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Abstract 

NUCLEAR FACTOR-Y (NF-Y) transcription factors, composed of three 

independent families: NF-YA, NF-YB, and NF-YC, have greatly expanded in 

plants in comparison to animals. For example, while humans have only one 

member of each subunit, the modal plant Arabidopsis thaliana (Arabidopsis) 

has 10 members. However, due to lack of studies, the significance of the 

expansion in the plant lineage is poorly understood. Plant NF-Ys have primarily 

been studied on their role regulating flowering, abscisic acid (ABA) responses, 

embryogenesis, and nodulation in legumes. However, key questions remain on 

how the NF-Y regulates these processes. Here I answer two fundamental 

questions about the NF-YA subunit during regulation of ABA responses and 

flowering.  

 

ABA mediated seed germination is one of the plant developmental responses 

regulated by the NF-Y. Three NF-YC subunits, NF-YC3, NF-YC4, and NF-YC9 

have opposing responses during abscisic acid (ABA) mediated seed 

germination, demonstrating that members of this closely related gene family 

have evolved unique regulatory roles. Since the mature NF-Y complex binds 

DNA as a trimer I hypothesized that the NF-YA and NF-YB family members 

should also have opposing regulatory functions. However, opposing functions 

have not been identified for the NF-YA or NF-YB. In Chapter 2, I studied the 

germination responses of all 10 Arabidopsis NF-YA genes by creating 

overexpression constructs. Germination responses on ABA containing media 
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showed that the closely related paralogs NF-YA1 and NF-YA9 are insensitive 

and NF-YA2, NF-YA4, NF-YA7, NF-YA8, and NF-YA10 were hypersensitive to 

ABA. The result supported my hypothesis and show that the closely related NF-

YA family members have evolved opposing roles regulating ABA mediated 

seed germination.  

 

The NF-Ys have been extensively studied during its regulation of photoperiod 

dependent flowering. NF-YB and NF-YC subunits are known positive regulators 

of this pathway, however the role of NF-YA subunits remained a fundamental 

question that had not been answered. Prior research had proposed a model 

where NF-YA acts as negative regulators of flowering. However, several recent 

publications demonstrated that NF-YA should be acting as positive regulators. 

In Chapter 3, I tried to understand the role played by NF-YA during floral 

regulation. My hypothesis was that NF-YAs are positive regulators of flowering. 

Since loss of function NF-YA are lethal or do not have flowering phenotypes, I 

used two approaches to test if NF-YA are positive regulators. First, to indirectly 

test if NF-YAs are need for the NF-YB/NF-YC dimer to regulate flowering, I 

created a mutant version of NF-YB that loses interaction with NF-YA. The 

mutant was overexpressed in the late flowering nf-yb2 nf-yb3 double mutant 

and was found not to complement the late flowering phenotype. However, the 

mutant protein was strongly expressed and was able to localize to the nucleus.  

This result strongly indicated that NF-YA should be required as positive 

regulators of flowering. My second approach was to study overexpressors of 
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NF-YA.  Here I was able to identify that NF-YA2 overexpressors drove early 

flowering and led to the upregulation of a key floral gene FT. These results 

strongly suggested that NF-YA2 might be a positive regulator of flowering. 

Further, a recent publication had demonstrated that CO provides an activation 

domain for the NF-Y complex. The NF-Ys were able to induce flowering in the 

absence of CO (in a co mutant background) when an activation domain called 

EDLL was attached to NF-YB2. I hypothesized that the NF-YB2 mutant that 

loses interaction with NF-YA will not be able to induce flowering, however NF-

YA2 will be able to induce flowering in the absence of CO when attached to the 

EDLL domain. The results supported the hypothesis. As a conclusion, my data 

strongly suggests that NF-YAs are required as positive regulators of flowering.     

 

In addition to studying the roles played during seed germination and flowering, I 

also studied protein interactions of the NF-Y and how the NF-Ys are regulated. 

In Chapter 4, I studied the protein-protein interactions of NF-YC9 and its targets. 

A combination of deletions and point mutations were used to understand how 

NF-YC9 interacts with its targets. The results demonstrated that while the 

conserved domain is required for protein function, the non-conserved regions 

are also necessary for the interaction between NF-YC9 and most of its targets. 

In Chapter 6, I have presented a collection of yeast 2-hybrid (Y2H) experiments 

done to better understand the nature of NF-Y protein interactions. This chapter 

demonstrated the NF-Ys are able to interact with a variety of other plant 

proteins including transcription factors. It also demonstrated inter-species 
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protein interactions in plants. In Chapter 5, I studied the regulation of NF-YA 

transcript and protein. Here I was able to show that NF-YA family transcripts 

and proteins are regulated by light.            

 

In conclusion this dissertation added to the literature on NF-Y in several 

aspects; 1) opposing role for the NF-Y were identified during seed germination, 

2) NF-YA were strongly suggested to be positive regulators of flowering, 3) 

protein interactions of the NF-Y were dissected through Y2H analysis, 4) NF-YA 

transcripts and proteins were shown to be regulated by light.     
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Introduction 

 
A myriad of biological processes in living organisms are regulated at the 

molecular level through differential gene expression, controlled to a significant 

extent by transcription factors. In plants about 45% of transcription factors 

belong to gene families that are common to eukaryotes; however most of these 

transcription factor families have a higher expansion rate in plants than in 

animals (Shiu et al. 2005). One transcription factor family common to 

eukaryotes that has undergone an extensive expansion in the plant lineage is 

NUCLEAR FACTOR-Y (NF-Y). The NF-Y gene family is composed of three 

independent subunits, NF-YA, NF-YB and NF-YC. In animals each subunit has 

one to three members (Table 1.1). In contrast, a key model plant, Arabidopsis 

thaliana (Arabidopsis), has ten members of each subunit (Gusmaroli et al. 2001, 

2002; Siefers et al. 2009; Petroni et al. 2012; Laloum et al. 2013). A similar 

trend is seen with other plant species that have been sequenced and annotated 

(Table 1.1). Although the NF-Y transcription factors have undergone an 

extensive expansion in plants, key amino acid residues remain highly 

conserved in all eukaryotes (Mantovani 1999). This conservation of key 

residues allows the plant biology community to extrapolate data from animal 

systems, where the NF-Y transcription factors have been extensively studied.   

 

Intact NF-Y function is essential in animals and the loss of NF-YA causes 

lethality (Bhattacharya et al. 2003). In humans and other animals, the targets of 

NF-Y divide into in to two major groups: cell cycle related genes and disease 
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related genes, the later which includes an increasing number of examples from 

cancer (Ly et al. 2013). Target genes of the NF-Y during cell cycle regulation 

include cyclins and cyclin-dependent kinases (Kao et al. 1999; Manni et al. 

2001), and during disease regulation include SRY-related HMG-box (Sox) 

genes (Wiebe et al. 2000; Huang et al. 2005).  

 

Structural studies done on animal NF-Y have given insights into subunit 

interaction and activation of target genes. NF-YA is localized to the nucleus, 

NF-YB can move freely between the nucleus and cytoplasm, and NF-YC is 

localized to the cytoplasm (Frontini et al. 2004; Kahle et al. 2005). For the 

mature transcription factor to form, the NF-YB and NF-YC subunits dimerize in 

the cytoplasm and this dimer moves to the nucleus (Sinha et al. 1996). In the 

nucleus the NF-YB/NF-YC dimer interacts with the NF-YA subunit to make the 

mature NF-Y complex. NF-YA cannot bind either NF-YB or NF-YC alone and 

only interacts with the NF-YB/NF-YC dimer, which offers a complex surface for 

NF-YA to bind. NF-Y binds DNA only after the trimer has been assembled. The 

NF-Y target sequence is the pentamer CCAAT box (Mantovani 1999). CCAAT 

boxes are ubiquitous and present in as much as 30% of eukaryotic promoters 

(Bucher 1990), mostly positioned between -60 and -100 from the start codon 

and found in a variety of promoters, including developmentally controlled and 

housekeeping genes (Mantovani 1999; Dolfini et al. 2012; Fleming et al. 2013). 

The NF-YA subunit makes physical contact with the CCAAT box. Mutational 

analysis in yeast have identified amino acids that are essential for the NF-YA to 
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make physical contact with the CCAAT boxes, and mutations of any single 

amino acid leads to a loss of interaction (Maity and de Crombrugghe 1992). NF-

YB and NF-YC interacts with DNA non-specifically in adjacent areas and 

stabilizes the trimer complex (Nardini et al. 2013). The transcriptional activation 

sequences are located in the N-terminal of the NF-YA subunit and the C-

terminal of the NF-YC subunit.  

 

Plant NF-Y transcription factors have retained functional and structural 

similarities to animals, but, due to their extensive expansion, have also evolved 

unique and novel functions. Following is a review on the literature of NF-Y 

transcription factors in plants, focusing on the model plant Arabidopsis. The 

review includes classification of NF-Y, roles played during plant development, 

and regulation. The findings present an emerging picture of the expanded plant 

NF-Y families evolving novel and unique functions and mechanisms of 

regulation that allows them to regulate diverse aspects of plant growth and 

development.    

    

Classification of the Arabidopsis NF-Y gene family 

NF-YA genes 

Arabidopsis has ten NF-YA genes that cluster into five groups of closely related 

paralogs: NF-YA1/NF-YA9, NF-YA2/NF-YA10, NF-YA3/NF-YA8, NF-YA4/NF-

YA7, and NF-YA5/NF-YA6 (Figure 1.1; (Siefers et al. 2009). An early ancestral 

sequence gave rise to two monophyletic clades, one that contained NF-
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YA1/NF-YA9 and the other the rest of the gene family. Accordingly, NF-

YA1/NF-YA9 have diverged furthest from the rest of the family. When all ten 

NF-YA genes were examined concurrently to study the developmental 

responses regulated by the genes, closely related paralogs NF-YA1/NF-YA9 

had a unique role during abscisic acid (ABA) mediated seed germination, and 

paralogs NF-YA5/NF-YA6 in embryo development (Siriwardana et al. 2014; see 

Chapter 2 of this dissertation).  

   

Multiple sequence alignments of the Arabidopsis and human NF-YA reveal a 

single highly conserved core domain flanked by a less conserved N- and C-

termini  (Figure 1.2 and Figure 1.3). An identity matrix of the full-length NF-YA 

protein sequences demonstrates that the closely related pairs of paralogs are 

highly conserved both inside and outside of the core domain (Figure 1.4). The 

conserved core region contains amino acids known to be essential for NF-YA 

activity in animals (Kahle et al. 2005; Nardini et al. 2013). Examples include the 

nuclear localization signal (Figure 1.2), which is highly conserved in animal and 

plants, suggesting all ten Arabidopsis NF-YA subunits are nuclear localized. 

This was found to be true; confocal imaging of the cyan fluorescence protein 

(CFP) tagged NF-YA demonstrated that all ten subunits are nuclear localized 

(Siriwardana et al. 2014, see Chapter 2 of this dissertation). Further, amino 

acids that make physical contact with the NF-YB/NF-YC dimer and DNA are 

highly conserved (Figure 1.3). In humans conserved arginine and histidine 

residue within amino acids 272-280 and the following GxGGRF motif makes 



 6 

physical contact with the CCAAT box, all of which are absolutely conserved in 

Arabidopsis. Mutational analyses have demonstrated that each of these amino 

acids are indispensible for DNA binding (Xing et al. 1993). Outside the core 

domain, NF-YA are less well-conserved. However all the Arabidopsis NF-YA 

have a characteristic glutamine and serine/threonine rich N-terminus, which is 

partly responsible for the transcriptional activation capacity of NF-Y complexes.            

 

NF-YB and NF-YC genes 

There are ten members each of the NF-YB and NF-YC gene families in 

Arabidopsis (Figure 1.1; (Petroni et al. 2012). Identity matrices of the full-length 

NF-YB and NF-YC proteins reveal that closely related paralogs share high 

identity (Figure 1.5 and 1.6). Examples for functional conservation among 

closely related paralogs include NF-YB2/NF-YB3 that are positive regulators of 

flowering and NF-YC3/NF-YC9 that are negative regulators of ABA responses.  

 

Multiple sequence alignments of Arabidopsis and human NF-YB and NF-YC 

proteins reveal a highly conserved core domain and less conserved N-termini 

and C-termini (Figure 1.7 and 1.8). The core domains of NF-YB and NF-YC 

proteins are related to histone fold motifs, with NF-YB and NF-YC related to 

H2B and H2A histones, respectively (Mantovani 1999). Amino acids in NF-YB 

and NF-YC proteins that make physical bonds during dimer formation and are 

responsible for interaction with the NF-YA are highly conserved in Arabidopsis 

(Figure 1.9 and Figure 1.10) (Kim et al. 1996; Sinha et al. 1996; Romier et al. 
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2003; Nardini et al. 2013). I created mutations in Arabidopsis NF-YB2 and NF-

YC9 based on amino acids that are essential for NF-YA/NF-YB and NF-YA/NF-

YC interactions in animals, and found that the same amino acids are 

indispensible in plants. The findings of this analysis are further discussed in 

Chapters 3 and 4.  

 

Roles of NF-Y transcription factors during plant development 

Photoperiod dependent flowering 

Photoperiod or day length is one of the key environmental factors that 

determines when plants flower, which is key for reproductive success. 

Arabidopsis is a long day plant, that is it flowers when the photoperiod is longer 

than a crucial length (Salisbury 1985). The transcription factor CONSTANS 

(CO) is key to detecting photoperiod. CO proteins peak during long days 

through the circadian regulation of its transcript and light regulation of its protein 

(Hayama and Coupland 2004). Once CO peaks it directly regulates the 

expression of FLOWERING LOCUS-T (FT). FT is a long sort after mobile signal 

that travels from the leaves, where flowering is initiated, to the shoot apical 

meristem, where the floral transition occurs. FT activates floral identity genes 

responsible for the transition of a vegetative meristem into a floral meristem. 

Select NF-YB and NF-YC genes are coexpressed and physically interact with 

CO (Ben-Naim et al. 2006a; Wenkel et al. 2006b; Kumimoto et al. 2010). The 

temporal and spatial coexpression of CO and NF-Y were used to identify NF-

YC subunits, NF-YC3, NF-YC4, and NF-YC9, that regulate flowering (Kumimoto 
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et al. 2010). NF-YB2 and NF-YB3, which have strong vascular expression, are 

also regulators of photoperiod dependent flowering (Wenkel et al. 2006b; 

Kumimoto et al. 2008b). Further, the above-mentioned NF-Ys have strong loss 

of function phenotypes that confirm their role in long-day flowering.  

 

Mutants of NF-YB2 and NF-YB3 flower later than the wild type in long-days. 

