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Abstract 

In the future warming world terrestrial ecosystems may mitigate increasing 

temperatures by sequestering CO₂ from the atmosphere, or they can intensify future 

global change, amplifying the rate of CO₂ production in response to warming. 

Ecosystems’ response to climate change depends on controls over carbon (C) influx and 

storage, with the latter determined by ecosystem pools’ turnover rates. Global C cycle 

models perform well in predicting C influx rates, the gross and net primary productivity 

(GPP and NPP), however, their simulation of carbon storage requires improvement. 

This dissertation is focused on improving the models’ performance in simulating carbon 

storage and turnover rates. 

In the first chapter I describe the importance of understanding the controls over 

ecosystem carbon storage; give an overview of current global carbon cycle model 

performance in C storage simulation; and describe benefits of data assimilation for 

model improvement. In the second chapter I focus on improving the modeled turnover 

rates of the surface leaf litter. I first illustrate the poor prediction of surface leaf litter 

turnover rates by a commonly used first-order decay model, then use a global observed 

dataset of litter turnover rates and a Bayesian Markov Chain Monte Carlo (MCMC) 

approach to calibrate the model. After calibration the model explained 43% of spatial 

variability in the observed litter turnover rates, which was better than the initial 15%. 

After calibration the nature of the structural lignin limitation of litter turnover rates 

became unrealistic, therefore I altered litter quality limitation function to be dependent 

on litter lignin-to-nitrogen ratio. The change in the litter quality limitation assumption 

led to further increase in the explained variability in the observations to 61%, and the 
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estimated degree of lignin-to-nitrogen limitation of litter turnover rate was comparable 

to the values reported in literature. Lastly, model calibration resulted in reduction of 

temperature sensitivity of the litter turnover rates from Q10=2 to Q10=1.45. 

In the third chapter I improve the simulation of soil organic carbon (SOC) 

storage in CLM-CASA’. Long-term land carbon-cycle feedback to climate change is 

largely determined by dynamics of SOC. However, most evaluation studies conducted 

so far indicate that global land models predict SOC poorly. I evaluated SOC predictions 

by CLM-CASA’, investigated underlying causes of mismatches between model 

predictions and observations, and calibrated model parameters using Bayesian MCMC 

technique to improve the prediction of SOC. I compared modeled SOC to observed soil 

C pools provided by IGBP-DIS globally gridded data product and found that CLM-

CASA’ on average underestimated SOC pools by 65% (r²=0.28). I applied data 

assimilation to CLM-CASA’ to estimate SOC residence times, C partitioning 

coefficients among the pools, as well as temperature sensitivity of C decomposition. 

The model with calibrated parameters explained 41% of the global variability in the 

observed SOC, which was substantial improvement from the initial 27%. The 

projections differed between models with original and calibrated parameters: over 95 

years the amount of C released from soils reduced by 48 Pg C, and the amount of C 

released from litter reduced by 6.5 Pg C. Thus, assimilating observed soil carbon data 

into the model improved fitness between modeled and observed SOC, and reduced the 

amount of C released under changing climate.  

Despite calibration, CLM-CASA’ still explained only 41% of variability in the 

observed SOC, and that led me to explore alternative assumptions about SOC dynamics. 
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CENTURY-type models (including CLM-CASA’) represent microbial activity via a 

fraction of the substrate pool, modified by an environmental limitation function. 

Alternatively, microbial models simulate heterotrophic respiration as a function of 

microbial biomass, environmental, and substrate limitation. In the fourth chapter I 

calibrated two microbial model formulations (a two- and a four-pool model) to global 

total soil organic carbon and microbial biomass pools, and compared the models’ 

performance to that of CLM-CASA’. Once calibrated, both microbial models explained 

51% of variability in the observed soil carbon, which was 10% more than the amount 

explained by the calibrated CLM-CASA’. SOC in the microbial models was more 

sensitive to climate change than SOC in the CENTURY-type model: maximum 

likelihood magnitude of SOC decrease after 95 years of climate change was almost 5-

fold higher in the microbial models than in CLM-CASA’. The uncertainties of SOC 

feedbacks to 95 years of climate change were also larger in the microbial models than in 

CLM-CASA’, which was due to non-linear and oscillatory dynamics in the microbial 

models.  

These studies showed that current models did not perform well in simulating 

carbon dynamics in the dead organic matter pools, however their performance could be 

improved after calibration against the global observed datasets. In addition, using a 

Bayesian MCMC technique for model calibration allowed to generate parameter 

uncertainties, which could be propagated in the model to generate data-informed 

uncertainties for the modeled pools and their feedbacks to global climate change. It is 

essential to continue the efforts of calibrating and validating various model formulations 



xviii 

using more globally observed datasets to identify models best representing reality and 

increase the confidence in the model projections. 

Keywords: carbon cycle, data assimilation, global change, terrestrial ecosystems 
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Carbon dioxide (CO₂) is a greenhouse gas that is directly related to global 

temperature anomalies (Cox et al., 2000). Since the beginning of industrial revolution 

anthropogenic CO₂ emissions have been rising at the rate proportional to countries’ 

gross domestic product corrected for carbon intensity of energy (Raupach et al., 2007). 

In the recent years global financial crisis has accelerated the rates of anthropogenic CO₂ 

emissions (Peters et al., 2012), and these rates are not projected to diminish in the near 

future (Köne &  Büke, 2010). Among the anthropogenic emissions CO₂ is responsible 

for the largest fraction of radiative forcing, and may increase mean global temperatures 

by 2.8-5.5°C before 2100 (Stocker et al., 2013).  

Both atmospheric CO₂ and temperatures affect terrestrial carbon (C) cycle. 

Elevated CO₂ stimulates ecosystem carbon storage (Luo et al., 2006) by increasing 

photosynthetic C fixation rate (Luo &  Mooney, 1995), and therefore mitigating the rate 

of increase in atmospheric CO₂ concentrations. Elevated temperatures increase the 

organic matter decomposition rates (Kätterer et al., 1998), stimulating the natural CO₂ 

emissions. The opposite directions of ecosystem C storage response to elevated CO₂ 

and increasing temperatures illustrate that ecosystems may mitigate or worsen 

anthropogenically-driven climate change.  

Current coupled Earth system models (ESMs) do not agree on whether 

terrestrial ecosystems will uptake or release CO₂ under climate change conditions, 

which causes large uncertainties in future temperatures and atmospheric CO₂ 

predictions (Friedlingstein et al., 2006). One of the main causes of these uncertainties is 

non-uniform effect of temperature on organic matter decomposition rates across the 

ESMs (Friedlingstein et al., 2006, Jones et al., 2005, Jones et al., 2003). For instance, 
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variability in parameters controlling temperature effect on organic matter turnover rates 

among 11 ESMs causes 6-fold variation in the soil carbon storage (Todd-Brown et al., 

2013b). Such spread in predictions of the largest terrestrial C pool highlights the lack of 

our understanding of the soil C dynamics and calls for improvements in the simulation 

of organic matter decomposition.  

Data assimilation (DA) techniques allow estimating a set of model parameters 

that minimizes the error between modeled and observed data, thus, improving a model. 

Using the new – optimum – set of parameters in carbon cycle predictions increases 

models’ reliability. Moreover, probabilistic DA approaches generate probability 

distributions for the optimum parameters, which can be used to produce the data-

informed uncertainties in the model predictions – a rare feature in the global carbon 

cycle simulations. Lastly, data assimilation can help identify a flawed model 

formulation, which can be indicated by parameters that approach unrealistic values. 

In the past two decades the carbon cycle research transitioned from a data-poor 

to a data-rich state. Globally observed data sets for ecosystem carbon input rates (Zhao 

&  Running, 2010), soil carbon storage (Batjes, 2009, Batjes, 2014, Group, 2000), soil 

respiration rates (Bond-Lamberty &  Thomson, 2012b), litter decomposition rates 

(Zhang et al., 2008), and many more became available.  Despite the data abundance, 

few studies focused on evaluation of the global carbon cycle models against global data 

[e.g. (Abramowitz et al., 2008, Kucharik et al., 2000, Randerson et al., 2009a, Todd-

Brown et al., 2013b)] and even fewer studies took advantage of the global carbon data 

to improve the carbon cycle models [e.g. (Rayner et al., 2005, Smith et al., 2013, Ziehn 

et al., 2011)].   
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The work in this dissertation addresses the uncertainties in organic matter 

decomposition simulated by global carbon cycle models. The studies in the dissertation 

are focused on improving the models’ representation of the organic matter storage in 

litter and soils, as well as the controls over their turnover rates. In Chapter 2 I evaluate 

the performance of a commonly-used first-order decay model (Aber et al., 1990, 

Harmon et al., 2009, Olson, 1963) in simulating leaf litter turnover rates. Using 

probabilistic inversion I estimate model parameters, explore different assumptions about 

substrate quality limitation of leaf litter decomposition, and validate the best-performing 

model using global and regional observations. Finally, I illustrate how data assimilation 

changed the leaf litter feedbacks to a climate change scenario, and generate 

uncertainties for these feedbacks.  

In Chapter 3 I evaluate the performance of the Community Land Model with 

Carnegie-Ames-Stanford Approach biogeochemistry sub-model (Oleson et al., 2004, 

Oleson et al., 2008, Parton et al., 1993), and improve it by assimilating a global 

observed soil organic carbon data. I evaluate the posterior parameter distributions by 

comparing them with the observations and checking whether parameters approach 

unrealistic values; evaluate the feedbacks of soil C to elevated temperatures and 

atmospheric CO₂ concentrations; and generate the uncertainties for the soil C 

feedbacks.  

In Chapter 4 I explore a recently proposed soil C cycle model formulations 

(Allison et al., 2010, German et al., 2012) that simulate decomposition as a function of 

not only temperature, but also of microbial biomass. I calibrate the models against the 

observed total soil organic carbon and microbial biomass carbon; evaluate the 
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performance of the calibrated models; and compare the soil C climate change feedbacks 

and their uncertainties between microbial models and a calibrated model from Chapter 

3.  

Studies described in Chapter 2-4 improve our knowledge about global carbon 

cycle dynamics, illustrate the data-informed uncertainties in organic matter feedbacks to 

future climate change, and give insights into the type of observations needed to further 

improve the performance of the global C cycle models. It should be noted that Chapters 

2-4 are developed for peer-review publication.  
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Abstract 

Global terrestrial carbon cycle has a strong influence on atmospheric CO₂ 

concentrations and temperatures. Litter turnover is a small, but important part of the 

global terrestrial carbon cycle as it is a critical stage in the soil organic matter formation 

and nutrient mineralization. Litter turnover rates have been observed on site, regional, 

and global levels, however little effort has been put into validating and calibrating litter 

decay models against the observations. This study was to evaluate predictions of leaf 

litter turnover rates by a commonly-used first order decay model with different 

assumptions about litter quality limitations on decomposition; investigate underlying 

causes of mismatches between model predictions and observations; and calibrate model 

parameters to improve its performance. Model with original parameters explained 15% 

of the variability in the observations and parameter calibration improved the explained 

variation to 44%. Assuming that litter decomposition was dependent on litter lignin-to-

nitrogen ratio rather than litter structural lignin content improved the fraction of 

explained variability in observations to 62%. Litter C pool feedbacks to changing 

climate differed between original and best-fitting models: original model predicted a 

15% decrease in the leaf litter pool after 95 years of climate change (2006-2100), 

whereas the best-fitting model predicted a 2% increase. Furthermore, assuming that 

litter quality decreased with increasing CO₂ concentrations resulted in original model 

predicting a 28% loss of leaf litter pool, and the best-fitting model predicting a 15% 

increase in litter pool. Thus, assimilating observed leaf litter turnover rates into a first-

order decay model improved model fit and reversed the leaf litter pool feedbacks to the 

changing climate. 
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2.1 Introduction 

Global carbon (C) cycle is tightly coupled with climate: climate regulates the 

ecosystem C storage capacity (Fung et al., 2005, Xia et al., 2013a), and carbon released 

from or sequestered by ecosystems has impact on climate (Falkowski et al., 2000, 

Houghton et al., 2001). Terrestrial ecosystems, in particular, have been shown to 

significantly affect temperature (Foley et al., 2003), therefore it is important to 

accurately represent the feedbacks between terrestrial carbon cycle and climate. 

Improvements in prediction of these feedbacks will facilitate reliable assessments of the 

global change effects on the ecosystems as well as development of the mitigation 

strategies for these effects.  

 Global terrestrial C pool is estimated at around 2000 Pg C (Falkowski et al., 

2000), and although litter pool constitutes a small fraction of global terrestrial C pool 

[68-97 Pg C (Matthews, 1997)] litter decomposition is a critical stage in soil organic 

matter formation and nutrient mineralization (Austin &  Ballaré, 2010). Multiple studies 

show that litter decomposition is controlled by climate  (Gholz et al., 2000, Hobbie, 

1996, Hobbie et al., 2000), initial litter lignin content or lignin to nitrogen (lignin:N) 

ratio (Melillo et al., 1982, Shaw &  Harte, 2001), and the origin of litter [“home-field 

advantage effect” (Ayres et al., 2009, Gholz et al., 2000)], however little effort has been 

put into calibrating those relationships against the observations to represent litter 

decomposition rates for various points on the globe.  

   With increase in the available ecological data, implementation of data-model 

fusion techniques for model improvement and uncertainty assessments have been 

gaining momentum (Luo et al., 2009). Particularly, calibration of the litter 
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decomposition models was carried out on site and regional levels: Williams et al. (2005) 

used Ensemble Kalman Filter to calibrate litter decomposition (among other processes) 

against the observations in central Oregon; Keenan et al. (2012) and Xu et al. (2006) 

used Bayesian inversion to calibrate an ecosystem carbon cycle model for Harvard 

forest and Duke forest respectively; and Adair et al. (2008) calibrated several litter 

decomposition models with the observations from North and Central America.   

Model calibration at the site level is useful for representing environmental 

effects on decomposition processes and their uncertainties for a particular set of 

environmental conditions, but it is unlikely that the obtained parameters will represent 

large-scale variability in the turnover rates. For the models to be suitable for use in 

large-scale simulations they have to be calibrated against regionally and globally 

distributed observations in order to capture the variability of decomposition across 

many locations across the globe [as in Adair et al. (2008)].   

 In this study we used leaf litter turnover rates observed across the globe to (1) 

calibrate first order decay model formulations commonly used to represent leaf litter 

decomposition; (2) evaluate the causes of mismatches between model estimates and 

observations; (3) evaluate the impacts of model calibration on predictive ability of litter 

pools; and (4) litter feedbacks to a climate change scenario along with the uncertainty of 

these feedbacks.   
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2.2 Methods 

 2.2.1 Litter decay rate 

Litter mass loss is usually represented as an exponential decay process (Aber et 

al., 1990, Harmon et al., 2009, Olson, 1963): 

                   (2.1) 

where    is the litter pool size at the time t,    is the initial litter pool size, and k is the 

decay rate. The decay rate is dependent on climate, and litter quality: 

         ( )    ( )       (2.2) 

where       is litter turnover rate under no climate or litter quality limitation,  ( ) is 

temperature limitation, and   ( ) is litter quality limitation (n =1 or 2 depending on 

assumption about limitation). Temperature limitation is modeled as a Q10 function: 

 ( )     
(    (    ))

        (2.3) 

where     is temperature sensitivity of heterotrophic respiration, and T is temperature. 

