. 

Take dist1 and dist2 as example: 

)/( 122 distdistdist   

21 )1( xxx    

21 )1( yyy    

21 )1( zzz                                                                                                (A3) 
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Repeat above procedure three times, we can find 0, 1, 2, or 3 points of 

intersection between the triangle and the plane. Three points of intersection 

indicates the plane and the triangle are co-planer. One point of intersection 

indicates that one and only one of the vertices is on the plane. When two points 

of intersection return, we can write out the parametric form of the intersection 

line (Equation A4). 

Ftxx  1  

Gtyy  1  

Ktzz  1  
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21
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2

2121 )()()(/)( zzyyxxxxF   
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2121 )()()(/)( zzyyxxyyG   
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21
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21
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2121 )()()(/)( zzyyxxzzK                                            (A4) 

A1.3.  Intersection between a line and a circle in 3D 

In this part, it is convenience to write the equation of a circle in implicit form 

using its center (xc, yc, zc) and radius (r) as: 

2222 )()()( rzzyyxx ccc                                                                   (A5) 
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And from above we have the parametric form of the line as 

Ftxx  1  

Gtyy  1  

Ktzz  1                                                                                                         (A6) 

There can be 0, 1, or 2 intersection points. We will look at the 2 intersection 

point case only, because other two cases indicate no communication between the 

fracture and the element interface. The coordinates of the two intersection points 

can be calculated as follows. 
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Ktzz  1                                                                                                         (A7) 
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A1.4.  Determination of two intersection point between a circle and a triangle in 

3D 

We have obtained four points previously, which are intersection points of one 

line to a circle (p3, p4), and to a triangle (p1, p2). It is to solve an overlapping 

problem of line segments in this situation. There are seven possible relative 

locations of four end points of two line segments as shown in the following. 
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2 4
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2 4

1 3

1 3

1 3

3 1

3 1

3 1
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Length = |P3P4|

Length = |P1P3|

Length = zero

Length = |P2P4|

Length = |P1P4|

Length = |P1P2|

Length = |P3P2|

 

Figure A2 Possible relative locations for line segment overlapping calculation. 

The relative position of these four points can be determined by the value of four 

angles:  132,  142,  314, and  324.  For example, case 1 in above figure 

stands when both  132 and  142 equals to . After two intersection points are 

determined, the intersection length can be calculated. Repeat same procedure for 

all six element interfaces, we can obtain the intersection lengths of a fracture to 

finite element surfaces. 

A2. Visualization of fracture network 
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Most of the commonly used image processing software does not provide a 

function to plot massive number of 3D circles in space. Usually, the user need to 

explicitly input coordinates of points on 3D circles. On the other hand, 

coordinates of points on fractures are also required when interpolating elemental 

stresses onto fractures’ surface. The procedure of defining a point on a circle in 

space is basically a coordinate transformation. Consider a unit circle (black) and 

a point (P0) on the circle, as shown in Figure A3.  

y

z

u

w

P0

P1





(xc, yc, zc)

v

x

 

Figure A3 Illustration of circular area in 3-dimension space. 

First, one needs to find three orthogonal vectors to define the transformed 

coordinate system (Blue). Since the normal of the fracture (w) is given and can 

serve as one of the orthogonal axes of the fracture plane, the other two vectors (u 

and v) can be calculated using w and x, as: 
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u

wx
u


 , and 

v

uw
v


                                                                                  (A8) 

Having unit vectors u, v, and w in hand, the new coordinates of any known point 

P0 after rotation can be calculated as 

 sincos1 vuP                                                                                            (A9) 

The last step is resizing the unit circle to a circle with radius r, and relocating the 

center from (0, 0, 0) to C (xc, yc, zc). The coordinate of the point PF transformed 

from P0 can be calculated as: 

CvrurPF   sincos                                                                              (A10) 

It is not difficult to define points on a unit circular area in 2D. Therefore, using 

above algorism can easily list out the coordinates of necessary points in a 

circular area (fracture surface) in space. When plotting fractures, one can treat 

the circles as polygons by defining limit number of points on circle to 

approximate the fractures. Figure A4 shows a meshed out unit circle for stress 

interpolation. Figure A5 shows a fracture network, in which each of the fracture 

is approximated by a 20-sides polygon. 
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Figure A4 A sample of FEM mesh for a circular area 

 

Figure A5 A sample of penny shape fracture network. 
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A3. Determination of inter-connected fracture channels 

The algorism of searching for inter-connected fractures in a network includes a 

series of determination of intersection between two fractures (circular areas) in 

space.  A circle in space is formed by a plane cutting a sphere. The normal of the 

plane is identical to the fracture normal, the center and radius of the sphere are 

the same as the fracture center and radius (Figure A6).  

n
R

C

 

Figure A6 A circular area in space is formed by a plane cutting a sphere. 

