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Abstract 

Evolutionary developmental biology (evo-devo) is the study of how 

developmental mechanisms that shape organisms have changed through evolutionary 

time.  A central question in evo-devo asks how early vertebrates may have 

transitioned from sedentary filter feeding to active predatory lifestyles during early 

Cambria.  Neural crest cells (NCCs) are a vertebrate innovation that has been 

credited for facilitating this transition and therefore have long been of interest to 

evolutionary developmental biologists.  NCCs have also been regarded as a ‘fourth 

germ-layer” due to the wide array of cell types they can generate, such as jaws.  

Lampreys are primitively jawless vertebrates (agnathans) that possess NCCs and 

occupy a critical position at the base of vertebrate phylogeny with fossils dating back 

to 360 million years ago.  Additionally, advancements in molecular biology have 

engendered a resurgence of interest in lamprey research in recent years.  Zebrafish 

are basal jawed vertebrates (gnathostomes) and straddle the agnathan-gnathostome 

boundary.  Zebrafish research has continued to gain momentum over the years, 

becoming a powerful vertebrate model for developmental studies alongside mice, 

Xenopus, and chick.  This dissertation work combines the power of zebrafish 

genetics and the critical phylogenetic position of lampreys to study how regulation of 

neural crest development has evolved by changes in the functions of SoxE 

transcription factors across the agnathan-gnathostome boundary.  In Chapter One, I 

provide the context for how research on lampreys can inform our understanding of 

vertebrate evolution. I also lay out a rationale for using lampreys and zebrafish to 

study the evolution of neural crest developmental mechanisms. 
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The regulation of neural crest development is a complex system composed of 

a gene regulatory network that involves signaling molecules, transcription factors, 

and effector genes.  SoxE genes (Sox8, Sox9, and Sox10) originated from a single 

ancestral SoxE through gene duplication and encode transcription factors that 

regulate neural crest specification, survival during migration, and activation of 

effector genes to initiate differentiation of multiple cell types.  The sea lamprey 

(Petromyzon marinus) possesses three SoxE genes (PmSoxE1, PmSoxE2, and 

PmSoxE3), of which only PmSoxE2 is required for pigment cell and peripheral 

neuron development.  In Chapter Two, I show that PmSoxE2 is the likely agnathan 

ortholog of Sox10 and also retains functional conservation with zebrafish (Danio 

rerio) Drsox10.  I show also that the regulatory role by a SoxE gene may be different 

between lampreys and zebrafish in the context of cartilage differentiation. While 

Sox9 regulates differentiation of cartilage in gnathostome vertebrates, this function 

was acquired in lampreys by the lamprey specific SoxE homolog, PmSoxE1, instead 

of the lamprey Sox9 ortholog, PmSoxE3.  Taken together, these results suggest that 

Sox10/SoxE2 diverged from Sox9 early in vertebrate evolution and these genes now 

possess disparate functions and are specialized for lineage specific activities during 

neural crest development.  However, it remains unclear what confers these different 

abilities to closely related SoxE paralogs.  In Chapter Three, I have performed an in-

depth comparison between zebrafish Drsox10 and lamprey SoxE protein domains 

using chimeric PmSoxE1, PmSoxE2, and PmSoxE3 constructs that feature domains 

recombined from among different SoxE paralogs.  The differential ability of these 

chimeric constructs to induce melanogenesis, neurogenesis, and chondrogenesis in 
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zebrafish Drsox10 and Drsox9a mutants was compared with the abilities of full-

length lamprey SoxE constructs.  The results show that the composition of the C-

terminal transactivation (TA) domain of SoxE proteins can have a significant impact 

in their abilities to induce melanogenesis and neurogenesis.  However, protein 

regions outside of the TA domain may also have important roles in the regulation of 

neural crest development.  Furthermore, our results suggest that the inability of 

PmSoxE2 to regulate cartilage differentiation is likely due to protein regions outside 

of its TA domain.  We speculate that multiple SoxE protein domains may work in 

concert to fully activate specific downstream target effector genes.  Additional 

studies incorporating precise amino acid changes in chimeric variants will be 

important for understanding how SoxE protein domains may have evolved 

differently across the agnathan-gnathostome boundary to acquire neural crest 

lineage-specific activities. 
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Chapter 1 

The Study of Vertebrate Evolution using Lampreys and Zebrafish 

 

Authors: Eric Myung Jae Lee and David W. McCauley 

Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 

 

Abstract 

The development of lampreys has fascinated evolutionary developmental (evo-

devo) biologists for a long time.  Lampreys, as one of the two surviving members of an 

ancient group of jawless vertebrates, have long been recognized as key taxa for 

understanding vertebrate evolution due to their basal position in vertebrate phylogeny.  

While classical descriptions of lamprey development have uncovered many similarities 

in development among the few lamprey species that have been studied, these studies, 

together with modern techniques, have provided key insights for understanding how 

developmental changes have been important for vertebrate evolution.  The use of 

zebrafish for the study of vertebrate development has seen tremendous growth over the 

past two decades, and unlike lampreys, zebrafish are highly amenable to both forward 

and reverse genetics.  Here we provide an updated overview of contributions of both 

lamprey and zebrafish developmental studies for understanding vertebrate evolution, a 

summary of modern molecular and genetic tools, and methods that have been applied in 

both lamprey and zebrafish evo-devo research. Finally, we lay out the rational for 

combining the strengths of both model organisms to address questions regarding 

vertebrate evolution. 
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Lampreys and Comparative Studies of Vertebrate Evolution 

Lampreys are popularly referred to as “living fossils” (Eisner, 2003).  However, 

they cannot be considered as a proxy for the ancestral vertebrate since gnathostome 

(jawed) and agnathan (jawless) vertebrates have both diverged from a common ancestor 

ca. 500 million years ago (Janvier, 1996).  Nevertheless, extant lampreys are 

remarkably similar in appearance to fossil lampreys (Bardack and Zangerl, 1968; Gess 

et al., 2006).  In the forward to Hardisty and Potter’s The Biology of Lampreys, volume 

1, Young pointed out that the interest in lampreys among zoologists stems from the 

observation that “Lampreys and hagfishes retain more features of the presumed 

ancestral craniate than do any other members of the group” (Young, 1971).  However, 

while primitive, lampreys contain characters that are defining for vertebrates, including 

an axial skeleton, tripartite brain complexity, placode-derived sensory ganglia, and 

neural crest cells and their derivatives.  As the sister taxa to gnathostome vertebrates, 

cyclostomes (lampreys and hagfish) can be used in comparative studies with model 

gnathostomes to differentiate the origins of developmental mechanisms for characters 

that are shared among all vertebrates from those that may be derived in gnathostomes.  

Each of these characters represents an avenue of investigation for understanding 

vertebrate development and evolution.  Among these, development of the neural crest 

has gained perhaps the most interest among evolutionary developmental biologists, 

owing to the hypothesized critical importance of the neural crest for vertebrate origins 

(Gans and Northcutt, 1983).  Early in the 21
st
 century, as new molecular, cellular, and 

genetic tools are developed, their application to lamprey development continues to 



3 

 

increase interest among evolutionary developmental biologists to use them as a tool for 

understanding vertebrate evolution and development.   

 

Neural Crest Cells 

 The neural crest is a transient population of multipotent cells that migrate 

through tissues of the early embryo and contribute or give rise to numerous derivatives 

critical to vertebrate development.  These include such defining features as the 

peripheral nervous system with contributions to cranial ganglia, the craniofacial 

cartilage, and most notably the jaws (Hall, 1999; Le Douarin and Kalchiem, 1999).   

Induction is a process by which one group of cells influences another, causing 

them to adopt a new cell fate.  The coordination of multiple signaling pathways (i.e., 

Wnt, FGF, BMP, and Notch) from the neural plate, adjacent non-neural ectoderm, and 

paraxial mesoderm is required for the induction of the neural crest at the neural plate 

border, which results in the activation of neural plate boarder specifier genes including 

Msx1, Msx2, Pax3, Pax7, and Zic1 (Meulemans and Bronner-Fraser, 2004; Sauka-

Spengler and Bronner-Fraser, 2008a).  As the neural plate invaginates and folds onto 

itself to form the neural tube, the two borders (neural folds) meet at the midline along 

the anteroposterior axis.  The dorsal most aspect of the neural tube (roof plate) is where 

neural crest progenitors arise.  During or after neural tube closure, neural crest cells 

undergo an epithelial-to-mesenchymal transition to dissociate from the neural tube and 

migrate toward their final locations.  Neural crest migration is followed by lineage 

specific differentiation into different derivatives.  The discrete steps of neural crest 

development are regulated by a network of signaling molecules and transcription factors 
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that are deployed with precise spatiotemporal control.  Advancements in molecular 

techniques for the lamprey model organism has facilitated the elucidation of gene 

regulatory networks in the last decade (Jandzik et al., 2014; McCauley and Bronner-

Fraser, 2003, 2006; Nikitina et al., 2008; Sauka-Spengler and Bronner-Fraser, 2008b). 

Since its discovery by Wilhelm His in 1868 (His, 1868; Hörstadius, 1950), the 

neural crest has been of interest to embryologists and evolutionary developmental 

biologists due to its intimate link to the vertebrate transition from sedentary filter 

feeding to active predatory lifestyles (Gans and Northcutt, 1983).  Over the past decade, 

increasing knowledge of the neural crest induction process at molecular and genetic 

levels (discussed below) suggests that the origin of neural crest cells predates 

vertebrates (Donoghue et al., 2008).  Critical support for this idea comes from the 

discovery and investigation of rudimentary neural crest-like cells (NCLC) in 

urochordates (tunicates).  In 2004, Jeffery and colleagues discovered NCLC in the 

ascidian Ecteinascidia turbinata that originate near the neural tube, undergo extensive 

migration, express the HNK-1 antigen, and differentiate into pigment cells (Jeffery et 

al., 2004).  Subsequent studies showed that this cell line originates from mesoderm 

flanking the neural tube, but nonetheless, expresses a host of key neural crest markers 

(Twist, AP2, FoxD, and Myc) reminiscent of vertebrate neural crest cells (Jeffery, 2006; 

Jeffery et al., 2008).  A more recent study by Abitua and colleagues identified a 

cephalic melanocyte lineage in the ascidian, Ciona intestinalis.  This cell line originates 

at the neural plate border, expresses neural crest specification genes (Id, Snail, Ets, and 

FoxD) and can be reprogrammed into migrating ‘ectomesenchyme’ by targeted 

missexpression of Twist driven by a Mitf enhancer (Abitua et al., 2012).   
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While these studies reinforce the idea that a rudimentary Neural Crest Gene 

Regulatory Network (NC-GRN) existed prior to the emergence of the neural crest, true 

neural crest cells that possess all components of the NC-GRN still remain a vertebrate 

innovation (Hall and Gillis, 2013).  Evidence to support this theory comes from lamprey 

developmental studies that employ molecular techniques.  As a basal vertebrate, 

lampreys possess a well-developed, bona fide neural crest population, and although they 

lack major neural crest derivatives, such as the jaws and sympathetic chain ganglia of 

gnathostomes, lamprey neural crest development follows that of other vertebrates 

(Horigome et al., 1999; Johnels, 1956; McCauley and Bronner-Fraser, 2003; Tomsa and 

Langeland, 1999).  Limitations of earlier studies of lamprey neural crest development, 

using purely descriptive or experimental embryology (Langille and Hall, 1988; Newth, 

1950, 1951), have been overcome by using molecular techniques.  Investigations using 

lipophilic DiI-labeling experiments show that lamprey neural crest cells take migratory 

routes similar to those seen in gnathostomes, with two exceptions: the migratory pattern 

of neural crest originating from the hindbrain and timing differences of migration into 

the presumptive pharyngeal region (Horigome et al., 1999; McCauley and Bronner-

Fraser, 2003).   

 Gene expression studies laid the initial groundwork for comparisons to be made 

between lamprey and gnathostome neural crest regulation (Meulemans and Bronner-

Fraser, 2002; Meulemans et al., 2003; Myojin et al., 2001; Neidert et al., 2001; Tomsa 

and Langeland, 1999).  Subsequently, synthetic antisense morpholino oligonucleotides 

(morpholinos) have been used to knockdown expression of lamprey neural crest 

specifier genes to investigate chondrogenic neural crest in the lamprey (McCauley and 
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Bronner-Fraser, 2006).  Morpholinos have also been used in conjunction with mRNA 

rescue experiments to carefully dissect the lamprey NC-GRN (Nikitina et al., 2008; 

Sauka-Spengler et al., 2007).  These studies revealed that the underlying NC-GRN is 

conserved between lampreys and higher vertebrates, albeit with differences in the 

spatiotemporal expression of neural crest specifiers such as Twist and Ets1 (Nikitina et 

al., 2008; Nikitina and Bronner-Fraser, 2009; Sauka-Spengler and Bronner-Fraser, 

2008b; Sauka-Spengler et al., 2007).   

Lampreys are well suited for these studies due to their relatively slow rate of 

development; fertilization to hatching occurs over 11 days (Piavis, 1971), and neural 

crest migration can be observed by the sixth day of development (McCauley and 

Bronner-Fraser, 2003).  This slower rate of development allows for investigators to 

more precisely observe the timing of gene expression and the effects of gene 

knockdown on putative gene targets, which may have otherwise been missed in a more 

rapidly developing model system.  The construction of the lamprey NC-GRN has also 

opened doors for comparisons to be made to invertebrate chordates (Yu et al., 2008).  

With these factors taken together with the recent sequencing of the lamprey genome 

(Smith et al., 2013), lampreys will continue to be a valuable model for studying the 

evolution and diversification of neural crest cells (Green and Bronner, 2013). 

 

Placodes 

Cranial placodes are transient ectodermal thickenings of columnar epithelial 

cells with defined boundaries that form in stereotypic regions of the vertebrate 

embryonic head.  Together with contributions from neural crest cells, placodes give rise 
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to numerous cranial paired sensory organs of the vertebrate embryo, including the nose, 

ears, eyes, and sensory ganglia, as well as the lateral line system found in basal aquatic 

vertebrates (Graham and Begbie, 2000; Le Douarin N.M., 1986; Le Douarin et al., 

1992; Northcutt, 1996; Vogel and Davies, 1993; Webb and Noden, 1993).  Similar to 

the various derivatives of neural crest cells, individual placode lineages that give rise to 

different derivatives are thought to have evolved at different times (Baker and Bronner-

Fraser, 1997; Graham and Begbie, 2000; Graham and Shimeld, 2013; Shimeld and 

Holland, 2000).  Therefore, the emergence of cranial placodes is central to the evolution 

of vertebrate sensory systems (Baker and Bronner-Fraser, 1997; Gans and Northcutt, 

1983).   

Despite the fact that placodes were described by von Kupffer more than a 

century ago (Beard, 1885; van Wijhe, 1883; von Kupffer, 1891), much of our 

understanding of placode development comes from recent studies in several vertebrate 

species including zebrafish, Xenopus, chick, and mouse (Baker and Bronner-Fraser, 

2001).  Placodes are thought to originate from a common pan-placodal primordium 

located at the border of the neural plate and future epidermis (Baker and Bronner-

Fraser, 2001; Noramly and Grainger, 2002; Schlosser, 2002; Schlosser and Northcutt, 

2000; Toro and Varga, 2007).  The expression of general placode markers Six1/2, Six4/5 

(sine oculis) and Eya (eyes absent) families of transcription factors are required for 

initial placodal differentiation, whereas expression of the Pitx, Sox, Dlx, Fox, and Pax 

families of transcription factors is required for lineage-specific differentiation (Ladher 

et al., 2010; Sato et al., 2012; Schlosser, 2005, 2006, 2010; Schlosser and Ahrens, 

2004).   



8 

 

Placode development has also been studied in non-vertebrates, including 

urochordates (Gasparini et al., 2013; Manni et al., 2004; Mazet et al., 2005; 

Meinertzhagen and Okamura, 2001; Wada et al., 1998), cephalochordates (Holland and 

Holland, 2001; Kozmik et al., 2007; Manzanares et al., 2000; Meulemans and Bronner-

Fraser, 2007), and other invertebrates (Hill et al., 2010; Posnien et al., 2011).  

Interestingly, a global comparison among these studies suggests that a pre-existing gene 

regulatory network for sensory epidermal cell formation was coopted for placode 

formation during the course of chordate evolution (Bertrand and Escriva, 2011).   

Lampreys possess sensory organs and cranial ganglia that are derived from 

placodes as in other higher vertebrates, and they may provide key insights into the 

origin of such placode-derived features as ears and the lateral line system, as well as 

developmental mechanisms important for origin of paired nostrils (diplorhiny).  Here 

we highlight the current understanding of these features. 

 

Lateral Line and Otic Placodes 

Similar to gnathostomes, the lamprey lateral line contains both mechanosensory 

neuromasts and electroreceptive epidermal ‘end bud’ organs, suggesting that the 

vertebrate acquisition of the lateral line predates the gnathostome-agnathan divergence 

(Akoev and Muraveiko, 1984; Baker et al., 2013; Gelman et al., 2007).  The lateral line 

and ears originate from a common placode and together form the acoustico-lateralis 

system that; a system that possesses mechanoreceptive hair cells (Baker et al., 2013; 

Gelman et al., 2007; Schlosser, 2002).  While the otic placode is believed to be common 

to all chordates (Shimeld and Holland, 2000), its origin remains a mystery.  In order to 
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address questions regarding vertebrate ear evolution, it is also important to understand 

the development of its critical components, namely hair cells and sensory neurons 

(Fritzsch and Beisel, 2001), all of which are derived from the otic placode (Barald and 

Kelley, 2004; Fritzsch et al., 2006).  Recent studies using light and electron microscopy 

have shown that tunicates possess secondary sensory cells located on the coronal organ. 

These cells resemble vertebrate hair cells, suggesting that hair cells originated in the 

chordate common ancestor (Burighel et al., 2008; Burighel et al., 2003; Caicci et al., 

2007; Caicci et al., 2010; Caicci et al., 2013; Manni et al., 2004; Manni et al., 2006; 

Rigon et al., 2013).   

The vertebrate inner ear is a complex sensory organ that is responsible for 

hearing, balance, and orientation in three-dimensional space.  It is comprised of the 

cochlea of the auditory system along with the semicircular canals and otolith organs 

(utricle, saccule, lagena) of the vestibular system (Rinkwitz et al., 2001).  Angular 

acceleration causes the displacement of endolymph contained throughout the three 

semicircular canals.  This displacement is detected by mechanoreceptive hair cells of 

the crista ampullaris located at the base of each canal.  Therefore, each semicircular 

canal detects a major axis of movement.  Development of the vertebrate inner ear 

begins during gastrulation as surface ectoderm that thickens to form the otic placodes at 

either side of the neural tube (Rinkwitz et al., 2001).  A signaling cascade, involving 

fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), sonic hedgehog 

(Shh), and Wnts, has been described for otic placode induction and inner ear 

morphogenesis (Chatterjee et al., 2010; Chen and Streit, 2013; Groves and Fekete, 

2012; Kiernan, 2013; Ladher et al., 2010).  Lamprey otic vesicle development follows 
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that of other vertebrates and also possesses horizontal semicircular canals that likely 

arose through parallel evolution (Maklad et al., 2014; Richardson et al., 2010; Scott, 

1887; Shipley, 1887).  The process of patterning and morphogenesis of the three 

semicircular canals from the dorsal otic placode is not fully understood (Bok et al., 

2007; Martin and Swanson, 1993).  Recent studies have shown that Otx1 may account 

for all major differences between gnathostome and lamprey otic vesicles, suggesting 

that lamprey ears may represent a primitive version of gnathostome inner ears (Fritzsch 

et al., 2001; Hammond and Whitfield, 2006).  Further studies have highlighted the 

importance of bmp2b and Wnt/β-catenin signaling specifically during morphogenesis of 

semicircular canals in zebrafish and mice (Hammond et al., 2009; Rakowiecki and 

Epstein, 2013), but this has yet to be examined in lampreys.   

 

Nasohypophyseal placode 

Unlike the diplorhiny seen in all gnathostomes, lampreys possess a single nostril 

(monorhiny) that develops from a median domain of the rostral ectoderm called the 

nasohypophyseal placode (Kleerekoper and Erkel, 1960).  The solid nasohypophyseal 

plate precludes the rostromedial growth of premandibular ectomesenchyme, which 

forms major components of the gnathostome jaw.  It has been hypothesized that the 

heterotopic separation of the nasal and hypophyseal placodes may have been a 

prerequisite to the emergence of the jaw (Gai et al., 2011; Kuratani, 2005, 2012; 

Kuratani et al., 2013; Kuratani et al., 2001; Oisi et al., 2013; Uchida et al., 2003). 

Despite the evolutionary significance of placode-derived features, it is not 

known if the developmental and molecular mechanisms of early placode development 
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are conserved between lampreys and gnathostomes.  In gene expression studies, it was 

shown that placodes present in the developing lamprey embryo express Dlx and Pax 

transcription factors, likely reflecting an ancient role of these genes in fate specification 

of placodes that extends to the base of vertebrates (McCauley and Bronner-Fraser, 

2002; Neidert et al., 2001).  Given the poor state of our current understanding, the 

evolution of vertebrate placode development is ripe for investigation using the lamprey 

as a model.   

 

Paired appendages 

Another key vertebrate innovation is paired lateral appendages.  Therefore, after 

over 150 years of research (Owen, 1849), the vertebrate limb still garners interest from 

evolutionary and developmental biologists (Coates, 1994; Coates and Cohn, 1999; 

Ruvinsky and Gibson-Brown, 2000).  Lateral appendages (i.e., fins and limbs) are 

important for locomotive stability and sophisticated maneuvering (Breder, 1926; 

Drucker and Lauder, 2002).  All gnathostomes possess paired appendages; the paired 

sets of pectoral and pelvic fins in bony and cartilaginous fishes are homologous to the 

forelimbs and hindlimbs of tetrapods, respectively (Carroll, 1988; Shubin et al., 1997).  

Snakes, caecilians, and eels that have undergone secondary loss of paired appendages, 

and aquatic species (e.g., whales, dolphins, Fugu) have lost pelvic fins that in some 

cases exist as vestigial structures (Bejder and Hall, 2002; Cohn and Tickle, 1999; Don 

et al., 2013; Tanaka et al., 2005).  In contrast, lampreys are primitively limbless 

agnathan vertebrates that diverged prior to the emergence of paired appendages over 

360 million years ago (Donoghue et al., 2000; Gess et al., 2006).   
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Modern molecular techniques can now be used to address questions regarding 

the evolutionary origin of vertebrate paired appendages (Niswander, 1997; Tanaka and 

Onimaru, 2012; Tickle, 2003).  A study by Freitas and colleagues shows the shared 

expression of two genes implicated in limb development (Hox and Tbx) in both median 

and paired fins of the developing catshark (Scyliorhinidae).  These genes are also 

expressed in lamprey median fins, suggesting that the developmental mechanism 

responsible for the paired appendages of gnathostomes may have its origins in the 

median fin of the ancestral vertebrate (Freitas et al., 2006).  More recent analysis 

showed that hoxd13a activity promotes distal proliferation of zebrafish fins, suggesting 

that the modulation of 5’Hoxd gene expression through novel enhancer elements may 

have facilitated the evolution of fins (Freitas et al., 2012).  Further, analysis of the 

recently sequenced lamprey genome revealed a lack of the long range cis-acting 

enhancer Shh appendage-specific regulatory element (ShARE), which is required for 

limb-specific expression of Shh.  Thus, this regulatory element required for patterning 

the anteroposterior axis of limbs may have evolved independently in the gnathostome 

lineage (Smith et al., 2013).   

Comparative studies of lampreys have also elucidated our understanding of the 

tissue context in which paired fins first appeared.  In gnathostomes, the generation of 

fin/limb buds from the somatic mesoderm (somatopleure) involves multiple 

developmental steps.  First, the lateral plate mesoderm divides into cardiac mesoderm 

(CM) and posterior lateral plate mesoderm (LPM).  Hox genes have been shown to play 

a crucial role in defining the anterior-posterior axis of the LPM, where they show nested 

expression in co-linear fashion (Ruvinsky and Gibson-Brown, 2000).  Second, the LPM 
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thickens before further splitting into the somatopleure and splanchnopleure.  Genes 

involved in the generation of fin/limb bud-forming fields are expressed in the 

somatopleure, which gives rise to fin/limb buds that develop into paired appendages 

(Logan, 2003).  However, in lampreys, histological evidence shows that the LPM does 

not split into the somatopleure and the splanchnopleure despite the fact that nested Hox 

gene expression is present in the LPM (Onimaru et al., 2011).  Interestingly, lipophilic 

DiI-labeling shows that the somatopleure is eliminated during the course of lamprey 

embryonic development (Tulenko et al., 2013).  These results suggest that both the 

nested Hox gene expression patterns in the LPM and the formation of the somatopleure 

facilitated the emergence of fin/limb buds after the agnathan-gnathostome transition.  

Future advancements of molecular techniques will allow for the dissection of gene 

regulatory interactions in lampreys to further our understanding of vertebrate paired 

appendage evolution. 

 

Skeleton 

Cartilage and mineralized bone are key vertebrate characteristics, and they are 

used for structural support, protection, and predation.  Therefore, the vertebrate skeleton 

has long been a subject of interest to biologists (De Beer, 1924, 1937; Gadow, 1933; 

Hertwig, 1874; Kingsley, 1894; Reif, 1982; Smith and Hall, 1990).  Despite the fact that 

cartilaginous structures have been found in invertebrates, their homology to vertebrate 

cartilage remains unclear (Cole, 2011; Cole and Hall, 2004).  

Questions regarding the origin of the vertebral elements have been addressed 

using lampreys and hagfish.  The gnathostome vertebrae differentiate from the 
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sclerotome, and consist of two axial elements that form both dorsally and ventrally 

along the notochord (Goodrich, 1930; Janvier, 1996).  The development of the vertebrae 

involves a complex patterning of mesodermal somites that create separate 

compartments to form the dermatome, myotome, and sclerotome.  It is the ventromedial 

somites (sclerotome) that give rise to the vertebrate axial skeleton.  The mechanism of 

vertebrate sclerotome induction involves interplay between hedgehog signals from the 

notochord and antagonistic Bmp signaling from more lateral mesoderm to subdivide the 

somite (Christ et al., 2004; Shimeld, 1999; Shimeld and Holland, 2000).  While the 

spinal cord of lampreys is not ensheathed within a vertebral column, they do possess 

neural crest-derived and sclerotome-derived axial cartilage nodules dorsally along the 

notochord, which are thought to be homologous to gnathostome vertebral elements 

(Shimeld and Donoghue, 2012; Tretjakoff, 1927; Zhang, 2009).  Furthermore, hagfish 

possess sclerotome-derived axial cartilage nodules have been found in ventral aspects of 

the notochord (Ota et al., 2011, 2013).  The evolutionary sequence that led to these 

cartilage nodules in lamprey and hagfish remains a mystery.   