For litter quality limitation we used two assumptions: (1) litter quality limitation was 

determined by structural lignin carbon as in Parton et al. (1987); and (2) litter quality 

limitation was a function of lignin:N ratio in leaf litter as illustrated in Melillo et al. 

(1982), Stump and Binkley (1993), and Shaw and Harte (Shaw &  Harte, 2001).  Parton 

et al. (1987) modeled litter quality limitation as:  

  ( )      (      )        (2.4) 

where a=3, and    is fraction of lignin-C in organic matter and was calculated as:  

   
      

     (    )
        (2.5) 
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where 0.65 was the approximated fraction of C in a lignin molecule, 0.45 was the C 

content in the surface leaf litter,    was the fraction of labile C in the surface leaf litter, 

and following Parton et al. (1987) was calculated as: 

                       (2.6) 

where LN was the lignin:N ratio of the surface leaf litter. We represented the second 

assumption in litter quality limitation as a power function of lignin:N ratio: 

  ( )              (2.7) 

where b was an estimated parameter with initial value of 0, representing no litter quality 

limitation. 

 

2.2.2 Observed data 

We used the global database of leaf litter turnover rates (k’s)compiled by Zhang 

et al. (2008). The database provided data on temperature, precipitation, litter lignin 

content, and nitrogen content, which allowed us to simulate k’s at each given site. We 

randomly separated 141 globally distributed data points into two groups: for model 

calibration (n=79), and for model validation (n=64).The fit statistics in the results 

section will be provided for the model performance on validation dataset.  

 

2.2.3 Parameter estimation 

We calibrated      ,    , a, and b using Bayesian probabilistic inversion. 

Mosegaard and Sambridge (2002) summarize Bayesian inversion as 

 ( | )       ( | )   ( )       (2.8) 
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where p(c|Z) is posterior probability density function of model parameters c; p(Z|c) is a 

likelihood function of parameters c; p(c) is prior probability density function of 

parameters c; and    is a normalization constant. We assumed that the prediction errors 

were normally distributed and uncorrelated, and calculated the likelihood function, 

p(Z|c), as 

 ( | )         { ∑
(     )

 

   
 

 
   }        (2.9) 

where    is k reported in Zhang et al. (2008) at ith site,    is simulated k for the ith site; 

  
  is the associated with ith observation; k is the total number of sites (n=79); and    is 

a constant.  In their database Zhang et al. did not report the uncertainties associated with 

litter turnover rates, therefore we followed the approach used in Harmon and Challenor 

(1997) and Hararuk et al. (2014), and assumed a standard deviation of 30% for each 

observation, which we then used to calculate the variance. 

We assigned minimum and maximum values to the parameters and used 

adaptive Metropolis (AM) algorithm (Haario et al., 2001) to sample from the posterior 

parameter distributions. We generated a parameter chain by running AM algorithm in 

two steps: a proposing step and a moving step.  In the proposing step a new parameter 

set      was generated from a previously accepted parameter set      through a 

proposal distribution (    |    ) . In the moving step a probability of acceptance  

 (    |    )  was calculated as in (Marshall et al., 2004): 

  (    |    )     {  
 ( |    ) (    )

 ( |    ) (    )
}              (2.10) 

The value of  (    |    ) was then compared with a random number U from 0 to 1. 

Parameter set      was accepted if  (    |    )   , otherwise    was set to     .  
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 The AM algorithm required an initial parameter covariance matrix, which we 

generated from a test run of 40,000 simulations with uniform proposal distribution as in 

Xu et al. (2006):  

            
         

 
      (2.11) 

where      and      are upper and lower parameter limits r is a random number 

between -0.5 to 0.5, and D=5. From the test run results we calculated the covariance 

matrix    and modified the proposal step to be 

      (       )         (2.12) 

   {
                                       

     (         )      
       (2.13) 

where    = 2000;         √  (Gelman et al., 1996).  

We made five parallel runs (each run containing 200,000 simulations) starting at 

dispersed initial points in the parameter space. We discarded the first half of the 

simulations (as burn-in phase) and tested the second half for convergence to stationary 

distributions with Gelman-Rubin diagnostics (Gelman &  Rubin, 1992). 

We assigned the boundaries to model parameters (listed in Table 2.1) based on 

the literature and our assumptions. We varied temperature sensitivity,    , between 1 

(to assume that turnover rates were insensitive to temperature changes) and 3, which 

was slightly higher than empirical values (Gholz et al., 2000, Smyth et al., 2009, Zhou 

et al., 2008). Baseline litter turnover rate,      , was varied between 0.5         (2 

years) to 24         (  2 weeks). The lower boundary for parameter a was set to test 

whether model formulation would yield unrealistic values, and upper boundary was 

reported to produce better model performance (Kirschbaum &  Paul, 2002). The upper 
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boundary for parameter b was set slightly higher than the value reported in Melillo et 

al.(1982)  (b=0.78), and the value calculated from Shaw and Harte (2001) (b=0.88); as 

for the parameter a, the lower boundary for the parameter b was set to test the model 

formulation for unrealistic dynamics. 

 

Table 2.1 Parameter characteristics. MLE is maximum likelihood estimate, and G-R is 

the result of Gelman-Rubin chain convergence diagnostics 

Parameter description Symbol 

Prior  

MLE G-R 

Lower 

95% 
bounds 

Upper 

95% 
bounds minimum maximum Value 

Model with   ( ) 

Baseline turnover rate,                0.50 24.00 7.00 0.93 1.00 0.87 1.03 

Temperature sensitivity      1.00 3.00 2.00 1.77 1.00 1.72 1.87 

Litter quality limitation parameter    -5.00 5.00 3.00 -4.24 1.00 -4.88 -1.34 

Model with   ( ) 

Baseline turnover rate,                0.50 24.00 7.00 2.37 1.00 2.18 2.73 

Temperature sensitivity      1.00 3.00 2.00 1.43 1.00 1.38 1.52 

Litter quality limitation parameter    -1.00 1.00 0 0.36 1.00 0.34 0.40 

 

 

2.2.4 Leaf litter feedbacks to climate change 

We evaluated the uncertainties in surface litter feedbacks to climate change by 

running the best-performing calibrated model forward, driving it with a climate change 

scenario (increasing CO₂ and temperatures) and samples from the posterior parameter 

distributions. We used the Community Earth System Model (CESM) output for the 

Representative Concentration Pathway 8.5 (RCP8.5) experiment (specifically, the 

simulated temperature and C influx to leaves, which we assumed to be similar to leaf 

litter flux) to drive the leaf litter dynamics. The CESM model output was provided as a 

part of Coupled Model Intercomparison Project Phase 5 (CMIP5), and was available at 

http://pcmdi9.llnl.gov.  Over 95 years CESM simulated a 3.5 K increase in mean global 

http://pcmdi9.llnl.gov/
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temperature and atmospheric CO₂ increase to 1150 ppm by the year 2100 (Keppel-

Aleks et al., 2013). We first used global litter lignin content and CN ratios from the 

CESM model and the 2006-2010 temperature and C influx data to generate initial leaf 

litter pools using the semi-analytical model spin-up approach (Xia et al., 2012): 

        
    

 
        (2.14) 

where        was leaf litter pool, g/m²,  and      was C influx to leaves, g/m²/year. We 

then ran the litter dynamics model forward in time to the year 2100, generating litter 

feedbacks to the changing climate. 

Elevated CO₂ has been reported to increase leaf litter lignin and decrease leaf 

litter nitrogen content (Liu et al., 2005, Norby et al., 2001) at a rate of 6.5% per ~300 

ppm and 7.1% per ~300 ppm of increasing CO₂ respectively (Norby et al., 2001). We 

assumed the change in litter chemistry was linear and monotonic, and applied the rates 

of change for lignin and nitrogen content to calculate new values for leaf litter quality 

limitation at each time step of a forward model run.  

 

2.3 Results and Discussion 

 2.3.1 Estimated parameters 

Most estimated parameters were well constrained within their prior ranges (Fig. 

2.1). Litter quality limitation parameter a from eq. 2.4, however, was skewed against its 

minimum value, reversing the effect of lignin on litter decomposition: under optimum 

parameter values increase in litter lignin increased its turnover rate exponentially. Such 

effect of lignin on decomposition is unrealistic, therefore litter quality limitation 

function presented in eq. 2.4 does not reflect the observed patterns. Parameter b from 
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the eq. 2.7, on the other hand, was constrained within a realistic range with the 

maximum likelihood value of 0.36 and a 95% confidence interval (CI) of 0.34-0.40, 

yielding a negative relationship between litter quality and decomposition rate.  

 

Figure 2.1 Posterior parameter distributions for two models with different assumptions 

of litter quality limitation of its turnover rate:   ( )      (     ), and   ( )  

    . Baseline leaf litter turnover rate was higher under the   ( ) assumption, and 

leaf litter turnover was less sensitive to temperature under    ( ) assumption than 

  ( ) assumption. 

 

The maximum likelihood lignin:N effect on litter decomposition was weaker 

than the one reported in Melillo [(1982), b=0.78], and weaker than the ones calculated 

from the data in Shaw and Harte [(2001), b=0.88], Taylor et al. [(1989), b=0.41], and 
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Wieder et al. [(2009), b=0.54]. A possible explanation for such spread in litter quality 

effect on decomposition rate could be caused by differences in the microbial 

communities. Decomposition of the passive litter fraction is associated with higher 

fungi-to-bacteria ratio in the decomposer community implying that fungi decompose 

passive litter fraction better than bacteria (Beare et al., 1992). Additionally, complex 

decomposer communities have been shown to increase turnover rate of the passive litter 

fraction (Coûteaux et al., 1991, O'Neill &  Norby, 1996), therefore sites with low values 

of b may have higher fungal biomass or more complex decomposer communities than 

the sites with lower values of b. The studies with observed values of b, however, did not 

have the data on microbial community composition, therefore the reason for such 

variety in the observed effects of lignin:N ratio on decomposition requires further 

investigation. 

 Baseline litter residence time,      , was lower in the model with litter quality 

limitation function   ( ), than in the model with the function   ( ) (Table 2.1), and 

both estimates were higher than the value reported in Adair et al. [(2008),      = 0.53]. 

One-pool litter decomposition model in Adair et al. (2008) did not include litter quality 

effect on decomposition, which was likely the reason for low       value as it was 

implicitly corrected for the litter quality effect. Similarly, there was no agreement in 

temperature sensitivities (   ) between the two models, however both estimates fell 

within the wide range of the values reported in the literature [from 1.17 to 2.7 (Gholz et 

al., 2000, Smyth et al., 2009, Wang et al., 2012a, Zhou et al., 2008)].  
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2.3.2 Calibrated model performance 

Original model formulation for leaf litter turnover, k, explained 15% of variance 

in the observed k’s from Zhang et al. (2008) with the root-mean-square error (RMSE) of 

prediction equal to 0.39 (Fig. 2.2a). Calibration of the model with the original litter 

quality limitation function improved its performance, increasing the r² to 0.44, and 

decreasing RMSE by 41% (Fig. 2.2b). Changing the litter quality limitation function 

increased r² to 0.62, and reduced RMSE by 49% (Fig. 2.2c). Convergence of the 

parameter a to an unrealistic value and better fit statistics for the model with litter 

quality limitation   ( ) than for the model with   ( ) led us to the conclusion that litter 

lignin:N ratio was a better predictor of litter quality limitation of decomposition than 

litter structural lignin content. 
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Figure 2.2 Comparison of the leaf litter turnover rates produced by CENTURY (a), 

calibrated CENTURY (b), and the model with different assumption about litter quality 

limitation on its turnover rate (c). Calibration improved performance of CENTURY, 

however, changing the assumption about litter quality limitation of its turnover rate 

improved model performance. 
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2.3.3 Global leaf litter distribution 

We calculated the global distribution of the surface leaf litter pools as in eq. 2.14 

using CESM leaf litter flux and the best fitting model for the leaf litter turnover rates 

(eqs. 2.2, 2.7). The best-fitting model predicted smaller litter pools than the original 

model in all regions except the tropics (Fig. 2.3), where the calibrated model predicted 

higher C storage compared to the original model. Comparison of our aboveground litter 

estimates to the ones provided in Vogt et al. (1986) revealed that calibration of the 

turnover rates did not improve model’s predictive ability for litter pools in the low-

temperature regions (Fig. 2.3c,d). Since C pools were determined by C influx rates and 

C pool turnover rates (Xia et al., 2013a) the mismatches between the modeled litter pool 

estimates and the observations were caused either by errors in the litterfall or turnover 

rate predictions. Comparison of modeled and observed litterfall (Fig. 2.3e) revealed that 

most modeled estimates were within the range of the observed estimates with the largest 

mismatches (underpredictions) located in the tropical regions. Because there was 

general agreement between observed and modeled litter input estimates, the errors in 

modeled litter pools were caused by the errors in the litter turnover rates.  
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Figure 2.3 Global distribution of aboveground litter (excluding woody debris) before 

(a, c) and after (b, d) calibration of the turnover rates, and their comparisons to the 

observations from Vogt et al. (1986) (error bars represent standard deviations calculated 

for the observations per given latitude). Litter pool sizes are determined not only by 

litter turnover rates, but also by the input rate, therefore we compared modeled litter 

input rates to the observations (e) reported in Vogt et al. (1986). 
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 Errors in the modeled turnover rate estimates could be caused by errors in the 

model input data, such as inaccurate temperature and global lignin:N ratio distributions 

assumed in the CESM, or the issues with the data that were used to calibrate the model. 

CESM assessment showed that model simulated land surface temperatures well 

(Lawrence et al., 2011b), however there was no global observed lignin:N ratio data 

product to validate the CESM lignin:N distribution. Therefore lignin:N ratios remained 

a potentially large source of uncertainty for the global litter turnover rates prediction. To 

address a potential issue with the data used for model calibration we used an additional 

dataset for validation of our best-performing model. The dataset contained leaf litter 

turnover rates from the Long-term Intersite Decomposition Experiment Team (LIDET) 

(Harmon et al., 2009) observed across multiple biomes and substrates. We calculated 

the leaf litter turnover rates from the temperatures and lignin:N ratios at the 27 LIDET 

sites distributed across North and Central America using the original and our best-fitting 

model, and compared them to the turnover rates from Harmon et al. (2009).  

 The calibrated model performed better than the original model (Fig. 2.4a,b), 

however it overpredicted low turnover rates, underpredicted high turnover rates, and 

overall had a much lower predictive ability compared to the data from Zhang et al. 

