
 

 
 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

COUPLING THE ADVANCED REGIONAL PREDICTION SYSTEM AND THE 

DISCRETE EVENT SPECIFICATION FIRE SPREAD MODEL TO PREDICT 

WILDFIRE BEHAVIOR 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

By 

NATHAN AARON DAHL 

Norman, Oklahoma 

2014 

 



 

 
 

 

 

 

 

COUPLING THE ADVANCED REGIONAL PREDICTION SYSTEM AND THE 

DISCRETE EVENT SPECIFICATION FIRE SPREAD MODEL TO PREDICT 

WILDFIRE BEHAVIOR 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF METEOROLOGY 

 

 

 

 

 

 

 

 

BY 

 

 

 

________________________________ 

Dr. Ming Xue, Chair 

 

 

________________________________ 

Dr. Keith Brewster 

 

 

________________________________ 

Dr. Brian Fiedler 

 

 

________________________________ 

Dr. Yang Hong 

 

 

________________________________ 

Dr. Alan Shapiro 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by NATHAN AARON DAHL 2014 

All Rights Reserved. 

 

 



 

iv 
 

Acknowledgements 

 My foremost thanks must go to Dr. Ming Xue for obtaining the funding that made 

this research possible (NSF Grants CNS-0941432, CNS-0941491, and CNS-0940134) 

and for arranging for my position on this project in an incredibly timely fashion.  I 

extend additional thanks to him and Dr. Keith Brewster, Dr. Brian Fiedler, Dr. Yang 

Hong, and Dr. Alan Shapiro for serving on my dissertation committee and freely 

providing collaboration, advice, and constructive criticism whenever it was requested.  

I am also grateful to the research scientists and staff at the Center for Analysis and 

Prediction of Storms (too many to list here) who provided much-needed encouragement 

and technical support over the last four years. 

 This work would not have been possible without the supercomputing resources 

provided by the OU Supercomputing Center for Education and Research (Boomer), 

Oak Ridge Laboratory (Kraken), and the San Diego Supercomputing Center (Gordon).  

Equally essential was the assistance of Haidong Xue, who was regularly charged with 

augmenting the DEVS-FIRE code as potential improvements were proposed.  

Collaboration with Dr. Xiaolin Hu and Dr. Lewis Ntaimo was crucial in shaping the 

course of the project and obtaining necessary background data.  The free use of fuel and 

terrain data from the Texas Forest Service, background weather data from the National 

Climatic Data Center and the National Center for Environmental Prediction, and high-

resolution FIREFLUX observations from Dr. Craig Clements were absolutely vital and 

immensely appreciated.  All of these entities have my enduring gratitude. 

 Lastly, I express all of my gratitude and love to my wife, Brittany, and my family.  

Without your inspiration and support, this effort would never have been completed.         



 

v 
 

Table of Contents 

Acknowledgements ......................................................................................................... iv 

List of Tables ................................................................................................................. vii 

List of Figures ............................................................................................................... viii 

Abstract ........................................................................................................................ xvii 

Chapter 1: Introduction .................................................................................................... 1 

Chapter 2: Literature Review ........................................................................................... 5 

Principles of Biomass Combustion and Wildfire Spread ....................................... 5 

Model Treatment of Fire Spread ........................................................................... 12 

Atmosphere-Wildfire Feedbacks and Coupled Behavior ..................................... 17 

Atmosphere-Wildfire Coupling Methods ............................................................. 23 

Chapter 3: Experimental Design and Methods .............................................................. 31 

The Advanced Regional Prediction System (ARPS) ............................................ 31 

The Discrete-Event Specification Fire Spread Model (DEVS-FIRE) .................. 35 

Coupling ARPS to DEVS-FIRE ........................................................................... 40 

Geolocation and grid mapping ..................................................................... 40 

Data transfer procedure ................................................................................ 42 

Calculate heat output from DEVS-FIRE ..................................................... 45 

Description of Experiments .................................................................................. 57 

Uncoupled ARPS tests ................................................................................. 57 

Symmetric coupled tests .............................................................................. 60 

Verification using FIREFLUX data ............................................................. 62 

Case studies – the Moore Branch and Rock House fires ............................. 65 



 

vi 
 

Chapter 4: Results and Discussion ................................................................................. 70 

Uncoupled ARPS Tests......................................................................................... 70 

Symmetric Coupled Tests ..................................................................................... 80 

Verification Using FIREFLUX Data .................................................................... 87 

Case Studies – the Moore Branch and Rock House Fires .................................... 96 

Chapter 5: Conclusions and Topics for Future Study .................................................. 105 

References .................................................................................................................... 109 

Appendix A: Overview of ARPS ................................................................................. 114 

Appendix B: Derivation of Quasi-Discrete Heat Release Formulas ........................... 123 

Appendix C: ARPS Turbulence Parameterization Near Enhanced Surface Heating .. 128 

Overview ............................................................................................................. 128 

Method ................................................................................................................ 129 

Results and Discussion ....................................................................................... 131 

    



 

vii 
 

List of Tables 

Table 1: Properties of standard wildland fuel types (from Anderson 1982) ................... 6 

Table 2: Comparison of DEVS-FIRE and FARSITE idealized, non-uniform test results 

(Gu et. al 2008, Table 4) ....................................................................................... 40 

Table 3: Estimated DEVS-FIRE temperature at ignition for standard fuel types ......... 56 

Table 4: Large tower instrumentation used in FIREFLUX (Clements et al. 2007, 

p.1373) .................................................................................................................. 63 

Table 5: North American Regional Reanalysis surface wind speed and direction 

interpolated to the location of the Moore Branch Fire on 5 September 2000 ...... 68 

Table 6: Comparison of coupled (C) vs. uncoupled (UC) 30-minute burn areas from 

idealized symmetric simulations with a 60-second update interval ..................... 81 

Table 7: Skill evaluation for Moore Branch Simulations.............................................100  



 

viii 
 

List of Figures 

Figure 1: Impact of wind on heating of unburned fuel ahead of the fire front. (from 

Rothermel, 1972, p. 12) .......................................................................................... 8 

Figure 2: Example of idealized fire front shape obtained by joining semi-ellipses fitted 

to Rothermel-based spread rates. (from Anderson 1983, p.2) .............................. 12 

Figure 3: Illustration of Huygen’s principle using elliptical wavelets to form a fire 

polygon. (A) Uniform conditions, with aggregate polygon proportional to 

individual wavelets.  (B) Non-uniform conditions, with variation in wavelets 

producing a complex front shape. (from Finney, 1998, p. 3) ............................... 13 

Figure 4: Use of subgrid-scale tracers to construct a fire polygon with associated 

normal spread vectors.  The first number in each cell indicates the number of 

“locked” tracers, while the second number indicates the total degrees of freedom 

remaining for the “free” tracers. (from Clark et al., 2004, p. 52) ......................... 14 

Figure 5: Comparison of burn areas from vector-based (red), 8-direction raster-based 

(light blue), and 16-direction raster-based (dark blue) fire spread models with 

expected results (black) for an idealized uniform fuel bed with constant winds 

(direction indicated at the top of each column).  The grid resolution (hectares) is 

given at left.  (a) fuel cells containing a fixed 50-50 mixture of spruce and aspen. 

(b) randomly-distributed cells containing spruce or aspen only, totaling 50% of 

the grid each.  (from Cui and Perera 2008, p.8) .................................................... 17 

Figure 6: Idealized structure of the near-surface convergence pattern resulting from a 

fire-driven plume carried downstream by the background wind.  (from Clark et 

al., 1996a, p. 883).................................................................................................. 20 



 

ix 
 

Figure 7: Role of tilting and stretching of fire-generated vorticity in the development of 

a dynamic “finger” in the front.  (from Clark et al., 1996b, p. 179) ..................... 21 

Figure 8: Observed sounding of temperature, dewpoint, and wind from Moosonee, ON, 

1200 UTC 1 Aug 1987.  (from Kiefer et al., 2008, p. 450) .................................. 23 

Figure 9: Development of an intense plume associated with an idealized two-

dimensional fire front (located at x=0) due to the amplification of Kelvin-

Helmhotz waves centered on a critical shear layer at an initial altitude of 1.2 km.  

(from Kiefer et al., 2008, p. 465) .......................................................................... 24 

Figure 10: Division of fire mesh into subcells for fuel fraction calculation from 

interpolated level-set function values.  (from Mandel et al., 2011, p. 597) .......... 29 

Figure 11: Illustration of an example terrain-following curvilinear grid with hyperbolic 

vertical stretching employed in ARPS. (from Xue et al., 2000, p.165) ................ 33 

Figure 12: DEVS-FIRE system architecture.  (from Ntaimo et al., 2008, p. 140) ........ 35 

Figure 13: Example calculation of neighbor spread rates for DEVS-FIRE cells burning 

on flat terrain in north-northwesterly wind.  (courtesy of Haidong Xue) ............. 37 

Figure 14: 10 –hour burn areas for FARSITE (left, outermost white contours) and 

DEVS-FIRE (right, black regions) for uniform fuel bed, northerly 5 m/s wind, and 

terrain aspect of 0⁰ (top) and 120⁰ (bottom). (from Gu et al., 2008, p. 358.) ....... 38 

Figure 15: As in Fig. 14, but fuel and slope vary by color in uniform 5 m/s northerly 

(top) and northeasterly (bottom) winds.  (from Gu et al. 2008, p. 359) ............... 39 

Figure 16: Comparison of 10-hour burn areas for FARSITE (left, outermost white 

contour) and DEVS-FIRE (right, black area) using actual GIS terrain (shading) 

and fuel (color fields) data.  (from Gu et al., 2008, p. 360) .................................. 40 



 

x 
 

Figure 17: Time integration algorithm for ARPS/DEVS-FIRE coupled model ............ 43 

Figure 18: Model grid map for a 4x4 DEVS-FIRE grid of resolution dx/2 centered 

within a 3x3 ARPS domain of resolution dx.  U, V, and S denote the 

computational locations for u wind components, v wind components, and scalar 

quantities (e.g. temperature and dewpoint) respectively for the Arakawa-C grid 

used by ARPS.  Subscripts denote the x and y indices of the ARPS cells, while 

each DEVS-FIRE cell is represented as a pink box with a dot at its center. ........ 45 

Figure 19: Spatially-averaged sensible heat flux averaged over one-second intervals for 

fully-discrete (red) and quasi-discrete (blue) DEVS-FIRE simulations of a straight 

fire front spreading at 0.11 m s
-1

 (left) and 0.77 m s
-1

 (right) at spread directions of 

0⁰ (top) and 45⁰ (bottom).  Black dotted lines denote analytic solutions. ............ 52 

Figure 20: Comparison between analytic ignition times ta and DEVS-FIRE model 

ignition times tm for different initial representations of a diagonal fire front 

propagating to the northeast at a rate of 0.77 m s
-1

.  The red line marks the initial 

analytic position of the fire front, the shaded cells are the initial representation of 

the fire front in DEVS-FIRE, and the arrows show the ignition path between 

initial cells and their neighbors.  (The representation on the right was used for the 

heat flux calculations plotted in Fig. 19.) ............................................................. 53 

Figure 21: Map of burn site and instrumentation layout used for the FIREFLUX 

experiment.  Ignition line is represented by white dots, and fire spread proceeded 

north-to-south.  (from Clements et al. 2007, p. 1372) .......................................... 63 

Figure 22: Approximate delineation of daily burn areas for the Moore Branch fire.  Map 

extends roughly 16 km north-south and 26 km east-west.  (Bean 2000, p.6) ....... 66 



 

xi 
 

Figure 23: Comparison between FARSITE simulated burn area (colored contours at 

hourly intervals) and actual burn area (grey shaded region) for the first six hours 

of the April 2011 Rock House Fire.  Map extends roughly 40 km north-south and 

48 km east-west.  (from Martin 2011, p.5) ........................................................... 69 

Figure 24: Two-dimensional ARPS test centered over an externally-forced sensible heat 

flux of 1 MW m
-2

 at elapsed times of (a) 30 seconds, (b) 120 seconds, (c) 210 

seconds, and (d) 300 seconds.  Colors indicate positive perturbation potential 

temperature, while vectors indicate perturbation winds in the x-z plane. ............ 71 

Figure 25: Maximum turbulence kinetic energy for ARPS 2-D stability tests using the 

Moeng and Wyngaard TKE scheme at 4 m surface vertical resolution (green) and 

the Sun and Chang scheme at vertical resolutions of 4 m (red) and 25 m (blue) . 72 

Figure 26: Same as Figure 24, but zoomed on the fire at t = 30 seconds for constant 

heat flux (left) and heat flux decaying exponentially from right to left (right). ... 72 

Figure 27: Maximum perturbation potential temperature, vertical velocity, and vertical 

vorticity for stationary (a,c,e) and amplifying fire fronts (b, d, f).  Ambient 

vertical shear in the lowest 5 km varies by simulation: backward at 20 m s
-1

 

(blue), backward at 10 m s
-1

 (green), no shear (black), forward at 10 m s
-1

 

(orange), and forward at 20 m s
-1

 (red). ................................................................ 74 

Figure 28: 2-km-by-2-km vertical cross-section of perturbation potential temperature 

(black contours), vertical velocity (color fills), and two-dimensional wind 

(arrows) through amplifying fire front center for 20 m s
-1 

backward shear (left) 

and forward shear (right) over the lowest 5 km at t = 600 seconds. ..................... 75 



 

xii 
 

Figure 29: 1.2-km-by-1.2-km plots of 2m AGL perturbation potential temperature 

(black contours), horizontal wind (arrows), and vertical vorticity (color fills in 

units of 10
5
 s

-1
) at t = 120 s (upper left), 360 s (upper right), 600 s (lower left) and 

840 s (lower right) for the case of backward vertical shear of 20 m s
-1

 over the 

lowest five km AGL.............................................................................................. 76 

Figure 30: Same as Fig. 29, but for a stationary fire front with forward shear of 20 m s
-1

 

at t = 180 s (upper left), 420 s (upper right), 660 s (lower left), and 900 s (lower 

right) ...................................................................................................................... 79 

Figure 31: Burn areas at t=1800 seconds for idealized uncoupled (black) and coupled 

(red) simulations for initial surface winds of 3 ms-1 (left) and 12 ms-1 (right) and 

DEVS-FIRE grid resolutions of 10 m (top), 30 m (middle, and 90 m (bottom).  

Thin lines denote east-west lines of symmetry, and the images are zoomed to the 

burn areas. ............................................................................................................. 81 

Figure 32: As in Figure 31, but for DEVS-FIRE resolution of 10 m, update interval of 1 

second, and background winds of 3 (left), 10 (center) and 20 m s
-1

 (right) .......... 82 

Figure 33: Contour plots of ignition time (left) and ignition delay between successive 

cells in the x-direction (right) within the burn area up to t = 300 seconds for the 

fully-discrete symmetric test with a background westerly wind of 20 m s
-1

.  (Deep 

blue region on the right edge of each panel is outside the burn area.) .................. 83 

Figure 34: Surface temperature (contours), wind (vectors), and vertical vorticity (color 

fills, units of 10
5
 s 

-1
) at 2m AGL for stationary angular fire front imposed on 

shear-free ARPS grid at t = 1.5 s. ......................................................................... 84 



 

xiii 
 

Figure 35: Potential temperature (contours), perturbation winds (vectors) and 

perturbation pressure (color fills, units of Pa) at 2 m AGL for stationary angular 

fire front imposed on shear-free ARPS grid at t = 1.5 s. Red and blue arrows show 

approximate alignment of horizontal pressure gradient and horizontal density 

gradient, respectively. ........................................................................................... 85 

Figure 36: Perturbation potential temperature (color fills), perturbation meridional wind 

(contours) and wind vectors for fully-discrete idealized tests with background 20 

m s
-1

 westerly wind using DEVS-FIRE resolutions of 3 m (left) and 10 m (right).  

Erroneous “hot spots” are marked by black circles. ............................................. 86 

Figure 37: Comparison of fully-discrete (black) and quasi-discrete (red) burn areas at t 

= 1200 s at varying background wind speeds. ...................................................... 87 

Figure 38: Observed and predicted 3-second average 2m (top) and 10 m (bottom) 

temperatures at the location of the main tower.  “disc” denotes a fully-discrete 

simulation, “qd” denotes a quasi-discrete simulation, and “flxdis” indicates 

vertical disctribution of surface fluxes. ................................................................. 89 

Figure 39: Same as Fig. 38, but at 28 m (top) and 42 m AGL (bottom) at the location of 

the main tower....................................................................................................... 90 

Figure 40: Same as Fig. 38, but for vertical velocity at 28 m (top) and 42 m AGL 

(bottom) at the location of the main tower. ........................................................... 91 

Figure 41: Observed (black) and simulated specific humidity with (blue) and without 

vertical surface flux distribution (red) at 28 m AGL at the main tower location for 

the FIREFLUX experiment................................................................................... 92 



 

xiv 
 

Figure 42: Same as Fig. 37, but for horizontal wind speed at 2 m (top) and 10 m AGL 

(bottom) at the location of the main tower. ........................................................... 94 

Figure 43: Comparison of observed fuel temperature (black) with fuel temperature 

estimated as described in Chapter 3 for quasi-discrete DEVS-FIRE. .................. 96 

Figure 44: Moore Branch Day 5 observed burn area (red) and predicted burn area using 

Kirbyville data (black). ......................................................................................... 97 

Figure 45: Same as Fig. 44, but for uncoupled burn area using background conditions 

interpolated from reanalysis data (left) and coupled burn area using 60 m 

resolution in ARPS.  White squares indicate zoomed region plotted in Fig. 44... 98 

Figure 46: Fire front position (red) and perturbation winds (arrows) for reanalysis-based 

uncoupled test (left) and coupled test with ARPS resolution 60 m (right) at t = 40 

min.  Zoomed view corresponds to white boxes in Fig. 43. ................................. 98 

Figure 47: Comparison of coupled Day 5 burn results for ARPS resolutions of 60 

(upper left), 150 (upper right), 300 (lower left), and 1200 m (lower right), plotted 

as in Fig. 42. ........................................................................................................ 100 

Figure 48: Burn areas at t = 12 h for coupled Moore Branch simulations at varying 

ARPS resolutions.  Green indicates unburned fuel, red indicates cells ignited 

within the past 60 s, and black indicates previously-burned fuel.  Distances (in 

km) from the grid origin are indicated on the x and y axes................................. 101 

Figure 49: 6 m positive perturbation temperatures (color fills) and winds (arrows) at t = 

12 h for coupled Moore Branch simulations at varying ARPS resolutions. ....... 102 



 

xv 
 

Figure 50: Simulated 6-hour burn areas from ARPS/DEVS-FIRE (left) and FARSITE 

(right, reproduced from Fig. 23) for the Rock House fire.  Observed 6-hour burn 

area is shown in grey at right. ............................................................................. 103 

Figure A.1: Analytic (upper) and ARPS-simulated (lower) solutions for u’ (left) and w’ 

(right) after 100 advective time-scale steps for a finite-amplitude nonlinear 

nonhydrostatic wave over an idealized bell shaped mountain of height 503 m with 

a 2-km half-width (from Xue et al. 2000, p.179)................................................ 117 

Figure A.2: Simulated (left) and observed (right) surface flues of net radiation (Rn) and 

sensible (H), latent (LE), an ground heat (G) for the Wangara experiment, Days 

33-34 (from Xue et al. 2001, p.150) ................................................................... 118 

Figure A.3: Simulated (left) and observed (right) profiles of virtual potential 

temperature (top) and specific humidity (right) for Day 33 of the Wangara 

experiment (from Xue et al. 2001, p. 149) ......................................................... 118 

Figure A.4: Two-hour accumulated precipitation from simulations of the 20 May 1977 

Del City supercell storm (from Xue et al. 2001, p.154) ..................................... 119 

Figure A.5: Eta analysis (top) and ARPS forecast (middle) valid 00Z (left) and 12Z 

(right) on 22 January 1999; compare ARPS and Eta sea level pressure (hPa) 

contours, as well as ARPS precipitation (shaded) and IR cloud top temperature 

satellite images (bottom) at 2245Z on 21 January (left) and 1045Z on 22 January 

(right) (from Xue et al. 2001, pp.158-160) ......................................................... 121 

Figure A.6: Actual radar observation from KLZK (left) and ARPS 14-hour forecast 

composite reflectivity (right) for 02Z on 22 January 1999 (from Xue et al. 2001, 

p.148) .................................................................................................................. 122 



 

xvi 
 

Figure B.1: Geometric framework for determining distance from fire front (red line) to 

a point (x,y) inside a DEVS-FIRE grid cell with resolution Δx .......................... 123 

Figure B.2: Schematic of “straight” fire spread through a DEVS-FIRE cell. The current 

burning area is shown in red. .............................................................................. 125 

Figure B.3: As in Fig. B.2, but for the case of diagonal fire spread. Dotted line 

delineates example burn area for te < tc .............................................................. 127 

Figure C.1: Ratio of turbulence length scale to vertical grid resolution as a function of 

time for 100 m Moeng and Wyngaard (orange), 100 m Sun and Chang (blue), 1 

km Moeng and Wyngaard (red), and 1 km Sun and Chang simulations (green).  A 

ratio of unity (a rough benchmark for “terra incognita”) is plotted with a dashed 

line....................................................................................................................... 132 

Figure C.2: Vertical profile of potential temperature from x = 35 to x = 65 km and from 

z = 0 to z = 3 km for the Deadorff 1km resolution ARPS run at t=2100 s (upper 

left), 2400 s (upper right), 2700 s (lower left) and 3000 s (lower right). ............ 133 

Figure C.3: Same as Fig. C.2, but for Sun and Chang 1 km resolution ARPS run.......134 

Figure C.4: Vertical profiles of grid-resolved kinematic heat flux at 1.5 hours (upper 

left), 3 hours (upper right), 4.5 hours (lower left), and 6 hours (lower right) with 

simulations designated by color as in Fig. C.1. .................................................. 135 

Figure C.5: Layer-averaged potential temperature profiles for t = 1.5, 3, 4.5, and 6 

hours, arranged as in Fig. C.4. ............................................................................ 136 

Figure C.6: Layer-averaged zonal wind profiles for t = 1.5, 3, 4.5, and 6 hours, arranged 

as in Fig. C.4. ...................................................................................................... 137 



 

xvii 
 

Abstract 

 The cost of wildfire suppression in the United States has risen dramatically over 

the last 20 years. As the interface between wildland and urban areas expands, increased 

emphasis is being placed on rapid, efficient deployment of firefighting resources. 