(Cai et al. 2007; Kumimoto et al. 2008b). Individual single mutants are 

significantly late flowering, where as the nf-yb2 nf-yb3 double mutant is even 

later than either single mutant, indicating an additive effect. In addition ectopic 

overexpression of NF-YB2 and NF-YB3 leads to early flowering. These results 

demonstrate that NF-YB2 and NF-YB3 are positive regulators of flowering. The 

expression of FT is down regulated in the mutants and up regulated in the 

overexpressors, demonstrating that NF-YB2 and NF-YB3 regulate flowering by 

regulating FT activity. A triple mutant of three NF-YC genes NF-YC3, NF-YC4, 

and NF-YC9 also leads to late flowering in long days, demonstrating that these 

subunits are positive regulators of flowering (Kumimoto et al. 2010). Further, FT 

was significantly down regulated in the triple mutants, indicating that NF-YC 

genes regulate flowering by controlling the activity of FT. The authors also 

showed that the three NF-YC proteins interacted with NF-YB2, NF-YB3, and 

CO, thus making a NF-YB/NF-YC/CO complex. Further, genetic studies show 

that CO requires the NF-Y to activate FT (Kumimoto et al. 2010). When CO was 

overexpressed in the triple mutant background, it was not able to drive early 

flowering. Its investigation represents that NF-YB and NF-YC genes are 
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indispensible for CO mediated photoperiod flowering. However the role played 

by NF-YA subunits remains ambiguous and is a significant element of this 

dissertation.  

 

Overexpression of two NF-YA genes, NF-YA1 and NF-YA4, in the leaf 

vasculature resulted in late flowering (Wenkel et al. 2006b). Further, expression 

of FT was down regulated in these lines. In contrast to the NF-YB and NF-YC 

results, these data indicate that NF-YA1 and NF-YA4 may be negative 

regulators of flowering. CO belongs to a larger family of proteins comprising 17 

members called CO-LIKE (COL), characterized by tandem B-box zinc finger 

domains and a conserved CO, CO-LIKE, and TIMING OF CAB1 (TOC1) or CTT 

domain. The CCT domain shows high homology to the conserved core domain 

of the NF-YA proteins, specifically to the amino acids required in NF-YA to bind 

DNA. These two lines of evidence, i.e., that NF-YA can be negative regulators 

of flowering when overexpressed and NF-YA and CO share a region of 

homology, led to a hypothesis to explain the role of NF-YA subunits during 

flowering. Termed the replacement model, this assumes two independent 

complexes on the FT promoter, CO/NF-YB/NF-YC and NF-YA/NF-YB/NF-YC. 

In this model, CO/NF-YB/NF-YC would activate the promoter, while NF-YA/NF-

YB/NF-YC would suppress FT activation. Thus, competition between NF-YA 

and CO to bind the NF-YB/NF-YC dimer would regulate FT activity. However 

the replacement model was not able to answer some key questions. Although 

NF-YA and CO share a region of homology, key residues that are indispensible 
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for NF-YA to bind DNA at CCAAT boxes are not conserved in CO (Xing et al. 

1993). This indicates that the CO/NF-YB/NF-YC complex is unable to bind 

CCAAT boxes. Further, the NF-Y complexes are highly conserved in 

eukaryotes and there is no other evidence of the atypical complex proposed by 

the replacement model. Several recent publications have further demonstrated 

that the replacement model does not explain the role of NF-YA during flowering.         

 

CO is able to bind DNA in a unique cis-element called the CORE site 

independent of the NF-Y subunits.  (Tiwari et al. 2010). Electrophoretic mobility 

shift assays (EMSA) demonstrated that CO binds the FT promoter in the 

absence of NF-Y subunits. Further, CO did not bind CCAAT boxes on the FT 

promoter. Cao et al. (2014) demonstrated that CCAAT boxes are essential for 

flowering. When a CCAAT box in the FT promoter is mutated, FT was not able 

to drive flowering. The CCAAT box required for FT activity is a distal element (-

5.3 kb) and the CORE sites are proximal elements (-100 to -150 bp). CO at the 

CORE site and the NF-Y complex at the CCAAT box physically interact through 

a chromatin loop that brings these complexes together. These results 

demonstrate that the CORE and CCAAT sites need to be bound by CO and NF-

Y, respectively, for proper flowering. The CCAAT box is bound by the NF-YA 

subunit (Maity and de Crombrugghe 1998), which would in theory mean NF-YA 

are positive regulators of flowering. However, there is currently no experimental 

evidence demonstrating that NF-YA are required for photoperiod dependent 

flowering. In Chapter 3, I demonstrate that NF-YA subunits are required for the 
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NF-YB/NF-YC dimer to drive flowering by creating a mutant version of NF-YB 

that looses interactions with the NF-YA. I also identify NF-YA2 as a positive 

regulator of flowering.  

 

ABA responses 

Abscisic acid (ABA) is a plant hormone that regulates stress responses. One of 

the major roles of ABA is to promote drought tolerance. ABA induces 

physiological changes in plants, including stomatal closure, that limit water loss 

and allow plants to survive drought. Ectopic overexpression of two NF-Y genes, 

NF-YA5 and NF-YB2, are demonstrated to confer drought resistance (Nelson et 

al. 2007; Li et al. 2008). NF-YA5 is targeted by the microRNA miR169a. 

Drought and ABA downregulated miR169a, which in turn resulted in an 

increase in NF-YA transcripts. NF-YA5 is strongly expressed in guard cells and 

regulates stomata closure, resulting in less water loss. Further, overexpressors 

of NF-YA5 lost less water than the wild type, indicating that this gene has the 

potential to be a target for breeding drought tolerant crops. Although NF-YA5 

has not been tested in field conditions, the NF-YB subunits have been tested. 

Arabidopsis NF-YB1 and its ortholog in corn (Zea mays) ZmNF-YB2 confer 

drought resistance. Further, under field conditions, corn overexpressing ZmNF-

YB2 were better able to survive drought and led to increases in yield. These 

results demonstrate that studying NF-Y genes have potential to be used to 

engineer drought tolerant crops.  
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The NF-Y also regulates ABA responses during seed germination. NF-YB and 

NF-YC proteins physically interact with bZIP transcription factors involved in 

ABA signaling during germination responses. Briefly, NF-YB6 and NF-YB9 

interact with bZIP67, and a larger set of NF-YC and NF-YB interact with ABF1, 

ABF2, ABF3, ABF4, and HY5 (Yamamoto et al. 2009; Kumimoto et al. 2013). 

Clear phenotypes are also associated with the NF-YB and NF-YC during seed 

germination. NF-YB2 and NF-YB3, when overexpressed, are hypersensitive to 

ABA. Interestingly, nf-yc mutants showed opposing germination phenotypes. nf-

yc3 and nf-yc9 were hypersensitive to ABA, whereas nf-yc4 was insensitive. 

Two recent publications also demonstrated overexpressors of select NF-YA 

genes: NF-YA1, NF-YA2, NF-YA3, NF-YA7, NF-YA9, and NF-YA10 were 

hypersensitive to ABA (Leyva-Gonzalez et al. 2012; Mu et al. 2013). The 

opposing ABA phenotypes seen with NF-YC subunits suggest that a similar 

phenomenon would be seen with NF-YA and NF-YB subunits. In Chapter 2, I 

describe my studies of the ABA mediated seed germination responses of all ten 

NF-YA genes and identify that they do, indeed, have opposing germination 

responses.                  

 

Embryo development 

Embryogenesis is the development period in which a single celled fertilized egg 

develops into a mature embryo (Braybrook and Harada 2008). In plants, 

embryo development has two phases: morphogenesis and maturation. A group 

of unrelated transcription factors called LEC - LEC1, LEC2, and FUS3 - 
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regulate both phases. LEC1 is a member of the NF-YB gene family 

conventionally classified as NF-YB9. Both NF-YB9 and its closest paralog NF-

YB6 (LEC1-LIKE) are crucial for embryo development (West et al. 1994; Kwong 

et al. 2003). The LEC genes, including NF-YB6 and NF-YB9, have 

characteristic loss-of-function and overexpression phenotypes. Loss-of-function 

mutants are intolerant to desiccation and have defects in food storage 

accumulation (Harada 2001), whereas ectopic overexpression leads to 

vegetative tissues that have characteristics of embryonic tissues (Lotan et al. 

1998; Luerssen et al. 1998; Stone et al. 2001; Kwong et al. 2003). The LEC 

genes regulate embryogenesis by activating genes encoding seed proteins 

required for embryogenesis (Kagaya et al. 2005a; Kagaya et al. 2005b). They 

also maintain balance between the two plant hormones that maintain seed 

dormancy: ABA and Gibberellic acid (GA) (Curaba et al. 2004; Gazzarrini et al. 

2004; Casson and Lindsey 2006). The LEC genes repress GA and stimulate 

ABA levels, which leads to a feedback loop increasing the LEC genes. The 

increased LEC genes increase the activity of seed proteins.  

 

Because NF-Y function as a trimer, this suggests that a subset of NF-YA and 

NF-YC genes are also likely involved in embryogenesis. Recently ectopic 

overexpression of four NF-YA genes, NF-YA1, NF-YA5, NF-YA6, and NF-YA9, 

was shown to result in vegetative tissue (i.e., adult tissue) with embryonic 

features, indicating that these genes are regulators of embryo development 
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((Mu et al. 2013; Siriwardana et al. 2014); see Chapter 2 of this dissertation) 

NF-YC subunits involved in embryogenesis are yet to be identified.      

 

Nodulation in legumes  

Nodules are specialized root organs that develop as a result of symbiotic 

relationships between legumes and nitrogen-fixing bacteria (rhizobia). Rhizobia 

convert atmospheric nitrogen to a reduced form that plants readily accumulate 

and in return the plants provide a protected niche and carbohydrate nutrition for 

the bacteria. A screen to find transcription factors that regulate nodule 

development in Medicago truncatula identified MtNF-YA1 (Combier et al. 2006). 

MtNF-YA1 regulated nodule development by controlling nodule meristem 

activity. Further, during nodulation the expression of MtNF-YA1 is regulated 

through miR169 and a small peptide, uORF1p (Combier et al. 2006; Combier et 

al. 2008). NF-YC subunits that regulate nodulation were identified when NF-

YC1 from the common bean (Phaseolus vulgaris) was shown to regulate nodule 

development (Zanetti et al. 2010). NF-YC1 regulated nodule development by 

activating cortical cell divisions. It was also shown that NF-YC1 is involved in 

the mechanism that discriminates between high and low quality symbiotic 

partners. NF-YB counterparts that regulate nodule development remain to be 

identified.                     
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Regulation of NF-Y in plants 

Plant NF-Y genes have unique temporal and spatial expression patterns 

(Stephenson et al. 2007; Siefers et al. 2009; Cao et al. 2011a; Liang et al. 

2013) which provide functional specialization, where different subunits can 

regulate unique developmental processes. An example is the expression of NF-

YB6 and NF-YB9, which regulate embryogenesis, specifically in the embryonic 

tissue (Lotan et al. 1998; Kwong et al. 2003). Further, the expression patterns 

can be used to predict functions of the NF-Y. Kumimoto et al. (2010) used this 

approach to successfully identify the NF-YC subunits involved in regulating 

flowering time. Briefly, NF-Y interacts with CO to regulate flowering, and CO is 

expressed in the leaf vasculature. Three NF-YC subunits expressed in the 

vasculature were identified, which were later shown with loss-of-function 

mutants to regulate flowering.  

 

NF-YA transcripts are targeted for degradation by miR169 (Rhoades et al. 

2002). Several studies have shown the biological significance of this regulation. 

Li et al. (2008) demonstrated that NF-YA5 is targeted by miR169 during drought 

responses. The expression of miR169 was down regulated by ABA and drought, 

which led to an increase in the NF-YA5 transcript under drought stress 

conditions. NF-YA5 was then able to promote ABA signaling components, 

which led to the plants becoming tolerant to drought. A similar phenomenon 

was seen with a soybean (Glycine max) NF-YA subunit, GmNF-YA3, which is 

targeted by Gm-miR169, and controls its ability to confer drought tolerance (Ni 
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et al. 2013). Another example of miR169 regulating NF-YA genes comes from 

aspen (Populus tremulloides), where Ptr-miR169 represses PtrNF-YA during 

vegetative bud dormancy (Potkar et al. 2013). The regulation of NF-Y in plants, 

other than the tissue specific expression patterns and miR169 targeting, are not 

well understood. In animals, NF-Y proteins are regulated through 

phosphorylation and ubiquitination (Dolfini et al. 2012) and it is likely that this 

holds true for plants. In Chapter 5 I demonstrate that Arabidopsis NF-YA 

transcript and proteins are regulated by light.          

 

The study of NF-Y transcription factors in plants is still in the early stages. 

However, as discussed here, steady progress is being made to better 

understand the role of these transcription factors and the significance of their 

expansion in the plant lineage. The following chapters of this dissertation add to 

the emerging picture by answering key questions about the NF-Y complex. In 

Chapter 2, a descriptive study is done on the complete NF-YA family. Here I 

identify that most aspects of the NF-YA are conserved between animals and 

plants. I also demonstrate that the NF-YA subunits have opposing roles 

regulating ABA responses. In Chapter 3, I answer a fundamental question 

regarding the NF-YA during its regulation of flowering, which is, are the NF-YA 

required for flowering and which NF-YA subunits play a role? I use a mutant 

version of NF-YB2, which loses interaction with NF-YA, to show that NF-YB2 

requires intact NF-YA interaction for its flowering responses. After showing that 

the NF-YA are required for the NF-YB flowering responses, I identify NF-YA2 
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as a possible positive regulator of flowering. In Chapter 4, I map the protein 

interaction domains of NF-YC9 and demonstrate that the conserved core 

domain is indispensible for interaction with target proteins. I also show that the 

less conserved domains are required for specific interaction with some targets. 

Further, through a mutant analysis, I identify specific amino acids required for 

target interactions. In Chapter 6, I answer a broad spectrum of questions 

regarding the NF-Y and its specific interactions using Y2H analysis. Briefly, I 

look at protein-protein interactions between NF-Y and its targets in Arabidopsis, 

in other plant species, and interaction with bZIP transcription factors that 

regulate ABA and light responses. Further, through a Y2H library screen I 

identify novel protein interactors of NF-YA2. In Chapter 5, I present preliminary 

data that the NF-YA transcript and protein levels are regulated by light. Taken 

together this dissertation adds to the data known about role played by the NF-Y 

during plant development and brings us closer to understand the significance of 

the expansion of NF-Y in plants.                                
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Table 1.1. Number of NF-Y subunits in eukaryotes. Compared to animals 
and yeast, plants have expanded the number of NF-Y genes. Note that yeast 
has a fourth “NF-Y” subunit, called HAP4, which is not listed here (Maity and de 
Crombrugghe 1998; Stephenson et al. 2007; Thirumurugan et al. 2008; Cao et 
al. 2011a; Petroni et al. 2012; Liang et al. 2013).     