(2008) (Fig. 2.2c). Most of the turnover rates from the LIDET data were obtained from 

10-year decomposition records, whereas the maximum length of decomposition records 

included in the Zhang et al. (2008) dataset was three years. Some studies argue that leaf 

litter turnover rates are best represented by two or three turnover rate components: fast, 

slow, and passive (Adair et al., 2008, Harmon et al., 2009) with the impact of slower 

components on the total leaf litter turnover rates dependent on litter quality (Adair et al., 
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2008). Comparison of the LIDET turnover rates with our calibrated model estimates 

revealed no significant relationships neither between the model’s residuals and lignin:N 

ratios (Fig. 2.4c) nor between the residuals and litter lignin content (Fig. 2.4d), therefore 

the model errors were not caused by the absence of explicitly modeled slow pools’ 

turnover rates.  

 

Figure 2.4 Comparison of modeled turnover rates to the observed turnover rates from 

Harmon et al. (2009) before (a) and after (b) calibration. The explained variability of the 

observations was correlated with annual precipitation (e), site-level RMSE’s were 

correlated with mean annual temperatures (f), and there were no significant 

relationships between lignin:N ratio and model residuals (c) or between model residuals 

and litter lignin content (d). 
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At the site level fraction of the explained variance in the observed turnover rates 

was dependent on annual precipitation: model had higher predictive ability in humid 

climate (Fig. 2.4c). The predictability of the leaf litter turnover rates was also dependent 

on temperature: site-level RMSE’s increased with increasing mean annual temperatures 

(Fig. 2.4d). Dependency of the turnover rate predictability on temperature and 

precipitation may point at the need to explicitly model microbial biomass dynamics in 

the litter pool. Although absent in our model formulation, precipitation affects organic 

matter decomposition, and its effect is represented better by microbial models than by 

the first order decay models in the arid regions (Lawrence et al., 2009). Additionally, 

LIDET experiment presented turnover rates for litter transplants, therefore decrease in 

turnover rate predictability with increasing temperatures might be due to maladaptation 

of the  microbial communities at LIDET sites to the foreign substrates (Gholz et al., 

2000).  

 

2.3.4 Litter feedbacks to climate change 

Global leaf litter pool size simulated by the best performing model was 26.3 Pg 

C with a 95% CI of 25.6-27.5 Pg C, which was lower than the original model estimate 

of 29.3 Pg C (Fig. 2.5a). The calibrated estimate was higher than the observed global 

leaf litter pool [13 Pg C (Matthews, 1997)], but lower than the previously reported 

model estimates [60 Pg C (Esser et al., 1982) and 51 Pg C (Potter et al., 1993)].  
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Figure 2.5 Global leaf litter pool (a), and its response to changing climate with (c) and 

without (b) the assumption of changing litter quality with increasing CO₂. 
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Changing litter quality limitation function along with model calibration resulted 

in the opposite direction of litter pool change in response to 95 years of increasing 

temperatures and CO₂ concentrations. Original model predicted a 16% decrease in leaf 

litter pool, whereas the calibrated model simulated a 2% increase (with the range of 2% 

decrease to an 8% increase) in the leaf litter pool after 95 years of climate change (Fig. 

2.5b). Including the assumption about decreasing litter quality with increasing CO₂ 

resulted in a 28% decrease in the leaf litter pool in the original model after 95 years of 

climate change, and a 16% increase (with the range of 10% to an 23% increase) in the 

leaf litter pool in the calibrated model (Fig. 2.5c). The counter-intuitive response of the 

leaf litter pool to decreasing litter quality in the original model was due to a larger rate 

of change in the numerator of the equation 2.5 than in its denominator.  Overall, unlike 

the original model, the calibrated model simulated a negative feedback of leaf litter to 

changing climate, which was amplified by CO₂-induced decrease in litter quality. 

Increasing atmospheric CO₂ concentration leads to reduction of litter quality, 

however its effect on litter decomposition remains controversial (Norby et al., 2001). 

Some experiments revealed that CO₂-induced decrease in litter quality decreased litter 

turnover rates and caused litter mass accumulation (Cotrufo &  Ineson, 1996, Cotrufo et 

al., 1994), others showed that decrease in litter quality might increase or have no effect 

on litter decomposition (Coûteaux et al., 1999, Finzi &  Schlesinger, 2002). 

Additionally, there is evidence that elevated CO₂ increases fungi-to-bacteria ratio 

(Carney et al., 2007), which may offset the negative effect of increased litter quality on 

its turnover rate as fungi decompose low-quality litter better than bacteria (Beare et al., 

1992). The varying reports of CO₂ effect on litter decomposition along with the 
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evidence of significant regulation of decomposition by microbial community 

composition shifts that current models do not account for, indicates the need for 

adjusting the first-order decay models to account for microbial community dynamics. 

 

2.4 Conclusion 

We calibrated a leaf litter decomposition model against the global observed leaf 

litter turnover rate dataset using a Bayesian MCMC approach. Changing the assumption 

about litter quality limitation of litter decomposition along with parameter calibration in 

the first-order decay model substantially improved the fitness between observed and 

modeled leaf litter turnover rates. When propagated in time under RCP8.5 scenario 

posterior parameter uncertainties resulted in a 0.26 Pg C loss to a 1.99 Pg C gain in leaf 

litter pool after 95 years of climate change.  Including the change in litter quality 

adjustment to increasing atmospheric CO₂ increased the amount of carbon that 

remained in the leaf litter pool to a range of 2.5 Pg C to 6.1 Pg C. 

As we show in this study, data assimilation is a useful tool for improving and 

gaining insights into carbon cycle modeling and uncertainty analysis of the model 

projections. The inability of our constrained model to accurately represent surface litter 

pools despite plausible representation of litter input indicates the potential flaws in 

global leaf litter quality data used in CESM, and/or importance of microbial community 

composition on leaf litter decomposition. More data is needed on global leaf litter 

quality to develop a reliable model input dataset. Also, we need more data on climate 

effects on microbial community compositions around the globe, and whether the 



28 

changes in the microbial composition result in the turnover rates significantly different 

from those predicted by the best-fitting first-order decay model.   
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Chapter 3  

 

 

 

 

 

Evaluation and improvement of a global land model against  

soil carbon data  

using a Bayesian MCMC method
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Abstract: 

Long-term land carbon-cycle feedback to climate change is largely determined 

by dynamics of soil organic carbon (SOC). However, most evaluation studies conducted 

so far indicate that global land models predict SOC poorly. This study was to evaluate 

predictions of SOC by the Community Land Model with Carnegie-Ames-Stanford 

Approach biogeochemistry sub-model (CLM-CASA’), investigate underlying causes of 

mismatches between model predictions and observations, and calibrate model 

parameters to improve the prediction of SOC. We compared modeled SOC to the SOC 

pools provided by IGBP-DIS globally gridded data product and found that CLM-

CASA’ on average underestimated SOC pools by 65% (r²=0.28). We extracted the C 

cycle component from CLM-CASA’ and applied data assimilation to it to estimate SOC 

residence times, C partitioning coefficients among the pools, as well as temperature 

sensitivity of C decomposition. The model with calibrated parameters explained 41% of 

the global variability in the observed SOC, which was substantial improvement from 

the initial 27%. The SOC and litter C feedbacks to changing climate differed between 

models with original and calibrated parameters: after 95 years of climate change (2006-

2100) the amount of C released from soils was 48 Pg C lower in the calibrated than in 

the non-calibrated model, and the amount of C released from litter was 6.5 Pg C lower 

in the calibrated than the non-calibrated model. Thus, assimilating estimated soil carbon 

data into the model improved model parameterization and reduced the amount of C 

released under changing climate. To further reduce the uncertainty in the soil carbon 

prediction, we need to explore alternative model structures, improve representation of 

ecosystems, and develop additional global datasets for constraining model parameters. 
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3.1 Introduction 

Soils contain a large fraction of ecosystem carbon (C) (House et al., 2002), 

which can be affected by climate change (Kirschbaum, 1995). Accurate prediction of 

soil organic C (SOC) content is important, as emission of CO₂ from soils greatly 

depends on the amount of carbon stored in it (Luo &  Zhou, 2006). Being a greenhouse 

gas, naturally and anthropogenically emitted CO₂ likely leads to climate warming 

(Houghton et al., 2001), which may further stimulate net release of soil carbon, forming 

a positive feedback loop between carbon cycle and climate warming  (Friedlingstein et 

al., 2006, Luo, 2007, Melillo et al., 2002, Oechel et al., 2000, Rustad et al., 2001). 

Analysis of the output generated by 11 earth system models (ESMs) participating in the 

5
th

 Coupled Model Intercomparison Project (CMIP5, (Taylor et al., 2011)) illustrates 

the uncertainty in the simulated SOC, which, despite the similarities in model 

structures, varies 6 fold among the models with the estimates ranging from 510 to 3040 

Pg C (Todd-Brown et al., 2013b). Only six out of 11 model estimates were within the 

range of the Harmonized World Soil Database (HWSD) estimate of 1260 Pg C (with a 

95% confidence interval (CI) of 890–1660 Pg C) and none of the models’ correlation 

coefficients for the grid-based comparisons between modeled and empirical SOC 

estimates exceeded 0.4 (Todd-Brown et al., 2013b).  

A few other studies that evaluated ESM’s simulation of soil C stocks and 

dynamics indicated great differences between simulated and observed SOC stocks. 

Kucharik et al. (2000) evaluated the SOC stocks modeled by the Integrated Biosphere 

Simulator (IBIS) to be 1408 Pg C, which was lower than the estimate generated by 

International Geosphere-Biosphere Programme - Data and Information System (IGBP-
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DIS) (1567 Pg, (Group, 2000)). IBIS underpredicted soil C stocks by up to 8 kg C/m² in 

deserts, open shrublands, polar regions, and tropical forests; and overpredicted soil C 

stocks by up to 11 kg C/m² in tundra regions. The second version of the IBIS model did 

not yield a better soil C fit (Delire et al., 2003). Thum et al. (2011) evaluated SOC in 

two global models: CBALANCE-JSBACH-ECHAM5-Model (Cba-JEM (Raddatz et 

al., 2007, Roeckner et al., 2003)) and Yasso07-JSBACH-ECHAM5-Model (Y07-JEM 

(Liski et al., 2005, Raddatz et al., 2007, Roeckner et al., 2003)). The total global SOC 

simulated by Cba-JEM was 2853 Pg C and was higher than IGBP-DIS and HWSD 

estimates, whereas Y07-JEM  simulated 1477 Pg C, which was lower than IGBP-DIS 

estimate, but within the range of the HWSD estimates (Group, 2000, Todd-Brown et al., 

2013b). Both models overpredicted soil C in the northern conifer forests, tropical 

forests, grasslands, and savannas and underpredicted soil C in taiga regions. These 

differences in simulated SOC pools are likely propagated in the ESMs and cause 

substantial uncertainties in modeled carbon-climate feedback (Friedlingstein et al., 

2006). 

ESM structures for simulating terrestrial carbon cycle are highly similar: they 

partition the photosynthetically fixed C among the live and dead carbon pools, from 

which C escapes via autotrophic or heterotrophic respiration (Todd-Brown et al., 2013b, 

Weng &  Luo, 2011). Todd-Brown et al. (2013b) showed that the differences in 

simulated SOC stocks among the models are mainly caused by their parameterizations. 

Parameter calibration is a commonly practiced procedure in model development, and 

parts of global land models have been calibrated with the site level data (Kuppel et al., 

2012, Wang et al., 2007). Calibration of land models against global datasets has not 
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been widely implemented largely due to computational cost and methodological 

difficulty. For example, because of the lengthy spin-up, calibration of ESM parameters 

associated with soil carbon pools is computationally costly (Rayner et al., 2005). 

Methodological difficulty arises from the fact that soil C content is a convoluted 

product of net primary productivity (NPP), C partitioning coefficient from plant litter to 

soil C pools, and SOC residence time (Luo et al., 2003, Xia et al., 2013a, Zhou &  Luo, 

2008). Even with the fixed NPP, same SOC content can be achieved by many 

combinations of C partitioning coefficients from plant litter to soil pools and SOC 

residence times (see Figure S3.1). In a model with three soil C pools and nine other C 

pools (plant and litter) that contribute to the soil pools it is difficult to identify the right 

set of parameters to adjust so as to make the simulated SOC stocks match closely to the 

observed ones.  

Data assimilation techniques for parameter estimation have been successfully 

applied in the carbon cycle research at ecosystem, regional and global scales. Wu et al. 

(2009) demonstrated significant improvement in modeled net ecosystem exchange 

(NEE) after applying conditional inversion method to the flux-based ecosystem model 

(FBEM) to integrate observed NEE data into FBEM at Harvard forest. At the same site, 

Keenan et al. (2012) assimilated 15 carbon pool and flux datasets into Forest Biomass, 

Assimilation, Allocation and Respiration (FoBAAR) model to constrain 42 model 

parameters using adaptive multiple constraints Markov Chain Monte Carlo 

optimization, and was able to significantly reduce the forecast uncertainty of the C pool 

dynamics. Xu et al. (2006) used Bayesian Markov Chain Monte Carlo technique to 

assimilate six carbon datasets from Duke Forest into the Terrestrial ECOsystem 



34 

(TECO) model to constrain C residence times and partitioning coefficients, producing 

good prediction of soil respiration, foliage biomass, and woody biomass.  

On the regional scale, Zhou and Luo (2008) successfully constrained ecosystem 

residence times against regional data of biomass, net primary production (NPP), litter 

and soil C across the continental USA by using genetic algorithm to find the best 

parameters. Zhou et al. (2009) and Ise and Moorcroft (2006) presented global 

constrained SOC temperature sensitivities resulting from assimilating global soil C data 

(Group, 2000) into C cycle models. Smith et al. (2013) developed a fully data-informed 

C cycle model and generated C cycle projections with the parameter and structural 

uncertainties propagated in time.  

Despite the obvious advantages to data assimilation for calibrating model 

parameters, not much research has been carried out with global land models due to their 

complexity. Meanwhile, the modeling community still focuses on including more 

processes into ESMs to represent the C cycle as realistically as possible (Koven et al., 

2009, Koven et al., 2011, Lawrence et al., 2011a, Luo et al., 2009, Oleson et al., 2008). 