The first step is to determine if two spheres intersect, by calculating the distance 

between the two centers, and comparing it to the sum of the two radiuses. The 

two spheres intersect when the following relation (Equation A11) is valid. 

21 RRd                                                                                                    (A11)  
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Figure A7 Intersection of two spheres. 

There are three possible relative locations of two fractures in space, given the 

two spheres intersect: 1) two fractures are parallel; 2) two fractures are co-planar; 

3) two fractures are Non-coplanar and non-parallel. 

1). Two fractures are parallel 

If two fractures have same or opposite normal, and the distance from one 

fracture center to another fracture plane is not equal to zero, they are parallel. 

There will be no intersection point in this situation.  

121  nn , and 0d                                                                                     (A12) 
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Figure A8 Two parallel fractures. 

2). Two fractures are co-planar 

If two fractures have same or opposite normal and the distance of the center of 

one fracture to another plane is equal to zero, they are co-plane. There will be 

one or two intersection points, which can be determined by comparing the 

distance between two centers to the sum of their radius. 

121  nn , and 0d                                                                                     (A13) 

There will be one intersection points, if
21' RRd  , and two intersection 

points, if
21' RRd  .  
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Figure A9 Two co-planner fractures. 

To find the mid-point of the intersection line segment, let us consider the following 

figure in 2D. 

C1

C2

r1

r2

P1

P2

P3

a

b

h

 

Figure A10 Intersection line between two co-planner circles. 

In Figure A10, a = |C1P3|, b = |C2P3|, h = |P1P3|, and d’ = |C1C2|. Considering the 

two triangles C1P1P3 and C2P1P3, we can write 

2

1

22 rha   and 2

2

22 rhb                                                                          (A14) 

And using d = a + b, we can solve for a, 
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)2/()( 22

2

2

1 ddrra                                                                                     (A15) 

And finally, we can solve for P3 

dCCaCP /)( 1213                                                                                     (A16) 

3). Two fractures are Non-coplanar and non-parallel 

In this case the problem reduces to find the intersection points of a line 

(intersection line between two fracture planes) and a circle (section A1.3), and 

then calculate the line segment overlapping as previous (section A1.4).  

n2n1

C1 C2

 

Figure A11 Intersection line of two 3D circles. 

Here, the method used in this work to determine the intersection line between 

two fracture planes is explained. The implicit functions of two fracture planes 

can be written as:  

01111  dznynxn zyx                                                                                (A17) 
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02222  dznynxn zyx                                                                               (A18) 

where  

)( 1111111 czcycx znynxnd   

)( 2222222 czcycx znynxnd   

And the line of intersection that we want to find is (in parametric form): 


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

htzz

gtyy

ftxx

0

0

0

                                                                                                    (A19) 

where the parameter coefficients, f, g, and h, and one point (x0, y0, z0) on the line 

are given by: 
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                            (A20) 

Then follow section (A1.3) and (A1.4), two intersection points of two fractures 

can be found. Finally, the mid-point can be located. The resulted channel-
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networks are 1-D pipes connected by fracture centers and mid-points (Figure 

A12). 

 

 

Figure A12 1-D channel formed by interconnected fractures. 

A4. Efficient method of computing polygon area and polyhedron volume 

Depending on the simulated domain, irregular polygon elements (triangle and 

quadrilateral for most of the time) and polyhedron elements (tetrahedron and 

hexahedron for most of the time) are always used to make the FEM meshing 

more flexible. The following introduces an efficient way to compute the polygon 

area and polyhedron volume during numerical programming. 

A4.1. polygon area 

The area computation use the facts that 1) the norm of the cross product vector 

is the area of the parallelogram they from, 2) the triangle they form has half of 

that area, and 3) The polygon area (N nodes) is the sum of the signed areas (area 

vector, Allen Van Gelder 1995) of the triangles formed by consecutive pairs of 

nodes and the origin. The following sketch illustrates the geometry in detail 

(Figure A13). 
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Figure A13 Illustration of area vector. 