Questions regarding the evolution of skeletal tissues and their mineralization 

have also been addressed by using lampreys and hagfish.  Studies have shown that the 

cartilage of lampreys and hagfish, share similar gene expression profiles (SoxD, SoxE, 

and Runx) with that of gnathostomes, while additional studies in amphioxus suggest that 

a primitive genetic repertoire already existed in the protochordate (Cattell et al., 2011; 

Hecht et al., 2008; McCauley, 2008; McCauley and Bronner-Fraser, 2006; Ohtani et al., 

2008; Wada, 2010; Zhang and Cohn, 2006; Zhang et al., 2006).   
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Lampreys are known to have structurally distinct cartilage types not found in 

gnathostomes; elastin-like proteins known as lamprins serve as the major extracellular 

matrix component in contrast to the fibrillar collagen that composes most of 

gnathostome cellular cartilage (Lakiza et al., 2011; Ohtani et al., 2008; Robson et al., 

1993; Wright et al., 2001; Wright et al., 1983; Wright and Youson, 1983; Yao et al., 

2008).  Mucocartilage is another lamprey-specific type of cartilage that supports most 

of the anterior head structures of the ammocoete larva (Yao et al., 2011).  Whereas the 

elastin-like cartilage of the branchial basket supports the pharynx and gill openings, 

mucocartilage supports the lamprey upper and lower lips, the ventral pharynx, and the 

first and second arches.  This histologically distinct cartilage shares major similarities 

with gnathostome cellular cartilage in that it expresses RunxA, Barx, and Alx genes, and 

is patterned along the dorsoventral axis by endothelin signaling (Cattell et al., 2011; 

Wright and Youson, 1982; Yao et al., 2011).   

Lamprey craniofacial cartilage is composed of elements that support and protect 

the brain, and a viscerocranial skeleton made up of cartilage elements forms a fused 

pharyngeal basket to support the 7 gill arches and associated lamellibranchs (Martin et 

al., 2009).  The lamprey trabecular cartilage forms as paired cartilage rod-like elements 

that are located laterally alongside the adenohypophysis to support the brain (Johnels, 

1948; Kuratani et al., 2004; Langille and Hall, 1988; Martin et al., 2009).   Given their 

possession of unique and potentially primitive cartilage types, a dissecting of the 

genetic basis underlying the cartilage diversity in lampreys may elucidate our 

understanding of vertebrate skeletal evolution. 
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Articulated jaws 

The acquisition of articulated jaws during vertebrate evolution is thought to have 

led to the explosive adaptive radiation of gnathostomes (Gans and Northcutt, 1983; 

Janvier, 1996; Mallatt, 1996).  Advantages conferred by jaws include improved 

efficiency of the branchial respiration system via the musculature of the upper and 

lower skeletal elements, and the ability to occupy entirely new environmental niches via 

predation.   

The vertebrate head is comprised of the neurocranium (dorsal), viscerocranium 

(ventral), and mandibular arch.  With the exception of the neurocranium all of these 

structures are derived exclusively from the neural crest (Le Douarin and Kalchiem, 

1999; Noden, 1988).  The development of the jaw requires the dorsoventral subdivision 

of the embryonic rostral-most pharyngeal arch, the mandibular arch (Kuratani and Ota, 

2008; Mallatt, 2008).  The mandibular arch formed the palatoquadrate of the upper jaw 

and Meckel’s cartilage of the lower jaw in ancient placoderm fish (Sienknecht, 2013).   

The classic theory by Carl Gegenbaur postulated that evolution of the jaw and 

hyoid arch was facilitated by the transformation of a rostral gill arch (Gegenbaur et al., 

1878).  Mallat theorized that the original mandibular arch first functioned in ventilation 

before moving rostrally towards the old mouth to form a “new mouth” (Mallatt, 1996).  

Janvier hypothesized that the mandibular arch arose through modification of the velar 

skeleton (found in lancelets and lampreys), because the velar cartilage in lampreys is 

comprised of articulated upper and lower elements (Janvier, 1996).  While fossil 

intermediaries to support these theories are lacking, Gegenbaur’s original theory is 

supported by molecular evidence to suggest the importance of the Distal-less homologs, 
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Dlx genes, in the dorsoventral (DV) patterning of the first pharyngeal arch, and 

ultimately in the evolutionary acquisition of jaws (Depew et al., 2002; Panganiban and 

Rubenstein, 2002; Qiu et al., 1997; Simeone et al., 1994).  The advent of the segmented 

branchial bars and jaws is assumed to have occurred in the vertebrate lineage after the 

agnathan-gnathostome divergence, and that gradual changes in the interaction between 

migrating neural crest cells and surrounding pharyngeal tissues could account for the 

evolution of the mandibular arch (Shigetani et al., 2002).  These features make lampreys 

an attractive model for studying vertebrate jaw evolution (Kuratani and Ota, 2008).   

As discussed above, lampreys possess an upper lip, lower lip, first arch, and 

second arch that consist of mucocartilage, and a fused branchial basket composed of 

seven pharyngeal arches that consist of cellular cartilage.  Studies have reported a 

conserved nested pattern of Dlx expression in the pharyngeal arch of  gnathostomes, 

suggesting that a ‘Dlx code’ was coopted for the dorsoventral patterning of the jaw 

during vertebrate evolution (Medeiros and Crump, 2012; Minoux and Rijli, 2010; 

Takechi et al., 2013; Talbot et al., 2010; Zuniga et al., 2011).  While initial studies using 

lampreys showed expression of Dlx throughout the proximodistal axis of the pharyngeal 

arches (Kuraku et al., 2010; Neidert et al., 2001), a subsequent study by Cerney et al.  

showed a nested expression of Dlx genes, together with dynamic expression of Msx, 

Hand, and Gsc genes along the dorsoventral axis of the lamprey pharyngeal arch (Cerny 

et al., 2010).  This suggests that the pharyngeal arch dorsoventral polarity already 

existed in the vertebrate common ancestor (Medeiros and Crump, 2012).  Furthermore, 

recent studies have reported the nested expression of Dlx genes in the pharyngeal arch 

of elasmobranches and paddlefish, suggesting a minimal degree of neo-
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functionalization of Dlx genes over gnathostome evolution and further supporting the 

theory of a pharyngeal arch-derived jaw by the cooption of an ancient “Dlx code” 

(Compagnucci et al., 2013; Debiais-Thibaud et al., 2013; Gillis et al., 2013; Takechi et 

al., 2013).   

While these studies suggest that the core components of the dorsoventral 

patterning program already existed in a jawless vertebrate ancestor, several key 

differences have also been noted.  Key regulators of joint formation (Bapx and 

Gdf5/6/7) were found to be missing in the rostral-most pharyngeal arch of lampreys, 

whereas Barx1, which is a known repressor of joint formation, was expressed in the 

intermediate first arch of lampreys (Cerny et al., 2010; Kuraku et al., 2010).  These 

observations suggest that a pre-existing pharyngeal dorsoventral patterning program 

was coopted to work in conjunction with novel Bapx, Gdf5/6/7, and Barx1 expression 

domains to give rise to articulated jaws (Medeiros and Crump, 2012; Nichols et al., 

2013).  Given the current level of understanding, further investigations are required in 

order to establish a precise evolutionary relationship between lamprey and gnathostome 

Dlx/Msx/Hand dorsoventral patterning programs, and to determine the functional roles 

of Bapx, Gdf5/6/7, and Barx1 during lamprey skeletal development. 

 

Myelination of vertebrate nerves 

The neural crest also makes an important contribution to the success of 

vertebrates by giving rise to peripheral myelin sheaths.  While invertebrate axons are 

ensheathed by supporting cells, the speed of electrical signals is limited by the lack of 

highly compact myelin sheaths (Zalc and Colman, 2000).  The axons of gnathostome 



19 

 

vertebrate nerve cells are capable of high velocity saltatory conduction due to the 

insulation provided by myelinated membranous sheaths that surround vertebrate axons.  

Oligodendrocytes form compact myelin sheaths around axons of the brain; while neural 

crest derived Schwann cells perform the same function for peripheral axons.  Hence, 

myelination may have enhanced predatory abilities and escape response times in early 

vertebrates (Gans and Northcutt, 1983; Ritchie, 1984; Zalc and Colman, 2000).  

Interestingly, myelinated axons are absent in lampreys and hagfish (Bullock et al., 

1984). 

In the peripheral nervous system (PNS), axons are ensheathed by myelinating 

Schwann cells that originate from neural crest cells (Dupin et al., 1990; Geren, 1954; Le 

Douarin et al., 1991).  Schwann cell development involves three phases.  Migrating 

neural crest cells give rise to precursor Schwann cells.  These give rise to immature 

Schwann cells.  Finally, immature Schwann cells develop into myelinating and non-

myelinating Schwann cells (Jessen and Mirsky, 2005).  Myelination requires the 

continuous contact and interaction between axons and Schwann cells, whereby axonal 

cues such as neuregulin-1 (Nrg1) are detected by the ErbB family of tyrosine kinase 

receptors located on Schwann cells (Jessen and Mirsky, 2005; Meyer et al., 1997).  

Nrg1 binding, specifically isoform type-III (sensory and motor neuron-derived factor), 

to ErbB2/3 receptors activates signal transduction cascades that are essential for 

myelination of axons (Birchmeier, 2009; Brinkmann et al., 2008; Leimeroth et al., 

2002; Lemke and Chao, 1988; Nave and Salzer, 2006; Newbern and Birchmeier, 2010; 

Taveggia et al., 2005).  One study has also highlighted the function of a G-protein 
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coupled receptor, Gpr126, that plays a role during development in elevating cAMP 

levels in Schwann cells after axonal contact to trigger myelination (Monk et al., 2009).   

Tetrapod peripheral myelin is characterized by the presence of highly compact 

regions held together by cell-cell adhesion transmembrane proteins identified as myelin 

protein zero (P0).  P0 is encoded by the myelin protein zero (mpz) gene.  The 

extracellular domain of P0 adheres to other P0 molecules across the extracellular matrix 

at cell-cell interfaces to facilitate membrane wrapping around an axon (Lemke et al., 

1988).  Myelin is generally considered to be a vertebrate innovation, although myelin-

like sheaths that appear to be structurally and functionally similar have arisen 

independently in crustaceans and annelids through convergent evolution (Roots, 2008; 

Waehneldt, 1990).  The initial steps in the evolution of myelin may have incorporated a 

homophilic P0 analog to achieve an early version of an electrical seal between glial and 

axonal membranes (Hartline and Colman, 2007).  While P0 is not essential for 

peripheral myelination, due to its functional redundancy with Pmp2 (peripheral myelin 

protein 2), it is thought to have been a key molecule for the emergence of myelin within 

the gnathostome lineage (Nawaz et al., 2013).  There are no extant species or fossil 

records that exhibit the primitive condition of myelination (Hartline and Colman, 2007).  

However, while lampreys and hagfish do not possess myelin, they do possess axon-

neighboring glial cells that maintain close cellular contact (Bullock et al., 1984) and 

show P0 immunoreactivity in the central nervous system (Waehneldt et al., 1987).  A 

recent analysis of the lamprey genome revealed the presence of a number of genes 

associated with myelin formation, including Mbp (myelin basic protein), Pmp22 

(peripheral myelin protein 22), Mpz (myelin protein zero, P0), Plp (myelin proteolipid 
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protein), Mal (myelin and lymphocyte protein), and Myt1l (myelin transcription factor 

1-like) (Smith et al., 2013).  The authors of this study suggest two evolutionary 

scenarios: 1) the ancestral vertebrate already possessed the molecular components of 

myelination and these were adapted by glial cells to form myelin in the gnathostome 

lineage, or alternatively, 2) the ancestral vertebrate possessed oligodendrocyte-like glial 

cells that were secondarily lost in the lamprey lineage (Smith et al., 2013).  However, a 

subsequent commentary by Werner points out that the gene identified as Mbp by Smith 

et al., 2013, may also be homologous to the protein products of gene-of-the-

oligodendrocyte-lineage (GOLLI), while the other presumed myelin proteins may not 

even be related to myelin (Werner, 2013).  The author suggests that the automated 

annotations of the recently sequenced lamprey genome may be unreliable, and that 

myelin is arguably still a gnathostome innovation (Werner, 2013). 

 

 

Adaptive Immunity 

Lampreys have provided recent insights into evolution of the vertebrate adaptive 

immune system (Alder et al., 2008; Boehm et al., 2012; Guo et al., 2009; Kasamatsu et 

al., 2010; Litman et al., 2010; Pancer et al., 2004; Pancer et al., 2005).  Adaptive 

immunity in vertebrates is characterized by the presence of two types of lymphocytes, 

B-cells derived from bone marrow and T-cells that develop in the thymus.  B-cells 

produce billions of unique immunoglobulin proteins (antibodies) that recognize and 

bind foreign antigens.  T-cells interact with cells that express a foreign antigen at their 

surface to elicit an immune response, dependent on expression of T-cell receptors 
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(TCRs).  The diversity of antibodies and TCRs are both dependent on activity of 

recombinase activating gene (RAG) proteins (Cannon et al., 2004; Nagaoka et al., 

2000).   

Over the past decade, independent emergence of adaptive immunity has been 

demonstrated in agnathans, where variable lymphocyte receptors (VLRs) are present at 

three loci in the lamprey genome (Das et al., 2013).  Interestingly, two VLR paralogs 

have been identified in hagfish, further strengthening cyclostome monophyly 

(Heimberg et al., 2010; Pancer et al., 2005).  VLR-based adaptive immunity is similar 

to the TCR receptors of gnathostome vertebrates in that VLR assembly involves genetic 

rearrangement dependent on a cytosine deaminase (CDA) instead of RAG (Rogozin et 

al., 2007).  Though these two systems arose independently in agnathans and 

gnathostomes, their functions depend on the activity of lymphocytes in both groups, 

suggesting that the evolution and development of adaptive immunity was likely 

dependent on cell regulatory networks present in the vertebrate common ancestor (Rast 

and Buckley, 2013).  Going forward, comparative investigations of the sea lamprey 

genome (Smith et al., 2013) with gnathostomes may provide additional insight into the 

evolution of the vertebrate adaptive immune system. 

 

Techniques to study lamprey development 

Over the past few decades, numerous experimental techniques developed for use 

in model vertebrates have been adapted for use in lampreys.  DiI is a lipophilic 

fluorescent dye that has been used to follow cells for long term cell tracing both in vivo 

and in vitro (Honig and Hume, 1986; Markus et al., 1997).  Several studies have used 
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fluorescent dyes to examine the contributions of cranial neural crest to development of 

the lamprey head (Horigome et al., 1999; McCauley and Bronner-Fraser, 2003).  In situ 

hybridization is a tool that is used to determine the spatiotemporal pattern of genes 

expressed during development, and has been especially useful for evo-devo studies.  In 

situ hybridization methods have been adapted for use in at least three species of 

lampreys, Petromyzon marinus, Lethenteron japonica, and Lampetra fluviatilis, and 

have allowed investigators to infer important insights into the evolution of 

developmental mechanisms in early vertebrates (Boorman and Shimeld, 2002; Derobert 

et al., 2002; Lakiza et al., 2011; McCauley and Bronner-Fraser, 2002, 2006; Murakami 

et al., 2001; Myojin et al., 2001; Nikitina et al., 2009; Ogasawara et al., 2000; Rahimi et 

al., 2009; Sauka-Spengler et al., 2007; Swain et al., 1994; Tomsa and Langeland, 1999; 

Zhang et al., 2006).  The application of pharmacological agents has also been used to 

decipher developmental events involving Retinoic Acid, hedgehog (cyclopamine), and 

FGF (SU5402) signaling in lampreys (Jandzik et al., 2014; Murakami et al., 2004; 

Sugahara et al., 2011). 

Gene knockdown techniques are examples of “reverse genetics” in which genes 

of interest are perturbed in function by preventing accumulation of specific protein 

products in order to determine the phenotypes that arise from specific gene sequences.  

Two such knockdown techniques that have been used in lampreys include 

microinjection of morpholinos and RNA interference (RNAi).  Morpholino-mediated 

gene knockdown has been adapted for use in lampreys and is useful for understanding 

the developmental roles of specific genes in an evolutionary context (Lakiza et al., 

2011; McCauley and Bronner-Fraser, 2006).  RNA interference (RNAi) is an 
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endogenous intracellular mechanism to regulate gene expression via the targeted 

degradation of specific mRNA transcripts (Mello and Conte, 2004).  RNAi has gained 

widespread use as a tool for understanding gene function and has recently been shown 

to perturb lamprey development (Heath et al., 2014).  Quantitative real-time qPCR has 

also been used to demonstrate relative changes in gene expression levels following gene 

perturbation (Lakiza et al., 2011).   

Transgenesis is the technique of introducing exogenous DNA into an organism, 

either to determine the spatiotemporal expression of a gene through the use of an 

enhancer-reporter construct, or to introduce a gene sequence that will produce a 

phenotypic effect.  Transgenesis may be transient, in which expression of the transgene 

is limited to somatic cells such that phenotypic effects are manifest only within 

organisms undergoing the transgenesis procedure.  Alternatively, germline transgenesis 

involves incorporation of the exogenous sequence into the germ line of an organism 

such that the transgene is heritable.  Germline transgenics can be maintained as stable 

lines for genetic analyses.   

With the advent of reverse genetic techniques for developmental studies, 

lampreys have become more tractable as an evo-devo model.  Kuratani’s group showed 

that transient transgenic lampreys could be made to express a green fluorescent protein 

(GFP) reporter gene under the control of a gene-specific (actin) promoter (Kusakabe et 

al., 2003).  The forced expression of genes under tissue-specific promoters has the 

potential to broaden understanding of evolutionary changes in the developmental roles 

of genes and gene regulatory networks (Sauka-Spengler and Bronner-Fraser, 2008a; 

Sauka-Spengler et al., 2007).   



25 

 

Comparative Approach using both Lampreys and Zebrafish 

While molecular genetic techniques are becoming increasingly available to 

lampreys, there are many techniques that are only applicable to modern vertebrate 

model organisms such as mice, chick, Xenopus, and zebrafish. Prior to the recent 

sequencing of the sea lamprey genome (Smith et al., 2013), identification of lamprey 

gene sequences required either screening genomic or cDNA libraries using heterologous 

probes, or by polymerase chain reaction (PCR) amplification of lamprey gene fragments 

using degenerate oligonucleotides.  The lamprey genes used in this study have all been 

cloned in this fashion.  Also, due to their lifespan and semelparous mode of 

reproduction where they die soon after spawning (Cole, 1954), lampreys are not 

amenable to classical “Medelian” forward genetics (i.e., a phenotype driven approach) 

to determine the roles of genes with developmental importance.  Because of their long 

generation time, and an inability to perform backcrossing, germline transmission of 

gene constructs is not practical for establishing stable germline transgenic animals.  In 

addition, there is a multi-year interval between embryogenesis and reproduction.  For 

these very same reasons, reverse genetics (i.e., a gene driven approach) are also limited 

to gene “knockdown” as opposed to complete gene knockouts or knockins.  These 

biological constraints have limited the use of genetics as a tool to understand lamprey 

biology.   

The use of zebrafish for the study of vertebrate development and diseases has 

seen tremendous growth over the past two decades.  Unlike lampreys, zebrafish are 

highly amenable to both forward and reverse genetic approaches.  Zebrafish are 

relatively cheap to maintain in small spaces (high stocking density) and are highly 
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fecund (200 – 300 offspring per spawning pair).  They undergo rapid development (3 

days to larval period) and exhibit optical clarity that can be further enhanced by 

inhibiting pigmentation using phenylthiourea (PTU).  Sexual maturity is reached within 

three months, which allows for screening of F2 and F3 progenies within the same year. 

A hallmark of zebrafish forward genetics occurred in 1996 when Nusslein-Volhard 

(Tubingen) and Driever and Fishman (Boston) published their results from the first ever 

large-scale ethylnitrosourea (ENU)-induced random mutagenesis screens in this species 

(Driever et al., 1996; Haffter et al., 1996).  Three years later, the result of the first 

retrovirally induced insertional mutagenesis screen was published (Amsterdam et al., 

1999).  The use of tagged insertions allowed for a less laborious process of identifying 

mutated genes (Amsterdam et al., 2004).  These pioneering large-scale forward genetic 

approaches propelled zebrafish into use as one of four major vertebrate developmental 

models and provided researchers with a plethora of mutant strains, many of which 

represent human disease models. 

Reverse genetics has also seen major developments, especially with the 

development of target specificity in recent years.  The reverse genetic approach 

involves the targeted perturbation of a gene or pathway of interest.  Pharmacological 

reagents that have been used in lampreys (mentioned previously) have also been used in 

the zebrafish, such as Retinoic acid (RA) (Conlon, 1995; Durston et al., 1989), FGF 

receptor antagonist SU5402 (Poss et al., 2000), and cyclopamine (inhibitor of sonic 

hedgehog pathway) (Cooper et al., 1998).  Shortly after the release of the first zebrafish 

genome assembly, TILLING (targeting induced local lesions in genomes) (McCallum et 

al., 2000) was successfully used in zebrafish (Wienholds et al., 2003).  Unlike the 
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phenotype driven approach in forward genetics, TILLING does not require the 

laborious screening of every single F3 progeny.  Instead, DNA can be collected from 

sperm of mutated F1 founder males and prescreened for mutations by PCR 

amplification using gene specific primers followed by direct sequencing.  The results of 

the prescreening process can then be compared to the corresponding offspring.    

Transgenic approaches have also been widely employed for many years by 

microinjecting circular or linear plasmid DNA into one-cell stage zebrafish embryos.  

This method is effective at creating transient transgenics to assess gene activity in the 

F0 generation. However, germline transmission rates are low (~5%) due to mosaic 

expression and late integration of injected transgenes (Stuart et al., 1988). For the 

purposes of generating stable germline transgenics, the traditional method was 

improved upon by flanking the transgene with two I-SceI recognition sites and co-

injected with the I-SceI meganuclease enzyme.  Successful germline transmission 

frequencies can be improved by up to 50% using this method (Grabher et al., 2004).  

Another method of improving the frequency of transgenesis is to use the Tol2 

transposon-mediated transgenesis system.  In this method, the gene of interest is 

inserted into a transposable element and co-injected into the zebrafish embryo with the 

transposase mRNA to induce stable germline integration (Kawakami, 2004; Kawakami 

et al., 2004).  These systems can now be used as gene trap and enhancer trap methods in 

zebrafish (Kawakami, 2005).  Both of the aforementioned approaches have greatly 

facilitated the rapid generation of stable transgenic lines. 

Recent exciting advances have expanded the possibilities of targeted genome 

editing in zebrafish, owing to the adaptation of chimeric nucleases, such as zinc-finger 
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nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) (Doyon 

et al., 2008; Meng et al., 2008; Sander et al., 2011).  TALE proteins, naturally found in 

the Xanthomonas bacteria, contain a DNA-binding domain that can be engineered to 

bind to any specific genomic target.  When fused with a non-specific nuclease, the 

chimeric TALEN protein has the ability to induce target-specific DNA double stranded 

breaks (Gaj et al., 2013).  In addition to targeted disruption, TALEN mRNA can be co-

injected with a donor plasmid to induce targeted integration of genes of interest, thus 

opening up the possibilities for site-directed gene knockins in zebrafish (Zu et al., 

2013).  Despite the commercial availability of TALE arrays, this approach still requires 

engineering a unique TALEN for each gene of interest.   

The latest and most cost effective genome editing tool that has been adopted use 

in zebrafish is the Clustered, Regularly Interspaced, Short Palindromic Repeats 

(CRISPR) / CRISPR-associated (Cas) system (Hruscha et al., 2013; Hwang et al., 

2013).  Bacteria have evolved an adaptive defense system against foreign nucleic acids 

by using CRISPR in conjunction with Cas proteins, whereby foreign DNA fragments 

are taken up into CRISPR loci, transcribed and processed into short CRISPR RNAs 

(crRNAs) that are subsequently annealed to trans-activating crRNA (tracrRNA), which 

can then direct Cas9 endonucleases in targeting foreign DNA (Barrangou et al., 2007; 

Brouns et al., 2008; Jinek et al., 2012).  Customizable synthetic single guide RNAs 

(sgRNA) consisting of a fusion of crRNA and tracrRNA can be designed, in vitro 

transcribed, and co-injected with the Cas9 mRNA to perform endonuclease-mediated 

target-specific genome alterations in zebrafish embryos (Hwang et al., 2013).  Unlike 

ZFNs or TALENs, the CRISPR/Cas9 system is highly amenable to high-throughput 
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use.  Furthermore, the latest reports show that this system can now be modified to 

induce site-specific gene knockins in zebrafish in vivo (Auer et al., 2014).   

While the aforementioned approaches can be powerful, they often demand more 

resources to raise, house, and feed the exponentially expanding generations of putative 

transgenic lines, in addition to a laborious screening processes.  Therefore, the 

traditional methods of a reverse genetic approach are still widely employed to conduct 

gain-of-function or loss-of-function experiments.  While these methods have their 

inherent limitations, they require far fewer resources and can be highly effective with 

the appropriate experimental design and adequate sample sizes.  Morpholino antisense 

oligonucleotides or RNAi can be injected into fertilized eggs to specifically knockdown 

the expression of target genes.  A limitation of using the morpholino approach is that 

the resulting phenotypes can be highly variable due to uneven distribution of 

oligonucleotides during cleavage, in addition to the loss of effectiveness during later 

stages of development due to dilution.  While RNAi has been widely employed in 

mammalian and invertebrate systems, it has not been fully adopted by the zebrafish 

community owing to potential non-specific deleterious effects on the development 

(Skromne and Prince, 2008), and partly due to the overwhelming popularity of 

morpholinos.  Gain-of-function can be achieved by microinjecting transgenes contained 

within expression vectors or in the form of in vitro transcribed mRNA.  These 

expression vectors can possess various promoters such as the heat-shock promoter, 

which can confer some degree of spatiotemporal control of expression when activated 

using a modified soldering iron to obtain local activation of the heat-shock response 

(Hardy et al., 2007), a CMV ubiquitous promoter, or a gene specific promoter.  A 
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traditional gain-of-function approach can be combined with morpholinos or applied to 

the numerous knockout mutants available to the zebrafish community.   