It is equally important to develop the capacity to calibrate models to improve their 

predictive ability. In this study we take advantage of Bayesian MCMC to (1) calibrate 

the C cycle component of CLM-CASA’; (2) identify the regions with the highest 

uncertainty in SOC; (3) gain insight about the model structure through maximum 

likelihood parameter estimates and their correlations; (3) generate data-constrained 

estimates of C residence time; and (4) generate uncertainties of SOC change under 

climate change. 
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3.2 Methods 

 3.2.1 CLM-CASA’ and its C-only version for data assimilation 

In this study we calibrated Community Land Model coupled with Carnegie-

Ames-Stanford Approach biogeochemistry sub-model (CLM-CASA’) (Oleson et al., 

2004, Oleson et al., 2008, Parton et al., 1993). CLM-CASA’ consists of biogeophysics 

and biogeochemistry sub-models. Biogeophysics sub-model simulates solar and 

longwave radiation dynamics in vegetation canopy and soil; momentum and turbulent 

fluxes from canopy and soil; heat transfer in soil and snow layers; hydrology of canopy, 

soil, and snow; stomatal physiology, and photosynthesis (more details can be found in 

(Oleson et al., 2004, Oleson et al., 2008)). Biogeochemistry sub-model simulates 

carbon transfer among various plant, litter, and soil pools (Fig. 3.1) (Parton et al., 

1993). Change in carbon content in each pool is determined by a balance between influx 

into and efflux from the pool. Carbon influx into the ecosystem is defined by NPP, 

which is partitioned among three live biomass pools. Carbon efflux is heterotrophic 

respiration (autotrophic respiration in CLM-CASA’ is assumed to be 50% of gross 

primary productivity, GPP) as determined by decomposition rate of organic C in each 

pool. Heterotrophic respiration is influenced by environmental conditions (specifically, 

temperature and soil moisture) as well as soil texture, tissue lignin, and tissue available 

nitrogen content.  
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Figure 3.1 CLM-CASA’ model structure and global parameter averages. Carbon enters 

the system through photosynthesis and is partitioned among three live pools. From the 

live pools carbon is transferred to the five litter pools, and from the litter pools it is 

transferred to the three soil pools. Values in the boxes are pool residence times; values 

outside the boxes are partitioning coefficients (values in blue are initial model values, 

values in red are results of parameter optimization). After data assimilation soil passive 

C residence time increased by 36 years, whereas slow C residence time decreased by 

2.1 years; compared to initial values, more C was transferred to soil C pools from soil 

litter and less C is transferred to soil C from surface litter.  
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 Based on the theoretical analysis, carbon cycle components of any land models 

can be represented by a matrix equation (i.e., a set of carbon input-output equations) 

(Luo &  Weng, 2011, Luo et al., 2003, Xia et al., 2013a) as:  

  ( )

  
   ( )  ( )    ( )                                                                       (3.1) 

where 
  ( )

  
 is the change in C pools at each time step;  ( ) is the diagonal matrix of 

environmental scalars, which represents the influence of climate on mortality or 

decomposition rate of organic C in each pool in a gridcell (the elements of  ( ) for all 

non-live pools are the same) ;   is a matrix of partitioning coefficients among C pools, 

which is influenced by soil texture, lignin, and tissue lignin to nitrogen ratio;   is the 

diagonal matrix of baseline C exit rates at a given temperature (25°C in CLM-CASA’); 

 ( ) is a vector of C pools;   is the vector of  partitioning coefficients of NPP to the 

three live biomass pools; and  ( ) is NPP.   

 Based on equation 3.1, we extracted the carbon cycle component of CLM-

CASA’ into a set of equations that described carbon transfer among pools, solved the 

steady state solution for the set of equations, and encoded them into MATLAB to 

perform data assimilation. Steady state solution for each gridcell was calculated as 

proposed by Xia et al. (Xia et al., 2012): 

       (  ̅ )   ̅ ̅         (3.2) 

where  ̅,  ̅, and  ̅ were long-term averages of the environmental scalars, C partitioning 

among the three live pools, and NPP correspondingly. Before proceeding to data 

assimilation we verified the MATLAB version of CLM-CASA’ by comparing its 

simulated soil C content with that of the original model. As illustrated in Figure S3.2, 

steady-state soil C simulated by the original CLM-CASA’ model matched closely to 
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that produced by the MATLAB version despite that the latter used the semi-analytic 

spin-up approach (Xia et al., 2012). Extracting the carbon component from the original 

model for data assimilation saved computational time and made it easier to fit our data-

assimilation workflow. 

 

3.2.2 Data assimilation for parameter estimation 

To calibrate parameters associated with soil C we used Bayesian probabilistic 

inversion, which states that posterior probability density functions of parameters can be 

obtained from prior knowledge about the parameters and the error between model and 

observations. According to Mosegaard and Sambridge (2002) Bayesian inversion can 

be summarized by the following equation: 

 ( | )       ( | )   ( )       (3.3) 

where p(c|Z) is posterior probability density function of model parameters c; p(Z|c) is a 

likelihood function of parameters c; p(c) is prior probability density function of 

parameters c;    is a normalization constant. We assumed that the prediction errors were 

normally distributed and uncorrelated, hence, the likelihood function, p(Z|c), was 

calculated as: 

 ( | )         { ∑
(     )

 

   
 

 
   }        (3.4) 

where    is soil C reported by IGBP-DIS at ith gridcell,    is soil C simulated by CLM-

CASA’ at a corresponding gridcell;   
  is the variance of a measurement at a gridcell; k 

is the total number of gridcells; and    is a constant. The issue of uncertainty in the 

global gridded data products is much understudied, and IGBP-DIS database, like many 

other global gridded data products, does not include the uncertainty estimates. In light 
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of the absent uncertainties we employed a concept used in Harmon and Challenor 

(1997), and assumed a standard deviation of 30% of a reported value at each grid cell, 

which we then used to calculate the variance. 

 To generate the posterior distributions we first specified the priors of the 

parameters to be uniformly distributed over the intervals specified in Table 3.1. We put 

constraints on parameters based on the literature, educated guess, and hypothesis 

testing. For instance, temperature sensitivity was varied between 1, assuming that 

respiration was insensitive to temperature, and 3 (average temperature sensitivity 

calculated from the global soil respiration database (Bond-Lamberty &  Thomson, 

2012a)). The minima for maximum turnover rates in slow and passive pools were 

within the reported range (Parton et al., 2010, Parton et al., 1993), however, because the 

maximum turnover rates for slow SOC pool in CLM-CASA’ was the highest reported, 

we made upper limits in this study 2.5 times the original value to test whether the 

maximum turnover rate could be higher on the global level than those reported to date. 

The upper limit for the passive SOC turnover rate was set at 0.005        , which was 

higher than the rate used in (Parton et al., 1993) by 0.0005        . Literature search 

yielded no information about the range for the other 17 parameters from Table 3.1, 

therefore, we assigned the limits to the parameters so that they would preserve the 

original relationship with the dependent variables (e.g. soluble fraction, structural 

lignin, clay, and sand), but adjust the degree of influence of the dependent variables on 

a C partitioning coefficient. As an additional constraint C partitioning coefficients had 

to be a value between 0 and 1, and sum of partitioning coefficients for C efflux from the 

same pool could not be larger than 1. 
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Once we specified parameter ranges, we used adaptive Metropolis (AM) 

algorithm (Haario et al., 2001), a Markov Chain Monte Carlo method, to sample from 

the posterior parameter distribution. To generate a parameter chain we ran AM 

algorithm in two steps: proposing step and a moving step.  In the proposing step a new 

parameter set      was generated from a previously accepted parameter set      

through a proposal distribution (    |    ) . In the moving step a probability of 

acceptance   (    |    )  was calculated as in (Marshall et al., 2004): 

  (    |    )     {  
 ( |    ) (    )

 ( |    ) (    )
}    (3.5) 

The value of  (    |    ) was then compared with a random number U from 0 to 1. 

Parameter set      was accepted if  (    |    )   , otherwise    was set to     .  

 The AM algorithm requires an initial parameter covariance matrix, which we 

generated from a test run of 50,000 simulations using a uniform proposal distribution 

following the example in Xu et al. (2006):  

            
         

 
       (3.6) 

where      and      are upper and lower parameter limits r is a random number 

between -0.5 to 0.5, and D=5. Out of 50,000 simulation the test run accepted about 

2,500 updated samples. We constructed a covariance matrix    on the basis of the test 

run and modified the proposal step to be 

      (       )          (3.7) 

   {
                                       

     (         )      
        (3.8) 

where    = 2000;         √   (Gelman et al., 1996).  
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We made five parallel runs starting at dispersed initial points in the parameter 

space, each run contained 1,000,000 simulations. During each simulation we solved 

equation 3.2 with newly proposed parameters and proceeded to the moving step. We 

discarded the first half of the simulations (as burn-in phase) and tested the second half 

for convergence to stationary distributions with Gelman-Rubin diagnostics (Gelman &  

Rubin, 1992).  

3.2.3 Parameters to be estimated 

Soil C content is determined by soil C influx (proportional to NPP) and its 

residence time, or the inverse of the turnover rate (Luo et al., 2003). The point-by-point 

comparisons of the NPP produced by CLM-CASA’ and the observed NPP from 

Ecosystem Model Data Intercomparison Initiative (EMDI) dataset (Olson et al., 2001) 

showed good agreement between modeled and observed NPP (Randerson et al., 2009b). 

Due to this good agreement we used modeled NPP to drive the CASA’ biogeochemistry 

sub-model, and focused on improving the SOC through calibrating the parameters 

associated with turnover rates of carbon pools and C partitioning coefficients among 

pools as influenced by climate, tissue lignin, available nitrogen, and soil texture. 

Specifically, we calibrated the baseline C exit rates from slow and passive C pools 

(these two parameters strongly regulated SOC pool size due to their long residence 

times), temperature sensitivity of heterotrophic respiration (   ), and the parameters in 

(i.e., elements of) matrix A, which we described in the following equations: 

 (   )                   (3.9) 

 (   )     (   )                    (3.10) 

 (   )                             (3.11) 
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 (   )     (   )                    (3.12) 

where  (   ) is the partitioning coefficient from leaves to surface metabolic litter; 

 (   ) is the partitioning coefficient from leaves to surface structural litter;  (   ) is 

the partitioning coefficient from roots to soil metabolic litter;  (   ) is the partitioning 

coefficient from roots to soil structural litter;    is the labile C fraction in leaves and 

roots at a given grid cell; and    and    are empirical coefficients. 

 (   )                                         (3.13) 

 (    )                            (3.14) 

 (    )                              (3.15) 

 (    )                            (3.16) 

where  (   ) is C partitioning coefficient from surface structural litter to surface 

microbial pool;  (    ) is C partitioning coefficient from surface structural litter to soil 

slow pool;  (    ) is C partitioning coefficient from soil structural litter to soil 

microbial pool; and  (    ) is C partitioning coefficient from soil structural litter to 

soil slow pool.    is structural lignin content in the structural litter pools in a given grid 

cell expressed as a fraction of one, and    through    are empirical parameters.  

 (     )                                                (3.17) 

 (     )                                               (3.18) 

 (     )                               (3.19) 

 (     )                               (3.20) 

where  (     ) is C partitioning coefficient from soil microbial to soil slow pool; 

 (     ) is C partitioning coefficient from soil microbial to soil passive pool;  (     ) 

is C partitioning coefficient from soil slow to soil passive pool;  (     ) is C 
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partitioning coefficient from soil slow to soil microbial pool;      and      are the soil 

clay and sand fractions in a given gridcell; and    through    are empirical parameters. 

Those parameters together with their prior values are listed in Table 3.1.  

 

3.2.4 Database 

IGBP-DIS database provides a high-resolution (5x5 arc minutes) global map of 

soil C for the top 1 m of soil. The map is the result of linking the pedon records from 

the extensive Global Pedon Database (Batjes, 1995), which contains soil texture classes, 

terrain slopes, and 106 soil units, and FAO/UNESCO Digital Soil Map of the world 

(containing the abovementioned data in addition to pH, organic C and nitrogen, bulk 

density, cation exchange capacity, etc. (FAO, 1995)) by statistical bootstrapping. The 

database features data on soil bulk density, field capacity, thermal capacity, soil carbon, 

and nitrogen density. Many studies used the soil carbon data from this dataset to 

produce new datasets (House et al., 2002), as an assessment of terrestrial C uptake 

(Freibauer et al., 2004), to evaluate models (Delire et al., 2003, Kucharik et al., 2000), 

and to improve models (Ise &  Moorcroft, 2006, Smith et al., 2013, Zhou et al., 2009). 

Prior to using the data set in the data assimilation routine we randomly separated all the 

grid cells into halves similar to Smith et al. (2013). One half of grid cells was used for 

model calibration, and the second group – for validation to avoid overfitting. All further 

discussion about the fit of modeled data to observed data will refer to the validation 

subsample of the data. 
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In this study, for the purpose of estimation of the parameters related to carbon 

processes, soil C in the IGBP-DIS database was assumed to be in a steady state. This 

assumption could not be verified at present because of the lack of time series data over 

the globe.  However, Zhou and Luo [2008] researched parameter uncertainty resulting 

from the steady state assumption by calibrating parameters two times: with equilibrium 

SOC values, and with SOC reduced 40% from the equilibrium values. Their finding 

was that the parameters obtained with the equilibrium assumption were within the 

margin of error of the parameters obtained after 40% reduction in soil C (except for the 

C partitioning coefficients from the soil pools), therefore, even with equilibrium 

assumption we were likely to constrain the parameters at their true values.  Moreover, 

40% from the steady-state soil C content represents extreme cases as most of the 

disturbances do not cause such big changes in soil C. The steady-state assumption made 

our MATLAB model version particularly effective for data assimilation as it used 

averaged values of environmental responses (scalars) to repeated environmental forcing 

(Xia et al., 2012).  

The litter lignin content was in CLM-CASA’ by default: the plant-functional-

type-level estimates of lignin were applied to MODIS-derived distribution of plant 

functional types used in CLM (Lawrence &  Chase, 2007, Oleson et al., 2007). Labile C 

pool fraction in roots was estimated by the CLM-CASA’ model from the lignin to 

nitrogen ratio, and the latter, similarly to litter lignin content, was by default assigned to 

each plant functional type in CLM-CASA’. The maps of soil sand and clay content 

were originally developed by the International Geosphere-Biosphere Programme 

(Group, 2000) and were provided as a part of CLM-CASA’ package. 
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3.2.5 Forward analysis of carbon dynamics with original and optimized parameters 

After parameter calibration we ran forward simulations with the original and 

calibrated parameters, and examined the change in ecosystems’ responses to increasing 

temperature and atmospheric CO₂ concentrations. We used the Community Earth 

System Model (CESM) output for the Representative Concentration Pathway 8.5 

(RCP8.5) experiment (specifically, temperature and live pool sizes) to drive the litter 

and soil C pools in CLM-CASA’ with original and calibrated parameters. The CESM 

model output was provided as a part of Coupled Model Intercomparison Project Phase 5 

(CMIP5), and could be accessed at http://pcmdi9.llnl.gov.  Over 95 years CESM 

simulated a 3.5 K increase in mean global temperature and atmospheric CO₂ increase to 

1150 ppm by the year 2100 (Keppel-Aleks et al., 2013). We ran the CASA’ model 

forward in time starting from the year 2006 to 2100, using the average live pools, their 

residence times, and temperatures for the years 2006-2010 to generate initial litter and 

soil C pools using the semi-analytical spin-up (Xia et al., 2012). 