Various numerical models of wildfire spread have been developed to assist wildfire 

management efforts over the last several decades; however, the use of coupled fire-

weather models to capture important feedbacks between the wildfire and the 

atmosphere is a relatively new development.  

 This research evaluates a coupled system consisting of the Advanced Regional 

Prediction System (ARPS) atmospheric model and the raster-based Discrete Event 

Specification Fire Spread model (DEVS-FIRE). After the theoretical basis of coupled 

fire-atmosphere modeling and the basic design of previous vector-based models are 

outlined,  idealized tests, verification using data from the FIREFLUX experiment, and 

case studies of the September 2000 Moore Branch Fire and the April 2011 Rock House 

Fire are presented.  The current version of ARPS/DEVS-FIRE produces mixed results; 

broader-scale feedbacks appear to be represented somewhat skillfully, but the model 

also exhibits systematic flaws, which are exacerbated by efforts to depict fine-scale 

feedbacks or fire spread in high-wind cases.  These results demonstrate the importance 

of coupled modeling and suggest improvements that must be made to ARPS/DEVS-

FIRE before reliable results may be obtained.  
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CHAPTER 1 

INTRODUCTION 

Although the question of proper wildfire management is complicated by the 

recognized benefits of naturally-occurring burns to certain ecosystems (Keene et al., 

2008), the negative impact on human interests is well-documented.  In 2012, wildfires 

in the United States alone consumed over 37000 km
2
, destroyed over 4000 man-made 

structures, and killed 15 firefighters employed by the Unites States Forest Service and 

Department of the Interior (DOI; see U.S. Library of Congress, 2013).  This occurred 

despite a susbtantial increase in government resources dedicated to wildfire 

management in recent years, with DOI fire-related appropriations increasing from 

roughly $1.5 billion (adjusted) for FY 1999 to roughly $2.7 billion for FY 2011 (Office 

of Policy Analysis 2012).     

Moreover, these statistics do not include “indirect” wildfire costs, including the 

impact of air quality hazards (soot and gaseous by-products) on the health of general 

population, additional risk of flooding due to altered hydrological properties in the burn 

areas, and declines in property value and tourism near the damage swath (Western 

Forestry Leadership Coalition, 2010).   With the expectation that conditions conducive 

to wildfires will occur more often and with greater intensity and duration due to global 

climate change (Intergovernmental Panel on Climate Change, 2007), there is increased 

urgency to develop greater understanding of wildfire behavior and greater ability to 

predict wildfire spread in order to optimize the use of firefighting resources and 

personnel. 



 

2 
 

While the general atmospheric conditions conducive to wildfire ignition are well 

understood (with high temperatures, very low relative humidity, and high winds over 

regions of dried fuels such as timber or brush listed by Novy et al., 2013), accurate 

prediction of subsequent wildfire intensity and rate of spread has proven far more 

elusive.  One error source stems from continuing uncertainties regarding the radiative 

properties and chemical processes responsible for fire spread through wildland fuels.  

Controlled burns and laboratory tests have aided in the development of semi-empirical 

mathematical models to combat this uncertainty, but they generally necessitate a 

simplistic representation of fuel bed characteristics (e.g. continuous and/or 

homogeneous) that constitutes another error source.  Furthermore, the sensitivity of 

wildfire behavior to fuel characteristics (moisture, depth, slope, fuel element shape, 

etc.) threatens additional spread model errors due to sparse spatial and temporal 

sampling of fuel beds, particularly in rural areas.  (See Albini, 1976.)   

However, the main source of difficulty is the rapidly-evolving interaction between 

the fire and the atmosphere above it (Sun et al., 2008).  Because the behavior of the 

leading edge of the fire (hereafter “fire front”) is heavily influenced by near-surface 

atmospheric conditions (particularly wind speed and direction; see Rothermel, 1972) 

and near-surface atmospheric conditions may be strongly influenced by heat release 

from the fire, nonlinear feedbacks can contribute to rapid evolution of the fire front.  

These feedbacks can lead to wildly unpredictable behavior even in wildfires that are 

seemingly contained, with consequent danger to the resources and lives of firefighting 

personnel (e.g. the deaths of 15 firefighters due to rapid growth of a spot ignition during 

the 1953 Rattlesnake Fire in California as described in Cliff et al., 1953).   
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A relatively recent innovation is the development of coupled fire-atmosphere 

models seeking to capture these feedbacks.  These models essentially consist of a 

component dedicated to simulating wildfire spread and associated heat release, a 

component dedicated to simulating the evolution of the atmosphere above the burn 

area, and an interface through which those components exchange relevant information.  

The representation of physical processes in these models can be quite complex; for 

example, the FIRETEC model (Linn and Cunningham, 2005) obtains wildfire heat 

release rates from explicit calculation of the rate of combustion based on the 

proportions of the key reactants (specifically oxygen, solid fuel, and water) in a given 

fuel bed.  However, FIRETEC is unable to run faster than real-time due to this 

complexity, even with recent advances in computational capabilities. 

In order to obtain true forecasts to assist wildfire management efforts, other 

models estimate combustion rates from simple empirical or semi-empirical formulas 

based on averaged fuel characteristics such as those detailed in Anderson (1982).  Even 

in this approach, however, simulating the temporal evolution of the fire front can incur 

significant computational cost.  With the fire spreading through the fuel bed as a 

contiguous wave, the shape of the front changes as spatial variations in fuel, terrain, and 

surface winds alter the local spread rate.  Because the atmospheric response to the fire 

is influenced by the shape of the fire front, these changes must be coherently tracked.  

One popular method is to treat the fire as a polygon spreading outward from the initial 

point of ignition, as in the CAWFE model (Clark et al., 2004) and the WRF-SFIRE 

model (Mandel et al., 2011).  However, such vector-based methods are still 
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comparatively expensive since the polygon must be monitored as a separate entity 

whose geometry becomes increasingly complex over time.   

In an effort to streamline the representation of the fire front while retaining 

forecast accuracy, raster-based treatments of fire spread have also been developed.  In 

this approach, the fire is represented as a cluster of discrete cells, which evolves as the 

fire spreads from each ignited cell to its neighbors.  This localized approach is far more 

efficient than a polygon-based method, and becomes even more so when implemented 

as a cellular automaton with each cell acting as an independent “agent.”  (See Clarke et 

al., 1994.)  However, since this approach is more likely than a vector-based approach to 

significantly distort the fire front shape (Cui and Perera, 2008), the suitability of 

coupling a raster-based representation of fire spread to an atmospheric model is 

uncertain.   

To investigate the utility of using such a model in a coupled framework as a tool 

to aid wildfire management, the raster-based Discrete Event Specification Fire spread 

model (DEVS-FIRE) has been coupled to the Advanced Regional Prediction System 

atmospheric model (ARPS).  This account of the project will proceed as follows: 

Chapter 2 will provide a review of literature detailing the theoretical understanding of 

wildfire spread and an overview of existing fire spread models; Chapter 3 will describe 

the individual DEVS-FIRE and ARPS models, detail the methods used to couple them 

together, and outline the tests to which the coupled model was subjected; Chapter 4 will 

describe and discuss the test results; and Chapter 5 will provide a summary of 

conclusions as well as topics for future study.    
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CHAPTER 2 

LITERATURE REVIEW 

A.  Principles of Biomass Combustion and Wildfire Spread 

A wildfire is essentially a process of sustained, progressive, energetic oxidation of 

a layer of biomass.  The first difficulty in modeling this process lies in the fact that 

wildland fuels are chemically-complex combinations of celluloses and lignins with 

uncertain molecular masses; therefore, Byram (1959) summarized complete oxidation 

of the fuel as a single-step chemical reaction: 

4C6H9O4 + 25O2 + [0.322MH2O + 94.0N2] →     
  18H2O + 24CO2 + [0.322MH2O + 94.0N2] + 11.6 MJ 

Here, M is the moisture content as a percentage of the ovendry fuel mass and the 

proportional carbon, hydrogen, and oxygen content in the wildland fuel is represented 

by the “composite” molecule C6H9O4.   

However, as also indicated by Byram, wildland fuel combustion is actually a 

complicated, multi-stage process.  The initial phase involves drying and pre-heating the 

fuel, which is accomplished by warm, dry atmospheric conditions and/or radiation from 

an approaching fire front.  This is followed by pyrolysis, where the fuel releases volatile 

gasses (which then combust) and transforms into char.  Finally, burning the charcoal 

produces ash and other by-products.  The chemical reactants and products in each of 

these phases vary widely depending on the reaction temperature and the stoichiometric 

ratio of fuel to available oxygen.  For example, pyrolysis at higher temperatures 

(1) 
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produces char with higher carbon content, and incomplete combustion produces carbon 

monoxide and NOx as additional by-products.   

As described previously, some fire spread models (e.g. FIRETEC) seek to 

specifically model the evolution of the main constituents though each step of the 

process in order to calculate the heat released by the combustion and the transfer of heat 

from the fire to adjacent unburned fuel.  However, such models are too complex to run 

faster than real-time to provide useful forecasts; such speeds have been attainable only 

by treating the fuel bed as a uniform slab, with fire behavior governed by bulk 

characteristics defined by fuel type.  Anderson (1982) indicated that, for a given fuel  

Table 1: Properties of standard wildland fuel types (from Anderson, 1982) 

Fuel Type 
Fuel load 
(kg m

-2
) 

Dead fuel 
(kg m

-2
) 

Live foliage 
(kg m

-2
) 

Fuel 
depth (m) 

S-V ratio 
(m

-1
) 

Burn 
time (s) 

Extinction 
Moisture (%) 

1 Short grass 0.180 0.180 0.0 0.305 11483 8.2 12 

2 Timber 
(grass and 
understory) 

0.972 0.486 0.122 0.305 9134 8.2 15 

3 Tall grass 0.730 0.730 0.0 0.762 4921 8.2 25 

4 Chaparral 3.162 1.216 1.216 1.829 5705 211.4 20 

5 Brush (2 ft) 0.851 0.243 0.486 0.610 9134 117.5 20 

6 Dormant 
brush/hard-
wood slash 

1.459 0.365 0.0 0.762 9134 117.5 25 

7 Southern 
rough 

1.192 0.268 0.097 0.762 9134 117.5 40 

8 Closed 
timber litter 

1.216 0.365 0.0 0.061 9134 1057.1 30 

9 Hardwood 
litter 

0.851 0.705 0.0 0.061 8150 1057.1 25 

10 Timber 
(litter and 
understory) 

2.918 0.730 0.486 0.305 5787 1057.1 25 

11 Light 
logging slash 

2.797 0.365 0.0 0.305 5787 1057.1 15 

12 Medium 
logging slash 

8.414 0.972 0.0 0.701 5787 1057.1 20 

13 Heavy 
logging slash 

14.130 1.702 0.0 0.914 5787 1057.1 25 
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type, the most important of characteristics for predicting fire spread rate and intensity 

are the total fuel load (mass per unit area of the fuel bed), the fuel depth, the 

proportions of dead fuel mass and live foliage to the total load, and the characteristic 

surface-to-volume (S-V) ratio of the fuel elements.  Anderson detailed 13 standard fuel 

types, the characteristics of which are summarized in Table 1. 

The first theoretical model of ground fire spread through a uniform fuel bed was 

developed by Frandsen (1971).   Assuming conservation of energy and defining a 

coordinate system relative to a fire front moving in the –x direction, Frandsen 

conceptually framed the problem as a propagating flux through unburned fuel elements 

ahead of the fire front.  In this framework, the spread rate is expressed as the ratio of 

the energy absorbed by the unburned fuel element (per unit time) to the energy required 

to ignite the fuel element: 

   
     ∫ (

   
  

)
  

  
 

  

      
       (2) 

R is the spread rate (m s
-1

).  The propagating flux (W m
-2

) is the sum of the horizontal 

heat flux absorbed by a unit volume of igniting fuel Ixig and the vertical radiative flux 

convergence evaluated within the combustion zone (
   

  
)
  

 integrated along the path the 

fuel element travels to the fire front.  be is the effective bulk density of the fuel (kg/m
3
) 

and Qig is the heat required to bring a unit weight of fuel to ignition (J kg
-1

).   

 

Rothermel (1972) developed the most wildly-used mathematical definition of 

spread rate by building on Frandsen’s conceptual framework.  From (2), Rothermel 
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surmised that near-surface winds and topography (i.e. slope) affect fire spread by 

modifying the vertical radiative flux convergence term as shown in Fig. 1; where strong 

winds blow across the fire front and/or the ground slopes upward in the direction of 

spread, the flames at the leading edge are tilted downstream and/or upslope and the flux 

convergence in the unburned fuel ahead of the fire front is enhanced.  Furthermore, 

stronger winds increase the potential that the fuel will be ignited directly through 

contact with the flames at the leading edge or burning material lofted ahead of the fire 

front (hereafter “firebrands”).  

 
 

Figure 1: Impact of wind on heating of unburned fuel ahead of the fire front. 

(from Rothermel, 1972, p. 12) 

 

Rothermel also expanded on Frandsen’s model by determining empirical 

relationships between the terms in (2) and known properties of the fuel element and its 

environment.  For instance, asserting that the zero-wind-zero-slope propagating flux Ip0 

is a function of the reaction intensity at the fire front, Rothermel proposed a relationship 

for the total propagating flux of the form  

Ip = Ip0 (1+φs+φw)    (3) 
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where φs and φw are dimensionless wind and slope coefficients tied to the 

characteristics of the fuel bed.  By experimental burns through excelsior beds and cribs 

of sticks ¼-inch and ½-inch in diameter set on a variety of slopes, Rothermel 

determined the empirical relationship  

φs   5.275 β-0.3 (tan φ)2       (4) 

where β is the packing ratio (a dimensionless measure of the amount of empty space 

present in the fuel bed, equal to the ratio of the total fuel bed density to the density of 

the individual fuel elements) and ϕ is the slope.  For the wind, Rothermel obtained  

φw = CUB (β/ βop)-E where       (5) 

  C = 7.47 exp(-0.133 σ0.55) 

B = 0.02526 σ0.54             (6) 

  E = 0.715 exp(-0.000359 σ) 

U is the wind speed across the fire front at midflame height (m s
-1

), σ is the S-V ratio 

(m
-1

), and βop
 

is an “optimum” packing ratio derived from further experiments 

(inversely proportional to the S-V ratio).  As expected, these relations show an increase 

in propagating flux as wind speed or slope increases; they also show enhancement with 

increased S-V ratio (due to a larger fraction of the fuel element being available for 

combustion at any given time) and diminishment with increased packing ratio (due to 

attenuation and lack of ventilation in dense fuel beds). 
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Furthermore, Rothermel postulated that Ip0 is proportional to the reaction intensity 

IR; through zero-wind-zero-slope experimental burns, an empirical fit for the 

proportionality constant was found to be 

ξ = Ip0/IR = (192 + 0.259σ)-1exp[(0.792 + 0.681σ0.5)(β + 0.1)]  (7) 

 Thus, when wind and slope are not a factor, packing ratio increases the 

propagating flux for a given reaction intensity; this illustrates the importance of 

quantitative solutions for real cases where the packing ratio, wind, and slope may be 

working at cross purposes with respect to their impacts on the propagating flux.  The 

reaction intensity is defined simply as the rate of fuel mass combustion multiplied by 

the heat content per unit mass of the fuel.  The rate of combustion is affected by the fuel 

load, packing ratio, S-V ratio, and the presence of moisture and impurities in the fuel.  

Thus, Rothermel expressed the reaction intensity as  

IR   Γ’wnhnMns       (8)  

where Γ’ is an experimentally-determined optimum reaction velocity (s
-1

), wn is the fuel 

loading (kg m
-2

), h is the fuel heat content (J kg
-1

), and nM and nS are experimentally-

determined dimensionless damping coefficients for moisture and mineral content, 

respectively.  

Finally, the heat of preignition Qig is also affected by the moisture content of the 

fuel, formulized by Rothermel as 

Qig = cpdΔTig + Mf (cpwΔTB + V)      (9) 
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cpd and cpw are the specific heats of the dry fuel and the water contained in it (J kg
-1

), 

respectively.  ΔTig is the temperature change required to bring the dry fuel to ignition, 

while and ΔTB is the temperature required to bring the water to its boiling point (K).  Mf 

is the fractional fuel moisture content (dimensionless) and V is the latent heat of 

vaporization for water.  Thus, the final form of the Rothermel formula for spread rate, 

with all quantities determined by the fuel characteristics and environment, is  

   
   (       )

      
                                      (10) 

However, it is clear that a wildfire igniting at a specific point does not only spread 

in directions dictated by the wind and slope.  It propagates in all directions due to 

atmospheric turbulence, radiation, conduction between burning and unburned fuel 

elements, and so forth.  Since it is not feasible to directly model these impacts, the 

evolution of the two-dimensional shape of the fire front must also be parameterized.  As 

noted by Anderson (1983), observations from test fires in a variety of fuels (e.g. pine 

litter in Fons, 1940; grass fuels in Cheney and Bary, 1969) suggest an elliptical front 

shape, with the length-to-width ratio varying according to the slope, the wind speed at 

midflame height, and the fuel type.  Anderson indicated that the best agreement with 

observations was obtained by splitting the fire front along the line normal to the 

direction of maximum spread and fitting a semi-ellipse to each side, with hundreds of 

experimental burns used to derive empirical relationships between the semi-ellipse 

dimensions and the factors listed above.  (See Fig. 2.)  Simple elliptical or semi-

elliptical parameterizations of this sort form the basis of most operational fire spread 

models, such as the Fire Area Simulator (FARSITE; see Finney, 1998). 
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Figure 2: Example of idealized fire front shape obtained by joining semi-ellipses 

fitted to Rothermel-based spread rates. (from Anderson 1983, p.2)  
 

B. Model Treatment of Fire Spread 

The general elliptical or semi-elliptical shape assumes fire spread through uniform 

fuel beds in uniform weather.  However, these conditions clearly are not met in actual 

wildfires.  Even neglecting the certainty of inhomogeneity in the atmospheric 

conditions, spatial variations in the composition and slope of the fuel bed can produce 

highly complex fire front shapes.  Methods of resolving this complexity in gridded 

computational models generally fall into two categories: vector-based and raster-based. 

Vector-based models operate on the premise of maintaining the fire front as a 

contiguous entity spanning multiple grid cells.  These models treat the fire as a polygon 

expanding outward from the ignition location.  The method of calculating this 

expansion varies from one model to another.  One popular method, used by FARSITE 
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(Finney, 1998), involves a conceptual variant of Huygen’s principle for wave 

propagation through a medium; essentially, with the slope and fuel variations mapped 

to the grid, each ignited cell serves as a point source emanating its own elliptical or 

semi-elliptical burn perimeter based on local spread rate calculations.  Therefore, the 

shape of the fire polygon at a future time is represented by a line circumscribing the 

perimeters emanating from the current vertices of the fire polygon.  (See Fig. 3.) 

 
 

Figure 3: Illustration of Huygen’s principle using elliptical wavelets to form a fire 

polygon. (A) Uniform conditions, with aggregate polygon proportional to 

individual wavelets.  (B) Non-uniform conditions, with variation in wavelets 

producing a complex front shape. (from Finney, 1998, p. 3) 

   

While this approach is both inexpensive and relatively simple to implement in 

both single-processor and MPI environments, numerical artifacts may arise due to the 

assumption of an elliptical fire spread shape as a basis.  In an effort to mitigate or avoid 

such artifacts while maintaining parallelization capability, the Coupled Atmosphere-

Wildland Fire Environment model (CAWFE; Clark et al., 2004) employs a “local 

contour advection” approach in which the spread rate within each cell is tracked using 

four tracer particles, each contrained to advance toward a specified corner of the cell 
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after it ignites based on the spread rate components obtained from the Rothermel 

formula.  Once a tracer reaches its specified corner, it is “locked” in place; the fire 

polygon is then defined using the locations of the remaining (“free) tracers in the cells 

surrounding the burn area, which enables the evaluation of burned vs. unburned areas 

for a given cell as well as calculation of spread rate normal to the aggregated fire front.  

(See Fig. 4.)  The method produces realistic fire front shapes and is readily 

parallelizable due to the localized treatment of the polygon’s evolution; however, it is 

more expensive than the method used in FARSITE, due to more extensive calculations 

as well as the complex logic required to make the tracers behave realistically.  (A 

similar method is used for the MesoNH-ForeFire model in Filippi et al., 2011.) 