 

Organism NF-YA NF-YB NF-YC Potential 
combinatorial 

diversity 

Homo sapiens 1 1 1 1 

Mus musculus 1 1 1 1 

Caenorhabditis elegans 2 2 2 8 

Saccharomyces cerevisiae 1 1 2 2 

Arabidopsis thaliana 10 10 10 1000 

Triticum aestivum 10 11 14 1540 

Brachypodium distachyon 7 17 12 1428 

Oryza sativa 10 11 7 770 

Brassica napus 14 14 7 1372 
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Figure 1.1.  NF-Y family phylogenies. Full-length protein sequences were 
used for phylogenetic analysis. Multiple sequence alignments were performed 
with ClustalW. Evolutionary history was inferred using the Neighbor-Joining 
method with in MEGA5 (Tamura et al. 2011). Bootstrapping with 5000 
replicates was used to test phylogeny. Evolutionary distances were computed 
using the Poisson correction method. The trees are drawn to scale.   
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Figure 1.1. Multiple sequence alignment (MSA) of full-length NF-YA 
proteins. MSA was computed using ClustalW in Genious. The Conserved core 
domain is underlined in black. The three black boxes correspond to nuclear 
localization signal in humans. At: Arabidopsis thaliana; Hs: Homo sapiens.  
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Figure 1.3. Multiple sequence alignment of the core domain NF-YA 
proteins. MSA was computed using ClustalW in Genious. Amino acids making 
physical contact with NF-YB, NF-YC, and DNA-bases are annotated (Nardini et 
al. 2013). At: Arabidopsis thaliana; Hs: Homo sapiens.  
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Figure 1.4. Identity matrix of the full-length and core domain NF-YA 
proteins. A) Full-length protein B) core domain. Note that pairs of closely 
related paralogs demonstrate high identity across both the core domain and full-
length protein sequence. At: Arabidopsis thaliana; Hs: Homo sapiens.  
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Figure 1.5. Identity matrix of the full-length and core domain NF-YB 
proteins. A) Full-length protein B) core domain. Note that pairs of closely 
related paralogs demonstrate high identity across the full-length protein 
sequence. At: Arabidopsis thaliana; Hs: Homo sapiens.  
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Figure 1.6.  Identity matrix of the full-length and core domain NF-YC 
proteins. A) Full-length protein B) core domain. Note that pairs of closely 
related paralogs demonstrate high identity across the full-length protein 
sequence. At: Arabidopsis thaliana; Hs: Homo sapiens.  
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Figure 1.7.  Multiple sequence alignment of full-length NF-YB proteins. 
MSA was computed using ClustalW in Genious. The Conserved core domain is 
underlined in black. At: Arabidopsis thaliana; Hs: Homo sapiens. 

 

 

 

 

 

 

 

 

 

 

 



 26 

 

Figure 1.8.. Multiple sequence alignment of full-length NF-YC proteins. 
MSA was computed using ClustalW with in Genious. The Conserved core 
domain is underlined in black. At: Arabidopsis thaliana; Hs: Homo sapiens. 
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Figure 1.9.  Multiple sequence alignment of core domain NF-YB proteins. 
MSA was computed using ClustalW in Genious. Amino acids making physical 
contact with NF-YA are annotated (Nardini et al. 2013). At: Arabidopsis 
thaliana; Hs: Homo sapiens.  
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Figure 1.10. Multiple sequence alignment of core domain NF-YC proteins. 
MSA was computed using ClustalW with in Genious. Amino acids making 
physical contact with NF-YA are annotated (Nardini et al. 2013). At: Arabidopsis 
thaliana; Hs: Homo sapiens.  
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Chapter 2: Gene family analysis of the Arabidopsis NF-YA 

transcription factors reveals opposing abscisic acid responses 

during seed germination 
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Gene family analysis of the Arabidopsis NF-YA transcription factors reveals 

opposing abscisic acid responses during seed germination. Plant Molecular 
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Summary 

In the plant kingdom each of the NF-Y transcription factor families, NF-YA, NF-

YB and NF-YC, has undergone great expansion compared to the animal 

kingdom. For example, Arabidopsis thaliana has 10 members of each gene 

family compared to only one in humans. Progress towards understanding the 

significance of this expansion is limited due to a lack of studies looking at the 

complete gene family during plant development. In the current study, transgenic 

overexpression lines were created for all 10 Arabidopsis NF-YA genes and 

examined for general development and alterations in abscisic acid (ABA) 

mediated seed germination. NF-YA overexpression typically led to severe 

growth retardation and developmental defects, which extended from 

embryogenesis through to adult plants. Although overexpression of all NF-YA 

family members consistently led to growth retardation, some transgenic lines 

were hypersensitive to ABA during germination while others were hyposensitive. 

The opposing germination phenotypes were associated with the phylogenetic 

relationships between the NF-YA members. In addition, ABA-marker genes 

were experimentally misregulated and ABA-induction of gene expression was 

reduced in the overexpressors. Collectively, this study demonstrates that, 

although the NF-Y have retained high degrees of similarity, they have evolved 

unique and sometimes opposing roles during plant development.     
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Introduction 

NUCLEAR FACTOR-Y (NF-Y) transcription factors bind DNA as complexes 

composed of three unique subunits, called NF-YA, NF-YB and NF-YC. While 

common throughout the eukaryotic lineage, the three NF-Y families have 

undergone an expansion in plants, with most species encoding ~10 genes for 

each family (Gusmaroli et al. 2001, 2002; Stephenson et al. 2007; 

Thirumurugan et al. 2008; Siefers et al. 2009; Cao et al. 2011a; Petroni et al. 

2012; Laloum et al. 2013). Arabidopsis thaliana (Arabidopsis) has 10 NF-YA, 10 

NF-YB and 10 NF-YC, and since NF-Y binds DNA as a heterotrimer this leads 

to the possibility of 1,000 unique NF-Y transcription factor complexes (Petroni et 

al. 2012). The large number of possible complexes suggests the potential to 

regulate diverse plant processes. NF-Y have demonstrated roles in: abscisic 

acid (ABA) responses (Nelson et al. 2007; Warpeha et al. 2007; Li et al. 2008; 

Yamamoto et al. 2009; Leyva-Gonzalez et al. 2012; Kumimoto et al. 2013; Mu 

et al. 2013), photoperiod dependent flowering (Ben-Naim et al. 2006b; Wenkel 

et al. 2006a; Cai et al. 2007; Chen et al. 2007; Kumimoto et al. 2008a; 

Kumimoto et al. 2010), embryogenesis (West et al. 1994; Lotan et al. 1998; 

Kwong et al. 2003; Lee et al. 2003), endoplasmic reticulum stress responses 

(Liu and Howell 2010), salt stress responses (Li et al. 2013), photosynthesis 

(Kusnetsov et al. 1999; Stephenson et al. 2010), root elongation (Ballif et al. 

2011) and nodule development (Combier et al. 2006; Combier et al. 2008; 

Zanetti et al. 2010).  
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NF-Y family proteins have retained a high degree of similarity, especially in the 

residues necessary for complex formation and DNA binding, therefore how NF-

Y have diverged to regulate a diverse set of development processes is still in 

question (Siefers et al. 2009; Laloum et al. 2013). NF-YA proteins are typified 

by a 53 amino acid conserved domain which makes physical contacts with DNA 

at CCAAT box cis-elements and mediates interactions with the NF-YB/NF-YC 

dimer (Olesen and Guarente 1990; Maity et al. 1992; Xing et al. 1993; Xing et al. 

1994; Nardini et al. 2013). While the NF-YB and NF-YC subunits are abundant 

in-vivo, NF-YA is limiting for trimer formation and subsequent DNA binding 

(Dolfini et al. 2012). An examination of animal and plant literature demonstrates 

that the expression of NF-YA subunits is highly regulated at the transcriptional, 

post-transcriptional, and post-translational level. At the transcriptional level, 

tissue specific expression of the expanded NF-YA gene family in plants has 

shown spatial and temporal specialization (Stephenson et al. 2007; Siefers et al. 

2009; Cao et al. 2011a). In animals, NF-YA protein is targeted for ubiquitination 

and subsequently degraded by the proteasome (Manni et al. 2008). Due to the 

high conservation of the residues targeted for ubiquitination, this likely also 

holds true for plant NF-YAs. In addition, plant NF-YA transcripts are targeted by 

a family of microRNAs called miR169  (Rhoades et al. 2002). In turn, miR169 

abundance is regulated by the important stress hormone ABA.  

 

Several recent publications have demonstrated that NF-YA subunits play an 

essential role during ABA-mediated responses in plants. ABA signals are 
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perceived via the PYRABACTIN RESISTANCE1 (PYR1) /PYR1-LIKE (PYL) 

/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family of 

soluble receptors (Fujii et al. 2009; Ma et al. 2009; Melcher et al. 2009; 

Miyazono et al. 2009; Nishimura et al. 2009; Park et al. 2009; Santiago et al. 

2009). Once ABA is bound to PYR/PYL, a signaling cascade is initiated through 

PP2C phosphatases and SnRK2 kinases to activate bZIP transcription factors 

that bind ABA response elements (ABRE) within the promoters of ABA 

response genes (Gosti et al. 1999; Merlot et al. 2001; Saez et al. 2004; Choi et 

al. 2005; Finkelstein et al. 2005; Furihata et al. 2006; Fujii and Zhu 2009; Rubio 

et al. 2009; Umezawa et al. 2009; Vlad et al. 2009; Yoshida et al. 2010). Select 

NF-YA subunits were shown to regulate the expression of these core ABA 

signaling components (Leyva-Gonzalez et al. 2012). Microarray analysis of 

Arabidopsis NF-YA2, NF-YA3, NF-YA7, and NF-YA10 driven by an inducible 

promoter revealed that transcript levels of several PYR/PYL/RCAR, PP2C, and 

SnRK2 family members were consistently downregulated.  

 

In addition to regulating ABA signaling components, mutants and 

overexpressors of NF-YA have ABA-related developmental phenotypes during 

drought responses and seed germination. NF-YA5 transcripts increase in 

response to drought in an ABA-dependent manner (Li et al. 2008). The increase 

in transcript of NF-YA5 is attributed to drought induced down regulation of 

miR169a, which targets NF-YA5 transcripts for degradation. Further, plants 

overexpressing NF-YA5 were drought tolerant, whereas mutants were 
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susceptible. Two recent publications further demonstrated that overexpression 

of selected members of the NF-YA family lead to ABA mediated seed 

germination phenotypes. Briefly, qualitative analyses demonstrated that 

overexpression of NF-YA1, NF-YA2, NF-YA3, NF-YA7, NF-YA9, and NF-YA10 

led to ABA hypersensitivity (Leyva-Gonzalez et al. 2012; Mu et al. 2013). In 

addition, nf-ya5 mutants were hypersensitive to ABA during seed germination 

(Warpeha et al. 2007). NF-YC subunits were also recently shown to be involved 

in ABA responses. Interestingly, different NF-YC subunits can have unique and 

opposing functions in ABA mediated seed germination (Kumimoto et al. 2013). 

Mutants of nf-yc4 were hypersensitive to ABA, whereas mutants of nf-yc3 and 

nf-yc9 were hyposensitive to ABA during germination. The presence of 

opposing germination phenotypes in nf-yc mutants indicated that NF-YAs might 

also be involved in similar phenomena, however this had not been 

systematically examined for the entire family. 

 

Here I present a complete family analysis of the Arabidopsis NF-YA. All ten 

Arabidopsis NF-YA genes were systematically overexpressed and the resulting 

phenotypes characterized relative to morphological development and ABA-

mediated germination. Due to the presence of 10 NF-YA genes with high levels 

of amino acid similarity and extensive overlap in tissue-specific expression 

patterns (Siefers et al. 2009), I reasoned that overexpression would be a more 

fruitful first approach. Additionally, loss of function mutants in NF-YA1 and NF-

YA2 are lethal (Pagnussat et al. 2005; Meinke et al. 2008). Overexpression of 



 35 

all NF-YA led to severe growth retardation, which was seen from embryo 

development through the adult plant. Although all overexpressors showed 

various levels of growth retardation, some transgenic lines were hypersensitive 

and others hyposensitive to germination on ABA media. ABA-marker genes 

were misregulated and the ability of exogenously applied ABA to induce 

transcription of marker genes was attenuated in the overexpressors. The 

opposing ABA phenotypes were associated with phylogenetic relationships 

between the NF-YA, indicating that members of this closely related gene family 

evolved distinct roles during ABA-mediated seed germination.      

 

Results 

The Arabidopsis NF-YA family clusters into five groups of paralogs  

Phylogenetic analyses showed that the 10 members of the NF-YA gene family 

cluster into five groups of apparent paralogs, NF-YA1/NF-YA9, NF-YA2/NF-

YA10, NF-YA3/NF-YA8, NF-YA4/NF-YA7, and NF-YA5/NF-YA6 (Figure 2.1A). 

Although the amino acid sequence of the NF-YA core domain is highly 

conserved, there are a few amino acids that are unique, especially in the early 

diverging paralogs NF-YA1/NF-YA9 and NF-YA2/NF-YA10 (Supplementary 

Figure 2.1). The NF-YA subunits diverge outside the core domain, however the 

pairs of paralogs maintain high identity throughout the amino acid sequence 

(Supplementary Figure 2.1 and 2.2). The combination of highly conserved core 

domains and diverging, non-conserved regions suggested that studying 
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overexpressors of the complete NF-YA gene family would potentially reveal 

both common and unique phenotypes. 