 

3.3 Results 

 3.3.1 Evaluation and improvements of modeled SOC 

We estimated SOC pool sizes at steady states (equation 3.2), which we then 

compared to observed SOC pools provided by IGBP-DIS global gridded product (Fig. 

3.2b, (Group, 2000)). CLM-CASA’ explained 27% of spatial variability in the observed 

data (Fig. 3.3a and b). The model on average underestimated soil C pools by 8.8 kg/m² 

with the largest deviations in the northern regions, where soil C was underestimated by 

http://pcmdi9.llnl.gov/
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more than 30 kg/m² (Fig. 3.3a). The root-mean-square error (RMSE) of CLM-CASA’ 

was 11.34 kg/m².  

 

 

Figure 3.2 IGBP-DIS soil carbon distribution. Soil carbon varies from 0 kg/m² in 

deserts to 60 kg/m² in the northern regions. 
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Figure 3.3 Spatial correspondence of CLM-CASA’ produced SOC to the IGBP-DIS 

reported SOC before (a,b) and after (b,c) data assimilation; and standard deviations in 

the modeled soil C after data assimilation (d). The points in panel (b) represent the grid 

cell values. Model with default parameters explained 27% of variation in the observed 

soil C, whereas model with calibrated parameters explained 41% of variability in the 

observed soil C. The regions with highest uncertainty were located in the northern 

latitudes and in the tropics. 

 

3.3.2 Constrained parameters related to soil carbon dynamics 

All estimated parameters converged to stationary distributions as indicated by 

the Gelman-Rubin diagnostics (Gelman &  Rubin, 1992) (Table 3.1). Assimilation of 

SOC dataset into CLM-CASA’ model resulted in tight constraints on temperature 

sensitivity of heterotrophic respiration (   ) and clay effect on C partitioning from slow 

to passive pool (  ) (Fig. 3.4). Sharp posterior distributions indicated that model 



49 

predictions were highly sensitive to changes in those parameters, which agreed with 

findings of Post et al. (2008). Sand effect on C partitioning from soil microbial to 

passive pool (  ) was also constrained within the prior values, however, its distribution 

was not as sharp as distributions of     and   . Many posterior parameters were skewed 

against their assigned maximum or minimum values. This was especially the case for 

baseline passive C exit rate, which was skewed against its minimum value, suggesting 

that residence time of passive SOC under optimum environmental conditions was larger 

than 1000 years. Parton et al. (2010) assigned passive pool residence times up to 5000 

years in DayCent model (a model with similar carbon sub-model to CLM-CASA’). 

However, in the same study they presented the improved model version, ForCent, 

which had the highest value of 1000 years, hence we did not increase the maximum 

boundary for baseline passive pool’s residence time above 1000 years.  
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Figure 3.4 Frequency distributions of 20 calibrated parameters. The most constrained 

parameters were temperature sensitivity of heterotrophic respiration (   ), clay effect 

on C partitioning from slow to passive pools (  ), and sand effect on C partitioning 

from soil microbial to passive pool. 

 

Many parameters associated with soluble fraction, structural lignin, and soil 

texture effects on C partitioning coefficients were skewed against their boundaries. For 

instance, posterior distribution of   , was skewed against its minimum (Fig. 3.4), 

indicating increased effect of clay on C partitioning from slow to passive pool as lower 

fraction would be transferred to passive pool in soils with low clay content (eq. 3.20). 

Skews of   and    against their maxima indicated that more C was transferred from fast 
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to slow pool under low clay and sand content, and clay effect on C transfer from fast to 

slow and passive pools was larger than modeled originally (eq. 3.17,3.18). Skew of    

against its minimum indicated either no relationship between structural lignin and C 

partitioning between surface structural and slow pools, or very low C transfer between 

these pools (eq. 3.14). Similarly, calibration revealed absence of relationship between 

labile C fraction and C transfer from roots to soil litter pools as indicated by the skew in 

  , however it could also mean that under the given model formulation all C from roots 

had to go to soil structural litter to reproduce spatial patterns of SOC. Some of the 

parameter skews pointed at limitations of the model formulation, for instance, skews of 

   and    were pushing a(9,5) to negative values, and skew       pushed a(11,7) to be 

larger than one, which was unrealistic. Lastly, observed SOC contributed little 

information for C partitioning from leaves to surface metabolic litter (  ) and C 

partitioning from soil microbial to passive pool if no sand or clay content (  ). 

After parameter calibration temperature sensitivity,    , decreased from 2 to 

1.84 (with 95% CI of 1.75-1.99); clay effects on partitioning coefficients were 

increased, whereas the effects of lignin and labile C fractions were decreased (Table 

3.1). Less carbon reached slow pool from surface litter and soil litter (Fig.3.1), which, in 

combination with the decreased optimum slow pool’s residence time, decreased the size 

of the slow pool from 361 Pg to 275 Pg (95% CI 205-459 Pg). Soil microbial and 

passive pools, on the contrary, increased. Soil microbial pool increased from 10.6 Pg to 

11.8 Pg (95% CI 9.2-18.1 Pg) due to higher partitioning coefficient from soil litter and 

lower    . Passive pool increased from 346 Pg to 865 Pg (95% CI 735-1047 Pg), and 

the change was due to increase in its residence time (Fig.3.1) and decrease in    .  
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Calibrated parameters also showed that, compared to original parameters, a higher 

fraction of the fine root carbon was allocated to the structural litter, and a lower fraction 

was allocated to the metabolic litter (Fig.3.1).  Increase in the abovementioned C 

allocation coefficient to soil structural litter together with lower     led to an overall 

increase in soil litter pool due to longer C residence time in the soil structural than soil 

metabolic litter pool. In accordance with C cycle theory (Luo &  Zhou, 2006) larger soil 

litter pool contributed more C to the soil pool, which in combination with lower C 

partitioning from surface litter to soil led to a shift in importance of C inputs from 

surface and belowground litter for SOC pool formation.  For instance, the initial ratio of 

soil structural litter to surface structural litter inputs into soil slow pool was 0.66, and 

after parameter optimization the ratio became 6.69. Thus, soil litter contribution to slow 

soil C pool formation was more important than modeled originally. The implication of 

more root inputs rather than shoot inputs into soil C pool is supported by long term 

experimental (Kätterer et al., 2011) and meta-analysis (Rasse et al., 2005) studies. 

 

3.3.3 Parameter correlations 

We used the posterior distributions to calculate correlations among the model 

parameters (Table 3.2). Out of 190 parameter pairs, 3 pairs had strong correlations. The 

strongest positive correlations were between passive C pool turnover, c(12,12), and clay 

effect on partitioning from slow to passive pool,   ; and between sand effect on C 

partitioning from soil microbial to passive pool,   , and   . The strongest negative 

correlation was between    and sand effect on C partitioning from soil microbial C pool 

to slow pool,   .  
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3.3.4 Improvement of soil carbon estimation with data assimilation 

After parameter calibration, the fitness between observed and modeled SOC 

improved substantially (Fig. 3.3b and c): calibrated model explained 41% of the 

variability in the observed SOC whereas uncalibrated model explained 27%. The model 

with calibrated parameters also reduced the magnitude of the average underprediction to 

2.1 kg/m² and decreased RMSE by 38%. Using posterior parameter distributions we 

generated the standard deviations of SOC for each grid cell to illustrate the uncertainty 

in the estimated SOC. The regions with the highest uncertainties were located in the 

northern latitudes and tropics (Fig. 3.3d). Global SOC content in CLM-CASA’ 

increased from 762 Pg to 1205 Pg (with 95% CI of 1150-1293 Pg) after data 

assimilation. The global SOC range was within the 95% CI of the observed HWSD 

SOC estimates presented by Todd-Brown et al. (2013b), however, it was still lower than 

global observed soil C content in IGBP-DIS.  

 

3.2.5 Carbon pool responses to environmental change 

To illustrate the impact of parameter calibration we performed the forward runs 

using a climate change scenario (RCP8.5). Over 95 years soils in the calibrated model 

released 48 Pg C less than soils in the original model (Fig. 3.5a). Similarly, carbon loss 

from litter decreased by 6.5 Pg in the calibrated model, compared to the original model 

(Fig. 3.5b). The decreases in the C loss rates in litter and soil C pools were caused by 

reduction in temperature sensitivity. The decreased soil C loss was also caused by the 

decrease in the calibrated passive pool’s turnover rate. We also generated the 

uncertainties of changes in C pools from the posterior parameter distributions to gain 
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perspective about the magnitude of the range for the cumulative C change after 95 years 

(gray lines in Fig. 3.5). The uncertainty ranges were quite large: from 15 to 100 Pg for 

cumulative soil C loss, and from -30 to +5 Pg for cumulative litter C change. The 

magnitude of uncertainties was caused mostly by the uncertainties in maximum 

turnover rates and    , as soil C dynamics was most sensitive to those parameters (Post 

et al., 2008). 



56 

 

Figure 3.5 Change in CLM-CASA’s soil (a) and litter (b) carbon under RCP 8.5 

climate change scenario. Blue lines are projections of the model with original 

parameters, red lines – model with maximum likelihood parameters, and gray lines are 

projections of the models with parameter samples from the posterior distributions 

(sample size = 2000), representing the uncertainties of projections. Soils released 45 Pg 

C less in the model with calibrated parameters than the model with original parameters. 
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Similarly, litter released 6.5 Pg C less in the calibrated model’s projections than in the 

original model’s projection. Despite the differences in models’ projections, the original 

model’s projections were within the uncertainty range. 

 

3.4 Discussion 

 3.4.1 Current status of soil carbon modeling 

Currently most carbon cycle models are similarly formulated: they partition the 

photosynthetically fixed C among the live and dead carbon pools, from which C is 

released via autotrophic or heterotrophic respiration (Todd-Brown et al., 2012, Weng &  

Luo, 2011). Despite the conceptual similarity of the models their estimates of global 

soil C range from 514 to 3046 Pg with poor spatial correlation with the empirical 

estimates (up to r²=0.16 (Todd-Brown et al., 2012)). While the C influx is important 

determinant of the C pool size, the capacity and sustainability of a C sink (e.g. soil C 

sink) under changing environmental conditions are strongly regulated by the C sink’s 

residence time (Luo et al., 2003, Luo et al., 2001b), hence, it is important to calibrate 

the parameters regulating it.  

Since the start of global soil C map production in 1982 (Post et al., 1982), to our 

knowledge, only very few studies have made an attempt to use global soil C 

distributions to constrain global soil C residence times. For example, Zhou et al. (2009) 

and Ise and Moorcroft (2006) used the IGBP-DIS dataset (Group, 2000) to constrain 

global soil C temperature sensitivities, and Smith et al. (2013) developed the C cycle 

model constrained with multiple data streams. This study showed that the poor model 

performance in simulating soil C could be substantially improved via parameter 
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calibration against the observed soil C data. To model the C cycle as realistically as 

possible, we not only need to incorporate more processes into ESMs as the modeling 

community currently focuses on (Koven et al., 2009, Koven et al., 2011, Lawrence et 

al., 2011a, Luo et al., 2009) but also need to develop our capacity to calibrate 

parameters effectively against the observed data. 

 

3.4.2 Improvement of soil carbon modeling 

Our results showed that applying data assimilation could greatly reduce the 

mismatches between modeled and observed soil C. This error reduction was achieved 

largely due to increase in the soil C residence times. The implication that residence time 

in the original model was too low was in agreement with literature. For instance, 

Rumpel and Kögel-Knabner (2011) reported isotope-derived  passive C pools’ 

residence times for the top meter of different soil types ranging from 1026 years to 3030 

years with samples from South America, Australia, Eurasia, and Africa. In comparison, 

the original model underestimated passive pool C residence time by 42-2046 years, 

whereas the calibrated model produced an estimate closer to the reported values (global 

average C residence time of passive pool was 2627 years with 95% CI 1583-3581 

years).   

To generate the estimates comparable to the ones in Todd-Brown et al. (2013b) 

we calculated global weighted averages of soil residence time as the ratio of soil C pool 

to NPP. After parameter calibration soil C residence time increased from 14 to 26 years 

(with 95% CI 25-28 years), which was within the range of observed soil C residence 

times reported in Todd-Brown et al. (2013b). We then calculated soil C residence time 
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as the ratio of soil C pool to soil heterotrophic respiration, and observed that global 

mean residence time increased from 32.3 years to 51 years (95% CI 45-61 years). The 

posterior estimates were too high compared to a global soil residence time of 32 years 

reported in (Raich &  Schlesinger, 1992). However, in the above-mentioned study soil 

residence time was obtained with the assumption that 30% of soil respiration originated 

from roots, which was lower than the average global estimate derived from Bond-

Lamberty and Thomson (2010) (54%). We corrected the assumption in Raich and 

Schlesinger (1992) and SOC residence time became 48.6 years, which was within the 

95% CI for our calibrated estimate. Combining more up-to-date range of estimates for 

SOC (Todd-Brown et al., 2013b) and global soil respiration (Bond-Lamberty &  

Thomson, 2010) we obtained a range for global soil residence times of 16.5 to 41 years, 

which was outside of our posterior 95% CI. Such spread in the observed estimates 

highlights the need for datasets with better confidence.   

We tested how new residence times affected C flux predictions by comparing 

the modeled soil heterotrophic respiration to the observed values from Bond-Lamberty 

and Thomson (2010, 2012a). The global observed range for soil heterotrophic 

respiration (calculated from soil respiration) was 41-54 Pg/year. Both model predictions 

were within the observed estimates: original model simulated soil heterotrophic 

respiration at 46 Pg/year and calibrated model predicted 40 Pg/year with 95% CI 36-52 

Pg/year. The spatial predictions of the calibrated model were significantly different 

from the original model (P<0.05), and although there was no improvement in the 

explained variability of the observed data after calibration, RMSE reduced by 10% (Fig. 

3.6). The decrease of soil respiration was a logical outcome of the decrease in     and 
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maximum turnover rate of soil passive pool although the latter is somewhat offset by 

increase of maximum turnover rate in slow pool. The lack of large improvement in 

prediction of the observed soil heterotrophic respiration may be due to interannual 

variability of the observations, which was not accounted for as we assumed equilibrium 

conditions for the purpose of parameter calibration; differences in scale (model grid was 

around 2.8 by 2.8º, whereas the observation was a point on a grid); and limitations in 

model structure, which was also indicated by parameters approaching unrealistic values 

by skewing against their maxima or minima. 

 

Figure 3.6  Point-by-point comparison of the modeled soil heterotrophic respiration to 

the observed data derived from Bond-Lamberty and Thomson (2012a). Parameter 
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calibration did not change the explained variability in the observations, it reduced the 

RMSE by 10%. 

 

The large role of chemical stabilization in soil C pool formation illustrated by 

increase in clay effect on C partitioning to more recalcitrant pools has been supported 

by the observations and is described in the literature (Krull et al., 2003, Paul et al., 

2008, Torn et al., 1997). Parameter calibration also revealed a larger regulation of soil C 

by soil litter inputs than surface litter inputs, which was also supported by experimental 

results (Kätterer et al., 2011, Rasse et al., 2005). Hence, through model calibration we 

were able to not only improve the fitness between modeled and observed soil C, but 

also gain insights into the C cycle processes. 