 

Figure 4: Use of subgrid-scale tracers to construct a fire polygon with associated 

normal spread vectors.  The first number in each cell indicates the number of 

“locked” tracers, while the second number indicates the total degrees of freedom 

remaining for the “free” tracers. (from Clark et al., 2004, p. 52)  



 

15 
 

Another vector-based approach recently developed for use in the WRF-SFIRE 

model (Mandel et al., 2011) is expansion of the fire polygon using a level-set method.  

The method defines a level-set function ψ(x,y,t) such that ψ is negative for burning 

cells and positive for unburned cells; thus, ψ = 0 marks the location of the fire front.  

After defining the initial values of the level-set function at the centers of the fire grid 

cells, the outside normal vector (i.e. the spread direction) is evaluated at the fire front as  

   
  

‖  ‖
              (11) 

By use of the chain rule applied to the value of the level-set function on a point x 

moving with the fire front (which is zero by definition), the local rate of change of the 

level-set function is given by  

  

  
   ‖  ‖               (12) 

where      
  

  
  is the spread rate obtained from the Rothermel formula. WRF-SFIRE 

uses central differences to evaluate the gradient of ψ and advances the function in time 

using a second-order Runge-Kutta method.  After obtaining the updated ψ  values at the 

centers of the cells in the fire grid, the new fire front shape is obtained by determining 

the new locus of points at which ψ = 0 using bilinear interpolation.  While the logical 

difficulties associated with the tracer method used in CAWFE are avoided, this method 

is more expensive still. 

Since the reduction of computational expense is paramount in obtaining useful 

forecasts, numerous efforts have been made to develop raster-based fire spread 
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prediction tools.  In brief, the raster-based approach treats each cell in the fire grid as a 

discrete entity with a limited number of possible states (e.g. unburned, ignited/burning, 

smoldering, or burned-out).  The main advantage of the raster-based approach over the 

vector-based approach is that the former is highly cost-effective; it can be implemented 

as a cellular automaton, with calculations only required on active (i.e. burning) cells 

and their immediate neighbors.  The burn area is then represented as the superposition 

of the burn perimeters emanating from all of the active cells, in essence employing 

Huygen’s principle as in FARSITE but without specifically defining the fire front as a 

contiguous entity.  

However, numerous studies (e.g. Cui and Perera, 2008) have shown that this 

approach is prone to producing distorted or unrealistic wildfire shapes due to the fire 

spread being limited to directions connecting the center of the active cell with the 

centers of its immediate neighbors.  Some improvement has been obtained by 

introducing an ellipse adjustment factor (as in the HFIRE model described by Peterson 

et al., 2009) or increasing the number of neighbor cells for which spread rates and 

directions are calculated as in the Boreal Forest Landscape Dynamics Simulator 

(BFOLDS) evaluated by Cui and Perera.  However, their comparison of the vector-

based Prometheus model (Tymstra et al., 2010), the 16-direction raster-based BFOLDS 

model, and the 8-direction raster-based Wildfire model (Todd, 1999) demonstrates that 

while the introduction of more spread directions improves the results of the raster-based 

approach, the potential for substantial distortion is still present, particularly at coarser 

resolutions.  (See Fig. 5.)  Furthermore, the discretized treatment of the fire spread is an 
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additional source of error when considering the fire and the atmosphere as a coupled 

system; this error source will be discussed later. 

 

Figure 5: Comparison of burn areas from vector-based (red), 8-direction raster-

based (light blue), and 16-direction raster-based (dark blue) fire spread models 

with expected results (black) for an idealized uniform fuel bed with constant winds 

(direction indicated at the top of each column).  The grid resolution (hectares) is 

given at left.  (a) fuel cells containing a fixed 50-50 mixture of spruce and aspen. 

(b) randomly-distributed cells containing spruce or aspen only, totaling 50% of 

the grid each.  (from Cui and Perera 2008, p.8) 

 

C. Atmosphere-Wildfire Feedbacks and Coupled Behavior 

Current operational models generally rely on the observed ambient wind in their 

fire spread calculations.  This is a serious shortcoming because it assumes that the 

ambient conditions are representative of the conditions in the immediate vicinity of the 

fire front.  In many instances, the assumption may be justified; as discussed by Clark et 
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al. (1996a), a stronger background wind or a narrower fire front produces a shorter 

residence time for parcels traversing the region of intense heating, and a less intense 

fire front will not heat traversing parcels as much.  Clark et al. reasoned that, when the 

additional buoyancy produced by heat from the fire is weak relative to the pre-existent 

kinetic energy of the traversing parcels, the wind within the fire will not deviate 

significantly from the background state and the use of the background wind in the fire 

spread computation is valid.  (Such a case is often referred to as a “wind-driven” fire.) 

However, in cases with more intense fire fronts and/or weaker winds (generally 

referred to as “plume-driven” fires), Clark et al. reasoned that the buoyancy of 

traversing parcels would be greatly increased and the wind in the vicinity of the fire 

would be substantially altered from the background state.  To complicate matters, the 

Rothermel formula makes it clear that the initial alteration of the wind over the fire 

would in turn lead to alteration of the fire spread rate; this, in turn, would alter the rate 

of fuel consumption within the fire front, and hence the intensity of the fire front.  Thus, 

in cases where the heat released by the fire would cause an increase in the wind speed 

over the fire front, a positive feedback would exist and the behavior of the fire front 

would become highly non-linear. 

Therefore, Clark et al. argued that wildfire behavior should theoretically depend 

on the balance between the kinetic energy of the background wind and the buoyancy 

acquired by parcels traversing the fire front.  They quantified this balance using a 

squared convective Froude number, 

  
  

(    )
 

 
〈  〉

〈 ̅〉
  

     (13) 
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U is the wind speed across the fire front, Sf is the rate of spread, g is the acceleration 

due to gravity, Δθ/ ̅ is the potential temperature anomaly (i.e. buoyancy) with brackets 

denoting a layer average over the region of intense heating (for which they gave an 

approximate value of 30 m), and Wf is the width of the fire front.  By the above 

reasoning, a large value for Fc
2
 would correspond to a “wind-driven” fire with little 

modification of the background winds in the vicinity of the fire front, while Fc
2 

 ~ 1 

would mark the threshold of significant coupling between the atmosphere and the fire.   

A widely-recognized sign of fire-atmosphere feedback is the center of the fire 

front developing a general parabolic or conical shape, along with more transient 

protrusions or “fingers.”  Clark et al. (1996a) distinguished between convective and 

dynamic contributions to these phenomena.  The convective contribution consists of the 

development of plumes over the fire front which are tilted downstream by the ambient 

wind, thereby shifting the center of low-level convergence to a position ahead of the 

fire front.  (See Fig. 6.)  This would in turn strengthen the low-level wind across the fire 

front, enhance fire spread, intensify the plume, and produce an amplifying feedback 

loop as long as the low-level convergence zone remains close to the fire front.   

For the dynamical forcing, Clark et al. (1996b) detailed the theoretical evolution 

of vorticity near the fire front.  As shown in Fig. 7, the intense buoyancy gradient near 

the fire front produces horizontal vorticity in the ambient flow coming up from behind.  

When that vorticity encounters an along-line variation in vertical velocity, such as 

might arise due to enhanced spread rate and flame intensity from a convective feedback 

at the center of the fire front, it is tilted and stretched to produce a pair of “bookend”  
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Figure 6: Idealized structure of the near-surface convergence pattern resulting 

from a fire-driven plume carried downstream by the background wind.  (from 

Clark et al., 1996a, p. 883) 

 

vertical vortices that act in concert to strengthen the wind traversing the fire front 

between them.  As with the convective feedback, this process further enhances the 

spread rate and flame intensity, which amplifies the protrusion in the fire front as long 

as the vertical vorticity remains in phase with it instead of being swept downstream by 

overly-strong ambient winds. 

 In addition to theoretical discussion, Clark et al. (1996b) performed several tests 

of a primitive coupled model on an initially-straight fire front.  In doing so, they noted 

that the simulated fire behavior often remained stable even when the convective Froude 

number indicated coupling (i.e. Fc
2
 ≤ 1) and asserted from this that other factors were 

required  for coupled  feedbacks  to  be  realized. This  view  is  supported  by  a  survey  
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Figure 7: Role of tilting and stretching of fire-generated vorticity in the 

development of a dynamic “finger” in the front.  (from Clark et al., 1996b, p. 179) 

 

of controlled burns by Sullivan (2007), which indicates a lack of one-to-one correlation 

between the observed Froude number and the observed maximum spread rate or other 

fire behaviors indicative of coupling.  On this basis, Sullivan concluded that the simple 

classification of wildfires as “plume-driven” or “wind-driven” is not appropriate. 

Clark et al. (1996b) suspected that vertical wind shear is a key component of the 

feedback process, a suspicion bolstered by the lone instance of dynamic “finger” 

development in their test simulations. However, their discussion was limited to vertical 

shear in the first few decameters above the ground, arising from fire-induced 

downdrafts entering the combustion zone.  A more intensive study of the impacts of the 

vertical wind profile was conducted by Kiefer et al. (2008).  Using two-dimensional 
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ARPS simulations in which the fire position was represented by a localized, externally-

forced surface sensible heat flux, Kiefer et al. illustrated the utility of negative vertical 

shear (i.e. winds across the fire front decreasing with height) in maintaining upright, 

more intense plumes with more potential for spread enhancement through the 

convective feedback discussed earlier.   

Furthermore, Kiefer et al. demonstrated the possible role of shear instability in 

generating fire vortices and other extreme fire behavior.  The growth of waves due to 

shear instability is contingent on the following condition being met for the Bulk 

Richardson number: 

0  [    
 (  ̅)(  )

 ̅(  ̅) 
]  0.25              (14) 

Δ ̅ is the ambient vertical shear and  (  ̅)/ ̅ is the environmental stratification over a 

layer with thickness   .  Essentially, waves will grow in cases of weak stable 

stratification and strong shear, and if these waves reach the ground and interact 

constructively with the low-level dynamics near the fire front, extreme fire behavior 

can result.  For example, the profile shown in Fig. 8 was taken on the morning of a 

prescribed burn in eastern Ontario that produced a large, intense vortex (McRae and 

Flannigan, 1990); a critical level containing a wind reversal is evident roughly 2 km 

AGL, which Kiefer et al. theorized to have contributed significantly to the 

intensification of the plumes responsible for the vortex.   

To test this premise, Kiefer et al. performed an array of ARPS simulations with 

varying wind reversal heights, shear magnitudes, and boundary layer depths.  The  
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Figure 8: Observed sounding of temperature, dewpoint, and wind from Moosonee, 

ON, 1200 UTC 1 Aug 1987.  (from Kiefer et al., 2008, p. 450) 

 

results demonstrated that all three of these factors significantly influenced the intensity 

and structure of fire-generated plumes.  In particular, the growth of Kelvin-Helmholtz 

waves from the wind reversal layer was crucial to the development of single intense 

plumes centered on the fire front as opposed to a string of smaller convective cells 

propagating downstream.  (See Fig. 9.)  While intensive examination of these 

convective structures is beyond the scope of the current research, these results serve as 

evidence of the need to consider evolving atmospheric conditions, not only near the 

ground extending beyond the top of the boundary layer, when seeking to predict fire 

behavior. 
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Figure 9: Development of an intense plume associated with an idealized two-

dimensional fire front (located at x=0) due to the amplification of Kelvin-

Helmhotz waves centered on a critical shear layer at an initial altitude of 1.2 km.  

(from Kiefer et al., 2008, p. 465) 

 

D. Atmosphere-Wildfire Coupling Methods  

Accurate representation of the heat released by the wildfire into the atmosphere is 

a key component of coupled modeling.  The complexity of the heat release calculation 
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varies from one coupled model to the next.  For example, along with its relatively 

intensive treatment of the combustion process (discussed previously), FIRETEC 

calculates the temperature of the burning fuel through an internal energy balance 

equation that accounts for the energy of combustion, evaporation, and radiative and 

convective heat exchange with adjacent gases.  It couples with the HIGRAD fluid 

dynamics model (Smith et al., 2002) by using this temperature, the resolved low-level 

resolved velocity strain rates and mass conservation of the relevant gas species 

(accounting for production or removal in the combustion reaction as well as transport 

and diffusion) to calculate surface sensible, latent, and radiative fluxes as well as 

turbulent kinetic energy at multiple scales, which are then fed into HIGRAD. The 

benefit is that this model is completely self-determining (i.e. not reliant on 

experimentally-derived parameterizations that may not be valid in a given situation); 

unfortunately, it is also too computationally expensive to produce true forecasts.  

Therefore, the FIRETEC/HIGRAD model is generally limited to hypothetical 

examination or reanalysis of wildfire behavior (e.g. Cunningham and Linn, 2007).   

As with fire spread, coupled models must currently rely on empirical relationships 

between heat flux and bulk fuel characteristics in order to run faster than real-time.  

Coupling is generally obtained by having the fire model calculate the heat sources and 

then inject them into the appropriate locations in the atmospheric model as lower 

boundary conditions.  However, the method of approximating the heat sources varies.   

In MesoNH-ForeFire (Philippi et al., 2011), the fire model provides the atmospheric 

model with sensible and latent heat fluxes as well as an effective radiant temperature 

for the fuel, but the method is entirely empirical, with the fluxes and temperature for 



 

26 
 

each cell obtained through scaling of experimentally-derived “nominal” values 

according to the fractional burning area of the cell.  For example, treating the surface as 

a blackbody and applying the Stefan-Boltzmann Law, the effective radiant temperature 

in MesoNH-ForeFire is given by  

   √(1    )  
 +     

  
              (15) 

where Rb is the fractional burning area of the cell (ranging from 0.0 to 1.0), Ts is the 

background soil temperature of the cell, and Tn is the “nominal” burn temperature for 

the fuel type occupying the cell. 

CAWFE (Clark et al., 2004) and WRF-SFIRE (Mandel et al., 2011) employ a 

semi-empirical algorithm that falls between the two previous examples; starting from a 

simplified energy conservation assumption in which the energy of the fuel combustion 

is entirely released into the atmosphere, these models estimate the time-averaged 

surface sensible and latent heat fluxes for a given cell in the fire model as 

   
 (    )  ( )

  

 

    
                        (16) 

   
 (    )  ( )

  

    .  

    
                      (17) 

This formulation accounts for the latent heat content of both the moisture evaporated 

from the fuel and the additional water vapor created by the combustion reaction, which 

is estimated from (1) to be 56% of the initial dry fuel mass.  This combined latent heat 

content is estimated for each fuel type and subtracted from the total heat of combustion 

of the dry fuel (~ 20 MJ kg
-1

) to provide the “adjusted” heat content h (J kg
-1

) used in 
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(16); thus, the calculated fluxes sum to the total energy released per unit time by the 

combustion reaction.  F(t) is the fraction of unburned fuel in the cell at time t, Δt is the 

time step interval (s), Mf is the fuel moisture fraction (dimensionless), wl is the fuel load 

per unit surface area (kg m
-2

), and L is the latent heat of vaporization for water.   

For the unburned fuel fraction, CAWFE and WRF-SFIRE rely on a simplification 

of the BURNUP model described by Albini and Reinhardt (1995).  Based on the 

approximation of a fuel element as a cylinder and equating the rate at which fuel mass 

is raised to its burning temperature to the combined heating rate from conduction, 

convection, and radiation from the immediate surroundings, Albini and Reinhardt 

expressed the fractional fuel mass loss over time as 

    ( )

  
 1  (1  
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           (18) 

where M0 is the initial unburned fuel mass, M(t) is the unburned fuel mass at time t, and 

τc is a decay coefficient determined through experimental burns.  Rearranging terms 

and simplifying (possibly by treating the term in parenthesis as a first-order Taylor 

expansion, although this is not clarified in the literature), Clark et al. (2004) obtained 

exponential-decay fits to the experimental data for specific fuel types, such that the 

local unburned fuel fraction f(t) = f(t)/M0 is now expressed as 

 ( )  exp (
  

 
)                   (19)    

W is the e-folding time for the unburned fuel, i.e. the time required for it to be reduced 

to 36.9% of its original mass.  (The approximate e-folding burn times for the standard 
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fuel types described in Anderson, 1982, are shown in the far right column of Table 1.)  

Thus, the evolution of the fuel bed is empirically-based, but the heat outputs used in the 

coupling process are theoretical derivations based on the experimental results.   

This burn model applies only to an idealized, infinitesimal particle of fuel.  

However, CAWFE and WRF-SFIRE use fire grid resolutions on the order of 10 m.  In 

order to evaluate the fractional fuel change averaged over a grid cell, the fractional 

ignited area of the cell must first be estimated based on the position of the fire polygon.  

In WRF-SFIRE, this is done by dividing the cell C into four sub-cells and interpolating 

the value of the level-set function to the corners xk of each sub-cell.  (See Fig. 10.)  The 

fractional area β in each sub-cell is then estimated as 
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The unburned fuel fraction is then evaluated by computing the double integral 
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where ti(x) is the ignition time at location x within the cell.  Setting ti = t for every point 

outside the fire polygon (i.e. every x for which ψ(x) > 0) and assuming a roughly linear 

expansion of the polygon, WRF-SFIRE approximates this integral as  

 ( )   (1  exp( 
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According to Mandel et al., this approximation asymptotically approaches the true 

value of the integral for slow spread rates as the fractional area approximation β 

approaches the exact value.   

 

Figure 10: Division of fire mesh into subcells for fuel fraction calculation from 

interpolated level-set function values.  (from Mandel et al., 2011, p. 597) 
 

 

It should be noted that this method neglects the pre-heating and drying of the fuel 

ahead of the fire front, instead putting all of the energy from combustion into the 

atmosphere; essentially, the fuel moisture content is eliminated in proportion to (and at 

the same time as) the burning dry fuel.  Furthermore, this method makes no explicit 

treatment of the fuel temperature or, consequently, the surface radiant flux.  Instead, the 

atmospheric temperature is increased purely through the surface sensible heat flux 

represented by (16), and the presence of the radiant flux is treated tangentially by 

introducing a flux profile in which the sensible heat flux from the fire decays 

exponentially from its surface value with height.  (It should also be noted that there is 

no defined method for obtaining the extinction depth of this profile, although the flame 
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length estimation method from Byram, 1959, has been suggested as a possibility; see 

Mandel et al., 2011.)  

Finally, every one of these coupled models involves a vector-based fire spread 

methodology.  A search of the literature fails to find a published instance of a raster-

based fire spread model being coupled to an atmospheric model.  This is not surprising; 

in simple qualitative terms, a raster-based fire model seems unappealing for coupling 

purposes due to its discretization of fire spread.  Instead of a smoothly-varying 

perimeter such as one would find in a vector-based model, current raster-based 

methodologies are forced to ignite an entire cell all at once and inherently limit the 

number of directions the fire can spread.   

Therefore, the utility of coupling such a fire spread model to an atmospheric 

model is uncertain.  On the one hand, the error growth inherent in numerical weather 

prediction suggests that the error sources described above may have far-reaching 

impacts on the reliability of such a coupled model.  On the other hand, such impacts 

have not previously been quantified, and the adaptability and efficiency of the raster-

based approach provide motivation to investigate what those impacts may be and 

whether they can be mitigated or eliminated.  That is the purpose of this study.      
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CHAPTER 3 

EXPERIMENTAL DESIGN AND METHODS 

A. The Advanced Regional Prediction System (ARPS) 

ARPS is a nonhydrostatic three-dimensional numerical weather prediction model 

developed by the Center for Analysis and Prediction of Storms.  The initial purpose was 

to model storm-scale phenomena, particularly those associated with intense convection. 

However, it has been expanded to handle atmospheric phenomena at a wide range of 

scales.  Much of this expanded capability is outside the scope of the current topic; for a 

comprehensive overview, see Xue et al. (2000), Xue et. al. (2001) and Appendix A. 

The initial emphasis on small-scale convection rooted in the boundary layer 

makes ARPS a prime candidate for coupling to a wildfire spread model.  The fully-

compressible momentum equations are solved for the perturbation mass and 

momentum variables (defined about a hydrostatic base state) using leapfrog-in-time-

centered-in-space discretization, which maintains higher-order accuracy while avoiding 

an overly-stringent stability constraint on time step size.  Acoustic waves are addressed 

using the mode-splitting method of Klemp and Wilhelmson (1978), which enables a 

numerically-stable treatment of fast wave modes without requiring expensive 

computation of slower processes (e.g. advection, diffusion) over small time steps.  

Furthermore, the vertical propagation of acoustic waves is addressed implicitly, which 

enables the model to run at very high vertical resolution (on the order of meters if 

desired) without being restricted to an impractically-small time step size to maintain 

compliance with the CFL criterion.  Thus, the model is able to run faster than real-time 
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at high resolution without sacrificing accuracy (e.g. in the form of an anelastic 

approximation). 

As noted in the previous chapter, the atmosphere-fire feedback process can extend 

several kilometers above the surface; thus, there is a lower limit on the average vertical 

resolution that may be employed in the atmospheric model while still obtaining timely 

results.  However, as stated in Clark et al. (1996a), lack of vertical resolution near the 

surface artificially hinders heat transport due to smoothing of gradients and consequent 

under-estimation of flux divergence and advection.  This in turn produces inflated 

temperatures immediately over the fire front, eventually resulting in destabilization and 

a “blowup” fire.  Furthermore, the turbulence closure parameterizations available for 

this study (see Appendices A and C) are highly resolution-dependent in their 

determination of turbulence length scales and mixing coefficients.   