 

Overexpression of NF-YAs Causes Severe Growth Retardation  

To characterize developmental phenotypes associated with NF-YA 

overexpression, qualitative and quantitative analyses were performed on two 

independent transgenic lines for each gene. Most NF-YA overexpression lines 

were shorter with smaller rosette diameters and produced fewer, smaller 

siliques than wild type plants (Figure 2.1B and Supplementary Figure 2.3). The 

only exceptions were p35S:NF-YA4 and p35S:NF-YA6, where one or both plant 

lines were similar to the wild type. Although most p35S:NF-YA plants exhibited 

varying levels of dwarfism, they all went through the same developmental 

stages as wild type plants with only moderate delays. Plant lines used for 

analysis had demonstrated accumulation of the transgenic proteins (Figure 

2.1C). The level of protein expressed varied with p35S:NF-YA1 and p35S:NF-

YA4 having the strongest expression and p35S:NF-YA6 the weakest. The 

phenotypes seen here are in agreement with previous reports showing that 

overexpression of a smaller subset, NF-YA2, 4, 7, and 10, also led to dwarf 

phenotypes (Liu and Howell 2010; Leyva-Gonzalez et al. 2012) 

 

p35S:NF-YA5 and p35S:NF-YA6 produce cotyledon-like leaves  

Two NF-YB subunits, LEAFY COTYLEDON 1 (LEC1/NF-YB9) AND LEC1-LIKE 

(L1L/NF-YB6), are essential for embryo development (West et al. 1994; Lotan 
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et al. 1998; Kwong et al. 2003; Lee et al. 2003; Junker et al. 2012). Mutants of 

LEC1 and LEC1-L produce cotyledons with leaf like characters (e.g., trichomes), 

whereas overexpressors can produce cotyledon-like leaves. Although NF-YBs 

required for embryo development have been identified, the presumed NF-YA 

and NF-YC remained unidentified. Recently Mu et al. (2013) published that 

overexpressors of NF-YA1, NF-YA5, NF-YA6, and NF-YA9 produce cotyledon-

like leaves. Examining all 10 NF-YA overexpression lines, I found that this 

phenotype occurs somewhat rarely and inconsistently for most lines. The 

exceptions were the paralogous p35S:NF-YA5 and p35S:NF-YA6 lines where I 

consistently observed cotyledon-like leaves in the normal position of the first set 

of true leaves (Figure 2.2A). This phenotype often persisted for multiple pairs of 

leaves in p35S:NF-YA5 plants and ultimately precluded seed set and further 

characterization of p35S:NF-YA6. In addition to gross morphological 

appearance resembling elongated cotyledons, leaves that should have 

developmentally corresponded to the first non-embryonic, true leaves were 

considerably smaller, had less chlorophyll, and typically lacked or had very few 

trichomes relative to wild type controls (Figure 2.2B and Supplementary Figure 

2.4). The cotyledon-like leaves of p35S:NF-YA5 were further observed by 

differential interference contrast (DIC) microscopy and found to have vascular 

defects, including vascular tissue that was largely limited to the mid-rib region 

(Figure 2.2C). Although the p35S:NF-YA5 seedlings had severe growth defects, 

they were tolerant to salt and osmotic stress (Supplementary Figure 2.5).    
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NF-YA proteins are localized to the nucleus 

Studies in animal systems have shown that the NF-YA subunit is primarily 

localized to the nucleus (Frontini et al. 2004; Kahle et al. 2005). The high 

degree of conservation between plant and animal NF-Ys (Siefers et al. 2009) 

suggested that a similar localization pattern would be seen in plants. Supporting 

this argument, the positively charged arginine and lysine residues in the core 

domain of the human NF-YA subunit, which are required for nuclear localization 

(Kahle et al. 2005), are highly conserved in Arabidopsis (Supplementary Figure 

2.1 and Siefers et al. 2009).  

 

Localization of all ten NF-YA-CFP/HA proteins was studied using confocal 

microscopy. The cyan fluorescence protein (CFP) signal was always strongly 

associated with the nucleus (Figure 2.3). The strength of the CFP signal 

corresponded well with the level of protein expression seen on the western blot 

(Figure 2.1C). The strongest expressing lines, p35S:NF-YA1 and p35S:NF-YA4, 

had the strongest CFP signal, whereas the weakest expressing line, p35S:NF-

YA6, displayed weakest signal. This data supports and extends previously 

published data showing that Arabidopsis NF-YA1, NF-YA4, and NF-YA5 are 

nuclear localized (Li et al. 2008; Liu and Howell 2010; Li et al. 2013). 

 

p35S:NF-YA have opposing germination phenotypes on ABA 

Mutants of nf-yc subunits can have opposing germination phenotypes on ABA 

(Kumimoto et al. 2013). Since the NF-Y complex binds DNA as a trimer (Sinha 
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et al. 1996; Romier et al. 2003; Nardini et al. 2013), we reasoned that this was 

likely to hold true for the NF-YA and tested all 10 subunits concurrently in this 

study. For ease of comparison, results were graphed based on phylogenetic 

relationships (Figure 2.1A), with apparent closest paralogs placed on the same 

graph in each instance.  

 

On non-ABA media (Gamborg’s B5), most p35S:NF-YA lines germinated 

similarly to parental Col-0, although some lines showed minor delays (Figure 

2.4A-E). Nevertheless, all plant lines reached ~50% germination by 18-24h post 

incubation and ~100% germination by 48h post incubation. On media 

supplemented with 1M (+)-ABA, germination of parental Col-0 was delayed by 

approximately 72h. Conversely, NF-YA overexpression caused highly variable 

responses to ABA (Figure 2.5A-E). Most interestingly, I found that 

overexpression of the closely related (Figure 2.1A) NF-YA1 and NF-YA9 genes 

resulted in early germination; p35S:NF-YA1 lines reached 50% germination 

~20h earlier than parental Col-0 while p35S:NF-YA9 lines germinated a full 48-

h earlier (Figure 2.5A). In contrast, overexpression of NF-YA2, NF-YA4, NF-

YA7, NF-YA8, and NF-YA10 resulted in late germination. To statistically 

confirm the apparent differences from parental Col-0, I performed Fisher’s 

Exact Tests at 84h post-incubation (Figure 2.5F-J; 84h was chosen because it 

is equivalent to ~50% germination for Col-0 in most experiments). Additionally, I 

examined dose response curves for each transgenic line using the 84h time 

point (Figure 2.5K-O). Collectively this data demonstrates that NF-YA 
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overexpression consistently alters ABA responses, but that NF-YAs can cause 

opposing phenotypes in response to ABA. Additionally, I note that the ABA 

phenotypes are not directly correlated in any obvious way with the gross 

morphological data reported above (i.e., dwarf plants can give rise to both ABA-

susceptible and resistant seeds, depending on the overexpressed NF-YA gene).  

 

To see if the ABA responses of p35S:NF-YA are developmentally stage 

dependent (i.e., if ABA responses extend beyond germination), the effect of 

ABA on root elongation was tested. Four-day-old seedlings of selected 

p35S:NF-YA plant lines were initially grown on non-ABA media and then 

transferred to non-ABA (control) or ABA media (5 M (+)-ABA). I selected 

p35S:NF-YA7, p35S:NF-YA8, and p35S:NF-YA9 because they were relatively 

healthy (i.e., the dwarf stature was not as severe as other stable lines) and had 

opposing phenotypes in the germination assays (Figure 2.5). On non-ABA 

media, primary root lengths were shorter for all p35S:NF-YA lines compared to 

wild type plants. Because of these differences in primary root elongation, results 

were graphed as the percent root elongation compared to non-ABA media. The 

results showed that the primary root growth of all three lines was hypersensitive 

to ABA (Figure S7). Thus, in contrast to the opposing germination phenotypes, 

all three p35S:NF-YA lines showed the same negative effect of NF-YA 

overexpression during root growth on ABA media.  

 

NF-YA genes are expressed in embryos and the endosperm. 
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Most of the NF-YA genes showed ABA-related germination phenotypes when 

overexpressed with the p35S promoter. However a disadvantage with using 

overexpression constructs is that genes that do not have a biological role in a 

tissue may show a phenotype due to ectopic overexpression. To determine 

which NF-YA genes are likely to have a native biological role during seed 

germination, transgenic plants expressing the NF-YAs fused to the beta-

glucuronidase reporter gene (GUS) and driven by their native promoter were 

examined (Siefers et al. 2009). This analysis showed that NF-YA1, NF-YA2, 

NF-YA3, NF-YA4, NF-YA6, NF-YA7, NF-YA8 and NF-YA9 were expressed in 

embryos and NF-YA1, NF-YA2, NF-YA3, NF-YA7, and NF-YA9 were 

expressed in the endosperm (Figure 2.6). The only genes that did not show 

expression in the embryo or the endosperm were NF-YA5 and NF-YA10. I 

compared these findings to publicly available expression data (Arabidopsis e-

FP browser; http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi; Winter et al. 2007) 

and found similar results (Figure S8). The only significant difference was NF-

YA8 where I measured fairly weak expression, but publicly available data 

suggested moderately strong expression. Collectively, our data supports likely 

roles for most members of this gene family during seed development.  

 

ABA related genes show altered expression in p35S:NF-YA 

To further examine how NF-YA genes regulate ABA responses during seed 

germination, the expression of various ABA-related markers was examined. 

This included genes involved in ABA biosynthesis and catabolism, ABA 
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signaling, and various downstream responses. p35S:NF-YA8 and p35S:NF-

YA9 were selected for qPCR analyses due to their opposing germination 

phenotypes (p35S:NF-YA8 is hypersensitive and p35S:NF-YA9 is 

hyposensitive to ABA; Figure 2.5A and 2.5B).  NF-YA8 and NF-YA9 were 100-

fold and 40-fold upregulated, respectively (Supplemental Figure 2.9).  

 

Initially the expression of ABA-related markers on seeds incubated on B5 media 

was examined. Two members of the 9-cis-epoxycarotenoid dioxygenase 

(NCED) gene family, NCED3 and NCED6, were misregulated in the 

overexpressors (Figure 2.7A). These genes control the rate-limiting step of ABA 

biosynthesis during dormancy and seed germination (Ruggiero et al. 2004; 

Lefebvre et al. 2006; Frey et al. 2012). NCED3 was significantly upregulated in 

both p35S:NF-YA8 and p35S:NF-YA9 seeds and NCED6 in p35S:NF-YA9 

seeds. Following synthesis, ABA 8’-hydroxylation is a key mechanism by which 

ABA is catabolized. A CYP707A gene family member that encode ABA 8’-

hydroxylases during dormancy and seed germination, CYP707A1 (Okamoto et 

al. 2006), was significantly downregulated in both p35S:NF-YA8 and p35S:NF-

YA9 seeds (Figure 2.7B). ABA signaling components were also misregulated in 

the overexpressors, including the PYL6 ABA receptor, the SnRK2.6/OST1 and 

SnRK2.8 kinases, and the ABI1 phosphatase (Figure 2.7C, 2.7D, and 2.7E). In 

addition, RAB18, a well-known ABA response gene (Lang and Palva 1992), 

was six-fold upregulated in p35S:NF-YA9 seeds (Figure 2.7F). 
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Expression of these genes after ABA treatment was also evaluated. Strong 

upregulation (216-fold) of RAB18 in parental Col-0 showed that the ABA 

treatment was successful (Figure 2.7F). When the seeds where incubated on 

ABA, NCED3 was 40-fold upregulated in response to ABA in the wild type but 

only 10-fold upregulated in the overexpressors (Figure 2.7A). ABA-maker genes, 

ABF3, AIA, and HAB1 showed a similar trend (Supplementary Figure 2.10). In 

addition CYP707A1 was significantly downregulated in p35S:NF-YA8 seeds 

compared to the wild type (Figure 2.7B) and SnRK2.8 was two-fold 

downregulated in wild type and nearly 10-fold downregulated in the 

overexpressors on ABA (Figure 2.7D).  

 

Discussion 

In the presence of ABA, p35S:NF-YA expressing seeds can show opposing 

germination phenotypes. Overexpressors of NF-YA1 and NF-YA9 were 

hyposensitive, whereas overexpressors of NF-YA2, NF-YA4, NF-YA5, NF-YA7, 

NF-YA8, and NF-YA10 were hypersensitive to ABA. Opposing germination 

phenotypes were previously observed for the NF-YC subunits. An nf-yc3 nf-yc9 

double mutant and an nf-yc3 nf-yc4 nf-yc9 triple mutant showed reduced 

germination inhibition in response to ABA, whereas single and double mutants 

with nf-yc4 showed hypersensitivity to ABA (Kumimoto et al. 2013). It is 

important to note that in the case of NF-YC observations, these were based on 

loss of function/hypomorphic mutations. Thus opposing phenotypes are not 

necessarily a simple artifact of ectopic overexpression. While opposing 
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germination phenotypes have not been published on the NF-YB subunits, the 

overexpression of two paralogs in the NF-YB family, NF-YB2 and NF-YB3, led 

to ABA hypersensitivity (Kumimoto et al. 2013). The presence of opposing ABA 

phenotypes in NF-YA and NF-YC subunits and the fact that NF-Y complexes 

bind DNA as a trimer (Sinha et al. 1996; Romier et al. 2003; Nardini et al. 2013), 

suggests that a similar phenomena would be expected with the NF-YB subunits. 

Supporting this hypothesis, preliminary data from the Holt lab suggests that 

overexpression of some NF-YBs also leads to ABA hyposensitivity (BFH 

unpublished data). These results indicate that while the NF-Y proteins have 

retained high degrees of similarity, especially in the residues necessary for NF-

Y complex formation and DNA binding (Siefers et al. 2009), they may be 

evolving unique, even antagonistic, regulatory roles for some processes. Similar 

phenomena from plant transcription factor families include the auxin-response 

factors (ARFs), which include both activators and repressors of auxin-response 

elements (Ulmasov et al. 1999) and WRKY family members, which include both 

positive and negative regulators of disease resistance (Eulgem and Somssich 

2007).   

 

NF-YC3 and NF-YC9, the two NF-YC subunits with mutants hyposensitive to 

ABA are paralogs, whereas NF-YC4 (mutant hypersensitive to ABA) is more 

distantly related (Siefers et al. 2009). Similarly ABA responses for the NF-YAs 

appear connected to their phylogenetic relationships. The two NF-YA subunits 

that are hyposensitive to ABA during seed germination, NF-YA1 and NF-YA9, 
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are closely related paralogs sharing a recent common ancestor (Figure 2.1A). 

Similarly, NF-YA2 and NF-YA10 also share a recent common ancestor and 

both are hypersensitive to ABA. While amino acid alignments in the conserved 

domains of all ten NF-YA are highly similar, NF-YA1 and NF-YA9 do have a 

few unique amino acids that will provide targets for future mutational analyses 

towards uncovering the specific changes leading to functional differences.  

 

My findings of reduced ABA sensitivity in seeds overexpressing NF-YA1 and 

NF-YA9 are in contrast with a recent report by Mu et al. (2013) in which they 

reported hypersensitivity. However, the authors appear to define germination as 

emerged plants after five days (i.e., visible cotyledons on a growth plate), which 

might be more properly defined as the “greening rate” (Kim et al. 2004). Here 

germination is more narrowly defined as the emergence of the radical from the 

seed coat (Bewley 1997). This is an important distinction as previous research 

suggests that these two phenotypes are not always directly correlated (Kim et al. 

