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ABSTRACT 
 
 

This dissertation studies producer behavior and market dynamics in three 

important industries in the energy sector. The first essay, “Investment under Uncertainty:  

An Analysis of Capacity Adjustment in the Petroleum Refining Industry” investigates 

the effect of uncertainty on the investment decisions of petroleum refineries in the US.  

Uncertainty measures are constructed from commodity futures markets which capture 

the forward-looking nature of investment. Rather than relying on accounting 

information, data on actual capacity changes is used to measure investment episodes. 

Capacity changes in US refineries occur infrequently and a small number of investment 

spikes account for a large fraction of the change in industry capacity. This essay finds 

that an increase in uncertainty measures decreases the probability a refinery adjusts its 

capacity. The results are robust to various investment thresholds and uncertainty 

measures used in the analysis. Our findings lend support to theories emphasizing the 

role of irreversibility in investment decisions.  

The second essay, “Weather, Storage, and Natural Gas Price Dynamics: 

Fundamentals and Volatility” examines how weather shocks impact asset return 

volatility in the U.S natural gas futures market.  The results show that weather shocks 

have a significant impact on both the conditional mean and the conditional volatility of 

natural gas returns. The inclusion of the weather shock and inventory surprise variables 

in the variance equation reduces volatility persistence by approximately forty percent.  

Consistent with the literature, the volatility is considerably higher on Monday and the 

day when the natural gas storage report is released. Finally, this essay also provides 

 ix



support for the “Samuelson effect” in the natural gas market that the volatility of 

commodity futures declines with the contract horizon.  

The third essay, “Measuring Unilateral Market Power: An Application to the 

Texas Deregulated Electricity Market” analyzes the unilateral market power in the 

balancing electricity market in Texas. This essay follows the recent work of Wolak 

(2003) and develops measures of market power for the two largest firms based on the 

inverse of the ex post residual demand elasticities. The results indicate that the firm with 

the largest stake in the balancing market has consistently higher market power than the 

other firm even though both firms are about equally sized in terms of installed capacity. 

Further, most price spikes during the sample period are associated with at least one 

firm’s exceptionally high market power. Finally, the lack of bids from smaller suppliers 

appears to contribute to the largest firms’ market power and may exacerbate price 

spikes    

 x



   

CHAPTER I 

INTRODUCTION 

 

This dissertation studies producer behavior and market dynamics in three 

important industries in the energy sector, namely the petroleum refining, natural gas, 

and electric power industries. Because each industry faces its own challenges, this study 

covers a different research question for each industry. Since the removal of price 

controls in the 1980s, oil (including crude oil and refined products such as gasoline and 

heating oil) and gas prices have been rather volatile. As a result, oil and gas producers 

(including refiners) face a great deal of uncertainty. Chapter II of the dissertation 

constructs uncertainty measures from the commodity futures market and examines the 

role of uncertainty in petroleum refiners’ investment decisions. In Chapter III, the 

determinants of volatilities are investigated. In particular, this chapter focuses on the 

impact of weather on the natural gas futures market. The electric power industry 

remained regulated until late 1990s. The deregulation in recent years raises concerns 

over the existence of market power. Chapter IV applies Wolak’s (2003) method for 

measuring unilateral market power and analyzes the potential market power that each of 

the two largest firms had in the Texas deregulated wholesale electricity market from 

2002 to 2004.  

I. 1.   Investment in the Petroleum Refining Industry  

An important feature of the petroleum refining industry since the mid 1980s is that 

the total refining capacity has increased while the number of refineries has declined. 

The number of refineries has steadily decreased from 225 at the end of 1984 to 149 at 
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the end of 2003. The aggregate refining capacity has bumps and troughs. It was 

relatively flat from 1984 to 1991, declined in 1992, and recovered from 1993. As a 

result, the total refining capacity at the end of 2003 was 8 percent higher than it was at 

the end of 1984. Thus, while 76 refineries were shut down during this time period, 

surviving refineries have significantly expanded their capacities.1 Chapter II of this 

dissertation describes the pattern of capacity changes in the refining industry and 

empirically examines factors driving the changes. In particular, we focus on the effect 

of uncertainty on refiners’ capacity change and investment decisions.     

The debate on investment under uncertainty and the nature of capital adjustment 

process is not limited to the petroleum refining industry. These are fundamental 

questions in the investment literature and have important policy implications. Because 

of its forward-looking and subjective nature, investment can be highly volatile and is 

often hard to predict (Bernanke, 2003). A better understanding of the relationship 

between investment and uncertainty and the cost of adjustment may help understand 

investment fluctuations. Depending on assumptions about the technology, the elasticity 

of demand, and the degree of irreversibility, theories about the impact of uncertainty on 

investment have both positive and negative predictions. While empirical studies using 

aggregate data generally find that uncertainty depresses investment, studies using micro 

data show a less consistent relationship.2 The cost of capital adjustment is a separate yet 

related issue. If the cost of capital adjustment is convex as suggested by the neo-

classical investment model, firms would smoothly adjust their capital stocks. On the 

                                                 
1 No refinery has been built in US since year 1976. 
2 For a recent survey on the investment under uncertainty literature, see Carruth et al, (2000). 
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other hand, if the cost of adjustments is non-convex, the capital adjustment process 

would be lumpy.  

Chapter II of the dissertation shed lights on both questions. There are two main 

innovations in this essay. First, we take advantage of the petroleum futures data to 

construct an uncertainty indicator that captures the forward-looking nature of 

investment and corresponds to firms’ expected future return of capital. Second, rather 

than relying on accounting data, we use actual capacity changes in refineries as our 

measure of investment and disinvestment episodes. The accounting data on investment 

are often a mixture of expansionary investment, replacement investment which is driven 

by maintenance, and other mandatory investment such as environmental investment. 

The replacement investment and mandatory investment are likely irrelevant to the 

demand uncertainty and the optimal capital adjustment problems discussed in the 

literature. Thus, the use of physical capacity data mitigates, to some extent, capital 

measurement problems faced in the literature.     

We find that capacity adjustments by refiners are very infrequent and lumpy.  

Over 74 percent of the year-to-year capacity changes are zero and only 2.4 percent of 

the investment episodes account for 50 percent of the total capacity additions in the 

industry.  Given the lumpy nature of the data, we focus our analysis on the timing of the 

investment and disinvestment episodes. We find that an increase in uncertainty 

decreases the probability a refiner adjusts its capacity and the result is robust to a 

variety of adjustment thresholds and uncertainty measures.  
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I.2.   Weather and Natural Gas Price Volatility 

Because the intercontinental transportation of natural gas is still quantitatively 

limited, the natural gas market is generally considered a regional market that is confined 

in North America.3 Chapter III studies the influence of weather changes in the US on 

daily natural gas price dynamics in the futures market. The Energy Information 

Administration, Department of Energy classifies the natural gas demand into four 

sectors: residential, commercial, industrial, and electric power. Weather has a direct 

impact on natural gas demand in all but the industrial sector. Because the demand from 

the industrial sector and natural gas production generally do not vary much in the short-

time term, weather is likely the most important factor causing natural gas demand and 

supply imbalances. More importantly, unlike information about production and 

industrial demand, weather information reaches the market very frequently. Despite the 

fact that weather often makes headline news in trade publications, little effort has been 

devoted to understanding the impact of weather on short-term natural gas price 

dynamics.  

Chapter III makes a first attempt in this area. We measure weather shocks as the 

deviation in heating degree days (HDD) and cooling degree days (CDD) from previous 

30 years average. Under a GARCH framework, we show that the weather shock 

variable has a significant impact on both the conditional mean and conditional variance 

of natural gas futures returns. Consistent with the literature, the volatility is 

considerably higher on Monday and the day when the natural gas storage report is 

released. Both the “Monday effect” and the “storage announcement effect” can be 

                                                 
3 Natural gas can be shipped by marine tans in the form of liquefied natural gas (LNG). An LNG trade 
requires both a liquefaction facility in the export terminal and a re-gasification facility in the import 
terminal, and typically involves long-term contracts to commit the investment. 
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driven by weather. Furthermore, the inclusion of weather shock and storage surprise 

variables in the GARCH model reduces volatility persistence by about forty percent. 

This later result corroborates the important influence of the weather but also 

demonstrates that a large portion of the volatility cannot be explained by these 

fundamental factors.  

Chapter III contributes to our understanding of the determinants of price 

volatility in the natural gas market. It also sheds light on a broader debate centering on 

whether market fundamentals drive asset price volatilities. As volatility is a key element 

of many financial decisions, the findings from this chapter should be of interest to both 

academics and industry practitioners. 

I.3. Market Power in Deregulated Electricity Markets 

Traditionally, the electricity industry was characterized by vertically integrated, 

regulated natural monopolies. Power generation assets, transmission lines, and 

distribution systems were all owned by the same utility company. These utilities were 

regulated by state public utility commissions. Following the experience of UK, several 

states began to deregulate their electricity industries in the mid 1990s. Massachusetts, 

Rhode Island, and California were among the forerunners and about a dozen additional 

states implemented a deregulation program by the end of 2000 (Joskow, 2006). The 

deregulation process varies among states, but typically involves separating power 

generation assets from utilities, opening transmission lines to other power generators, 

and the creation of an independent system operator (ISO). The key functions of an ISO 

are to ensure the reliability of the power grid and to organize a spot electricity market. 

The initiative for such restructuring was to introduce competition into the electricity 
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industry and lower prices and therefore benefit consumers. In the aftermath of 

California energy crisis, however, several states halted their plans for further 

restructuring. Texas is one of the few states that continued to deregulate the wholesale 

and retail markets after 2001. 

   Chapter IV analyzes market power in the balancing electricity market in Texas 

during peak hours from January 1, 2002 to December 31, 2004. Like many other 

deregulated electricity markets in the U.S., the Texas balancing market also adopts a 

multi-unit, uniform-pricing auction to clear the market.  Suppliers bid a supply schedule 

specifying the prices and quantities at which they are willing to offer electricity to the 

market. Because the aggregate demand curve in real-time is essentially price-inelastic, 

the availability of individual firms’ bids data allows us to compute the residual demand 

curves facing each of the two largest firms. As demonstrated by Wolak (2003), the 

inverse of the residual demand elasticity provides a measure of the firm’s unilateral 

market power. This chapter examines the market power of the two largest electricity 

suppliers in Texas. There are two main findings. First, the firm with the largest stake 

(TXU) in the balancing market has consistently higher market power than the other firm 

even though both firms are about equally sized in terms of installed capacity. Second, 

most price spikes during the sample period are consistent with at least one firm’s 

exercise of market power. The lack of bids from smaller suppliers appears to contribute 

to the largest firm’s market power and may exacerbate price spikes.  
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 CHAPTER II  
 

INVESTMENT UNDER UNCERTAINTY: AN ANALYSIS OF  

CAPACITY ADJUSTMENT IN THE PETROLEUM REFINING INDUSTRY 
 
 
 
II.1 Introduction 
 

A fundamental question in the investment literature centers around the effect of 

uncertainty on investment.  Does uncertainty encourage or discourage firms from 

making investments?  From a theoretical standpoint, the impact of uncertainty is 

ambiguous.  Abel (1983) shows that an increase in uncertainty in either output prices or 

input prices raises the expected returns on investment and thus leads to higher current 

investment.  Alternatively, recent models that emphasize the irreversibility of 

investment decisions such as Dixit and Pindyck (1994) predict that uncertainty 

depresses current investment by increasing the option value of delaying the investment.  

The empirical literature presents mixed results.  Studies using aggregate data generally 

report a negative relationship between uncertainty and investment, while studies using 

disaggregated industry data and producer-level data show a less consistent relationship.4 

A second related but distinct question concerns the nature of the capital 

adjustment process.  Is the adjustment process best characterized by a smooth 

adjustment process or a lumpy adjustment process?  Recent empirical papers focusing 

on the micro-adjustment patterns of plants and firms show that producers often change 

their capital stocks in a lumpy fashion (Cooper, Haltiwanger and Power (hereafter CHP, 

1999), Doms and Dunne (1998), and Nilsen and Schiantarelli (2003)).  Episodes of high 
                                                 
4 For a complete survey on recent development in the investment under uncertainty literature, see Carruth 
et al. (2000). 
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investment activity are interspersed with episodes of low or zero investment activity.  

The presence of lumpy investment episodes has been interpreted as providing support 

for theories of investment that rely on the irreversibility of investment, the indivisibility 

of investment projects, and/or the presence of nonconvex costs of adjustment.5   

In this chapter, we bring elements of both these literatures together by studying 

the relationship between uncertainty and investment in an industry characterized by 

infrequent capital adjustment -- the US petroleum refining industry. The chapter’s main 

contributions stem from the way uncertainty and capital adjustments are measured.  

There are two main measurement challenges in this exercise. First, how should 

uncertainty be defined and measured?  Most previous studies have used measures of 

macroeconomic uncertainty, stock market volatility, or model the uncertainty through a 

time series or an ARCH process. One of the drawbacks with these types of measures is 

that they often fail to capture the forward-looking nature of investment decisions. In this 

chapter, we take advantage of the petroleum futures data to construct forward-looking 

measures of uncertainty that are directly relevant to the capital adjustment decision of 

the refiner.  

Second, inferring actual capital adjustment from nominal investment series raises 

some difficult measurement issues.  The reported investment series are usually based on 

accounting data and these data series are plagued with measurement error and missing 

data items. In their discussion of shortcomings in the investment literature, Caballero, 

Engle, and Haltiwanger (CEH, 1995, p.1) state “Both right- and left-hand side variables 

are seldom measured properly.” Rather than rely on accounting data, this study uses 

                                                 
5 An early discussion of nonconvex adjustment costs is provided in Rothschild (1971). Dixit and Pindyck 
(1994) emphasize the role of irreversibilities along with uncertainty in the investment process.    
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actual capacity changes in refineries as our measure of investment and disinvestment 

episodes. Our data include annual observations on refining capacities for almost all US 

refineries in existence over the period 1985-2003.  These capacity-based measures 

provide a number of distinct advantages over accounting-based data.  The data measure 

only investment episodes that affect capacity expansion or contraction. These capacity-

based data omit maintenance-driven investment and non-capacity changing investments 

such as investment in pollution control equipment.6   In the case of environmental 

investments which are important in this industry, the timing of these kinds of 

investment is likely to be quite unrelated to the firm’s optimal capital adjustment 

problem discussed in the literature.  Using physical capacity measures avoids these 

types of measurement problems. We only know of two other studies using capacity 

changes to measure investment in the literature (Bell and Campa, 1997; Goolsbee and 

Gross, 2000). 

The first part of our empirical analysis documents capital adjustment patterns in 

the petroleum refining industry.  We find that capacity adjustments by refiners are very 

infrequent.  Over 74 percent of the year-to-year changes in capacity are zero and only 

2.4 percent of the investment episodes account for 50 percent of the total addition to 

capacity in the industry.  The second part of the empirical analysis explores the 

relationship between price uncertainty and capacity adjustment.  We use a hazard model 

of investment to estimate the effect of uncertainty on the probability a refinery adjusts 

its capacity. We find that uncertainty has a negative and statistically significant impact 

                                                 
6 Caballero (2000) emphasizes the importance of distinguishing between maintenance-driven and 
expansion-driven investments. 
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on capacity adjustment and the result is robust to a variety of adjustment thresholds and 

uncertainty measures.  

The remainder of this chapter proceeds as follows. Section II.2 describes some 

basic features of the refining industry and the data that we use in the chapter. In section 

II.3 we discuss our measures of uncertainty. Section II.4 provides a detailed statistical 

analysis and presents empirical findings. Section II.5 summarizes and concludes. 

II.2 Investment in the Refining Industry 

Constructing the capital stocks of firms and the changes in the capital stocks often 

involves difficult measurement issues.7  Typically, authors use accounting data on the 

current dollar value of purchased plant and equipment and apply aggregate depreciation 

rates and capital price indices to construct a constant-dollar firm-level capital stock. 

These standard approaches to capital measurement at the micro level contain a number 

of drawbacks.  On the one hand, many required data items for the creation of producer-

level capital stocks are often missing at the micro level.  For example, information on 

the economic depreciation of assets and the price of investment goods are typically 

unavailable at the producer level.  On the other hand, accounting data on new 

investment contain a mix of capital expenditures that includes expansion-driven 

spending, maintenance-driven spending and non-capacity enhancing investments such 

as pollution control and occupational safety equipment.  The latter investments may be 

mandated investments due to regulatory requirements. These mandated and 

maintenance-driven investments are driven by forces distinct from the firm’s decision to 

expand or contract its capacity to produce output.  Accounting data rarely allow the 

researcher to discriminate among these alternative investment categories.  Moreover, 
                                                 
7 See CEH (1995) and Goolsbee and Gross (2000) for a detailed discussion of measurement issues. 
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these accounting based data are influenced by tax code issues and usually represent a 

mix of historical and current dollar data series.  Economists prefer measures of the 

capital stock that are tied more directly to the physical capital stock or to the flow of 

services provided by the capital stock of the firm.  In this chapter, we reduce some of 

the accounting-related problems by studying changes in actual capacities in refineries.  

We use the petroleum refinery capacity data from the “Petroleum Supply Annual” 

published by the Energy Information Administration (EIA), Department of Energy.  

Beginning in 1980, the EIA implemented a mandatory annual survey of refinery 

capacities except for the period of 1995-1998 during which the survey was done 

biennially. It surveys both crude oil processing (distillation) capacity and downstream 

capacities for all operable refineries located in the 50 U.S. states, Puerto Rico, the 

Virgin Islands, Guam and other U.S. possessions. To fill in the missing data in 1995 and 

1997, we supplement the EIA data by a private survey of refining capacities in 1995 and 

1997 from the Oil & Gas Journal (OGJ).8  Because our primary uncertainty measure is 

derived from commodity futures market and unleaded gasoline futures markets did not 

exist before December 1984, our time period of analysis runs from 1985 to 2003. The 

final data set contains 225 refineries with a total of 3,324 refinery-year observations.  