In 2006, a study by McCauley and Bronner-Fraser reported the discovery of 

three SoxE (PmSoxE1, PmSoxE2, and PmSoxE3) genes in the lamprey and showed that 

they are all expressed in the developing pharyngeal arches.  However, their evolutionary 

relationship to gnathostome Sox8, Sox9, and Sox10 remained unclear, as only PmSoxE3 

was found to be orthologous to the Sox9 clade (McCauley and Bronner-Fraser, 2006).  

In 2011, Lakiza et al. used morpholino oligonucleotides to knockdown the expression of 

all three lamprey SoxE genes, which resulted in defects of multiple neural crest 

derivatives (Lakiza et al., 2011), thus confirming that PmSoxE1, PmSoxE2, PmSoxE3 

all have important roles during lamprey neural crest development.  However, the 

evolutionary relationship among lamprey and gnathostome SoxE genes remained 

unclear.   

In this dissertation, I asked how the duplication of SoxE genes is related to the 

evolution of neural crest lineage specification by combining the advantages conferred 

by both the lamprey and zebrafish model systems.  The pCS2+ expression vector 

contains a strong promoter (simian CMV IE94) followed by a SV40 late 

polyadenylation site.   The direct injection of DNA contained within the pCS2+ vector 

is used for ubiquitous high-level transient expression in the zebrafish.  We placed the 

lamprey SoxE genes into pCS2+ expression vectors and heterospecifically expressed 

them in zebrafish wildtype embryos, as well as jellyfish (jef) and colourless (cls) 

homozygous mutants that lack expression of functional sox9 and sox10 proteins, 

respectively.  The resulting rescue of pigment cells can be observed in live embryos, 
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while rescue of other neural crest derivatives can be detected using Alcian blue staining, 

immunohistochemistry, and methylene blue staining.  Ultimately, the optically clear 

zebrafish embryos can serve as an in vivo system for testing the functional capabilities 

of lamprey SoxE genes.   

  



32 

 

References 

Abitua, P.B., Wagner, E., Navarrete, I.A., Levine, M., 2012. Identification of a 

rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104-107. 

Akoev, G.N., Muraveiko, V.M., 1984. Physiological properties of lateral line receptors 

of the lamprey. Neurosci Lett 49, 171-173. 

Alder, M.N., Herrin, B.R., Sadlonova, A., Stockard, C.R., Grizzle, W.E., Gartland, 

L.A., Gartland, G.L., Boydston, J.A., Turnbough, C.L., Jr., Cooper, M.D., 2008. 

Antibody responses of variable lymphocyte receptors in the lamprey. Nat Immunol 9, 

319-327. 

Amsterdam, A., Burgess, S., Golling, G., Chen, W.B., Sun, Z.X., Townsend, K., 

Farrington, S., Haldi, M., Hopkins, N., 1999. A large-scale insertional mutagenesis 

screen in zebrafish. Genes & Development 13, 2713-2724. 

Amsterdam, A., Nissen, R.M., Sun, Z.X., Swindell, E.C., Farrington, S., Hopkins, N., 

2004. Identification of 315 genes essential for early zebrafish development. Proceedings 

of the National Academy of Sciences of the United States of America 101, 12792-

12797. 

Auer, T.O., Duroure, K., De Cian, A., Concordet, J.P., Del Bene, F., 2014. Highly 

efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA 

repair. Genome Research 24, 142-153. 

Baker, C.V., Bronner-Fraser, M., 1997. The origins of the neural crest. Part 2: an 

evolutionary perspective. Mech Dev 69, 13-29. 

Baker, C.V., Bronner-Fraser, M., 2001. Vertebrate cranial placodes I. Embryonic 

induction. Dev Biol 232, 1-61. 

Baker, C.V., Modrell, M.S., Gillis, J.A., 2013. The evolution and development of 

vertebrate lateral line electroreceptors. The Journal of experimental biology 216, 2515-

2522. 

Barald, K.F., Kelley, M.W., 2004. From placode to polarization: new tunes in inner ear 

development. Development 131, 4119-4130. 



33 

 

Bardack, D., Zangerl, R., 1968. First Fossil Lamprey: A Record from the Pennsylvanian 

of Illinois. Science 162, 1265-1267. 

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., 

Romero, D.A., Horvath, P., 2007. CRISPR provides acquired resistance against viruses 

in prokaryotes. Science 315, 1709-1712. 

Beard, J., 1885. The system of branchial sense organs and their associated ganglia in 

Ichthyopsida. A contribution to the ancestral history of vertebrates. Quart. Jour. Micr. 

Sci. 26, 95-156. 

Bejder, L., Hall, B.K., 2002. Limbs in whales and limblessness in other vertebrates: 

mechanisms of evolutionary and developmental transformation and loss. Evolution & 

Development 4, 445-458. 

Bertrand, S., Escriva, H., 2011. Evolutionary crossroads in developmental biology: 

amphioxus. Development 138, 4819-4830. 

Birchmeier, C., 2009. ErbB receptors and the development of the nervous system. Exp 

Cell Res 315, 611-618. 

Boehm, T., McCurley, N., Sutoh, Y., Schorpp, M., Kasahara, M., Cooper, M.D., 2012. 

VLR-Based Adaptive Immunity, in: Paul, W.E. (Ed.), Annual Review of Immunology, 

pp. 203-220. 

Bok, J., Chang, W., Wu, D.K., 2007. Patterning and morphogenesis of the vertebrate 

inner ear. The International journal of developmental biology 51, 521-533. 

Boorman, C.J., Shimeld, S.M., 2002. Cloning and expression of a Pitx homeobox gene 

from the lamprey, a jawless vertebrate. Development Genes and Evolution 212, 349-

353. 

Breder, C.M., 1926. The locomotion of fishes. Zoologica 4, 159-297. 

Brinkmann, B.G., Agarwal, A., Sereda, M.W., Garratt, A.N., Muller, T., Wende, H., 

Stassart, R.M., Nawaz, S., Humml, C., Velanac, V., Radyushkin, K., Goebbels, S., 

Fischer, T.M., Franklin, R.J., Lai, C., Ehrenreich, H., Birchmeier, C., Schwab, M.H., 

Nave, K.A., 2008. Neuregulin-1/ErbB signaling serves distinct functions in myelination 

of the peripheral and central nervous system. Neuron 59, 581-595. 



34 

 

Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, 

A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., 2008. Small 

CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964. 

Bullock, T.H., Moore, J.K., Fields, R.D., 1984. Evolution of myelin sheaths: both 

lamprey and hagfish lack myelin. Neuroscience letters 48, 145-148. 

Burighel, P., Caicci, F., Zaniolo, G., Gasparini, F., Degasperi, V., Manni, L., 2008. 

Does hair cell differentiation predate the vertebrate appearance? Brain research bulletin 

75, 331-334. 

Burighel, P., Lane, N.J., Fabio, G., Stefano, T., Zaniolo, G., Carnevali, M.D., Manni, L., 

2003. Novel, secondary sensory cell organ in ascidians: in search of the ancestor of the 

vertebrate lateral line. The Journal of comparative neurology 461, 236-249. 

Caicci, F., Burighel, P., Manni, L., 2007. Hair cells in an ascidian (Tunicata) and their 

evolution in chordates. Hear Res 231, 63-72. 

Caicci, F., Degasperi, V., Gasparini, F., Zaniolo, G., Del Favero, M., Burighel, P., 

Manni, L., 2010. Variability of hair cells in the coronal organ of ascidians (Chordata, 

Tunicata). Can J Zool 88, 567-578. 

Caicci, F., Gasparini, F., Rigon, F., Zaniolo, G., Burighel, P., Manni, L., 2013. The oral 

sensory structures of Thaliacea (Tunicata) and consideration of the evolution of hair 

cells in Chordata. The Journal of comparative neurology 521, 2756-2771. 

Cannon, J.P., Haire, R.N., Rast, J.P., Litman, G.W., 2004. The phylogenetic origins of 

the antigen-binding receptors and somatic diversification mechanisms. Immunol. Rev. 

200, 12-22. 

Carroll, R.L., 1988. Vertebrate Paleontology and Evolution. W.H. Freeman & 

Company, New York. 

Cattell, M., Lai, S., Cerny, R., Medeiros, D.M., 2011. A new mechanistic scenario for 

the origin and evolution of vertebrate cartilage. PLoS One 6, e22474. 

Cerny, R., Cattell, M., Sauka-Spengler, T., Bronner-Fraser, M., Yu, F., Medeiros, D.M., 

2010. Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc Natl 

Acad Sci U S A 107, 17262-17267. 



35 

 

Chatterjee, S., Kraus, P., Lufkin, T., 2010. A symphony of inner ear developmental 

control genes. Bmc Genetics 11. 

Chen, J., Streit, A., 2013. Induction of the inner ear: Stepwise specification of otic fate 

from multipotent progenitors. Hearing Res 297, 3-12. 

Christ, B., Huang, R., Scaal, M., 2004. Formation and differentiation of the avian 

sclerotome. Anatomy and embryology 208, 333-350. 

Coates, M.I., 1994. The Origin of Vertebrate Limbs. Development, 169-180. 

Coates, M.I., Cohn, M.J., 1999. Vertebrate axial and appendicular patterning: The early 

development of paired appendages. Am Zool 39, 676-685. 

Cohn, M.J., Tickle, C., 1999. Developmental basis of limblessness and axial patterning 

in snakes. Nature 399, 474-479. 

Cole, A.G., 2011. A Review of Diversity in the Evolution and Development of 

Cartilage: The Search for the Origin of the Chondrocyte. Eur Cells Mater 21, 122-129. 

Cole, A.G., Hall, B.K., 2004. Cartilage development: Insights from studies on 

invertebrate taxa. Developmental Biology 271, 601-601. 

Cole, L.C., 1954. THE POPULATION CONSEQUENCES OF LIFE HISTORY 

PHENOMENA. Q. Rev. Biol. 29, 103-137. 

Compagnucci, C., Debiais-Thibaud, M., Coolen, M., Fish, J., Griffin, J.N., Bertocchini, 

F., Minoux, M., Rijli, F.M., Borday-Birraux, V., Casane, D., Mazan, S., Depew, M.J., 

2013. Pattern and polarity in the development and evolution of the gnathostome jaw: 

Both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus 

canicula. Dev Biol 377, 428-448. 

Conlon, R.A., 1995. Retinoic Acid and Pattern-Formation in Vertebrates. Trends in 

Genetics 11, 314-319. 

Cooper, M.K., Porter, J.A., Young, K.E., Beachy, P.A., 1998. Teratogen-mediated 

inhibition of target tissue response to Shh signaling. Science 280, 1603-1607. 



36 

 

Das, S., Hirano, M., Aghaallaei, N., Bajoghli, B., Boehm, T., Cooper, M.D., 2013. 

Organization of lamprey variable lymphocyte receptor C locus and repertoire 

development. Proc Natl Acad Sci U S A 110, 6043-6048. 

De Beer, G.R., 1924. Growth. E. Arnold & Co., London. 

De Beer, G.R., 1937. The development of the vertebrate skull. Oxford university press, 

London. 

Debiais-Thibaud, M., Metcalfe, C.J., Pollack, J., Germon, I., Ekker, M., Depew, M., 

Laurenti, P., Borday-Birraux, V., Casane, D., 2013. Heterogeneous Conservation of Dlx 

Paralog Co-Expression in Jawed Vertebrates. Plos One 8. 

Depew, M.J., Lufkin, T., Rubenstein, J.L.R., 2002. Specification of jaw subdivisions by 

Dix genes. Science 298, 381-385. 

Derobert, Y., Baratte, B., Lepage, M., Mazan, S., 2002. Pax6 expression patterns in 

Lampetra fluviatilis and Scyliorhinus canicula embryos suggest highly conserved roles 

in the early regionalization of the vertebrate brain. Brain research bulletin 57, 277-280. 

Don, E.K., Currie, P.D., Cole, N.J., 2013. The evolutionary history of the development 

of the pelvic fin/hindlimb. Journal of Anatomy 222, 114-133. 

Donoghue, P.C., Graham, A., Kelsh, R.N., 2008. The origin and evolution of the neural 

crest. Bioessays 30, 530-541. 

Donoghue, P.C.J., Forey, P.L., Aldridge, R.J., 2000. Conodont affinity and chordate 

phylogeny. Biol Rev 75, 191-251. 

Doyon, Y., McCammon, J.M., Miller, J.C., Faraji, F., Ngo, C., Katibah, G.E., Amora, 

R., Hocking, T.D., Zhang, L., Rebar, E.J., Gregory, P.D., Urnov, F.D., Amacher, S.L., 

2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger 

nucleases. Nature Biotechnology 26, 702-708. 

Driever, W., SolnicaKrezel, L., Schier, A.F., Neuhauss, S.C.F., Malicki, J., Stemple, 

D.L., Stainier, D.Y.R., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., Boggs, C., 

1996. A genetic screen for mutations affecting embryogenesis in zebrafish. 

Development 123, 37-46. 



37 

 

Drucker, E.G., Lauder, G.V., 2002. Wake dynamics and locomotor function in fishes: 

interpreting evolutionary patterns in pectoral fin design. Integr Comp Biol 42, 997-

1008. 

Dupin, E., Baroffio, A., Dulac, C., Cameron-Curry, P., Le Douarin, N.M., 1990. 

Schwann-cell differentiation in clonal cultures of the neural crest, as evidenced by the 

anti-Schwann cell myelin protein monoclonal antibody. Proc Natl Acad Sci U S A 87, 

1119-1123. 

Durston, A.J., Timmermans, J.P.M., Hage, W.J., Hendriks, H.F.J., Devries, N.J., 

Heideveld, M., Nieuwkoop, P.D., 1989. Retinoic Acid Causes an Anteroposterior 

Transformation in the Developing Central Nervous-System. Nature 340, 140-144. 

Eisner, T., 2003. Living fossils: On lampreys, baronia., and the search for medicinals. 

Bioscience 53, 265-269. 

Freitas, R., Gomez-Marin, C., Wilson, J.M., Casares, F., Gomez-Skarmeta, J.L., 2012. 

Hoxd13 Contribution to the Evolution of Vertebrate Appendages. Developmental cell 

23, 1219-1229. 

Freitas, R., Zhang, G.J., Cohn, M.J., 2006. Evidence that mechanisms of fin 

development evolved in the midline of early vertebrates. Nature 442, 1033-1037. 

Fritzsch, B., Beisel, K.W., 2001. Evolution and development of the vertebrate ear. Brain 

Res Bull 55, 711-721. 

Fritzsch, B., Pauley, S., Beisel, K.W., 2006. Cells, molecules and morphogenesis: The 

making of the vertebrate ear. Brain Res 1091, 151-171. 

Fritzsch, B., Signore, M., Simeone, A., 2001. Otx1 null mutant mice show partial 

segregation of sensory epithelia comparable to lamprey ears. Development Genes and 

Evolution 211, 388-396. 

Gadow, H., 1933. The evolution of the vertebral column. The University Press, 

Cambridge. 

Gai, Z.K., Donoghue, P.C.J., Zhu, M., Janvier, P., Stampanoni, M., 2011. Fossil jawless 

fish from China foreshadows early jawed vertebrate anatomy. Nature 476, 324-327. 



38 

 

Gaj, T., Gersbach, C.A., Barbas, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based 

methods for genome engineering. Trends Biotechnol 31, 397-405. 

Gans, C., Northcutt, R.G., 1983. Neural Crest and the Origin of Vertebrates: A New 

Head. Science 220, 268-273. 

Gasparini, F., Degasperi, V., Shimeld, S.M., Burighel, P., Manni, L., 2013. 

Evolutionary conservation of the placodal transcriptional network during sexual and 

asexual development in chordates. Developmental Dynamics 242, 752-766. 

Gegenbaur, C., Bell, F.J., Lankester, E.R., 1878. Elements of Comparative Anatomy. 

Macmillan and Company, London. 

Gelman, S., Ayali, A., Tytell, E.D., Cohen, A.H., 2007. Larval lampreys possess a 

functional lateral line system. Journal of Comparative Physiology a-Neuroethology 

Sensory Neural and Behavioral Physiology 193, 271-277. 

Geren, B.B., 1954. The formation from the Schwann cell surface of myelin in the 

peripheral nerves of chick embryos. Exp Cell Res 7, 558-562. 

Gess, R.W., Coates, M.I., Rubidge, B.S., 2006. A lamprey from the Devonian period of 

South Africa. Nature 443, 981-984. 

Gillis, J.A., Modrell, M.S., Baker, C.V.H., 2013. Developmental evidence for serial 

homology of the vertebrate jaw and gill arch skeleton. Nature Communications 4. 

Goodrich, E.S., 1930. Studies on the structure and development of the vertebrates. 

Macmillan, London. 

Grabher, C., Joly, J.S., Wittbrodt, J., 2004. Highly efficient zebrafish transgenesis 

mediated by the meganuclease I-SceI. Zebrafish:2nd Edition Genetics Genomics and 

Informatics 77, 381-+. 

Graham, A., Begbie, J., 2000. Neurogenic placodes: a common front. Trends in 

Neurosciences 23, 313-316. 

Graham, A., Shimeld, S.M., 2013. The origin and evolution of the ectodermal placodes. 

J Anat 222, 32-40. 



39 

 

Green, S.A., Bronner, M.E., 2013. Gene duplications and the early evolution of neural 

crest development. Semin Cell Dev Biol 24, 95-100. 

Groves, A.K., Fekete, D.M., 2012. Shaping sound in space: the regulation of inner ear 

patterning. Development 139, 245-257. 

Guo, P., Hirano, M., Herrin, B.R., Li, J., Yu, C., Sadlonova, A., Cooper, M.D., 2009. 

Dual nature of the adaptive immune system in lampreys. Nature 459, 796-U791. 

Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., 

Odenthal, J., vanEeden, F.J.M., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., 

FurutaniSeiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., 

NussleinVolhard, C., 1996. The identification of genes with unique and essential 

functions in the development of the zebrafish, Danio rerio. Development 123, 1-36. 

Hall, B.K., 1999. The Neural Crest in Development and Evolution. Springer-Verlag, 

New York. 

Hall, B.K., Gillis, J.A., 2013. Incremental evolution of the neural crest, neural crest 

cells and neural crest-derived skeletal tissues. Journal of Anatomy 222, 19-31. 

Hammond, K.L., Loynes, H.E., Mowbray, C., Runke, G., Hammerschmidt, M., Mullins, 

M.C., Hildreth, V., Chaudhry, B., Whitfield, T.T., 2009. A Late Role for bmp2b in the 

Morphogenesis of Semicircular Canal Ducts in the Zebrafish Inner Ear. Plos One 4. 

Hammond, K.L., Whitfield, T.T., 2006. The developing lamprey ear closely resembles 

the zebrafish otic vesicle: otx1 expression can account for all major patterning 

differences. Development 133, 1347-1357. 

Hardy, M.E., Ross, L.V., Chien, C.B., 2007. Focal gene misexpression in zebrafish 

embryos induced by local heat shock using a modified soldering iron. Developmental 

Dynamics 236, 3071-3076. 

Hartline, D.K., Colman, D.R., 2007. Rapid conduction and the evolution of giant axons 

and myelinated fibers. Curr Biol 17, R29-35. 

Heath, G., Childs, D., Docker, M.F., McCauley, D.W., Whyard, S., 2014. RNA 

Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept. Plos One 

9. 



40 

 

Hecht, J., Stricker, S., Wiecha, U., Stiege, A., Panopoulou, G., Podsiadlowski, L., 

Poustka, A.J., Dieterich, C., Ehrich, S., Suvorova, J., Mundlos, S., Seitz, V., 2008. 

Evolution of a core gene network for skeletogenesis in chordates. Plos Genet 4. 

Heimberg, A.M., Cowper-Sal-lari, R., Semon, M., Donoghue, P.C., Peterson, K.J., 

2010. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes 

and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 107, 19379-19383. 

Hertwig, O., 1874. Über Bau und Entwicklung der Placoidschuppen und der Zähne der 

Selachier. Jen. Z. Naturwiss 8, 331-404. 

Hill, A., Boll, W., Ries, C., Warner, L., Osswalt, M., Hill, M., Noll, M., 2010. Origin of 

Pax and Six gene families in sponges: Single PaxB and Six1/2 orthologs in Chalinula 

loosanoffi. Dev Biol 343, 106-123. 

His, W., 1868. Die erste Entwicklung des Hühnchens im Ei. Vodel. 

Holland, L.Z., Holland, N.D., 2001. Evolution of neural crest and placodes: amphioxus 

as a model for the ancestral vertebrate? Journal of Anatomy 199, 85-98. 

Honig, M.G., Hume, R.I., 1986. FLUORESCENT CARBOCYANINE DYES ALLOW 

LIVING NEURONS OF IDENTIFIED ORIGIN TO BE STUDIED IN LONG-TERM 

CULTURES. J. Cell Biol. 103, 171-187. 

Horigome, N., Myojin, M., Ueki, T., Hirano, S., Aizawa, S., Kuratani, S., 1999. 

Development of cephalic neural crest cells in embryos of Lampetra japonica, with 

special reference to the evolution of the jaw. Dev Biol 207, 287-308. 

Hörstadius, O.S., 1950. The neural crest. Oxford University Press, London. 

Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., Schmid, 

B., 2013. Efficient CRISPR/Cas9 genome editing with low off-target effects in 

zebrafish. Development 140, 4982-4987. 

Hwang, W.Y., Fu, Y.F., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, 

R.T., Yeh, J.R.J., Joung, J.K., 2013. Efficient genome editing in zebrafish using a 

CRISPR-Cas system. Nature Biotechnology 31, 227-229. 



41 

 

Jandzik, D., Hawkins, M.B., Cattell, M.V., Cerny, R., Square, T.A., Medeiros, D.M., 

2014. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis 

highlight ancestral functions in the vertebrate head. Development 141, 629-638. 

Janvier, P., 1996. Early Vertebrates. Oxford University Press, Oxford. 

Jeffery, W.R., 2006. Ascidian neural crest-like cells: phylogenetic distribution, 

relationship to larval complexity, and pigment cell fate. J Exp Zool B Mol Dev Evol 

306, 470-480. 

Jeffery, W.R., Chiba, T., Krajka, F.R., Deyts, C., Satoh, N., Joly, J.S., 2008. Trunk 

lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the 

ancestry and evolution of the neural crest. Dev Biol 324, 152-160. 

Jeffery, W.R., Strickler, A.G., Yamamoto, Y., 2004. Migratory neural crest-like cells 

form body pigmentation in a urochordate embryo. Nature 431, 696-699. 

Jessen, K.R., Mirsky, R., 2005. The origin and development of glial cells in peripheral 

nerves. Nat Rev Neurosci 6, 671-682. 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A 

Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. 

Science 337, 816-821. 

Johnels, A.G., 1948. On the development and morphology of the skeleton of the head of 

Petromyzon. Acta Zool [Stockholm] 29, 139-279. 

Johnels, A.G., 1956. On the peripheral autonomic nervous system of the trunk region of 

Lampetra planeri. Acta Zoologica 37, 251-286. 

Kasamatsu, J., Sutoh, Y., Fugo, K., Otsuka, N., Iwabuchi, K., Kasahara, M., 2010. 

Identification of a third variable lymphocyte receptor in the lamprey. P Natl Acad Sci 

USA 107, 14304-14308. 

Kawakami, K., 2004. Transgenesis and gene trap methods in zebrafish by using the 

Tol2 transposable element. Zebrafish:2nd Edition Genetics Genomics and Informatics 

77, 201-222. 



42 

 

Kawakami, K., 2005. Transposon tools and methods in zebrafish. Dev Dyn 234, 244-

254. 

Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., Mishina, M., 

2004. A transposon-mediated gene trap approach identifies developmentally regulated 

genes in zebrafish. Dev Cell 7, 133-144. 

Kiernan, A.E., 2013. Notch signaling during cell fate determination in the inner ear. 

Semin Cell Dev Biol 24, 470-479. 

Kingsley, J.S., 1894. The origin of the vertebrate skeleton. The American Naturalist 28, 

635-640. 

Kleerekoper, H., Erkel, G.A.V., 1960. The olfactory apparatus of Petromyzon marinus 

L. Canadian Jour Zool 38, 209-223. 

Kozmik, Z., Holland, N.D., Kreslova, J., Oliveri, D., Schubert, M., Jonasova, K., 

Holland, L.Z., Pestarino, M., Benes, V., Candiani, S., 2007. Pax-Six-Eya-Dach network 

during amphioxus development: Conservation in vitro but context specificity in vivo. 

Dev Biol 306, 143-159. 

Kuraku, S., Takio, Y., Sugahara, F., Takechi, M., Kuratani, S., 2010. Evolution of 

oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. 

Dev Biol 341, 315-323. 

Kuratani, S., 2005. Developmental studies of the lamprey and hierarchical evolutionary 

steps towards the acquisition of the jaw. J Anat 207, 489-499. 

Kuratani, S., 2012. Evolution of the vertebrate jaw from developmental perspectives. 

Evolution & Development 14, 76-92. 

Kuratani, S., Adachi, N., Wada, N., Oisi, Y., Sugahara, F., 2013. Developmental and 

evolutionary significance of the mandibular arch and prechordal/premandibular cranium 

in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. Journal 

of Anatomy 222, 41-55. 

Kuratani, S., Murakami, Y., Nobusada, Y., Kusakabe, R., Hirano, S., 2004. 

Developmental fate of the mandibular mesoderm in the lamprey, Lethenteron 

japonicum: Comparative morphology and development of the gnathostome jaw with 



43 

 

special reference to the nature of the trabecula cranii. Journal of Experimental Zoology 

Part B-Molecular and Developmental Evolution 302B, 458-468. 

Kuratani, S., Nobusada, Y., Horigome, N., Shigetani, Y., 2001. Embryology of the 

lamprey and evolution of the vertebrate jaw: insights from molecular and 

developmental perspectives. Philos Trans R Soc Lond B Biol Sci 356, 1615-1632. 