Fortunately, ARPS offers a hyperbolic tangent function to stretch the grid 

vertically over a user-specified interval, which enables a high-resolution treatment of 

the near-surface feedbacks while affording a domain with sufficient vertical extent to 

capture the crucial processes higher up in the boundary layer.  Furthermore, ARPS is 

suited for operation in complex terrain because it employs Jacobian transformations to 

produce a curvilinear grid that conforms to the local topography at lower levels.  (See 

Fig. 11.)  The geological survey data used to define the terrain for the ARPS grid are 

available at resolutions ranging from ~20 km down to 100m or less, which allows 

flexibility in specifying the horizontal resolution as well. 
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Figure 11: Illustration of an example terrain-following curvilinear grid with 

hyperbolic vertical stretching employed in ARPS. (from Xue et al., 2000, p.165)    

 

To focus on microscale disturbances produced by wildfires, ARPS was generally 

run within the large-eddy simulation (LES) regime for this research; the horizontal 

resolution varied as described in section D of this chapter, but was typically on the 

order of 100 m, with a time step of 0.02 seconds specified to maintain numerical 

stability.  The vertical resolution stretched from 4 m at the surface to an average grid 

spacing of 50-100 m aloft.  4
th

-order flux-corrected transport (Zalesak, 1979) was used 

for advection of scalar quantities. Subgrid-scale turbulence was generally 

parameterized using the 1.5-order turbulence kinetic energy (TKE) closure scheme 

described by Moeng (1984) and Wyngaard and Brost (1984; hereafter the “Moeng and 

Wyngaard TKE scheme”).  To reduce the amount of small-scale noise arising from 

sharp temperature gradients at the edges of the burn areas, 4
th

-order monotonic 

computational mixing was specified with mixing coefficients generally increased by 

two orders of magnitude from the default ARPS values (i.e. variables cfcm4h and 



 

34 
 

cfcm4v were set to 0.05 in the ARPS NAMELIST files).  Any deviations from these 

settings are noted in section D. 

Wildfires substantially increase the amount of water vapor in the atmosphere, 

both by evaporating fuel moisture and by producing additional water in the 

hydrocarbon combustion reaction shown in (1).  While condensation was not expected 

for any of the cases presented here due to exceptionally dry conditions throughout the 

troposphere, correct specification of model microphysics was still crucial; in early tests 

employing only a saturation adjustment or the warm-rain microphysics scheme 

formulized by Kessler (1969), spurious development of cloud water immediately above 

the fire location resulted in runaway latent heating and model failure within the first 

few time steps.  (It is speculated that the error resulted from the model temperature 

exceeding the range of the lookup table used to calculate the latent heat of evaporation 

for simple saturation adjustment in ARPS, although a detailed examination was deemed 

outside the scope of this work.)  Use of the 5-species (two liquid, three ice) 

microphysics scheme developed by Lin et al. (1983) averted this problem, possibly due 

to the iterative relaxation technique used to maintain energy balance. 

As a stand-alone model, ARPS has been extensively verified against both 

theoretical solutions and observational data, and it is currently used to model 

atmospheric phenomena ranging from isolated convection (e.g. Xue et al., 2001) to 

stratospheric gravity waves over Greenland (Limpasuvan et al., 2006).  However, in 

order to be coupled to a fire model, ARPS required additional modifications.  Those 

modifications are described in section C of this chapter.  
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B. The Discrete-Event Specification Fire Spread Model (DEVS-FIRE) 

 

DEVS-FIRE is being developed as a joint effort between the Texas A&M 

Department of Industrial and Systems Engineering and the Georgia State University 

Department of Computer Science.  (Ntaimo et al., 2008)  It is intended to provide a 

platform integrating wildfire spread prediction and containment resource optimization, 

with the eventual goal of serving as an operational decision-making tool for firefighting 

and emergency response personnel.  The current system envisions an interface passing 

information on the predicted fire spread to a stochastic resource optimization model, 

which then simulates the impact of containment procedures on the fuel bed (e.g. 

establishment of firebreaks) and passes them back to the fire spread model. (See Fig. 

12.)  However, the optimization model is still under development and played no role in 

this research.  

 

Figure 12: DEVS-FIRE system architecture.  (from Ntaimo et al., 2008, p. 140) 
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Most dynamic modeling applications (including ARPS) are based on time 

discretization, i.e. updating the model state based on discrete time steps.  The discrete 

event specification (DEVS) used in DEVS-FIRE reverses this perspective, updating the 

model time based on changes in the model state, as described by Ziegler (1976).  In 

addition to potentially avoiding truncation error associated with time discretization, this 

method is ideally suited for raster-based fire spread modeling because each individual 

cell in the raster can be designated as an “agent” with a very limited number of possible 

states.  When combined with a dynamic structure cell space model in which only 

“active” (i.e. burning or smoldering) cells are included while “passive” (unburned, 

burned-out, or non-flammable) cells are removed, the DEVS formalization is an 

extremely efficient option. 

DEVS-FIRE starts from a user-specified set of ignition cells and predicts fire 

spread based on the Rothermel formulas and Huygen’s principle.  Specifically, the 

agent corresponding to each active cell computes its own maximum spread rate and 

direction based on the wind speed, wind direction, slope, terrain aspect, and fuel bed 

characteristics using the Rothermel equations described in Chapter 2.  An ellipse is 

fitted to this spread rate and direction based on the empirical relations given in 

Anderson (1983); the ellipse is subsequently decomposed to find the spread rate in the 

directions of each of the cell’s eight neighbors as shown in Fig. 13.  Based on imported 

changes in wind speed and direction, the agent updates these spread rates and the 

expected time of the next change in state, i.e. the ignition of a neighbor cell.  When that 

time is reached, the agent sends a message igniting the neighbor cell (unless its 

moisture content is above the extinction value given in Table 1) and the process repeats.     
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Figure 13: Example calculation of neighbor spread rates for DEVS-FIRE cells 

burning on flat terrain in north-northwesterly wind.  (courtesy of Haidong Xue) 

 

The question of fire model validation is complicated by uncertainties regarding 

the actual composition and moisture content of the fuel bed as well as a general dearth 

of detailed observations of the evolving wildland fire spread rate and burn area 

dimensions over time.  Therefore, the initial validation of the uncoupled DEVS-FIRE 

model (Gu et al., 2008) relied on comparison of idealized test results with those 

produced by previously-validated models like FARSITE.  The initial test consisted of 

both models predicting fire spread from a single ignition point in uniform weather and 

fuel conditions for 10 hours.  As shown in Fig. 14, while the extent of the spread in the 

eight “neighbor” directions in DEVS-FIRE matches the dimensions of the FARSITE 

ellipse, the distorting effect of the raster grid is evident after 10 hours in the unnaturally 

angular perimeter as well as underprediction of the total burn area. 
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Figure 14: 10 –hour burn areas for FARSITE (left, outermost white contours) and 

DEVS-FIRE (right, black regions) for uniform fuel bed, northerly 5 m/s wind, and 

terrain aspect of 0⁰ (top) and 120⁰ (bottom). (from Gu et al., 2008, p. 358.) 

 

However, DEVS-FIRE performed better in non-uniform conditions.  A 

subsequent test split the fire grid into three uniform regions: a northern region of tall 

grass with a 15⁰ slope facing north; a central region of dormant brush and hardwood 

slash on level terrain; and a southern region of timber with a 15⁰ slope facing south.  In 

other words, the domain was centered on a ridgeline oriented east-to-west, with 

progressively slower-burning fuel to the south.  As shown in Fig. 15, the resulting 

DEVS-FIRE and FARSITE burn areas were quite comparable, a fact confirmed by the 
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burn area and perimeter data listed in Table 2.  When heterogeneous fuel and terrain 

derived from actual GIS data were used in conjunction with time-varying winds as 

shown in Fig. 16, the DEVS-FIRE and FARSITE burn areas also matched closely.  

This suggests that the complexity of fuel and terrain and the rapidly-evolving 

atmospheric conditions that exist for real-life wildfires may help mitigate the theoretical 

deficiencies of a raster-based model, lending support to the idea of using such a model 

in coupled fire spread forecasting.    

 

 

 

Figure 15: As in Fig. 14, but fuel and slope vary by color in uniform 5 m/s 

northerly (top) and northeasterly (bottom) winds.  (from Gu et al. 2008, p. 359) 
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Table 2: Comparison of DEVS-FIRE and FARSITE idealized, non-uniform test 

results (from Gu et al., 2008, Table 4) 

Wind Dir  T + 5 hrs T + 6 hrs T + 7 hrs T + 8 hrs T + 9 hrs 

0 

Perimeter 
(km) 

FARSITE 4.4 5.8 7.5 9.3 11.2 

DEVS-FIRE 5.4 6.8 8.2 9.6 11.1 

Area (ha) 
FARSITE 147.9 238.1 373.7 555.6 788.7 

DEVS-FIRE 174.8 278.2 408.9 561.3 739.5 

45 

Perimeter 
(km) 

FARSITE 4.9 6.8 9.1 11.5 14.0 

DEVS-FIRE 5.6 7.9 10.1 12.2 14.2 

Area (ha) 
FARSITE 164.9 296.3 507.8 804.9 1174.2 

DEVS-FIRE 229.1 387.5 599.4 864.1 1159.7 

 
 
 

 
 

Figure 16: Comparison of 10-hour burn areas for FARSITE (left, outermost white 

contour) and DEVS-FIRE (right, black area) using actual GIS terrain (shading) 

and fuel (color fields) data.  (from Gu et al., 2008, p. 360)  

 

C. Coupling ARPS to DEVS-FIRE 

i. Geolocation and grid mapping 

The coupled models previously described combine the fire model and the 

atmospheric model together as two facets of an integrated program, with the fire model 

and its corresponding grid treated embedded within the weather model and its 

corresponding grid.  In this framework, coupling is achieved purely through internal 
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data exchange.  However, this was not possible in this research because ARPS is 

programmed in Fortran and must be parallelized whereas DEVS-FIRE is programmed 

solely in Java and is not yet equipped to operate in MPI mode.   

 Therefore, a method of grid mapping and external data exchange was developed 

to couple ARPS to DEVS-FIRE.  First, the wildfire could not be allowed to spread to 

the lateral boundaries of the ARPS grid, since the resulting clash between the local 

conditions produced by the fire and the lateral boundary conditions imposed on ARPS 

would produce rapidly-accumulating numerical instability and model failure.  

Therefore, the first step was to ascertain the geographic extent of the fire grid and select 

an ARPS domain that would fully contain it.  (Failure to completely contain the fire 

grid within the weather grid triggered an error message and immediate abort.)  

Furthermore, for the experiments described here, the ARPS domain surrounded the fire 

grid with a “buffer zone” at least 0.5 km wide in an effort to allow any upstream-

propagating fire-induced disturbances to smooth out at least partially before 

encountering the ARPS lateral boundaries behind the fire front.   

 Properly mapping one grid onto the other required the geographic coordinates of a 

common “anchor” point.  In the idealized experiments described here, this was 

accomplished simply by collocating the center points of both grids.  For the 

experiments using real data, the latitude and longitude of the southeastern-most cell in 

the DEVS-FIRE grid were mapped to the ARPS grid; the rest of the DEVS-FIRE grid 

was mapped within the ARPS domain using the pre-defined horizontal resolutions of 

both models and the assumption that the axes of both domains were oriented along lines 

of constant latitude and longitude.  Since the wildfire and associated local feedbacks 
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were assumed to occur over a fairly small geographic area (~10 km
2 

for large fires), 

possible distortions due to differences in map projection between the ARPS grid and 

DEVS-FIRE grid were ignored. 

ii. Data transfer procedure 

Because the state in ARPS is too complex to advance using discrete event 

specification, the coupled model was structured to advance over a series of discrete 

time updates.  Each of these updates entailed the transfer of heat release data from 

DEVS-FIRE to ARPS as well as the transfer of low-level weather conditions from 

ARPS to DEVS-FIRE.  However, selection of the time interval between updates was 

subject to practical considerations: while internally-coupled models like WRF-SFIRE 

are able to update at every weather model time step (on the order of a tenth of a second 

or less when operating at high spatial resolutions) without significant extraneous cost, 

the current version of ARPS/DEVS-FIRE is forced to couple externally.  Therefore, 

each update requires external files to be written and read by both models, a process that 

greatly reduces the speed of the coupled model as the update interval is reduced.  

Accordingly, the significance of the truncation error introduced by an increased update 

interval became a topic of study, and the update interval was designed as an arbitrary 

value specified by the user prior to initialization. 

One dilemma of coupling the separate systems together stems from the fact that a 

truly coupled process happens in both systems simultaneously, whereas time-

discretized explicit numerical coupling requires one model to precede the other.  In 

essence, for an update interval Δt, the state of Model A at time t is used to advance 
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Model B from time t to time t+ Δt, and then the updated state of Model B is used to 

advance Model A from t to t+ Δt.  The question therefore concerns which model would 

respond less severely to the expected difference between the states of the other model at 

t and t+ Δt; in other words, the model that is expected to be less affected by a feedback 

time lag of Δt should be designated as Model A.  Since the DEVS-FIRE state was 

expected to be more robust to changes in the ARPS state than vice versa, and since the 

update interval must be an integer multiple of the time step used in ARPS, advancing 

the coupled model in time was accomplished as shown in Fig. 17.   

 

Figure 17: Time integration algorithm for ARPS/DEVS-FIRE coupled model 

 

With its parallelization capability, ARPS was tasked with mapping the pertinent 

data from each model to the grid used by the other.  Since simulating fire spread is less 

expensive, and since the accuracy of the raster-based approach is particularly dependent 

on grid resolution (see Cui and Perera, 2008), the ARPS grid was generally coarser than 
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the DEVS-FIRE grid, with multiple DEVS-FIRE cells contained within a single ARPS 

cell.  Therefore, in order to ensure conservation of energy, heat from DEVS-FIRE was 

transferred to the ARPS grid through simple spatial averaging; the “representative” heat 

flux value for an ARPS grid cell of resolution Δx was the mean of the heat flux 

produced by all DEVS-FIRE cells with centers located within a zonal and/or meridional 

distance Δx/2 from the center of the ARPS cell.  Meanwhile, bilinear interpolation was 

used to map the temperature, relative humidity, and 6m AGL u and v wind components 

(which were then combined to calculate interpolated wind speed and direction) from 

the respective locations on the ARPS Arakawa-C grid to the centers of the cells in 

DEVS-FIRE grid.  (See Fig. 18.)   

It should be noted that the current version of DEVS-FIRE does not have a method 

of evolving fuel moisture or heat content in unburned cells over time; therefore, the 

only updated weather data that were factored into the DEVS-FIRE calculations for 

these experiments were the 6 m AGL wind speed and direction in and immediately 

around the burn area.  It should further be noted that the 6m wind altitude was 

designated because of existing, widely-used empirical relationships estimating the 

“effective” fire model wind speed from the 6 m AGL wind speed using a fuel-type-

dependent wind adjustment factor (Andrews, 2012).  In order to avoid errors from 

vertical interpolation of the horizontal wind components (since a log wind profile 

predicted by similarity theory was not expected to apply near the fire front), the ARPS 

grid dimensions were specifically chosen to ensure that the desired altitude 

corresponded exactly to the center of a grid cell for each vertical column in the domain.   
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Figure 18: Model grid map for a 4x4 DEVS-FIRE grid of resolution dx/2 centered 

within a 3x3 ARPS domain of resolution dx.  U, V, and S denote the computational 

locations for u wind components, v wind components, and scalar quantities (e.g. 

temperature and dewpoint) respectively for the Arakawa-C grid used by ARPS.  

Subscripts denote the x and y indices of the ARPS cells, while each DEVS-FIRE 

cell is represented as a pink box with a dot at its center. 

 

iii. Calculating heat output from DEVS-FIRE 

The heat released by fuel combustion as a function of time is not explicitly treated 

in the uncoupled version of DEVS-FIRE.  It is not needed there because, from the 

Rothermel formula given in (10), the only aspect of the combustion that affects the 

uncoupled spread of the fire is the reaction intensity at the fire front, which is an 

instantaneous value determined by the terrain, local wind, and characteristics of the fuel 

bed.  Therefore, it was necessary to select a method for estimating the temporal 
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evolution of the heat output for each ignited cell in order to provide sufficient input to 

represent the burn area appropriately in ARPS.   

As stated in Chapter 2, experimentally-derived functions are used to estimate 

different aspects of the heat release in other coupled models.  For example, as shown by 

(19), the change in unburned fuel fraction is modeled in WRF-SFIRE as a simple 

exponential decay adapted from the BURNUP model (Albini and Reinhardt, 1995), 

with the e-folding time determined entirely by the fuel type.  Recognizing that the 

combustion rate should be substantially increased by stronger winds (due to an 

enhanced supply of fresh oxygen in the combustion zone), the initial intent for 

ARPS/DEVS-FIRE was to use the full version of the BURNUP model to calculate the 

fuel loss and associated energy fluxes.  From Albini and Reinhardt (1995), the time 

scale for the mass loss used in (16) may be given by 
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TF is the “fire environment temperature” (a function of burn intensity), TC is the peak 

pyrolysis temperature of the fuel, ρ0 is the ovendry density of the fuel, D(0) is the initial 

diameter of the fuel elements, M is the fuel moisture content, and TF’, TC
’
, ρ0

’
, a’, and b’ 

are scale values determined from experiments.  From Eqns. 2 through 5 in Albini and 

Reinhardt , the effective heat transfer coefficient heff is given by  
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ka and ν are the thermal conductivity and kinematic viscosity of hot air (respectively), 

Ts is the surface air temperature, and V is the wind speed over the fuel elements.  Thus, 

a faster wind speed would produce a higher value for heff, meaning a lower value for the 

fuel loss time scale, faster combustion, and more intense heat release. 

Unfortunately, this method could not be implemented due to difficulties in 

obtaining a good rule for approximating TF and ν (which has a strong temperature 

dependence).  Furthermore, the values for a’ and b’ are only available for a few 

selected (primarily woody) fuel types.  Therefore, it became necessary to ignore the 

impact of wind on local combustion rate and instead use the same exponential fuel 

decay model employed in WRF-SFIRE, described by (19).  Since the initial (“fully-

discrete”) version of DEVS-FIRE ignites an entire grid cell at once, the local unburned 

fuel fraction f(t) and the integrated fuel fraction for the cell F(t) are equal.  Thus, for a 

cell ignition time ti,  

 ( )   {
         1               

exp (
    

 
)      

    (25) 

The time-averaged sensible and latent heat fluxes valid at time t are found by solving 

for F at t and t – Δt and using the results in (16) and (17).   

 Here, the impact of full discretization on the coupled model becomes even more 

uncertain. At the limit of infinitesimal grid resolution, the fully-discrete ignition of 

entire grid cells would converge to the “true” solution (assuming the exponential decay 

function is an accurate representation of the fuel combustion).  However, at 

computationally-feasible resolutions (~10 m), there is a delay between the immediate 
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ignition of a “parent” cell and the immediate ignition of its neighbors.  Thus, there is a 

discontinuous increase in heating when the parent cell ignites, a lull period in which the 

heat release in the parent cell decreases rapidly, and then another discontinuous 

increase when a neighbor cell ignites.  This produces a series of “spikes” in the 

spatially-averaged heat flux received by ARPS, which increase in size and decrease in 

duration for faster-burning fuels.   

For a given pairing of ARPS and DEVS-FIRE grids, there are two obvious 

options for combating the heat flux discontinuity.  The first is simply to increase the 

amount of temporal smoothing by lengthening the update interval Δt.  However, this 

risks additional truncation error, particularly when the coupling between the fire and the 

atmosphere is strong and feedbacks operating on time scales smaller than Δt contribute 

significantly to the overall fire spread.   

The second option is to incorporate an aspect of the polygon-based method into 

the raster treatment of the fire by estimating the progress of the fire front within the cell 

and applying an integral similar to the one in (21) for the unburned fuel fraction F(t).  

Since this approach treats the fire spread as a continuous process within the cell while 

maintaining a discrete approach for spreading the fire from one cell to another, it is 

hereafter referred to as the “quasi-discrete” heat release model. For DEVS-FIRE, this 

approach requires the “parent” cell to relay its relative position (and, hence, the 

effective direction θ of fire spread) to a neighbor cell at the time the latter ignites.  The 

effective spread rate R is in the direction θ is then calculated by the neighbor cell using 

the elliptical decomposition shown in Fig. 13.  If this rate is assumed constant over time 
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within the cell, the ignition time ti(x) at a location x = xi + yj  within the cell (with the 

origin xo taken to be the side or corner bordering the “parent” cell) is 

  ( )    (  ) +
     

 
+

     

 
                 (26) 

where ti(xo) is the time the neighbor cell ignites in the fire spread model.  Substituting 

(26) for ti in (21) and applying over the entire grid cell (i.e. Area(C) = (Δx)
2
) gives    
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B is the burning portion of the cell, i.e. the set of all points x for which ti(x) > 0.  

In DEVS-FIRE, the spread direction is limited to either θ = 0 (“straight”) or θ = π/4 

(“diagonal”). The integral transitions from a “growing” phase (with the limits 

expanding as the fire front moves through the cell) to a “static” phase after the fire front 

leaves the cell.  For “straight” spread, the transition occurs at elapsed time      / .  