As our basic measure of capital, we focus on the crude processing capacity 

(atmospheric distillation capacity) of refineries located in the 50 U.S. states.9  Refining 

capacity is measured in two ways -- as the barrels per stream day (B/SD) and as the 

barrels per calendar day (B/CD). The former is “the maximum number of barrels of 

input (mainly crude oil) that a distillation facility can process within a 24-hour period 

                                                 
8 The OGJ data only reports capacities measured in calendar days. We multiply the EIA 1994 data by the 
percentage change in OGJ data to obtain the 1995 data, and similarly for 1997 data.  
9 Crude distillation is the first and necessary procedure in a continuous refining process.  
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when running at full capacity under optimal crude and product slate conditions with no 

allowance for downtime.” The latter is “the amount of input that a distillation facility 

can process under usual operating conditions and allows limitations in downstream 

capability and downtime due to scheduled maintenance, turnaround, and slowdowns” 

(EIA, 2000, p 165-166).  Throughout the analysis, we use refining capacities expressed 

as barrels per stream day in this study because changes in stream day capacities require 

a physical change in the actual processing units. 

To investigate the investment-uncertainty relationship, we focus on the investment 

and disinvestment associated with refining capacity changes. We define capacity 

increases from year t to t+1 as our measure of investment and capacity reductions from 

year t to t+1 as our measured disinvestment. Refiners can increase their capacities 

through conventional project investments (e.g. adding a catalytic cracking unit) and 

through debottlenecking investments which are smaller investments that increase 

refining capacities but do not alter the number of processing units (EIA Staff report, 

1999).   Debottlenecking is usually accomplished at the same time as maintenance and 

repair. The additional capacity gained through debottlenecking is usually termed 

"capacity creep." Capacity reductions typically result from the shutdown of either a 

refinery or a distillation unit in a multi-unit refinery. Given that the debottlenecking can 

be done at minimum costs, one might expect refineries to frequently adjust their 

capacities.   However, as depicted below, this is not the case. 

Figure II.1 shows the aggregate of capacity additions and the industry-level 

investment for petroleum refining (SIC code 2911 and NAICS code 32411) from the 

Annual Survey of Manufacturers (ASM) over the sample period. To accommodate 
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construction lags, the ASM data is lagged for one year. It is striking to notice how the 

two series depart from each other.  Clearly a substantial component of the dollar amount 

of investment is not driven by capacity changes. Indeed, anecdotal evidence suggests 

that a significant fraction of the investment in the refining industry is due to product 

specification changes and the adoption of pollution control equipment in response to 

changes in environmental regulations. In a comment about building new refineries in 

the U.S., Bill Greehey, the CEO of an independent refiner Valero Energy Corporation, 

told the press that Valero would spend $1.7 billion on meeting federal gasoline 

requirements in 2004 and 2005 (as reported in San Antonio Express, July 31, 2004). 

According to the Census Bureau’s Current Industrial Report, pollution abatement 

capital expenditure accounts for 10-15 percent of the overall investment by the 

petroleum refining industry over the sample period. Investment in these mandated areas 

probably has little to do with the level of demand and demand uncertainty. 

Consequently, the use of accounting data on investment in this type of industry setting 

may be particularly misleading.    

 The micro-patterns of capacity changes in percentage terms are shown in Figure 

II.2.   The underlying data represent changes in capacity between year t and t+1 at the 

refinery level.  The large spike in the middle of the distribution indicates that 74 percent 

of the time refineries make no change to their capacity between two adjoining years. In 

addition, a significant number (11 percent) of non-zero observations are in the interval 

of (-0.05, +0.05). These patterns in capacity adjustment are even “lumpier” than those 

reported in Cooper, Haltiwanger and Power (1999), Doms and Dunne (1998), and 

Nilsen and Schiantarelli (2003).   For example, Nilsen and Schiantarelli report only 20 
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percent of their investment episodes in Norwegian manufacturing as being zero and 

Doms and Dunne (1998) state “…while a significant portion of investment occurs in a 

relatively small number of episodes, plants still invest in every period”.  Moreover, the 

additional capacity added in the industry is highly concentrated in a few investment 

episodes.  Only 2.4 percent of all investment episodes account for 50 percent of the 

addition to capacity in the industry.  These additions all occur in ongoing refineries 

since no new refineries have been built in the US during our period of analysis.  

Alternatively, the large reductions in capacity observed in the data are due largely to the 

closure of refineries.  83 refineries closed during the 1985-2003 period and these 

closing refineries account for 63 percent of the overall reduction of capacity observed in 

the data. 

While it is plausible that a refinery may increase its capacity by a small amount 

through debottlenecking and incremental investment activity, it is less likely that a 

refinery would disinvest its capacity by a small amount. We suspect that some of the 

small reductions in capacities might be a result of either reporting errors or may reflect 

the fact that refinery engineers adjust the estimates of the capacity levels at 

their refinery based upon their ongoing review of the data.10   To test the sensitivity of 

our results to the presence of these small adjustments in capacity, we employ three 

alternative thresholds to measure whether a change in capacity has occurred. The first 

one is the zero threshold: any capacity change above (below) zero is defined as 

investment (disinvestment). The second one is the 5 percent threshold: a capacity 

change greater than 5 percent is defined as investment and less than -5 percent is 

                                                 
10 We owe this point to Stephen Patterson, Survey Manager at EIA and Sidney Gale, Managing Director 
of EPIC Inc. 
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defined as disinvestment. The third one is the 10 percent threshold which is similarly 

defined as the 5 percent threshold. Figure II.3 depicts the fraction of refineries 

experiencing investment and disinvestment according to the three criteria over the 

1985-2003 period.  Comparing Figure II.1 with Figure II.3, it is not surprising one finds 

a clear linkage between the fraction of refineries investing and disinvesting and the 

aggregate capacity change. When a large fraction of refineries invest (e.g. in 1994 and 

1998), the aggregate capacity tends to rise; on the other hand, when a large fraction of 

refineries disinvest as in 1992, the aggregate capacity tends to fall. Doms and Dunne 

(1998) and CHP (1999) also document similar pattern using the Longitudinal Research 

Database (LRD).  

Theories emphasizing the role of irreversibility imply that a refiner will put off 

investment decisions at times of high uncertainty. To shed light on the timing of 

capacity adjustments, Figure II.4 presents the distribution of durations between two 

investment/disinvestment episodes using the zero and five percent thresholds. The 

duration is defined as the length (in years) of inaction period between two adjacent 

investment or disinvestment episodes in the same refinery.11 For instance, if a refinery 

invests in both year t and year t+1, the duration is zero. If it does nothing in year t+1 

but invests in year t and t+2, the duration is one.  Several points are worth making. First, 

consistent with the large number of zero observations in Figure II.2, the majority of the 

durations are above zero and the median duration for the 5 percent threshold series is 3 

years. Second, the fraction of refineries with very long durations between investment 

episodes is quite small.  Third, we do see a significant number of zero duration events.  

                                                 
11 Here we do not distinguish between an investment and a disinvestment.  
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This may be due to the fact that refinery investment episodes may span calendar years 

in the data.  In this case, refiners would report back-to-back years of changes in capacity. 

II.3 Measuring uncertainty 

A major challenge in the empirical literature is how to measure uncertainty in the 

investment climate faced by firms.  A measure of uncertainty should gauge producers’ 

assessments of the distribution of future returns of investment. Attempts to construct 

uncertainty indicators generally fall into one of the three categories. The first is to 

construct an unconditional or conditional volatility from a macroeconomic aggregate 

(for example, exchange rate, inflation, and output growth) or price series in particular 

industries. This is the approach typically used in papers investigating macroeconomic 

uncertainty or industry-level uncertainty (see Huizinga (1993), Favero et al (1994), Bell 

and Campa (1997), Ghosal and Loungani (1996), Henley et al, (2003) among others). In 

microeconomics settings, two problems are associated with this approach. First, the 

volatility measure obtained from product prices can at best capture the uncertainty in 

one aspect of a firm’s or an industry’s business environment. For example, for a 

processing industry, the uncertainty in the cost of raw materials is probably equally 

important as the uncertainty in product prices. Second, the uncertainty measure often 

fails to capture the forward-looking nature of investment decisions. Some authors (e.g. 

Favero et al, (1994), Ghosal and Loungani (1996)) construct uncertainty measures from 

forecasting equations. Apart from the generated regressors’ problem, this method 

implicitly assumes that all firms base their forecasts on the same model as the one used 

by the econometrician, which may be problematic.  
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The second approach, introduced by Leahy and Whited (1996), is to use the 

standard deviation of firms’ daily stock returns. Using a panel of publicly listed U.S. 

companies, Leahy and Whited (1996) find that uncertainty measures (the variance of 

daily stock returns) negatively affects investment. Bloom et al. (2001) using UK data 

report a similar result. In contrast, Henley et al. (2003) find that the excess stock return 

volatility appears to stimulate investment, although the industry-wide uncertainty 

(measured as a moving standard deviation of sector producer index) depresses it. The 

advantage of a stock return based uncertainty measure is that it is forward-looking, 

firm-specific, and arguably should be able to capture all aspects of a firm’s business 

environment that may influence investment decisions. The disadvantage is that these 

measures are a priori limited to publicly listed firms. In addition, stock price volatility 

may be influenced by not only fundamentals but also bubbles and fads, or “excess 

volatility” (see Shiller, 2003).  

The third approach is to directly survey managers’ expectations about future 

demand growth and to construct an uncertainty measure (typically standard deviation) 

from the subjective probability distribution based on the survey. We are only aware of a 

couple of papers that have used this approach. Building upon a survey of Italian firms, 

Guiso and Parigi (1999) find that higher demand uncertainty reduces investment and the 

negative effect is stronger for firms with substantial market power, a result consistent 

with Caballero (1991). Along the same line, Patillo (1998) finds uncertainty (also 

measured from survey data) raises the trigger value of investment in a panel of 

Ghanaian firms. Clearly, direct survey-based measures of the investment climate offer 
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an attractive alternative to derived measures. The major problem is that the data are 

often costly and difficult to obtain.  

In this study, we explore a novel approach by making use of commodity 

derivatives trading data. The refining process involves distillation which "cracks" crude 

oil into different components to make petroleum products such as gasoline and heating 

oil. Crude oil, gasoline and heating oil are all actively traded in the futures market in the 

New York Mercantile Exchange (NYMEX). Our uncertainty indicator is based on a 

daily forward refining margin (or crack spread, denoted as FRM), which is defined as  

FRMt = 2*FGO
T,t + 1*FHO

T,t  - 3*FCO
T,t                                                                  (1) 

where GO, HO, and CO stands for unleaded gasoline, heating oil, and crude oil 

respectively. F(.)
T,t  denotes the price of the futures contract that is traded at time t and 

matures at month T. 12   The 3-2-1 refining margin reflects the gross profit from 

processing three barrels of crude oil into two barrels of unleaded gasoline and one barrel 

of heating oil. Because the 3:2:1 ratio approximates the real-world ratio of refinery 

output, it is commonly used in the oil industry to construct the refining margin. A recent 

EIA report (EIA, 2002, p. 21-22) notes that “Refinery managers are more concerned 

about the difference between their input and output prices than about the level of prices. 

Refiners’ profits are tied directly to the spread, or difference, between the price of crude 

oil and the prices of refined products. Because refiners can reliably predict their costs 

other than crude oil, the spread is their major uncertainty.”  

Theories on the price determination of storable commodities suggest that futures 

prices (FT,t) can be viewed as market participants’ forecasts of spot prices based on all 

the information available at time t. Fama and French (1987, p.55) discuss two main 
                                                 
12 The deliveries of all petroleum futures are ratable over the entire delivery month (NYMEX website). 
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interpretations of commodity futures prices.  The theory of storage developed by 

Working (1949) models the future prices (FT,t) as the sum of spot prices (S t), foregone 

interest and storage costs from t to T, and a convenience yield from physically holding 

inventory.13  An alternative view explains the futures price in terms of a forecast of 

future spot price and an expected risk premium. In a discussion about forecasting 

performance of commodity futures prices, Tomek (1997) points out that although 

futures prices may not accurately predict future spot prices, they do as well or better 

than econometric models.  Specific to the petroleum futures market, Ma (1989) 

compares the forecasting performance of petroleum futures (crude oil, heating oil, and 

leaded gasoline) markets with a variety of widely-used time-series models including 

random walk, ARIMA, and VAR models. She finds that, on average, forecasts based on 

futures markets outperform econometric models for all the three commodities. Fujihara 

and Mougoue (1997) provide evidence that petroleum futures prices are unbiased 

predictors of the future spot prices.  Given these findings, we believe that the forward 

refining margin defined in Equation (1) should proxy market participants’ expected 

gross margin for the industry in T based on current information.   

Analogous to papers using the standard deviation of stock returns, this essay uses 

the annual standard deviation of the daily forward refining margin as our uncertainty 

indicator. The NYMEX began trading crude oil futures in March 1983, unleaded 

gasoline futures in December 1984, and heating oil futures in January 1980. The daily 

forward refining margin of (1) is calculated using daily close prices of all the three 

commodity contracts with 6 months time-to-maturity. The 6-month maturity is chosen 

                                                 
13 The convenience yield refers to a nonmonetary return to physical ownership of the commodity because 
physically holding an inventory provides insurance to producers against supply disruption. See McDonald 
(2003, p. 174). 
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because it is the longest time horizon with which we can obtain a consistent data series. 

The annual measures of forward refining margin (Margin) and the associated 

uncertainty measure (σFRM)) are the mean and the standard deviation of daily forward 

margins as in (1) over a 12-month window and deflated with the implicit GDP deflator 

from the Bureau of Economic Analysis (BEA). Specifically,  

Margin= (                                                                                   (1.a) NFRMN

t
t /)

1∑ =

and σFRM=
1

)(
1

2

−

−∑ −

N
MARGINFRMN

t
t

                                                            (1.b) 

where N is the number of trading days in a given year. 

Figure II.5 plots the time series of the Margin and σFRM. The σFRM series appear to 

be heavily influenced by geopolitical events in the Middle East. The spike in 1990 is 

related to the first Gulf-War. Uncertainty rises again in 2003 surrounding the second 

Gulf War. Given the importance of Persian Gulf in the world oil supply, it is not 

surprising that investors are less certain about future refining margins during periods 

where war threatens important supply sources.  

II.4 A Competing Risks Analysis 

A. The Empirical Framework  

The standard approach in the literature is to estimate a reduced form investment 

rate model. Given our data features episodes of investment and disinvestment 

interspersed with periods of investment inactivity, we make use of econometric 

techniques for survival analysis and estimate the effect of uncertainty on the timing 

capacity adjustment. The survival time variable measures the time that a refinery stays 

in an inaction regime. Investment and disinvestment are defined as two competing 
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“failure” events. Most refineries have multiple investment or disinvestment episodes 

during the sample period and we reset an individual refinery’s clock to zero after each 

episode. 

Let T denote the length of survival time (a refinery stays in an inaction regime) 

with the cumulative probability distribution function F(t). The probability that a refinery 

stays in an inaction regime longer than T is given by the survival function S(t)=1-

F(t)=Pr(T>t). The hazard function gives the conditional probability that a refinery will 

invest or disinvest in the interval of ∆t after it stays in inaction until t.  Following the 

notation in Kiefer (1988), the hazard function can be written as 

t
tTttTtprt

∆
≥∆+<≤

=
→∆

)|()( lim
0

λ .                                                            (2) 

Using the hazard function, the survival function is written as  )(tS

])(exp[)](exp[)(
0∫−=Λ−=
t

dssttS λ                                               (3) 

where  is the integrated hazard function. dsst
t

)()(
0
λ∫=Λ

To distinguish between the two types of failure events (i.e. investment and 

disinvestment), we employ a competing risks framework. The competing risks approach 

allows for different estimates of the effects of the explanatory variables and different 

baseline hazard for each type of failure event.  This is important in this application 

because we expect our explanatory variables to have very different effects on the 

probability a refiner exits the inactivity through an investment episode as opposed to a 

disinvestment episode. For example, an expected increase in future profitability should 

have a positive effect on the conditional probability of investment and a negative effect 
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on disinvestment. Treatment of the two competing risks as a single risk of capacity 

change would blur the effect of explanatory variables.  

Narendranathan and Stewart (1991) provide a detailed discussion of the 

competing risks approach.  In our case, we have two competing risks, investment and 

disinvestment, denoted as i and d, respectively.  Narendranathan and Stewart (1991) 

show that the aggregate hazard function can be written as the sum of the “cause-

specific” hazards 

λ(t)= λi(t)+ λd(t)                                                                                                      (4) 

and the survivor function can be written as 

 . (5) ]))()((exp[))]()((exp[)](exp[)(
00 ∫∫ +−=Λ+Λ−=Λ−=
t

di

t

di dssdssttttS λλ

Under the assumption that the investment and disinvestment risks are independent, 

the model can be easily estimated and reduces down to estimating each of the “cause-

specific” hazards separately and censoring the observations of the competing risk.  For 

example, in our case we estimate a single risk hazard model for investment and treat all 

spells that end through disinvestment as censored observations.  A similar procedure is 

done when examining the disinvestment hazard.  In the competing risk framework, our 

cause-specific proportional hazards are  

)()'exp(),,,( 00 txxt iiii λβλβλ =                                                                             (6) 

)()'exp(),,,( 00 txxt dddd λβλβλ =                                                                            (7) 

where λi0 and λd0 denote the “baseline” hazard functions corresponding to zero values of 

the explanatory variables for the investment and disinvestment hazards. βi and βd are the 

parameters to be estimated. x is a vector of explanatory variables that are the same 
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across both equations. The effect of the x’s on the conditional probability of ending an 

inactivity spell is to shift the baseline hazard proportionally (Kiefer, 1988). 