2004; Kumimoto et al. 2013). In fact, nf-yc9 single mutants did not have a 

germination phenotype but showed an early greening phenotype. Further, in 

contrast to an ABA hypersensitive germination phenotype, nf-yc4 nf-yc9 double 

mutants also had an early greening phenotype (Kumimoto et al. 2013). If the 

same five-day time point is examined in isolation with the current data, it is in 

agreement with Mu et al., (2013) for NF-YA1 overexpression. However this 

hides the fact that most of the NF-YA1 overexpressors germinate significantly 

faster than parental Col-0 (Fig. 5A). The day five (and later) measurement for 
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NF-YA1 suggests that total germination percentage never reaches 100%, but, 

nevertheless, those that do germinate do so more quickly than Col-0. Thus, my 

data and previous data strongly suggest that germination and greening are 

separable processes that need to be carefully defined and quantified as such. 

Further, although NF-YA9 overexpression led to reduced ABA sensitivity during 

germination, the seedlings were hypersensitive to ABA during root elongation. 

This demonstrates that ABA sensitivity can vary significantly at different 

developmental time points. The ABRE binding bZIP transcription factor ABF2 

also shows a similar phenomena (Kim et al. 2004). While p35S:ABF2 seeds 

germinate as wild type on ABA, they are hypersensitive to ABA during root 

growth. In contrast, overexpressing ABF3 and ABF4 (members of the same 

sub-family) results in hypersensitivity to ABA during both seed germination and 

root elongation (Kang et al. 2002). 

 

It is possible that NF-Y complexes both physically interact with and regulate the 

expression of genes that mediate seed germination in response to ABA. In the 

case of physical interactions, it was shown that NF-YB and NF-YC subunits 

physically interact with transcription factors that mediate ABA responses, 

including ABFs, HY5 and bZIP67 (Yamamoto et al. 2009; Kumimoto et al. 2013). 

In the current study, NCED3 and NCED6 genes that regulate the rate limiting 

step of ABA biosynthesis during germination (Ruggiero et al. 2004; Lefebvre et 

al. 2006; Frey et al. 2012), were upregulated and CYP707A1, a gene that 

regulates ABA catabolism during germination (Okamoto et al. 2006), was 
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downregulated. It is possible that NF-YA regulates the level of ABA during 

germination and that the overexpression of NF-YA genes led to higher levels of 

ABA in seeds due to increased production and decreased breakdown. In 

addition to genes that regulate ABA biosynthesis and catabolism, genes that 

regulate ABA signaling were down regulated. The down regulation of ABA 

signaling genes is consistent with a previous publication, which showed similar 

results with NF-YA2, NF-YA3, NF-YA7, and NF-YA10 overexpressors (Leyva-

Gonzalez et al. 2012). This shows that most members of the NF-YA family are 

able to regulate ABA signaling components during germination and other ABA-

mediated developmental responses. In addition to misregulation of ABA-related 

markers, ABA-induced genes showed attenuated response to ABA application. 

Similarly, ABA induction of known ABA-induced genes was reduced or 

eliminated in the pyr1 pyl1 pyl2 pyl4 pyl5 pyl8 sextuple mutant (Gonzalez-

Guzman et al. 2012) and the snrk2.2 snrk2.3 snrk2.6 triple mutant (Fujii and 

Zhu 2009; Fujita et al. 2009; Nakashima et al. 2009). The current study and 

Leyva-Gonzalez et al. (2012) have shown the down regulation of ABA receptors 

and kinases in NF-YA overexpressors. It is possible that the reduced induction 

of ABA-regulated genes in the NF-YA overexpressors is partly due to the down 

regulation of the receptors and kinases. Although this study identified opposing 

ABA phenotypes in the NF-YA family during germination, the qPCR analysis did 

not identify opposingly regulated genes. A high throughput analysis using 

microarray or RNA-seq techniques that identify global changes in gene 
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expression may be required to identify the genes that lead to the opposing 

germination phenotypes.    

 

My finding that p35S:NF-YA5 is resistant to abiotic stress is in agreement with 

Li et al. (2008) who demonstrate that NF-YA5 overexpressors are drought 

tolerant. The authors found that NF-YA5 transcript was strongly induced by 

drought conditions. A miRNA, miR169, which targets the NF-YA5 transcript, 

was down regulated during drought conditions and ABA treatment, and this 

decrease in miR169 was partially responsible for the increase in NF-YA5 

transcript accumulation. Similar examples are seen in plant species such as 

Medicago truncatula, soybean (Glycine max), and aspen (Populus tremulloides), 

where miR169 is demonstrated to regulate NF-YA transcripts during diverse 

development programs such as nodulation, drought responses, and vegetative 

bud formation (Combier et al. 2006; Ni et al. 2013; Potkar et al. 2013). Because, 

most NF-YA genes are predicted targets of miR169 (Rhoades et al. 2002), its 

role in ABA mediated germination and embryo development needs further 

investigation.  

 

Members of the NF-Y gene family, common to all eukaryotes, have undergone 

a large expansion in the plant kingdom, however the significance of this 

expansion is not well understood. The same NF-YC family members that have 

opposing roles during germination actually work together to regulate flowering 

time (Kumimoto et al. 2010; Kumimoto et al. 2013), demonstrating both unique 
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and overlapping roles for NF-Y during plant development. The current study 

adds to the growing evidence for both unique and overlapping roles for the NF-

Y in the plant lineage by identifying opposing role for the NF-YA family during 

germination. It is important to note that studying the complete gene family aided 

in identifying the opposing roles for this genes family. Future studies of NF-YA 

family roles during development can potentially identify similar unique and 

overlapping responses and may eventually help explain the evolutionary 

advantages for the expansion of the plant NF-Ys.            

 

Materials and methods 

Phylogenetic analysis 

Full-length cDNA sequences for the coding regions of NF-YA subunits were 

obtained from TAIR (http://www.arabidopsis.org; Huala et al. 2001). 

Phylogenetic analyses were conducted using MEGA5 (Tamura et al. 2011). The 

Maximum Parsimony method was used to infer evolutionary history as 

described previously (Felsenstein 1985; Nei M. 2000).  

 

Construction of transgenic lines 

The full-length coding region of each NF-YA gene (NF-YA1 to NF-YA9) was 

amplified from cDNA by PCR using Pfu Ultra II (cat#600670; Agilent 

Technologies) and ligated into the GATEWAYTM entry vector pENTR/D-TOPO 

(cat#45-0218; Invitrogen). All constructs were sequenced and found to be 

identical to sequences at The Arabidopsis Information Resource 
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(http://www.arabidopsis.org; Huala et al. 2001). NF-YA10 cDNA in pDONR221 

was obtained from ATOME1 ORFEOME library (stock#51B10;CNRGV). All NF-

YA cDNA clones were introduced to the plant expression destination vector 

pEarlyGate102 (stock#CD3-684; ABRC; Early et al., 2006) using the 

GATEWAYTM LR Clonase II reaction kit (cat#56485; Invitrogen). The 35S 

cauliflower mosaic virus promoter (p35S) (Kay et al. 1987) was used to drive 

the expression of each gene. Transgenic plants were generated using 

Agrobacterium mediated floral dipping described in previous studies (Clough 

and Bent 1998). At least two independent homozygous or hemizygous 

transgenic lines were examined for each NF-YA (Supplementary Table 2.1).  

 

Plant cultivation and germination assays 

Arabidopsis thaliana ecotype Columbia (Col-0) was used as the wild type for all 

experiments. For morphological studies and generation of matched seed sets 

plants were grown in standard long day conditions (16-h light/8-h dark cycle) in 

a custom walk-in chamber. Plant growth medium contained equal parts Farfard 

C2 and Metromix 200 (17,620 cm3 total soil mixture) supplemented with 40 g 

Marathon pesticide and 3,785 cm3 distilled water with Peter’s fertilizer (NPK 

20:20:20). Plants were watered with dilute Peter’s fertilizer (at 1/10 

recommended feeding levels) throughout the growth cycle. For western blots, 

germination assays, qPCR and microscopy seed plates were cold stratified in 

the dark for 48h and placed in a Conviron ATC13 growth chamber at 22°C with 

continuous light.  
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Germination assays were always performed on matched seed sets that were 

after ripened for four months. Seeds were sterilized by treating with 70% 

ethanol for 5 min and 50% household bleach for 5 min followed by five washes 

of sterile distilled water. Seeds were germinated on Gamborg’s B5 media or B5 

supplemented with (+)-ABA (cat#A4906; Sigma). Germination was scored as 

the emergence of the radical tip from the seed coat (Bewley 1997). These 

experiments were done in triplicate (n=3), with a total of at least 80 seeds used 

per genotype and repeated three times with independent, matched seed sets 

with the same results. For the statistical analyses, the observed frequencies 

were compared with expected frequencies with Fisher’s exact tests as 

previously described within INSTAT (GraphPad Software – La Jolla, CA) 

(Kumimoto et al. 2013).  

 

Microscopy  

p35S:NF-YA5 and pNF-YA:GUS/GFP lines (Siefers et al. 2009) were imaged 

with a Zeiss Axiolmager.Z1/ ApoTome microscope (Carl Zeiss). Prior to imaging, 

pNF-YA:GUS/GFP seed coats (including endosperm) and embryos were 

stained by placing in beta-glucuronidase (GUS) staining solution and incubated 

overnight at 37oC in the dark (Perry and Wang 2003). Subcellular localization 

was determined in four-day-old seedlings counterstained by incubating in 50 

µg/mL propidium iodide (PI) for 5 min, followed by washing in DI water for 5 min.  

Seedlings were mounted in DI water and roots were imaged using a Leica TCS 
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SP8 confocal laser-scanning microscope with a 40X water immersion objective. 

Sequential scanning mode was used for CFP and PI detection where CFP was 

excited using 458 nm laser with emission detected at 462 – 536 nm and PI was 

excited using 561 nm laser with emission detected at 582 – 673 nm. 

Approximately 200 serial optical sections of root tip were imaged with an 

average cubic voxel size of 190 nm x 190 nm x 190 nm starting with the root 

epidermis closest to the cover slip imaging through to the stele. For DNA 

labeling, tissue was fixed in 4% PFA in PBS for 2 min incubated in 5 µg/mL 

Hoechst 33342 for 50 min, mounted on DI water, and excited with a 405 nm 

laser. Images were processed using ImageJ (http://rsb.info.nih.gov/ij/; 

Schneider et al. 2012) where average intensities of both CFP and PI channels 

through the series were taken and merged. 

 

Western blot  

Total protein was extracted from 14-day-old plants by grinding in lysis buffer (20 

mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, pH 8.0, 1% Triton X-100, 1% SDS 

with fresh 5 mM DTT, and 100 µM MG132). NF-YA-CFP/HA was probed with 

high affinity anti-HA primary antibody (cat#11 867 423 001; Roche) and goat 

anti-rat secondary antibody (cat#SC-2032; Santa Cruz Biotechnology). The Bio-

Rad ChemiDoc XRS imaging system was used for visualizing the protein blot 

after incubations with ECL plus reagent (cat#RPN2132; GE Healthcare). 

Equivalent loading and transfer efficiency was determined by staining the 

protein blot with Ponceau S (cat#P3504; Sigma-Aldrich).   
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qPCR Analysis 

Matched seed sets were germinated on Gamborg’s B5 medium, with or without 

1 M (+)-ABA. Total seed RNA was extracted using the E.Z.N.A. Plant RNA Kit 

(cat#R6827-01; Omega Biotek) according to the manufacturers instructions for 

difficult samples. Genomic DNA was digested during RNA extraction by treating 

the columns with DNase (cat#E1091; Omega Biotek). First-strand cDNA was 

synthesized using the Superscript III First-Strand Synthesis System 

(cat#18080-051; Invitrogen). qPCR was performed using a CFX ConnectTM 

Real-Time PCR Detection System (Bio-Rad) with the SYBR Green qPCR 

Master Mix (cat#K0222; Fermentas). Gene expression analysis was done using 

the CFX ManagerTM software (Bio-Rad). Normalized expression, ∆∆Cq, was 

selected as the analysis mode. Samples were normalized to a constitutively 

expressed reference gene, At2g32170 (Czechowski et al. 2005). Three 

biological replicates were used for the qPCR, which was repeated three times 

with the same results. Statistical analysis was done with two-way ANOVA 

(P<0.05), in which genotype and seed growth media were used as the two 

variables, followed by Bonferroni multiple comparisons post-hoc test against 

Col-0 on B5 media or on B5 + 1 µM ABA (Gutierrez et al. 2008; Rieu and 

Powers 2009). Primer sequences are available upon request.   

 

Contributions 

This project was conceived by Dr. B. Holt, myself and Dr. R. Kumimoto. I made 

the transgenic NF-YA overexpressors by Agrobacterium mediated 
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transformation and collected the stable lines. I performed the phenotype 

analysis, western blot, microscopy (other than confocal microscopy), 

germination assays, GUS staining, RNA extraction and qPCR, and multiple 

sequence alignments. I also wrote the paper published in PMBJ. Cloning NF-

YA1 to NF-YA9 was performed by Dr. R. Kumimoto. The clones were 

introduced to the plant destination vectors by Dr. R. Kumimoto or myself. D. 

Jones performed the confocal imaging. Dr. B. Holt constructed the phylogenetic 

tree.  
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Figure 2.1. Characterization of p35S:NF-YA overexpressing lines. A) 
Phylogenetic relationship between the Arabidopsis NF-YA genes. B) 
Phenotypes for two independent lines of three-week-old p35S:NF-YA plants 
compared to Col-0. C) Protein blot for the two independent transgenic lines of 
each p35S:NF-YA.  
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Figure 2.2.  p35S:NF-YA5 seedlings develop cotyledon-like leaves. A) 
Seedlings of Col-0 and p35S:NF-YA5. B) True leaves of Col-0 in comparison to 
cotyledon-like leaves of p35S:NF-YA5. C) Differential interference contrast 
(DIC) microscopy images of leaf venation in Col-0 and p35S:NF-YA5. The scale 
bar in (A) equals 1 mm (for Col-0) and 0.5 mm (for p35S:NF-YA5) (B) equals 2 

mm (C) equals 50 µm. 
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Figure 2.3.  NF-YA proteins are nuclear localized. Protein localization in 
Col-0 and p35S:NF-YA-CFP/HA overexpression lines. The cyan 
fluorescence protein (CFP) signal (blue) was always strongly associated with 
the nucleus (note that localization was confirmed by merged images, combining 
the CFP localization of NF-YAs with DIC imaging and Hoechst 33342 labeling 
staining of the nucleus – Figure S6). The cell walls are stained with propidium 
iodide (red). The scale bar in (A) equals 15 µm. 
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Figure 2.4.  Seed germination on Gamborg’s B5 medium for p35S:NF-YA. 
A-E) Germination curves for two independent lines each of p35S:NF-YA 
overexpressors compared to Col-0.  
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Figure 2.5. p35S:NF-YA overexpressors show opposing germination 
phenotypes on ABA. A-E) Germination curves for two independent p35S:NF-
YA lines. F-J) Germination at 84-h post incubation. K-O) Dose responses on 0.5, 

1, 2, and 5 M ABA at 84-h post incubation. Asterisks for F to J are Fisher’s 
Exact Test p-values; * p<0.01, ** p<0.001, *** p<0.0001.  
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Figure 2.6. NF-YA genes are expressed in the endosperm and embryos. 
The native expression of NF-YA genes in seeds imbibed for 24h are shown for 
A) embryos B) seed coat/endosperm. The scale bar in Col-0 equals 50 µm.  
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Figure 2.7. ABA response genes are misregulated in p35S:NF-YA8 and 
p35S:NF-YA9 seeds. Gene expression analyzed by qPCR for genes involved in 
ABA A) biosynthesis, B) catabolism, C) receptors, D) kinases, E) phosphatases, 
and F) responses. Asterisks represent significant differences derived from two-
way ANOVA (p<0.05), in which genotype and seed growth media are the two 
variables, followed by Bonferroni multiple comparisons post hoc test against Col-
0 on B5 media or on B5 + 1 µM ABA.    
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Supplemental Table 2. 1. List of homozygous and hemizygous p35S:NF-YA 
plant lines.  