For “diagonal” spread, it occurs at      √2/ .  Moreover, for “diagonal” spread, the 

geometry of the cell is a factor, since the shape of the burn area transitions from 

triangular to pentagonal at time      / √2.  The advantage of the exponential decay 

function in this instance is that it is easily separable (in terms of the independent 

variables) and the solution is straightforward once the dimensions of B are obtained as 

functions of time.  Defining the time since ignition as te = t - ti(xo), the final solution set 

for “straight” fire spread is as follows: 
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For “diagonal” spread, the solution involves four cases instead of three: 
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For an initial cell (i.e. a cell representing the fire front at model initialization), the 

treatment is augmented slightly.  Theoretically, the fire should start at the center of this 

cell and spread outward in all directions.  However, since the above derivation treats 

the spread of the fire front as edge-to-edge, this would incur an artificial delay of Δx/2R 

(“straight” spread) or Δx/R√2 (“diagonal” spread) in the heat release of a neighbor cell, 

relative to its theoretical beginning time.  Furthermore, determining the shape of the 

initial fire front within the cell (i.e. a point at the center, a straight line through the cell, 

or a line segment terminating at the midpoint of the cell) is not easy in a cellular 

automaton approach.  As a simplified initial treatment, the heat release from initial cells 

is obtained by defining R1 as the maximum of the eight spread rates obtained from the 

elliptical decomposition, defining R2 as the spread rate in the opposite direction from 



 

51 
 

R1, and then evaluating (28) or (29) for both spread rates and taking the mean as the 

representative value of F(t).  (For the full derivation of (28) and (29), see Appendix 2.)   

A quasi-discrete version of DEVS-FIRE was developed to calculate the sensible 

and latent heat fluxes at time t by solving the above equation set for F at times t and t - 

Δt and using the results in (16) and (17).   The fully-discrete and quasi-discrete versions 

were then tested for simple cases of constant “straight” and “diagonal” fire spread 

through a 5x5 DEVS-FIRE grid of resolution 10 m containing tall grass (fuel type 3 in 

Table 1), with the heat fluxes averaged on to a single 50-m ARPS grid cell.  As shown 

in Fig. 19, the quasi-discrete method improves upon the fully-discrete method in at least 

two ways.  First, the heat release from an individual cell is continuous and piecewise-

smooth over all times, and therefore the spatial average avoids the “sawtooth” character 

of the spatial average produced by the fully-discrete solution.  Second, it depicts the 

relationship between spread rate and heat release rate more reasonably, increasing the 

combustion rate of individual cells experiencing more rapid spread whereas the fully-

discrete formulation employs only a static curve that is not at all influenced by the 

behavior of the fire front; any increase in heat flux due to cells igniting more frequently 

deteriorates rapidly between ignition times (while the spread rate is unchanged) and, 

obviously, disappears in the case where spatial averaging is not applied (e.g. if ARPS 

and DEVS-FIRE are run at identical resolution).   



 

52 
 

 

Figure 19: Spatially-averaged sensible heat flux averaged over one-second 

intervals for fully-discrete (red) and quasi-discrete (blue) DEVS-FIRE simulations 

of a straight fire front spreading at 0.11 m s
-1

 (left) and 0.77 m s
-1

 (right) at spread 

directions of 0⁰ (top) and 45⁰ (bottom).  Black dotted lines denote analytic 

solutions. 

 

It should also be noted from Fig. 19 that, while the quasi-discrete version of 

DEVS-FIRE matches the analytic solution for “straight” spread almost perfectly (with a 

very small difference due to rounding error), it is less ideal for “diagonal” spread.  

There is an evident periodic fluctuation about the analytic solution, the amplitude of 

which is greater at the faster spread rate.  This is another manifestation of distortion due 

to the geometry of the DEVS-FIRE grid; essentially, since the cells are rectangular, it is 

impossible to represent a diagonal fire front perfectly on the grid.  Since the spread of 

the fire front is represented as a series of discrete ignitions rather than a continuous 
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front propagating through the grid, this inaccurate representation of the initial line 

means that subsequent ignitions are mistimed.  (See Fig. 20.)  On the other hand, this 

error is still substantially less than that produced by the fully-discrete method 

(particularly at slower spread rates), and it may not be possible to develop a method for 

eliminating it that does not undermine the fundamental concept of the raster-based 

model.  Therefore, it was regarded as a “necessary evil” when the quasi-discrete version 

of DEVS-FIRE was used in this research. 

 

Figure 20: Comparison between analytic ignition times ta and DEVS-FIRE model 

ignition times tm for different initial representations of a diagonal fire front 

propagating to the northeast at a rate of 0.77 m s
-1

.  The red line marks the initial 

analytic position of the fire front, the shaded cells are the initial representation of 

the fire front in DEVS-FIRE, and the arrows show the ignition path between 

initial cells and their neighbors.  (The representation on the right was used for the 

heat flux calculations plotted in Fig. 19.)    

 

As in WRF-SFIRE, the preceeding methods do not attempt to either distinguish 

between sensible heat flux and radiant flux or explicitly account for heat flux into the 

ground.  The main reason for this is that both the radiant flux and the ground flux 

ta = 9.2 s

ta = 9.2 s

ta = 9.2 s

ta = 18.4 s

ta = 18.4 s

tm= 18.4 s

tm= 18.4 s

tm= 24.4 s

tm= 24.4 s

tm= 24.4 s

tm= 18.4 s tm= 18.4 s

tm= 18.4 s

tm= 18.4 s

tm= 18.4 s

ta = 27.6 s

tm= 33.6 s tm= 36.8 s

ta = 13.8 s

ta = 13.8 s

ta = 13.8 s

ta = 23.0 s

ta = 23.0 s ta = 32.2 s



 

54 
 

depend on the temperature of the burning fuel, which is difficult to estimate reliably 

due to the complexity of the combustion process and the simplifications already 

espoused by the model.  However, a scaling analysis of measurements from 

experimental crib fires given in Emori and Saito (1983) provides a basis for obtaining 

at least a crude approximation of a combustion temperature consistent with the 

behavior of the model.  Specifically, the measurements in Emori and Saito indicated a 

rough proportionality between combustion rate and surface radiative flux, which is in 

turn proportional to the fourth power of the reaction temperature.  Furthermore, the 

mass loss rate at ignition (i.e. focusing solely on pyrolysis) is related to the reaction 

temperature by an Arrhenius equation like the one provided in Chan and Krieger (1982) 

for cellulosic fuels: 

(
  

  
)
 
  (  ) exp (

  

  
)               (30) 

A zero subscript denotes a value at ignition, M is the ovendry fuel mass, R = 

8.314 J mol
-1

 K
-1

 is the Universal Gas Constant, T is the reaction temperature, and A 

and E are experimentally-derived coefficients for wood pyrolysis.  (This derivation uses 

the values given by Chan and Krieger, A = 1.3 ⨯ 10
8 

s
-1

 and E = 1.44 ⨯ 10
5 

J mol
-1

.)  

Since locally f ≡ M/M0 and f0 = 1, the fuel fraction loss at ignition is simply obtained by 

dividing through by M0: 

(
  

  
)
 
   exp (

  

  
)          (31) 

This can be equated to the local fraction loss rate at ignition in the fire model.  

Differentiating (19) with respect to time and setting t = 0 gives 
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(
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                (32) 

Simply setting (31) and (32) equal to each other and solving for T is not accurate; the 

local combustion model treats ignition as a discontinuous leap from no combustion to 

maximum combustion at t = 0, and the temperature clearly should not be regarded as a 

constant during the leap.  To find the temperature at the end of the leap (at which point 

the exponential decay curve takes effect), a “zero-order jump” approach (similar to the 

method for calculating boundary layer entrainment developed by Fedorovich, 1995) 

was employed in which the temperature shifts linearly from the ambient fuel 

temperature Ti to the ignition temperature Tf over an infinitesimally-small interval δt: 

 ( )    + (     )
 

  
                                      (33) 

The procedure now integrates (31) and (32) over the interval δt, obtains the limit 

as δt ⟶ 0, and solves for Tf.  Integration of (31) from t = 0 to t = δt for the fire model is 

trivial: 

  

  
  

  

 
            (34) 

Substituting (33) into (31), applying the substitution u = (Tf – Ti) t/δt, and 

integrating for the fuel loss rate from the Arrhenius equation gives 

Δ 

Δ 
  (

  

     
) ∫  exp [

  

 (  +  )
]   

     

 

                                  ( 5) 

Finally, setting (34) and (35) equal to each other and rearranging terms gives  
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       ∫  exp [
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                                       ( 6) 

Unfortunately, a general analytical solution to this form of integral does not exist.  

At this point, Ti = 300 K was selected as a generalization for the expected ambient fuel 

temperature and brute-force iterative methods were used to obtain ignition temperatures 

for all of the standard fuel types listed in Table 1.  The results are shown in Table 3.  

Table 3: Estimated DEVS-FIRE temperature at ignition for standard fuel types 

Fuel Type Number Description 
Estimated Temperature  

at Ignition (K) 

1 Short grass 928 

2 Timber (grass and understory) 928 

3 Tall grass 928 

4 Chaparral 790 

5 Brush (2 ft) 812 

6 Dormant brush, hardwood slash 812 

7 Southern rough 812 

8 Closed timber litter 735 

9 Hardwood litter 735 

10 Timber (litter and understory) 735 

11 Light logging slash 735 

12 Medium logging slash 735 

13 Heavy logging slash 735 

 

Finally, based on the rough proportionality observed by Emori and Saito, the ratio 

between the net radiative flux (approximating the fuel as a blackbody) and the 

integrated fuel fraction decrease within the cell at any time t after ignition was set equal 
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to the ratio between the initial net radiative flux and the initial fuel loss rate from the 

fire model: 

      
 ( ( )    
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       (37) 

Substituting (32) and solving for T(t) gives 
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                        (38) 

A third version of DEVS-FIRE was developed to calculate and report this 

estimated fuel temperature to ARPS for each active cell.  ARPS was then modified to 

read the fuel temperatures, calculate the spatially-averaged radiative flux for each 

ARPS cell, obtain the “representative” surface temperature from this flux (again using a 

blackbody approximation), and then use this value as the surface temperature for 

calculating the ground flux.  To ensure conservation of energy, the resulting radiative 

and ground fluxes were subtracted from the “bulk” sensible heat flux obtained from 

(16).  (The evaporation rate is inextricably tied to the combustion rate in the model; 

therefore, the latent heat flux was not modified from the value given by (17).) 

 

D. Description of Experiments 

i. Uncoupled ARPS tests 

Before the models were coupled, ARPS was subjected to various tests in order to 

gauge its ability to handle extreme surface fluxes in a realistic manner.  To assess the 



 

58 
 

basic question of numerical stability, a 300-meter-wide region of 1 MW m
-2

 surface 

sensible heat flux was centered in a two-dimensional ARPS domain with a calm, 

neutrally-stratified base state.  (Occasionally, instantaneous sensible heat fluxes over 2 

MW m
-2

 are observed in wildfires.  However, values averaged over intervals of one 

second or more are generally lower, as stated by both Clements et al., 2007, and Kiefer 

et al., 2008.)  To evaluate the LES treatment of turbulence, ARPS was then run twice 

for ten minutes, once using the Moeng and Wyngaard TKE scheme and once using the 

non-local treatment developed Sun and Chang (1986).  The results were examined for 

indications of unstable growth, and the potential temperature and wind fields were 

qualitatively evaluated in light of observed behavior described by previous studies (e.g. 

Clark et al., 1995). 

Additional tests focused on the impact of vertical wind shear and fire front motion 

on atmospheric response in ARPS, similar to the experiments detailed in Kiefer et al. 

(2008).  Since this response includes circulations that cannot be replicated in a two-

dimensional simulation (see Fig. 7), a region of enhanced surface heat flux with a zonal 

line of symmetry was placed in a three-dimensional ARPS environment.  The heated 

region was designed to replicate a sinusoidal fire front, either stationary or amplifying 

from an initially-straight segment; thus, the heat flux along the front was varied from a 

minimum of 0.125 MW m
-2

 on the flanks to 1 MW m
-2

 in the center.  Furthermore, the 

heat flux was forced to decay exponentially in a smolder region behind the front, which 

also varied in depth with a maximum along the line of symmetry (i.e. the presumed 

location of fastest spread).  The governing equations for the heat flux H in the burn 

region are 
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θy is the advance phase angle of the fire front, S is the exponential decay parameter for 

the smolder region, xc and yc are the center coordinates of the fire front, A is the current 

amplitude of the fire front, Af is the user-defined final amplitude of the fire front, W is 

the user-defined width of the fire front (i.e. the diameter perpendicular to the line of 

symmetry), and B and C are user-defined dimensionless constants determining the 

depth of the smolder region with a larger B indicating a smaller smolder region and a 

larger C indicating a greater variation in smolder region depth between the center and 

the flanks of the fire front.  (To give a final e-folding depth of 100 m behind the center 

of the fire front diminishing to 20 m on the flanks, B was set to 2.5 and C was set to 

0.125 for these tests.)  For the stationary tests, the amplitude A was set equal to Af at all 

times; for the amplifying tests, it was made to increase linearly from zero at 

initialization to Af  at the end of the simulation.  The equation was only evaluated for 

regions behind the fire front (i.e. x ≤ xc + A cos θy and |y - yc| ≤ W/2); otherwise, H was 

set equal to zero. 

The initial ARPS environment was characterized by weak static stability (  /

   0.1       ) below 5 km, moderate static stability (  /   5       ) above 

that, a westerly surface wind of 5 m s
-1

 (i.e. directed along the line of symmetry), purely 

zonal vertical shear within the lower 5 km, and an absence of Coriolis deflection.  The 
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magnitude of the 0-5 km vertical shear was varied at increments of 10 m s
-1

 from 

easterly at 20 m s
-1

 to westerly at 20 m s
-1

, producing a set of ten simulations (five for 

the stationary fire front, five for the amplifying fire front).  The maximum vertical 

velocity and vertical vorticity were then plotted as functions of time for each simulation 

to compare plume strength and stability as well as the presence and persistence of fire 

vortices (as an indicator of “extreme” behavior).       

ii. Symmetric coupled tests 

Because detailed observations of actual wildfire behavior and atmospheric 

response are sparse, the coupled model was initially subjected to idealized tests where 

the expected qualitative behavior was well-established.  As discussed in Chapter 2, 

tilting and stretching of fire-generated vorticity should cause an initially straight fire 

front to assume a symmetric parabolic shape over time in the absence of other factors 

(e.g. fuel bed irregularities).  Even without a means of quantitative verification, the 

ability of the coupled model to replicate such behavior provides at least a partial basis 

for validating the model.   

To keep this validation as simple as possible, a uniform, flat fuel bed consisting of 

tall grass was specified for the DEVS-FIRE grid.  Likewise, the ARPS initial conditions 

were simplified from those used in the uncoupled tests by removing the vertical shear 

and variations in static stability (i.e. to avoid possible feedbacks from shear instability 

as described in Kiefer et al., 2008).  Instead, a neutral profile with uniform zonal winds 

up to 2.5 km AGL was specified for each test.  To account for surface friction, this 

profile was integrated forward for 30 minutes on a coarse (2-km horizontal resolution) 
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“background” grid and the results were interpolated to provide initial and boundary 

conditions for the fine-scale (90 m horizontal resolution) test grid.  The DEVS-FIRE 

grid was then centered in the ARPS grid and an initial fire front 2 km in length was 

specified as a meridional set of ignition points centered on the zonal line of symmetry 

through both grids.   

Multiple aspects of the coupling process were tested by varying the initial 

conditions and operational parameters of the models.  In light of Clark et al. (1996b), 

the wind speed in the initial ARPS sounding was varied widely from simulation to 

simulation (ranging from 3 m s
-1

 up to 20 m s
-1

) in order to test the impact of 

background wind speed on the significance of coupled feedbacks.  Furthermore, 

simulations for each background wind speed were performed with DEVS-FIRE grid 

resolutions of 10, 30, and 90 m in order to assess any deleterious effects from the 

discrete-event treatment of fire spread on coarser grids.  (ARPS was run at 90 m 

resolution for each of these tests.)  Finally, after a series of tests was run with an update 

interval of 60 seconds, another set was run with an update interval of 1 second in order 

to test the simulated impact of feedbacks operating at finer time scales.   

Each resulting burn area was compared with the analytically-expected parabolic 

shape described in the literature.  In order to gauge the relative impact of coupled 

feedbacks at different wind speeds, the results were also compared with the burn areas 

produced by uncoupled simulations in which ARPS was allowed to update DEVS-FIRE 

but not vice versa.  (In other words, the heat output from DEVS-FIRE was not mapped 

to the ARPS grid in the uncoupled tests.)  Additionally, the normalized asymmetry of 
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the heat output from each simulation was calculated to provide a partial evaluation of 

error growth due to truncation: 
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N is the total number of coupled model updates (equal to the total simulation time 

divided by the update time interval), nx and ny are the dimensions of the DEVS-FIRE 

grid, i and j are the coordinates of a given grid cell, H is the heat flux from cell (i,j) at 

update k, and P is the total number of active (burning) DEVS-FIRE cells at update k.  

While the initial, fully-discrete version of DEVS-FIRE was subjected to all the tests, 

the quasi-discrete version was also subjected to the final set as well; both sets of results 

were then compared to evaluate any benefits of the quasi-discrete treatment.  

iii. Verification using FIREFLUX data  

Historically, atmospheric conditions above wildfires are even more poorly-

sampled than the spread and intensity of the wildfires themselves.  FIREFLUX 

(Clements et al., 2007) was conducted to combat this data scarcity by providing local 

weather observations within the surface layer above a propagating controlled burn.  The 

burn was conducted in a level field of tall grass, with the ignition coordinates of the fire 

tracked using GPS.  Furthermore, a detailed survey of fuel loading and moisture content 

was conducted in advance of the burn, providing details not generally available to 

operational fire models.  The observational network included infrared cameras, marking 

stakes, a radiosonde launched on the morning of the burn, a tethersonde with 

instruments at five fixed heights (3, 10, 50, 80, and 130 m AGL) at the southern edge of 
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the field, and two instrumentation towers located within the burn area.  (See Fig. 21.)  

The towers provided high-frequency observations (1 Hz or better) of conditions both 

within and above the fuel before, during, and after the passage of the fire front; a partial 

list of the instrumentation deployed on the main tower (focused on in this study) is 

provided in Table 4. 

 

Figure 21: Map of burn site and instrumentation layout used for the FIREFLUX 

experiment.  Ignition line is represented by white dots, and fire spread proceeded 

north-to-south.  (from Clements et al. 2007, p. 1372) 

 

Table 4: Large tower instrumentation used in FIREFLUX (from Clements et al. 

2007, p. 1373) 

Type Variables 
Measurement height 

m AGL) 
Sampling 

frequency (Hz) 

3D sonic anemometers 
(R.M. Young 81000) 

u, v, w, sonic 
temperature 

2.1, 10, 28.5, 42 20 

Ceramic thermocouples 
(Omega, Inc., XC-24-K-12) 

Fuel temperature 2.1, 1.73, 1.47, 0.6, 0.13 1 

R.M. Young 5103 
anemometer 

Mean wind speed 
and direction 

2, 10, 20, 42 1 

CSI CS-500 
temperature/RH probes 

Mean 
temperature, RH 

2, 10, 20, 42 1 
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The FIREFLUX dataset is currently considered the “gold standard” for coupled 

fire model validation (Craig Clements and Jan Mandel, personal communication) and 

has already been used to evaluate WRF-SFIRE (Mandel et al., 2011) and 

MesoNH/ForeFire (Filippi et al., 2012).  The evaluation of ARPS/DEVS-FIRE 

proceeded in a similar manner to that employed for WRF-SFIRE in Mandel et al.; data 

from the morning sounding (launched at 0655 CST) were merged with the tethersonde 

and large tower observations at the time of ignition (12:43:30 CST) to provide a 

background atmospheric profile, which was then integrated forward on a coarse grid 

and interpolated to provide initial and boundary conditions for the coupled model.   

The tabulated fuel loading and moisture properties for the standard “tall grass” 

fuel type (see Table 1) were altered to reflect the average values obtained by the survey 

conducted before the burn, with the dry fuel load increased to 1.08 kg m
2 

and the 

moisture content increased from 3% to 18.5%.  This modified fuel type was then 

mapped to the DEVS-FIRE grid.  With terrain negligible and fuel heterogeneities 

generally ignored, extremely high resolution was used for both DEVS-FIRE (1 m grid 

spacing) and ARPS (10 m grid spacing).  The ignition process was progressively 

mapped to the grid using the spatiotemporal coordinates from the FIREFLUX GPS 

record and a delayed ignition routine installed in DEVS-FIRE specifically for this case.   

The ensuing fire spread was modeled five times: twice with the “bulk” heat fluxes 

specified at the surface only (once for the fully-discrete version, once for the quasi-

discrete version); twice with the heat fluxes distributed quadratically through the lowest 

10 m of the atmosphere (similar to the distribution used in WRF-SFIRE; see Mandel et 

al.); and once with radiant and ground fluxes separated from the “bulk” sensible heat 
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flux from the quasi-discrete version using the flame temperature estimate described in 

section C.  In hopes of resolving fine-scale plumes and sharp gradients in the lowest 50 

m of the atmosphere (i.e. the level observed by the main tower), computational mixing 

in ARPS was reduced by a factor of 10 from values used in the idealized experiments.  