The variables contained in x include both the Margin and Uncertainty variables 

discussed above and a number of additional variables. We control for the overall 

capacity utilization rate in the refining district to proxy for supply conditions in an area. 

14 The variable Urate is the ratio of average daily input (crude) to average daily capacity.  

To avoid endogeneity problems, Urate enters equation (8) and (9) with one year’s lag.  

We expect that if supply conditions are tight in an area this may increase (decrease) the 

probability of an investment (disinvestment) episode occurring. Since, Doms and Dunne 

(1998) find that smaller plants and plants undergoing ownership change have lumpier 

investment patterns, we control for these factors as well. Ownchg is a dummy variable 

that is equal to 1 within the first 2 years of ownership change and zero otherwise.  Small 

is another dummy variable that is equal to 1 for refineries with capacity less than 50,000 

B/SD and zero otherwise. Finally, a set of dummy variables for refining districts are 

also included to control for geographic and institutional differences across regions. 

The recent literature on the cost of capital adjustments (CHP, 1999) suggests that 

positive duration dependence is consistent with non-convex forms of adjustment costs 

while convex adjustment costs implies no duration dependence. The reason is that under 

the assumption of non-convex costs of adjustment (say, a fixed cost), the likelihood of 

net gains from a new investment being able to justify the fixed cost increases in the time 

since the last investment. In contrast, the best response to convex form of adjustment 

cost is to invest whenever there is a capital shortage. The Weibull model is a natural 

                                                 
14 A complete description and map for refining districts can be found in EIA’s annual publication 
Petroleum Supply Annual.  
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choice for testing duration dependence. The baseline hazard for the Weibull model has 

the following form (the subscripts are dropped for ease of exposition): 

1
0 )( −= ρρλ tt                                                                                                  (8) 

When ρ=1, the Weibull model reduces to an exponential model with constant hazard. 

When ρ >1, the Weibull model has positive duration dependence — the hazard 

increases in the length of the duration. When ρ <1, the hazard has negative duration 

dependence.  

In an attempt to account for the unobserved heterogeneity at the refinery level, we 

assume a multiplicative error term (frailty) v associated with each hazard specification  

νλβλβλ )()'exp(),,,( 00 txxt =                                                                            (9) 

The frailty (v) is assumed to be gamma distributed with mean one and variance θ which 

is a standard assumption in this approach. Whether the unobserved heterogeneity is 

significant can be tested by testing whether the parameter θ is zero. When the null 

hypothesis is true, the model reduces to a model without frailty. We allow the frailties 

to be shared over the same refinery (a shared-frailty model).  

Kiefer (1988, p 665) shows that equation (9) can be rewritten in the form of 

vxt +=− βρ 'ln .                                                                                    (10) 

Thus, the effect of x is to directly prolong or shorten the survival time t by a factor exp(-

x’β/ρ) depending on whether the factor is greater or less than one.  

B. Hazard Model Results 

For the sake of robustness, we calculate three pairs of annual Margin and 

Uncertainty series by alternating the calculation window. The first pair (Margin1 and 

σFRM1 shown in Figure II.5) is simply the mean and the standard deviation of daily 
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margins in year t. To allow for construction lags, we build 6- and 3- month lags in the 

second (Margin2 and σFRM2) and the third pairs (Margin3 and σFRM3), respectively. 

Margin2 and σFRM2 are the mean and standard deviation of daily margins from July of 

year t-1 to June of year t, while Margin3 and σFRM3 are similarly defined from October 

of year t-1 to September of year t. All margins and uncertainty measures are deflated 

with the implicit GDP deflator from the Bureau of Economic Analysis (BEA).  

The estimation results with the 5 percent investment threshold and alternative 

uncertainty measures are reported in Table II.2. In the investment column, the estimated 

coefficients for all three uncertainty measures are negative and significant at the 5 

percent level. Take the estimated coefficient in Panel B as an example.  A 10 percent 

increase in σFRM2 lowers the conditional probability of ending an inaction spell with an 

investment episode by approximately 5 percent, or increases the length of the no-

investment spell by 4 percent.15 As expected, the margin variable has a significantly 

positive effect on the investment hazard. A 10 percent increase in Margin2 raises the 

estimated conditional probability of investment by 13 percent, which is equivalent to 

decreasing the length of no-investment spell by 10 percent. With respect to the other 

variables in the investment hazard, the estimated coefficient of Urate is not significant 

in the investment hazard nor do ownership changes appear to affect the investment 

hazard.  The hazard is lower for smaller refineries indicating longer durations between 

investment episodes.  

In the disinvestment hazard, the coefficients for uncertainty measures are also 

negative, although only significant at the 5 percent level in Panel A and at the 10 

percent level in Panel B. The “real option” theory also implies a negative relationship 
                                                 
15 The model predicted the median length of no-investment inaction spells to be 7.6 years. 
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between disinvestment and uncertainty. While the Margin coefficient becomes 

insignificant in the disinvestment hazard, the Urate coefficient is highly significant and 

negative as one would expect. When the utilization rate is high, refineries are less likely 

to disinvest. Not surprisingly, small refineries have a higher hazard of disinvestment.   

The test of duration dependence indicates that ρ is significantly greater than 1 in 

both risks, thus providing evidence of positive duration dependence. Again, take the 

estimated ρ for the investment hazard in Panel B of Table II.2 as an example, after five 

years, a refinery is 40 percent more likely to invest than after 1 year. It is important to 

note that this result is obtained after controlling covariates that reflect overall market 

conditions and might influence the duration dependence (namely, margin, utilization 

rate, and uncertainty) and therefore is supportive of models with non-convex adjustment 

costs.  Finally, the log likelihood ratio test for frailty suggests that there is a statistically 

significant level of unobserved heterogeneity and the frailty model specification is 

necessary.   

To check whether the results are sensitive to our threshold definition of 

investment, we report a set of results using three different thresholds of investment in 

Table II.3.  The top panel uses the zero threshold definition and this definition simply 

makes use of the raw changes in capacity to measure investment episodes.  Recall the 

five and ten percent thresholds require a change of five and ten percent or more, 

respectively, to trigger an investment/disinvestment episode. All three panels in Table 

II.3 are consistent with the findings in Table II.2.  The uncertainty measure is negative 

and statistically significant in the investment hazard across all three thresholds. 

Moreover, the results for the other variables in the model appear to have the same 
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pattern across the alternative thresholds.  Clearly, the results from Tables II.2 and II.3 

indicate that hazard models differ markedly across the investments and disinvestments 

risks.  Narendranathan and Stewart (1991, 1993) present a likelihood ratio test where 

one compares the likelihoods under the competing risks model to the likelihood under a 

single risk model.  The test is effectively comparing the equality of the estimated 

parameters across the investment and disinvestment hazards. We perform this test and, 

not surprisingly, reject the null hypothesis of no difference in the parameters across 

competing risks hazards at the 1 percent significance level. 

Throughout this analysis, we have used the standard deviation in the future 

refining margin as our measure of uncertainty.  We think this appropriate as the refining 

margin is the principal determinant of profitability in the sector.  However, our data 

allow us to compare the refining margin measure to the uncertainty measures 

constructed based on the specific forward markets for crude oil and gasoline products.  

Individually these measures reflect input price uncertainty (σCO) and output price 

uncertainty (σGO), respectively.  The gasoline and crude price uncertainty variables in 

year t are the standard deviations of daily close prices of gasoline and crude futures 

calculated from July of year t-1 to June of year t.  These measures are constructed in a 

comparable fashion to our second definition of the refining margin used in Panel B of 

Table II.2.   Table II.4 presents the results of the hazard model estimated with the 

individual measures of input and output price uncertainty.  The first column reproduces 

the results from refining margin hazard model in Table II.3 and second two columns 

present the results from using uncertainty measures based on the forward markets for 

gasoline and crude oil, respectively.  The results are clear.  The individual measures of 
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price uncertainty in the gasoline and crude markets do not have a statistically significant 

effect on either the investment or disinvestment hazards.  Only when combined as a 

refining margin variable, do they matter in the investment decision.  

The last column of Table II.4 presents the results of a model where we replace the 

refining margin measure of uncertainty with a stock market index based measure of 

uncertainty. We construct an uncertainty measures (σOI) based on a stock market index 

that is designed to measure the financial performance of publicly traded oil companies. 

The oil index (symbol: XOI) is comprised of 13 major oil companies (including 

independent refiners) and is price weighted. σOI is the annual standard deviation of the 

daily return of this oil index.  Again, the results are clear.  Across both the investment 

and disinvestment hazards and across the alternative thresholds, there is no statistically 

significant effect of stock market uncertainty on the investment decision. 

The last exercise we perform presents some alternative specifications for our 

empirical model.  We present two accelerated failure time models that allow for 

nonmontonic hazards – the lognormal and log-logistic models.  The Weibull model 

presented throughout the analysis allows for increasing or decreasing hazards, however, 

it assumes the function is monotonically increasing or decreasing in time. In contrast, 

the hazard functions of the lognormal and log-logistic models can both first increase 

then decrease in time. The log-logistic hazard model can be monotonically decreasing 

only if the shape parameter is equal to 1. Table II.5 presents the results of these 

alternative accelerated failure time specifications.  The coefficients in these models are 

interpreted quite differently than the proportional hazard models.  A positive coefficient 

in an accelerated failure time models means that time to failure is delayed while a 
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negative coefficient means that time to failure in accelerated.   The results across both 

accelerated failure models are quite similar and consistent with the Weibull model 

(presented in column (1) of the table).  Looking at the investment hazard, an increase in 

the uncertainty of the refining margin delays the ending of a spell while an increase in 

the margin accelerates the ending of a spell.  With regard to disinvestment hazard, the 

effects of the uncertainty and the margin remain statistically not significant in the 

accelerated failure time models.16 The results are consistent across all three investment 

episodes. The estimated hazard shape parameters in the log-logistic models are clearly 

less than 1, rejecting the possibility of negative duration dependence. Both the 

lognormal and log-logistic models suggest positive duration dependence followed by 

negative duration dependence. At face value, this seems to contradict with the results 

from the Weibull model. However, given the highly significant frailty effect in the 

Weibull model, it is possible that an individual refinery’s investment (disinvestment) 

hazard continues to rise over time, but the frailty effect causes the population hazard to 

fall after some time. Evidently, although the frailty effects in the lognormal and log-

logistic models are statistically significant, they are much stronger in the Weibull model.    

II.5 Conclusion 

 In this chapter, we have examined the role of uncertainty in the investment 

decisions of refineries in the United States.  There are two main contributions of the 

essay.  First, the essay uses forward measures from financial markets on commodities to 

construct estimates of market uncertainty.  These measures of commodity price 

uncertainty reflect uncertainties in both input and output prices faced by the refiner.  
                                                 
16 Although not reported, the coefficient of capacity utilization rate in the disinvestment hazard remains 
highly significant in the accelerated failure time models.  

 29



   

Refiners’ decisions to make investments are clearly related to these measures of 

uncertainty.  As uncertainty rises, refiners delay their investment decisions. This finding 

agrees with a number of papers that emphasize the option-value of waiting to invest. 

Second, we use data on changes in the actual capacity of refiners to measure investment 

episodes.  We believe that these data offer a cleaner assessment of the capital stock 

changes of producers than those based on accounting type data.  We also show that our 

results are very robust to investment threshold used in the analysis and model 

specifications. In addition, the data illustrate that investment episodes are quite lumpy in 

the refining industry and this type of pattern in the data in consistent with producers that 

face non-convex costs of adjustments.  This last point, however, needs to be more fully 

developed as the focus of the essay has been on examining the relationship between 

uncertainty and investment and not on exploring the nature of adjustment costs in the 

industry.  
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Figure II.1  
 Aggregate Investment and Capacity Additions 
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Data Source: 
(1) Capacity addition is from Petroleum Supply Annual of EIA, various issues. 
(2) ASM 1985-1996 investment is from NBER “Manufacturing Industry Productivity Database” 

collected by Bartelsman, Becker, Gray. 1997-2003 data is from the Annual Survey of 
Manufacturers, Census Bureau and is deflated the price index of private nonresidential structures 
investment in the Economic Report to the President.   

 
 
 
Figure II.2 

Refinery Capacity Change Distribution 
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Total number of observations: 3324.  
The far left bar (-1) represents complete shut-down refineries. 
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Figure II.3_A 
Fraction of Investment  
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Notes: Investment1 (Investment2, Investment3) is a capacity change greater than 0 (5%, 10%).  
 
 
 
 
 
 
 
 
Figure II.3_B 

Fraction of Disinvestment 
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Notes: Disinvestment1 (Disinvestment2, Disinvestment3) is a capacity change less than 0 (-5%, -10%).  
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Figure II.4 
 

Distribution of Durations between Two Capacity Change Episodes 
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Duration 1: Years of duration between two capacity change episodes with zero threshold.  
Duration2: Years of duration between two capacity change episodes with 5% threshold.  
 
 
 
 
Figure II.5 

Forward Refining Margin and Uncertainty Measure 
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Table II.1 

Summary Statistics 

 Mean Std. Deviation Minimum Maximum 

Urate1 (%) 86.98 7.66 60.71 102.80 

Margin1 ($/B) 4.75 0.57 3.66 6.03 

Margin2 ($/B) 4.72 0.64 3.57 6.05 

Margin3 ($/B) 4.72 0.58 3.48 5.96 

σFRM1, ($/B) 0.64 0.30 0.25 1.57 

σFRM2, ($/B) 0.59 0.24 0.22 1.24 

σFRM3 ($/B) 0.62 0.24 0.21 1.15 

σGO ($/Gallon) 0.063 0.049 0.017 0.213 

σCO ($/B) 2.242 1.876 0.580 8.326 

σOI (%) 1.15 0.39 0.62 2.14 
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Table II. 2       Estimation Result with 5% Threshold and Alternative Uncertainty 
Measures  

 Investment Disinvestment 
Panel A 

Margin1 0.187* 
(0.104) 

-0.192 
(0.148) 

σFRM1 -0.543*** 
(0.207) 

-0.707** 
(0.354) 

Urate -0.012 
(0.010) 

-0.069*** 
(0.016) 

Ownchg -0.036 
(0.205) 

0.007 
(0.331) 

Small -0.406*** 
(0.157) 

2.248*** 
(0.299) 

ρ (H0: ρ=1) 1.187*** 
(0.060) 

1.505*** 
(0.116) 

LR test (H0: θ=0),  2χ 16.65*** 12.03*** 

No of spells 546 288 
Log likelihood -694.48 -319.68 

Panel B 

Margin2 0.267*** 
(0.102) 

0.025 
(0.143) 

σFRM2 -0.822*** 
(0.266) 

-0.679* 
(0.411) 

Urate -0.011 
(0.010) 

-0.067*** 
(0.016) 

Ownchg -0.064 
(0.205) 

-0.030 
(0.331) 

Small -0.412*** 
(0.159) 

2.312*** 
(0.303) 

ρ (H0: ρ=1) 1.209** 
(0.060) 

1.521*** 
(0.113) 

LR test (H0: θ=0):  2χ 18.23*** 13.68*** 
No. of spells 546 288 
Log likelihood -692.91 -322.00 

Panel C 

Margin3 0.237** 
(0.106) 

0.085 
(0.149) 

σFRM3 -0.631** 
(0.251) 

-0.467 
(0.384) 

Urate -0.013 
(0.010) 

-0.067*** 
(0.016) 

Ownchg -0.051 
(0.205) 

-0.029 
(0.331) 

Small -0.401** 
(0.158) 

2.295*** 
(0.303) 

ρ (H0: ρ=1) 1.192** 
(0.060) 

1.489*** 
(0.114) 

LR test (H0: θ=0),  2χ 16.93*** 12.78*** 
No. of spells 546 288 
Log likelihood -694.47 -322.19 

Notes: (1) Regional dummies are included but not reported. (2) Standard errors are reported in parenthesis. 
(3) *** (**, *) denotes significance at the 1 (5, 10) percent level. 
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Table II.3        Estimation Result with Different Threshold Values of Investment 

 Investment Disinvestment 
Zero threshold 

Margin2 0.179** 
(0.077) 

0.043 
(0.125) 

σFRM2 -0.699*** 
(0.193) 

-0.300 
(0.329) 

Urate 0.016** 
(0.007) 

-0.061*** 
(0.013) 

Ownchg 0.126 
(0.136) 

0.085 
(0.258) 

Small -0.957*** 
(-7.41) 

1.397*** 
(0.229) 

ρ (H0: ρ=1) 1.212*** 
(0.041) 

1.528 
(0.096) 

LR test (H0: θ=0),  2χ 32.78*** 14.65*** 
No. of spells 844 348 
Log likelihood -1095.75 -425.15 

5% threshold 

Margin2 0.267*** 
(0.102) 

0.025 
(0.143) 

σFRM2 -0.822*** 
(0.266) 

-0.679* 
(0.411) 

Urate -0.011 
(0.010) 

-0.067*** 
(0.016) 

Ownchg -0.064 
(0.205) 

-0.030 
(0.331) 

Small -0.412*** 
(0.159) 

2.312*** 
(0.303) 

ρ (H0: ρ=1) 1.209*** 
(0.060) 

1.521*** 
(0.113) 

LR test (H0: θ=0),  2χ 18.23*** 13.68*** 
No. of spells 546 288 
Log likelihood -692.91 -322.00 

10% threshold 

Margin2 0.376*** 
(0.130) 

-0.021 
(0.156) 

σFRM2 -0.929*** 
(0.346) 

-0.666 
(0.448) 