 

AGI# Construct Plant line# Homozygous or 
Hemizygous 

At5g12840 p35S:NF-YA1-CFP/HA 
1 Homozygous 

2 Homozygous 

At3g05690 p35S:NF-YA2-CFP/HA 
1 Homozygous 

2 Homozygous 

At1g72830 p35S:NF-YA3-CFP/HA 
1 Homozygous 

2 Homozygous 

At2g34720 p35S:NF-YA4-CFP/HA 
1 Homozygous 

2 Hemizygous 

At1g54160 p35S:NF-YA5-CFP/HA 
1 Hemizygous 

2 Hemizygous 

At3g14020 p35S:NF-YA6-CFP/HA 
1 Hemizygous 

2 Hemizygous 

At1g30500 p35S:NF-YA7-CFP/HA 
1 Homozygous 

2 Homozygous 

At1g17590 p35S:NF-YA8-CFP/HA 
1 Homozygous 

2 Homozygous 

At3g20910 p35S:NF-YA9-CFP/HA 
1 Homozygous 

2 Homozygous 

At5g06510 p35S:NF-YA10-CFP/HA 
1 Hemizygous 

2 Homozygous 
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Supplemental Figure 2.1.  Multiple sequence alignment of full-length NF-
YA protein sequences. At: Arabidopsis thaliana; Hs: Homo sapiens. The 
Conserved core domain is underlined in black. The three black boxes 
correspond to nuclear localization signal in humans.  
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Supplemental Figure 2.2.  Identity matrix of the NF-YA protein sequences. 
A) Full-length protein B) core domain. At: Arabidopsis thaliana; Hs: Homo 
sapiens. Note that pairs of Arabidopsis NF-YA paralogs demonstrate high 
identity across the full-length protein sequence.   
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Supplemental Figure 2.3. Overexpression of the NF-YA gene family leads 
to growth defects. Quantitative measurements of A) plant height B) rosette 
width C) number of siliques on primary bolt D) length of siliques. 
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Supplemental Figure 2.4.  Quantifications of the cotyledon-like leaves in 
p35S:NF-YA5. A) Leaf area B) number of trichomes C) chlorophyll content. 
Asterisks represent significant differences derived from Student’s t-tests. 
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Supplemental Figure 2.5. Abiotic stress responses of p35S:NF-YA5 
seedlings. Response to A) 6% mannitol B) 150 mM NaCl. Asterisks represent 
significant differences derived from Student’s t-tests.  
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Supplemental Figure 2.6. Confirmation of nuclear localization of NF-YA 
proteins. A) Hoechst 33342 (blue) labels nuclei and CFP signal (green) shows 
localization of NF-YA7. Merged images demonstrate co-localization of DNA 
label and CFP fluorescence. Scale - 15 µm. B) Differential Interference Contrast 
(DIC) imaging (grey) of root cell nuclei (red arrows point to the nuclei) with CFP 
signal (cyan) showing localization of NF-YA7. Merged images indicate CFP 
fluorescence is localized to the root cell nuclei. Scale - 5 µm.  
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Supplemental Figure 2.7. Overexpression of select NF-YA genes leads to 
ABA hypersensitivity during root elongation. The percent root elongation in 
growth medium with ABA was compared to the unsupplemented medium for 
Col-0, p35S:NF-YA7, p35S:NF-YA8, and p35S:NF-YA9. Asterisks represent 
significant differences derived from one-way ANOVA (P < 0.05) followed by 
Dunnett’s multiple comparison post hoc tests against Col-0 
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Supplemental Figure 2.8. Publically available microarray data demonstrate 
that NF-YA genes are expressed in seeds. Data was obtained from the 
Arabidopsis e-FP browser at http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi. 
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Supplemental Figure 2.9.  qPCR analysis of gene expression in p35S:NF-
YA8 and p35S:NF-YA9 seeds. (A) NF-YA8 (B) NF-YA9. Asterisks represent 
significant differences derived from two-way ANOVA (p<0.05), in which 
genotype and seed growth media are the two variables,  followed by Bonferroni 
multiple comparisons post hoc test against Col-0 on B5 media or on B5 + 1 µM 
ABA.    
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Supplemental Figure 2.10. ABA-induction of gene expression in p35S:NF-
YA8 and p35S:NF-YA9 seeds. Expression of A) ABF3 B) AIA C) HAB1. 
Asterisks represent significant differences derived from two-way ANOVA 
(p<0.05), in which genotype and seed growth media are the two variables, 
followed by Bonferroni multiple comparisons post hoc test against Col-0 on B5 
media or B5 + 1 µM ABA. 
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Chapter 3: Arabidopsis NF-YA subunits are positive regulators 

of photoperiod dependent flowering 
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Arabidopsis NF-YA subunits are required as positive regulators of photoperiod 

dependent flowering.  
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Summary 

The heterotrimeric NF-Y transcription factors, composed of the three 

independent protein families NF-YA, NF-YB, and NF-YC, are required for 

photoperiod dependent flowering. While it is known that specific NF-YB and NF-

YC subunits interact and function together with a key floral regulator, 

CONSTANS (CO) to regulate flowering, the role and specific NF-YAs remains 

unknown. NF-YAs were thought to be negative regulators that compete with CO 

to bind the NF-YB/ NF-YC dimer. However, results from a number of recent 

publications have suggested that NF-YA subunits may be acting as positive 

regulators of flowering. In this chapter I tested my hypothesis that NF-YAs are 

positive regulators of flowering. Since NF-YA loss of function alleles are lethal 

or do not have flowering phenotypes, I used two approaches to test if NF-YA 

are positive regulators. First, to indirectly test if NF-YAs are needed for the NF-

YB/NF-YC dimer to regulate flowering, I created a mutant version of NF-YB that 

loses interaction with NF-YA, but not NF-YC. The mutant was overexpressed in 

the late flowering nf-yb2 nf-yb3 double mutant, and was found not to 

complement the late flowering phenotype. However, the mutant protein was 

strongly expressed and was able to localize to the nucleus, as expected for a 

functioning NF-YB protein.  This result shows that mutations that eliminate the 

ability of NF-Y complexes to recruit NF-YA prevent appropriate flowering and 

suggest that NF-YA are required as positive regulators of this process. My 

second approach was to study overexpressors of NF-YA.  Here I was able to 

identify that NF-YA2 overexpressors drove early flowering and led to the 
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upregulation of a key floral integrator FT. This result suggested that NF-YA2 

may be a positive regulator of flowering. Further, a recent publication suggested 

that CO provides an activation domain for the NF-Y complex. In this publication, 

NF-YB2 was able to induce flowering in the absence of CO (in a co mutant 

background) when it was translationally fused to an activation domain called 

EDLL. I hypothesized that, when fused to this same EDLL domain, the NF-YB2 

mutant described above would not be able to induce flowering in the absence of 

CO. Further, I hypothesized that NF-YA2 would be able to induce flowering in 

the absence of CO when attached to the EDLL domain. The results reported 

here support both of these hypotheses. Because NF-YA2:EDLL promotes more 

rapid flowering, this strongly suggests it is part of the NF-Y complex bound at 

the FT promoter and my data strongly suggests that NF-YAs are required as 

positive regulators of flowering. 
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Introduction 

In angiosperms the correct timing of floral transition is crucial for reproductive 

success. Both external and internal cues determine when the floral transition 

occurs. A key external cue is the duration of day/night cycles or photoperiod 

(Lang 1952). Photoperiod varies in temperate climates where there are four 

pronounced seasons. The model plant Arabidopsis thaliana (Arabidopsis) is a 

long day plant; that is, it flowers when the day becomes longer than a crucial 

day length (Salisbury 1985). Central to measuring photoperiod is the circadian 

regulation of CONSTANS (CO) transcript and the light-mediated regulation of 

CO protein accumulation (Hayama and Coupland 2004). CO protein peaks in 

long days and is able to bind the promoter and activate FLOWERING LOCUS T 

(FT) (Tiwari et al. 2010). FT is the key mobile signal that travels from the leaves, 

where the photoperiod signal is perceived, to the shoot apex, where the floral 

transition occurs (Corbesier et al. 2007; Mathieu et al. 2007; Tamaki et al. 2007). 

At the shoot apex, FT binds the bZIP transcription factor FLOWERING LOCUS 

D (FD) and activates floral transition genes that regulate the transition from a 

vegetative meristem to a floral meristem (Abe et al. 2005; Wigge et al. 2005). 

Recent publications have demonstrated that members of the heterotrimeric 

transcription factor family called NUCLEAR FACTOR-Y (NF-Y) are required for 

CO activation of the FT promoter and thus regulate the downstream events that 

lead to the floral transition (Kumimoto et al. 2008b; Kumimoto et al. 2010).      
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NF-Ys are heterotrimeric transcription factors composed of three independent 

protein families, NF-YA, NF-YB, and NF-YC. While ubiquitous to eukaryotes, 

the NF-Y subunits have undergone an extensive expansion in plants. For 

example, Arabidopsis has ten members of each family (Petroni et al. 2012). To 

activate target genes, NF-YB and NF-YC dimerize in the cytoplasm and move 

to the nucleus where the dimer interacts with NF-YA to make a DNA-binding 

trimer (Sinha et al. 1995; Sinha et al. 1996; Frontini et al. 2004; Kahle et al. 

2005). The NF-Y trimer is sequence specific and binds DNA in conserved 

CCAAT boxes (Mantovani 1999). NF-YA makes direct contacts with the CCAAT 

boxes and the NF-YB/NF-YC dimer makes non-specific contacts in adjacent 

regions, helping to stabilize the promoter/protein complex (Nardini et al. 2013).  

 

Several NF-YB and NF-YC subunits have been demonstrated to regulate 

photoperiod dependent flowering (Ben-Naim et al. 2006a; Wenkel et al. 2006b; 

Cai et al. 2007; Chen et al. 2007; Kumimoto et al. 2008b; Kumimoto et al. 2010). 

Briefly, two NF-YB subunits, NF-YB2 and NF-YB3, act as positive regulators of 

flowering. nf-yb2 and nf-yb3 mutants are late flowering, and the nf-yb2 nf-yb3 

double mutant flowers later than the single mutants, indicating an additive effect 

from overlapping function. Three NF-YC subunits, NF-YC3, NF-YC4, and NF-

YC9, are also positive regulators of flowering, with the triple nf-yc3 nf-yc4 nf-

yc9 mutant being late flowering. The expression of FT is down regulated in both 

the nf-yb and nf-yc mutants, suggesting that the NF-Y genes regulate flowering 

in an FT dependent manner. The NF-YC genes that regulate flowering also 
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physically interact with CO, suggesting that a NF-Y/CO complex may be formed 

on the FT promoter (Kumimoto et al. 2010). Further, when CO was 

overexpressed in the nf-yc triple mutant background, its ability to drive early 

flowering and upregulate FT was suppressed, suggesting that CO requires all 

three NF-Y subunits for proper function (Kumimoto et al. 2010). These results 

taken together demonstrate that NF-YB and NF-YC subunits are required as 

positive regulators of CO mediated photoperiod responses. However, the role 

played by NF-YAs is not clearly understood.  

 

Overexpression of two NF-YA subunits, NF-YA1 and NF-YA4, using a phloem 

specific promoter, resulted in late flowering (Wenkel et al. 2006). In addition, the 

DNA binding domain of NF-YA subunits shares a region of high homology with 

CO. Based on these two findings, Wenkel et al. (2006) proposed a replacement 

model where NF-YA and CO compete to bind the NF-YB/NF-YC dimer. In this 

model there are two possible complexes that can form on the FT promoter, NF-

YA/NF-YB/NF-YC and CO/NF-YB/NF-YC. The model suggests that the CO/NF-

YB/NF-YC complex acts positively on the FT promoter. The NF-YA/NF-YB/NF-

YC complex does not activate the FT promoter and exerts a negative regulatory 

effect, caused by the competition between NF-YA and CO to bind the NF-

YB/NF-YC dimer. 

 

Recent findings have led us to believe that the replacement model may not fully 

explain the role of NF-YA during flowering.  For example, CO was able to 
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directly bind the FT promoter, independent of NF-Y complexes, at unique cis-

sequences called CO regulatory elements (CORE) 1 and 2 (Tiwari et al. 2010). 

CO did not require NF-Y to bind the CORE sites. In addition, CO did not bind 

CCAAT boxes. This was not surprising in that although the DNA binding domain 

of NF-YA shares a region of homology with CO, some amino acids that are 

essential for the NF-YA to bind CCAAT boxes are not conserved (Xing et al. 

1993). Therefore it is unlikely that CO competes with NF-YA to bind CCAAT 

boxes.  

 

It was recently demonstrated that CCAAT boxes are essential for regulating the 

FT promoter (Cao et al. 2014). When a select CCAAT box in the FT promoter 

was mutated, flowering was negatively affected, whereas the CCAAT box is in a 

distal promoter element located -5.3 kb from the FT start codon, the CORE 

sites are proximal elements located at approximately -150 bp. Thus, this is 

evidence of a chromatin loop formed with NF-Y at the CCAAT box and CO at 

the CORE site (Cao et al. 2014). Further it was shown that CO provides an 

activation domain for the NF-Y complex, and that NF-YB2 fused to a strong 

activation domain could promote flowering in the absence of CO (Tiwari et al. 