Kuratani, S., Ota, K.G., 2008. Primitive versus derived traits in the developmental 

program of the vertebrate head: views from cyclostome developmental studies. Journal 

of experimental zoology. Part B, Molecular and developmental evolution 310, 294-314. 

Kusakabe, R., Tochinai, S., Kuratani, S., 2003. Expression of foreign genes in lamprey 

embryos: An approach to study evolutionary changes in gene regulation. Journal of 

Experimental Zoology Part B-Molecular and Developmental Evolution 296B, 87-97. 

Ladher, R.K., O'Neill, P., Begbie, J., 2010. From shared lineage to distinct functions: 

the development of the inner ear and epibranchial placodes. Development 137, 1777-

1785. 

Lakiza, O., Miller, S., Bunce, A., Lee, E.M., McCauley, D.W., 2011. SoxE gene 

duplication and development of the lamprey branchial skeleton: Insights into 

development and evolution of the neural crest. Dev Biol 359, 149-161. 

Langille, R.M., Hall, B.K., 1988. Role of the Neural Crest in Development of the 

Trabeculae and Branchial Arches in Embryonic Sea Lamprey, Petromyzon-Marinus 

(L). Development 102, 301-310. 

Le Douarin, N., Dulac, C., Dupin, E., Cameron-Curry, P., 1991. Glial cell lineages in 

the neural crest. Glia 4, 175-184. 

Le Douarin N.M., F.-P.J., Couly G., 1986. Cephalic ectodermal placodes and 

neurogenesis. Trends in Neuroscience 9, 175-180. 

Le Douarin, N.M., Dupin, E., Baroffio, A., Dulac, C., 1992. New Insights into the 

Development of Neural Crest Derivatives. International Review of Cytology-a Survey 

of Cell Biology 138, 269-314. 

Le Douarin, N.M., Kalchiem, C., 1999. The Neural Crest. Cambridge University Press, 

Cambridge, UK. 



44 

 

Leimeroth, R., Lobsiger, C., Lussi, A., Taylor, V., Suter, U., Sommer, L., 2002. 

Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation 

of multipotent Progenitor cells. Dev Biol 246, 245-258. 

Lemke, G., Chao, M., 1988. Axons regulate Schwann cell expression of the major 

myelin and NGF receptor genes. Development 102, 499-504. 

Lemke, G., Lamar, E., Patterson, J., 1988. Isolation and analysis of the gene encoding 

peripheral myelin protein zero. Neuron 1, 73-83. 

Litman, G.W., Rast, J.P., Fugmann, S.D., 2010. The origins of vertebrate adaptive 

immunity. Nature Reviews Immunology 10, 543-553. 

Logan, M., 2003. Finger or toe: the molecular basis of limb identity. Development 130, 

6401-6410. 

Maklad, A., Reed, C., Johnson, N.S., Fritzsch, B., 2014. Anatomy of the lamprey ear: 

morphological evidence for occurrence of horizontal semicircular ducts in the labyrinth 

of Petromyzon marinus. J Anat 224, 432-446. 

Mallatt, J., 1996. Ventilation and the origin of jawed vertebrates: A new mouth. Zool J 

Linn Soc-Lond 117, 329-404. 

Mallatt, J., 2008. The Origin of the Vertebrate Jaw: Neoclassical Ideas Versus Newer, 

Development-Based Ideas. Zoological Science 25, 990-998. 

Manni, L., Caicci, F., Gasparini, F., Zaniolo, G., Burighel, P., 2004. Hair cells in 

ascidians and the evolution of lateral line placodes. Evolution & Development 6, 379-

381. 

Manni, L., Mackie, G.O., Caicci, F., Zaniolo, G., Burighel, P., 2006. Coronal organ of 

ascidians and the evolutionary significance of secondary sensory cells in chordates. The 

Journal of comparative neurology 495, 363-373. 

Manzanares, M., Wada, H., Itasaki, N., Trainor, P.A., Krumlauf, R., Holland, P.W.H., 

2000. Conservation and elaboration of Hox gene regulation during evolution of the 

vertebrate head. Nature 408, 854-857. 



45 

 

Markus, P.M., Koenig, S., Krause, P., Becker, H., 1997. Selective intraportal 

transplantation of DiI-marked isolated rat hepatocytes. Cell Transplant. 6, 455-462. 

Martin, P., Swanson, G.J., 1993. Descriptive and experimental analysis of the epithelial 

remodellings that control semicircular canal formation in the developing mouse inner 

ear. Dev Biol 159, 549-558. 

Martin, W.M., Bumm, L.A., McCauley, D.W., 2009. Development of the 

Viscerocranial Skeleton During Embryogenesis of the Sea Lamprey, Petromyzon 

marinus. Developmental Dynamics 238, 3126-3138. 

Mazet, F., Hutt, J.A., Milloz, J., Millard, J., Graham, A., Shimeld, S.M., 2005. 

Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate 

sensory placodes. Developmental Biology 282, 494-508. 

McCallum, C.M., Comai, L., Greene, E.A., Henikoff, S., 2000. Targeted screening for 

induced mutations. Nature Biotechnology 18, 455-457. 

McCauley, D.W., 2008. SoxE, Type II collagen, and evolution of the chondrogenic 

neural crest. Zoolog Sci 25, 982-989. 

McCauley, D.W., Bronner-Fraser, M., 2002. Conservation of Pax gene expression in 

ectodermal placodes of the lamprey. Gene 287, 129-139. 

McCauley, D.W., Bronner-Fraser, M., 2003. Neural crest contributions to the lamprey 

head. Development 130, 2317-2327. 

McCauley, D.W., Bronner-Fraser, M., 2006. Importance of SoxE in neural crest 

development and the evolution of the pharynx. Nature 441, 750-752. 

Medeiros, D.M., Crump, J.G., 2012. New perspectives on pharyngeal dorsoventral 

patterning in development and evolution of the vertebrate jaw. Dev Biol 371, 121-135. 

Meinertzhagen, L.A., Okamura, Y., 2001. The larval ascidian nervous system: the 

chordate brain from its small beginnings. Trends in Neurosciences 24, 401-410. 

Mello, C.C., Conte, D., 2004. Revealing the world of RNA interference. Nature 431, 

338-342. 



46 

 

Meng, X.D., Noyes, M.B., Zhu, L.H.J., Lawson, N.D., Wolfe, S.A., 2008. Targeted 

gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature 

Biotechnology 26, 695-701. 

Meulemans, D., Bronner-Fraser, M., 2002. Amphioxus and lamprey AP-2 genes: 

implications for neural crest evolution and migration patterns. Development 129, 4953-

4962. 

Meulemans, D., Bronner-Fraser, M., 2004. Gene-regulatory interactions in neural crest 

evolution and development. Dev Cell 7, 291-299. 

Meulemans, D., Bronner-Fraser, M., 2007. The amphioxus SoxB family: implications 

for the evolution of vertebrate placodes. Int J Biol Sci 3, 356-364. 

Meulemans, D., McCauley, D., Bronner-Fraser, M., 2003. Id expression in amphioxus 

and lamprey highlights the role of gene cooption during neural crest evolution. Dev Biol 

264, 430-442. 

Meyer, D., Yamaai, T., Garratt, A., Riethmacher-Sonnenberg, E., Kane, D., Theill, L.E., 

Birchmeier, C., 1997. Isoform-specific expression and function of neuregulin. 

Development 124, 3575-3586. 

Minoux, M., Rijli, F.M., 2010. Molecular mechanisms of cranial neural crest cell 

migration and patterning in craniofacial development. Development 137, 2605-2621. 

Monk, K.R., Naylor, S.G., Glenn, T.D., Mercurio, S., Perlin, J.R., Dominguez, C., 

Moens, C.B., Talbot, W.S., 2009. A G protein-coupled receptor is essential for 

Schwann cells to initiate myelination. Science 325, 1402-1405. 

Murakami, Y., Ogasawara, M., Sugahara, F., Hirano, S., Satoh, N., Kuratani, S., 2001. 

Identification and expression of the lamprey Pax6 gene: evolutionary origin of the 

segmented brain of vertebrates. Development 128, 3521-3531. 

Murakami, Y., Pasqualetti, M., Takio, Y., Hirano, S., Rijli, F.M., Kuratani, S., 2004. 

Segmental development of reticulospinal and branchiomotor neurons in lamprey: 

insights into the evolution of the vertebrate hindbrain. Development 131, 983-995. 

Myojin, M., Ueki, T., Sugahara, F., Murakami, Y., Shigetani, Y., Aizawa, S., Hirano, 

S., Kuratani, S., 2001. Isolation of Dlx and Emx gene cognates in an agnathan species, 



47 

 

Lampetra japonica, and their expression patterns during embryonic and larval 

development: Conserved and diversified regulatory patterns of homeobox genes in 

vertebrate head evolution. Journal of Experimental Zoology 291, 68-84. 

Nagaoka, H., Yu, W., Nussenzweig, M.C., 2000. Regulation of RAG expression in 

developing lymphocytes. Curr. Opin. Immunol. 12, 187-190. 

Nave, K.A., Salzer, J.L., 2006. Axonal regulation of myelination by neuregulin 1. Curr 

Opin Neurobiol 16, 492-500. 

Nawaz, S., Schweitzer, J., Jahn, O., Werner, H.B., 2013. Molecular evolution of myelin 

basic protein, an abundant structural myelin component. Glia 61, 1364-1377. 

Neidert, A.H., Virupannavar, V., Hooker, G.W., Langeland, J.A., 2001. Lamprey Dlx 

genes and early vertebrate evolution. Proceedings of the National Academy of Sciences 

of the United States of America 98, 1665-1670. 

Newbern, J., Birchmeier, C., 2010. Nrg1/ErbB signaling networks in Schwann cell 

development and myelination. Semin Cell Dev Biol 21, 922-928. 

Newth, D.R., 1950. Fate of the Neural Crest in Lampreys. Nature 165, 284-284. 

Newth, D.R., 1951. Experiments on the Neural Crest of the Lamprey Embryo. Journal 

of Experimental Biology 28, 247-&. 

Nichols, J.T., Pan, L.Y., Moens, C.B., Kimmel, C.B., 2013. barx1 represses joints and 

promotes cartilage in the craniofacial skeleton. Development 140, 2765-2775. 

Nikitina, N., Bronner-Fraser, M., Sauka-Spengler, T., 2009. Whole-mount in situ 

hybridization on lamprey embryos. Cold Spring Harb Protoc 2009, pdb prot5125. 

Nikitina, N., Sauka-Spengler, T., Bronner-Fraser, M., 2008. Dissecting early regulatory 

relationships in the lamprey neural crest gene network. Proceedings of the National 

Academy of Sciences of the United States of America 105, 20083-20088. 

Nikitina, N.V., Bronner-Fraser, M., 2009. Gene regulatory networks that control the 

specification of neural-crest cells in the lamprey. Biochim Biophys Acta 1789, 274-278. 



48 

 

Niswander, L., 1997. Limb mutants: what can they tell us about normal limb 

development? Current Opinion in Genetics & Development 7, 530-536. 

Noden, D.M., 1988. Interactions and Fates of Avian Craniofacial Mesenchyme. 

Development 103, 121-140. 

Noramly, S., Grainger, R.M., 2002. Determination of the embryonic inner ear. J 

Neurobiol 53, 100-128. 

Northcutt, R.G., 1996. The Agnathan ark: the origin of craniate brains. Brain Behav 

Evol 48, 237-247. 

Ogasawara, M., Shigetani, Y., Hirano, S., Satoh, N., Kuratani, S., 2000. Pax1/Pax9-

Related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of 

LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev 

Biol 223, 399-410. 

Ohtani, K., Yao, T., Kobayashi, M., Kusakabe, R., Kuratani, S., Wada, H., 2008. 

Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with 

implications for the evolution of vertebrate cartilage. Journal of experimental zoology. 

Part B, Molecular and developmental evolution 310, 596-607. 

Oisi, Y., Ota, K.G., Kuraku, S., Fujimoto, S., Kuratani, S., 2013. Craniofacial 

development of hagfishes and the evolution of vertebrates. Nature 493, 175-U185. 

Onimaru, K., Shoguchi, E., Kuratani, S., Tanaka, M., 2011. Development and evolution 

of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with 

implications for the acquisition of paired fins. Developmental Biology 359, 124-136. 

Ota, K.G., Fujimoto, S., Oisi, Y., Kuratani, S., 2011. Identification of vertebra-like 

elements and their possible differentiation from sclerotomes in the hagfish. Nat 

Commun 2. 

Ota, K.G., Fujimoto, S., Oisi, Y., Kuratani, S., 2013. Late Development of Hagfish 

Vertebral Elements. J Exp Zool Part B 320B, 129-139. 

Owen, R., 1849. On the nature of limbs. London John Van Voorst. 



49 

 

Pancer, Z., Amemiya, C.T., Ehrhardt, G.R., Ceitlin, J., Gartland, G.L., Cooper, M.D., 

2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea 

lamprey. Nature 430, 174-180. 

Pancer, Z., Saha, N.R., Kasamatsu, J., Suzuki, T., Amemiya, C.T., Kasahara, M., 

Cooper, M.D., 2005. Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci U S 

A 102, 9224-9229. 

Panganiban, G., Rubenstein, J.L.R., 2002. Developmental functions of the Distal-

less/Dlx homeobox genes. Development 129, 4371-4386. 

Piavis, G.W., 1971. Embryology. Academic Press, London. 

Posnien, N., Koniszewski, N., Bucher, G., 2011. Insect Tc-six4 marks a unit with 

similarity to vertebrate placodes. Dev Biol 350, 208-216. 

Poss, F.D., Shen, J.X., Nechiporuk, A., McMahon, G., Thisse, B., Thisse, C., Keating, 

M.T., 2000. Roles for Fgf signaling during zebrafish fin regeneration. Developmental 

Biology 222, 347-358. 

Qiu, M.S., Bulfone, A., Ghattas, I., Meneses, J.J., Christensen, L., Sharpe, P.T., Presley, 

R., Pedersen, R.A., Rubenstein, J.L.R., 1997. Role of the Dlx homeobox genes in 

proximodistal patterning of the branchial arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 

and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from 

the first and second arches. Dev Biol 185, 165-184. 

Rahimi, R.A., Allmond, J.J., Wagner, H., McCauley, D.W., Langeland, J.A., 2009. 

Lamprey snail highlights conserved and novel patterning roles in vertebrate embryos. 

Dev Genes Evol 219, 31-36. 

Rakowiecki, S., Epstein, D.J., 2013. Divergent roles for Wnt/beta-catenin signaling in 

epithelial maintenance and breakdown during semicircular canal formation. 

Development 140, 1730-1739. 

Rast, J.P., Buckley, K.M., 2013. Lamprey immunity is far from primitive. Proc Natl 

Acad Sci U S A 110, 5746-5747. 

Reif, W., 1982. Evolution of dermal dkeleton and dentition in vertebrates. The odontode 

regulation theory. Evolutionary Biology 15, 287-368. 



50 

 

Richardson, M.K., Admiraal, J., Wright, G.M., 2010. Developmental anatomy of 

lampreys. Biological Reviews 85, 1-33. 

Rigon, F., Stach, T., Caicci, F., Gasparini, F., Burighel, P., Manni, L., 2013. 

Evolutionary diversification of secondary mechanoreceptor cells in tunicata. BMC Evol 

Biol 13, 112. 

Rinkwitz, S., Bober, E., Baker, R., 2001. Development of the vertebrate inner ear. Ann 

N Y Acad Sci 942, 1-14. 

Ritchie, J.M., 1984. in Myelin, 2nd ed. (P. Morell, ed.) ed. Plenum Press, New York. 

Robson, P., Wright, G.M., Sitarz, E., Maiti, A., Rawat, M., Youson, J.H., Keeley, F.W., 

1993. Characterization of lamprin, an unusual matrix protein from lamprey cartilage. 

Implications for evolution, structure, and assembly of elastin and other fibrillar proteins. 

The Journal of biological chemistry 268, 1440-1447. 

Rogozin, I.B., Iyer, L.M., Liang, L., Glazko, G.V., Liston, V.G., Pavlov, Y.I., Aravind, 

L., Pancer, Z., 2007. Evolution and diversification of lamprey antigen receptors: 

evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat 

Immunol 8, 647-656. 

Roots, B.I., 2008. The phylogeny of invertebrates and the evolution of myelin. Neuron 

Glia Biol 4, 101-109. 

Ruvinsky, I., Gibson-Brown, J.J., 2000. Genetic and developmental bases of serial 

homology in vertebrate limb evolution. Development 127, 5233-5244. 

Sander, J.D., Cade, L., Khayter, C., Reyon, D., Peterson, R.T., Joung, J.K., Yeh, J.R.J., 

2011. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. 

Nature Biotechnology 29, 697-698. 

Sato, S., Ikeda, K., Shioi, G., Nakao, K., Yajima, H., Kawakami, K., 2012. Regulation 

of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev Biol 368, 

95-108. 

Sauka-Spengler, T., Bronner-Fraser, M., 2008a. A gene regulatory network orchestrates 

neural crest formation. Nat Rev Mol Cell Biol 9, 557-568. 



51 

 

Sauka-Spengler, T., Bronner-Fraser, M., 2008b. Insights from a sea lamprey into the 

evolution of neural crest gene regulatory network. Biol Bull 214, 303-314. 

Sauka-Spengler, T., Meulemans, D., Jones, M., Bronner-Fraser, M., 2007. Ancient 

evolutionary origin of the neural crest gene regulatory network. Developmental Cell 13, 

405-420. 

Schlosser, G., 2002. Development and evolution of lateral line placodes in amphibians 

I. Development. Zoology (Jena) 105, 119-146. 

Schlosser, G., 2005. Evolutionary origins of vertebrate placodes: insights from 

developmental studies and from comparisons with other deuterostomes. J Exp Zool B 

Mol Dev Evol 304, 347-399. 

Schlosser, G., 2006. Induction and specification of cranial placodes. Dev Biol 294, 303-

351. 

Schlosser, G., 2010. Making senses development of vertebrate cranial placodes. 

International review of cell and molecular biology 283, 129-234. 

Schlosser, G., Ahrens, K., 2004. Molecular anatomy of placode development in 

Xenopus laevis. Dev Biol 271, 439-466. 

Schlosser, G., Northcutt, R.G., 2000. Development of neurogenic placodes in Xenopus 

laevis. J Comp Neurol 418, 121-146. 

Scott, W.B., 1887. Notes on the development of Petromyzon. J. Morphol. 1, 253-310. 

Shigetani, Y., Sugahara, F., Kawakami, Y., Murakami, Y., Hirano, S., Kuratani, S., 

2002. Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw 

evolution. Science 296, 1316-1319. 

Shimeld, S.M., 1999. The evolution of dorsoventral pattern formation in the chordate 

neural tube. Am Zool 39, 641-649. 

Shimeld, S.M., Donoghue, P.C.J., 2012. Evolutionary crossroads in developmental 

biology: cyclostomes (lamprey and hagfish). Development 139, 2091-2099. 



52 

 

Shimeld, S.M., Holland, P.W.H., 2000. Vertebrate innovations. P Natl Acad Sci USA 

97, 4449-4452. 

Shipley, A.E., 1887. On some points in the development of Petromyzon fluviatilis. 

Quarterly Journal of Microscopy 27, 325-370. 

Shubin, N., Tabin, C., Carroll, S., 1997. Fossils, genes and the evolution of animal 

limbs. Nature 388, 639-648. 

Sienknecht, U.J., 2013. Developmental origin and fate of middle ear structures. Hearing 

Res 301, 19-26. 

Simeone, A., Acampora, D., Pannese, M., Desposito, M., Stornaiuolo, A., Gulisano, M., 

Mallamaci, A., Kastury, K., Druck, T., Huebner, K., Boncinelli, E., 1994. Cloning and 

Characterization of 2 Members of the Vertebrate Dlx Gene Family. P Natl Acad Sci 

USA 91, 2250-2254. 

Skromne, I., Prince, V.E., 2008. Current persective in Zebrafish reverse genetics: 

Moving forward. Developmental Dynamics 237, 861-882. 

Smith, J.J., Kuraku, S., Holt, C., Sauka-Spengler, T., Jiang, N., Campbell, M.S., 

Yandell, M.D., Manousaki, T., Meyer, A., Bloom, O.E., Morgan, J.R., Buxbaum, J.D., 

Sachidanandam, R., Sims, C., Garruss, A.S., Cook, M., Krumlauf, R., Wiedemann, 

L.M., Sower, S.A., Decatur, W.A., Hall, J.A., Amemiya, C.T., Saha, N.R., Buckley, 

K.M., Rast, J.P., Das, S., Hirano, M., McCurley, N., Guo, P., Rohner, N., Tabin, C.J., 

Piccinelli, P., Elgar, G., Ruffier, M., Aken, B.L., Searle, S.M., Muffato, M., Pignatelli, 

M., Herrero, J., Jones, M., Brown, C.T., Chung-Davidson, Y.W., Nanlohy, K.G., 

Libants, S.V., Yeh, C.Y., McCauley, D.W., Langeland, J.A., Pancer, Z., Fritzsch, B., de 

Jong, P.J., Zhu, B., Fulton, L.L., Theising, B., Flicek, P., Bronner, M.E., Warren, W.C., 

Clifton, S.W., Wilson, R.K., Li, W., 2013. Sequencing of the sea lamprey (Petromyzon 

marinus) genome provides insights into vertebrate evolution. Nature genetics 45, 415-

421, 421e411-412. 

Smith, M.M., Hall, B.K., 1990. Development and Evolutionary Origins of Vertebrate 

Skeletogenic and Odontogenic Tissues. Biological Reviews of the Cambridge 

Philosophical Society 65, 277-373. 

Stuart, G.W., Mcmurray, J.V., Westerfield, M., 1988. Replication, Integration and 

Stable Germ-Line Transmission of Foreign Sequences Injected into Early Zebrafish 

Embryos. Development 103, 403-412. 



53 

 

Sugahara, F., Aota, S., Kuraku, S., Murakami, Y., Takio-Ogawa, Y., Hirano, S., 

Kuratani, S., 2011. Involvement of Hedgehog and FGF signalling in the lamprey 

telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate 

forebrain. Development 138, 1217-1226. 

Swain, G.P., Jacobs, A.J., Frei, E., Selzer, M.E., 1994. A Method for in-Situ 

Hybridization in Wholemounted Lamprey Brain - Neurofilament Expression in Larvae 

and Adults. Experimental Neurology 126, 256-269. 

Takechi, M., Adachi, N., Hirai, T., Kuratani, S., Kuraku, S., 2013. The Dlx genes as 

clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 24, 110-

118. 

Talbot, J.C., Johnson, S.L., Kimmel, C.B., 2010. hand2 and Dlx genes specify dorsal, 

intermediate and ventral domains within zebrafish pharyngeal arches. Development 

137, 2506-2516. 

Tanaka, M., Hale, L.A., Amores, A., Yan, Y.L., Cresko, W.A., Suzuki, T., Postlethwait, 

J.H., 2005. Developmental genetic basis for the evolution of pelvic fin loss in the 

pufferfish Takifugu rubripes. Dev Biol 281, 227-239. 

Tanaka, M., Onimaru, K., 2012. Acquisition of the paired fins: a view from the 

sequential evolution of the lateral plate mesoderm. Evol Dev 14, 412-420. 

Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S., Xu, X., 

Esper, R.M., Loeb, J.A., Shrager, P., Chao, M.V., Falls, D.L., Role, L., Salzer, J.L., 

2005. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 

681-694. 

Tickle, C., 2003. Patterning systems--from one end of the limb to the other. 

Developmental cell 4, 449-458. 

Tomsa, J.M., Langeland, J.A., 1999. Otx expression during lamprey embryogenesis 

provides insights into the evolution of the vertebrate head and jaw. Dev Biol 207, 26-

37. 

Toro, S., Varga, Z.M., 2007. Equivalent progenitor cells in the zebrafish anterior 

preplacodal field give rise to adenohypophysis, lens, and olfactory placodes. Semin Cell 

Dev Biol 18, 534-542. 



54 

 

Tretjakoff, D., 1927. Die Chordascheiden der Urodelen. Z. Zellforsch 5, 174-207. 

Tulenko, F.J., McCauley, D.W., MacKenzie, E.L., Mazan, S., Kuratani, S., Sugaharad, 

F., Kusakabe, R., Burke, A.C., 2013. Body wall development in lamprey and a new 

perspective on the origin of vertebrate paired fins. P Natl Acad Sci USA 110, 11899-

11904. 

Uchida, K., Murakami, Y., Kuraku, S., Hirano, S., Kuratani, S., 2003. Development of 

the adenohypophysis in the lamprey: evolution of epigenetic patterning programs in 

organogenesis. Journal of experimental zoology. Part B, Molecular and developmental 

evolution 300, 32-47. 

van Wijhe, J.W., 1883. Uber die Mesodermsegmente und die Entwicklung der Nerven 

des Selachierkopfes. J. Muller. 

Vogel, K.S., Davies, A.M., 1993. Heterotopic Transplantation of Presumptive Placodal 

Ectoderm Changes the Fate of Sensory Neuron Precursors. Development 119, 263-276. 

von Kupffer, C., 1891. The development of the cranial nerves of vertebrates. Journal of 

Comparative Neurology 1, 246-264. 

Wada, H., 2010. Origin and Genetic Evolution of the Vertebrate Skeleton. Zool Sci 27, 

119-123. 

Wada, H., Saiga, H., Satoh, N., Holland, P.W., 1998. Tripartite organization of the 

ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, 

Hox and Otx genes. Development 125, 1113-1122. 

Waehneldt, T.V., 1990. Phylogeny of myelin proteins. Ann N Y Acad Sci 605, 15-28. 

Waehneldt, T.V., Matthieu, J.M., Stoklas, S., 1987. Immunological evidence for the 

presence of myelin-related integral proteins in the CNS of hagfish and lamprey. 

Neurochem Res 12, 869-873. 

Webb, J.F., Noden, D.M., 1993. Ectodermal Placodes - Contributions to the 

Development of the Vertebrate Head. Am Zool 33, 434-447. 



55 

 

Werner, H.B., 2013. Do we have to reconsider the evolutionary emergence of myelin? 

Frontiers in Cellular Neuroscience 7. 