Urate -0.024* 
(0.013) 

-0.070*** 
(0.017) 

Ownchg -0.021* 
(0.266) 

-0.250 
(0.386) 

Small 0.015* 
(0.216) 

2.831*** 
(0.354) 

ρ (H0: ρ=1) 1.177** 
(0.074) 

1.606*** 
(0.128) 

LR test (H0: θ=0),  2χ 23.07*** 13.80*** 
No. of spells 410 268 
Log likelihood -485.33 -273.97 

Notes: (1) Regional dummies are included but not reported. (2) Standard errors are reported in parenthesis. 
(3) *** (**, *) denotes significance at the 1 (5, 10) percent level. 
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Table II.5     Empirical Result Using Alternative Models 

 

 Investment Disinvestment 

 Weibull Log 
Normal 

Log 
Logistic Weibull Log 

Normal 
Log 

Logistic 

 Zero Threshold Zero Threshold 

Margin2 0.179** 
(0.077) 

-0.203*** 
( .056) 

-0.239*** 
(0.061) 

0.043 
(0.125) 

-0.073 
(0.099) 

-0.052 
(0.094) 

σFRM2 -0.699*** 
(.193) 

0.708*** 
(0.156) 

0.795*** 
(0.167) 

-0.300 
(0.329) 

0.224 
(0.291) 

0.253 
(0.267) 

Shape 
Parameters 

1.212*** 
(0.041) 

0.913*** 
(0.031) 

0.549*** 
(0.020) 

1.525*** 
(0.096) 

1.077 
(0.077) 

0.583*** 
(0.048) 

2χ  (H0: θ=0) 32.78*** 18.88*** 9.45*** 14.65*** 2.10* 4.31** 

Log Likelihood -1095.75 -1029.35 -1050.64 -425.15 -429.27 -429.95 

 5% Threshold 5% Threshold 

Margin2 0.267*** 
(0.102) 

-0.283*** 
(0.083) 

-0.318*** 
(0.085) 

0.025 
(0.143) 

0.040 
(0.127) 

0.021 
(0.113) 

σFRM2 -0.822*** 
(0.266) 

0.793*** 
(0.240) 

0.878*** 
(0.242) 

-0.679* 
(0.411) 

0.320 
(0.376) 

0.437 
(0.325) 

Shape 
Parameters 

1.209*** 
(0.06) 

1.121** 
(0.055) 

0.658*** 
(0.037) 

1.530*** 
(0.113) 

1.208** 
(0.113) 

0.601*** 
(0.063) 

2χ  (H0: θ=0) 18.23*** 7.27*** 7.19*** 13.68*** 1.64 4.34** 

Log Likelihood -692.91 -675.19 -685.74 -322.00 -334.57 -330.42 

 10% Threshold 10% Threshold 

Margin2 0.376*** 
(0.130) 

-0.388*** 
(0.113) 

-0.395*** 
(0.112) 

-0.021 
(0.156) 

0.126 
(0.135) 

0.0762 
(0.118) 

σFRM2 -0.929*** 
(0.346) 

0.897*** 
(0.334) 

0.928*** 
(0.322) 

-0.666 
(0.448) 

0.374 
(0.393) 

0.421 
(0.334) 

Shape 
Parameters 

1.177** 
(0.074) 

1.319*** 
(0.092) 

0.739*** 
(0.058) 

1.614*** 
(0.128) 

1.167** 
(0.12) 

0.565*** 
(0.064) 

2χ  (H0: θ=0) 23.07*** 13.15*** 15.20*** 13.80*** 1.68* 4.50** 

Log Likelihood -485.33 -474.66 -481.03 -273.97 -288.29 -282.39 

Notes:  (1) Standard errors are in parenthesis. (2) *** (**, *) denotes significance at the 1 (5, 10) percent 
level.   (3) The significance levels of ancillary parameters (ρ, δ, γ) are based on logarithm transformations.   
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CHAPTER III 

WEATHER, STORAGE, AND NATURAL GAS PRICE DYNAMICS:  

FUNDAMENTALS AND VOLATILITY 

III.1 Introduction 

Why are asset prices volatile? There has been considerable discussion on whether 

market fundamentals drive asset price volatility. The efficient markets theory suggests 

that asset prices always incorporate the best information about fundamental values and 

the volatility is driven by news about these fundamentals. In contrast, the behavioral 

finance theory asserts that asset prices can change without fundamental reasons and the 

volatility is induced by anomalies such as “animal spirits” and mass psychology.1 

This essay studies the short-term price dynamics of the natural gas futures market 

and examines how the prices and volatility are influenced by an important fundamental 

factor — weather, and to a lesser extent storage. Weather affects about fifty percent of 

the U.S. natural gas demand. This includes space heating in residential and commercial 

sectors, and those used by the electric power sector.2 As shown in figure III.1, the 

industrial demand of natural gas does not vary much in the short-term and even if it 

does de facto, the information is not available to the market. Thus, weather is an 

extremely important factor that causes short-term natural gas demand variation and 

weather information reaches the market on a highly frequent basis (daily, even hourly). 

In a competitive commodity market where the demand is highly variable, storage is 
                                                 
1 For a good survey of the literature about the evolvement from efficient markets theory to behavioral 
finance, see Shiller (2003). Some recent works in this area include Anderson et al. (2003), Boudoukh et al. 
(2003). 
2 According to data from the Energy Information Administration, Department of Energy, in 2001, the 
annual natural gas deliveries to residential,  commercial, and electric power sectors are 4809 Bcf, 3037 
Bcf, and 2686 Bcf respectively, accounting for 25%, 16%, and 14% of total natural gas consumption of 
that year.  
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crucial in balancing demand and supply conditions. The weekly natural gas storage 

report has been released since January 1994. Information about the weekly change of 

natural gas storage levels can shift the distribution of daily prices and for a given 

storage level, unexpected weather changes may cause price changes and create 

uncertainty about future supply conditions. Empirically, this implies that weather 

shocks may result in high conditional volatilities in both spot and futures markets.  

Anecdotal evidence on the influence of weather on energy markets appears 

frequently in public media and industry publications such as Reuters’ Financial news, 

Dow Jones Newswires. The following was reported in USA Today on Jan 14, 2005:  

“Prices for oil, natural gas, heating oil and other energy-related commodities all 
jumped Thursday as forecasts for colder weather in many parts of the USA this 
weekend led to predictions of greater energy demand…. Natural gas prices also soared 
Thursday, rising 50 cents, or 8.4%, to $6.445 for a million British thermal units.” 

 

The Existing academic literature generally focuses on the importance of weather 

changes to energy demand including the demand for natural gas (see Bower and Bower 

(1985), Elkhafif (1996), and Considine (2000)). Little effort has been devoted to 

quantifying the weather effect on short-term natural gas price dynamics. In particular, I 

could identify no studies examining how the volatility of natural gas prices is affected 

by weather. Although natural gas is one of the most heavily traded commodities in the 

U.S. futures market, academic studies on the determinants of price volatility in this 

market are rather limited. Pindyck (2004) has tested whether there is a significant trend 

in volatility and whether the demise of Enron increased volatility in natural gas and oil 

markets. He finds a statistically significant and positive time trend for natural gas. But 

the trend is too small to have any economic significance. The Enron event appears to 
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have no significant impact on natural gas volatility. Murry and Zhu (2004) also study 

the impact of the EnronOnline (EOL) — Enron’s online trading system — on the 

natural gas cash and futures market. They find no evidence that EOL reduced volatility 

in most of their price series data. Examining intraday volatility, Linn and Zhu (2004) 

show that natural gas price volatility is considerably greater around the time when the 

natural gas storage report is released. They attribute this phenomenon to the 

heterogeneity in the interpretation of key data describing the state of market. Rather 

than rely on commodity derivatives data, Ewing et al. (2002) examine the volatility 

transmission between two stock price indexes consisting of major companies in the oil 

and gas sectors. They find evidence of volatility persistence in both indexes and 

significant volatility transmission from the natural gas sector to the oil sector but not 

vice versa. Surprisingly, none of these studies have looked at the weather effect.  

This chapter fills a gap in the literature by investigating the impact of weather 

shocks on daily natural gas price dynamics. The empirical results show that weather 

shocks have statistically significant and economically non-trivial effects on both the 

conditional mean and the conditional variance of natural gas futures returns. A one 

standard deviation increase in the weather shock variable would increase the average 

daily variance by 4-5%. Consistent with the literature, the conditional volatility is 

considerably higher on Monday and the day when the natural gas storage report is 

released. Both the “Monday effect” and the “storage announcement effect” can be 

driven by weather. In addition, the inclusion of the weather shock and storage surprise 

variables in the GARCH model reduces volatility persistence by approximately forty 

percent, which further corroborates the importance of the weather effect in volatility 
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determination. Aside from these findings, I also provide support for Samuelson’s (1965) 

hypothesis that commodity futures volatility declines with contract horizon.3 To my 

knowledge, the “Samuelson effect” has never been documented in this market before.  

This remainder of this chapter proceeds as follows. Section III.2 presents some 

stylized facts about natural gas demand, production, and storage. A brief discussion of 

natural gas futures market is also presented in this section. Section III.3 discusses the 

empirical strategy, defines the weather shock and storage surprise variables. Section 

III.4 reports the estimation results, and Section III.5 concludes.  

III.2 Natural Gas Market 

The Energy Information Administration (EIA) at the Department of Energy 

classifies natural gas consumption into four sectors: residential, commercial, industrial, 

and electric power. 4  Figure III.1 presents monthly natural gas production and 

consumption in the U.S. from January 1991 to December 2001. While the production 

and industrial use of natural gas are relatively stable over time, the total consumption is 

highly cyclical due to the obvious seasonality of demand in residential, commercial, and 

electric power sectors. The total consumption peaks in December and January arising 

from residential and commercial customers’ space heating demand, troughs in summer 

when the space heating demand is low. In the summer, it has a “local peak” around July 

and August as cooling demand increases the electric power use of natural gas. 

Apparently, the heating and air-conditioning demand are driven by weather, and 

temperature in particular. Since industrial use of natural gas does not vary much in short 

                                                 
3 The “Samuelson effect” has recently been elaborated and extended by Routledge et al. (2000). 
4 For a complete definition of these categories, see www.eia.doe.gov. 
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term (daily), weather variation provides a good instrument for the variability of natural 

gas demand.   

In a competitive commodity market where the demand is highly seasonal such as 

the natural gas market, inventory plays a pivotal role in smoothing production and 

balancing demand-supply conditions. Total consumption of natural gas exceeds 

production in winter months but falls below it in summer months (Figure III.1). 

Consequently, as shown in Figure III.2, natural gas inventory displays a strong seasonal 

pattern: it builds up from April to October (“injection season”), while shrinks from 

November to March (“withdraw season”). The American Gas Association (AGA) 

conducted a weekly survey of inventory levels for working gas in storage facilities 

across the United States and released the weekly natural gas storage report from January 

1994 to the end of April 2002, after which EIA has taken over this survey and prepared 

the report. The report tracks the overall natural gas inventory levels as well as the 

inventory levels in three regions — consuming east, consuming west, and producing 

region — as of 9:00 am each Friday. The report is released on Wednesday or Thursday 

of the subsequent week.5  

Natural gas futures contracts began trading at the New York Mercantile Exchange 

(NYMEX) on Aril 3, 1990. The underlying asset of one contract is 10,000 million 

British thermal units (MMBtu) of natural gas delivered at Henry Hub, Louisiana. 

Trading terminates at the third-to-last business day of the month before the maturity 

month. The delivery period is over the course of the delivery month and “shall be made 

at as uniform as possible an hourly and daily rate of flow” (NYMEX website). 

                                                 
5 The definition of each region can be found at http://tonto.eia.doe.gov/oog/info/ngs/notes.html. The 
storage report is now released on Thursday by EIA. When AGA was in charge, it was released on 
Wednesday.  
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The Henry Hub is the largest centralized natural gas trading hub in the United 

States. It interconnects nine interstate and four intrastate pipelines. Collectively, these 

pipelines provide access to markets throughout the U.S. East Coast, the Gulf Coast, the 

Midwest, and up to the Canadian border. Natural gas production from areas around the 

Henry Hub, including the Gulf of Mexico and the onshore Louisiana and Texas regions 

encircling the Gulf of Mexico, accounts for about 49 percent of total U.S. production in 

2000 (Budzik, 2001).  

The natural gas futures market is highly liquid with daily trading volumes of 

30,000-50,000 contracts for the nearest month and 10,000-30,000 contracts for the 

second nearest month in recent years (Linn and Zhu, 2004). For example, on March 2, 

2004 the trading volume of the April contract was 41,561 with a notional value of 

roughly $2.32 billion, while the trading volume of May contract was 18,300 with a 

notional value of about $1.04 billion.  

III.3 Empirical Methodology and Data 

A. An Initial Look at Daily Returns 

In order to investigate the weather effect on natural gas price dynamics, I obtained 

daily trading data of natural gas futures from the Commodity Research Bureau 

(formerly Bridge). I use futures price rather than spot price data because the latter is 

generally not reliable. Spot prices are not recorded at a centralized exchange, but 

reported by such reporting agencies as Bloomberg, Platts, and Natural Gas Intelligence. 

Because the reporting agencies base their price estimates on informal polls of traders 

who have no obligation to report their real trading prices, and because each reporter has 
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her/his own definition of “price”,6 it is not unusual to see discrepancies from different 

reporting agencies, and sometimes the difference can be large (EIA Report, 2002).  

Returns are calculated as the daily change of the logarithm of the settlement prices 

of natural gas futures: ln(Pt/Pt-1).  Both to check the robustness of estimation and to test 

Samuelson’s (1965) hypothesis that volatility declines with the time horizon of futures 

contracts, I compiled two return series (RET1 and RET2) from the nearest contract and 

the second nearest contract. As is typical of commodity futures markets, traders are 

often forced to cover their positions at the last trading day of a contract’s life such that 

trading volume and open interest decline, while price volatility increases substantially.  

To avoid the “thin market” problem, I replaced the return of the nearest contract at the 

last trading day of each month with that of the second nearest contract in constructing 

the RET1 series. Figure III.3 plots the two return series.  

The sample period is from January 2, 1997 to December 29, 2000. I start from 

January 2, 1997, because I estimate market expectations for the volume of weekly 

natural gas in storage in 1997 using data from December 31, 1993 through December 

27, 1996. The end of sample period is limited by the availability of weather data.  Table 

III.1 reports the autocorrelation coefficients for the two return series and the squared 

returns. While the returns do not display any significant serial correlation even at a large 

number of lags, the autocorrelation of squared returns are positive and significant, 

indicating the existence of time-varying volatility.    

Table III.2 presents the mean returns and standard deviations of RET1 and 

RET2 over the entire time period as well as a breakdown by seasons and by weekdays. 

Several patterns in this table are noteworthy. First, in all cases, the standard deviations 
                                                 
6 For example, spot price may include discounts and premiums. 
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are higher than the means, implying a rather high volatility in this market. Second, the 

standard deviation of RET1 is consistently higher than that of RET2; the difference 

between the two grand variances is significant at the 1% level using a one-sided F test. 

The “Samuelson (1965) effect” is evident. Third, while little can be said about the 

intraweek pattern of mean returns, the standard deviations on Monday are generally 

higher than other days.  Roll (1984) found a similar pattern in the frozen orange juice 

market. Fourth, the standard deviations in winter are usually larger than other seasons, 

which is not surprising since natural gas demand peaks in winter and supply is tight.  

B. Econometric Model  

Theories of storable commodity prices (Deaton and Laroque (1992, 1996); 

Chambers and Bailey (1996), Routledge et al. (2000)) suggest that shocks to natural gas 

demand and supply conditions may result in mean price shifts or fluctuations around the 

mean in both spot and futures markets. While it seems obvious that the arrival of 

weather and inventory information will establish a new price equilibrium in the spot 

market, the rational for weather shocks to influence futures prices is more complicated. 

It stems from the nature of natural gas production and distribution. Limited by 

productive capacity, natural gas production is relatively price-inelastic in the short-term. 

While the productive capacity has generally tracked natural gas drilling activity, 

statistically there is a 1-3 months lag between the drilling activity and effective 

productive capacity due to well completions and wellhead infrastructure constructions 

(EIA report, 2003). Furthermore, when the pipeline utilization rate is high, the 

deliverability of pipeline network may be limited and natural gas in the producing 

region may not be transported to the consuming market. Therefore, a positive (negative) 
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weather shock will lead to an unexpected decrease (increase) in natural gas inventory 

levels, which will in turn put upward (downward) pressure on futures price levels and 

increase the uncertainty about future supply conditions. To empirically assess how 

weather and inventory surprises affect the dynamics of natural gas futures returns, I 

estimate a generalized autoregressive conditional heteroskedastic (GARCH) model that 

allows exogenous variables to affect both the conditional mean and the conditional 

variance. The following exogenous variables are included: 

Weather Shocks (Wt): this is a proxy for the demand shock. I defer a complete 

discussion of this variable to subsection III.C. It enters both the mean and the variance 

equation. In the mean equation, a positive (negative) demand shock is expected to 

increase (decrease) the returns.7  In the variance equation, a quadratic form of this 

variable is used to capture the possible nonlinear effect of the demand shock on 

volatility — a greater demand shock might increase the volatility at an increasing rate. 