3.4.3 Uncertainty in future C projections 

With the prospect of global warming it is important to constrain the magnitude 

of SOC feedback (which depends on SOC residence time) as fast     release from soils 

may accelerate the increases in temperature.  We discussed earlier that parameter 

calibration decreased both the maximum turnover rate and temperature sensitivity of 

SOC. Our maximum likelihood temperature sensitivity was within the range of the 

estimates constrained against the atmospheric     concentrations by Jones and Cox 

(2001) (2.1 ±0.7 and 0.91±0.4); higher than the average global     reported in Zhou et 

al. (2009) (1.72); and higher than the estimate in Ise and Moorcroft [2006] (1.37). The 

    from Ise in Moorcroft [2006], however, was likely underestimated as authors used 

NPP rather than C influx from litter for SOC input. According to Appendix Fig. 1, a 

higher input would decrease residence time for the same SOC under equilibrium 



62 

conditions. The range in the posterior SOC residence times caused large uncertainties in 

the cumulative soil C change (a 15-100 Pg loss), which was within the range reported in 

Smith et al. (2013) (from a 138 Pg C loss to a 82 Pg C gain). The smaller uncertainty 

range in this study did not indicate better constraint, it was most likely due to the lower 

number of parameters: the uncertainties in Smith et al. (2013) resulted from parameters 

regulating soil C dynamics as well as parameters regulating plants’ carbon fixation. The 

large uncertainty ranges clearly indicated the need for additional data sets to further 

constrain model parameters. 

 

3.5 Conclusion 

We calibrated a global land model against the global observed soil C dataset 

using Bayesian MCMC approach. By adjusting parameters that influenced residence 

times of C pools we were able to substantially improve the fitness between observed 

and modeled soil C. After parameter calibration we discovered that the regions with the 

highest uncertainty in soil C were located in the northern latitudes and tropics, 

indicating that we need to put more efforts in researching soil C dynamics in those 

regions. When propagated over time under RCP8.5 scenario posterior parameter 

uncertainties resulted in 15-100 Pg C loss from soils over 95 years, however the 

maximum likelihood C loss (40 Pg) was 53% lower than SOC loss predicted with 

original parameters. Similarly, maximum likelihood litter loss decreased 53% from the 

original predictions, but the range of change was from a 30 Pg C loss to a 5 Pg C gain.   

As we show in this study, data assimilation is a useful tool for gaining insights 

into carbon cycle modeling, identifying regions that need additional data collection and 
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more research to improve representation of ecosystem carbon processes, as well as for 

uncertainty analysis of the model projections. More global level C cycle data (e.g. litter 

pools, litter residence times, soil C residence times, live C pools, and their residence 

times) along with their uncertainties are needed to constrain the processes in carbon 

cycle.  Assimilating the data into the model at global level will constrain C cycle 

feedbacks and provide more confidence in the future carbon budget, which will 

facilitate more effective management of the natural resources. 
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Supplemental Materials 

 

Figure S3.1 SOC stocks under different combinations of C transfer coefficients from 

plant to soil pools (or C partitioning to soil) and soil C residence times. For the purpose 

of illustration, NPP in this figure is fixed at 0.1               and Soil C equals the 

product of NPP, C transfer coefficient and residence time. The color bar represents soil 

C pools in       . In this figure we illustrate the equifinality of SOC content in a 

gridcell: same SOC value can be obtained with different combinations of C transfer 

coefficients from plant to soil and SOC residence times under fixed (observed) NPP. 
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Figure S3.2 Comparison of traditional and speeded up spin up of soil C. 
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Chapter 4  

 

 

 

 

 

 

 

Modelling microbial processes in soil improves global carbon stocks 

predictions 
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Abstract 

Long-term carbon (C) cycle feedback to changing climate depends on future soil 

C dynamics. Current models do not represent soil C dynamics well, and although 

assimilating observations improves model performance, there is still substantial 

uncertainty in the future soil C feedbacks to climate change. Soil C feedbacks depend 

on microbial activity responses to changing climate, which in most (“conventional”) 

models is simulated as a constant modified by environmental functions. Including 

microbial biomass dynamics into C cycle model formulation has shown potential to 

improve the representation of the global soil C dynamics. This study was to calibrate 

the parameters in two soil microbial models; evaluate the calibrated microbial models’ 

performance; and compare the soil C climate change feedbacks and their uncertainties 

between microbial and conventional models. Microbial models with calibrated 

parameters explained 51% of variability in the observed total soil organic C, whereas 

conventional model explained 41%. The 2-pool microbial model exhibited unrealistic 

oscillations in soil C dynamics, however the oscillations were less prominent or absent 

in the 4-pool microbial model. Microbial models produced stronger soil C feedbacks to 

95 years of climate change than any of the 11 conventional models used in CMIP5, 

simulating an 8% (2-pool model) and 11% (4-pool model) losses whereas CMIP5 

models projected from a 7% loss to 22.6% gain in soil C. To further improve model 

performance and reduce uncertainty in future feedbacks, we need more data on 

microbial dynamics, such as controls over microbial carbon use efficiency and substrate 

quality limitation in various ecosystems.   
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4.1 Introduction 

Soils contain the largest fraction of global terrestrial carbon (C), storing more C 

than vegetation and atmosphere combined (Falkowski et al., 2000, House et al., 2002). 

Changing climate may accelerate soil organic carbon (SOC) decomposition (Fang et al., 

2005), increasing atmospheric CO₂ concentrations, which may cause further climate 

warming (Falkowski et al., 2000). Such potential interdependencies between SOC and 

climate highlight the importance of accurate predictions of global SOC distributions and 

their feedbacks to increasing temperatures and atmospheric CO₂ concentrations. 

 Predictions of the global SOC pools from 11 earth system models (ESMs) 

participating in the 5
th

 Coupled Model Intercomparison Project [CMIP5, (Taylor et al., 

2011)] vary six-fold, ranging from 510 to 3040 Pg C (Todd-Brown et al., 2013b). Out 

of 11 models only six produced SOC pools that were within the range of the 

Harmonized World Soil Database estimates (HWSD, 890–1660 Pg C) and none of the 

models explained more than 16% of spatial variability in the HWSD soil C (Todd-

Brown et al., 2013b). Current ESMs’ performance calls for improving the models used 

for soil carbon cycle simulation. 

 All CMIP5 models simulate soil carbon decomposition as first-order decay 

process (Todd-Brown et al., 2013b). Such model formulation (we will call it 

“conventional”) represents the decomposing activity of microbes as decay constants, 

modified by environmental functions, and assumes that amount of the decomposed SOC 

is linearly dependent on the SOC stocks. Conventional models do not account for 

microbial processes observed in experimental studies, such as priming effect (Fontaine 

et al., 2004, Fontaine et al., 2007, Kuzyakov et al., 2000), microbial acclimation to 
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increasing temperatures (Chen &  Tian, 2005, Luo et al., 2001a, Peng et al., 2009), and 

CO₂-induced change in the microbial community composition (Carney et al., 2007). 

Schimel and Weintraub (2003) argue that SOC decomposition shouldn’t be represented 

by decay constants as it is catalyzed by extracellular enzyme concentration, and propose 

to model SOC dynamics by Michaelis-Menten equation, modified to include the 

concentration of the catalyst (enzyme).  

 In the recent years several enzyme-driven decomposition models (we will call 

them “microbial models”) were developed (Allison et al., 2010, German et al., 2012, 

Schimel &  Weintraub, 2003, Wang et al., 2012b). The emerged microbial models 

simulate the acclimation of soil respiration to elevated temperatures (Allison et al., 

2010) as well as priming effect (Schimel &  Weintraub, 2003). Once applied to the 

Community Land Model the new additions improved the prediction of global SOC 

distribution (Wieder et al., 2013). However, microbial models may also produce 

responses not observed in nature: a recent stability analysis illustrates that microbial 

models produce unrealistic oscillatory responses to small environmental perturbations 

(Wang et al., 2013). Such unrealistic model properties emphasize the importance of the 

thorough analysis of the improvements made to the carbon cycle models.  

 Apart from changing model assumptions about ecosystem processes, model 

improvement can be achieved by calibration of the model parameters. With the increase 

in the globally observed data, more studies have focused on assimilating global datasets 

into carbon cycle models. For instance, Zhou et al. (2009) and Ise and Moorcroft (2006) 

assimilated global SOC (Group, 2000) data into a C cycle model to constrain SOC 

temperature sensitivities; Hararuk et al. (2014) researched how assimilating global SOC 
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data changed model parameters and SOC feedbacks to changing climate; and Smith et 

al. (2013) assimilated multiple data into a carbon cycle model fully constraining it. All 

of these studies parameterized conventional carbon cycle models, and to date, no 

research had been done on calibrating and researching the properties of data-constrained 

global microbial decomposition models.  

 This study was to (1) calibrate two microbial models to the global estimated 

distributions of total soil organic carbon and microbial biomass carbon; (2) compare the 

performance of the calibrated microbial and conventional models; (3) test for presence 

of unrealistic oscillations in the microbial model dynamics; and (4) compare the SOC 

climate change feedbacks and their uncertainties between microbial and conventional 

models.  

 

4.2 Methods 

 4.2.1 Models 

We performed Bayesian parameter estimation on two microbial models and 

compared the parameter estimates and model predictions to those of a calibrated 

conventional model (Hararuk et al., 2014). For the conventional model we used 

Community Land Model coupled with Carnegie-Ames-Stanford Approach 

biogeochemistry sub-model (CLM-CASA’) (Oleson et al., 2004, Oleson et al., 2008, 

Parton et al., 1993) with the soil carbon cycle compartment modeled as a 3-pool system 

and C transfers among the pools regulated by temperature, soil clay content, and pool 

sizes. For the 2-pool microbial model formulation (Fig. 4.1a) we used the model 

described in German et al. (2012), with altered calculations of half saturation constants 
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and temperature limitation of C uptake so as to make them comparable to the ones in 

the 4-pool microbial model (Allison et al., 2010). For the 4-pool microbial model we 

used the model introduced by Allison et al. (2010) (Fig. 4.1b). 

 

Figure 4.1 Schematic representation of the 2-pool (a) and 4-pool (b) microbial models 

 

 The two-pool microbial model by German et al. (2012) is  

    

  
              

   

      
              (4.1) 

    

  
                           

   

      
    (4.2) 
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with 

                             (4.3) 

          
     ( 

  

  (      )
)      (             )    (4.4) 

                      (             )    (4.5) 

where MIC, and SOC are microbial biomass and soil organic carbon pools (Fig. 4.1a); 

          is carbon transferred to the soil from the litter pool;      is the temperature 

adjusted rate of SOC decomposition;    is the half-saturation constant for substrate 

limited soil organic carbon decomposition rate;    is the microbial death rate, and     

is the microbial carbon use efficiency;    is soil temperature, R is gas constant (8.31 

J/K/mol);       and           are baseline microbial carbon use efficiency and its 

dependency on temperature;      
 is maximum rate of microbial carbon uptake;    is 

activation energy of SOC decomposition;     and         are baseline half saturation 

constant and its dependency on temperature.  

We complemented the model with exponential function of clay limitation of 

decomposition and estimated a parameter         to test whether it were different from 

0 in the microbial model formulation. Microbial respiration, when normalized by 

microbial biomass ( (     )        
   

      
), has been reported to be non-

linearly dependent on soil clay content (Müller &  Höper, 2004). We also mimic the 

substrate quality limitation by adjusting baseline half-saturation constant by a lignin-

dependent correction factor with its magnitude regulated by        as there have been 

reports about substrate quality limitation of decomposition (Cusack et al., 2009, Taylor 

et al., 1989, Vance &  Chapin Iii, 2001).  
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 The 4-pool microbial model from Allison et al. (2010) is 
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where ENZ and DOC are enzyme and dissolved organic carbon pools;        is 

temperature adjusted rate of DOC uptake by microbes;      is a half-saturation 

constant limiting microbial uptake of DOC;          is a rate of enzyme production; 

          is C transferred from litter to soil, and             is fraction of that input 

transferred to DOC;             is fraction of dead microbes transferred to soil; and 

         is the rate of enzyme loss. Functions were dependent on temperature as 

follows: 
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where        
 was maximum rate of microbial DOC uptake;      – activation energy 

of DOC uptake;       and           were baseline half saturation constant for 

substrate limitation of DOC uptake and its dependency on temperature. As for the 2-

pool model, we adjusted the rate of SOC degradation and the baseline half saturation 

constant of substrate limitation for SOC degradation by soil clay content and lignin 

content. 

 

4.2.2 Data 

We used two soil carbon datasets for Bayesian parameter estimation: a global 

map of total soil carbon content for the top 1 m of soil generated by International 

Geosphere-Biosphere Programme - Data and Information System [IGBP-DIS (Group, 

2000)]; and a global map of soil microbial biomass distribution for the top 1 m (Xu et 

al., 2013). The IGBP-DIS dataset has been widely used for production of new datasets 

(House et al., 2002), the assessment of terrestrial C uptake (Freibauer et al., 2004), for 

model evaluation  (Delire et al., 2003, Kucharik et al., 2000), and for model 

improvement (Ise &  Moorcroft, 2006, Smith et al., 2013, Zhou et al., 2009). Global 

microbial dataset has been used for parameterization of a biogeochemical model 

(Waring et al., 2014). Prior to using the datasets in the data assimilation routine we 

randomly separated all the grid cells into two groups as in Smith et al. (2013) and 

Hararuk et al. (2014), and used one group for  model parameter estimation, and the 

other – for evaluation to avoid overfitting.  

The global litter lignin content was provided as part of the CLM-CASA’ 

package: the plant-functional-type-level estimates of lignin were applied to MODIS-
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derived distribution of plant functional types used in CLM (Lawrence &  Chase, 2007, 

Oleson et al., 2007). The map of soil clay content was originally developed by the 

International Geosphere-Biosphere Programme (Group, 2000) and was also provided as 

a part of CLM-CASA’ package. To drive the models we used the 30-year averages of 

soil temperatures and soil C input produced by CLM-CASA’. Soil temperatures  were 

calculated using air temperatures from global reanalysis data (Qian et al., 2006), and 

soil C input was strongly correlated to MODIS NPP data (Fig. S4.1).  