Wienholds, E., van Eeden, F., Kosters, M., Mudde, J., Plasterk, R.H.A., Cuppen, E., 

2003. Efficient target-selected mutagenesis in zebrafish. Genome Research 13, 2700-

2707. 

Wright, G.M., Keeley, F.W., Robson, P., 2001. The unusual cartilaginous tissues of 

jawless craniates, cephalochordates and invertebrates. Cell and tissue research 304, 165-

174. 

Wright, G.M., Keeley, F.W., Youson, J.H., 1983. Lamprin - a New Vertebrate Protein 

Comprising the Major Structural Protein of Adult Lamprey Cartilage. Experientia 39, 

495-497. 

Wright, G.M., Youson, J.H., 1982. Ultrastructure of mucocartilage in the larval 

anadromous sea lamprey, Petromyzon marinus L. The American journal of anatomy 

165, 39-51. 

Wright, G.M., Youson, J.H., 1983. Ultrastructure of cartilage from young adult sea 

lamprey, Petromyzon marinus L: a new type of vertebrate cartilage. The American 

journal of anatomy 167, 59-70. 

Yao, T., Ohtani, K., Kuratani, S., Wada, H., 2011. Development of Lamprey 

Mucocartilage and its Dorsal-Ventral Patterning by Endothelin Signaling, With Insight 

Into Vertebrate Jaw Evolution. Journal of Experimental Zoology Part B-Molecular and 

Developmental Evolution 316B, 339-346. 

Yao, T., Ohtani, K., Wada, H., 2008. Whole-Mount Observation of Pharyngeal and 

Trabecular Cartilage Development in Lampreys. Zoological Science 25, 976-981. 

Young, J.Z., 1971. The Biology of Lampreys. Academic Press, London. 

Yu, J.K., Meulemans, D., McKeown, S.J., Bronner-Fraser, M., 2008. Insights from the 

amphioxus genome on the origin of vertebrate neural crest. Genome Res 18, 1127-1132. 

Zalc, B., Colman, D.R., 2000. Origins of vertebrate success. Science 288, 271-272. 



56 

 

Zhang, G., 2009. An evo-devo view on the origin of the backbone: evolutionary 

development of the vertebrae. Integr Comp Biol 49, 178-186. 

Zhang, G., Cohn, M.J., 2006. Hagfish and lancelet fibrillar collagens reveal that type II 

collagen-based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A 103, 

16829-16833. 

Zhang, G., Miyamoto, M.M., Cohn, M.J., 2006. Lamprey type II collagen and Sox9 

reveal an ancient origin of the vertebrate collagenous skeleton. Proc Natl Acad Sci U S 

A 103, 3180-3185. 

Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., 

Zhu, Z., Zhang, B., Lin, S., 2013. TALEN-mediated precise genome modification by 

homologous recombination in zebrafish. Nature methods 10, 329-331. 

Zuniga, E., Rippen, M., Alexander, C., Schilling, T.F., Crump, J.G., 2011. Gremlin 2 

regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of 

the facial skeleton. Development 138, 5147-5156. 

 

  



57 

 

Chapter 2 

 

Differential activity of SoxE transcription factors in neural crest 

development and evolution 

 

Authors: Eric Myung Jae Lee*, Tian Yuan*, Kristy Nguyen*, Daniel M. Medeiros
†
, and 

David W. McCauley*
‡
 

 

*Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 
†
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 

CO 
 

 

Abstract 

 Vertebrate SoxE genes (Sox8, Sox9, and Sox10) are key regulators of neural 

crest cell (NCC) development and arose by duplication of a single ancestral SoxE gene 

in the vertebrate ancestor.  While all SoxE paralogs are expressed together early in NCC 

development, Sox9 and Sox10 have acquired distinct later functions, with the 

requirement of Sox9 for differentiation of chondrocytes in the head, and Sox10 for 

melanocytes and peripheral neurons in the head and trunk.  When these functions first 

evolved, and whether the divergent functions of these closely related genes are linked to 

differences in the developmental potential of different neural crest lineages remain 

unresolved issues in vertebrate evolution. Sea lampreys are basal vertebrates that also 

possess three SoxE genes (PmSoxE1, PmSoxE2, and PmSoxE3) which are all expressed 

in the neural crest.  In order to address the developmental potential of SoxE genes and 

how their duplication has influenced the evolution of NCC development, we tested the 

ability of SoxE genes from lamprey and amphioxus to rescue sox9a and sox10 loss-of-

function phenotypes in zebrafish embryos and larvae.  We re-examined the relationship 



58 

 

of lamprey to other SoxE sequences and in our revised phylogenetic analysis we now 

place lamprey PmSoxE2 at the base of the gnathostome Sox10 clade.  Lamprey 

PmSoxE2 expression in cls mutants induced the differentiation of multiple pigment cell 

types and peripheral neurons, but not cartilage. Further, misexpression of PmSoxE2 in 

wildtype embryos induced the formation of excess melanophores. The lamprey Sox9 

ortholog, PmSoxE3, also induced pigment cell and peripheral neuron differentiation, but 

not cartilage.  Interestingly, the lamprey specific PmSoxE1 gene was able to promote 

differentiation of cartilage nodules, but showed limited melanogenic and neurogenic 

capabilities. The single amphioxus SoxE was also able to promote differentiation of 

melanophores, enteric neurons, and cartilage nodules.  While the SoxE genes examined 

here have mostly retained the ability to induce pigment cell and enteric neuron 

differentiation, these activities are diminished in lamprey PmSoxE1.  Our data suggest 

that the proto-vertebrate SoxE gene already possessed both ectomesenchymal and non-

ectomesenchymal regulatory capabilities prior to gene duplication.  After duplication of 

an ancestral SoxE gene very early in the vertebrate lineage, PmSoxE2 / Sox10 diverged 

quickly from Sox9 and Sox8, losing its skeletogenic properties and becoming 

specialized for exclusively non-ectomesenchymal functions.  Coupled with previous 

results, this work suggests that the regulation of chondrogenic, melanogenic, and 

neurogenic activities of the neural crest was partitioned among duplicated SoxE 

homologs early in vertebrate evolution. 

  



59 

 

Introduction 

Neural crest cells (NCC) are a population of migratory, pluripotent cells that 

give rise to a wide range of vertebrate-specific cell types (Hall, 1999a; LeDouarin and 

Kalchiem, 1999). The emergence of NCCs during vertebrate evolution is thought to be 

linked to the evolution of the vertebrate craniofacial skeleton, which facilitated the 

transition from a filter feeding to a predatory lifestyle (Fig. 2.7A) (Gans and Northcutt, 

1983). Consistent with this view, invertebrate chordates are filter feeders and lack bona 

fide NCCs (Holland and Short, 2008; Medeiros, 2013; Putnam et al., 2008). 

Lampreys occupy a basal position in vertebrate phylogeny; they are primitively 

jawless (agnathan) predatory vertebrates that diverged from the lineage leading to 

gnathostome (jawed) vertebrates over 450 million years ago (Janvier, 1996; Kuratani et 

al., 2002). Like other vertebrates, lampreys possess multi-gene families that play critical 

roles in NCC development, whereas many of these exist as single copy genes in 

invertebrates (Meulemans and Bronner-Fraser, 2007; Yu et al., 2008). 

The Sry-related HMG box (Sox) family of transcription factors is found 

throughout the animal kingdom (Wegner, 1999). Sox genes are related by the presence 

of a conserved high mobility group (HMG) box DNA-binding domain (Laudet et al., 

1993; Prior and Walter, 1996). Sox proteins regulate gene expression by binding the 

consensus sequence 
A
/T

 A
/TCAA

A
/TG (Mertin et al., 1999; van de Wetering et al., 1993) 

and also through their interactions with other protein partners (Kondoh and Kamachi, 

2010). Chordates share a highly conserved set of Sox proteins belonging to the SoxA, 

SoxB, SoxC, SoxD, SoxE, SoxF, and SoxH subfamilies, with multiple members of 

subgroups (B – F) often present in vertebrates (Bowles et al., 2000). For example, 
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vertebrates possess three members of the SoxE subfamily (Sox8, Sox9, and Sox10) all of 

which are required for NCC specification and differentiation (Carney et al., 2006; 

Dutton et al., 2001; Guth and Wegner, 2008; Hong and Saint-Jeannet, 2005; Spokony et 

al., 2002; Wegner and Stolt, 2005).    

Sox9 regulates expression of the Col2a1 gene, encoding the major extracellular 

matrix protein, type-II collagen, in gnathostome vertebrate cartilage (Akiyama et al., 

2002; Bell et al., 1997; Zhang et al., 2006). SOX9 defects in humans lead to 

Campomelic dysplasia characterized by major defects in cartilage and bone (Wagner et 

al., 1994). Two Sox9 paralogs (sox9a and sox9b) exist in zebrafish due to teleost-

specific gene duplication (Cresko et al., 2003; Postlethwait et al., 2004; Yan et al., 

2002; Yan et al., 2005). Together, sox9a and sox9b perform the functions of the 

ancestral tetrapod Sox9 (Chiang et al., 2001; Li et al., 2002; Rau et al., 2006; Yan et al., 

2005). The zebrafish sox9a loss of function mutant jellyfish (jef) exhibits major loss of 

craniofacial cartilage elements, and loss of both sox9a and sox9b in zebrafish leads to 

more severe cartilage defects, suggesting partitioning of roles (subfunctionalization) 

between the two genes (Lynch and Force, 2000; Yan et al., 2002; Yan et al., 2005).  

Sox10 is required for multiple stages of NCC development. Sox10 is first 

expressed during specification of NCCs in the dorsal region of the neural tube (Cheng et 

al., 2000; Honore et al., 2003). It persists in migrating NCCs, later becoming restricted 

to the peripheral nervous system (PNS) and melanocyte lineages (Aoki et al., 2003; 

Bondurand et al., 1998; Bondurand et al., 2000; Britsch et al., 2001; Kelsh and Eisen, 

2000; Southard-Smith et al., 1998). Mutations in human SOX10 lead to Waardenburg 

syndrome and Hirschsprung’s disease, characterized by defects in pigmentation and in 
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the enteric nervous system (ENS), as well as dysmyelination syndromes (Pingault et al., 

1998). The zebrafish sox10 loss-of-function mutant colourless (cls) lacks differentiated 

pigment cells and enteric ganglia, while also possessing greatly reduced numbers of 

dorsal root ganglia (DRG) (Carney et al., 2006; Dutton et al., 2001; Kelsh and Raible, 

2002).  

Early in development, Sox8, Sox9, and Sox10 are functionally redundant, 

showing a high degree of interchangeability during induction of NC-progenitors at the 

neural plate border. However, the degree to which they have diverged to perform 

specific functions later in development within different NCC lineages is not clear 

(Cossais et al., 2010a; Finzsch et al., 2008; Kellerer et al., 2006; O'Donnell et al., 2006; 

Stolt et al., 2004; Taylor and Labonne, 2005). Furthermore, it is unknown if 

neofunctionalization and/or subfunctionalization of SoxE paralogs was a driving force 

in the diversification of NCC derivatives during early vertebrate evolution. 

To address these questions, we examined the functional activity of SoxE genes 

present in the sea lamprey (Petromyzon marinus) by expressing constructs of the 

lamprey genes in zebrafish cls and jef mutant backgrounds. At the present time, 

expression studies in lamprey to examine the evolution of SoxE gene functions remain 

technically challenging due primarily to long development times in the lamprey (18 

days to chondrogenesis) (Martin et al., 2009), and the unavailability of  genetic null 

backgrounds. However, the availability of appropriate zebrafish mutants lacking sox9 

and sox10 expression (Dutton et al., 2001; Yan et al., 2002), their rapid development 

time, ease of manipulation, and optical clarity for analysis provide a strong rationale for 

expression of foreign constructs from lamprey, as well as other SoxE genes from 
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amphioxus and frog  (Van Otterloo et al., 2012). Here, we show that foreign SoxE DNA 

constructs expressed in zebrafish are functional and are able to rescue loss-of-function 

phenotypes in the sox10 (cls) mutant background. Our results suggest that activities of 

the ancestral SoxE gene were likely co-opted by neural crest cells early in vertebrate 

evolution. We hypothesize that after gene duplication, SoxE genes underwent 

differential adaptation and specialization in the agnathan and gnathostome lineages, 

with the divergent lamprey paralog, SoxE1, acquiring the chondrogenic function that 

was acquired by gnathostome Sox9. Furthermore, we find that while both lamprey 

SoxE1 and amphioxus SoxE are able to promote differentiation of small disorganized 

cartilage nodules in zebrafish jef mutants, their expression is unable to rescue proper 

morphogenesis of the gnathostome craniofacial skeleton. Finally, our results highlight 

the role of subfunctionalization in the diversification of neural crest derivatives, and 

reinforce the idea that the co-option and subsequent subfunctionalization of neural crest 

regulators, rather than the evolution of new protein functions, was key to diversification 

of the neural crest (Meulemans and Bronner-Fraser, 2004). 
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Materials and methods 

 

Phylogenetic analysis of chordate SoxE proteins 

ClustalX2.1 (Larkin et al., 2007) was used to align the following sequences: 

AAH43704.1, AAH23808.1, AAH23356.1, AAX73357.1,  AAG09814.1, 

AAK50536.1, AAK84872.1, AAQ67212.1, AAI70060.1, AAO13216.1, AAF73917.1, 

BAA25296.1, AAD38050.2, AY830453, DQ328983, DQ328984. Bioedit 7.0.9.0 (Hall, 

1999b) was used to manually complete sequence alignments following ClustalX2.1 

analysis. Maximum-Likelihood (ML), Minimum-Evolution (ME), and Neighbor-

Joining (NJ) (Saitou and Nei, 1987) phylogenetic trees were constructed from the 

aligned sequences using MEGA5 (Tamura et al., 2011), and the James-Taylor-Thornton 

(JTT) model with 1000 bootstrap replications and partial deletion with 50% site 

coverage cutoff. 

Construction of amphioxus, zebrafish, and lamprey SoxE expression vectors 

Sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) SoxE full length 

coding sequences (AY830453, DQ328983, DQ328984, AF402677.1, and AF277096.1) 

were inserted into pCS2+ CMV promoter driven expression vectors between EcoRI and 

XhoI (PmSoxE1/PmSoxE2/ Drsox9a), XhoI and XbaI (PmSoxE3), and ClaI and XhoI 

(Drsox10) sites of the  pCS2+ multiple cloning site. SoxE-containing pCS2+ clones 

were diluted to 35 – 55 ng/µl concentrations in 0.1M KCl. Experiments using the Tol2 

vectors were conducted independently in the Medeiros laboratory. Following the 

excision of eGFP from the original Tol2 vector (T2KXIG) (Kawakami, 2004), 
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amphioxus (Branchiostoma floridae) SoxE full length coding sequence was subcloned 

into T2KXIG (Kawakami, 2004).  

 

Whole-mount in situ hybridization 

Lamprey SoxE1, SoxE2, and SoxE3 gene fragments were amplified from pCS2+ 

expression vectors (described previously) using the following primers (PmSoxE1 F: 5’-

ACCTGCACAACGCCGAGCTG-3’; 

PmSoxE1 R: 5’-CATGTCCACGTTGCTGAAGT-3’; 

PmSoxE2 F: 5’-CGAGTTCGACCAGTACCTGCCC-3’; 

PmSoxE2 R: 5’-ATGGTGGTGATGGTGGTGCTC-3’; 

PmSoxE3 F: 5’-TGCTGGACGGCGGGGTGGTATTC-3’; 

PmSoxE3 R: 5’-ACGTCCGCGCTGGGTGAGTCC-3’), cloned into pGEM-T vectors, 

and sequenced. Anti-sense and sense digoxigenin-labeled (Roche) RNA riboprobes 

were synthesized by T7 or Sp6 RNA polymerases. Zebrafish embryos were fixed in 4% 

PFA overnight at 4°C, washed twice in PBS, bleached in 3% hydrogen peroxide and 1% 

KOH in dH2O, and then transferred to 100% methanol to be stored in -20°C for at least 

30 minutes. Whole-mount in situ hybridization was performed as previously described 

with modifications: embryos were incubated at 65°C for hybridization, followed by two 

30 minute washes in 50% formamide in 2XSSCT at 65°C and 15 minutes in 2XSSCT at 

65°C (Westerfield, 2007). 
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Microinjection and fixation of zebrafish embryos 

Zebrafish jellyfish (jef 
hi1134

) mutants were purchased from the Zebrafish 

International Resource Center (University of Oregon) and the colourless (cls
m618

) 

mutant was a kind gift from Dr. Robert Kelsh (University of Bath). Zebrafish embryos 

were injected at the 1-cell stage through the chorion at the boundary between the yolk 

and blastomere, or directly into the blastomere. Injection volumes using the pCS2+ 

vector containing lamprey SoxE genes were titered between 3 nl and 10 nl (105-350 pg) 

per embryo. Injections using the T2KXIG plasmids were performed as previously 

described (Kawakami, 2004). jef embryos injected with foreign constructs were raised 

to the age of 96 hours post fertilization (hpf), anesthetized using tricaine mesylate (MS-

222), and fixed in 4% paraformaldehyde (PFA) at room temperature for 2 hours before 

acid-free alcian blue staining. Alcian blue-stained embryos were immediately processed 

for imaging and then genotyped by DNA extraction and PCR using primers specific for 

the sox9a mutational insertion as previously described (Yan et al., 2002). cls embryos 

injected with foreign constructs were reared to 96 hpf, anesthetized using MS-222, 

mounted on microscope slides for live imaging of pigmentation, and then subsequently 

fixed in 2% trichloroacetic acid (TCA) at room temperature for 3 hours prior to 

immunostaining. 

 

Immunostaining 

Unlabeled anti-human neuronal protein HuC/HuD (anti-HuC/D) mouse 

monoclonal antibodies (Invitrogen) were reconstituted in 500 µl of phosphate buffered 

saline (PBS, pH 7.4) containing 1% bovine serum albumin (BSA). For whole mount 
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immunostaining, zebrafish embryos were fixed in 2% TCA for 3 hours at room 

temperature (RT), and then washed with PBT (PBS with 1% Triton-x-100). Embryos 

were treated in blocking solution (10% goat serum, 1% BSA) for 4 hours at RT, and 

incubated with anti-HuC/D (1:100) overnight at 4° C, washed 10 x 30 minutes in PBT, 

then incubated in Alexa Fluor 488 (Invitrogen) secondary antibody (1:750) overnight at 

4° C. Both primary and secondary antibodies were diluted in (1% goat serum, 1% BSA, 

and 1x PBT). Following removal of secondary antibody, embryos were washed 10 x 30 

min with PBT, and cleared in 30% glycerol at 4° C. Z–series image stacks of 

immunofluorescence in whole mount embryos were photographed on a Zeiss ApoTome 

AxioimagerZ1 compound microscope, and maximum intensity projections (MIP) were 

created from relevant optically sectioned stacks using Zeiss Axiovision software 

(v4.8.1).  

 

Alcian blue staining 

Embryos were fixed in 4% PFA (in PBS) for 2 hours at room temperature (RT), 

dehydrated in ethanol, and stained with 0.02% Alcian blue solution in 70% ethanol and 

35 mM MgCl2 for 3 hours at RT (Walker and Kimmel, 2007). Stained embryos were 

digested with 0.2% trypsin, 0.002% Triton-x-100, and 60% sodium tetraborate, then 

cleared with 2% KOH, 0.002% Triton-x-100, and 50% glycerol and subsequently stored 

in 50:50 (glycerol:PBS) containing 0.1% sodium azide. Manual Z-series image stacks 

of stained cartilage were captured on a Zeiss DiscoveryV12 stereo microscope equipped 

with an Axiocam MRc camera, or with a Zeiss AxioimagerZ1 compound microscope. 
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Image stacks were then compiled using the NIH ImageJ extended focus module 

(Rasband).  

Selected embryos were washed in PBS and placed in DNA extraction buffer for 

3 hours at 50° C. Extracted DNA was ethanol precipitated and resuspended in nuclease- 

free water for use as templates in PCR genotyping of homozygous jef mutant embryos 

(Yan et al., 2002). 

 

Reverse transcription PCR  

Zebrafish wildtype control and cls mutant embryos were processed under 

identical conditions. Since cls embryos naturally exhibit pigmentation in the retinal 

pigment epithelium (Dutton et al., 2001), cranial elements anterior to the hindbrain were 

removed prior to RNA extraction. Injected embryos were reared to 96 hpf, anesthetized 

in MS-222, decapitated, preserved in RNAlater (n=10 per 1.5 ml tube) and stored at 4° 

C overnight prior to being transferred to -80° C for storage. Tissues in 1.5 ml Eppendorf 

tubes were snap frozen in liquid nitrogen and homogenized mechanically using a hand 

operated pellet pestle (Fisher Scientific) in conjunction with QIAshredders (Qiagen). 

RNA was extracted using the RNeasy kit (Qiagen) with on-column DNaseI treatment. 

Total RNA was diluted in nuclease free water (1:10 ~ 1:30), treated with RNase-free 

DNaseI (Qiagen) and RNase inhibitor (Roche), and then stored at -80° C. Total RNA 

was reverse transcribed into cDNA using random hexamers or oligo-dT primers 

supplied by the Applied Biosystems Retroscript kit. The resulting reverse transcription 

reactions were normalized across samples prior to PCR amplification using β-actin- and 

mitfa-specific primers. Primer designs with minimal conflicting targets were conducted 
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using NCBI Primer-BLAST (Altschul et al., 1990): mitfa F: 5’-

CGAGCCGGGGGTCTACGACA-3’, mitfa R: 5’-GGAGGACAACAGCGGGTCGC-

3’, β-actin F:5’-GGTATGGGACAGAAAGACAG-3’, β-actin R: 5’-

AGAGTCCATCACGATACCAG-3’.  

 

Statistical Analysis 

Pigment cell count and enteric neuron count datasets (Fig. 2.2, 2.4) were 

analyzed using one-way ANOVA with significance value threshold of 0.05, followed 

by Games-Howell multiple-comparison post-hoc tests.  Levene’s test was used to 

evaluate homogeneity of variances. 

 All experiments were performed using protocols approved by the Institutional 

Animal Care and Use Committee at the University of Oklahoma. 
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Results 

 

Comparative phylogenetic analysis of chordate SoxE protein sequences 

 A previous phylogeny based on a block alignment of conserved protein domains 

identified PmSoxE3 as the lamprey ortholog to Sox9, but the identities of PmSoxE1 and 

PmSoxE2 remained unclear (McCauley and Bronner-Fraser, 2006; Zhang et al., 2006). 

To clarify the identities of lamprey SoxE genes, we conducted a full length sequence 

alignment that included non-conserved regions outside the HMG, K2, and 

transactivation domains (Fig. 2.8). Our results suggest orthology of lamprey PmSoxE2 

to gnathostome Sox10, and reconfirm the orthology of PmSoxE3 to gnathostome Sox9 

(Fig. 2.1). The orthology of lamprey SoxE1 remains unclear.  It is still positioned basal 

to the gnathostome Sox8, Sox9, or Sox10 genes (Fig. 2.1), as previously described 

(McCauley and Bronner-Fraser, 2006). 

 

Lamprey SoxE genes can induce differentiation of pigment cells in cls mutant 

zebrafish 

Sox10 is important for NCC specification and survival during their migration 

(Dutton et al., 2001). In lampreys, the knockdown of PmSoxE2 led to abolished 

pigmentation, while PmSoxE1 knockdown led to attenuated pigment cell numbers with 

an accompanying loss in their stellate morphology (Lakiza et al., 2011). In addition, 

PmSoxE2 is also expressed in lamprey dorsal root ganglia (Lakiza et al., 2011). These 

observations suggest that the lamprey PmSoxE2 and gnathostome Sox10 orthologs have 

similar roles in the regulation of neural crest development. 
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In zebrafish wildtype embryos, melanophores form along the dorsal stripe, 

ventral stripe, anterior horn, and lateral stripe, and along the dorsal and lateral surfaces 

of the yolk sac (Fig. 2.2A). cls (m618) mutants lack neural crest-derived pigment cells 

(Fig. 2.2B). All three lamprey SoxE genes induced differentiation of melanophores 

when misexpressed in cls mutants, but with varying degrees of rescue percentages (Fig. 

2.2 C – E). PmSoxE2 had the greatest effect on melanophore development with an 

average of 55 and a maximum of 171 pigment cells (n=114), compared to PmSoxE1 

(mean = 2.22, max = 8; n=68) and PmSoxE3 (mean=4.79, max = 27; n=97) (Fig. 2.2G, 

t-test p-values < 0.05). Interestingly, the ability of PmSoxE2 to promote melanogenesis 

exceeded that of the positive control (Fig. 2.2G, t-test p-value < 0.05). Injection of 

Drsox10 into the cls mutant was able to promote only an average of 26.5 melanocytes, 

with a maximum number of 111 melanocytes present (Fig. 2.2G). The number of 

animals exhibiting a partially rescued phenotype relative to the number of embryos 

injected is summarized in Table 2.1.  

 

Lamprey PmSoxE2 can regulate expression of mitfa in cls mutant zebrafish 

The production of melanin is dependent on tyrosinase regulation by mitfa in 

zebrafish (Hou et al., 2006). Zebrafish mitfa is expressed in melanophores derived from 

neural crest cells, whereas mitfb is expressed in the retinal pigment epithelium (RPE) 

(Lister et al., 2001). The loss of sox10 leads to elevated apoptosis of melanoblasts 

during migration and loss of mitfa expression in melanophore lineages (Dutton et al., 

2001; Elworthy et al., 2003). Results from reverse transcription (rt)PCR, using RNA 
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isolated from PmSoxE2-injected cls homozygous mutants, shows that PmSoxE2 is able 

to regulate mitfa expression in cls mutants (Fig. 2.2F).  

 

Lamprey PmSoxE2 can induce differentiation of xanthophores in cls mutant 

zebrafish 

In addition to a lack of neural crest-derived melanophores, zebrafish cls mutants 

also lack xanthophores, cells responsible for the yellow pigmentation of fishes (Fig. 

2.3A). These cells can be stained using the dye, methylene blue (Le Guyader and 

Jesuthasan, 2002). PmSoxE2, injected into cls mutants, promoted development of 

methylene blue-positive xanthophores (Fig. 2.3B – C). These cells exhibit the stellate 

morphology of xanthophores found in wildtype animals (Fig. 2.3D) (Le Guyader and 

Jesuthasan, 2002). PmSoxE1 and PmSoxE3 also induced differentiation of xanthophores 

in cls mutants but the effect was limited to one to two pigment cells per embryo (data 

not shown). 