Alternatively, one can use the absolute value of the weather surprise (|Wt|) variable in 

the variance equation.8  

Storage surprise ( ): the forecast error of the change of the amount of 

natural gas in storage. A detailed explanation about the construction of this variable is 

offered in subsection III.D. Storage affects both the mean and the variance. First, the 

commodity price is convex and inversely related to storage levels (Pindyck, 1994), so 

periodic information about the amount of natural gas in storage may shift the mean of 

returns to the extent that it surprises the market. The forecast error of the amount of 

tSTKERR

                                                 
7 I pre-tested whether  Wt

2 should be included in the mean equation and find that it is not significant at 
conventional levels and the inclusion of this variable has little effect on the empirical results that follow. 
8 The empirical results using |Wt| are qualitatively similar to those reported in section IV. However, the 
log likelihoods from the nonlinear specification are always larger than those from specifications with |Wt|. 
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natural gas in storage is expected to be negatively related to the conditional mean — the 

price will increase (decrease) when the actual amount of gas in storage falls below 

(exceeds) the market expectation. Second, just as the release of macroeconomic news 

will generate volatility in financial markets (Ederington and Lee, (1993); Anderson et al. 

(2003)), the release of the weekly natural gas storage report may increase volatiltiy in 

this market. 

During the sample period, the AGA consistently compiled and released the natural 

gas storage report. It was announced after the close of NYMEX trading on Wednesday 

prior to March 2, 2000, after which it was released at the interval of 2:00-2:15 pm on 

Wednesday during NYMEX trading hours. Using intraday trading data from January 1, 

1999 to May 3, 2002, Linn and Zhu (2004) find that the impact of storage 

announcement on volatility dissipates in 30 minutes. In other words, the price will be in 

a new equilibrium after 30 minutes of trading following the release of the storage report. 

Therefore, the storage surprise will shift the daily distribution of returns from week to 

week. I define the  as tSTKERR

STKERRt=STKERRτ when STKDAYt =1; 

                 = 0 otherwise 

where STKERRτ is the weekly forecasting error of the amount of gas in storage for week 

τ , and STKDAYt is a dummy variable equal to one on Thursday prior to March 2, 2000 

and on Wednesday afterwards. 9  I include STKDAYt in the variance equation to test if 

there is a significant “storage announcement” effect on volatility.  

                                                 
9 If Thursday is a holiday, then STKERR will influence the next trading day. 
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Crude oil is a close substitute of natural gas, and thus crude oil price fluctuations 

should have a direct impact on natural gas futures returns. Crude oil return (CRETt), the 

continuously compounded return of first month crude oil (West Texas Intermediate) 

futures, is included in the mean equation. To account for possible volatility spillover 

from the crude oil market to the natural gas market, in the variance equation I include a 

Crude oil return volatility (Voilt), which is the fitted conditional variance from an 

ARMA-GARCH model of CRET.10 The crude oil price data are from the EIA website.  

Other control variables in the mean equation include TBILLt and SPRETt. TBILLt 

is the annual yield on 3-month Treasury bills on date t and represents the short-term 

risk-free interest rate. T-bill rates may affect natural gas returns because the interest rate 

is a significant component of the cost of carrying inventories (Pindyck, 2004a). SPRETt 

is the daily return on the S&P500 index and is a proxy for equity market return. Using 

monthly time-series data, Sadorsky (2002) finds that the T-Bill rate is a positive and 

significant predictor for gasoline futures returns and the excess equity market return is 

negative and statistically significant in predicting heating oil and gasoline futures 

returns.11 Pindyck (2004a) finds that the T-bill rate is positive and significant in crude 

oil returns but not in natural gas returns. Gorton and Rouwenhorst (2004) show that 

commodity futures returns are negatively correlated with equity and bond returns and 

the negative correlation is stronger over a longer holding period. The data for the T-bill 

rates are obtained from the Federal Reserve Economic Data (FRED), and the returns on 

the S&P500 index are from the University of Chicago Center for Research in Security 

                                                 
10 Based on the SIC and diagnostic checks, AR(2)-GARCH(1,1) model fits the CRET data well. The 
details of the model are reported in the appendix.  
11 Sadorsky (2002) uses equally weighted return to CRSP value-weighted common stock price index and 
the Dow Jones Commodity Index in excess of the T-bill rate as market portfolio excess return. 

 49



   

Prices (CRSP) database.  Finally, to test if the Monday and Winter effects hold for the 

conditional volatility, I include dummy variables for Monday (MON) and Winter (WIN) 

in the variance equation.  

Since the exploratory data analysis suggests that there is no significant 

autocorrelation and seasonality in the mean returns but strong autocorrelation in the 

squared returns, I estimate the following model12  

ttttttt SPRETaTBILLaCRETaSTKERRaWaaRET ε++++++= 543210           (1) 

),0(~| 1 ttt hN−Ωε  

 h .    (2)  2
654321

11

2
ttttt

q

j
jtj

p

i
itit WWVoilSTKDAYWINMONh φφφφφφγεβα ++++++++= ∑∑

=
−

=
−

where Ωt-1 is the information set available at time t-1 and ht is the conditional variance 

of the εt.  

C. Measuring Weather Shocks 

Weather affects the natural gas industry on both the demand and supply side. 

Temperature is the main driver of heating and cooling demand. Hazardous weather 

conditions (e.g. a hurricane that hits Gulf Coast) may cause shut-downs of natural gas 

wells. Such severe weather situations may be good candidates for event-studies. In this 

study, I will concentrate on temperature shocks and examine their effect on volatility.    

Weather shocks can be measured as the weather forecast error. In an influential 

paper, Roll (1984) examined the relationship between the returns of orange juice futures 

and the forecast error of temperatures in Florida and found a statistically significant 

relationship with a surprisingly low R2. His findings are often cited as evidence of 

                                                 
12 In fitting the data, I find that the T-GARCH and GARCH-in-mean effects are not statistically 
significant at conventional significance levels.   
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excess volatility or noise trading.13  Alternatively, weather shocks can be measured as 

“weather anomalies” i.e. the deviation of temperature on a given day from its normal 

level. 14  Because we were unable to obtain the historical weather forecast data from the 

National Weather Service (NWS), this chapter adopts the second approach.  The 

temperature is expressed in degree days (DD), which is the sum of heating degree days 

(HDD) and cooling degree days (CDD). 15 

DDt =CDDt+HDDt                                                                                                (3)   

CDDt =Max (0, Tavet -65°F)                                                                               (3.a)   

HDDt =Max (0, 65°F-Tavet)                                                                               (3.b) 

where Tavet is the average of daily maximum temperature (Tmaxt) and daily minimum 

temperature (Tmint) on date t. For example, on a hot summer day when the Tave is 

90°F, the CDD is 25 and the HDD is zero, hence the DD is 25. On a cold winter day 

when Tave is 40°F, the CDD is zero and HDD is 25, hence the DD is also 25.  HDD 

measures heating demand while CDD measures cooling demand. Thus DD measures 

both the heating demand in the winter and the cooling demand in the summer. HDDs 

and CDDs are widely used in the energy industry and traded at the Chicago Mercantile 

Exchange (CME) as weather derivatives. The weather shock variable in equation (1) 

and (2) is then defined as 

)(1
1

it

m

i
itt DDNORMDD

m
W +

=
+ −= ∑                                                                                (4) 

where m is the weather forecast horizon. DDt+i is the forecasted degree days on day t+i, 

DDNORMt+i is the normal degree days which is the average degree days of previous 30 

                                                 
13 See DeLong et al. (1990, p. 725) ; Hirshleifer (2001, p. 1560); and Daniel et al. (2002, p.172). 
14 Following the convention of National Weather Service, the normal temperature of day t is defined as 
the previous 30 years’ average on day t.  
15 In section III.C, t denotes calendar day whereas in section III.B, it denotes trading day.  
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years on day t+i. I use realized temperature data for DDt+i  instead of weather forecast 

data in equation (4) and set m=7, because typically the 7-day forecast is the longest 

detailed weather forecast available from the public media. The empirical results that 

follow are not sensitive to the choice of m. Admittedly, the weather shock variable is a 

crude measure, but I believe it roughly captures the variation of the “true” shock. The 

more the temperature deviates from normal, the greater is the shock. 

The temperature data are taken from the Lamb-Richman data set that is compiled 

by two meteorologists Peter Lamb and Mike Richman at the University of Oklahoma. 

The original data source is the National Climatic Data Center (NCDC), a division of the 

National Oceanographic and Atmospheric Administration (NOAA), Department of 

Commerce. Based on the analysis of weather station histories, the Lamb-Richman data 

set corrects erroneous measurements and discontinuities in the original data due to 

failures of recording equipment or changes of measurement equipment and station 

location. The data set consists of daily Tmin, Tmax measured from midnight to 

midnight (local time) in 766 weather reporting stations east of the Rocky Mountains 

from 1949 to 2000. A closer look at the data reveals that temperatures are highly 

correlated within a state, even within a Census region. For example, the correlation 

coefficients of daily Tmin series among the 38 weather reporting stations in the Great 

Lakes region range from 0.88 to 0.98. In the estimation that follows, I only use the data 

from weather reporting stations that are close to a large city in a natural gas consuming 

region. 

The Lamb-Richman data set does not contain weather stations west of Rocky 

Mountains. While the Henry Hub is the main delivery point to the consuming east 
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region, in an integrated market (Wall, 1994), weather in the west of the country may 

impact the Henry Hub price, particularly the futures price. Therefore, the use of east-of-

Rocky-Mountains weather data may underestimate the weather impact, and hence 

provide a lower bound for the estimated effect on natural gas prices. 

D. Modeling Storage Surprise 

To form a measure of market expectations about the change of the volume of 

natural gas inventories, I estimate a time-series model augmented with a natural gas 

consumption weighted temperature variable (TEMP). The construction of the TEMP 

variable is given in the appendix. As shown in Figure III.2, the weekly natural gas 

inventory series displays a clear seasonal variation. Following Campbell and Diebold’s 

(2002) method in modeling daily temperatures, I employ a Fourier series instead of 

weekly dummies to model the seasonality. The use of the Fourier series greatly reduces 

the number of parameters to be estimated and enhances numerical stability.  

One might suspect that non-seasonal, non-temperature related factors may operate 

in the weekly storage series. For example, reporting errors in the natural gas storage 

survey may produce serial correlation. Therefore an autoregressive lag structure is used 

in the error term. Putting the various pieces together, I use the following model to 

obtain a forecast series:   

2
210)( τττ TEMPbTEMPbbIE ++=∆                                 

                      ∑
=
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)(2sin([ τµ
τπθτπλ+ 16                                              (5) 

                                                 
16 I compared the out-of-sample forecast performance of model (5) with a seasonal ARIMA model 
augmented by weekly temperature variables. Both the mean absolute error (MAE) and the root mean 
squared error (RMSE) from the Fourier series of model (5) are slightly smaller. 
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ττ ηµρµ += −
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1
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l
t     where tη ~ N (0, 1)                                                        (5.a) 

where  is the market expected inventory change from the Friday of week )( τIE ∆ τ -1  to 

the Friday of week τ ; TEMP  is the natural gas consumption weighted weekly (Friday 

to Friday) average temperature in week 

τ

τ ; w(τ) in the Fourier series is a repeating step 

function that cycles through 1,…,52 (i.e. each week of the year takes one value between 

1 and 52). On the basis of Schwartz Information Criterion (SIC), I set the number of 

lags in the Fourier series K=2 and in the autoregressive series L=1. The resulting 

residuals tη appear to be serially uncorrelated and the model fits the data well.  

Based on model (5), each week’s forecast E )( τI∆  was made using all available 

storage data from January 1994 up through the prior week. The natural gas inventory 

data are downloaded from the EIA website. The storage surprise is then defined as the 

difference between the announced storage change and the expected storage change: 

)( τττ IEISTKERR ∆−∆=                                                                                       (6) 

The weekly series STKERR  obtained from (6) is expanded to daily using the 

method outlined in subsection III.B and aligned to the return series in equation (1) for 

empirical estimation. 

τ

III.4 Estimation Results  

The model outlined in the subsection of III.B was estimated using the method of 

maximum likelihood. The number of lags in equation (2) is determined to minimize the 

SIC and to ensure no serial correlation in both residuals and squared residuals. It turns 

out a parsimonious GARCH (1, 1) model fits the data well. For the weather shock 

 54



   

variable (Wt and Wt
2), I start with Chicago’s weather data as the Great Lakes region is 

the largest natural gas consuming area that is tied to the Henry Hub and often stressed 

by cold weather.17  In the summer when the cooling demand is the main concern, the 

temperature deviation in Chicago probably does not provide a good measure for the real 

shock to the market, so I re-estimate the model with the average of the weather shock 

variables in Chicago and Atlanta.18 Figure III.4 plots the weather shock variable over 

the time period. 

 The estimation results using the average of weather shocks in Chicago and 

Atlanta are reported in Table III.4, and those based on Chicago’s weather data are 

reported in Table A.2. Both sets of results are very similar, but the models in Table III.4 

yield slightly larger log likelihood values. In what follows, I base the discussion on 

Table III.4. In the mean equation, the estimated coefficient of the weather shock 

variable (Wt) is positive and significant at the 1% level. Price will increase (decrease) 

when the expected demand is high (low), that is, when the forecasted degree days are 

above (below) normal. The estimated coefficient of the storage surprise variable 

(STKERRt) is negative and usually significant at the 5% or 10% level. When the 

announced storage level is above (below) the market expectation, price tends to 

decrease (increase). Consistent with the theory of the price of a substitute, the estimated 

coefficient of the crude oil return (CRETt) variable is positive and significant at the 1% 

level. A one percentage point increase in crude oil return leads to 0.21-0.24 percentage 

                                                 
17 Using natural gas spot price data in 1997, Bopp (2000, p.261) notes that the Henry Hub price is more 
closely related to Chicago’s temperature than any other cities including New York, Boston, St. Louis, and 
Atlanta. 
18 I experimented the weather shock variable using a broader average of Chicago, New York, Atlanta, and 
Dallas. The results are similar with those reported in Table III.4. The EIA monitored the temperature of 
these cities in its weekly natural gas update in the summer.  
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point increase in natural gas return. The estimated coefficient of the T-bill (TBILL) rate 

and the market equity return (SPRET) variables are mostly insignificant, although the 

sign pattern is consistent with the literature (Sadorsky (2002), Gorton and Rouwenhorst 

(2004)).  

In the variance equation, consistent with the literature (Murry and Zhu, 2004), the 

conditional volatility is higher on Monday and the day when the natural gas storage 

report is released. The Monday effect may reflect the weather influence as well. In 

Ederington and Lee (1993), the volatility of interest rate and foreign exchange futures 

on Monday is about the same as other weekdays when there is no macroeconomic news 

announcement. Fleming et al. (2004) find the differences between the variance ratios 

for weather-sensitive markets (natural gas is one of them) and those for equity market 

are more pronounced over the weekend than weekdays. They posit that this 

phenomenon is because the flow of weather information does not stop over the weekend 

whereas information flows for equity market are more concentrated during weekdays.  

The significantly positive STKDAYt coefficient indicates that the release of the weekly 

natural gas storage report generates considerable volatility and confirms the findings of 

Murry and Zhu (2004) and Linn and Zhu (2004). As for the volatility spillover effect, 

the result indicates the volatility in the natural gas market is not significantly affected by 

the crude oil market. There is also no evidence that the conditional volatility is higher in 

the winter than in other seasons.  

The estimated coefficients of the weather shock variables (Wt and Wt
2) in the 

variance equation are statistically significant at the 1% level and economically non-

trivial. In column (5) of Table III.4, I report a specification when insignificant variables 
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are excluded. The estimated coefficients for Wt and Wt
2 are 0.046 and 0.008 in RET1 

and 0.044 and 0.008 in RET2 respectively. A one standard deviation increase in Wt 

(5.39°F) would increase the variance of daily returns by 0.000048 and 0.000046, which 

is about 4-5% of the average daily variances of 0.0011 and 0.0009.19  This result, 

together with the significant storage announcement effect and Monday effect, which is 

also potentially driven by weather, underpins the importance of fundamental factors in 

determining volatility. A log likelihood ratio test easily rejects the null hypothesis that 

the coefficients of Monday, STKDAY, and Wt and Wt
2 are jointly equal to zero at the 1% 

level across all model specifications.  

The recent literature on volatility persistence suggests that the persistence in the 

conditional variance may be generated by an exogenous driving variable that is itself 

serially correlated. Hence the inclusion of such an exogenous variable in the conditional 

variance equation would reduce the observed volatility persistence (see Lamoureux and 

Lastrapes, 1990; Kalev et al., 2004). This implies the inclusion of the exogenous 

variables in equation (2) could reduce the observed volatility persistence. In a GARCH 

(1, 1) model, the sum ( 11 γβ + ) measures the degree of volatility persistence (Enders, 

2004, p. 134). The half-life of a volatility shock measures the time it takes for a shock to 

fall to half of its initial value and is determined by (Pindyck, 2004a): 

Half-life time = log (.5) /log ( 11 γβ + )                                                                   (7) 

The estimated half-lives are reported in the last rows of Table III.5. When the 

exogenous variables are not included in the variance equation, the half-life is about 21 

trading days for RET1, and 15 trading days for RET2. When the exogenous variables 

                                                 
19 The returns are expressed in percent, so the unit of variance is 1/10000.  
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are included, the half-life time reduces to 13 trading days for RET1 and 8 trading days 

for RET2. This result further corroborates the importance of fundamental factors in 

volatility determination.  

 To shed light on whether the “Samuelson effect” holds for conditional volatility, I 

obtained the estimated conditional variances from RET1 and RET2 and denote them as 

h1t and h2t respectively (Figure III.5). The fitted values of h1t are greater than those of h2t 

in 961 of 998 cases, which is direct evidence of Samuelson’s (1965) hypothesis that the 

closer-to-maturity contract is more volatile than those farther to maturity. Moreover, the 

estimated coefficients of the variance equation from RET1 always exceed those from 

RET2 regardless of which weather data are used. These results imply that a shock has a 

stronger impact on the nearest contract than it does on the second nearest contract.   