 

4.2.3 Parameter estimation 

We calibrated parameters in the two microbial models using Bayesian 

probabilistic inversion. According to Mosegaard and Sambridge (2002) Bayesian 

inversion can be summarized as 

 ( | )       ( | )   ( )                 (4.15) 

where p(c|Z) is posterior probability density function of model parameters c; p(Z|c) is a 

likelihood function of parameters c; p(c) is prior probability density function of 

parameters c; and    is a normalization constant. We assumed that the prediction errors 

were normally distributed and uncorrelated, and calculated the likelihood function, 

p(Z|c), as 

 ( | )         { ∑ ∑
(         )

 

     
 

 
   

 
   }                 (4.16) 

where      is total soil C reported by IGBP-DIS (j=1) or soil microbial biomass reported 

in Xu et al. (2013) (j=2) at ith gridcell,      is total soil C or microbial biomass C 

simulated by the models at a corresponding gridcell;   
    is the variance of a jth 

measurement at ith gridcell; k is the total number of gridcells; and    is a constant.   
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We assigned minimum and maximum values to the parameters and used 

adaptive Metropolis (AM) algorithm (Haario et al., 2001), a Markov Chain Monte 

Carlo method, to sample from the posterior parameter distributions. We generated a 

parameter chain by running AM algorithm in two steps: a proposing step and a moving 

step.  In the proposing step a new parameter set      was generated from a previously 

accepted parameter set      through a proposal distribution (    |    ) . In the 

moving step a probability of acceptance   (    |    )  was calculated as in (Marshall 

et al., 2004): 

  (    |    )     {  
 ( |    ) (    )

 ( |    ) (    )
}              (4.17) 

The value of  (    |    ) was then compared with a random number U from 0 to 1. 

Parameter set      was accepted if  (    |    )   , otherwise    was set to     .  

 The AM algorithm required an initial parameter covariance matrix, which we 

generated from a test run of 50,000 simulations with uniform proposal distribution as in 

Xu et al. (2006):  

            
         

 
                 (4.18) 

where      and      are upper and lower parameter limits r is a random number 

between -0.5 to 0.5, and D=5. We constructed a covariance matrix    on the basis of the 

test run and modified the proposal step to be 

      (       )                    (4.19) 

   {
                                       

     (         )      
                  (4.20) 
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where    = 2000;         √  for the 2-pool model and         √   for the 4-

pool model (Gelman et al., 1996).  

We made five parallel runs (each run containing 500,000 simulations) starting at 

dispersed initial points in the parameter space. During a simulation we equated eqs. 4.1-

4.2 or eqs. 4.6-4.9 (depending on the model) to zero and solved the model for the two 

(or four) carbon pool sizes at each gridcell [semi-analytical spin-up approach (Xia et al., 

2012)] using 30-year averages of soil temperatures simulated by CLM-CASA’ and 

calibrated soil C input from Hararuk et al. (2014). Because we did not have global time-

variant data of soil carbon and microbial biomass pools, we assumed that spatial 

relationships of total soil C and microbial biomass C with environmental factors would 

represent the temporal relationships, and that year-to-year changes in soil C pools were 

close to zero. Such approach has been used before by Ise and Moorcroft (2006) and 

Smith et al. (2013). We discarded the first half of the simulations (as burn-in phase) and 

tested the second half for convergence to stationary distributions with Gelman-Rubin 

diagnostics (Gelman &  Rubin, 1992). 

 

4.2.4 Forward model runs and stability analysis 

To evaluate the uncertainties in soil C feedbacks to climate change we ran the 

calibrated microbial models forward, driving them with a climate change scenario 

(increasing CO₂ and temperatures) and sampling from the posterior parameter 

distributions. We used the Community Earth System Model (CESM) output for the 

Representative Concentration Pathway 8.5 (RCP8.5) experiment (specifically, the 

simulated temperature and soil C influx) to drive soil C pools. The CESM model output 
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was provided as a part of Coupled Model Intercomparison Project Phase 5 (CMIP5), 

and could be accessed at http://pcmdi9.llnl.gov.  Over 95 years CESM simulated a 3.5 

K increase in mean global temperature and atmospheric CO₂ increase to 1150 ppm by 

the year 2100 (Keppel-Aleks et al., 2013). We first used the 2006-2010 data to generate 

initial pools using the semi-analytical model spin-up approach (Xia et al., 2012), then 

ran the microbial models forward in time to the year 2100, generating soil C feedbacks 

to the changing climate, and compared them to the feedbacks produced by a calibrated 

conventional model (Hararuk et al., 2014).  

 Once we ran the forward simulations, it became evident that we needed to test 

the microbial models for oscillations, as the uncertainties in feedbacks of the two 

microbial models differed drastically. We calculated the periods of oscillations along 

with the time required to damp the oscillations following the technique described in 

Wang et al. (2013) and Svirezhev (2002): (1) we calculated the matrix of sensitivities 

(Jacobians) of pool changes to the pools sizes for the microbial models; (2) calculated 

eigenvalues of the Jacobians; (3) calculated period of oscillations from the imaginary 

component of an eigenvalue as   
  

 
, where p was the oscillation period, and i was the 

imaginary component of an eigenvalue; (4) calculated the approximate times required to 

damp the oscillations as    (   )  , where r was the real part of an eigenvalue 

(negative if the models were convergent).  

 

http://pcmdi9.llnl.gov/
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4.3 Results 

 4.3.1 Performance of the microbial model formulations after calibration 

We calibrated two microbial models using global gridded observed total SOC 

data product (IGBP-DIS), and global gridded microbial biomass C (Xu et al., 2013). As 

indicated in the methods section, we used soil C input from the calibration study in 

Hararuk et al (2014) (Figure 4.2a) to drive the models.  Soil C input was closely 

associated with a 7-year average of MODIS NPP (r²=0.75, Fig. S4.1), and was 45% of 

NPP values, which, given the equilibrium assumption, implied that 55% of the 

incoming C was returned back to the atmosphere via respiration from the litter pools.  

 

Figure 4.2 Annual soil C influx used to drive the soil sub-models (a); performance of 

calibrated microbial and conventional models (b); distribution of changes in the 
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residuals’ magnitudes after switching from conventional to microbial model 

formulation in the environmental space (c): circle diameters represent the relative 

magnitudes of change, and colors indicate the direction of change; differences in the 

natural logarithms of calibrated soil residence times between microbial and 

conventional models (d): circle diameters represent the relative magnitudes of change, 

and colors indicate the direction of change 

 

After calibration of the microbial models with observed total SOC and microbial 

biomass C we saw a higher fraction of explained variability in the SOC data than a 

fraction explained by the calibrated conventional model (Figure 4.2b). Additionally, 

microbial models had lower spatial RMSE than the calibrated conventional model. As 

indicated by RMSE’s and r-squares, two microbial models produced similar SOC 

distributions, therefore, we make further total SOC fit comparisons using a conventional 

model and one of the microbial models giving the full illustrations in the Supplementary 

Information.  

Microbial models performed better than the calibrated conventional model in 

terms of soil C prediction in the low-temperature regions and in the regions with small 

soil C inputs (Figures 4.2c, S4.2). Because soil C pools were determined by the soil C 

inputs and residence times (Luo et al., 2003) and the former were identical for 

conventional and microbial model formulations the differences in SOC predictions were 

caused by the differences in the SOC residence times. In the conventional models the 

spatial patterns of SOC residence times are determined mainly by temperature (Todd-

Brown et al., 2013b) whereas in microbial models residence times are controlled by 
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both temperature and SOC input (mediated by microbial biomass change, Fig. 4.1). 

Fresh carbon input stimulates microbial biomass growth, which increases the rate of old 

SOC decomposition [priming effect, (Fontaine et al., 2004, Fontaine et al., 2007, 

Kuzyakov et al., 2000)], therefore in the areas with high SOC input microbial models 

simulated lower SOC residence times than the conventional model (Fig. 4.2d, S4.3). In 

the regions with low SOC input, SOC residence times in the microbial models were 

higher than predicted by the conventional model. This was due to nonlinearity of 

substrate limitation in the microbial models (eqs. 4.1-4.2, and 4.6-4.8) [conventional 

model assumed linear effect of substrate limitation on the microbial activity (Parton et 

al., 1993)], as well as the dependency of residence times on microbial biomass. As 

illustrated in Figure 4.2c and d, change in assumptions about SOC residence times most 

often led to the decrease in the magnitudes of models’ residuals, and therefore better 

model performance.  

Both 2-pool and 4-pool microbial models explained 30% of spatial variability of 

the observed microbial biomass C after calibration (Fig. 4.3). In most gridcells the 

values were underpredicted with the largest underpredictions located in the low-

temperature regions with low annual soil C input. Interestingly, the largest 

overpredictions were located in the similar climatic zones. Such pattern suggests the 

presence of controls not included in the model, such as the distribution of plant 

functional type other than assumed in the model, water table controls (the model does 

not include peatlands), or effects of various disturbances on microbial biomass. 
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Figure 4.3 Model residuals for microbial biomass plotted in the environmental space: 

(a) 2-pool microbial model; (b) 4-pool microbial model. Circle diameters represent the 

relative magnitudes of the residuals. 

 

4.3.2 Posterior parameter distributions and correlations 

Many parameters were constrained by assimilating total SOC and microbial 

biomass C data into the two microbial models (Fig. 4.4). The most sensitive parameters 

to assimilation of the observed data were microbial death rate; degree of temperature 

dependency of microbial carbon use efficiency; baseline microbial carbon use 

efficiency; activation energy; lignin effect on the half saturation constant of SOC 

decomposition; and clay effect on the rate of the SOC decomposition. Unconstrained 

parameters were associated with substrate limitation of C pools’ decomposition, 

temperature sensitivity of microbial DOC uptake, and dynamics of the enzyme pool, 

which indicated the need for assimilation of C flux data as according to the model 

equations 4.1-4.2 and 4.6-4.8 flux data would contribute additional information on 

temperature sensitivity and substrate limitation of microbial activity.   
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Lignin and clay effects on SOC decomposition, originally not included in the 

model, were significantly larger than 0 and converged to the same values in both 

microbial models (Fig. 4.4). No observations were available to evaluate the lignin 

regulation for half-saturation constant, however our estimates for         were close to 

the range calculated from observations. Observed         ranged from 1.94 (Wang et 

al., 2003) to 3.02 (Müller &  Höper, 2004), whereas the 95% confidence intervals (CI) 

for the 2-pool model were 1.99-2.8, and 1.86- 2.78 for the 4-pool model (Table S4.1). 

Temperature dependence of microbial carbon use efficiency was larger than 0 and was 

0.016-0.02      for the 2-pool model, and 0.012-0.019     for the 4-pool model, 

indicating that microbes were likely to adapt to rising temperatures, which would result 

in lower SOC loss than if carbon use efficiency were constant. The CUE adaptation 

rates estimated by the 4-pool model were close to the observed range of 0.01-0.014 

     (Devêvre &  Horwáth, 2000, Frey et al., 2013, Steinweg et al., 2008). 

Due to structural differences between the two microbial model formulations, 

some parameters shared by both models converged at different values altering SOC 

responses to changing temperatures (Figure 4.5 a, b). Lower temperature dependency of 

microbial use efficiency and lower activation energy of SOC decomposition in the 4-

pool model than in the 2-pool model led to lower temperature sensitivities (Q10’s) in 

the former. Unlike the conventional model which assumed Q10 was constant across 

space, both microbial models simulated spatially variable Q10’s with higher values in 

the low-temperature regions and lower Q10’s in the high-temperature regions – a 

widely reported pattern indicative of temperature acclimation of microbial activity 

(Chen &  Tian, 2005, Luo et al., 2001a, Peng et al., 2009). In the microbial models the 
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acclimation was caused by substrate limitation and acclimating CUE (Fig. S4.4). High 

CUE facilitated increase in the microbial pool, and since respiration was proportional to 

microbial biomass, large microbial pool produced strong feedback to elevated 

temperature. Apart from temperature, microbial biomass was regulated by substrate: if 

there was insufficient amount of available substrate for the maximum potential biomass 

increase for the given temperature, the temperature sensitivity decreased (Fig. S.4.4), a 

phenomenon also observed in the field (Hartley et al., 2007). 

 

Figure 4.5 We calculated Q10’s for the microbial models as ratios of SOC turnover 

rates at temperatures T+10°C to SOC turnover rates at temperatures T. Spatial 

distribution of the temperature sensitivities of SOC turnover rates and their uncertainties 

expressed as normalized standard deviations (SD) in the 2-pool microbial model (a, c) 

and 4-pool microbial model (b, d). Constrained Q10 for the conventional model was 

1.86 with SD =4% of the mean, and was constant. 
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Out of 28 parameter pairs in the 2-pool model, only 5 pairs were strongly 

correlated (Table 4.1): microbial death rate was negatively correlated with activation 

energy of SOC decomposition, positively – with baseline carbon use efficiency, and 

negatively – with temperature dependency of carbon use efficiency. The correlated 

parameters regulated C influx and outflux in the microbial pool, and since we did not 

have any influx or outflux data to include into model calibration the parameters became 

correlated. Baseline CUE and CUE dependency on temperature were negatively 

correlated which was expected due to the CUE equation formulation (eqs. 4.3, 4.10). 

Activation energy of SOC decomposition was negatively correlated with baseline CUE, 

and since the two parameters had the opposing effects on regulating microbial C uptake, 

we attributed the correlation to lack of the observed data to separate the two processes.  

 

Table 4.1 Parameter correlations in the 2-pool microbial model 

Parameters Correlations 

  ,  1.00               

         -0.75 1.00 

           0.93 -0.61 1.00 

         -0.07 0.08 -0.06 1.00 

            0.33 -0.43 0.30 -0.04 1.00 

          -0.10 0.11 -0.07 -0.04 0.11 1.00 

     -0.63 0.46 -0.60 -0.48 -0.27 -0.36 1.00 

         0.18 -0.23 0.16 0.01 -0.06 
-0.19 

-0.36 
1.00 
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Out of 105 parameter pairs in the 4-pool model, only 4 pairs were correlated 

(Table 4.2). As in the 2-pool model, microbial death rate was positively correlated with 

the baseline CUE and negatively – with the degree of temperature dependency of CUE; 

two latter parameters were also negatively correlated with each other. Activation energy 

of SOC decomposition was negatively correlated with the fraction of dead microbes 

transferred to SOC pool, which was also caused by assimilation of C pools’ data and the 

absence of C flux data. 
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4.3.3 SOC feedbacks to climate change  

To illustrate the differences between soil C feedbacks between conventional and 

microbial models, we ran the models forward using RCP8.5 climate change scenario. 

The initial soil C pool sizes differed between conventional and microbial models (Fig. 