 

Lamprey SoxE genes can induce differentiation of enteric neurons in zebrafish cls 

mutants 

 Zebrafish cls mutants lack neurons of the enteric nervous system (ENS) 

(compare Fig. 2.4A and 2.4C) and have reduced numbers of sensory dorsal root ganglia 

(DRG) in the PNS (Carney et al., 2006; Elworthy et al., 2005). The variable baseline 

number of DRGs in cls mutant controls made it difficult to assess rescue effects.  

Therefore we focused on rescue effects on enteric ganglia numbers. ENS neurons were 

counted along the length of the gut immediately rostral to the anus. Uninjected wildype 
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(Fig. 2.4A) and mock injected wildtype embryos (Fig. 2.4B) contain in excess of Hu-

positive enteric neurons along and around the periphery of the gut (Fig. 2.4A, B). Mock 

injected cls mutants lack enteric ganglia (Fig. 2.4 C, G) (Carney et al., 2006; Elworthy 

et al., 2005). PmSoxE2 was able to induce the formation of a greater number of enteric 

ganglia, with an average of 5.6 and a maximum of 36 Hu-positive neurons per embryo 

(n=32; Fig. 2.4 E, G), in comparison to PmSoxE1 (mean = 1.3, max = 3, n=18; Fig. 2.4 

D, G). While the maximum number of ENS neurons rescued following PmSoxE2 

injection (max = 36) exceeded that of the Drsox10 control (mean = 4.1, max = 14, 

n=52), a comparison of means revealed no statistical significance between the two 

groups (Games-Howell, p-value = 0.357). Interestingly, the ability of PmSoxE3 (mean = 

3.9, max = 24, n=44; Fig. 2.4 F, G) to promote ENS rescue equaled that of the Drsox10 

positive control showing no statistical difference between their means (Games-Howell, 

p-value = 0.822). The following t-test comparisons yielded p-values < 0.05: Drsox10 / 

PmSoxE1, PmSoxE1 / PmSoxE2, and PmSoxE1 / PmSoxE3.  The number of animals 

exhibiting a partially rescued phenotype relative to the number of embryos injected is 

summarized in Table 2.2. 

 

Lamprey PmSoxE1 can induce formation of small cartilage nodules in zebrafish jef 

mutants 

Sea lamprey PmSoxE1 and PmSoxE2 are required for NCC development and 

their loss in expression leads to complete loss of the lamprey pharyngeal skeleton (the 

branchial basket), whereas PmSoxE3 plays a role in patterning of the branchial basket 

(Lakiza et al., 2011). Zebrafish jef mutants carry a viral insertion in the sox9a gene 
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resulting in a non-functional protein that leads to the loss of major craniofacial cartilage 

elements (compare Fig. 2.5 A and B) (Yan et al., 2002; Yan et al., 2005). jef embryos 

typically possess only two small round cartilage nodules that may be remnant 

condensations of the ceratohyal (Fig. 2.5B) (Yan et al., 2005). Misexpression of 

lamprey PmSoxE1 (n=23/105) induced the formation of small cartilage condensations in 

jef embryos, (Fig. 2.5C), whereas PmSoxE2 and the lamprey Sox9 homolog, PmSoxE3, 

did not (data not shown). A Zebrafish Sox9a construct injected into jef mutant embryos 

also induced formation of small cartilage nodules, whereas zebrafish Sox10 did not 

(data not shown). Homozygous jef individuals were identified by PCR using primer sets 

specific to the viral insertion (Fig. 2.5D).  

 

Amphioxus SoxE can induce differentiation of melanophores, enteric neurons, and 

cartilage 

Lastly, we examined the ability of amphioxus (Branchiostoma floridae) SoxE to 

promote development of sox9a and sox10-dependent neural crest derivatives. 

Misexpression of amphioxus SoxE in zebrafish cls mutants induced differentiation of 

melanophores and enteric neurons in cls mutants (Fig. 2.6A – D). Unexpectedly, we 

found that amphioxus SoxE is also able to promote the formation of small cartilage 

nodules in jef mutants (Fig. 2.6 E – F), but these small nodules did not show patterning 

of the craniofacial skeleton. This observation is similar to the result we observed with 

expression of lamprey PmSoxE1 in the jef mutant (Fig. 2.5C). 
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Discussion 

 

Differential adaptation of SoxE proteins across the agnathan-gnathostome 

boundary  

Lampreys diverged from gnathostome vertebrates over 450 million years ago 

(Janvier, 1996), and while they lack jaws and sympathetic chain ganglia (Häming et al., 

2011; Rovainen and Dill, 1984), they still share fundamental aspects of neural crest 

development (Kuratani, 2004; McCauley and Bronner-Fraser, 2003; Nikitina et al., 

2008; Ota et al., 2007; Sauka-Spengler and Bronner-Fraser, 2008; Sauka-Spengler et al., 

2007). However, due to the independent evolution of these lineages, much of the 

phylogenetic signal among SoxE genes has been lost (McCauley and Bronner-Fraser, 

2006). Lamprey SoxE proteins are also larger than gnathostome SoxE proteins due to 

the presence of repeats rich in glutamine, serine, glycine, alanine, and histidine amino 

acids (Fig. 2.8). Previously, it was shown that three SoxE genes exist in the sea lamprey 

(Petromyzon marinus) (McCauley and Bronner-Fraser, 2006; Zhang et al., 2006). 

Although the orthology of PmSoxE1 and PmSoxE2 could not be determined, it was 

inferred from mRNA expression patterns that all three lamprey SoxE genes are likely to 

play roles in NCC derived chondrogenesis (Lakiza et al., 2011; McCauley and Bronner-

Fraser, 2006).  Lakiza et al., suggested that PmSoxE2 is required for NCC specification 

and PmSoxE1 for differentiation of chondrogenic lineage, whereas the gnathostome 

Sox9 ortholog, PmSoxE3, is required for proper patterning of the lamprey branchial 

basket during chondrocyte differentiation (Fig. 2.7) (Lakiza et al., 2011). Morpholino-

mediated knockdown of PmSoxE2 led to the complete loss of pigmentation, while the 
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loss of PmSoxE1 or PmSoxE3 did not appear to affect pigment cell numbers (Lakiza et 

al., 2011). These results suggest an agnathan-specific specialization and adaptation of 

lamprey SoxE genes, so we asked whether they have lost their functional equivalence 

with gnathostome Sox10 and Sox9.  

Our revised full-length phylogenetic analysis places lamprey PmSoxE2 in the 

vertebrate Sox10 clade (Fig. 2.1, Fig. 2.7C) and gene expression and gene knockdown 

studies suggest that PmSoxE2 may be functionally equivalent to zebrafish sox10. In 

zebrafish cls mutants, premigratory neural crest cells develop. However, NCC fated to 

differentiate as pigment cells, enteric neurons, and dorsal root ganglia subsequently 

undergo apoptosis due to the failure to initiate specification (Carney et al., 2006; Dutton 

et al., 2001; Kelsh and Raible, 2002), while sox10-dependent expression of mitfa is also 

lost (Elworthy et al., 2003; Elworthy et al., 2005). Zebrafish Drsox10 is able to induce 

melanogenesis and neurogenesis in cls mutants (Fig. 2.2G and Fig. 2.4G), but 

misexpression of Drsox10 in jef mutants was unable to induce the formation of cartilage 

nodules (data not shown), suggesting that the lack of chondrogenic activity was not due 

to a non-functional construct. Elsewhere, Sox10 has been shown to regulate the 

expression of Col2a1 in cultured cells, but there is no evidence in vivo for chondrogenic 

activity of Sox10 (Suzuki et al., 2006). These observations suggest that Sox10 may have 

evolved roles specific to regulation of melanogenesis and neurogenesis. PmSoxE2 is 

also able to induce differentiation of melanophores, xanthophores, and enteric neurons 

in cls mutants (Fig. 2.2, Fig. 2.3, and Fig. 2.4), but is unable to induce cartilage 

formation in jef mutants (data not shown). Furthermore, overexpression of PmSoxE2 in 

wildtype zebrafish causes formation of excess melanophores (Fig. 2.9). These results 
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highlight both sequence and functional similarities between lamprey PmSoxE2 and 

zebrafish sox10. 

Interestingly, compared to PmSoxE2, the induction of melanogenesis by 

PmSoxE1 and PmSoxE3 is reduced (Fig. 2.2 C and E). Such attenuation of functional 

equivalency during later stages of NCC development is also observed when mouse 

Sox10 is replaced by mouse Sox8 (Kellerer et al., 2006), and the Drosophila SoxE 

ortholog Sox100B (Cossais et al., 2010a). We have purposely not compared our results 

between lamprey and amphioxus heterospecific expression of SoxE constructs due to 

technical differences in our experimental design (lamprey constructs were cloned into 

pCS2+ and amphioxus SoxE was cloned into T2KXIG). Nevertheless, we found that 

amphioxus SoxE, is able to induce melanogenesis (Fig. 2.6). 

 We also addressed the possibility that the observed differences in pigment 

rescue rates among lamprey SoxE genes may be caused by gene expression mosaicism 

following plasmid injections. The ubiquitous CMV promoter contained in the pCS2+ 

plasmid has already been used to drive transient expression of reporter genes in 

zebrafish (Ekici et al., 2010; Kalev-Zylinska et al., 2002). In our hands, pCS2+ CMV is 

sufficient to drive ubiquitous expression of neGFP, comparable to results obtained by 

direct injection of in vitro transcribed neGFP mRNA (Fig. 2.11). To compare degrees of 

mosaic protein expression among the lamprey SoxE genes, we injected 5’ and 3’ myc 

epitope-tagged variants. However, we found that myc-tagged PmSoxE2 constructs were 

reduced in their ability to rescue melanogenesis compared to unaltered full-length 

constructs. This precluded their use (Fig. 2.12). Instead, in situ hybridizations revealed 

similar patterns of transient mRNA expression among wildtype embryos injected with 
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PmSoxE1, PmSoxE2, and PmSoxE3 (Fig. 2.13). Furthermore, direct injection of in vitro 

transcribed mRNA did not improve the rescue rates of PmSoxE1 and PmSoxE3 injected 

cls mutant embryos (data not shown). 

The observed reduction in chromogenic cell-specific activity by PmSoxE1 and 

PmSoxE3 may represent lamprey-specific adaptations in their functions. Alternatively, 

despite the fact that all injected constructs were titered, we acknowledge the possibility 

of reduced activity of constructs due to translational inefficiencies. However, as we 

explain below, the chondrogenic activity of the PmSoxE1 construct expressed in jef 

mutants, and a lack of PmSoxE2 activity in this context suggests gene specific activities 

may explain these observed differences. Furthermore, the ability of PmSoxE3 to induce 

enteric neuron differentiation at levels comparable to Drsox10 and PmSoxE2 suggests 

that it is actively expressed in zebrafish cls mutants (Fig. 2.4G). One possible 

explanation is that Sox10 function requires protein domains in addition to the highly 

conserved HMG box, such as the DNA-dependent dimerization domain (Peirano et al., 

2000; Peirano and Wegner, 2000), the K2 domain (Schepers et al., 2000; Wegner, 

1999), and the C-terminal transactivation domain (Cossais et al., 2010b). Earlier studies 

of in vitro transfection assays showed that human SOX10 and PAX3 synergistically 

activate MITF (Bondurand et al., 2000; Potterf et al., 2000). Proper development of 

melanocytes and enteric neurons require functional Sox10 dimerization and K2 domains 

in mice, suggesting that Sox10 may act in conjunction with other protein partners to 

activate distal enhancers of target genes (Schreiner et al., 2007), such as the one found 

in Mitf (Watanabe et al., 2002). The reduced functional capabilities of myc-PmSoxE2 

may be due to interference by the myc tag at the N-terminal dimerization domain or C-
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terminal transactivation domain (Fig. 2.13). Future studies to characterize the lamprey 

SoxE dimerization, K2, and transactivation domains will be useful for understanding 

how SoxE proteins diverged in function throughout evolution. 

We found that lamprey PmSoxE1 can induce differentiation of disorganized 

cartilage nodules in jef sox9a
-/-

 mutants (Fig. 2.5). However, PmSoxE1 or BfSoxE 

appear unable to rescue morphogenesis of the zebrafish craniofacial skeleton (Fig. 2.5). 

This may be due to the inevitable dilution of our injected plasmids during later stages of 

development when chondrocyte differentiation is taking place. Alternatively, a sox9a 

specific promoter driven expression system may be required to yield a more robust 

rescue phenotype. Nonetheless, despite the limitations of our assay, the lamprey Sox9 

ortholog, PmSoxE3, and PmSoxE2, or DrSox10 are unable to induce any cartilage 

nodules in jef sox9a
-/-

 mutants (data not shown).  

PmSoxE1 is required for development of the lamprey craniofacial skeleton (the 

branchial basket) (Lakiza et al., 2011; McCauley and Bronner-Fraser, 2006). Thus, it is 

likely that the neural crest chondrogenic function was partitioned to PmSoxE1 in the 

lamprey lineage, and instead PmSoxE3 acquired lamprey-specific roles in cartilage 

morphogenesis and development of a different lamprey-specific tissue, mucocartilage, 

through neofunctionalization (Yao et al., 2011). Support for this interpretation also 

comes from a study showing that the effects of knocking down lamprey PmSoxE1 can 

be mitigated by heterospecific expression of Xenopus Sox9 (Sauka-Spengler et al., 

2007). 
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Neural crest specific functions of Sox8, Sox9, and Sox10 predate their duplicated 

states  

Two rounds of gene duplication events occurred early in vertebrate evolution  

(Ohno, 1970; Wada and Makabe, 2006). It has been proposed that these gene 

duplications drove the evolution of vertebrate specific features by serving as gene 

repertoires (Force et al., 1999; Kasahara, 2007; Kuraku et al., 2009; Lynch and Force, 

2000; Lynch et al., 2006; Meyer and Van de Peer, 2005; Ohno, 1970; Wagner et al., 

2003; Zhang, 2003). Consistent with this notion, transcription factors important for 

neural crest specification often exist as duplicate copies in vertebrates (Guth and 

Wegner, 2008). Furthermore, comparison of duplicated genes originating from ancient 

duplication events among organisms may be used to distinguish vertebrates from 

invertebrates at the genomic level (Kuraku et al., 2009). Interestingly, the presence of 

migratory neural crest-like cells in several invertebrate groups suggests the neural crest 

likely arose from a pre-existing migratory population of cells (Abitua et al., 2012; 

Jeffery, 2007; Jeffery et al., 2008; Jeffery et al., 2004; Medeiros, 2013). A comparison 

of the neural crest gene regulatory networks (GRNs) between basal chordates and 

vertebrates also reveals the pre-existence of fundamental components of the GRN in 

early chordates, which may have been co-opted by the vertebrate common ancestor to 

give rise to the neural crest (Medeiros and Crump, 2012; Meulemans and Bronner-

Fraser, 2004; Meulemans et al., 2003; Sauka-Spengler et al., 2007; Stone and Hall, 

2004). This raises the question of whether the NC-specific functions of vertebrate Sox8, 

Sox9, and Sox10 arose through neofunctionalization following gene duplication, or 

whether they collectively possess the functionality of the ancestral vertebrate SoxE (Van 
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Otterloo et al., 2012). Our data suggest the latter scenario, i.e., that the proto-vertebrate 

SoxE already possessed melanogenic, neurogenic, and possibly also chondrogenic 

regulatory capabilities prior to gene duplication. We show that amphioxus SoxE induces 

differentiation of melanophores and enteric neurons (Fig. 2.6). The chondrogenic 

pathway is regarded as a derived trait acquired by gnathostomes at the time of their 

divergence from agnathans (Lakiza et al., 2011) and although a cellular cartilage gene 

regulatory network may not have existed prior to vertebrates, amphioxus SoxE can 

induce differentiation of small cartilage nodules in jef mutants (Fig. 2.6). Additionally, 

amphioxus SoxE causes an expansion in the expression of the NC marker Slug when 

injected into Xenopus embryos suggesting regulatory activity of SoxE that might have 

been co-opted by the neural crest in the vertebrate ancestor (Fig. 2.10). 

In sum, our results reveal a complex history of SoxE duplication and 

subfunctionalization in vertebrates. Based on sequence analysis and our functional 

investigation of SoxE genes near the base of vertebrates, we suggest that the 

melanogenic, neurogenic, and chondrogenic capabilities of the ancestral SoxE gene 

were co-opted by the neural crest in the ancestral vertebrate. We suggest that early 

duplication of the ancestral vertebrate SoxE gene into the Sox9 and Sox10 clades 

occurred in the common ancestor of jawed and jawless vertebrates. After this event, 

neurogenic and melanogenic functions were partitioned to Sox10, and Sox9 acquired 

roles in chondrogenic specification and morphogenesis. In gnathostomes the 

chondrogenic specification and morphogenetic roles were maintained by Sox9. 

However, in lampreys, PmSoxE3 lost the early cartilage specification function, instead 

maintaining only its later role in cartilage morphogenesis (Lakiza et al., 2011). This was 
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made possible by the appearance of the agnathan-specific SoxE paralog, PmSoxE1, 

which maintains a role for SoxE in cartilage specification within lampreys. 

Our data establish the early appearance of the Sox9 and Sox10 clades, but the 

timing and nature of the duplications that generated lamprey PmSoxE1 and gnathostome 

Sox8 are less clear. In gnathostomes, Sox8 groups with Sox9, albeit at low confidence 

values (Fig. 2.1) (Meulemans and Bronner-Fraser, 2007). This could suggest that Sox8 

was generated from an ancestral Sox8/9 by the second whole genome duplication in the 

gnathostome lineage. Presumably, a second Sox10 paralog would have also been 

formed at this time, to be later lost in both gnathostomes and lampreys. If lampreys 

diverged from gnathostomes after this second duplication event, as has been proposed 

(Kuraku et al., 2009), it is conceivable that lamprey PmSoxE1 represents a highly 

divergent Sox8 ortholog. Alternately, PmSoxE1 may be a divergent lamprey-specific 

duplicate of Sox9 or Sox10. This scenario would not require lampreys to have 

undergone the same whole-genome duplications as gnathostomes, or to have lost Sox8. 

With the recent release of the sea lamprey genome (Smith et al., 2013), it may be 

possible to distinguish between these alternatives as improvements are made to the 

genome assembly. Such analyses will help to paint a more accurate picture of SoxE 

evolution as well as the evolution and diversification of neural crest cells. 
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Figure 2.1. Phylogenetic analysis of chordate SoxE genes, including those used in this 

study. A Neighbor-Joining (NJ) tree was constructed in MEGA5 using a Clustal 

alignment of full length amino acid sequences from chordate SoxE genes; James-

Taylor-Thornton (JTT) model with 1000 bootstrap replications and partial deletion with 

30% site coverage cutoff. Phylogenies were calculated using NJ, Minimum-Evolution 

(ME), and Maximum-Likelihood (ML) methods. Numbers at each node represent 

bootstrap values for NJ, ME, and ML from top to bottom respectively.  
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Figure 2.2. Melanogenesis in sox10
-/-

 cls mutants resulting from expression of lamprey 

SoxE sequences. (A – E) 96 hpf zebrafish larvae. (A) control wildtype. (B) cls mutant; 

RPE, retinal pigment epithelium. Expression of PmSoxE1 (C), PmSoxE2 (D), and 

PmSoxE3 (E) in cls mutants. (F) RT-PCR of PmSoxE2-injected cls mutants. mitfa 

expression in a cls mutant resulting from PmSoxE2 injection (lane 1) is absent in the 

control cls mutant (lane 2). β-actin internal control (lanes 3 – 4). (G) histogram showing 

the number of melanophores in zebrafish Drsox10 injected, lamprey PmSoxE1, 

PmSoxE2, and PmSoxE3 injected, and control cls mutants. Whiskers represent standard 

error. Each dot above the positive whiskers represents individual data points of the first 

quartile. Sample sizes are indicated under each bar on the X-axis. Comparisons of 

means among samples all resulted in statistical significance (Games-Howell, p-

value<0.05). vh, ventral horn; ys, yolk sac; ye, yolk extension; ds, dorsal stripe; ls, 

lateral stripe; vs, ventral stripe. Arrows point to melanophores, arrowheads point to 

iridophores. Orientation: anterior facing left. 
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Figure 2.3. Lamprey PmSoxE2 promotes differentiation of xanthophores in sox10
-/-

 cls 

mutant zebrafish. (A – B) 76 hpf zebrafish embryos stained with methylene blue to 

detect presence of xanthophores. (A) cls mutant lacking differentiated xanthophores. 

(B) xanthophores in cls mutants expressing the PmSoxE2 construct. (C) inset in “B” 

highlights the presence of xanthophores in a cls mutant following PmSoxE2 expression. 

(D) morphology of xanthophores in a wildtype 76 hpf embryo. Orientation: anterior 

facing left. 
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Figure 2.4. Lamprey SoxE expression promotes differentiation of enteric neurons along 

the larval gut in sox10
-/-

 cls mutant zebrafish. (A – F) anti-HuC/D immunofluoresence 

in 96 hpf zebrafish. (A) wildtype control. (B) control mock-injected wildtype and (C) 

cls mutant. Note the absence of HuC-positive enteric neurons (arrows) in cls mutant 

embryos. Enteric neurons are present in cls mutants injected with lamprey PmSoxE1 

(D), PmSoxE2 (E), and PmSoxE3 (F) constructs (arrows in D-F). (G) histogram 

showing the number of enteric neurons in zebrafish Drsox10 injected, lamprey 

PmSoxE1-, PmSoxE2-, and PmSoxE3- injected, and control cls mutant embryos. 

Whiskers represent standard error. Each dot above the positive whiskers represents 

individual data points of the first quartile. Sample sizes are indicated under each bar on 

the X-axis. Orientation: anterior facing left. 
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Figure 2.5. Lamprey PmSoxE1 can promote differentiation of small cartilage nodules in 

zebrafish sox9a
-/-

 jef mutants. (A – C) alcian blue stained 96 hpf zebrafish larvae. (A) 

craniofacial skeleton of a wildtype control embryo. (B) jef mutant; most elements of the 

craniofacial skeleton are missing. (C) expression of PmSoxE1 in the jef mutant 

promotes the differentiation of small cartilage nodules. (D) PCR genotyping of a 

homozygous wildtype (+/+), a heterozygous sibling (+/-), and a homozygous jef mutant 

(-/-). With the mutated Drsox9a gene as template DNA , our primer set produces a 

single 628 bp band, whereas the same primer set produces a single 237 bp band from 

wildtype Drsox9a template DNA. Template DNA isolated from heterozygous 

individuals results in both a 628 bp and a 237 bp band (+/- lane). ch, ceratohyal; pq, 

palatoquadrate; m, Meckel’s cartilage; cb, ceratobranchial; ep, ethmoid plate; tr, 

trabecula; nt, notochord. Insets show outlines of cartilage elements. Orientation: 

anterior facing left, dorsal view.  
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Figure 2.6.  Amphioxus SoxE promotes differentiation of melanophores, enteric 

neurons, and cartilage nodules. (A) expression of amphioxus BfSoxE in 96 hpf cls 

mutants promotes differentiation of melanophores in cls mutants. (B – D) anti-HuC/D 

immunofluoresence in 96 hpf zebrafish. (B) control wildtype. (C) cls mutants lack 

HuC/D-positive enteric neurons. (D) Injection of amphioxus SoxE promotes 

differentiation of enteric neurons in cls mutants. (E – F) lateral (D) and dorsal (E) views 

of alcian blue-stained embryos reveal differentiation of cartilage nodules following 

injection of amphioxus SoxE into jef mutant embryos; arrows indicate ectopic cartilage 

elements. Orientation: anterior facing left. 
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Figure 2.7.  (A) both lamprey and zebrafish contain craniofacial cartilage (blue) that is 

dependent on expression of SoxE genes in neural crest.  Left panel: the lamprey 

pharyngeal basket consists of 7 arches.  Posterior to the d-loop element on the 3
rd

arch, 
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paired epitrematic processes can be seen projecting out of 4
th 

through 9
th

 arches.  The 

trabecular cartilage is situated at the anterior most aspect of the notochord.  Right panel: 

the zebrafish craniofacial skeleton forms from elements of the first and second 

pharyngeal arches, with the remaining third to seventh arches acting as gill supports 

analogous to the lamprey pharyngeal arches.  tr; trabecular, d; d-loop, e; epitrematic, nt; 

notochord, hbb; hypobranchial basket, m; Meckel’s cartilage, pq; palatoquadrate, ch; 

ceratohyal, ep; ethmoid plate, hs; hyosympletic, cb; ceratobranchials.  Outline of 

zebrafish embryo adapted from (Kimmel et al., 1998).  (B) phylogenetic relationships 

between all the chordates used in this study.  Amphioxus represent the closest extant 

chordate basal to vertebrates that possess a single SoxE.  Lampreys are positioned basal 

to all jawed vertebrates and possess three SoxE genes.  Orientation: anterior facing left.  

(C) vertebrate SoxE functions mapped onto the SoxE phylogeny shown in Figure 1.  

Likely preduplication functions of ancestral SoxE are represented in roman numerals, 

and basal vertebrate functions are shown in parentheses.  Functions specific to 

agnathans and gnathostomes are shown in brackets.  Basal functions of vertebrate SoxE 

are conserved between agnathans and gnathostomes (1 – 5), while derived lineage-

specific functions [6 – 9] arose independently in lampreys or gnathostomes.  Adapted 

from Lakiza et al. 2011. 
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Figure 2.8.  Alignment of lamprey PmSoxE1,  PmSoxE2, and PmSoxE3 to gnathostome 

Sox8, Sox9, and Sox10 genes.  DIM (green shaded box), HMG (blue shaded box), K2 

(red shaded box), and TA (yellow shaded box) SoxE conserved domains.  Asterisks 

demarcate identical amino acid residues among all sequences in the column.  Clustal X 

was used to create a full length alignment that was manually edited using BioEdit.  