III.5 Summary and Conclusion 

This chapter examines how weather shocks affect asset price dynamics in the U.S. 

natural gas futures market. The findings can be summarized as follows. First, the 

weather shock variable has a statistically significant and economically non-trivial effect 

on both the conditional mean and conditional volatility of natural gas futures returns. 

Second, consistent with the literature, the volatility is considerably higher on Monday 

and the day when the natural gas storage report is released. Both the “Monday effect” 

and the “storage announcement effect” can be driven by weather. Third, the inclusion of 

weather shock and storage surprise variables in the GARCH model reduces volatility 

persistence by about forty percent. This result, on the one hand, further corroborates the 

importance of these fundamental factors in determining volatility, on the other hand 

indicates that a large portion of volatility can not be explained by the fundamentals.  
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The findings of this chapter contribute to our understanding of what causes price 

volatilities in the natural gas market. Volatility is a key element of many financial 

decisions. For instance, the valuation of commodity-based options and risk-hedging 

decisions rely on assumptions about volatilities. Volatility can alter producers’ 

perception about the opportunity cost of production and has a “feedback” to the supply-

and-demand balance in the longer-term (Pindyck, 2004a). Thus, this study should be of 

interest to both academics and industry practitioners. 
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Figure III.1 
 

Monthly Natural Gas Production and Consumption 
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Figure III.2 

Weekly Natural Gas Storage 
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Figure III.3_A  
Daily Natural Gas Futures Returns (RET1) 
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Figure III.3_B  

Daily Natural Gas Futures Returns (RET2) 
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Figure III.4  
Weather Shock variable 
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(This plot is based on the weather shock variable defined in Section III.C and the temperature data in 
Chicago and Atlanta) 
 
 
Figure III.5  

Fitted Conditional Variance of Natural Gas Returns  
GARCH1

0

10

20

30

40

50

60

70

1/
2/
19

97

4/
2/
19

97

7/
2/
19

97

10
/2
/1
99

7

1/
2/
19

98

4/
2/
19

98

7/
2/
19

98

10
/2
/1
99

8

1/
2/
19

99

4/
2/
19

99

7/
2/
19

99

10
/2
/1
99

9

1/
2/
20

00

4/
2/
20

00

7/
2/
20

00

10
/2
/2
00

0

 
(This plot is based on Column (5) of Table III.5_A. The unit of Y-axis is 1/10000.) 
 

GARCH2

0

10

20

30

40

50

60

1/
2/

19
97

4/
2/

19
97

7/
2/

19
97

10
/2

/1
99

7

1/
2/

19
98

4/
2/

19
98

7/
2/

19
98

10
/2

/1
99

8

1/
2/

19
99

4/
2/

19
99

7/
2/

19
99

10
/2

/1
99

9

1/
2/

20
00

4/
2/

20
00

7/
2/

20
00

10
/2

/2
00

0

 
(This plot is based on Column (5) of Table III.5_B. The unit of Y-axis is 1/10000.) 
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Table III.1  
Autocorrelations of Natural Gas Futures Returns 

Lag RET1 (RET1)2 RET2 (RET2)2 

1 -.012 .119*** -.000 .092*** 

2 -.013 .151*** -.028 .153*** 

3 .012 .122*** .012 .127*** 

4 .052 .173*** .047 .202*** 

5 -.013 .083*** -.001 .075*** 

6 -.017 .094*** -.021 .071*** 

7 .050 .186*** .057 .129*** 

8 .009 .075*** -.002 .077*** 

9 -.033 .084*** -.028 .075*** 

10 .018 .115*** .005 .082*** 

Q(12) 11.68 166.75*** 10.52 140.08*** 

Note: The sample size is 1002. 
Q(12) is the Ljung-Box statistic for the twelfth order autocorrelation, which is distributed with 
21 degrees of freedom. The 5% critical value is 21.  

2χ

          *** (**, *) denote significant at the 1% (5%, 10%) level. 
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Table III.2 
Natural Gas Futures Daily Returns by Day of Week and By Season 

(1/2/1997-12/29/2000) 
 Mean Returns  

 Winter Summer Shoulder All Seasons 
A.  RET1 (N=1002) 
Monday -0.43 

(4.72) 
0.23 

(3.45) 
-0.03 
(3.26) 

-0.12 
(3.96) 

Tuesday 0.02 
(3.72) 

-0.51 
(2.52) 

0.16 
(2.94) 

-0.06 
(3.20) 

Wednesday -0.01 
(3.30) 

-0.25 
(3.33) 

-0.08 
(2.95) 

-0.09 
(3.18) 

Thursday 0.01 
(3.47) 

0.08 
(2.77) 

0.22 
(3.88) 

0.10 
(3.44) 

Friday 0.13 
(3.42) 

0.79 
(2.02) 

0.53 
(2.24) 

0.44 
(2.72) 

All Days -0.05 
(3.74) 

0.07 
(2.88) 

0.17 
(3.09) 

0.05 
(3.31) 

     
B. RET2 (N=1002) 
Monday -0.21 

(4.07) 
0.22 

(3.27) 
0.15 

(2.90) 
0.02 

(3.51) 
Tuesday 0.12 

(3.28) 
-0.51 
(2.51) 

0.14 
(2.76) 

-0.03 
(2.93) 

Wednesday 0.07 
(2.83) 

-0.23 
(3.16) 

-0.06 
(2.68) 

-0.05 
(2.86) 

Thursday -0.02 
(3.17) 

0.03 
(2.76) 

0.11 
(3.49) 

0.04 
(3.17) 

Friday 0.14 
(3.26) 

0.86 
(2.06) 

0.44 
(1.96) 

0.43 
(2.58) 

All Days 0.02 
(3.32) 

0.07 
(2.80) 

0.15 
(2.79) 

0.08 
(3.02) 

Notes:    1). The returns are shown in percentage; standard deviations are shown in parentheses. 
2). Winter is defined as November, December, January, February, and March. Summer includes 
June, July, and August. Shoulder months include April, May, September, and October. 

 
Table III.3 

Summary Statistics 
 Mean Std. Dev. Skewness Kurtosis 

RET1 (percent) 0.0506 3.319 -0.028 4.47 

RET2 (percent) 0.0787 3.019 -0.014 4.46 

CRET (percent) 0.0010 2.481 -0.053 6.22 

TBILL (annual yield) 5.07 0.53 0.34 2.69 

SPRET(percent) 0.0628 1.246 -0.21 5.82 

W (°F) -0.44 5.39 -0.66 3.41 
W: the weather surprise computed using Chicago and Atlanta data. 
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Table III.4_A 
Estimation Result for RET1 

(Using Chicago and Atlanta weather) 
 (1) (2) (3) (4) (5) 

Mean      
W 0.053*** 

(0.017) 
0.055*** 
(0.015) 

0.055*** 
(0.015) 

0.052*** 
(0.017) 

0.053*** 
(0.017) 

STKERR -0.021** 
(0.009) 

-.020* 
(0.011) 

-0.021* 
(0.011) 

-0.019* 
(0.011) 

-0.020** 
(0.011) 

CRET 0.22*** 
(0.037) 

0.236*** 
(0.037) 

0.234*** 
(0.037) 

0.242*** 
(0.037) 

0.241*** 
(0.038) 

TBILL 0.240 
(0.161) 

0.201 
(0.164) 

0.201 
(0.166) 

0.234 
(0.164) 

 

SPRET -0.037 
(0.066) 

-0.022 
(0.068) 

-0.020 
(0.068) 

-0.034 
(0.068) 

 

Constant -1.124 
(0.827) 

-0.946 
(0.844) 

-0.948 
(0.849) 

-1.122 
(0.845) 

0.063 
(0.086) 

Variance      

ARCH(1) 0.088*** 
(0.018) 

0.084*** 
(0.019) 

0.084*** 
(0.018) 

0.077*** 
(0.017) 

0.078*** 
(0.017) 

GARCH(1) 0.880*** 
(0.026) 

0.868*** 
(0.030) 

0.869*** 
(0.030) 

0.870*** 
(0.029) 

0.867*** 
(0.029) 

MON  4.73*** 
(0.964) 

4.795*** 
(1.052) 

5.930*** 
(1.114) 

6.046*** 
(1.082) 

STKDAY  5.847*** 
(1.062) 

5.769*** 
(1.050) 

7.021*** 
(1.216) 

6.860*** 
(1.170) 

WIN  
 

 -0.011 
(0.104) 

-0.119 
(0.191) 

 

Voil   0.021 
(0.028) 

0.002 
(0.028) 

 

W 
   0.041** 

(0.020) 
0.046*** 
(0.017) 

W2    0.009*** 
(0.003) 

0.008*** 
(0.003) 

Constant 0.333** 
(0.132) 

-1.632 
(0.324) 

-1.760*** 
(0.376) 

-2.250*** 
(0.407) 

-2.221*** 
(0.380) 

Log 
likelihood -2528 -2511 -2511 -2504 -2505 

Half-life time 
(days) 21.31 14.10 14.29 12.73 12.25 

Notes:   
(1) The adjusted R2 ranges from 0.042 to 0.045. (2) Standard errors are reported in parentheses. (3) 

*** (**, *) denote significance at the 1% (5%, 10%) level. 
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Table III.4_B 
Estimation Result for RET2 

(Using Chicago and Atlanta weather) 
 (1) (2) (3) (4) (5) 

Mean      
W 0.043*** 

(0.016) 
0.044*** 
(0.014) 

0.045*** 
(0.014) 

0.042*** 
(0.016) 

0.043*** 
(0.016) 

STKERR -0.020** 
(0.008) 

-0.019** 
(0.010) 

-0.019** 
(0.009) 

-0.017* 
(0.009) 

-0.018* 
(0.010) 

CRET 0.213*** 
(0.034) 

0.224*** 
(0.035) 

0.222*** 
(0.035) 

0.229*** 
(0.035) 

0.228*** 
(0.036) 

TBILL 0.248 
(0.152) 

0.227 
(0.155) 

0.228 
(0.157) 

0.269* 
(0.156) 

 

SPRET -0.074 
(0.062) 

-0.066 
(0.063) 

-0.067 
(0.063) 

-0.077 
(0.063) 

 

Constant -1.165 
(0.783) 

-1.088 
(0.798) 

-1.094 
(0.805) 

-1.31 
(0.805) 

0.055 
(0.082) 

Variance      

ARCH(1) 0.075*** 
(0.017) 

0.072*** 
(0.016) 

0.071*** 
(0.016) 

0.065*** 
(0.016) 

0.064*** 
(0.016) 

GARCH(1) 0.878*** 
(0.030) 

0.864*** 
(0.031) 

0.862*** 
(0.031) 

0.854*** 
(0.031) 

0.856*** 
(0.030) 

MON  4.31*** 
(0.848) 

4.37*** 
(0.920) 

5.65*** 
(1.009) 

5.78*** 
(0.940) 

STKDAY  5.30*** 
(0.880) 

5.227*** 
(0.871) 

6.58*** 
(1.021) 

6.45*** 
(0.963) 

WIN   0.015 
(0.085) 

-0.11 
(0.161) 

 

Voil   0.027 
(0.029) 

0.012 
(0.031) 

 

W 
   0.039** 

(0.019) 
0.044*** 
(0.016) 

W2    0.009*** 
(0.003) 

0.008*** 
(0.002) 

Constant 0.384** 
(0.155) 

-1.388*** 
(0.285) 

-1.529*** 
(0.322) 

-2.01*** 
(0.357) 

-1.954*** 
(0.320) 

Log 
likelihood -2447 -2430 -2429 -2422 -2425 

Half-time 
(days) 14.40 10.51 10.03 8.24 8.30 

Notes: 
(1) The adjusted R2 ranges from 0.042 to 0.045. (2) Standard errors are reported in parentheses. (3) 

*** (**, *) denote significance at the 1% (5%, 10%) level. 
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Appendix 1 
 

Construction of Natural Gas Consumption Weighted Temperature Variable 
 
 

The natural gas consumption weighted temperature (TEMP) variable is 

constructed from the following procedure. First, I calculate monthly averages for each 

of the daily temperature variables (Tmin and Tmax) of all weather stations in the Lamb-

Richman dataset. This is necessary because the highest frequency for the natural gas 

consumption data is monthly. Second, as mentioned in the text, the temperature data are 

highly correlated within a state. From the many temperature variables in each sub-

district of Petroleum Administrative Districts of Defense (PADDs), I choose the one 

that yields the highest correlation coefficient with the corresponding natural gas 

consumption data as the regional “representative” temperature variable.36 Third, the 

daily regional “representative” temperature variables are weighted by the natural gas 

consumption of that region to get a daily weighted temperature series. Fourth, TEMP is 

the weekly average of the daily weighted temperature from Friday of week τ-1 to 

Thursday of week τ. 

 

                                                 
36 The descriptions and maps of PADD can be found at the appendix of EIA’s annual publication 
“Petroleum Supply Annual”.  
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Appendix 2 
 
Table A.1 

Crude Oil Returns 
 
Dependent Variable:  CRET=log(Pt

c/Pt-1
c) where Pt

c is daily settlement price of the near 
month crude oil futures on NYMEX on date t.  
 

 Coefficient 

Mean 
 

CRET t-1 
0.047 

(0.033) 

CRET t-2 
-0.096*** 

(0.031) 

Constant 
0.014 

(0.067) 

Variance  

ARCH(1) 
0.103*** 
(0.021) 

GARCH(1) 
0.719*** 
(0.062) 

Constant 
1.097*** 
(0.299) 

Adjusted R2 0.007 

Standard errors are reported in parentheses. 
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Appendix 3 
 
Table A.2                   Empirical Result Using Chicago’s Weather Data 

 RET1  RET2  

Mean     
W 0.042*** 

(0.015) 
0.043*** 
(0.015) 

0.039*** 
(0.014) 

0.037*** 
(0.016) 

STKERR -0.022** 
(0.011) 

-0.022** 
(0.011) 

-0.019** 
(0.009) 

-0.020* 
(0.010) 

CRET 0.238*** 
(0.038) 

0.239*** 
(0.037) 

0.227*** 
(0.036) 

0.224*** 
(0.036) 

TBILL 0.249 
(0.172) 

 0.287* 
(0.162) 

 

SPRET -0.021 
(0.068) 

 -0.068 
(0.062) 

 

Constant -1.212 
(0.878) 

0.050 
(0.088) 

-1.417 
(0.828) 

0.040 
(0.082) 

    

ARCH(1) 0.078*** 
(0.018) 

0.084*** 
(0.020) 

0.063*** 
(0.014) 

0.067*** 
(0.017) 

GARCH(1) 0.870*** 
(0.032) 

0.853*** 
(0.035) 

0.858*** 
(0.028) 

0.841*** 
(0.036) 

MON 5.630*** 
(1.073) 

5.547*** 
(0.941) 

5.885*** 
(0.967) 

5.461*** 
(0.882) 

STKDAY 6.483*** 
(1.069) 

6.311*** 
(1.024) 

6.406*** 
(0.885) 

6.005*** 
(0.919) 

WIN -0.177 
(0.145) 

 -0.150 
(0.106) 

 

Voil 0.026 
(0.026) 

 0.038 
(0.027) 

 

W 
0.013 

(0.015) 
0.019 

(0.016) 
0.023* 
(0.014) 

0.030** 
(0.015) 

W2 0.005** 
(0.002) 

0.004** 
(0.002) 

0.005*** 
(0.002) 

0.005*** 
(0.002) 

Constant -2.146*** 
(0.385) 

-1.954*** 
(0.320) 

-2.126*** 
(0.312) 

-1.675*** 
(0.271) 

Log likelihood -2508 -2510 -2423 -2427 

Variance 

Notes: 
(1) The adjusted R2 ranges from 0.042 to 0.045. (2) Standard errors are reported in parentheses. (3) 

*** (**, *) denote significance at the 1% (5%, 10%) level. 
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 CHAPTER IV 

MEASURING UNILATERAL MARKET POWER:  

AN APPLICATION TO TEXAS WHOLESALE ELECTRICITY MARKET 

 

IV.1 Introduction 

A major development in the US electricity industry since mid 1990’s is the 

divesture of power generation from vertically integrated utilities and the moving from a 

regulatory regime towards a competitive market mechanism. Policy makers were 

hoping that the introduction of competition would encourage investment and lower 

prices thereby benefiting consumers (Joskow, 2006 p.2). However, the California 

energy crisis of 2000-2001 raised numerous concerns about the exercise of market 

power in deregulated electricity markets and whether a competitive market can function 

well in the electricity industry. Empirical studies typically find that firms exercised 

some degree of market power in California and other deregulated electricity markets 

(see Wolfram (1999) for England and Wales, Borenstein, Bushnell and Wolak (2002), 

Joskow and Kahn (2002), Wolak (2003), and Puller (2005) for California). 

Consequently, several states have halted plans for further restructuring.37 Texas is one 

of the few states that has continued to deregulate the wholesale and retail electricity 

markets after 2001.   

The bulk of electric power in Texas is traded through bilateral transactions 

between buyers and sellers. To meet real-time changes in aggregate demand and to 

account for unforeseen supply losses due to equipment outages, the Electric Reliability 

                                                 
37 For a detailed discussion on the status of state electric industry restructuring, see Energy Information 
Administration (2003). 
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Council of Texas (ERCOT) operates an hourly balancing market in which power 

generators bid a supply schedule to adjust their output levels relative to their day-ahead 

production plans. The market structure can be summarized as two equally-sized 

strategic firms (TXU and TexasGenco) plus a competitive fringe of about 30 smaller 

firms. Each of the two strategic firms controls about 25% of the total installed capacity 

in ERCOT.  The purpose of this chapter is to empirically investigate whether the two 

strategic firms exercised market power and, if so, what factors contribute to the market 

power.  