4103402301201234 AAAAA                                                                       (A21) 

bcbaabc vvA 
2

1

 

After translating the origin to node N (e.g. node 4 for quadrilateral), the formula 

then reduces to (Figure A14) 

2341241234 AAA                                                                                            (A22) 

N = 4

2

3

1
 

Figure A14 Orientations of vertices for polygon area calculation. 
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The area of the triangles in Figure A14 can be calculated as
2421124 2/1 vvA  , 

and only the coordinates of four vertices are required then.  

A4.2. Polyhedron volume 

Using the similar concept as used in polygon area calculation, the volume of a 

polyhedron can be expressed as signed volume of pyramids formed by the 

surfaces of the polygon and the origin (Figure A15). 
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Figure A15 An illustration of the signed volume for polyhedron volume calculation. 

348723761265567858414321 VVVVVVV                                                       (A23) 

0
6

1
aabcdabcd vAV                                                                                             (A24) 

bcdabdabcd AAA                                                                                           (A25) 
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The volume is positive when va0 points to the same side as the normal vector 

which is collinear with area vector of the surface. 

In the same way, after translating the origin to one of the vertices (e.g. point 1), 

the formula will be simplified, only pyramids contains point 7 will be taken into 

account. One should notice that the order of nodes has been changed. 

 71437832675876 )(
6

1
vAAAV                                                                       (A26) 

1 2
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45 6
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Figure A16 Orientations of vertices for hexahedron volume calculation. 

A5. Analytical solutions for stress field in the vicinity of a penny shape crack 

A5.1. Sneddon 1946 solution 

In Sneddon’s work, he defined new variables (and ) in cylindrical coordinate 

system due to the axisymmetric of the problem. And three un-vanished stresses 

(z, r, and ) can be expressed in terms of these two variables, as follows. 

cz / ; cr /                                                                                           (A27) 
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Define following: 

22 1 r ;  cot ; 1cot2 22   ; 22222 4)1(  R  

Terms used in above can be written out as: 
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A5.2. Westmann 1965 solution 

In Westmann 1965, a half-space is considered, on which the surface interior to 

the circle r = a is subjected to a uniform shearing stress S in the = - direction. 

Exterior to the circle the surface displacements u and v are zero; the entire 

surface is assumed to be free from normal tractions (pure shear). The solution 

for stresses in cylindrical coordinates when z ≠ 0 is: 
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When z = 0, adopting Heaviside step function H(x):  
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Define following: 
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Terms used above can be finding as: 



274 
 

 





 

cos
2

1
cos

sin
2

1
sin

tan

2

1

2

1

10

0





R

R

J ; 
2

1
sin2

1

0

1



 RJ  ; )
2

3
sin(2

3

0

2 


RJ ; 

)
2

1
sin1(

/

1
2

1

1

0 R
ar

J  ; )
2

1
sin(

/
2

1

1

1 





R
ar

J  ;  
2

3
sin2

3

1

2



 R
a

r
J ; 

})
2

1
cos(

/

1
{

/

1 0

1
2

1

2

0 J
a

z

a

z
R

arar
J   ;  0

1

1

0

2

1
/

2
JJ

ar
J  ; 0

2

1

1

2

2
/

2
JJ

ar
J  ; 


2

1
sin2

1

0

0

0

0 RJ
a

z
I  ; 

2

1
cos2

1

0

0

0

1



 RJI ;  )
2

3
cos(2

3

0

1

0

2 


RJI ;  


2

1
cos

/

1

2

1

2

1

2

1
sin

/

/

2

1
2

1

0

0
2

1

1

0 R
ar

J
a

r
R

ar

az
I  ; 

)
2

1
sin)

2

1
cos((

/

1
2

1

2

1

1

1  RR
ar

I 


; 




2

3
cos)

2

1
sin(

/
2

3

2

1

1

2



 R
a

r
R

ar
I ; 


2

1
cos)

2

1
sin

2

1
cos(

)/(

1
2

1

2

1

2

1

2

2

1



 RR
a

z
R

ar
I ; 

0

2
2

1

2

1

2

2

2 )
2

1
sin)

2

1
cos((

)/(

2
IRR

ar
I 



 ; 

 