Accession numbers are provided in materials and methods. 
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Figure 2.9.  Lamprey PmSoxE2 overexpression in zebrafish promotes ectopic formation 

of pigment cells in a wild-type embryo.  (A) wild-type 56 hpf zebrafish embryo with 

normal pattern of pigmentation.  (B) wild-type 56 hpf zebrafish embryo injected with 

lamprey PmSoxE2 with the appearance of dense populations of melanophores in ectopic 

areas, most notably in the mid-trunk region (arrows).  Orientation: anterior facing left. 
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Figure 2.10.  Amphioxus SoxE mRNA induces expansion of Slug expression in 

Xenopus.  (A – B) frog (Xenopus laevis) embryos at stage 17 of development show 

expansion of Slug mRNA expression unilaterally only in the side of the embryo injected 

with BfSoxE mRNA.  Arrows indicate the injected side of embryos.  Compare injected 

(arrow) and uninjected sides.  Orientation: anterior facing up. By DMM, University of 

Colorado, Boulder. 
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Figure 2.11.  Expression of neGFP by injecting in vitro transcribed mRNA and direct 

injection of CS2+ plasmids into zebrafish wildtype embryos.  (A – C) fluorescence 

imaging of GFP expressing wildtype embryos.  (A) mRNA injected wildtype 24 hpf 

showing GFP expression.  (B) CS2+ neGFP injected wildtype 24 hpf showing GFP 

expression.  (C) CS2+ neGFP injected wildtype 28 hpf embryo showing GFP 

expression. 
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Figure 2.12.  The ability of PmSoxE2 to promote melanogenesis is greater than that of 

5’- or 3’- myc-tagged PmSoxE2.  Induction of melanogenesis by PmSoxE2 (mean = 55, 

max = 171) is higher than PmSoxE2 3’myc (mean = 7, max = 23) and PmSoxE2 5’myc 

(mean = 2.6, max = 5).  Whiskers represent standard error.  Dots above positive whisker 

represent individual data points. 
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Figure 2.13.  mRNA expression of PmSoxE1, PmSoxE2, and PmSoxE3 in PmSoxE1, 

PmSoxE2, and PmSoxE3 injected wildtype zebrafish embryos, respectively.  (A – C)  

Wildtype 24 hpf embryos showing RNA expression of injected lamprey constructs.  

Numbers on bottom left corner represent number affected / number observed. 
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Table 2.1.  Percentage of Drsox10, PmSoxE1, PmSoxE2, and PmSoxE3 injected cls 

larvae that exhibit at least one differentiated pigment cell.  Left column indicates 

identity of the construct injected. 
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Table 2.2.  Percentage of Drsox10, PmSoxE1, PmSoxE2, and PmSoxE3 injected cls 

larvae that exhibit at least one Hu-positive neuron in the hindgut.  Left column indicates 

the identity of the construct injected. 
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Chapter 3 

Evolution of SoxE protein domains across the agnathan-gnathostome 

boundary  

Abstract 

Neural crest development is orchestrated by a gene regulatory network that 

involves signaling molecules, transcription factors, and effector genes.  SoxE proteins 

(Sox8, Sox9, and Sox10) originated from a single ancestral SoxE through gene 

duplication. These closely related proteins are transcription factors that regulate neural 

crest specification, survival during migration, and activation of effector genes to control 

differentiation of multiple cell types.  Sox10 is required for differentiation of pigment 

cells, dorsal root ganglia, enteric neurons, and myelinated glial cells of the peripheral 

nervous system.  The basal vertebrate sea lamprey (Petromyzon marinus) possesses 

three SoxE genes (PmSoxE1, PmSoxE2, and PmSoxE3).  We have previously shown 

that when misexpressed in zebrafish cls sox10 loss-of-function mutant embryos, both 

Drsox10 and PmSoxE2 are able to induce differentiation of a greater number of pigment 

cells and enteric neurons than PmSoxE1 and PmSoxE3.  This observation suggested that 

PmSoxE2 may be functionally equivalent to Drsox10.  However, it remains unclear 

what confers functional differences to closely related SoxE paralogs.  Here we compare 

the DIM, HMG, K2, and TA domains between zebrafish Drsox10 and lamprey SoxE 

proteins using amino acid identity and similarity matrixes.  This analysis indicates that 

within these domains PmSoxE3, rather than PmSoxE2, is more similar to Drsox10.  

However, overlapping functions between Drsox10 and PmSoxE2 suggest that amino 
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acid similarity within these domains may not be a reliable predictor of their functional 

specificity.   

To test the function of each domain, we created a series of SoxE chimeric 

constructs featuring protein domains that have been replaced by homologous domains 

from paralogous SoxE gene sequences.  Chimeric constructs were then expressed in 

zebrafish sox9a (jef) and sox10 (cls) loss of function mutant embryos.  Injection of the 

SoxE1xE2TA chimeric construct into cls mutant embryos induced the differentiation of 

a greater number of melanophores in a higher percentage of injected animals than the 

full-length PmSoxE1.  SoxE1xE3TA rescued a higher percentage of cls embryos 

compared to PmSoxE1.  Conversely, SoxE3xE1TA induced the differentiation of a 

fewer number of melanophores than PmSoxE3, while SoxE3xE1K2TA showed both 

greater melanogenic activity and a greater percentage of rescue (30% vs 83%).  These 

results suggest that both the K2 and TA domains of lamprey SoxE proteins may be 

required for melanocyte development.  However, PmSoxE2 induced differentiation of a 

significantly greater number of melanophores than all of the examined chimeric 

constructs, suggesting that regions outside of the TA domain of PmSoxE2 may be 

important in the regulation of pigment cell development.  Our results also suggest that 

the inability of PmSoxE2 to regulate cartilage differentiation is likely due to sequence 

outside of its TA domain.  Additional SoxE protein domains may be required for 

activation of specific downstream target effector genes in neural crest development.  

Further studies with chimeric variants may elucidate our understanding of SoxE 

proteins, and how they have acquired divergent functions in neural crest development 

and evolution.  
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Introduction 

The neural crest is a multi-potent population of cells that are found in all 

vertebrates. These cells arise during closure of the neural folds to form the neural tube.   

They undergo an epithelial-to-mesenchymal transition (EMT) and migrate to target 

locations.  The EMT involves the reprograming of the cells to alter their shape, cell 

adhesion properties, and cell signaling receptors to detect surrounding cues (LeDouarin 

and Kalchiem, 1999; Vaglia and Hall, 1999).  This migratory ability allows the neural 

crest to invade a multitude of cellular environments, where they can give rise to a wide 

array of vertebrate-specific derivatives, including craniofacial cartilage and bone, 

neurons and glia of the peripheral nervous system, and pigment cell lineages (Knecht 

and Bronner-Fraser, 2002). 

Ongoing investigations in the field of vertebrate evolutionary developmental 

biology ask how a single cell-type, the neural crest, can give rise to multiple derivatives, 

and how closely related regulatory proteins have evolved to regulate different cell types 

arising from this homogeneous cell population (Haldin and LaBonne, 2010).  The 

induction of the neural crest is initiated by cell signaling molecules that include FGF, 

Wnt, Bmp, and Notch.  These signals originate from the adjacent ectoderm or paraxial 

mesoderm.  The induction process activates the neural plate border specifier genes, 

Pax3, Pax7, Msx1, Zic1, and AP-2, which in turn activate downstream neural crest 

specification transcription factors, including Id, Sox8, Sox9, and Sox10 (Meulemans and 

Bronner-Fraser, 2004; Nikitina et al., 2008).  Specification genes are required for 

maintenance of pluripotency, cell survival during migration, and activation of 

downstream lineage specific effector genes.  Different effector genes are activated in 
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different cell lineages and include Mitf for melanocytes, Phox2b and Ednrb for 

peripheral neurons, and Col2a1 for chondrocytic lineages (Elworthy et al., 2005; Leon 

et al., 2009; Levy et al., 2006; Zhao et al., 1997).   

SoxE transcription factors (Sox8, Sox9, and Sox10) play important and 

widespread roles during neural crest development.  They belong to the high-mobility 

group (HMG) family of DNA-binding transcription factors that are related by the 

presence of a highly conserved DNA-binding HMG domain that recognizes the 

consensus sequence 
A
/T

A
/TCAA

A
/TG (Laudet et al., 1993; Wegner, 1999).  It has been 

demonstrated in a number of species, including humans, mice, Xenopus, and zebrafish, 

that Sox10 has a wide variety of roles during neural crest development. (Britsch et al., 

2001; Dutton et al., 2001; Herbarth et al., 1998; Honore et al., 2003; Kuhlbrodt et al., 

1998a; Pingault et al., 1998; Southard-Smith et al., 1998).  Therefore, the disruption of 

Sox10 function affects a wide range of neural crest developmental features, including 

maintenance of pluripotency, proliferation, cell survival, cell-fate specification, and 

terminal differentiation (Britsch et al., 2001; Kim et al., 2003; Paratore et al., 2001; 

Peirano and Wegner, 2000; Sonnenberg-Riethmacher et al., 2001; Stolt et al., 2002).  

Studies in humans and mice have highlighted the importance of Sox10 function in the 

regulation of melanogenesis and neurogenesis.  Sox10 haploinsufficiency can lead to 

partial loss of pigment cells and loss of enteric neurons of the distal colon (Herbarth et 

al., 1998; Southard-Smith et al., 1998).  Sox10
-/-

 homozygosity leads to severe 

phenotypic defects, with complete loss of pigment cells and enteric neurons (Britsch et 

al., 2001; Herbarth et al., 1998; Kapur, 1999; Southard-Smith et al., 1998).  In humans, 

the loss SOX10 causes Waardenburg syndrome and Hirschsprung’s disease, 
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characterized by the loss of pigment cells and aganglionosis, respectively (Pingault et 

al., 1998).  Waardenburg syndrome can be caused by defects in either Pax3 (type I & 

III), Mitf (type II), Ednrb (type IV), or Sox10 (types II & IV) (Bondurand et al., 2007; 

Bondurand et al., 2000; Bondurand and Sham, 2013; Jiang et al., 2011; Wang et al., 

2014).   

 Sox10 has been shown to activate the melanocyte master regulatory gene, 

microphthalmia associated transcription factor (Mitf), within pigment cell lineages in a 

number of species including mice and zebrafish (Dorsky et al., 2000; Hou et al., 2006; 

Levy et al., 2006).  Furthermore, in vitro studies have suggested the direct activation of 

Mitf by Sox10 (Bondurand et al., 2000; Elworthy et al., 2003; Lee et al., 2000; Potterf et 

al., 2001; Verastegui et al., 2000).  Mitf in turn activates downstream genes important 

for melanocyte differentiation and melanin formation, including tyrosinase, tyrosine-

related protein 1, and tyrosine-related protein 2 (dopachrome tautomerase, Dct/Trp2) 

(Goding, 2000; Ludwig et al., 2004).  Teleost specific gene duplication has led to two 

Mitf genes, mitfa and mitfb, of which mitfa is expressed in neural crest-derived 

melanophores and mitfb expression is limited to the retinal pigment epithelium (Lister et 

al., 2001).  As such, mitfa can rescue sox10
-/-

 pigment cell deficiencies in the zebrafish 

(Elworthy et al., 2003). 

In mice, both in vitro and in vivo studies have shown that HMG domains are 

highly interchangeable among Sox proteins even in different subfamilies. For example, 

chimeric Sox9 proteins containing HMG domains from SoxB genes (Sox1/2/3) did not 

show altered activity (Bergstrom et al., 2000; Kamachi et al., 1999).  SoxE genes share 

similar expression patterns during embryonic development and have similar functions, 



116 

 

suggesting functional redundancy among paralogs (Chaboissier et al., 2004; Cook et al., 

2005; Kellerer et al., 2006; Stolt et al., 2003).  This raises the question of how closely 

related SoxE proteins that are expressed in the same cells can perform a range of 

lineage specific roles.  Replacement of mouse Sox10 with Sox8, or with the Drosophila 

SoxE homolog Sox100B, rescued partial development of peripheral neurons but not 

melanocyte lineages (Cossais et al., 2010a; Kellerer et al., 2006).  These findings 

suggest that SoxE regulation of neurogenesis and melanogenesis were evolved 

independently by using different amino acids and downstream targets. 

Four SoxE conserved protein domains and the boundaries of each domain have 

been characterized in several species (Bondurand and Sham, 2013; Cossais et al., 

2010b; Wegner, 2010).  The corresponding regions in the zebrafish sox10 sequence, 

shown in Fig. 3.1, include the DNA-dependent dimerization (DIM; amino acids 64 - 

101), DNA-binding high mobility group (HMG; amino acids 102 – 184), context-

dependent transactivation (K2; amino acids 236 – 324) and the C-terminal 

transactivation (TA; amino acids 419 – 482) domains (Schepers et al., 2002; Wegner, 

1999).  The DIM domain is important for cooperative binding of two Sox10 proteins to 

target promoters, while the K2 domain has been shown to function as a strong 

transactivation domain of Sox8 (Barrionuevo and Scherer, 2010; Schepers et al., 2000) 

and a weak transactivation domain of Sox10 (Schreiner et al., 2007).  Additionally it 

has been suggested that the K2 domain may also mediate other protein-protein 

interactions and co-factor binding (Bondurand and Sham, 2013; Wahlbuhl et al., 2012). 

Previously it was suggested, based on a block alignment that included the four 

characterized protein domains (DIM, HMG, K2, and TA), that PmSoxE3 is the lamprey 
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ortholog to Sox9.  However, identities of PmSoxE1 and PmSoxE2 remained unclear 

(McCauley and Bronner-Fraser, 2006; Zhang et al., 2006).  Results based on a full 

length sequence alignment now suggest the orthology of lamprey PmSoxE2 to 

gnathostome Sox10 while reconfirming the orthology of PmSoxE3 to gnathostome 

Sox9 (Chapter 2).  Furthermore, heterospecific expression of lamprey SoxE genes in 

zebrafish Drsox9a and Drsox10 null backgrounds revealed conservation of function 

between Drsox10 and PmSoxE2.  In the current chapter, I address how closely related 

SoxE paralogs have evolved a differential ability to promote the differentiation of 

pigment cell, peripheral neurons, and chondrocyte lineages.  We compare the DIM, 

HMG, K2, and TA domains between zebrafish Drsox10 and lamprey SoxE proteins 

using amino acid identity and similarity matrixes.  To test the importance of each 

domain in vivo, we generated a set of chimeric proteins in which we replaced specific 

domains from paralogous SoxE gene sequences and expressed them in zebrafish 

Drsox9a and Drsox10 loss-of-function mutants.  Our results show that both the K2 and 

TA domains of SoxE proteins impact their ability to induce differentiation of 

melanophores and enteric neurons.  Interestingly, while PmSoxE2 TA enhances both 

melanogenic and neurogenic activities, the specific identity of the TA domain is not 

related to chondrogenic activity.  These findings suggest that the transactivation domain 

may mediate some lineage specific activity of SoxE genes.  Future experiments that test 

the importance of DIM and HMG domains will be required to fully understand how 

SoxE proteins have evolved neural crest lineage specific activities throughout vertebrate 

evolution. 
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Materials and Methods 

Protein sequence alignments and comparisons of amino acid composition 

ClustalX2.1 (Larkin et al., 2007) was used to perform individual block 

alignments using the following sequences: sea lamprey (Petromyzon marinus) 

PmSoxE1 (AY830453), PmSoxE2 (DQ328983), PmSoxE3 (DQ328984), and zebrafish 

(Danio rerio) Drsox10 AF402677.1.  The amino acid position of each domain (DIM, 

HMG, K2, TA) follows that of a previous publication of chick Sox10 (Cossais et al., 

2010b). Aligned sequences were used to calculate amino acid identities and similarities 

using SIAS (http://imed.med.ucm.es/Tools/sias.html). 

 

Construction of chimeric and truncation SoxE proteins by PCR-driven overlap 

extension 

Sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) SoxE full length 

coding sequences (AY830453, DQ328983, DQ328984, and AF402677.1) were 

directionally cloned into EcoRI and XhoI (PmSoxE1 and PmSoxE2), and XhoI and 

XbaI (PmSoxE3) sites on the pCS2+ vector, after the CMV promoter.  These original 

clones served as templates for PCR-driven overlap extension to construct chimerae as 

previously described (Heckman and Pease, 2007) (Table 3.1).  The TA domains of 

PmSoxE1, PmSoxE2 and PmSoxE3 were replaced with homologous domains to 

construct PmSoxE1xE2TA, PmSoxE1xE3TA, PmSoxE3xE2TA, and PmSoxE3xE1TA 

chimerae using overlapping primers (Table 3.3).  PmSoxE2 truncation proteins missing 

the N-terminal dimerization (PmSoxE2Δ109) and C-terminal TA domains 

(PmSoxE2Δ410) were constructed using internal primers listed in Table 3.3.  The 

http://imed.med.ucm.es/Tools/sias.html
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Dimerization and HMG domains of PmSoxE1 were replaced with the homologous 

domains of PmSoxE3 to construct SoxE3xE1K2TA using overlapping primers (Table 

3.3).  SoxE-containing pCS2+ clones were verified by gel electrophoresis and 

sequencing.  Cloned DNA was diluted to 35 – 55 ng/µl in 0.1M KCl and stored at -20° 

C prior to injections. 

 

Site directed mutagenesis 

PmSoxE3 contained in the CS2+ vector was used as a template to mutate amino 

acid position 206 from Glycine to Valine via PCR based site direct mutagenesis as 

previously described (Zheng et al., 2004).  The following primers were used: 

SoxE3G206V F 5’- GGCGGAGAAAGTCGGTCAAGAACGGCCAGAGC -3’, 

SoxE3G206V R 5’- GCTCTGGCCGTTCTTGACCGACTTTCTCCGCC -3’.  Thermal 

profile: 95 °C 5 mins, repeat 18x (95 °C 50 seconds, 60 °C 50 seconds, 68 °C 6 

minutes) 68 °C 7 minutes.  High fidelity DNA polymerase (pfu Ultra HotStart) was 

used in all amplification reactions.  PCR products were digested using DpnI at 37 °C for 

60 minutes, inactivated by incubation at 65 °C for 20 minutes.  PmSoxE3
G206V

 plasmids 

were transformed into XL-1 Blue competent cells and plasmid DNA isolated by column 

purification (Promega).  Purified plasmids were sequenced, and diluted to 35 ng/ul in 

0.1M KCl and stored at -20 °C prior to injections. 
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Microinjection and fixation of zebrafish embryos 

The zebrafish colourless (cls
m618

) mutant was a kind gift from Dr. Robert Kelsh 

(University of Bath) and jellyfish (jef
hi1134

) mutants were purchased from the Zebrafish 

International Resource Center (University of Oregon).  Zebrafish embryos were 

collected immediately following fertilization and pipetted into agarose troughs with the 

chorions intact using a controlled drop Pasteur pipette.  Transgenes were injected 

directly into the blastomere from the yolk side.  Injection volumes using the pCS2+ 

vector containing lamprey SoxE genes were titered to between 3 – 10 nl (105-350 pg) 

per embryo.  Embryos were raised to the age of 96 hours post fertilization (hpf) and 

anesthetized using tricaine mesylate (MS-222) prior to fixation.  Pigment cells were 

counted on anesthetized live cls embryos that were mounted on microscope slides for 

imaging of pigmentation, then subsequently fixed in 2% trichloroacetic acid (TCA) 

prior to immunostaining.  jef embryos were fixed in 4% paraformaldehyde (PFA) for 

acid-free alcian blue staining, processed for imaging, and then genotyped by DNA 

extraction and PCR using primers specific for the sox9a mutational insertion as 

previously described (Yan et al., 2002).  

 

Immunostaining 

Anti-human neuronal protein HuC/HuD mouse monoclonal antibodies 

(Invitrogen) were reconstituted in 500 µl of phosphate buffered saline (PBS, pH 7.4) 

containing 1% bovine serum albumin (BSA). For whole mount immunostaining, 

zebrafish embryos were fixed in 2% TCA for 3 hours at room temperature (RT), 

washed in PBS, and PBT (PBS with 1% Triton-x-100). Embryos were treated in 
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blocking solution (10% goat serum, 1% BSA) for 4 hours at RT, incubated in anti-Hu 

(1:100) overnight at 4° C, washed 10 x 30 minutes in PBT, then incubated in Alexa 

Fluor 488 (Invitrogen) secondary antibody (1:750) overnight at 4° C. Both primary and 

secondary antibodies were diluted in PBT containing 1% goat serum, and 1% BSA. 

Following removal of secondary antibody, embryos were washed 10 x 30 min with 

PBT, and cleared in 30% glycerol at 4°C. Z–series image stacks of immunofluorescence 

in whole mount embryos were photographed on a Zeiss ApoTome AxioimagerZ1 

compound microscope, and maximum intensity projections (MIP) were created from 

relevant optically sectioned stacks using Zeiss Axiovision software (v4.8.1).  

 

Alcian Blue staining 

Zebrafish embryos were fixed in 4% paraformaldehyde (PFA) in phosphate 

buffer solution (PBS) for 2 hours at room temperature (RT), and serially dehydrated 

into 100% ethanol. Fixed embryos were stained with 0.02% Alcian blue solution in 

70% ethanol and 35mM MgCl2 for 3 hours at RT (Walker and Kimmel, 2007), then 

bleached (2% KOH, 30% H2O2, 0.002% Triton-X-100) for 1 hour at RT, digested (0.2% 

trypsin, 0.002% Triton-x-100, 60% sodium tetraborate) for 45 minutes at RT, then 

cleared (2% KOH, 0.002% Triton-x-100, 50% glycerol), and stored in 50:50 

(glycerol:PBS) containing 0.1% sodium azide.  Manual Z-series image stacks of stained 

cartilage were captured on a Zeiss DiscoveryV12 stereo microscope equipped with an 

Axiocam MRc camera, or with a Zeiss AxioimagerZ1 compound microscope. Image 

stacks were compiled using the NIH ImageJ extended focus module (Rasband).  

Embryos were subsequently washed in PBS and placed in DNA extraction buffer for 3 
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hours at 50° C. Extracted DNA was ethanol precipitated and resuspended in nuclease 

free water for use as template in PCR genotyping of homozygous jef mutant embryos 

(Yan et al., 2002). 

 

Statistical Analysis 

Pigment cell count and enteric neuron count datasets (Fig. 3.3, 3.4) were 

analyzed using one-way ANOVA using significance value threshold of 0.05. Levene’s 

test was used to evaluate homogeneity of variances, and Games-Howell was used as the 

post-hoc multiple comparisons test.   

All experiments were performed using protocols approved by the Institutional 

Animal Care and Use Committee at the University of Oklahoma (R08-025, R12-017).  
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Results 

 

Comparison of amino acids between zebrafish Drsox10 and lamprey PmSoxE1, 

PmSoxE2, and PmSoxE3 

We compared amino acid sequence identities and similarities among each of the 

four recognized functional domains in lamprey PmSoxE1, PmSoxE2, and PmSoxE3 

with zebrafish Drsox10. EMBL-EBI Clustal Omega was used to align the sequences 

and SIAS to perform amino acid identity and similarity matrices (Fig. 3.1).  Sequence 

identity calculations are based on matching residues, whereas sequence similarity 

calculations are based on whether or not two residues fall into the same category, i.e. 

aromatic, aliphatic, positively charged, negatively charged, polar, and small size 

(Livingstone and Barton, 1993).  The DIM of Drsox10 is most identical to PmSoxE3 

(82%) and least identical to PmSoxE2 (53%). The amino acid similarities of PmSoxE1 

(79%) and PmSoxE3 (82%) to Sox10 are also greater than PmSoxE2 (61%) (Fig. 3.1).  

Interestingly, while a comparison of identities reveals that the HMG domain of Drsox10 

is most identical to PmSoxE1 (91%) and least identical to PmSoxE2 (88%), a 

comparison of similarities show that all three lamprey SoxE proteins are 94% similar to 

Drsox10 (Fig. 3.1).  The context dependent transactivation (K2) domains are less 

conserved, where only PmSoxE2 and PmSoxE3 show a 50% or greater similarity to 

Drsox10 (Fig. 3.1).  For the C-terminal TA domain, PmSoxE3 shows the highest 

percent identity and similarity to Drsox10 (Fig. 3.1).  Examination of sequence 

alignments reveals that the K2 domain of PmSoxE1 contains an additional 34 amino 

acids, consisting of Glutamine and Histidine rich repeats not present in Drsox10 
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(Arrowheads, Fig. 3.2).  Conversely, the K2 domains of PmSoxE2 and PmSoxE3 lack 

the A-S-R-S-G-L-G-V motif present in Drsox10 (Arrowheads, Fig. 3.2).  A previous 

study specifically compared the K2 and TA domains between Drosophila Sox100B and 

mouse Sox10, and revealed that conservation within these domains was limited to the 

N-terminal and C-terminal ends of the K2 and the C-terminal end of the TA (Cossais et 

al., 2010a).  This pattern is also found when comparing zebrafish Drsox10 with lamprey 

SoxE proteins, with the exception of PmSoxE3 that shares similar residues throughout 

much of the TA domain (Fig. 3.2).   

 

Multiple lamprey SoxE protein domains are important for melanocyte 

differentiation 

In Chapter Two, I showed that the ability of PmSoxE2 to rescue differentiation 

of melanophores lacking in cls mutant zebrafish exceeded that of Drsox10.  

Furthermore lamprey PmSoxE2 resulted in hyperpigmentation following over-

expression in wildtype embryos (Chapter Two) while PmSoxE1 was able to rescue the 

differentiation of only a small number of melanophores in cls mutants.  Addition of a 6x 

myc-epitope tag to either the N-terminal or C-terminal end of PmSoxE2 reduced 

melanogenic activity (Chapter Two), rendering these constructs irrelevant for this 

analysis.  The C-terminal 66 amino acids have been identified as a strong 

transactivational domain of SOX10 and are highly conserved in SOX8 and SOX9 

(Kuhlbrodt et al., 1998a; Kuhlbrodt et al., 1998b).  These studies also showed that a 

truncated SOX10 lacking the TA domain led to complete loss of function (Kuhlbrodt et 

al., 1998a; Kuhlbrodt et al., 1998b).  To test the requirement of the N-terminal DIM and 
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C-terminal TA domains for PmSoxE2 function, we constructed truncation constructs 

missing those domains (PmSoxE2Δ109 and PmSoxE2Δ410).  As expected from 

previous studies in the mouse (Kuhlbrodt et al., 1998a; Kuhlbrodt et al., 1998b), these 

truncation constructs were unable to induce the differentiation of pigment cells in cls 

mutants (Fig. 3.4K), suggesting their requirement for melanogenic activity of SoxE 

proteins. 