ARPS was also modified to write out text files containing the surface temperature as 

well as the temperature, specific humidity, and three-dimensional wind components at 2 

m, 10 m, 28 m, and 42 m AGL at the location of the large tower.  The time series of 

observed and simulated conditions were then plotted using a 3-second rolling average 

to evaluate the realism of the atmospheric response depicted by ARPS. 

iv. Case studies: the Moore Branch and Rock House fires 

Along with the idealized simulations, the September 2000 Moore Branch Fire and 

the April 2011 Rock House Fire were selected as historical cases to test the 

performance of the coupled model in situations with real fuel and weather data.  These 

wildfires were selected based on the availability of pre-event fuel and terrain surveys 

from the Texas Forest Service.  The Texas Forest Service also produced GIS maps of 

the observed burn areas at regular intervals, which provided a basis for quantitative 

verification of the fire spread predicted by the coupled model. 

The Moore Branch Fire was a multi-day event that consumed approximately 65 

km
2
 southeast of Newton, TX.  (See Fig. 22.)  Simulating the entire event was not 

feasible, due to both the computational expense and the expected accumulation of 

errors due to various sources of uncertainty; for example, the weather conditions in the 

area were poorly-sampled, the burn area was only mapped once every 24 hours, and the 



 

66 
 

impacts of firefighting activities were not quantified.  Therefore, only the burn area 

from September 5th (hereafter “Day 5,” when the fire became completely 

unmanageable according to Bean 2000) was re-created in this study.  

 
 

Figure 22: Approximate delineation of daily burn areas for the Moore Branch fire.  

Map extends roughly 16 km north-south and 26 km east-west (Bean 2000, p.6) 

 

The fuel and terrain data from the Texas Forest Service survey were mapped to a 

30 m resolution DEVS-FIRE grid, and the initial fire front position was translated from 

the Day 5 GIS burn area polygon to a set of ignition points in the DEVS-FIRE grid.  In 

light of the uncertainty in the local weather conditions, two uncoupled simulations were 

performed, one using interpolated time-varying conditions from the 32 km North 

American Regional Reanalysis provided by the National Center for Environmental 

Prediction and the other using the daily maximum wind speed and direction (held 

constant) from an observing station at Kirbyville, roughly 16 miles south-southwest of 

the fire.   
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In addition, four coupled simulations were run at various ARPS resolutions (60 m, 

150 m, 300 m, and 1.2 km) to test the impact of interpolation and unresolved feedbacks 

on the 24-hour burn area, with computational mixing specified the same as for the 

FIREFLUX tests.  Along with qualitative comparison of the predicted and observed 

Day 5 burn areas, the false alarm rate (FAR), Critical Success Index (CSI), and Heidke 

Skill Score (HSS) were calculated for each burn area to provide rudimentary 

assessments of forecast skill.  Scores were calculated using a purely binary (“burned” 

or “unburned”) point-by-point assessment of hits (H), misses (M), false positives (F), 

and true negatives (N), with formulas as follows:   

    
 

 + 
 

    
 

 +  +  
                                                                  ( 1) 

    
 +    

 +  +  +    
     w e e       

( +  )( +  ) + ( +  )( +  )
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It should be noted that most of the northern portion of the DEVS-FIRE grid for 

this case would not have been forecasted to burn on Day 5 under any circumstances, 

either because it was marked as burned on previous days or simply because the general 

northerly wind throughout the day made substantial spread in that direction highly 

unlikely.  In order to mitigate contamination of the above metrics by a large number of 

correct point forecasts purely due to chance, the northern third of the grid was not 

included in the skill calculations.  

The wind speeds for the Moore Branch Fire were comparatively modest, with a 

maximum of 9.9 m s
-1

 observed at Kirbyville and generally much weaker winds 
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indicated by the reanalysis data.  (See Table 5.)  The Rock House case was selected in 

part because it occurred in a much more dynamic environment, with sustained winds 

near 15 m s
-1

 and gusts up to 25 m s
-1 

observed in the hours immediately following 

ignition.  Furthermore, a previous set of uncoupled FARSITE simulations substantially 

underpredicted the initial fire spread for this case (described in Martin, 2011; see Fig. 

23), suggesting the possibility of significant improvement using a coupled method. 

Table 5: North American Regional Reanalysis surface wind speed and direction 

interpolated to the location of the Moore Branch Fire on 5 September 2000  

Time (CDT) Wind Speed (m s
-1

) Wind Direction (degrees) 

12:00 a.m. 0.188 105 

3:00 a.m. 1.835 22 

6:00 a.m. 2.135 29 

9:00 a.m. 5.569 42 

12:00 p.m. 6.908 48 

3:00 p.m. 4.775 49 

6:00 p.m. 1.386 9 

9:00 p.m. 2.48 16 

 

Examination of the Rock House case was also motivated by the data limitations of 

the Moore Branch case.  Whereas hourly in situ weather observations were not 

available near the Moore Branch Fire, the Rock House Fire ignited only a few km 

south-southwest of the Marfa, TX ASOS station.  Furthermore, only 32 km reanalysis 

data were available for the Moore Branch boundary conditions, whereas a 12 km 

operational NAM analysis was available for the Rock House boundary conditions at 

essentially the time of ignition (near 1800 UTC).  Finally, the firefighting activities and 

vigorous initial spread of the Rock House Fire were documented more thoroughly, with 

the burn area outlined at 6-hour intervals.  Therefore, coupled and uncoupled 
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simulations of the first 12 hours of the Rock House fire were performed using the fully-

discrete version of DEVS-FIRE with fuel and terrain mapped from Texas Forest 

Service survey data to a 30 m grid as before.  (The quasi-discrete version of DEVS-

FIRE was not tested here due to limited computational resources and the evaluation of 

the fully-discrete results detailed in the next chapter.) 

 

 
 

Figure 23: Comparison between FARSITE simulated burn area (colored contours 

at hourly intervals) and actual burn area (grey shaded region) for the first six 

hours of the April 2011 Rock House Fire. Map extends roughly 40 km north-south 

and 48 km east-west. (from Martin 2011, p.5) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

A. Uncoupled ARPS Tests 

The vertical cross section of perturbation potential temperature and wind vectors 

from the two-dimensional stationary simulation using the Moeng and Wyngaard TKE 

scheme is shown in Fig. 24.  In agreement with observed behavior (e.g. as detailed in 

Clark et al., 1995), initial lack of mixing produced a thin layer of extremely hot air 

(approaching 1500 K) immediately above the ground.  Shortly thereafter, explosive 

autoconvection produced a well-formed, initially- symmetric plume.  After ten minutes 

of simulation, there was no indication of unstable error growth trending toward model 

failure.  However, Fig. 24 also shows an onset of obvious asymmetry due to 

accumulated truncation error after a few minutes, which should be borne in mind when 

interpreting later results. 

To test the sensitivity of the model results to the choice of TKE parameterization, 

a subsequent run was performed using the Sun and Chang 1986 scheme.  However, it 

rapidly became clear that the non-local approach was both ill-suited to coping with such 

extreme temperatures and highly sensitive to changes in vertical resolution.  As shown 

in Fig. 25, the Sun and Chang scheme produced a rapid buildup of TKE and eventual 

model failure, even when the near-surface vertical resolution was decreased to 25 m in 

an effort to damp the TKE buildup by artificially increasing the mixing length scale.  

Since accurate high-resolution treatment of near-surface feedbacks is crucial to model 
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success, the Moeng and Wyngaard TKE scheme was used for all subsequent 

simulations. 

 

Figure 24: Two-dimensional ARPS test centered over an externally-forced sensible 

heat flux of 1 MW m
-2

 at elapsed times of (a) 30 seconds, (b) 120 seconds, (c) 210 

seconds, and (d) 300 seconds.  Colors indicate positive perturbation potential 

temperature, while vectors indicate perturbation winds in the x-z plane. 

 

The symmetry of the initial plume in Fig. 24 is due not only to the symmetry of 

the background atmospheric conditions (windless and thermodynamically uniform), but 

also to the uniformity of the surface heat flux; the magnitudes of the buoyancy 

gradients on the left and right sides of the fire are equal, so both sides generate 

horizontal vorticity of equal magnitude and opposite sign.  In actual wildfires, on the  

(a) (b)

(c) (d)
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Figure 25: Maximum turbulence kinetic energy for ARPS 2-D stability tests using 

the Moeng and Wyngaard TKE scheme at 4 m surface vertical resolution (green) 

and the Sun and Chang scheme at vertical resolutions of 4 m (red) and 25 m (blue)  

. 

 
 

Figure 26: Same as Figure 24, but zoomed on the fire at t = 30 seconds for constant 

heat flux (left) and heat flux decaying exponentially from right to left (right). 
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other hand, the heat flux is strongest at the fire front and decays gradually in the 

smolder region.  As shown in Fig. 26, this  produces  stronger  horizontal  vorticity  

ahead of  the  fire  front and weaker vorticity behind, tilting the plume in a direction 

forward of the fire front even without the influence of ambient winds. 

Naturally, if the ambient wind in the boundary layer is in the same direction as the 

fire spread, the tilt of the plume is increased.  However, the subsequent behavior of the 

plume depends on the magnitude and direction of the vertical wind shear in the initial 

phase, even before waves from shear instability can amplify enough to have a 

significant influence as described in Kiefer et al. (2008).   The time series of 

perturbation potential temperature, maximum vertical velocity, and maximum vertical 

vorticity for the stationary and amplifying ARPS fire fronts are shown in Fig. 27.  Each 

case is designated by the behavior of the fire front (“stat” for stationary, “amp” for 

amplifying) as well as the initial magnitude and direction of the vertical shear (“B” for 

backward from the fire front position, “F” for forward, and “zero,” “10,” or “20” for the 

amount of vertical shear in m s
-1

).  Whether the fire front was stationary or amplifying, 

the presence of backward shear (i.e. in the “B10” and “B20” cases) implies a wind 

reversal, and it is clear from Figs. 27 and 28 that this reversal helped maintain a 

coherent, upright updraft structure whereas the presence of forward shear (i.e. in the 

“F10” and “F20” cases) broke the plume into a series of smaller cells propagating 

rapidly away from the fire front.  Thus, the backward-shear cases develop solitary, 

intense plumes with updraft speeds approximately double those of the forward shear 

cases.  (See panels C and D of Fig. 27.) 
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Figure 27: Maximum perturbation potential temperature, vertical velocity, and 

vertical vorticity for stationary (a,c,e) and amplifying fire fronts (b, d, f).  Ambient 

vertical shear in the lowest 5 km varies by simulation: backward at 20 m s
-1

 (blue), 

backward at 10 m s
-1

 (green), no shear (black), forward at 10 m s
-1

 (orange), and 

forward at 20 m s
-1

 (red). 

 

(a)

(c)

(e)

(b)

(d)

(f)

(A)

(C)

(E)

(B)

(D)

(F)



 

75 
 

 
 

Figure 28: 2-km-by-2-km vertical cross-section of perturbation potential 

temperature (black contours), vertical velocity (color fills), and two-dimensional 

wind (arrows) through amplifying fire front center for 20 m s
-1 

backward shear 

(left) and forward shear (right) over the lowest 5 km at t = 600 seconds.   

 

The generation of vortices on the fire front depends on the tilting and stretching of 

horizontal vorticity from either environmental shear, fire-induced buoyancy gradients, 

or both.  Therefore, one would theoretically expect a higher magnitude of vorticity to 

correspond to a stronger updraft.  However, Fig. 27 shows that this was not necessarily 

true for the amplifying fire front cases; while the intense plumes produced by both of 

the backward-shear cases are apparent in the vertical velocity time series in panel D, 

panel F does not generally show corresponding increases in vertical vorticity 

magnitude.  This appears to be at least partially attributable to the motion of the fire 

front, for two reasons.  First, Fig. 29 shows that the amplifying fire front had a tendency 

to overtake the vortices, thereby removing them from the region of maximized tilting 

and stretching on the leading edge.  This is particularly clear in the “B20” case, in 

which the vortices move slowly due to weaker layer-averaged winds near the ground.  
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Figure 29: 1.2-km-by-1.2-km plots of 2m AGL perturbation potential temperature 

(black contours), horizontal wind (arrows), and vertical vorticity (color fills in 

units of 10
5
 s

-1
) at t = 120 s (upper left), 360 s (upper right), 600 s (lower left) and 

840 s (lower right) for the case of backward vertical shear of 20 m s
-1

 over the 

lowest five km.   

 

Second, the potential temperature time series in panel B of Fig. 27 shows a much 

more pronounced fluctuation compared with the time series for the static cases shown 

in panel A; since a 50 m grid resolution was used for these simulations and the leading 

edge of the fire front was forced to move at a speed of slightly over 1 m s
-1

, the 

periodicity of the fluctuations corresponds closely to the frequency with which the 

leading edge of the fire front passed between adjacent cells.  Since the heat flux was 
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simply a point value assigned to the Arakawa-C scalar location (rather than a spatial 

average) for a given ARPS cell in these tests, there was not necessarily a smooth 

transition in which the cooling of one cell meshed with the warming of its neighbor as 

the fire front passed between them.  Rather, there was a time lag during which the first 

cell cooled while the neighbor cell remained “dormant” due to the fact that the fire 

front had not yet reached its center.  The resulting fluctuation disrupted the updraft 

structure (and thus the intensification of vortices) in the lowest levels of the 

atmosphere, although the structure aloft remained intact.  (This result emphasizes the 

importance of the spatial averaging methods developed for the coupled model, as 

described in section 3C.)        

For the stationary fire front cases, the expected correlation between updraft speed 

and generation of vertical vorticity is largely borne out by Fig. 27.  However, it should 

be noted from Fig. 29 that the sense (cyclonic or anticyclonic) of the vortices on the 

leading edges of the fire fronts is opposite that depicted in Clark et al. (1996b) for the 

development of “dynamic fingers,” with an anticyclonic vortex to the north and a 

cyclonic vortex to the south.  (Compare with Fig. 7.)  This may be traced to the fact that 

neither the stationary nor the amplifying fire front is truly coupled to the atmosphere; 

since the spread rates are fixed, the dynamic feedback loop responsible for these 

vortices is not completed and they do not persist.  The dominant factor in these cases 

appears to be the development of streamwise vorticity along the flanks of the fire front 

and its subsequent advection toward the intense plume in the center, where tilting and 

stretching occurs.  Specifically, Fig. 29 shows that convergence from the initial 

convection causes the surface wind near the flanks to turn inward (anticyclonically on 
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the northern flank and cyclonically on the southern flank); as the fire front amplifies, 

this wind is directed increasingly parallel to its leading edge.  In this area, the sense of 

the vorticity arising from the buoyancy gradient is opposite that depicted in Fig. 7 since 

the latter emphasizes vorticity generated behind the fire front and increasingly advected 

over it due to the strengthening of the winds associated with the dynamic feedback.  

Therefore, the generated streamwise vorticity is anticyclonic on the northern flank and 

cyclonic on the southern flank, producing the observed vortex pair near the center. 

Along with stronger plumes producing more tilting and stretching, the greater 

vorticity in the backward-shear cases may be attributed simply to the residence time of 

the vortices over the region of peak heating.  As shown in Fig. 30, the frequent splitting 

of the plumes in the forward-shear cases into smaller cells propagating away from the 

fire fronts coincides with an increased tendency of the vortices to move away from the 

fire front as well.  This tendency is demonstrated in panels A and F of Fig. 27; 

beginning around t = 450 seconds, fluctuations in the potential temperature time series 

for the forward-shear cases increase steadily in amplitude, coinciding with increased 

breakup of the plume.  At the same time, the maximum vorticity in both cases 

decreases markedly.  On the other hand, the fluctuations of the surface potential 

temperature are much more muted for the backward-shear cases (coinciding with a 

continuous plume), and the vertical vorticity is better maintained.           
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Figure 30: Same as Fig. 29, but for a stationary fire front with forward shear of 

20 m s
-1

 at t = 180 s (upper left), 420 s (upper right), 660 s (lower left), and 900 s 

(lower right) 

 

While these simulations do not precisely conform to recognized fire behavior in 

all respects, the behavior is reasonable considering the lack of full coupling at this 

stage.  Moreover, ARPS demonstrated the ability to remain numerically stable in the 

presence of intense surface heat fluxes as long as lateral boundary conditions were 

externally forced by a coarse-grid background simulation; it should be noted that failure 

to do so (for example, initializing the model directly from a sounding and applying 
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radiation lateral boundary conditions) produced results (not shown here) that were 

heavily contaminated by spurious perturbations arising from the contrast between the 

near-surface boundary conditions and the frictionally-altered wind field within the 

domain.  Thus, when correct initialization practices are employed, these test results 

justify coupling ARPS to DEVS-FIRE.  

 

B. Symmetric Coupled Tests  

The coupled tests run with an update interval of 60 seconds illustrated the value of 

coupling the models.  Figure 31 shows the outlines of the coupled and uncoupled burn 

areas for wind speeds of 3 m s
-1

 and 12 m s
-1

 after 30 minutes.  While the degree to 

which the small protrusions interspersed along the flanks were influenced by model 

artifacts (e.g. raster-based distortion) as opposed to realistic mechanisms (e.g. fire 

vortices) was uncertain, they were generally transient.  Furthermore, coupling ARPS 

and DEVS-FIRE at high resolution mitigated the unrealistically blunt, angular character 

of the fire fronts produced by DEVS-FIRE acting alone on a homogeneous initial state.  

Overall, the shapes of the fire fronts conformed to theoretical expectations in a 

manner comparable to that observed in similar tests using other coupled models (e.g. 

CAWFE, as detailed in Clark et al., 2004).  The lone exception was the 3 m s
-1

 test 

performed at 10 m resolution, which developed a pair of bookend vortices on the flanks 

(similar to those shown in Figures 29 and 30) that became unrealistically intense and 

persistent.  However, it should be noted that disruption of the fire front by flank 

vortices was also reported for symmetric tests in Clark et al. (2004), albeit to a lesser 
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degree; this difference may be attributed to the narrower initial fire front and slower-

burning fuel (chaparral) employed there.   

The influence of DEVS-FIRE resolution is obvious from both the plots in Fig. 31 

and the statistical evaluation in Table 6.  Additional truncation error is evident as the 

resolution decreases, both in the smaller uncoupled burn area and in the gradual 

increase in asymmetry. Furthermore, the discontinuous nature of the heat release at 

coarse resolutions (see Fig. 19) has a clearly deleterious effect on the coupled 

feedbacks for the 90 m DEVS-FIRE resolution, particularly in the slower-spreading 3 

m s
-1

 case.  However, the 30 m results are comparable to the 10 m results, suggesting 

that a 30 m resolution was sufficient to resolve the essential processes when the longer 

update interval was used.   

 
Figure 31: Burn areas at t=1800 seconds for idealized uncoupled (black) and 

coupled (red) simulations for initial surface winds of 3 ms-1 (left) and 12 ms-1 

(right) and DEVS-FIRE grid resolutions of 10 m (top), 30 m (middle, and 90 m 

(bottom).  Thin lines denote east-west lines of symmetry, and the images are 

zoomed to the burn areas. 
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Table 6: Comparison of coupled (C) vs. uncoupled (UC) 30-minute burn areas 

from idealized symmetric simulations with a 60 second update interval 

DEVS-FIRE 
resolution (m) 

Background wind 
speed (m s

-1
) 

UC burn area 
(km

2
) 

Burn area 
difference 

(C – UC, km
2
) 

Normalized 
Difference (%) 

Coupled 
Asymmetry (%) 

10 3 2.07 3.71 179.2 0.22 

30 3 2.01 3.61 179.9 0.79 

90 3 1.96 1.39 71.1 2.95 

10 12 10.91 0.63 5.8 0.16 

30 12 10.77 0.97 9.0 0.54 

90 12 10.48 0.73 7.0 0.86 

 

Unfortunately, the tests using a 1-second update interval revealed a serious 

shortcoming of the model.  Specifically, whereas deviations from the expected fire 

front shape in the previous tests were generally brief, the later tests developed large, 

unrealistic protrusions both at the head of the fire and along the flanks.  As shown in 

Fig. 32, these fingers were increasingly robust for higher wind speeds.  Furthermore, 

Fig. 33 demonstrates that the deviations began almost immediately after initialization, 

before errors (e.g. from truncation) in ARPS would be expected to play a role.   

 

 
 

Figure 32: As in Figure 31, but for DEVS-FIRE resolution of 10 m, update 

interval of 1 second, and background winds of 3 (left), 10 (center) and 20 m s
-1

 

(right) 
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Figure 33: Contour plots of ignition time (left) and ignition delay between 

successive cells in the x-direction (right) within the burn area up to t = 300 seconds 

for the fully-discrete symmetric test with a background westerly wind of 20 m s
-1

.  

(Deep blue region on the right edge of each panel is outside the burn area.) 

 

Therefore, these artifacts appear to be tied to the distortion inherent in the fire 

front representation in DEVS-FIRE; the tendency to produce angular fire front shapes 

with unnatural “kinks” precipitates the development of strong localized vorticity in 

ARPS just upstream of the kinks (anticyclonic north of the line of symmetry, 

anticylonic south of the line of symmetry; see Fig. 34.)  The main reason for this 

appears to be linked to the linear dynamic perturbation pressure 

  
  

  ⃗⃗ 

  
                     (42) 

where  ⃗  is the horizontal wind vector and     is the horizontal gradient of the vertical 

velocity.  As shown in Fig. 7, convergence underneath the plume produces enhanced 

surface wind speeds and negative shear upstream of the fire front.  Thus, the value for 

pL’ on the upstream side of the combustion zone is negative, indicating a drop in 
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pressure.  When the background flow is perpendicular to the fire front (e.g. the center 

segment of the angular front in Fig. 34), this pressure drop is comparatively large; when 

the fire front is oriented at a substantial angle to the background flow, it is smaller.  