2012). The findings summarized above strongly suggested that NF-YAs are 

needed as positive regulators of flowering.  

 

My hypothesis is that NF-YAs are acting as positive regulators of flowering. To 

test this hypothesis I identified a mutation in NF-YB2, which abolishes the 
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interaction with NF-YA. The NF-YB2 mutant, which was unable to interact with 

NF-YA, did not promote flowering, strongly suggesting that NF-YA are required 

for the NF-YB/NF-YC dimer to promote flowering. Further, NF-YB2 attached to 

activation domain (EDLL) was recently shown to induce flowering in the 

absence of CO. However, when fused to this same EDLL domain, the NF-YB2 

mutant described above did not induce flowering in the absence of CO. The 

result of the experiment strongly suggest that while CO provides an essential 

activation activity to the NF-YB/NF-YC dimer, the NF-YA subunit is required for 

the dimer to bind DNA and function in the promotion of flowering.  I also 

identified NF-YA2 as a possible positive regulator of flowering. NF-YA2 was 

vascular expressed and overexpression led to earlier flowering and 

upregulation of FT. Further, NF-YA2 was able to induce flowering in the 

absence of CO when attached to the EDLL domain. Taken together, the results 

strongly suggest that NF-YA are positive regulators of flowering.   

               

Results 

NF-YB2E65R loses interaction with NF-YA subunits 

In humans, the NF-YBE92R mutant protein was shown to specifically lose 

interaction with the NF-YA subunit, but not the NF-YC subunit (Sinha et al. 

1996). Recent crystal structure analysis of the NF-Y complex demonstrated that 

this glutamic acid makes physical contact with NF-YA (Nardini et al. 2013). The 

core domains of NF-Y proteins are highly conserved through the eukaryotic 

lineage (Siefers et al. 2009) and I found the glutamic acid in humans to be 
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absolutely conserved in Arabidopsis (Figure 3.1A). Further, NF-Y genes have 

been annotated in wheat, rice, and Brachypodium (Stephenson et al. 2007; 

Thirumurugan et al. 2008; Cao et al. 2011a), and in NF-YBs of all three 

genomes, this glutamic acid is conserved. Therefore the glutamic acid is likely 

essential for function and a mutation in this position has the potential to be a 

powerful tool to study the loss of NF-YB/NF-YA interactions in presence of an 

intact NF-YB/NF-YC interaction.  

 

Since I was interested in finding out if the NF-YA subunits are required for the 

NF-YB/NF-YC dimer to regulate photoperiod dependent flowering, I chose to 

alter the flowering-promoting NF-YB2 protein (Cai et al. 2007; Kumimoto et al. 

2008b) to create the NF-YB2E65R mutation. I tested if NF-YB2E65R can interact 

with three NF-YC subunits involved in flowering (Kumimoto et al. 2010) and 

found that both NF-YB2 and NF-YB2E65R were able to physically interact with 

NF-YC3, NF-YC4, and NF-YC9 (Figure 3.1B). Next I tested the ability of NF-

YB2E65R to interact with NF-YA2 (NF-YA2 regulates flowering; Figure 3.5). It 

has been previously shown that NF-YB proteins do not initially dimerize with 

NF-YA proteins, but instead first form a dimer with NF-YC and then trimerize 

with NF-YA (Kim et al. 1996). This was confirmed as NF-YB2 and NF-YB2E65R 

did not interact with NF-YA2 in Y2H assays. Therefore, I used Y3H assays 

where NF-YC9 was expressed using a bridge vector. In this system, NF-YB2 

was able to interact with NF-YA2, however NF-YB2E65R lost interaction (Figure 
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3.1C), demonstrating that the conserved glutamic acid is required for NF-YA2 to 

interact with the NF-YB2/NF-YC9 dimer.     

 

p35S:NF-YB2E65R cannot rescue the late flowering phenotype of nf-yb2 nf-

yb3 

NF-YB2 and NF-YB3 have additive roles regulating photoperiod dependent 

flowering and the nf-yb2 nf-yb3 double mutant was extremely late flowering 

(Kumimoto et al. 2008b). NF-YB2 expressed under the control of the 

constitutively expressed 35S viral promoter (Kay et al. 1987) was able to rescue 

the nf-yb2 nf-yb3 late flowering phenotype (p35S:NF-YB2; Holt and Risinger, 

unpublished data). Based on my hypothesis that NF-YA are positive regulators 

of flowering, I expected that p35S:NF-YB2E65R, which loses interaction with NF-

YA, would be unable to rescue the nf-yb2 nf-yb3 late flowering phenotype. I 

tested this by overexpressing both p35S:NF-YB2 and p35S:NF-YB2E65R  in the 

nf-yb2 nf-yb3 background. The results showed that first generation plants (T1s) 

transgenic for p35S:NF-YB2 were able to rescue the late flowering phenotype 

as previously shown (Figure 3.2A and 3.2B). Some p35S:NF-YB2 plants 

flowered earlier than wild type. None of the p35S:NF-YB2E65R plants, however,  

were able to rescue the late flowering phenotype. On average, p35S:NF-

YB2E65R plants produced 44 leaves prior to flowering, which was not statistically 

different from the 43 leaves produced by nf-yb2 nf-yb3 mutants. To rule out the 

possibility that the flowering phenotypes were due to differences in growth rate, 

I also scored flowering time by measuring the number of days it took for the first 
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bud to appear (Supplementary Figure 3.2). The results were the same as with 

the leaf number counts. I also tested flowering time of p35S:NF-YB2E65R in the 

wild-type background (Figure 3.2C). This T1 flowering time experiment 

demonstrated that p35S:NF-YB2 was able to drive flowering earlier than the 

wild type. However, p35S:NF-YB2E65R exerted a dominant negative effect and 

those plants flowered significantly later than the wild type. With the previous 

Y2H results, this result suggested that a non-functional NF-YBE65R/NF-YC dimer 

can form in these transgenic plants (i.e., unable to bind NF-YA and 

subsequently DNA) and partially interfere with flowering time.      

      

Alternative explanations for the T1 flowering data discussed above were that 

the mutant NF-YB protein might have been unable to 1) accumulate or 2) move 

into the nucleus. To rule out these possibilities, I first compared the level of 

protein expression in 12 individual TI generation p35S:NF-YB2E65R plants to a 

strongly expressing stable p35S:NF-YB2 plant line (p35S:NF-YB2-1). I found 

that half of the p35S:NF-YB2E65R plants tested had the same high level of 

protein expression as p35S:NF-YB2-1 (Figure 3.2D). Interestingly, those with 

the highest accumulation of NF-YB2E65R were among the latest flowering, 

typically flowering even later than the nf-yb2 nfy-b3 parental line. This result 

demonstrates that p35S:NF-YB2E65R plants with protein expression comparable 

to that of an early flowering p35S:NF-YB2 plant line are still unable to rescue 

the late flowering phenotype and, as suggested above, NF-YB2E65R can 

dominantly interfere with flowering. I additionally compared flowering times in 
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two independent, stable, single insertion lines each for p35S:NF-YB2 and 

p35S:NF-YB2E65R (i.e., stable T3 lines). These lines had similarly strong protein 

accumulation. p35S:NF-YB2-1 and p35S:NF-YB-2 flowered at on average 11 

and 17 leaves respectively and p35S:NF-YB2E65R-1 and p35S:NF-YB2E65R-2 

flowered at 43 and 40 leaves respectively (Supplementary Figure 3.3).  

Confocal imaging was used to test if the mutation affected NF-YB2 protein 

localization. To test this both NF-YB2 and NF-YB2E65R were fused with yellow 

fluorescence protein (YFP). NF-YB2-YFP and NF-YB2E65R-YFP were both 

strongly localized to the nucleus, with a weaker signal in the cytoplasm (Figure 

3.2E). These results demonstrate that the E65R mutation does not affect 

accumulation or localization of NF-YB2, strongly suggesting that differences in 

function are a result of losing the NF-YA interaction.   

 

p35S:NF-YB2E65R plants cannot drive high FT expression   

NF-Y and CO regulate flowering by binding the FT promoter, and FT was 

upregulated when the NF-YBs that regulate flowering were overexpressed (Cai 

et al. 2007; Kumimoto et al. 2008b; Kumimoto et al. 2010; Tiwari et al. 2010). 

p35S:NF-YB2E65R was not able to induce flowering, however, in the nf-yb2 nf-

yb3 background; therefore I hypothesized that FT would not be upregulated. 

Prior to testing the level of FT, I tested if NF-YB2 is overexpressed at similar 

levels in p35S:NF-YB2 and p35S:NF-YB2E65R. If NF-YB2 was not upregulated 

in p35S:NF-YB2E65R plants, that would explain its inability to increase the 

expression of FT. However, when the expression of NF-YB2 in stable p35S:NF-
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YB2 and p35S:NF-YB2E65R plant lines was tested, I found that NF-YB2 

expression was highly upregulated in both lines (Figure 3.3A). Next, I tested the 

expression of FT and found that FT expression was actually suppressed in 

p35S:NF-YB2E65R (Figure 3.3B). FT was slightly upregulated in p35S::NF-YB2.  

FT directly regulates the expression of APETALA1 (AP1) (Corbesier et al. 2007), 

which also had a similar expression profile as FT in p35S:NF-YB2 and 

p35S:NF-YB2E65R plants (Figure 3.3C). This suggests that p35S:NF-YB2E65R is 

not able to recue the flowering phenotype, in fact p35S:NF-YB2E65R can act as a 

dominant negative, because it is interferes with FT expression. This suggests 

that the NF-YB/NF-YC dimer needs to interact with NF-YA to drive the 

expression of FT to regulate flowering.     

 

p35S:NF-YB2E65R fused to a strong activation domain is not able to induce 

flowering in a CONSTANS-deficient mutant 

A recent publication demonstrated that CO provides an activation domain for 

the NF-Y complex, which can be substituted with a foreign activation domain 

(Tiwari et al. 2012). Briefly, p35S:NF-YB2 was not able to induce flowering in co 

mutants, suggesting that CO, not NF-Y complexes, was the rate limiting step in 

these mutants. However, when p35S:NF-YB2 was fused to a strong activation 

domain called EDLL, the resulting p35S:NF-YB2/EDLL construct was able to 

induce flowering co mutants. I hypothesized that the NF-YB2E65R mutation 

results in a dysfunctional NF-YB/NF-YC complex unable to bind NF-YA and 

subsequently DNA. Therefore I argued that fusing a strong activation domain 
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(which would act as an activator in the absence of CO) would still be unable to 

induce flowering. This would suggest that CO and NF-YA provide different 

activities for the NF-YB/NF-YC dimer.  

 

I used two methods to test flowering in the absence of CO; loss of function 

mutants and short day (SD) conditions. First, I tested the ability of p35S:NF-

YB2, p35S:NF-YB2-EDLL, and p35S:NF-YB2E65R-EDLL to rescue the late 

flowering phenotype of co-2 which are in the Landsberg erecta (Ler) 

background. The results showed that while p35S:NF-YB2-EDLL was able to 

induce flowering in co-9, p35S:NF-YB2, and  p35S:NF-YB2E65R-EDLL were not 

able to induce flowering (Figure 3.4A). Although p35S:NF-YB2-EDLL was able 

to induce significantly earlier flowering, the response was weak. While Ler 

flowered at about 10 leaves, the earliest flowering p35S:NF-YB2-EDLL plants 

flowered at about 20 - 25 leaves. However, both p35S:NF-YB2 and p35S:NF-

YB2E54R-EDLL were not able to induce flowering in co-2. I also tested flowering 

in co-9 mutants, which are in the Col-0 background. Although a few p35S:NF-

YB2-EDLL plants flowered even earlier than Col-0, most of the plants were not 

able to induce flowering in the co-9 background and the differences were not 

significant (Figure 3.4B). These results show that p35S:NF-YB2-EDLL, can only 

partially substitute the activity of CO. However, p35S:NF-YB2, and  p35S:NF-

YB2E65R-EDLL were not able to induce flowering.     
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CO protein does not accumulate in short days (SD) and is the rate limiting 

factor for flowering induction under these conditions. Therefore researchers use 

SD conditions as proxy for a co mutant background. I expected that p35S:NF-

YB2-EDLL, which partially induced flowering in co mutants, would be able to 

induce flowering in Col-0 plants grown in SD. Alternatively, p35S:NF-YB2E65R-

EDLL would not induce flowering. As expected in SD conditions, Col-0 flowered 

after producing about 60 leaves. p35S:NF-YB2-EDLL drove earlier flowering 

than Col-0 and p35S:NF-YB2,and  p35S:NF-YB2E65R-EDLL flowered at the 

same time as Col-0 (Figure 3.4C). However, p35S:NF-YB2-EDLL produced on 

average 40 leaves, which was considerably later than the average 14 leaves 

produced by Col-0 under LDs. This again indicates that p35S:NF-YB2-EDLL 

can only partially substitute the activity of CO under SDs.        

 

The EDLL domain is a strong activation domain and it is possible that the 

flowering responses discussed above were a result of direct activation of 

downstream floral regulators such as AP1 and LEAFY (LFY) – i.e., that it was 

not due to the expected activation of FT expression. Therefore, to demonstrate 

that the p35S:NF-YB2-EDLL flowering responses were due to its activity on the 

FT promoter and not on downstream targets, flowering responses were tested 

in the ft-10 background. None of the constructs tested was able to rescue the ft-

10 late flowering phenotype, indicating that the p35S:NF-YB2-EDLL flowering 

phenotypes are dependent on functional FT (Figure 3.5D). Further, p35S:NF-

YB2-EDLL had severe growth phenotypes when overexpressed in all the 
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genetic backgrounds tested here. However, this phenotype does not appear to 

be correlated with flowering time as p35S:NF-YB2-EDLL plants in the ft-10 

background had the same phenotype as in the other backgrounds, but did not 

flower earlier.          

 

I also tested the ability of p35S:NF-YB2, p35S:NF-YB2-EDLL, and p35S:NF-

YB2E65R-EDLL to drive early flowering in Col-0 and rescue the nf-yb2 nf-yb3 

late flowering phenotype. In both these cases active CO was present, however I 

expected that attaching a strong activation domain should lead to earlier 

flowering phenotypes. In the Col-0 background, p35S:NF-YB2 and p35S:NF-

YB2-EDLL drove early flowering (Figure 3.4E), however the ability of p35S:NF-

YB2-EDLL to drive early flowering was significantly stronger than p35S:NF-YB2. 