Chimeric constructs were generated in which the TA domain of lamprey SoxE 

sequences was replaced with the homologous sequence from another lamprey SoxE 

paralog.  We replaced the TA domain of PmSoxE1 with the homologous sequence from 

PmSoxE2 (SoxE1xE2TA) and expressed this chimeric sequence in cls mutant embryos.  

SoxE1xE2TA induced greater numbers of differentiated melanophores and enteric 

neurons in rescued cls embryos than PmSoxE1, both in the number of cells per embryo, 

and in the number of embryos that showed the partial rescue phenotype (Fig. 3.4, 3.5, 

3.7, and Table 3.2, Games-Howell p < 0.05).  The SoxE1xE3TA construct was able to 

rescue melanogenesis in cls embryos, but with reduced percentage of rescue in 

comparison to the PmSoxE1control (Table 3.2).  The reciprocal construct 

(SoxE3xE1TA) induced the differentiation of fewer melanophores than PmSoxE3 (Fig. 

3.4, 3.7, and Table 3.2, Games-Howell p < 0.05).  Interestingly, by replacing both the 

K2 and TA domains of PmSoxE3 with that of PmSoxE1 (SoxE3xE1K2TA), the 

percentage of animals exhibiting pigment cell rescue increased from 30% to 83% of 

embryos injected while the average number of pigment cells rescued increased from 4.8 

to 7.4 (Games-Howell p = 0.052) (Fig. 3.4, 3.7 and Table 3.2).  Unexpectedly, 

expression of the SoxE3xE1K2TA construct in wildtype embryos induced 
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differentiation of ectopic pigment cells, while also causing pericardial edema in both 

wildtype and cls mutant embryos (Fig. 3.6).  A recent report showed that sox9b 

knockdown in wildtype zebrafish caused heart edema and reduced blood circulation 

(Hofsteen et al., 2013).  Since PmSoxE3 is orthologous to Sox9, the SoxE3xE1K2TA 

chimeric construct may be acting as a sox9b dominant negative.  This speculation is 

discussed below. 

 

PmSoxE1xE2TA induces more enteric neurons than PmSoxE1 

 Previous results show that the ability of PmSoxE2 to induce differentiation of 

enteric neurons is greater than PmSoxE1 (Chapter Two).  Therefore, we investigated the 

functional relevance of the PmSoxE2TA domain for neurogenic activity using the same 

SoxE1xE2TA construct.  SoxE1xE2TA misexpression induced differentiation of enteric 

neurons in cls embryos (mean = 2.3, max = 6, n = 14 / 60), which was greater than 

PmSoxE1 (mean = 1.3, max = 3, n = 10 / 102), but less than PmSoxE2 (mean = 5.6, max 

= 36, n = 24 / 83) in this activity (Fig. 3.5).  Comparison of enteric neuron counts using 

One-way ANOVA and Games-Howell post hoc multiple comparison tests revealed a 

statistically significant difference between PmSoxE1 and PmSoxE2 (p = 0.02) in their 

abilities to direct differentiation of enteric ganglia but not between PmSoxE2 and 

PmSoxE1xE2TA (p = 0.12) (Fig. 3.5) or PmSoxE1 and PmSoxE1xE2TA (p = 0.14) 

(Fig. 3.5).  Interestingly, expression of Drsox10 in cls embryos revealed ectopic 

formation of Hu-positive neurons outside of the hindgut (Fig. 3.7).  Ectopic Hu-positive 

neurons were also found in lamprey SoxE injected cls mutants but were not included in 

our data (not shown).  Concerns associated with counting enteric neurons for the 
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purposes of scoring for differences between full-length and chimeric SoxE constructs 

are discussed below. 

 

The PmSoxE2 TA domain does not interfere with chondrogenic activity 

 Given the increased melanogenic activity of PmSoxE1xE2TA in comparison to 

the full-length PmSoxE1 construct (Fig. 3.4, 3.5), we asked whether chondrogenic 

activity is affected by the PmSoxE2 TA domain.  Heterospecific expression of 

PmSoxE1xE2TA in jef embryos led to induction of cartilage nodule formation, but did 

not promote differentiation of chondrocytes (Fig. 3.8D).  The number of induced 

cartilage nodules in both PmSoxE1 and PmSoxE1xE2TA injected jef embryos was 

similar, ranging from one to four, and with similar efficacies (Fig. 3.8). The lack of a 

significant difference in the chondrogenic activity of these constructs, suggests that the 

PmSoxE2 TA domain did not interfere with the chondrogenic activity of the SoxE 

chimeric sequence.  The ability of SoxE3xE1K2TA to induce cartilage nodules has not 

yet been examined. 
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Discussion 

 

Importance of the SoxE TA domain for induction of melanocyte differentiation 

Rescue of pigment cells ranged from a single melanophore up to 111 

melanophores in Drsox10-injected cls positive controls (Fig. 3.4).  The high percentage 

of rescue (94%, Table 3.2) suggested that the wide range of rescued melanophore 

numbers may be influenced by the timing of integration and degree of mosaicism of 

injected plasmids (Lieschke et al., 2009).  Therefore, data are presented in box and 

whisker plots, with individual representation of points near the maximum (Fig. 3.4). 

Curiously, a comparison of amino acid identity between zebrafish Drsox10 and 

lamprey SoxE sequences reveals that the HMG domain of PmSoxE2 is least identical to 

Sox10 (Fig. 3.1, 3.2).  Instead, amino acid residues in all four domains of PmSoxE3 are 

more highly conserved with Drsox10 (Fig. 3.1, 3.2).  Through amino acid comparisons 

alone, it was difficult to determine why PmSoxE2 showed the highest while PmSoxE1 

showed the lowest melanogenic and neurogenic activity.  Since previous studies have 

highlighted the importance of the K2 and TA domains for Sox10 protein function (Aoki 

et al., 2003; Cossais et al., 2010b; Ludwig et al., 2004; Potterf et al., 2001; Schreiner et 

al., 2007), we began our functional analysis of lamprey SoxE proteins by testing the 

function of these two domains (Fig. 3.3).   

PmSoxE1xE2TA expression resulted in differentiation of up to 57 melanophores 

at a rescue rate of 50%, surpassing the melanogenic activity of PmSoxE1 by both 

criteria (max = 8, % recued = 25%) (Fig. 3.4, Table 3.2).  While the mean number of 

pigment cells in PmSoxE1xE2TA-injected cls embryos (mean = 6.7) is greater than that 
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of PmSoxE1 (mean = 2.2, Games-Howell p < 0.05), it is still less than that of PmSoxE2 

(mean = 55.3, Games-Howell, p < 0.05) (Table 3.1).  Since the PmSoxE2 TA domain 

was unable to fully restore melanogenic activity to PmSoxE1, this suggests that SoxE 

protein sequences outside the transactivation domains may be required for complete 

melanogenic activity of Sox10/SoxE2.  It will be interesting to determine if 

DrSox10xPmSoxE2 chimeric constructs are able to show greater melanogenic activity 

than the DrSox10 full-length sequence. 

 

Limitations of the current assay for the rescue of peripheral neuron and cartilage 

differentiation in zebrafish cls and jef mutants 

Injection of positive control gene sequences, Drsox10 and Drsox9a, into cls and 

jef mutants respectively resulted in low rescue numbers and efficacies for both ENS and 

cartilage (Fig. 3.5, 3.6) relative to the wildtype phenotypes.  Therefore, we did not use 

these phenotypes to make comparisons between full-length and chimeric constructs.  

Additionally, we found the presence of streams or clusters of Hu-positive cells in 

ectopic locations of Drsox10 injected cls mutant embryos (Fig. 3.7).  One possible 

explanation is that these Hu-positive cells are NCCs of the ENS lineage that have failed 

to migrate into the hindgut and have undergone premature differentiation.  

Alternatively, they may be NCCs of the dorsal root ganglia (DRG) lineage that have 

migrated to ectopic locations during development.  Nonetheless, these observations 

suggest that migration of peripheral neuron NCCs may be perturbed in Drsox10 injected 

cls mutants, which could account for the reduced number of rescued ENS neurons 
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compared to that of melanophores.  Future experiments using ENS-specific or DRG-

specific markers may reveal the cell-type identity of ectopic Hu-positive cells. 

In contrast to melanophores that were counted along the entire length of cls 

embryos, analysis of ENS neurons was restricted to the hindgut. In addition, ectopic 

Hu-positive cells were excluded from this analysis.  Unlike the short duration of Sox10 

expression in melanocyte lineages, Sox10 is expressed in presumptive enteric neuron 

precursors prior to the onset of migration and also during their migration to the gut 

(Anderson et al., 2006; Southard-Smith et al., 1998).  Studies have also shown that 

enteric neurons have a dual origin; vagal neural crest cells migrate from the neural tube 

near somites 1 – 7 to populate the foregut, and continue to migrate rostrally towards the 

hindgut.  Vagal NCCs that originate from caudal regions of the neural tube populate the 

caudal-most region of the hindgut (Anderson et al., 2006; Durbec et al., 1996; Kapur, 

2000; Wang et al., 2011).  Additionally, coordination by both sacral and vagal NCCs is 

required for proper entry into the gut; sacral NCC arrival at the hindgut is a prerequisite 

for vagal neural crest to populate the caudal-most regions of the hindgut (Burns and 

Douarin, 1998; Kapur, 2000).  Differentiation of vagal NCCs is also a complex process 

involving down-regulation of Sox10 and P75, maintenance of RET and Phox2b 

expression, and upregulation of pan-neuronal markers (Sasselli et al., 2012).  Critically, 

overexpression of Sox10 has been shown to repress the differentiation of ENS 

progenitors, suggesting that spatiotemporal control of Sox10 expression levels is 

important for proper ENS development (Bondurand et al., 2006).  These studies suggest 

that the regulatory mechanism of ENS development may require precise spatiotemporal 

control of Drsox10 that cannot be regulated using a ubiquitous promoter. 
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The induction of cartilage by both PmSoxE1 and PmSoxE1xE2TA is limited to 

small disorganized nodules with low rescue efficacies (Fig. 3.8).  This limitation may 

also be caused by the lack of spatiotemporal context in our pCS2+ expression vector 

system.  Sox9 transactivation of col2a1 in chondrocytes requires co-factor binding of 

chondrocyte specific enhancer-binding proteins (Zhou et al., 1998).  Furthermore, Sox9 

is required for expression of Sox5 and Sox6 (Akiyama et al., 2002; Ikeda et al., 2004), 

where Sox5 and Sox6 are recruited by Sox9 to help secure binding to Col2a1 and other 

cartilage-specific enhancers (Han and Lefebvre, 2008). Thus, the precise spatiotemporal 

timing of zebrafish sox9a expression may need to coincide with the expression of 

additional co-factors in order to initiate the full chondrogenic program in jef mutants 

(Cattell et al., 2011).   

Post-translational modification by phosphorylation has also been shown to affect 

Sox9 chondrogenic activity.  In particular, mouse Sox9 is phosphorylated at Sox9
S181

 by 

cAMP-dependent protein kinase (PKA), resulting in a phosphorylation-dependent 

increase in DNA-binding affinity and transcription activation potential (Huang et al., 

2000). We have found that this putative PKA-dependent phosphorylation site on 

PmSoxE3 (PmSoxE3
S205

) has mutated at the +1 phosphorylation site (Valine to Glycine; 

PmSoxE3
G206

) but not in PmSoxE1 (PmSoxE1
V201

) (Arrow in Fig. 3.7). The importance 

of post translational modifications such as phosphorylation, as well as sumoylation 

(Taylor and Labonne, 2005) underscore the complex nature of the chondrogenic 

regulatory pathway and may explain why lamprey PmSoxE1 is unable to direct 

morphogenesis of the gnathostome craniofacial skeleton.  Restoration of a Valine 

residue at the +1 position of the phosphorylation site in PmSoxE3 (PmSoxE3
G206V

) but 
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was unable to rescue chondrogenesis jef mutants (n = 0/22, data not shown).  While this 

is a negative result, we speculate that the mutation of the +1 phosphorylation site of 

PmSoxE3 from Glycine to Valine alone may not be sufficient to restore chondrogenic 

activity.  It would be interesting to determine if mutating the homologous site in 

PmSoxE1 or Drsox9a affects their ability to regulate chondrogenesis.  Nonetheless, 

despite the limitations of our assay, we are able to show that SoxE1xE2TA has the 

ability to induce cartilage nodule formation, suggesting that chondrogenic activity may 

not depend on the specific identity of the TA domain that is present on the SoxE gene 

sequence.   

 

SoxE3xE1K2TA induces differentiation of ectopic melanophores and causes heart 

edema in wildtype and cls embryos 

The number of melanophores that differentiate in SoxE3xE1K2TA injected cls 

embryos is greater than the number seen following misexpression of the SoxE3xE1TA 

construct (Fig. 3.4, 3.7).  This suggests that the K2 domain of PmSoxE1 may be able to 

function in a melanogenic context.  Furthermore, expression of SoxE3xE1K2TA results 

in ectopic formation of melanophores in wildtype embryos (Fig. 3.6), further supporting 

melanogenic activity by the K2 domain.  Interestingly, SoxE3xE1K2TA also caused 

pericardial edema when misexpressed in both wildtype and cls mutant embryos (Fig. 

3.6). This observation is similar to the effects of sox9b knockdown that were recently 

reported in zebrafish (Hofsteen et al., 2013). One possible explanation is that this 

phenotype may result from dominant negative effects by SoxE3xE1K2TA through 

disruption of the Drsox9b regulatory pathway.  It will be interesting to determine if this 
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is effect results from SoxE3xE1K2TA binding to Drsox9b downstream target promoters 

or sequestration of Drsox9b co-factor proteins.   

 

A proof-of-concept study that opens doors for future investigations 

The results of this study suggest that the differential activity of lamprey SoxE 

proteins to induce melanophore differentiation is in part dictated by the amino acid 

composition of their K2 and TA domains.  A study by Schreiner et al. used 

hypomorphic Sox10 alleles to show that both the DNA dependent dimerization and K2 

domains may be important for pigment cell development in mice (Schreiner et al., 

2007), suggesting the importance of other protein-protein or cofactor-binding 

interactions.  The next logical step is to create chimeric constructs with their DIM 

domains replaced with homologous domains from other SoxE proteins.  Sox proteins 

may be able to influence the activation of downstream genes by acting as architectural 

proteins (Werner and Burley, 1997).  When Sox proteins bind to the enhancers of 

downstream target genes, they cause a widening of the minor groove, which in turn 

introduces a strong bend in the DNA (Conner et al., 1994; Ferrari et al., 1992).  

Inducing multiple bends along an enhancer may influence the overall conformation of 

the enhanceosome to facilitate the recruitment and binding of other co-factors and 

assembly of the transcription activation complex (Wegner and Stolt, 2005).  This 

hypothesis is supported by the presence of multiple binding sites in gene promoters and 

enhancers, including Sox9 binding sites for Col2a1, Col11a2, and Sox10 binding sites 

for Mitf, Dct, and Myelin protein zero (Bridgewater et al., 1998; Lefebvre et al., 1997; 

Ludwig et al., 2004; Ng et al., 1997; Peirano and Wegner, 2000; Wegner and Stolt, 
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2005).  The degree to which the DNA is bent depends on whether the Sox proteins are 

bound as monomers or dimers (Wegner and Stolt, 2005).  For dimeric binding, the 

cooperative binding of SoxE proteins to adjacent binding sites on the DNA is mediated 

by the DIM domain (Peirano and Wegner, 2000; Schlierf et al., 2002).  The disruption 

of DIM function in the human SOX9 gene can lead to campomelic dysplasia (Bernard 

and Harley, 2010; Sock et al., 2003).  Therefore, it is possible for the DIM domain of 

lamprey SoxE proteins to play an important role in the regulation of neural crest 

development. 

While our current method of gene expression is able to promote pigment cell 

differentiation in cls mutants (Table 3.2), results from our attempts to induce enteric 

neuron and cartilage differentiation were less robust (Fig. 3.5, 3.9).  One possible 

explanation is that the melanogenic regulatory pathway is uniquely simple in zebrafish.  

In mice, Sox10 expression persists in melanocyte precursors (melanoblasts) and 

continues to be expressed during neural crest migration and incorporation into skin 

(Hakami et al., 2006; Osawa et al., 2005). However in zebrafish, sox10 expression in 

pigment cell precursors is rapidly downregulated at the onset of migration, suggesting a 

diminishing role for sox10 during zebrafish melanogenesis (Dutton et al., 2001; 

Elworthy et al., 2003).  As such, the reintroduction of mitfa expression in zebrafish 

sox10
-/-

 mutants can fully rescue pigment cell defects, suggesting that initial activation 

of mitfa by sox10 is sufficient to promote normal pigment cell development (Elworthy 

et al., 2003).  It has been demonstrated that interspecies differences exist between mice 

and zebrafish, whereby Mitf expression in Sox10
-/-

 mice can only partially rescue 

melanocyte differentiation (Hou et al., 2006).   
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As demonstrated in this study, and in Chapter Two, the zebrafish melanophore 

lineage is amenable for rescue experiments using our current method of transient gene 

expression.  Additionally, optical clarity of zebrafish embryos allows for counting of 

differentiated melanophores in rescued cls mutants without the need for cell-staining.  

In order to apply our method to other neural crest lineages, we will need to produce 

stronger peripheral neuron and cartilage rescue phenotypes in cls and jef mutants, 

respectively.  Exciting advances in genome editing techniques may prove to be useful 

for future studies.  The recently discovered CRISPR/Cas9 genome editing technique has 

been successfully adopted for use in zebrafish to induce gene knockin and replacement 

(Auer et al., 2014; Hruscha et al., 2013). This technique may enable us to insert lamprey 

SoxE coding sequences under regulation of the zebrafish Drsox9a, Drsox9b, and 

Drsox10 promoters to drive their expression with precise spatiotemporal control. While 

our current methods have yielded important insights into changes in SoxE gene 

functions, this new strategy may prove valuable for overcoming limitations of the 

current experimental design.  
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Figure 3.1.  Protein identity and similarity comparison matrices between zebrafish 

Drsox10 and lamprey PmSoxE1, PmSoxE2, and PmSoxE3.  The DIM of Drsox10 is 

most similar to PmSoxE3 (82%) and least similar to PmSoxE2 (61%).  The HMG of 

Drsox10 shares a 94% similarity to the homologous domain of all three lamprey SoxE 

proteins.  The K2 and TA domains of Drsox10 share the highest percent similarity to 

PmSoxE3, 60% and 64% respectively.  Amino acid positions of protein domains are 

indicated in each box: DIM 64 – 101, HMG 102 – 184, K2 236 – 324, TA 419 – 482.  

Individual protein domains were compared between zebrafish Drsox10 and lamprey 

SoxE proteins, with the numbers (black color) representing percent identity and 

numbers (red color) representing percent similarity.  DIM, DNA-dependent 

dimerization domain; HMG, high-mobility group DNA-binding domain; K2, context 

dependent transactivation domain; TA C-terminal strong transactivation domain. 
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Figure 3.2.  Clustal alignments of zebrafish Drsox10 with lamprey PmSoxE1, 

PmSoxE2, and PmSoxE3 protein domains.  Amino acid positions correlate with 

positions listed in Figure 3.1.  DIM and HMG domains show a high level of 

conservation between zebrafish Drsox10 and lamprey SoxE proteins.  A 34 amino acid 

insertion is present in the K2 of PmSoxE1 causing a large gap in the alignment 

(downward arrowheads).  The K2 domains of PmSoxE2 and PmSoxE3 lack the A-S-R-

S-G-L-G-V motif that is present in Drsox10 (upward arrowheads). 
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Figure 3.3.  Schematic diagram of lamprey full-length PmSoxE1, PmSoxE2, and 

PmSoxE3 chimeric proteins.  (A) PmSoxE1, PmSoxE2, and PmSoxE3 native proteins 

distinguished by different colors.  (B) Lamprey SoxE chimeric and truncation constructs 

follow the same color scheme as in (A).  From top to bottom: SoxE1xE2TA, 

SoxE1xE3TA, SoxE2Δ410, SoxE2Δ109, SoxE3xE1TA, SoxE3xE2TA, and 

SoxE3xE1K2TA. 
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Figure 3.4.  Expression of Drsox10, and lamprey SoxE native and chimeric sequences 

in cls mutant embryos.  (A – J) zebrafish larvae 96 hpf  showing differentiated 

melanophores in (A) wildtype control; (B) Drsox10 (mean = 26.5, max = 111); (C) 

PmSoxE1 (mean = 2.2, max = 8), (D) PmSoxE2 (mean = 55.3, max = 171), and (E) 

PmSoxE3 (mean = 4.8, max = 27) injected cls; (F) uninjected cls; (G) SoxE1xE3TA 

(mean = 2.1, max = 11), (H) SoxE1xE2TA (mean = 6.7, max = 57), (I) SoxE3xE2TA 

(mean = 2.6, max = 11), (J) SoxE3xE1TA (mean = 1.4, max = 3) injected cls.  (K) Bar 

and whisker plot of pigment cells counted along the entire length of each larva.  cls 
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mutant larvae lacking melanophores (F).  Injection of Drsox10 and PmSoxE2 into cls 

mutant embryos each induced a greater number of pigment cell differentiation relative 

to injection of chimeric constructs.  Truncation of PmSoxE2 at either the N-terminal or 

C-terminal end resulted in loss of melanogenic activity in in cls embryos.  Chimeric 

constructs that rescued a greater number of melanophores relative to the respective 

native proteins include: SoxE1xE2TA > PmSoxE1; SoxE3xE1K2TA >PmSoxE3.  Dots 

above positive whiskers represent individual data points.  Numbers on the X-axis 

denote sample size.  Anterior is oriented to the left. 
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Figure 3.5.  Induction of enteric neuron differentiation in cls mutants by PmSoxE1, 

SoxE1xE2TA, and PmSoxE2.  Box and whisker plots indicate the range of Hu-positive 

neurons counted along the hindgut of 96 hpf cls larvae.  cls mutants lack enteric neurons 

along the hindgut.  SoxE1xE2TA (mean = 2.3, max = 6) induced the differentiation of a 

greater number of Hu-positive neurons than PmSoxE1 (mean = 1.3, max = 3), and a 

fewer number than PmSoxE2 (mean = 5.6, max = 36).  Percent rescue of SoxE1xE2TA 

(23%) was greater than PmSoxE1 (10%) but less than PmSoxE2 (29%).  Dots above the 

positive whiskers represent individual data points.  Numbers on X-axis denote rescue 

efficacies (rescued / observed). 
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Figure 3.6.  Misexpression of SoxE3xE1K2TA in wildtype and cls embryos (A – D) 

wildtype and cls 76 hpf embryos.  (A) wildtype control. (B) ectopic melanophores 

(arrowhead) and heart edema (arrow) in a wildtype embryo.  (C) cls mutant.  (D) 

melanophores (arrowhead) and heart edema (arrow) in a cls embryo.  Anterior is 

oriented to the left. 
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Figure 3.7.  Ectopic Hu-positive cells in two cls mutant embryos following injection of 

the positive control Drsox10 plasmid.  (A – B) Drsox10 injected cls mutant larvae 

stained with anti-HuC/D showing groups of Hu-positive cells located dorsal to the 

hindgut (arrows).  Anterior is oriented to the left. 
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Figure 3.8.  Comparison of cartilage nodules in jef mutants injected with full-length 

PmSoxE1 or chimeric SoxE1xE2TA constructs.  (A – D) Differential interference 

contrast images of Alcian blue stained zebrafish larvae 96 hpf.  (A) Wildtype 

craniofacial skeleton.  (B) cartilage development is limited to two small elements in a 

jef mutant larva (arrowheads).  (C) cartilage nodules in jef a mutant injected with 

PmSoxE1 (n = 23, 22%; arrow).  (D) cartilage nodule formations in jef a mutant injected 

with  PmSoxE1xE2TA (n = 21, 23%; arrows).  Top right corner of (C) and (D) shows 

number of animals rescued / observed.  Anterior is oriented to the left. 
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Table 3.1.  Table of results from ANOVA post hoc Games-Howell multiple 

comparisons test; modified from IBM SPSS Statistics (ver. 20) output. 
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Table 3.2.  Percentage of plasmid injected cls larvae that exhibit at least one rescued 

pigment cell.  The left-most column identifies the construct injected into cls embryos.  

Drsox10 and PmSoxE2 both induced melanophore differentiation in more than 90% of 

embryos injected.  Rescue efficacies in SoxE1xE2TA (50%) and SoxE1xE3TA (42%) 

are both greater than PmSoxE1 (25%).  SoxE3xE1K2TA (83%) rescued a greater 

percentage of cls larvae than PmSoxE3 (30%). 
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Construct Name Primer Sequences 

PmSoxE1xE3TA  F: 5’- GAGCGGCCGACGCACGTCAAGACTGAGCAG -3’ 

 

R: 5’- CTGCTCAGTCTTGACGTGCGTCGGCCGCTC -3’ 

PmSoxE1xE2TA  F: 5’- GAGCGGCCGACGCACGTGAAAACTGAGCAG -3’ 

 

R: 5’- CTGCTCAGTTTTCACGTGCGTCGGCCGCTC -3’ 

PmSoxE3xE2TA  F: 5’- GAGCAGAGAGCGCATGTGAAAACTGAGCAG -3’ 

 

R: 5’- CTGCTCAGTTTTCACATGCGCTCTCTGCTC -3’ 

PmSoxE3xE1TA F: 5’- GAGCAGAGAGCGCATATCAAGACCGAGCAG -3’ 

 

R: 5’- CTGCTCGGTCTTGATATGCGCTCTCTGCTC -3’ 

PmSoxE2Δ109 F: 5’- AAAGAATTCATGCCCCACGTGAAG AGG -3’ 

PmSoxE2Δ410 R: 5’- TTTTCTAGATTACTACTGCTCAGTTTTCAC -3’ 

SoxE3xE1K2TA F: 5’- AGGCGGAGAAAGTCGGTCAAGGGCTCCGGC -3’ 

 
R: 5’- GCCGGAGCCCTTGACCGACTTTCTCCGCCT -3’ 

 

Table 3.3.  Overlapping and internal primers used to make chimeric constructs. F: 

forward primer, R: reverse primer. 

 