Because the aggregate demand in the real time electricity market is essentially 

price-irresponsive, it is possible to construct an ex post residual demand curve for each 

supplier from the observed bid data. Wolak (2003) shows that the inverse of the ex post 

residual demand elasticity (i.e., the Lerner index) measures a firm’s unilateral market 

power. This chapter uses firm-level bid data from January 1, 2002 to December 31, 

2004 and compute the elasticity of the residual demand curve faced by the two strategic 

suppliers in ERCOT. The major findings of this chapter can be summarized as follows. 

First, although both firms are about equally sized in terms of installed capacity, the firm 

with larger share of capacity in the balancing market has consistently higher market 

power. This is consistent with Hortacsu and Puller’s (hereinafter “HP” 2005) finding 

that firms with large stakes in the market behave close to the ex post optimal model. 

Second, the price spikes observed during the fourth quarter of 2004 are consistent with 

the exercise of market power by the leading firm. Third, the lack of bids from smaller 

firms enhances the leading firm’s market power. In particular, I find that the disclosure 
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of a bidder’s identity by ERCOT when the bid price is above $300/MWh appears to 

discourage firms from bidding in the market.  

The remainder of this chapter proceeds as follows. Section IV.2 provides an 

overview of the deregulation process in Texas, and describes the market clearing 

process. Section IV.3 outlines the conceptual framework which draws heavily from 

Wolak (2003) and discusses the possible sources of bias of in the measurement of 

market power using this method. Section IV.4 presents empirical results using this 

method and an alternative measure of market power — the residual supplier index. 

Section IV.5 concludes.      

IV. 2 ERCOT Market Overview 

The Electric Reliability Council of Texas (ERCOT) is a not-for-profit Independent 

System Operator (ISO) that is responsible for the operations of the power grid in Texas. 

Historically, ERCOT’s primary role was to ensure the reliable transmission and transfer 

of electric power among its member firms. Texas began to deregulate its wholesale 

generation market in 1995. In 1999, the Texas state legislature passed Senate Bill 7 

(SB7) which initiated a series of further restructurings in the electricity market. Under 

SB7, all formerly regulated and integrated investor-owned utilities (IOUs) were 

required to unbundle their generation, transmission and/or distribution and retail 

functions into three separate entities: a power generation company, a transmission 

and/or distribution service provider (TDSP), and a retail electric provider. Under the 

new regime, the TDSP’s continue to be regulated whereas the generation companies 

and retail electricity providers are open to competition. 
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The majority of transactions in the Texas wholesale electricity market are 

conducted through bilateral trades between buyers and sellers. To meet the real-time 

changes in demand, ERCOT began operating a balancing market on July 31, 2001. The 

trading volume in the balancing market amounted to 2-5% of total transactions during 

the first four years of the market operation. Although the total volume settled in the 

balancing market is relatively small, the influence of the price signal goes well beyond 

the balancing market. If we think of the balancing energy price as a spot price, the day-

ahead price can be considered a forward price even though there is no centralized day-

ahead market in ERCOT. In an efficient market without significant barriers to entry, 

arbitrage would equate the forward price and the spot price at the same delivery time. 

Indeed, there is evidence that the day-ahead price converges to the balancing market 

price (Potomac Economics, 2004 and 2005).   

The balancing market is a “real-time” market to balance the actual demand and 

supply. The operations of the market can be summarized as follows. From 6:00am to 

6:00pm on the day before the operating day of actual power flow, generators submit 

hourly balanced supply (generation) and demand (load) schedules through their 

qualified scheduling entities (QSEs).38 A QSE is required to specify the amount of 

energy they plan to produce from each resource (unit) and the amount of energy they 

are selling to each consumer (buyer). In the day-ahead scheduling process, no auction 

mechanism is involved. In the balancing market, ERCOT adopts a multi-unit, uniform-

price auction to clear the market. Bidders submit piecewise linear supply functions 

specifying the price and quantity pairs at which they are willing to increase (Upward 

                                                 
38 All generators bidding and scheduling behavior are conducted through QSE’s in ERCOT. In what 
follows, firms and bidders both refer to QSE and they will be used interchangeably. Large power 
generating companies such as TexasGenco and TXU are themselves QSEs.  
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Balancing Energy Service, or UBES) or decrease (Downward Balancing Energy 

Service, or DBES) from the day-ahead scheduled generation. The price of UBES is 

capped at $1,000/MWh and the price of DBES is capped at -$1,000/MWh. The supply 

functions (bid curves) apply to each of the four 15-minute intervals of the operating 

hour. UBES and DBES can each have up to 20 bid points and must be monotonically 

increasing. Figure IV.1 illustrates a sample bid curve. 39  

Depending on ERCOT’s load forecast for the operating time interval and the 

scheduled generation, the balancing demand can be positive or negative. Because 

virtually no consumers can respond to price changes in real time, the demand in the 

balancing market is generally considered perfectly price-inelastic. ERCOT aggregates 

individual bid curves to a system-wide aggregate bid stack. When there is no congestion 

in transmission lines, the market clearing price for energy (MCPE) is determined by 

intersecting the 15-minute perfectly inelastic demand curve with the aggregate supply 

schedule.40 The real-time market clears approximately 20 minutes ahead of each 15-

minute operating interval. In the case of a positive demand for balancing energy, all 

bids with prices below the MCPE are deployed. A generator that is called to increase its 

output is paid MCPE for the amount of incremental sales. In the case of a negative 

balancing demand, ERCOT needs to decrease total generation to maintain system 

security.41 A generator that is called to decrease its output from the scheduled level pays 

ERCOT the MCPE for the amount of electricity reduced. For example, a generator 

having submitted a balanced day-ahead schedule of 100 MWh generation and 100 

                                                 
39 Although UBES and DBES each must be monotonically increasing, the highest bid price DBES can be 
higher than the lowest bid price of UBES. This is called “Bid Overlap” (see Teng et al, 2004) 
40 The actual market clearance software considers other factors such as ramp rate, bid overlap as well. 
41 Because of the bid overlap, it is possible that one supplier is called to increase the output while another 
supplier is called to decrease the output. This is not a rare occurring.   
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MWh load obligation is called to decrease 10 MWh output. She can collect revenue for 

the 100 MWh load from her customer (her customer’s demand will be satisfied by the 

pool), but she only generates 90 MWh. She pays MCPE for the decreased 10 MWh to 

ERCOT, and ERCOT transfers the payment to demand side bidders who reduce the 

load. Thus the DBES bid price can be interpreted as a generator’s willingness to pay for 

the amount of electricity she purchases from the market.  

To manage congestion in transmission lines, ERCOT divides its market into 

several zones. The number of zones has changed over time, from four in 2002-2003 to 

five in 2004. When the transmission lines between zones are not congested, ERCOT is a 

single market with uniform prices. When the transmission lines are congested, each 

zone has a different price because the additional megawatts (MW) of energy demanded 

in each zone can only be supplied from generating units in that zone. For this reason, 

bidders are required to separate their bid curves by zone and by hour of the day.  

The market structure of ERCOT can be best characterized as two equally-sized 

strategic firms competing with a competitive fringe. Table IV.1 lists generating firms 

with installed capacity above 1000 MW. TXU and Texas Genco, the two formerly 

regulated utilities, together own more than 50 percent of total generating capacity in this 

market.  The technology mix in ERCOT is primarily composed of coal and natural gas 

units with a small amount of nuclear, hydro, and wind generating units.  

Firms in this market appear to have a great deal of information about the total 

demand, their own marginal cost, and the operating environment. ERCOT posts the 

aggregated bid curves on its website with a two-day lag. Individual bid curves and the 

day-ahead energy schedules are also made publicly available six months after the 

 75



   

market clears. In addition, several private vendors provide proprietary information 

(surveys) on each generating unit’s technology and fuel efficiency. The Energy 

Information Administration (EIA) also has monthly information on the input and output 

for a subset of power-plants in Texas.  

IV.3  Conceptual Framework 

Market power is typically defined as the ability to profitably raise prices above 

competitive levels (Twomey et al. p5) and measured as the price-cost markup, i.e. the 

proportional difference between prices and marginal costs. In the real-time electricity 

market, because the total demand is unresponsive to prices, the residual demand (DRt(p)) 

faced by a firm at any interval is   

(1)                        DR(p) =QTotal – QOther(p) 

where QTotal is the total demand for that interval, and QOther(p) is the aggregate bid curve 

from all other firms. The slope of the DR(p) is determined by QOther(p). 

In Figure IV.2, DR1(p) and DR2(p) are two expected residual demand curves.42 

The firm does not know which residual demand curve will realize when it submits its 

bids. MC(q) is the marginal cost function. For an expected residual demand curve 

DR1(p), the profit-maximizing firm would bid at point A; and for an expected residual 

demand curve DR2(p), the firm would bid at point B. Wolak (2003) illustrates that 

because firms can submit a curve rather than a point, the optimal bid curve will pass 

through all profit maximizing points for various expected residual demand realizations. 

S(p) in Figure IV.2 is one such bidding strategy. Wolak (2003) further argues that the 

intersection of the ex post residual demand curve and the firm’s supply schedule 

                                                 
42 The discussion in this section draws heavily on Wolak (2003). 
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maximizes its profit given the other firms bids at that interval and the following 

equation holds:  

 (2)                         (Pt – MCit)/P it = -1/ηit  

 where Pt is the market clearing price for interval t, MCit is the firm i’s marginal cost at 

interval t, and ηit is the price elasticity of residual demand curve facing firm i at interval 

t evaluated at Pt. Define Lit = -1/ηit. Lit can be interpreted as the Lerner index and 

measures firm i’s market power at interval t.  

Equation (2) holds if the firm can correctly forecast the slope of the residual 

demand curve (or the slope of the relevant section of a kinked demand curve). If the 

realized residual demand curve is steeper than expected, Lit overstates firm i’s market 

power. This is illustrated in Figure IV.3_a where DR1(p) and DR2(p) are the expected 

residual demand curves as before. I add the realized residual demand curve DR3(p) into 

the figure. DR3(p) crosses DR2(p) at point B. For DR3(p), equation (2) holds at point C. 

Because the absolute value of the residual demand elasticity at point C is greater than 

point B, Lit evaluated at point B would overestimate firm i’s market power. By the same 

logic, it is straightforward to show that Lit would understate firm i’s market power when 

the realized residual demand curve is flatter than expected, as shown in Figure IV.3_b. 

Despite the possible bias, I proceed to compute Lit because it provides a measure of 

potential market power that a firm would have if it can correctly forecast the slope of 

the residual demand, and therefore measures the competitiveness of the market. 

Following Wolak (2003), I compute the arc elasticity evaluated at the market 

clearing price Pt using this formula 

(3)                    
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where Pt
H =Pt + d and Pt

L =Pt – d. Since d is a pre-specified small value, the difference 

between Pt
H and Pt (i.e. 2d) measures the price change around Pt. DRit(Pt

H) and DRit(Pt
L) 

are the quantities on firm i’s residual demand curve corresponding to Pt
H and Pt

L.  

DRit(Pt
H) is equal to the total demand on the balancing market minus the aggregate 

supply from all other firms at price Pt
H. DRit(Pt

L) is calculated using the same procedure. 

The following example illustrates the calculation of DRit(Pt
H) and DRit(Pt

L) for firm i. 

For simplicity, suppose there are only one zone and two other firms, firm 1 and firm 2. 

Further, suppose at an interval t the total quantity demanded Qt
Total  for the balancing 

market is 500MW, the market clearing price Pt is $50/MWh, and d is $1/MWh, such 

that Pt
H is $51/MWh and Pt

L is $49/MWh. Firm j (j=1, 2) has the following supply 

schedule:  

Firm 1 Firm 2 

Price ($/MWh) Quantity (MW) Price ($/MWh) Quantity (MW) 

30 0 45 0 

40 100 55 200 

60 200 70 250 

  90 260 

 
Recall that the individual supply function is a piecewise linear function. By 

interpolation, it is easy to show that firm 1 is willing to supply 155MW and firm 2 is 

willing to supply 120MW when the price is $51/MWh. Therefore, the total supply from 

all other firms Qt
other(Pt

H) is 275MW when the price Pt
H is $51/MWh. Subtracting 

Qt
other(Pt

H) from Qt
total, we have the residual demand for firm i DRit(Pt

H) is 225MW. 

Similarly, we can show that the DRit(Pt
L) is 275MW when Pt

L is $49/MWh. Plugging 

these figures in equation (3), we have ηit = -5 and hence Lit = 0.2. Of course, the actual 
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calculation of Qt
other(Pt

H) and Qt
other(Pt

L) involves the summation of all other firms’ 

supply at prices Pt
H and Pt

L across zones. To mitigate the influence of extreme values, I 

set d equal to $1, $2, $3, $4, and $5, and use the average of these calculated η’s as the 

arc elasticity in equation (2).   

To reduce the computational burden, I focus on the four time intervals of hour 

18:00-19:00 from January 1, 2002 to December 31, 2004. The main reason for choosing 

this hour is that the ramp rate constraint is unlikely to bind during peak hours. A 

generating unit’s ramp rate determines how fast a generator can increase or decrease its 

output in a short time period (e.g., 10-15 minutes).  When the ramp rate constraint binds, 

the system operator may not be able to dispatch the least cost unit and hence the market 

clearing price may be higher than implied by the bid stacks. Because the residual 

demand quantities DRit(Pt
H) and DRit(Pt

L) are calculated from individual bid curves 

after observing Pt
L, ramp rate constraints can cause my calculation to be inaccurate if 

they are binding. During the peak hours when most units (including peak units) are 

online, the ramp rate constraint is less of a concern. In their study of individual firm’s 

bidding behavior in ERCOT, HP(2005) focus on the time interval of 18:00-18:15.   

When transmissions between zones are congested, an additional megawatt of 

power that is demanded in a zone can only be supplied from generating units within that 

zone. Therefore the market clearing price for each zone will be different and it is not 

straightforward to determine which units are can be used to meet the additional demand 

within a zone. Following Wolak (2003) and HP (2005), this chapter excluded congested 

time intervals from this analysis. During this time period, 85% of the intervals are not 

zonally-congested 
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The final issue before computing the residual demand elasticity is that the total 

demand as well as the residual demand in the balancing market can be negative. As 

discussed in HP (2005), firms have no incentives to inflate the price when the expected 

demand is negative. The reason is that when a firm is called to reduce its output relative 

to its day-ahead schedule it needs to buy power from the pool to serve its load 

obligations. So if a firm has market power, it would exercise the “monopsony power”. 

Because the focus of this chapter is on monopoly market power, I also exclude these 

intervals.  

IV.4 Empirical Results   

A. Overall Market Performance 

Table IV.2 presents the distribution of Lit = -1/ηit for the two strategic firms (TXU 

and Texas Genco) from 2002 to 2004. Since I exclude the intervals when firm i’s 

residual demand is negative, it is not surprising the number of observations for the two 

firms generally do not coincide. Because there are a number of intervals during which 

the residual demand curve is too steep, the extremely large values of Lit make the mean 

and standard deviation for the full data set meaningless, I calculate the mean and the 

standard deviation for observations that are below the 90th percentile.  

Two observations emerge from Table IV.2. First, TXU has higher market power 

than Texas Genco over the three-year period. This may be surprising because the two 

firms have nearly equal installed capacity. To further investigate this issue, I calculate 

the daily average of the installed capacity available for the balancing market. This is 

done by subtracting the day-ahead scheduled generation for firm i from the total 

capacity of that firm. If a firm commits more capacity day-ahead through bilateral 
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transactions, it will have a smaller position and therefore limited market power in the 

balancing market. The result is reported in Table IV.3 and the pattern is clear that TXU 

relies more on the balancing market than Texas Genco. In 2002 the total capacity 

available owned by TXU for the balancing market is 44 percent more than the capacity 

owned by Texas Genco. In 2004 TXU’s capacity available for the balancing market 

nearly doubles the capacity owned by Texas Genco. Thus the Lerner index computed 

from the residual demand curve appears to be consistent with the firms’ positions in the 

balancing market. This result agrees with HP’s (2005) finding that firms with larger 

stakes in the market bid closer to the ex post optimal strategy. 

The second observation emerging from Table IV.2 is that TXU’s market power is 

much higher in 2003 and 2004 than in 2002. Given the increase in TXU’s total capacity 

available for the balancing market, this finding is also not too surprising. Another factor 

that may contribute to the increase in TXU’s unilateral market power is the increase in 

the total demand for the real time market as shown in the last row of Table IV.3. 

Because the total demand Qtotal in the real time market is perfectly inelastic, holding the 

supply from other firms (Qother(p)) constant, an increase in the total demand shifts the 

residual demand to the right. As a result, the residual demand curve becomes less elastic 

and the Lerner index becomes larger. 

To make an assessment about the overall competitiveness of the market, I 

compare the mean value of L for the lower 90 percent of observations in Table IV.2 

with those reported in Table 1 of Wolak (2003). The mean values of L for both TXU 

and Texas Genco in 2002, and for Texas Genco in 2003 and 2004 are similar in 
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magnitude with those in California in 1998 and 1999. Meanwhile, the index for TXU in 

2003 and 2004 is similar to those in California in 2000.    

B. Market Power and Price Spikes 

During the sample period, particularly in the last two months of 2004, ERCOT 

experienced a number of exceptionally high-priced intervals or “price spikes” (see IV. 

4). These price spikes were oftentimes not associated with generation outages, fuel price 

increases, or changes in the transmission network (Potomac, 2005). Therefore, it is 

natural to ask whether the price spikes resulted from the exercise of market power.   

To investigate this issue, we first need to define price spikes. As mentioned above, 

the majority of marginal generating units in ERCOT are natural gas fired. Whether the 

electricity price is exceptionally high should be evaluated relative to natural gas prices.  