4.6 a, b, c): calibrated microbial models predicted a higher global soil C content than a 

calibrated conventional model (by 180-200 Pg C), and the predictions of all soil C cycle 

model formulations fell within the 95% CI of the observed SOC content [890–1660 

PgC (Todd-Brown et al., 2013b)]. Because the initial pools were different among the 

models, we illustrated soil C sensitivities to climate change as cumulative relative soil C 

changes. In microbial models soil C was more sensitive to climate change than in the 

conventional model: 2-pool and 4-pool microbial models simulated 8% and 11% 

cumulative SOC loss and conventional model simulated a 2.5% SOC loss after 95 years 

of climate change.  
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Figure 4.6 Global frequency distributions of total SOC pools produced by a calibrated 

CENTURY-type model [a, from Hararuk et al., (2014)], 2-pool and 4-pool microbial 

models (c and d respectively), and the cumulative SOC changes under RCP8.5 scenario 

(b-d, red lines are maximum likelihood cumulative changes, and gray lines are sample 

runs, representing uncertainty) 
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Under RCP8.5 scenario after 95 years of climate change mean annual global 

temperatures increased by 3.5°C (Keppel-Aleks et al., 2013), and annual global soil C 

input increased by 20% (Fig. S4.5). As we mentioned earlier, the SOC residence times 

in the microbial models were regulated not only by temperatures, but also by SOC 

input. Temperature increase along with the increase in SOC input stimulated microbial 

biomass growth, and therefore increased SOC decomposition. In the conventional 

model fresh C input resulted in soil C accumulation, and only increase in temperatures 

caused SOC loss. Increases in both temperature and SOC input led to a higher relative 

SOC loss in the microbial models than in the conventional model, despite the lower 

Q10’s of the former.  

Among the three models the 2-pool microbial model had the highest uncertainty 

in SOC feedbacks to RCP8.5 scenario (Fig. 4.6e), ranging from 1.5% to 12.5% soil C 

loss after 95 years of climate change. This uncertainty did not result from higher 

uncertainties in the 2-pool model parameters than in the 4-pool model parameters (Fig. 

4.4). Although convergent, microbial models often have oscillatory dynamics, with the 

period of oscillations dependent on parameter values (Wang et al., 2013). To test 

whether our models had oscillatory dynamics, we calculated eigenvalues of the 

microbial models’ Jacobians and derived the periods of oscillations for parameter 

chains as in Wang et al. (2013). For the 2-pool model the average global period of 

oscillations was 57 years (Fig. 4.7a) with the range of around 38 years and about 140 

years required to damp the oscillations. Low ratio of oscillation period to convergence 

time was likely the cause of the large range of cumulative SOC feedbacks as the 

predictions were falling on different points of the oscillations.  
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Figure 4.7 Spatial distribution of oscillations in the 2-pool (a), and 4-pool (b, c) models, 

and time required to damp the oscillations (d-f). 4-pool model had higher oscillation 

period to convergence time ratio than two pool model, which indicated that oscillations 

will be damped early in their evolution. 

 

The uncertainty in soil C feedbacks in the 4-pool model was not as high as in the 

2-pool model because the average periods of oscillations in the former were larger and 

convergence times were shorter: 1.9 years and 116.5 years, with the times required to 

damp the oscillations 17.5 hours and 4.4 years respectively (Fig. 4.7 b,e,c,f). Moreover, 
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in posterior parameter space for the 4-pool model there were parameter combinations 

that did not produce oscillations (Fig. 4.4, gray lines), and from the parameter sample 

density it was evident that there were thresholds in activation energies, temperature 

dependence of microbial carbon use efficiency, and partitioning of the C flux from litter 

to DOC after which the model started to have oscillatory dynamics. High ratios of 

oscillation period to their convergence times and existence of sample runs with no 

oscillations led to lower uncertainty in SOC feedbacks in the 4-pool model than in the 

2-pool model.  

 

4.4 Discussion 

 4.4.1 Progress in simulating SOC dynamics 

Most carbon cycle models have been simulating SOC decomposition as a first-

order decay process with the variability in the models’ parameterization causing 

substantial uncertainties in SOC prediction (Todd-Brown et al., 2013b). In the recent 

years studies have been focusing on reducing this uncertainty by applying data-model 

fusion techniques to constrain the model parameters (Hararuk et al., 2014, Ise &  

Moorcroft, 2006, Smith et al., 2013, Zhou et al., 2009). Still, data-constrained 

conventional models were not representing spatial SOC distribution well (Hararuk et 

al., 2014, Smith et al., 2013). Additionally, data-informed model parameters were often 

approaching unrealistic values (Hararuk et al., 2014), which indicated the potential 

flaws in the conventional model formulation.  

 Microbial models have shown potential to simulate global SOC dynamics better 

than conventional models (Wieder et al., 2013), and our results illustrated that SOC 
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representation by microbial models was better than that of conventional models once 

both model formulations were calibrated against data. However, better representation of 

SOC distribution may not indicate that microbial models are better than conventional 

models as microbial models have been criticized for producing unrealistic SOC 

dynamics, such as oscillations in SOC pools (Wang et al., 2013). While there are 

reports of oscillations in microbial biomass and respiration observed in the incubation 

studies (Cenciani et al., 2008, Lloyd et al., 1982), the phenomenon needs to be 

investigated further prior to being considered true for natural ecosystems.  

 In our study oscillations in the SOC pools were present in both 2-pool and 4-

pool microbial models (Fig. 4.7), however, they were less prominent in the 4-pool 

model due to large oscillation periods and short convergence times. Moreover, many 

parameter combinations in the 4-pool model did not generate oscillations in the SOC 

pools (Fig. 4.4), therefore 4-pool microbial model did not have indications of unrealistic 

dynamics. Improved global SOC simulation and realistic soil C pool dynamics make a 

4-pool microbial model a better-performing alternative to conventional models for 

simulating soil carbon dynamics.  

 

4.4.2 Uncertainties in future SOC dynamics 

Future climate change can be either mitigated or worsened by terrestrial 

feedbacks. For the past two decades soils have been slowing the rate of atmospheric 

CO₂ increase sequestering over 0.45 Pg C per year (Pan et al., 2011), however it 

remains uncertain whether soils will continue to sequester C under changing 

temperatures and CO₂ concentrations. CMIP5 models are not unanimous in simulating 
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soil responses to the RCP8.5 scenario, ranging from a 7% loss of soil C after 95 years of 

climate change to a 22.6% gain in SOC (Todd-Brown et al., 2013a). A data-constrained 

conventional model predicted a 1-6% loss in soil C after 95 years (Hararuk et al., 2014), 

which was within the CMIP5 range. The calibrated microbial models, however, 

simulated much stronger negative feedbacks of soil C to RCP8.5 scenario than 

conventional models: a 2-13% loss (2-pool model) and 6-13% (4-pool model) loss in 

SOC.   

In the conventional models SOC pools are positively affected by increasing C 

influx, and  negatively – by increasing temperatures as they decrease SOC residence 

times  (Xia et al., 2013b). These relationships imply that temperature-induced negative 

SOC feedbacks to climate change can be diminished or even reversed by increasing C 

influx. Analysis of SOC feedbacks produced by CMIP5 models revealed that increase 

in soil C input had more weight in determining SOC feedbacks than increase in 

temperatures, revealing a C input increase threshold of around 30%, after which models 

simulated increase in SOC in response to climate change (Todd-Brown et al., 2013a).  

In microbial models C input decreased SOC residence times, which exacerbated 

the negative effect of increasing temperatures on SOC storage (Fig.S4.3). Because we 

used only CESM SOC input to drive the microbial model, the uncertainty in SOC 

feedbacks was caused by uncertainties in parameters or the presence of oscillations (in 

the 2-pool model). Among the parameters causing the largest uncertainties in SOC 

feedbacks temperature acclimation rate of CUE has received the most attention (Allison 

et al., 2010, Wieder et al., 2013). Our data-constrained CUE acclimation rates had more 
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narrow ranges than those explored in the literature, and therefore were unlikely to be the 

largest source of uncertainty.  

Microbial turnover rates had wide posterior ranges (2.33-3.78         for the 2-

pool model and 2.59-5.36         for the 4-pool model), and being the only parameter 

that regulated depletion of the residence time regulating microbial pool, was likely the 

cause of large uncertainties particularly in the 4-pool model. Another poorly-

constrained parameter that caused substantial uncertainties in 4-pool model was 

            as the pool  to which C influx was directed was reported to cause large 

uncertainties on the SOC feedbacks (Allison et al., 2010). 

 

4.4.3 Future improvements 

Although the microbial models (particularly, the 4-pool model) demonstrate the 

best model performance in simulating global SOC distribution to date, there is much 

room for model improvement as 48% of variability in global total SOC and 70% of 

variability in global microbial biomass distribution remain unexplained. The nature of 

environmental limitation on microbial dynamics remains uncertain: CUE has been 

reported to decrease with increasing temperatures, however, under high temperatures 

the rate of acclimation tends to decrease rather than remain constant (Devêvre &  

Horwáth, 2000, Frey et al., 2013, Wetterstedt &  Ågren, 2011). Additionally, CUE may 

be dependent not only on temperature, but also on organic matter quality (Frey et al., 

2013, Sinsabaugh et al., 2013). More studies are needed to investigate the controls over 

microbial death rate and partitioning of SOC input between DOC and SOC pools. 
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 Oscillatory dynamics observed in microbial models by Wang et al. (2013) and in 

this study is rarely observed in nature and needs to be further investigated, as if present 

in natural ecosystems it will cause large uncertainties in the future soil C feedbacks. If 

not present in the natural ecosystems oscillatory dynamics can be avoided in several 

ways. One option is to calibrate microbial models with an additional constraint so that 

parameters generating oscillations are discarded.  Another option is to modify 

conventional models so that they mimic the processes in the microbial models, such as 

acclimation of carbon use efficiency to temperatures and dependence of SOC residence 

times on C input rates.   

Still, microbial models may give the right answer for global SOC distribution 

for the wrong reason, therefore future improvements in soil C cycle modeling need not 

focus on microbial models exclusively. For instance, lower organic matter residence 

times in microbial models than in the conventional models in the regions with high C 

influx rates are explained by priming effect. However, lower than expected residence 

times may also be due to the activity of soil animals as it has been reported to increase 

organic matter turnover in the regions with high C influx (Wall et al., 2008). In the 

wetland ecosystems, which are abundant in the northern regions, residence times are 

limited not only by temperatures, but also by low oxygen content (Davidson &  

Janssens, 2006), therefore including oxygen limitation of microbial activity in the 

conventional models may improve model performance.  
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4.5 Conclusion 

We calibrated two global soil microbial models against the global observed total 

soil C and microbial biomass C datasets using a Bayesian MCMC approach. By 

adjusting model parameters we were able to substantially improve representation of 

global total SOC compared to a calibrated conventional model and non-calibrated 

conventional models. When propagated in the model run under RCP8.5 scenario 

posterior parameter uncertainties resulted in a 2-13 % SOC loss over 95 years, with 

maximum likelihoods of 8% (2-pool model) and 11%  (4-pool model) loss which was 

larger than SOC loss projected by 11 CMIP5 models.  

As we show in this study, data assimilation facilitates fairly accurate SOC stocks 

simulation by microbial models, often without a cost of unrealistic oscillatory 

dynamics. Unlike conventional models, microbial models simulated spatially variable 

temperature sensitivities of SOC decomposition with the variability pattern similar to 

the observed one. Assimilating data into microbial models also narrowed the global 

ranges for the acclimation rate of microbial CUE; established the data-informed range 

for soil clay content limitation on C uptake rate, as well as the range for substrate 

quality limitation of C uptake by microbes. More observations are needed to quantify 

the non-linearity of temperature effect on microbial CUE; quantify the substrate quality 

effect on microbial CUE; establish the controls for partitioning of the SOC input 

between fast and passive pools; and validate oscillations in the microbial biomass 

dynamics. These observations will help constrain C cycle feedbacks and provide 

reliable assessments of the climate change effects on terrestrial ecosystems, as well as 

facilitate development of the mitigation strategies for the climate change effects. 
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Figure S4.1 Comparison of CLM-CASA’ soil C input with a 7-year average of MODIS 

data (Zhao &  Running, 2010) 
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Figure S4.2 Differences in the magnitudes of the residuals between calibrated microbial 

models and conventional models in the environmental space. The circle diameters 

represent relative magnitudes of the residuals. 
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Figure S4.3 Distribution of soil C residence times in the environmental space simulated 

by a calibrated conventional model (a), and microbial models (b). 
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Figure S4.4 Change of temperature sensitivity of soil C residence time with respect to 

microbial carbon use efficiency and substrate limitation. 
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Figure S4.5 Relative change in SOC input in response to the RCP8.5 scenario 

simulated by CESM. 
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Chapter 5  

 

 

 

 

 

Conclusions and Implications 
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5.1 Conclusions 

The studies conducted in this dissertation demonstrate that data assimilation 

provides many benefits when applied to global carbon cycle models. Calibration helped 

substantially improve the initially poorly-performing carbon cycle models: the 

performance of the model for litter turnover rates improved by 47% and performance of 

soil C cycle models improved by 13% and 23% once microbial biomass dynamics was 

included. Assimilating data helped identify models with flawed assumptions: unrealistic 

parameter values indicated that litter turnover rate was limited by litter lignin to 

nitrogen ratios rather than structural lignin content, and that CLM-CASA’ was unlikely 

to fully capture soil C dynamics.  

The data-constrained model for leaf litter turnover rates reversed the direction of 

feedbacks of global litter pool to changing climate, projecting future accumulation in 

leaf litter, increasing the ecosystem carbon storage capacity. However, the best-

performing (microbial) soil carbon model projected the strongest negative feedback 

among 11 CMIP5 models.  Lastly, posterior parameter distributions allowed to 

construct data-informed uncertainties for litter and soil C feedbacks to future climate 

change. 

 

5.2 Implications for future work 

Data assimilation studies in Chapters 2-4 reveal several implications for future 

modeling and observational studies. Functions representing turnover rates for litter and 

soil carbon pools in C cycle models often share parameter values. However, constrained 

temperature sensitivities, Q10’s, in Chapters 2 and 3 significantly differ from each other 
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implying that temperature affects litter and soil C differently, therefore should be 

represented by different parameters and/or functions in carbon cycle models.  

Chapter 4 illustrates that soil microbial models perform substantially better than 

conventional, CENTURY-type, models, and the oscillatory dynamics can be avoided if 

4-pool rather than 2-pool microbial model is used. Temperature sensitivities in the 

microbial models differed from those in the conventional models: the Q10’s in 

conventional models were constant across the globe, whereas microbial models 

simulated higher temperature sensitivities in the low temperature regions than those in 

the high-temperature regions – a pattern also observed in nature (Chen &  Tian, 2005, 

Peng et al., 2009). This pattern can be reproduced in the conventional models by 

making partitioning of carbon among different pools (equivalent of carbon use 

efficiency in the microbial models) dependent on temperature. Future modeling studies 

should explore modifying conventional models to include features from the microbial 

models, such as variable temperature sensitivities, because conventional models do not 

have unrealistic properties such as oscillatory responses to small perturbations.  

As illustrated in Chapter 3, the most uncertain regions for soil C predictions are 

located in the northern and tropical regions, therefore more effort should be put into 

studying the controls on C cycle in those regions. There is also high uncertainty in 

prediction of the leaf litter residence times in the northern regions, which may be caused 

by the effects of microbial community composition, or by inaccurate litter quality input 

data used in CESM. More observations of leaf litter quality are needed to construct a 

reliable dataset for use in models, and more research is needed to establish whether 

microbial community composition significantly affects litter turnover rates. 
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