Therefore, sharp angles of the sort shown in Fig. 34 result in a component of the 

perturbation pressure gradient acting along the fire front at the location of the kinks, as 

shown in Fig. 35.  Since the density gradient is largely perpendicular to the fire front 

due to the extreme heat, baroclinic vertical vorticity generation is maximized in these 

areas, producing the vortex pair shown in Figure 34.   

 
 

Figure 34: Surface temperature (contours), wind (vectors), and vertical vorticity 

(color fills, units of 10
5
 s 

-1
) at 2m AGL for stationary angular fire front imposed 

on shear-free ARPS grid at t = 1.5 s.  
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Figure 35: Potential temperature (contours), perturbation winds (vectors) and 

perturbation pressure (color fills, units of Pa) at 2 m AGL for stationary angular 

fire front imposed on shear-free ARPS grid at t = 1.5 s.  Red and blue arrows 

show approximate alignment of horizontal pressure gradient and horizontal 

density gradient, respectively.  

  

 The generated vorticity is of a sense that strengthens the surface wind and the 

spread rate on the outward side of the kinks.  In turn, this faster spread produces “hot 

spots” along the flanks; ARPS responds by further strengthening the local wind, 

producing a further increase in spread rate and a continuation of the feedback until 

spurious “fingers” develop and amplify away from the line of symmetry.  These 
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perturbations were apparently smoothed out when a longer update interval was 

employed (with surface heat fluxes reduced due to greater temporal averaging), 

mitigating the feedback and forestalling the development of obvious errors.  

As shown in Fig. 36, increasing the resolution in DEVS-FIRE by more than a 

factor of three failed to appreciably refine the fire front shape, reduce the “hot spots” on 

the flanks, or modify the initial response of the ARPS wind field to the fire before 

fingers began to develop.  It was hoped that applying quasi-discrete heat release 

formulas  (28)  and  (29)  would  smooth  the  error  sufficiently  without  the  need  for 

for applying a longer update interval.  However, Fig. 37 shows that the difference 

between the fully-discrete and quasi-discrete treatments was minimal, becoming 

essentially indistinguishable for a 20 m s
-1

 background wind. 

In summary, the representation of general coupled behavior by ARPS/DEVS-

FIRE largely conforms to theoretical expectations in idealized tests. However, the 

current model is clearly unable to resolve finer-scale feedbacks reliably, and the raster-  

 
 

Figure 36: Perturbation potential temperature (color fills), perturbation 

meridional wind (contours) and wind vectors for fully-discrete idealized tests with 

background 20 m s
-1

 westerly wind using DEVS-FIRE resolutions of 3 m (left) and 

10 m (right).  Erroneous “hot spots” are marked by black circles.  
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Figure 37: Comparison of fully-discrete (black) and quasi-discrete (red) burn 

areas at t = 1200 s at varying background wind speeds.  

 

based nature of the fire model appears to be the primary culprit.  Whereas a time step 

reduction is often required to stabilize the output of an atmospheric model acting alone, 

the opposite was true for ARPS/DEVS-FIRE in these tests because of the need to 

smooth errors resulting from distortion of the fire front in DEVS-FIRE.  The 

implications of this finding are discussed in Chapter 5. 

 

 

3 m/s

20 m/s12 m/s

6 m/s
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C. Verification using FIREFLUX data 

Validation focused on the observations obtained from the 42 m main tower in the 

minutes following ignition.  The observed and simulated 2 m and 10 m temperature 

time series are plotted in Fig. 38.  All of the simulations did well at forecasting the 

arrival time of the combustion zone at the tower, with the quasi-discrete method 

improving the timing slightly.  However, success at predicting temperature fluctuations 

was more mixed; distributing surface fluxes vertically resulted in substantial 

underprediction of the maximum temperatures observed over the fire front, while 

failing to do so resulted in substantial overprediction of the temperatures in the post-

frontal zone.   

Prediction of temperatures aloft was similarly mixed; Fig. 39 shows that applying 

the heat fluxes only at the surface improved the temperature forecast at 28 m somewhat 

but entirely failed to predict the impact of the main plume on the temperature 42 m, 

whereas vertical flux distribution contributed to overprediction of 28 m temperatures 

but was generally adequate at handling the timing and intensity of the plume at 42 m. 

This is confirmed by the 28 m and 42 m vertical velocities plotted in Fig. 40; while not 

distributing the surface fluxes produced marginally superior results at 28 m, the 

corresponding 42 m vertical velocity essentially oscillated around zero while the 

simulations employing vertical flux distribution approximated the average vertical 

velocity of the plumes fairly well. 

Because quality-controlled measurements of specific humidity from the main 

tower are only available at 28 m AGL, vertical mixing of the latent heat from the fire  
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Figure 38: Observed and predicted 3-second average 2m (top) and 10 m (bottom) 

temperatures at the location of the main tower.  “disc” denotes a fully-discrete 

simulation, “qd” denotes a quasi-discrete simulation, and “flxdis” indicates 

vertical disctribution of surface fluxes. 
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Figure 39: Same as Fig. 38, but at 28 m (top) and 42 m AGL (bottom) at the 

location of the main tower. 
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Figure 40: Same as Fig. 38, but for vertical velocity at 28 m (top) and 42 m AGL 

(bottom) at the location of the main tower. 
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Figure 41: Observed (black) and simulated specific humidity with (blue) and 

without vertical surface flux distribution (red) at 28 m AGL at the main tower 

location for the FIREFLUX experiment. 

 

cannot be evaluated as rigorously.  Figure 41 shows the rolling 10-second average of 

observed perturbation specific humidity along with the simulated averages from the 

fully-discrete simulations with and without surface flux distribution.  (The quasi-

discrete results are not  plotted  due  to  their  general  similarity to  the  fully-discrete  

results, as shown in earlier figures.)  It appears that the general magnitude and timing of 

the increased moisture within the plumes near the fire front were approximated rather 

well by the simulations without flux distribution but overestimated by the simulations 

with flux distribution, similar to the 28 m temperature results in Fig. 39.  Given the 

association between temperature, moisture, and updraft speed shown in these figures, it 
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is speculated that the model depictions of moisture transport to 42 m AGL would 

reflect more favorably on the method employing vertical flux distribution; 

unfortunately, this cannot be verified because the main tower humidity observations 

from levels other than 28 m AGL were considered useless due to infrared 

contamination.  The 28 m measurements also showed signs of contamination (e.g. the 

apparent rapid local drying to below ambient moisture levels depicted in Fig. 41 in the 

wake of the main plume), although the observations ahead of and within the main 

plume generally conformed with observations from the downstream tethersonde system 

(Craig Clements, personal communication) and were therefore deemed adequate for 

obtaining at least an approximation of the actual conditions.   

 It should be noted that these plots indicate a predicted plume structure tilted 

downstream from the fire front, with peak temperatures/updraft speeds observed earlier 

at higher altitudes.  Qualitatively, this matches the observations as well as the 

uncoupled simulations detailed in section A.  The coupled behavior associated with the 

tilted plume is illustrated by the fluctuations in horizontal wind speed at 2 m and 10 m 

AGL plotted in Fig. 42, with pronounced strengthening coinciding with the arrival of 

the fire front.  However, it is also clear from Fig. 42 that all of the simulations 

chronically overpredicted the 2 m and 10 m wind speeds before and after  fire front 

passage (although, interestingly, the predicted wind speeds during passage agreed well 

with observations).  The most likely cause of this is not a deficiency of the coupled 

model, but rather a misspecification of the roughness length used in ARPS.  (As in 

Mandel et al., 2011, a roughess length zo = 0.02 m was specified based on the 

background wind profile; however, with a fuel bed depth in excess of 1 m, this is likely 
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Figure 42: Same as Fig. 37, but for horizontal wind speed at 2 m (top) and 10 m 

AGL (bottom) at the location of the main tower. 
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an underestimate.)  Considering the general quality of the results, however, a 

subsequent attempt at “tuning” the roughness length was not attempted. 

  Partitioning the estimated radiative and ground heat fluxes from the “bulk” 

sensible heat flux had no significant impact, producing results generally 

indistinguishable from those of the quasi-discrete simulation using only “bulk” sensible 

heat flux.  (Due to the lack of distinction, that simulation was not included in the plots 

for Figs. 38 through 42.)  In hindsight, this should have been expected simply 

becauseof the relative magnitudes of the radiative flux (~ 50 kW m
-2

 for a peak 

temperature near 1000 K and assuming the fuel radiates as a blackbody) and “bulk” 

sensible heat flux (~ 1 MW m
2
 during peak combustion).  However, it is interesting to 

note from Fig. 43 that the temperature predicted by the estimation method agreed well 

with the surface fuel temperature beneath the main tower during both the initial 

approach and the smoldering phases.  It is clear that the peak temperature was 

substantially underestimated, suggesting possible misspecification of the Arrhenius 

coefficients A and E applied to (31).  (This possibility is reinforced by the general 

disagreement on correct values in the literature as noted in Sinha et al., 2000.)  

Nevertheless, the general character of the curve provides supporting evidence of the 

accuracy of the simple exponential decay combustion model used in this study. 

  Despite the errors noted, these results suggest that the atmospheric 

response to intense surface heating associated with a wildfire of this sort is generally 

replicated adequately by ARPS for purposes associated with coupled fire spread 

modeling.  For larger fires spreading over lengthier periods of time, accurate fine-scale 

depiction of processes within the narrow combustion zone is not computationally 
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tractable and the focus shifts to broader-scale feedbacks and more general depictions of 

fire spread.  In such cases, these results suggest that vertical flux distribution should be 

employed; therefore, quadratic distributions over the lowest 10 m of the atmosphere 

were also specified for the Moore Branch and Rock House cases described in the next 

section. 

 
 

Figure 43: Comparison of observed fuel temperature (black) with fuel 

temperature estimated as described in Chapter 3 for quasi-discrete DEVS-FIRE. 

   

D. Case Studies: the Moore Branch and Rock House Fires 

Figure 44 shows the uncoupled 24-hour DEVS-FIRE test for Day 5 of the Moore 

Fire using the maximum wind speed and direction from Kirbyville (9.9 m s
-1

 at 33
0
, 
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held constant) for the background conditions.  From Table 5, it is evident that this 

method greatly overestimated the actual background wind speed, particularly earlier in 

the period.  Knowing this, the similarity of the simulated and observed burn areas is 

surprising, with only limited overestimation of the burn area extent in the expected 

direction of maximum spread (i.e. south-southwest). 

   

 
 

Figure 44: Moore Branch Day 5 observed burn area (red) and predicted burn 

area using Kirbyville data (black). 
 

 

The possibility that wildfire-atmosphere feedbacks consistently and substantially 

amplified fire spread throughout the period is confirmed by Fig. 45, which compares 

the result of the uncoupled DEVS-FIRE test using the background conditions in Table 

5 to the result using the coupled model operating at 60 m resolution.  As shown in Fig. 

46, whereas the eastern portion of the initial fire front stagnated in the uncoupled 

simulation due to the background winds being weak initially (and generally parallel to 

the  front  during  the  day),  coupling  the  models   greatly  enhanced  the  across-fire  
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Figure 45: Same as Fig. 44, but for uncoupled burn area using background 

conditions interpolated from reanalysis data (left) and coupled burn area using 60 

m resolution in ARPS.  White squares indicate zoomed region plotted in Fig. 44. 

 

 

 
 

Figure 46: Fire front position (red) and perturbation winds (arrows) for 

reanalysis-based uncoupled test (left) and coupled test with ARPS resolution 60 m 

(right) at t = 40 min.  Zoomed view corresponds to white boxes in Fig. 43. 
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component of the winds in this area, producing a burn area that agrees very well with 

observations.  (The cause of the large “false alarm” region on the northwest side of the 

burn area is unclear, although it may be attributable to firefighting efforts preventing 

spread toward Newton.  Without documentation of such efforts, there was no way for 

DEVS-FIRE to account for this possibility.) 

To assess the sensitivity of the coupled result to ARPS grid spacing, additional 

coupled tests were run at resolutions of 150, 300, and 1200 m.  Surprisingly, as shown 

in Fig. 47, decreasing the resolution by up to a factor of five did not negatively impact 

the skill of the forecast.  In fact, as shown in Table 7, the skill scores were actually 

higher for the 150 m and 300 m tests.  As expected, the choice of resolution 

demonstrably affected the extent and robustness of smaller-scale feedbacks (e.g. note 

the fingers developing in the northwest quadrant of the higher-resolution simulations in 

Fig. 48).  However, these differences appear to have been transient, with the ultimate 

extent of the burn area largely unaffected.  A similar lack of sensitivity to weather 

model resolution was noted when using WRF-SFIRE to replicate large wildfires in 

complex terrain (Jan Mandel and Adam Kochanski, personal communication). 

Deleterious effects of increasing the spatial averaging of the heat flux from 

DEVS-FIRE and the degree of interpolation applied to the weather conditions from 

ARPS were not seen until the 1200 m test, at which point the impact of coupling was 

noticeably weakened (although still not eradicated).  As shown by Figure 49, increasing 

the grid spacing generally produced lower perturbation temperatures spread over a 

larger area near the fire front.  The additional impact of shifting to 1200 m resolution 

was two-fold: (1) the coarser resolution could not resolve the shape of the initial fire 
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front (essentially a “V” shape 2 km across) and thus could not produce the local 

modifications shown in Figure 46; and (2) the change in resolution brought the model 

into the mesoscale regime, for which the Moeng and Wyngaard TKE scheme was not 

intended.  (Evgeni Fedorovich, personal communication)  This unrealistically limited 

vertical mixing, reducing the efficiency of plume development and the onset of coupled 

feedbacks.  (For a closer look at impacts of using the Moeng and Wyngaard scheme at 

mesoscale resolutions in the presence of enhanced surface heating, see Appendix C.) 

 
 

Figure 47: Comparison of coupled Day 5 burn results for ARPS resolutions of 60 

(upper left), 150 (upper right), 300 (lower left), and 1200 m (lower right), plotted 

as in Fig. 42. 
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Table 7: Skill evaluation for Moore Branch simulations 

Test Specification False Alarm Rate Critical Success Index Heidke Skill Score 

Uncoupled, NARR data 0.037 0.283 0.345 

Uncoupled, Kirbyville data 0.202 0.584 0.626 

Coupled, 60m ARPS res 0.093 0.624 0.689 

Coupled, 150m ARPS res 0.089 0.638 0.703 

Coupled, 300m ARPS res 0.087 0.642 0.708 

Coupled, 1200m ARPS res 0.021 0.490 0.582 

 

 

Figure 48: Burn areas at t = 12 h for coupled Moore Branch simulations at 

varying ARPS resolutions.  Green indicates unburned fuel, red indicates cells 

ignited within the past 60 s, and black indicates previously-burned fuel.  Distances 

(in km) from the grid origin are indicated on the x and y axes. 

60 m 150 m 

300 m 1200 m 
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Figure 49: 6 m positive perturbation temperatures (color fills) and winds (arrows) 

at t = 12 h for coupled Moore Branch simulations at varying ARPS resolutions. 

 

Nevertheless, since the coupled model is intended to address microscale 

feedbacks and therefore is meant to run within the LES regime, ARPS/DEVS-FIRE 

demonstrated a high degree of skill for the Moore Branch case when used 

appropriately.  Unfortunately, this performance did not carry over to the Rock House 

fire.  Figure 50 shows that ARPS/DEVS-FIRE was outperformed by the uncoupled 
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FARSITE model in this case, and that neither model captured the extent of the 6-hour 

fire spread well at all.  One possible cause is a shortcoming of the use of standard fuel 

types; Martin (2011) notes that the observed spread is outside of the maximum 

capabilities of the standard fuel map for the region (predominantly grass and 

understory, i.e. fuel type 2 from Anderson, 1982).  Only by artificially mapping faster-

burning fuels to the grid was Martin able to replicate the observed burn area.   

 

 
 

Figure 50: Simulated 6-hour burn areas from ARPS/DEVS-FIRE (left) and 

FARSITE (right, reproduced from Fig. 23) for the Rock House fire.  Observed 6-

hour burn area is shown in grey at right. 

 

However, a primary cause for ARPS/DEVS-FIRE’s lack of skill in this case 

appeared to be its representation of fire spread mechanisms.  As noted previously, the 

background wind for the Rock House fire was quite strong (sustained at 15 m s
-1

, 

gusting to 25 m s
-1

); with brush and sparse timber included in the burn area, lofting of 

firebrands was a significant contributor to the overall progress of the fire.  While such 
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behavior cannot be explicitly depicted, operational models generally employ stochastic 

methods to ignite areas ahead of the main fire front where the combined probability of 

burning material being lofted the specified distance and the probability of it landing in 

combustible (i.e. pre-dried) fuel exceeds a certain threshold.  (Indeed, the “spotting” 

parameter in FARSITE was increased by nearly a factor of two from its default value in 

order to obtain the final results reported in Martin, 2011.)  The current version of 

DEVS-FIRE treats fire spread purely as a progression from a cell to its immediate 

neighbors, on the other hand, and a “spotting” capability needs to be implemented in 

order for it to properly treat high-wind cases of this sort, whether or not it is coupled 

with an atmospheric model.    
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CHAPTER 5 

CONCLUSIONS AND TOPICS FOR FUTURE STUDY 

The results obtained with the coupled ARPS/DEVS-FIRE model in this study are 

decidedly mixed.  On the one hand, the results of the uncoupled ARPS tests and the 

FIREFLUX simulations suggest that the parameterizations currently used to transfer 

heat from the fire into the atmosphere are sufficiently accurate to enable ARPS to 

produce reasonable approximations of high-resolution atmospheric response.  

Furthermore, the degree of temporal smoothing applied by a 60-second update interval 

appears to curtail error growth in idealized small-scale tests while still allowing 

sufficient feedback to produce distinct improvement in the fire spread forecast for the 

Moore Branch case. 

However, deficiencies are clearly evident that cast considerable doubt on the 

model’s reliability and current capabilities.  The quality of the high-resolution 

atmospheric results from the FIREFLUX tests is partially negated by the idealized 

results showing that coupled fire spread prediction at high temporal resolution is highly 

sensitive to the sorts of fire front distortions to which DEVS-FIRE is inherently prone.  

This is particularly true in cases with high winds and/or quick-burning fuels, which 

(unfortunately) are cases in which a particularly high degree of decision-making 

assistance would be required for optimizing firefighting efforts.  Moreover, the artifacts 

produced by these distortions closely mimic actual phenomena (in particular, the 

growth of dynamic “fingers”) that pose considerable danger to firefighters; thus, the 
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reliability of predicting a feature of particular interest to safety managers is specifically 

precluded by the flaws of the DEVS-FIRE algorithm. 

It is clear that efforts to refine the heat release through the quasi-discrete method 

had essentially a negligible impact on model accuracy for the resolutions tested here.    

This may be partially attributed to the fact that this method has the greatest positive 

impact for fire spread in cardinal directions (see Figs. 19 and 20), and therefore is of 

comparatively little assistance in the angular portions of the fire front where errors due 

to distortion predominate.  Furthermore, the difference between the heat released by the 

discrete and quasi-discrete versions diminishes as spread rate increases; this means that 

fast-spread cases, which are the most prone to error, are also the least affected by the 

choice of heat release calculation method.   

The quasi-discrete method did improve the initial spread rate forecast for the 

FIREFLUX tests slightly (similar to the report of Mandel et al., 2011, indicating that a 

gradual “drip torch” ignition method was required to prevent the initial fire from 

spreading too quickly).  However, since only the temporally-smoothed version of 

ARPS/DEVS-FIRE appears justified for further use, and since temporal smoothing also 

reduces the difference between the discrete and quasi-discrete heat outputs, this 

distinction seems to be moot.  Even laying this point aside, the benefit to model 

accuracy may well be too slight to justify the increase in computational expense.  

(Compare (25) to (28) and (29).)   

Further study along this line should focus on determining whether the quasi-

discrete version of the model is significantly more robust than the discrete version to  
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changes in grid resolution.  This is particularly relevant because the current version of 

DEVS-FIRE is not parallelizable; even with the comparative efficiency of the cellular 

automaton approach, the computational speed of the current versions of DEVS-FIRE 

slows down as fire fronts enlarge on high-resolution grids, simply due to the fact that 

the number of “active” cells at any point in time increases exponentially as the grid 

spacing decreases.  The fact that DEVS-FIRE and ARPS currently run separately adds 

to the computational load as well, since a higher resolution means a larger amount of 

data that DEVS-FIRE must read from ARPS (and write to ARPS) at every update time.       

Typically, the speed of the weather model is the major factor limiting the speed of 

the coupled model.  However, in the tests described in the study for which the DEVS-

FIRE resolution was 10 m or less, the opposite became true after several minutes.  

Whereas the 30 m Moore Branch 24-hour results could be obtained in approximately 12 

hours, the 10 m idealized 30-minute simulations often required 2 hours or more to 

complete, and the 3 m simulations were only able to complete 10 minutes or less before 

the requested 4-hour allotment on the supercomputer ran out.  Therefore, simply using a 

very fine grid mesh to refine heat output and make the fire front smoother is not 

currently feasible.    

Even in the Moore Branch case, the coupled model performance was clearly too 

slow to provide a useful forecast; by comparison, a 72-hour simulation of a wildfire of 

comparable size by WRF-SFIRE completed in approximately 4 hours.  (Adam 

Kochanski, personal communication)  Here, the external exchange of data required by 

the current algorithm (see Fig. 17) appeared to be a key contributor; with the model 

grid encompassing the entire Day 5 burn area, each update step generally required up to 
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five seconds to complete. Furthermore, external reading and writing performance 

suffers on the supercomputing clusters used for this work (see Acknowledgements) 

when system load is high.  Thus, the time required to complete a given simulation 

varied widely from the run times described above.  For reliable performance, it is 

crucial that the coupled model be updated to enable DEVS-FIRE to run within ARPS in 

order to avoid external I/O as much as possible.   