The standard approach to constructing marginal cost in the literature is to multiply fuel 

prices by a heat rate and to allow a variable operating, maintenance, and emissions 

cost.43 Because I don’t have data on unit-level heat rates, I can’t construct the exact 

marginal cost in this way. Instead, I derive a plant-level heat rate from the Energy 

Information Administration’s (EIA) Form 906 which reports the total electricity 

generation and the total fuel consumption at the plant level. I find the highest plant-level 

heat rate in ERCOT is about 26 MMBTU/MWh. To be conservative, I use a heat rate of 

30 MMBTU/MWh and allow a $10/MW for operating, maintenance, and emissions cost. 

A price spike is defined as a time interval when the market clearing price (Pt) exceeds 

30 times natural gas price (Pgas) for that day plus $10/MW, i.e., 

(4)                 Pt > 30*Pgas +$10/MW.  

                                                 
43 Heat rate measures the efficiency of a power generating unit. It equals the heat content of the fuel input 
divided by the power output.  
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As such, I largely rule out the price spikes that are purely caused by a run-up in fuel 

prices and can relate them to the market power indices calculated from the residual 

demand curve. 

The result is reported in Table IV.4. The second column of Table IV.4 indexes the 

interval of the day. For example, the first interval in hour 18:00-19:00 is 73, the second 

interval is 74, and so on. MCPE is the market clearing price for energy. Gas Price is the 

natural gas spot price at Houston Katy hub. L_TXU is the Lerner index calculated for 

TXU, and L_Genco is the Lerner index for Texas Genco. Given that TXU has higher 

market power in the balancing market, it is perhaps not surprising that the majority of 

the price spikes are associated with rather high values of L_TXU. In fact, only 4 out of 

the 52 price spikes occur when L_TXU is below one. In other words, more than 90 

percent of price spikes occur when TXU faces an inelastic demand curve.  As an 

example, Figure IV.5 produces the two residual demand curves facing TXU at two 

intervals on November 29, 2004 along with its bid curve. The two residual demand 

curves are perfectly inelastic at the market clearing quantity, which implies that the 

market clearing price could have been higher (up to the cap of $1000/MWh). I 

examined other price spikes in 2004 and this pattern is fairly common.  

The lack of bids from smaller suppliers appears to contribute to the price spikes 

during this period. In a discussion about the price spikes in the fourth quarter of 2004, 

the independent market monitor of ERCOT states “we also identified a relatively large 

quantity of available energy that could have been produced from on-line and quick-start 

resources by rival suppliers that was not offered in the balancing energy market. If all of 

this energy had been offered, the price spikes would not have occurred” (Potomac 
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Economics, 2005). Notice that when L is greater than one, it overstates a firm’s market 

power (see Section III and Figure IV.3_a) and cannot be interpreted as the price-cost 

markup. This occurs because L is calculated from the ex post residual demand curve and 

equation (2) is based on ex ante calculation. If the firm incorrectly forecasts either the 

slope or the intercept of the residual demand curve, the ex post calculated L would be 

different from the ex ante price-cost markup.   

If we further restrict price spikes to include only intervals when the MCPE is 

above $300/MWh, the elasticity of the residual demand facing TXU is virtually zero for 

all intervals in 2003 and 2004. It has some slope albeit in the inelastic range in 2002 

when the price reached $990/MWh. I suspect this has to do with a provisional change in 

ERCOT Protocol. In June 2002, the ERCOT Protocol added a provision calling for the 

disclosure of QSEs identities when their bid prices are greater than $300/MWh for 

UBES bids or less than -$300/MWh for DBES bids. In discussions with ERCOT staff, I 

learned that companies call this a “Shame Cap”. Despite having no penalty for bidding 

above $300/MWh, this provision appears to discourage smaller firms from offering 

electricity at the high-price range. This can be clearly seen in Figure IV.6 which 

displays the frequency of maximum bid prices when they are over $200/MWh. In 

Figure IV.6_A when all bids are included, about 24 percent of the maximum bid prices 

are in the range of $290-300/MWh. If we exclude TXU’s bids, the pattern is more 

pronounced (Figure IV.6_B) — more than 60 percent of maximum bid prices are in the 

range of $290-300/MWh and these bids are submitted by four different smaller firms on 

different days. It is hard to believe the marginal cost of the most expensive units for 
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these suppliers are uniformly in the range of $290-300/MWh, but not in the range of 

$300-$400.  

C. Measuring Market Power with Alternative Tools 

The last exercise I do is to analyze market power with alternative market 

monitoring tools and compare the result with those reported in Table IV.2. One such 

measure that is currently used by market monitor and regulators is the Residual Supply 

Index (RSI) (Twomey et al). The RSI was developed by the California Independent 

System Operator (CAISO).44 The RSI for firm i measures the ratio of residual supply 

capacity (the total capacity in the market subtracting firm i’s capacity) to total demand, 

and hence it is a capacity-based measure.   

(5)            RSIit = (TotCapt – Capit)/Qt
total 

where TotCapt is the total capacity available for providing energy at time t, Capit is firm 

i’s capacity available at t, and Qt
total is the total market demand. 

When RSI is greater than 1, other suppliers have enough capacity to meet the total 

demand, so firm i should have less influence on market clearing price. On the other 

hand, if the RSI is less than 1, firm i’s capacity is needed and becomes a pivotal player 

according to the definition of the Federal Energy Regulatory Commission. Since RSI is 

a capacity measure, it is inversely related to the price-cost margin. The higher the RSI, 

the lower is the firm’s market power. A limitation of this measure is that it does not 

discern the bidding strategies for a given capacity (the slope of the bid curve). To see 

this, consider a generator who commits a unit with the capacity of 100 MW. He has two 

bidding strategies: one is to bid at marginal costs and the other is to bid with markups. If 

every firm has the same choices, the residual demand curve facing any firm will have 
                                                 
44 See Sheffrin (2002) 
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different slopes depending upon the bidding behavior of the other firms but the RSI will 

be the same.   

The empirical results using this measure are reported in Table IV.5. Overall the 

patterns are consistent with Table IV.2. The RSI is lower for TXU than for Texas 

Genco, and it is substantially lower in the 2003-2004 period compared with 2002. This 

indicates TXU has higher market power than Texas Genco and the market was more 

competitive in 2002.  

IV.5 Conclusion 

This chapter studies the ability of the largest two firms, TXU and Texas Genco, to 

raise prices above competitive levels in the Texas wholesale electricity balancing 

market. Market power is measured as the inverse of the residual demand elasticity faced 

by the two firms. The main findings can be summarized as follows. First, TXU has 

higher market power than Texas Genco and its market power rises over time. This 

pattern is consistent with the result using an alternative measure of market power – 

Residual Supply Index. The plausible explanation is that TXU relies more on the 

balancing market and its relative position in the balancing market has increased over 

this time period. Second, the majority of price spikes occur when the residual demand 

curves facing TXU are price-inelastic. The lack of bids from smaller firms contributes 

to the strategic firm’s market power. Finally, I find evidence that the disclosure of a 

bidder’s identity by ERCOT when the bid price is above $300/MWh discourages firms 

from bidding into the market and may have exacerbated price spikes.    
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Figure IV.1              
                           A Sample Bid Curve 
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Figure IV.3     Profit - Maximisation (ex ante vs. ex post) 
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Figure IV.4 
Electricity and Natural Gas Prices 
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Figure IV.5 
TXU’s Residual Demand and Bid Curves on 11/29/2004 
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Figure IV.6_A  

Relative Frequency of Max Bid Prices from All Firms (1/1/2004—12/31/2004) 
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Figure IV.6_B  

Relative Frequency of Max Bid Prices Excluding TXU (1/1/2004—12/31/2004) 
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Table IV.1        Market Structure of ERCOT 
 

Firm (QSE) Capacity(MW) Percentage 

TXU Portfolio Management Company 20524 26.7% 
Texas Genco. LP 19097 24.9% 
Calpine Power Management LP 6016 7.8% 
American Electric Power Service Corp. 3548 4.6% 
Lower Colorado River Authority 2929 3.8% 
City of Austin DBA Austin Energy 2910 3.8% 
Exelon Power Team 2410 3.1% 
ANP Funding I LLC 2363 3.1% 
BPTX (SQ1) 2001 2.6% 
FPL Energy Power Marketing 1422 1.9% 
Coral Power LLC (SQ2) 1194 1.6% 
Brazos Electric Power Co. 1183 1.5% 
Others 11222 14.6% 
Total 76829 100% 
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Table IV.2              
Distribution of Inverse Residual Demand Elasticity 

 

 
 

N. 
Obs. 

25th 
Pctile Median 75th 

Pctile 
90th 
Pctile Max 

Mean 
for 90th 

Pctl 

Std for 
90th 
Pctl 

TXU         

2002 532 0.017 0.044 0.102 0.246 47.763 0.055 0.053 

2003 868 0.065 0.185 0.398 0.748 3293.99 0.209 0.185 

2004 857 0.017 0.078 0.253 0.996 Infinity 0.166 0.216 

Texas Genco        

2002 488 0.010 0.026 0.065 0.132 1.059 0.032 0.030 

2003 855 0.009 0.026 0.100 0.312 1851.36 0.050 0.065 

2004 688 0.006 0.014 0.029 0.103 97.697 0.017 0.017 

 
 
 
 
 
 
 
 
 
Table IV.3  

Daily Average of Capacity Available for Balancing Market 
and Average Balancing Demand 

 2002 % 2003 % 2004 % 

Capacity        

TXU 6309 26% 7987 33% 8841 33% 

Texas Genco 4391 18% 4523 19% 4520 17% 

Others 13554 56% 11484 48% 13082 49% 

Sum 24254 100% 23994 100% 26443 100% 
       
Balancing 
Demand 933  1330  1225  
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Table IV.4  
Price Spikes 

Date Interval MCPE GAS Price L_TXU L_TxGenco
2/5/2002 74 990.01 2.16 8.82 1.06
2/5/2002 75 990.01 2.16 8.82 1.06
2/5/2002 76 990.01 2.16 8.82 1.06

8/26/2002 74 142.44 3.49 3.00 0.83
8/26/2002 76 130.33 3.49 3.27 0.91
2/13/2003 75 189.94 5.87 2.69 0.73
2/24/2003 73 990.00 6.68 3293.99 949.71
2/24/2003 74 990.00 6.68 3293.99 949.71
2/24/2003 75 990.00 6.68 3293.99 949.71
2/24/2003 76 990.00 6.68 3293.99 949.71
2/25/2003 73 496.68 12.56 1835.26 0.01
2/25/2003 74 496.91 12.56 2091.82 0.01
2/25/2003 75 497.67 12.56 2367.48 0.02
2/25/2003 76 497.89 12.56 2383.90 0.02
4/16/2003 74 299.00 5.38 8.23 37.64
4/16/2003 75 299.00 5.38 8.23 37.64

5/5/2003 73 188.13 5.25 2.44 2.87
5/19/2003 74 211.20 5.93 23.21 3.85

11/10/2003 73 153.92 4.44 0.31 0.36
11/10/2003 74 214.42 4.44 0.65 0.50
11/10/2003 75 173.77 4.44 0.39 0.41
11/10/2003 76 162.12 4.44 0.34 0.39
11/16/2003 73 252.08 4.49 2.00 1.15

6/4/2004 73 269.09 6.39 2.45 1.36
11/11/2004 74 450.65 6.01 Infinity 0.06
11/14/2004 73 430.92 5.74 Infinity 0.03
11/14/2004 74 427.76 5.74 Infinity 0.05
11/20/2004 73 204.87 4.47 Infinity 8.74
11/21/2004 73 432.08 4.47 Infinity 0.01
11/21/2004 74 428.71 4.47 Infinity 0.01
11/27/2004 74 426.96 4.85 Infinity 0.07
11/27/2004 75 429.83 4.85 Infinity 0.03
11/28/2004 74 443.45 4.85 Infinity 0.03
11/28/2004 75 454.36 4.85 Infinity 0.02
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(Table IV.4 Continued)  
Date Interval MCPE GAS Price L_TXU L_TxGenco

11/28/2004 76 451.97 4.85 Infinity 0.02
11/29/2004 73 428.43 4.85 Infinity 0.01
11/29/2004 74 430.47 4.85 Infinity 0.01
11/29/2004 75 427.51 4.85 Infinity 0.01
11/29/2004 76 419.98 4.85 Infinity 0.03
11/30/2004 74 409.11 6.67 Infinity 0.02
12/3/2004 74 452.58 6.57 Infinity 0.00
12/4/2004 74 439.75 5.85 Infinity 0.00
12/4/2004 75 434.36 5.85 Infinity 0.00
12/5/2004 73 434.83 5.85 Infinity 0.00
12/5/2004 74 434.83 5.85 Infinity 0.00
12/5/2004 75 434.83 5.85 Infinity 0.00
12/5/2004 76 434.83 5.85 Infinity 0.00
12/8/2004 73 377.56 5.85 Infinity 0.00
12/8/2004 74 373.78 5.85 Infinity 0.00
12/8/2004 75 360.87 5.85 Infinity 0.00
12/8/2004 76 360.87 5.85 Infinity 0.00
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CHAPTER V 

CONCLUSION 

 

V.1 Study Summary 

This dissertation is composed of three essays on producer behavior and market 

dynamics in US energy industries. Chapter II examines the impact of uncertainty on the 

investment decisions of petroleum refineries from 1985 to 2003. Using a hazard model, 

we find that uncertainty has a negative effect on the probability of a refinery adjusting 

its capacity. As uncertainty rises, refiners delay their investment decisions. This finding 

agrees with theories that emphasize the role of irreversibility in investment decisions. 

The essay also shows that investment episodes are quite lumpy in the refining industry, 

which is consistent with non-convex costs of capital adjustments. This last point, 

however, needs to be more fully developed as the focus of the essay has been on 

examining the relationship between uncertainty and investment and not on exploring the 

nature of adjustment costs in the industry. 

Chapter III studies how weather shocks affect asset price dynamics in the natural 

gas futures market. Under a GARCH framework, I show that the weather shock variable 

has a statistically significant and economically non-trivial effect on both the conditional 

mean and conditional volatility of natural gas futures returns. Consistent with the 

literature, I find that the volatility is considerably higher on Monday and the day when 

the natural gas storage report is released. Both the “Monday effect” and the “storage 

announcement effect” can be driven by weather. Furthermore, the inclusion of weather 

shock and storage surprise variables in the GARCH model reduces volatility persistence 
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by about forty percent. This later result further corroborates the importance of these 

fundamental factors in determining volatility but also indicates that a large portion of 

volatility remains unexplained by the fundamentals.  

Chapter IV analyzes market power issues in a deregulated electricity market ---- 

the balancing energy market in Texas. I compute the inverse of the residual demand 

elasticity for the largest two firms during the peak hour of 18:00-19:00 from 2002 to 

2004. There are two main findings. First, the firm with a higher stake in the balancing 

market has higher market power. Second, the majority of price spikes occur when the 

residual demand curves facing one of the two largest firms are price-inelastic. The lack 

of bids from smaller firms appears to contribute to the larger firms’ market power. In 

particular, I find evidence that the disclosure of a bidder’s identity by ERCOT when the 

bid price is above $300/MWh discourages firms from bidding into the market and may 

have exacerbated price spikes.    

V.2 Extensions for Future Research 

There are clear avenues to extend the research presented in all three essays in this 

dissertation. The first essay on investment in the petroleum refining industry can be 

extended in two distinct directions. The first is to examine how the sign of investment-

uncertainty relationship varies with the degree of market power. Under the assumption 

of constant return to scale, Caballero (1991) shows that the impact of uncertainty on 

investment depends on the individual firm’s demand elasticity. The irreversibility of 

investment creates an option value only if a firm has market power. A firm facing an 

infinitely elastic demand curve would never “regret” that it had invested too much in the 

previous period because its profitability is independent of the capital stock. Hence the 
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option value of “wait-and-see” diminishes and the positive effect of uncertainty 

dominates. Using our refining data, we can test whether the uncertainty effect differs 

between larger firms, which presumably have higher market power, and smaller firms 

which are more likely to operate as a competitive fringe. A second direction for future 

research is to empirically investigate how environmental regulations affect the capital 

adjustment process in the refining industry. Petroleum refining is one of the heavy 

polluting industries that are strictly monitored by the Environmental Protection Agency 

(EPA). According to a ranking of 18 air emitting industries by the EPA, petroleum 

refining was the first for volatile organic compounds (VOC), first for sulfur dioxides 

(SO2), second for nitrogen oxides (NOx), and fourth for carbon monoxide (CO). How 

the costs of complying with the environmental regulations alter the capital adjustment 

process is an interesting empirical question.  

A natural extension to the second essay “Weather, Storage, and Natural Gas Price 

Dynamics: Fundamentals and Volatility” is to perform an out-of-sample forecast using 

data beyond 2000. The incorporation of weather information into a volatility model 

should lead to an improvement in forecasting performance.  

The third essay on Texas electricity market can have a number of extensions. The 

first is to construct firm-level marginal cost data and perform a neo-empirical industrial 

organization type analysis. The purpose here is to test whether firms’ joint behavior is 

consistent with perfect competition, Cournot competition, or tacit collusion. The second 

is to investigate firms’ pricing and bidding behavior in ancillary service markets. 

Ancillary services in electricity markets usually refer to four types of capacity reserves: 

regulation-up, regulation-down, spinning reserve, and non-spinning reserve. These 
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services are necessary for the reliability of electric power network. Typically a firm 

bidding in the energy (power) market has obligations to either self-provide or procure 

ancillary services from the market. Because providing ancillary services represents an 

opportunity cost of producing energy for a power generator, understanding firms’ 

bidding behavior in the ancillary service markets could also provide useful insight to 

understanding the bidding behavior in energy market. To date, the literature in this area 

has focused on strategic bidding and market power issues in the energy market, but little 

research has been done in the ancillary service markets.  
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