Finally, even if the coupled model is confined to larger-scale simulations and/or 

slower-burning fuels so that DEVS-FIRE can justifiably be used, additional upgrades to 

the capabilities of DEVS-FIRE are required.  The previously-described slowdowns and 

the results from the Rock House test clearly illustrate that parallelization and the 

implementation of a “spotting” algorithm to account for lofted firebrands are 

paramount.  If higher-resolution treatment of atmosphere-wildfire feedbacks is desired, 

either the degrees of freedom in the fire spread model must also be increased 

substantially to reduce distortion (as in BFOLDS; see Fig. 5) or some other method 

must be found to smooth the effective shape of the fire front.  However, such methods 

immediately suggest a transition to a vector-based methodology and, with the gain in 

efficiency from the raster-based approach tempered by the overriding cost of operating 

the weather model at the desired resolution, implementing them in DEVS-FIRE may 

not be an efficient or advisable course of action.  
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APPENDIX A: OVERVIEW OF ARPS 

The Advanced Regional Prediction System (ARPS) is a nonhydrostatic three-

dimensional model system developed by the Center for Analysis and Prediction of 

Storms (CAPS) specifically for storm-scale modeling, although it is also intended for 

explicit prediction of weather systems at larger scales.  The system includes self-

contained routines for data assimilation as well as visualization and analysis of the 

results.  As described in Xue et al. (2000), the prediction model is based upon the 

compressible viscous equations of motion, state (moist air), mass continuity, and heat 

energy conservation in Cartesian coordinates: 



u  mpx
1  f  fm v  ˜ f w  uwa1  Fu

v  mpy
1  f  fm u  vwa1  Fv

w  pz
1  g  ˜ f u  u2  v 2 a1  Fw
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A prime denotes a total time derivative, a subscript denotes a partial derivative 

with respect to the stated variable, m is the map projection factor,  is density, f is the 

coriolis parameter, a is the radius of the Earth, F is the forcing due to friction, Rd is the 

gas constant for dry air,  is the ratio of the gas constants for dry air and water vapor, qli 

is the total liquid water and ice mixing ratio,  is potential temperature, Q is adiabatic 

heating, Cp is the specific heat for dry air at constant pressure, and  is the Exner 

function.  Also included are equations governing precipitation and microphysics, 
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hydrometeor species conservation, parameterization of subgrid-scale and boundary 

layer turbulence and mixing, and radiative and moisture exchange between the surface 

layer and the ground (which is in turn characterized by soil and vegetation models 

which vary monthly based on climatological tables).  To more accurately model 

nonhydrostatic processes, the state variables for these equations are treated as 

perturbations around a hydrostatic base state.  

To account for orographic effects, the model employs a curvilinear coordinate 

system with an impermeable lower boundary that conforms to the actual topography.  

The governing equations are mapped onto this terrain using the transformations (x), 

(y), and (x,y,z) for the spatial derivatives as follows: 



J1  z y ,J2  z x ,J3  z y ,J4  z x

G  z x y

x  J3   J1   G

y  J4   J2   G

z  x y  G
 

The transformation parallels the terrain at the surface and transitions to Cartesian 

coordinates  aloft   as  shown  in  Fig. 11.  The  vertical  grid  stretching  is governed by 

either a hyperbolic-tangent stretching function or a cubic function as described in Xue 

and Thorpe (1991). 

In this curvilinear framework, the governing equations are solved using finite 

differences on an Arakawa C-grid, chosen for better representation of the geostrophic 

adjustment and straightforward treatment of advection/transport.  Two measures are 
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employed to prevent instability from acoustic waves while maintaining computational 

efficiency: first, an artificial divergence damping term is included in the transformed 

governing equations; and second, a mode-splitting technique is employed whereby the 

acoustically-active terms are integrated in several small time steps within each large 

time step used for the slower modes.  Multiple options exist for integrating the large 

time steps, including 2
nd

- or 4
th

-order centered leapfrog schemes and a flux-corrected 

transport scheme for advection of positive-definite scalars (which was utilized for the 

simulations in this study).  For a full treatment of ARPS equations, parameterizations, 

and finite-difference schemes, the reader is referred to Xue et al. (2000) and Xue et al. 

(2001). 

The treatment of orographic effects in the model was first verified against the 

analytical solution for various types of flows (linear/nonlinear waves, 

hydrostatic/nonhydrostatic regimes) in the vicinity of an idealized bell-shaped 

mountain.  (See Fig. A.1.)  The model was then tested against observations and 

previous   simulations   of   the   1972   Boulder,   CO   windstorm,   with   general 

agreement in the results.  Validation of the soil-vegetation model and the treatment of 

surface and planetary boundary layer (PBL) physics was performed in a case study 

using data from the Wangara experiment; the simulated surface fluxes and PBL 

evolution agreed “remarkably well” with the observed data.  (See Figs. A.2 and A.3.)  

Additional validation of the surface model in a variety of conditions was later carried 

out using the Oklahoma Mesonet.      

 



 

117 
 

 

 
 

Figure A.1: Analytic (upper) and ARPS-simulated (lower) solutions for u’ (left) 

and w’ (right) after 100 advective time-scale steps for a finite-amplitude nonlinear 

nonhydrostatic wave over an idealized bell-shaped mountain of height 503 m with 

a 2-km half-width (from Xue et al., 2000, p.179) 
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Figure A.2: Simulated (left) and observed (right) surface fluxes of net radiation 

(Rn) and sensible (H), latent (LE), and ground heat (G) for the Wangara 

experiment, Days 33-34 (from Xue et al., 2001, p.150) 
 

 

Figure A.3: Simulated (left) and observed (right) profiles of virtual potential 

temperature (top) and specific humidity (right) for Day 33 of the Wangara 

experiment (from Xue et al., 2001, p.149) 
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Various case studies (described in Xue et al., 2001) illustrate the accuracy and 

multi-scale capability of ARPS in strongly-convective situations.  The 20 May 1977 

Del City tornadic supercell was reproduced from an initialized warm bubble in a 

sounding-derived environment on a 646416 km grid with 1 km horizontal resolution 

and vertical resolution stretched from 100 m at the surface to 700 m at the upper 

boundary; three different scalar advection schemes (flux-corrected transport, 4
th

-order 

centered, Lafore positive-definite 4
th

-order centered) and two different microphysical 

parameterizations (ice, Kessler warm-rain) were employed.  All simulations were 

consistent with expected behavior, although the monotonic flux-corrected transport 

scheme and ice microphysics produced the best results.  (See Fig. A.4.)  

 
 

Figure A.4: Two-hour accumulated precipitation from simulations of the 20 May 

1977 Del City supercell storm (from Xue et al., 2001, p.154) 
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The 21-23 January 1999 tornado outbreak case was modeled using nested grids to 

resolve both synoptic (21515543, 32-km horizontal resolution, Kain-Fritsch cumulus 

parameterization) and mesoscale (37237243, 6-km horizontal resolution) features. 

The resulting forecast compared favorably with both the corresponding Eta analysis and 

the actual observations throughout the 48-hour forecast. (See Fig. A.5.)  Furthermore, 

analysis on a 2-km grid nested inside the 6-km grid was able to resolve supercell 

morphology and low-level rotation in the outbreak area.  (See Fig. A.6.)  Other 

successful convective simulations include the 28 March 2000 Fort Worth tornado and 

the initiation of thunderstorms along a dryline during the International H2O Project 

(Xue et al., 2003a).  This demonstrated ability to accurately simulate rapid changes in 

an unstable environment makes ARPS a good candidate for coupling with a wildfire 

model. 
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Figure A.5: Eta analysis (top) and ARPS forecast (middle) valid 00Z (left) and 12Z 

(right) on 22 January 1999; compare ARPS and Eta sea level pressure (hPa) 

contours, as well as ARPS precipitation (shaded) and IR cloud top temperature 

satellite images (bottom) at 2245Z on 21 January (left) and 1045Z on 22 January 

(right) (from Xue et al., 2001 pp.158-160) 
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Figure A.6: Actual radar observation from KLZK (left) and ARPS 14-hour 

forecast composite reflectivity (right) for 02Z on 22 January 1999 (from Xue et al. 

2001, p.148) 
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APPENDIX B: QUASI-DISCRETE HEAT RELEASE DERIVATION 

 As stated in Chapter 3, the basic premise of the quasi-discrete approach is the 

assumption that the fire may be represented within a DEVS-FIRE grid cell of length 

and width Δx  as a straight line segment moving through the cell at a constant rate R 

obtained by applying the Rothermel formula (10) to the current conditions (fuel type, 

wind speed and direction, terrain, etc.).  From Fig. B.1, if the fire front is oriented at an 

angle θ relative to the proximal grid axis, the distance from it to any point (x,y) within 

the cell is  

   
 

    
+        

Since b =y - a and a = x tan θ,  

   
 

    
+ (       )       (

1       

    
) +       

which reduces to  

        +      

 

Figure B.1: Geometric framework for determining distance from fire front (red 

line) to a point (x,y) inside a DEVS-FIRE grid cell with resolution Δx 

∆x
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Since the fire front is spreading at a rate R, the time at which it reaches the point x 

= (x,y) is given by 

 

  ( )    (  ) + 
 

 
   (  ) +

     

 
+

     

 
 

where ti(xo) is the time at which the cell ignites in the fire spread model.  It should be 

noted that this method proceeds edge-to-edge, while the fire spread model operates 

center-to-center; the delay implied by this discrepancy is minimal and consistently 

applied to all cells after ignition.  Furthermore, it is necessary to maintain consistency 

between the heat model and the spread model, avoiding heat release from cells that the 

spread model never ignites.  (Xiaolin Hu and Haidong Xue, personal communication) 

Locally, combustion is modeled as an exponential decay of the fuel fraction as 

described by (25).  Spatially averaging this fuel fraction over the grid cell requires the 

area integral given in (27).  When θ= 0 (“straight” spread), evaluating (27) is relatively 

straightforward. As shown in Fig. B.2, the burn area is rectangular with length Δx and 

width equal to D = R[t-ti(xo)] ≡ Rte while the fire front is inside the cell and Δx after the 

front leaves the cell at time      (  ) +   / .  During this time interval, (27) takes 

the form 
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After the fire front leaves the cell (i.e. te ≥ Δx/R), the integral is  

 ( )  1  
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∫ ∫ 1  exp(
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These are the formulas given in (28).   

 
Figure B.2: Schematic of “straight” fire spread through a DEVS-FIRE cell.  The 

current burning area is shown in red. 

 

As shown in Fig. B.3, the case of “diagonal” spread (θ= π/4) is complicated by the 

changing geometry of the burn area, which is simplified by rotating the coordinate axis 

to align the ordinate with the direction of spread (thereby eliminating the      /R 

term).  Up until time     (  ) +   / √2, the burn area is a triangle and (27) takes 

the form 

∆x

∆x

D = R[t-ti(xo)]=Rte
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For     between    and      (  ) +   √2/ , the burn area is pentagonal.  

During this interval, the integral must be split as follows: 
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Finally, for    greater than    (i.e. after the fire front departs), the integral is 
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These are the formulas given in (29). 

 

Figure B.3: As in Fig. B.2, but for the case of diagonal fire spread.  Dotted line 

delineates example burn area for te < tc. 
  

∆x

∆x

te < tc te > tc
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APPENDIX C: ARPS TURBULENCE PARAMETERIZATION NEAR 

ENHANCED SURFACE HEATING 

 

A. Overview 

 Atmospheric models operating at different scales account for turbulent mixing in 

different ways.  When the spatial averaging scale is much smaller than the length scale 

of the turbulence (large-eddy simulation or LES), the turbulent fluxes are largely 

resolved by the filtered motions calculated on the model grid; however, when the 

opposite is true (as is the case in mesoscale modeling), turbulent fluxes are not resolved 

and must be estimated using subgrid-scale parameterizations.  When the turbulence 

length scale and the effective grid scale are nearly equivalent, turbulence 

simulation/modeling enters “terra incognita” for which parameterizations have not been 

explicitly developed.  (Wyngaard, 2004)  Numerical simulations of processes in the 

atmospheric boundary layer all too often select a turbulence closure scheme from one 

of these regimes for operation in the other, apparently without considering the possible 

ramifications. 

 As an example of one such choice, this project investigates comparisons between 

the local 1.5-order TKE closure scheme detailed in Moeng (1984) and Wyngaard and 

Brost (1984) with the non-local closure scheme described by Sun and Chang (1986).  

Both schemes parameterize kinematic fluxes and production/dissipation of turbulent 

kinetic energy (TKE) using eddy diffusivity coefficients dependent on turbulence 

length scale l: 

   0.1  ̅
 

           (1 +
  

  
)        ̅ / /  
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The key difference lies in the definition of l for each scheme as shown in the equation 

sets below: 

Moeng and Wyngaard:         (unstable),         (   
 

 

 ̅ / 

 (  ̅/  )
)   (stable) 

Sun and Chang:    0.25 {1.8  [1  exp ( 
  

  
)  0.000 exp (

  

  
)]}      (unstable) 

 Δs is the effective grid resolution (i.e. the geometric mean of the grid spacing in 

the x, y, and z directions), E is the turbulent kinetic energy, β is a reference buoyancy 

parameter, θ is potential temperature, and Zi is the depth of the mixed layer.  When the 

boundary layer is stable, the Sun and Chang parameterization behaves the same as the 

Moeng and Wyngaard parameterization; in a convective boundary layer (CBL), the 

length scale in the Sun and Chang scheme is smoothly decreased from its value at Zi to 

3% of that value at the third grid level above Zi in order to damp vigorous gravity 

waves that can develop in the inversion above. 

B. Method 

 The degree of vertical mixing from turbulence may be tracked based on the 

assumption that the vertical profile of a conserved scalar quantity should be constant 

within a well-mixed layer.  In the case of dry adiabatic motion, potential temperature θ 

is an example of such a scalar; therefore, in the absence of moisture effects, the vertical 

θ profile can be used to estimate the mixing depth.  In nature, boundary layer mixing of 

θ (i.e. sensible heat flux) is generally driven by variations in the surface energy budget, 

which can be spatially and temporally complex; however, to simplify the problem 

under study, a constant, spatially-uniform heat flux of 1 kW/m
2
 was specified over an 
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idealized, flat, homogeneous surface.  A group of four two-dimensional ARPS 

simulations was performed for each TKE scheme on a 100km-by-6km grid at 

horizontal resolutions of 100 m, 500 m, 1 km, and 2 km.  The vertical grid was 

hyperbolically stretched from 6m resolution just above ground level to an average of 

120 m aloft, with an isothermal (288 K) initial atmosphere and a vertically-uniform 

westerly wind of 5 m/s.  Impermeable top and bottom boundary conditions and periodic 

lateral boundary conditions were employed on the assumption that convection does not 

impact the top boundary and the surface spatial homogeneity extends an infinite 

distance in all directions.   

 Turbulence was induced via random temperature perturbations ranging from 0 to 

1 K introduced at the first level AGL at initialization, and the roughness length was 

held constant at 0.01 m.  To ensure numerical stability, mode splitting was employed 

with an integration time step of 0.5 seconds for the governing equations and 0.25 

seconds for acoustic wave modes.  The characterization of the turbulence constituted a 

complicating factor; since it is recommended that anisotropy be assumed (i.e. only 

vertical mixing is considered) when the horizontal grid resolution is much greater than 

the vertical grid resolution (120 m in this case), isotropic turbulence was specified for 

the 100 m and 500 m cases while anisotropic turbulence was specified for the 1 km and 

2 km cases.  

 Two-dimensional plots of potential temperature in the lowest 3 km were used for 

qualitative comparison of the results.  In order to assess any approach to “terra 

incognita,” the ratio of the turbulence length scale (diagnosed by ARPS) to the vertical 

resolution was plotted as a time series for each simulation.  Finally, the vertical profiles 
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of layer-averaged potential temperature, zonal wind, and resolved kinematic heat flux 

(estimated as the sample covariance of the perturbation vertical velocity and 

perturbation potential temperature relative to the layer means) were plotted at regular 

intervals to provide a quantitative indication of the impact of the choice of TKE 

parameterization scheme on model performance. 

C. Results and Discussion 

 Comparison of the plotted 30-km-by-3-km theta profile sequences indicated that 

the 500 m and 2 km simulations are qualitatively similar to the 100 m and 1 km 

simulations, respectively.  Therefore, discussion here will focus on the results from the 

100 m and 1 km simulations.  Figure C.1 gives the time series of the ratio between the 

calculated turbulence length scale and the effective grid resolution at 1 km AGL for 

each model run.  It is clear that the 100 m Sun and Chang run remains firmly in the 

LES regime, while the 100 m Moeng and Wyngaard run is generally much closer to 

“terra incognita.”  Similarly, the 1 km Sun and Chang run is near “terra incognita” 

while the 1 km Moeng and Wyngaard simulation is firmly in the mesoscale modeling 

regime.  

 The use of the Moeng and Wyngaard formulation outside the LES regime 

produces undesirable artifacts.  The much smaller turbulence length scale implies much 

greater dissipation of TKE and therefore greatly reduced vertical theta mixing.  As a 

result (as shown in Fig. C.2), an unrealistically-intense superadiabatic layer develops in 

the first half-hour after initialization and instigates an explosive period of 

autoconvective  adjustment.  When  the  Sun  and  Chang  formulation  is  used  at 1 km  
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Figure C.1: Ratio of turbulence length scale to vertical grid resolution as a function of 
time for 100 m Moeng and Wyngaard (orange), 100 m Sun and Chang (blue), 1 km 
Moeng and Wyngaard (red), and 1 km Sun and Chang simulations (green).  A ratio of 
unity (a rough benchmark for “terra incognita”) is plotted with a dashed line. 

 

horizontal resolution instead (see Fig. C.3), the turbulent length scale in the CBL tends 

to be somewhat greater (although this difference decreases over time as the CBL depth 

Zi increases), which means the mixing is more efficient.  The  superadiabatic  surface 

layer is much more realistic in both depth and intensity, and no explosive adjustment 

occurs. 
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Figure C.2: Vertical profile of potential temperature from x = 35 to x = 65 km and 

from z = 0 to z = 3 km for the Deadorff 1km resolution ARPS run at t=2100 s 

(upper left), 2400 s (upper right), 2700 s (lower left) and 3000 s (lower right) 

 

 Additional difficulty is clear from the vertical kinematic heat flux profiles 

resolved on the model grids for the various runs as shown in Fig. C.4. Initially, all 

profiles show the “S” shape characteristic of convective boundary layers (Evgeni 

Fedorovich, personal communication) and, interestingly, the Sun and Chang 1 km run 

shows a more intense vertical gradient than its Moeng and Wyngaard counterpart.  

However, while the other simulations tend to mitigate gradients over time, the Moeng 

and  Wyngaard  1  km  run  does  not.  The  near-surface  flux  appears to be  increasing  
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Figure C.3: Same as Fig. C.2, but for Sun and Chang 1 km resolution ARPS run. 
 

rapidly at the end of the run, suggesting the possibility of numerical instability and 

model crash if the simulation is carried much beyond six hours.  Overall, it appears that 

using the Moeng and Wyngaard formulation is not reliable for boundary layer 

mesoscale applications with enhanced surface heating. 

 Having determined that the Sun and Chang parameterization is superior at coarser 

resolutions, it is now instructive to consider results using grid resolutions closer to the 

LES regime.  From Fig. C.1, it is clear that the length scale  for  the  Sun and Chang  

simulation  is  much  greater than  it  is for  the  Moeng  and Wyngaard simulation;  the  
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Figure C.4: Vertical profiles of grid-resolved kinematic heat flux at 1.5 hours 

(upper left), 3 hours (upper right), 4.5 hours (lower left), and 6 hours (lower right) 

with simulations designated by color as in Fig. C.1. 

 

mixing is more robust and persistent, since dissipation is inversely related to length 

scale.  This, in turn, leads to a mixed layer depth much greater (several hundred meters 

by the end of the simulation) than for any of the other simulations as shown in Fig. C.5.  

Since the use of the Sun and Chang formulation in ARPS was only validated against 

Wangara experiment data for 1-D mixing (i.e. neglecting horizontal turbulent mixing as 

specified for the 1 km and 2 km simulations in this study), it would seem that the mixed 

layer depth for the other three simulations is more nearly correct while the 100m Sun 

and Chang simulation overestimates it.  Also, one would expect from the stability 

correction  to  the  log-wind  profile  used  for  Monin-Obukhov  similarity  that  robust  
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Figure C.5: Layer-averaged potential temperature profiles for t = 1.5, 3, 4.5, and 6 

hours, arranged as in Fig. C.4. 

 

buoyancy-driven turbulence would largely disperse the base-state flow near the surface; 

the layer-averaged zonal wind profiles in Fig. C.6 show this to be the case for the 

Moeng and Wyngaard runs but not so much for the Sun and Chang runs.  Therefore, 

while the Sun and Chang parameterization appears to be somewhat more adaptable 

across the “terra incognita” than the Moeng and Wyngaard formulation is, the Moeng 

and Wyngaard formulation is more reliable for LES applications. 
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Figure C.6: Layer-averaged zonal wind profiles for t = 1.5, 3, 4.5, and 6 hours, 

arranged as in Fig. C.4. 

 