A similar response was seen in the nf-yb2 nf-yb3 mutant background, where 

p35S:NF-YB2 and p35S:NF-YB2-EDLL were both able to rescue the mutant 

phenotype, but p35S:NF-YB2-EDLL was significantly more effective (Figure 

3.5F). In both cases p35S:NF-YB2E65R-EDLL did not drive early flowering or 

rescue the late flowering phenotype.  Alternatively, p35S:NF-YB2 E65R-EDLL 

had a dominant negative effect in the Col-0 background, similar to the 

phenotype seen with p35S:NF-YB2E65R in Col-0 (Figure 3.2C). These results 

strongly suggest that while CO provides an essential activation activity to the 

NF-YB/NF-YC dimer, the NF-YA subunit is required for the dimer to bind DNA 

and function in the promotion of flowering – i.e., the NF-YB/NF-YC dimer is 

essentially non-active in the absence of the NF-YA subunit.  
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NF-YA2 can positively regulate photoperiod dependent flowering  

To identify NF-YAs involved in flowering, first generation plant lines 

overexpressing each of the 10 NF-YA genes were analyzed. Two of the lines 

p35S:NF-YA2 and p35S:NF-YA6 were able to flower earlier than Col-0. All of 

the p35S:NF-YA plant lines had severe growth defects (Siriwardana et al. 2014) 

and, as a result, I was not able to collect stable lines for p35S:NF-YA6. 

However I was able to collect stable lines for p35S:NF-YA2. Two stable 

p35S:NF-YA2 plant lines produced ~10 leaves prior to flowering while the wild 

type produced 13 leaves (Figure 3.5A). To test if the early flowering phenotype 

was a direct result of the severe growth phenotype, I compared flowering 

responses of p35S:NF-YA2 to stable plant lines of p35S:NF-YA7, p35S:NF-

YA8, and p35S:NF-YA9. The results showed that p35S:NF-YA7 and p35S:NF-

YA9 flowered later and p35S:NF-YA8 at the same time as Col-0. This 

suggested that the severe growth phenotypes and flowering time were not 

directly correlated.    

 

To further investigate the flowering phenotypes associated with NF-YA2, I 

expressed NF-YA2 under the control of its native promoter. The reasoning for 

this experiment was to overcome two major disadvantages faced when NF-YA2 

was overexpressed under the control of the p35S promoter. As discussed 

above, when NF-YA genes were overexpressed it led to severe growth 

phenotypes. In addition, p35S leads to ectopic overexpression, therefore even 
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genes that do not have a native function (due to lack of expression in a tissue, 

both temporally and spatially) can show a phenotype under the control of p35S 

promoter. I expected to overcome these two issues by expressing NF-YA2 

under the control of its own native promoter. Before analyzing the flowering 

phenotypes of pNF-YA2:NF-YA2 plant lines, I tested the level of NF-YA2 

expression. In the stable pNF-YA2:NF-YA2-1 plant line, NF-YA2 was 60-fold 

upregulated (Supplementary Figure 3.4). A possible explanation for the strong 

upregulation under the control of the native promoter is that the pNF-YA2:NF-

YA2 construct did not contain the 3’UTR region of the gene, which is targeted 

by miR169 (Rhoades et al. 2002). However, the pNF-YA2:NF-YA2 plants did 

not have the severe growth phenotypes seen with p35S:NF-YA2. When 

flowering time was tested, two independent stable pNF-YA2:NF-YA2 plant lines 

were significantly early flowering compared to the Col-0 (Figure 3.5B). These 

data suggested that NF-YA2 could be a possible positive regulator of flowering.  

 

CO, NF-YBs, and NF-YCs promote flowering by inducing FT expression in the 

phloem of young leaves, and as a result have strong vascular expression (An et 

al. 2004; Siefers et al. 2009; Kumimoto et al. 2010). When NF-YA2 was studied 

using a prNF-YA2:GUS-GFP construct (both here and elsewhere (Siefers et al. 

2009), expression was largely confined to the vascular tissue in 10 day old 

leaves (Figure 3.5C). A similar spatial expression pattern was observed, for CO 

and the NF-YBs and NF-YCs that promote flowering. Strong vascular 
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expression and the ability to drive early flowering when overexpressed, strongly 

suggested that NF-YA2 may be a positive regulator of flowering.    

 

FT expression is upregulated in pNF-YN2:NF-YA2  

CO, NF-YBs and NF-YCs regulate flowering primarily by controlling FT 

expression (Kobayashi et al. 1999; Cai et al. 2007; Kumimoto et al. 2008b; 

Kumimoto et al. 2010). I used the stable pNF-YA2:NF-YA2-1 plant line to test if 

NF-YA2 regulates the same set of genes. I used two time points to test the 

expression of my target genes, seven and nine days after germination, which 

co-related with the developmental time period when the flowering signals are 

initiated (An et al. 2004). NF-YBs and NF-YCs do not affect the expression of 

CO (Cai et al. 2007; Kumimoto et al. 2008b; Kumimoto et al. 2010), similarly 

CO was not misregulated in the NF-YA2 overexpressor (Figure 3.6A). However, 

similar to the NF-YBs and NF-YCs, the expression of FT was significantly 

upregulated in pNF-YA2:NF-YA2 when tested at day seven (Figure 3.6B). A 

paralog of FT, MOTHER OF FT (MFT) was also upregulated on both time 

points tested (Supplementary Figure 3.5). AP1 is a floral meristem identity gene 

that FT directly activates (Corbesier et al. 2007). I found that AP1 was 

significantly upregulated in pNF-YA2:NF-YA2 at day nine, two days after I saw 

the upregulation of FT (Figure 3.6C). These results strongly suggested that NF-

YA2, like its NF-YB and NF-YC counterparts, regulates flowering primarily by 

regulating FT expression. 
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pNF-YA2:NF-YA2-EDLL induces flowering in a CONSTANS-deficient 

mutant     

I hypothesized that if NF-YA2 is able to interact with the NF-YB/NF-YC dimer 

on the FT promoter, attaching the EDLL domain to pNF-YA2:NF-YA2 would 

also result in an induction of flowering in co mutants. If the hypothesis were 

proven, this would place NF-YA2 at the FT promoter. In co-9 backgrounds, 

pNF-YA2:NF-YA2-EDLL induced earlier flowering, whereas the control pNF-

YA2:NF-YA2 was not able to induce flowering (Figure 3.7A). In the co-2 

background, although a few pNF-YA2:NF-YA2-EDLL plants induced earlier 

flowering the differences were not significant. I also tested if pNF-YA2:NF-YA2-

EDLL was able to induce flowering in the ft-10 background and found it did not, 

indicating that the flowering phenotype is dependent on functional FT.    

 

T1 flowering data showed that pNF-YA2:NF-YA2-EDLL plants also flowered 

significantly earlier than Col-0 (Figure 3.7A). A portion of the pNF-YA2:NF-YA2-

EDLL plants produced three or four sets of cotyledon-like leaves prior to 

producing true leaves (Supplementary Figure 3.4). This phenotype is consistent 

with what others and I have published earlier on NF-YA overexpressors (Mu et 

al. 2013; Siriwardana et al. 2014). Collectively, this data strongly supports the 

hypothesis that NF-YA subunits are actively involved in the flowering-promoting, 

functional NF-Y complexes and that the principal function of CO is to provide 

the transcriptional activation domain. 
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Discussion 

The current study strongly suggests that NF-YA subunits act as positive 

regulators of photoperiod dependent flowering. I used two approaches to find if 

NF-YAs are positive regulators of flowering. The first was an indirect approach, 

where I used the NF-YBE65R mutant. NF-YB2E65R expressed under the control of 

p35S promoter was not able to rescue the late flowering phenotype of nf-yb2 nf-

yb3. This result strongly suggested that NF-YA was needed for the flowering 

activity the NF-YB/NF-YC dimer. An alternative explanation for the flowering 

responses would be that NF-YB2E65R is not expressed. However, NF-YB2 was 

strongly overexpressed in p35S:NF-YB2E65R plants, the mutant protein 

accumulated as same as the wild type protein, and the mutant protein localized 

to the nucleus and was able to interact with NF-YC proteins. Further, the mutant 

had a dominant negative effect during its flowering responses. A similar 

conclusion on the dominant negative nature of the glutamic acid mutation was 

made in animal systems (Sinha et al. 1996). However, I cannot rule out the 

possibility that the mutant protein folded incorrectly or that the mutant lost 

interaction with regulatory elements other than NF-YA (e.g. a transcription 

factors that regulate flowering) and this resulted in the lack of rescue of late 

flowering. This approach also had the limitation that the data could only strongly 

suggest but not directly demonstrate that the NF-YA are required. The second 

approach I used was to study overexpressors of NF-YA genes. Using this 

approach I found that NF-YA2 overexpressors were able to drive early flowering, 

upregulate FT and that the gene was expressed in the vasculature. These data 
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suggest that NF-YA2 could be a positive regulator of flowering. However, the 

overexpression constructs were problematic in some aspects. The native 

promoter construct had a very weak phenotype and the p35S construct had a 

very severe growth phenotype. Analysis of NF-YA2 loss of function mutant lines 

would give a better understanding of its role. However, this approach is limited 

as mutants of NF-YA2 are lethal (Pagnussat et al. 2005; Meinke et al. 2008). 

An inducible system could be developed to overcome the lethality.          

 

Recently CO was demonstrated to provide an activation domain for the NF-Y 

complex. p35:NF-YB2-EDLL was able to induce flowering in a co mutant 

background. However, in this study, p35S:NF-YB2E65R-EDLL was not able to 

induce flowering. This result strongly indicated that while CO provides an 

activation domain for the NF-Y complex, the NF-YB/NF-YC dimer is non-

functional in the absence of NF-YA. pNF-YA2:NF-YA2-EDLL essentially had 

the same flowering phenotypes as p35S:NF-YB2-EDLL. Both constructs were 

able to induce flowering in co mutants, were not able to induce flowering in ft-10 

mutants, and drove earlier flowering in Col-0. This genetic data strongly suggest 

that NF-YA2 is at the FT promoter. Biochemical analysis, such as chromatin 

immunoprecipitation and electrophoretic mobility assays (EMSA), could be used 

to show that NF-YA2 can bind the FT promoter, and complement the genetic 

assays presented here. If the biochemical data showed that both CO and NF-

YA are physically present at the FT promoter at the same time and that NF-YA2 
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can bind the promoter, combined with the genetic data, this would very strongly 

suggest that NF-YA are acting as positive regulators.        

 

Previously NF-YAs were believed to act as negative regulators of flowering, 

because overexpression of two NF-YA genes, NF-YA1 and NF-YA4, led to later 

flowering (Wenkel et al. 2006b). I saw the same response with NF-YA7 and NF-

YA9 overexpressors. Further, unpublished data from the Holt lab showed that 

overexpression of a subset of NF-YB genes led to later flowering. It is possible 

that NF-Y genes have opposing roles during flowering time regulation. Similar 

opposing phenotypes for the NF-Y genes were demonstrated in ABA-mediated 

seed germination (Kumimoto et al. 2013; Siriwardana et al. 2014). A recent 

publication showed that NF-YA2 acts as a negative regulator of stress mediated 

flowering responses (Xu et al. 2014). Further miR169 was shown to target and 

degrade NF-YA2 transcripts, which led to an induction of flowering through the 

downregulation of FLC and resulting upregulation of FT. However, there were a 

few question areas that were not clearly addressed. Loss-of-function mutants of 

FLC do not have an effect on flowering in Col-0 plants under LD conditions 

(Michaels and Amasino 2001). Therefore how the down regulation of FLC led to 

the flowering phenotypes under these conditions is not clear. Both my and the 

Xu et al., (2014) study had the disadvantage that we analyzed overexpression 

constructs. Loss-of-function mutants are needed to clearly understand the 

native role played by NF-YA2 in both the photoperiod and stress pathway.     
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Dissecting the nature of the NF-Y/CO complex on the FT promoter would be a 

compelling next step, and here I have summarized a few questions that could 

be answered. One of the questions that could be addressed is do two separate 

NF-YB/NF-YC dimers form on the FT promoter; a dimer that can interact with 

NF-YA at CCAAT sites, and a dimer that can interact with CO at the CORE site. 

Some lower level plants have only NF-YB and NF-YC subunits and data from 

animal systems strongly suggest that NF-YB/NF-YC dimer can bind DNA in the 

absence of NF-YA (it is important to note that the dimer has not been shown to 

bind CCAAT boxes in the absence of NF-YA) (Dolfini et al. 2012). Therefore it is 

possible that the NF-YB/NF-YC dimer can function independent of the NF-YA at 

CORE sites and possibly help recruit and stabilize CO. Another question is, do 

NF-Y needs additional activation domains to regulate gene expression? Yeast 

has a fourth HAP (NF-Y are termed HAP in yeast) subunit, HAP4, that provides 

an activation domain (Mantovani 1999). It is possible that plants, where there 

are only three NF-Y subunits, require a replacement for this fourth subunit for its 

activity at some promoters. In this scenario, CO would provide the activation 

potential at the FT promoter. Similarity the NF-Y complex is known to interact 

with protein families such as bZIP and COL (Wenkel et al. 2006; Kumimoto et al. 

2013), and these may provide activation domains. Another area that can be 

investigated is to find other interactors of the NF-Y/CO complex on the FT 

promoter. Recently it was shown that CO physically interacts with 

ASYMMETRIC LEAVES 1 (AS1) on the FT promoter (Song et al. 2012). It is not 

known if NF-Y interacts with AS1. However this indicates that multisubunit 
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protein complexes can form on the FT promoter involving CO and NF-Y, and 

further investigations about these complexes are needed to better understand 

how FT is regulated.  

 

Recently it was shown that NF-Y, bound to the CCAAT box, and CO, bound to 

CORE sites, physically interact via a chromatin loop (Cao et al. 2014). Since 

NF-YA makes contact with CCAAT boxes, this data led to the hypothesis that 

NF-YA should be acting as positive regulators of flowering. In this chapter I 

tested this hypothesis. The data showed that the NF-YB2E65R mutant, which lost 

interaction with NF-YA, was not able to drive flowering and NF-YA2 

overexpressors were early flowering and upregulated FT. Further, pNF-

YA2:NF-YA2-EDLL was able to induce flowering in the absence of CO. 

Biochemical analysis and loss of function mutants will help better demonstrate 

the role NF-YA in the future. The mechanism by which NF-Y regulate FT 

promoter is the most studied in plants, therefore the knowledge we gain here 

could be used to understand how NF-Y regulate other promoters during 

developmental response such as embryogenesis, stress responses, and nodule 

development.               

     

Materials and methods 

Multiple sequence alignments 

Protein sequences were obtained from TAIR (http://www.arabidopsis.org (Huala 

et al. 2001) or National Center for Biotechnology Information 
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(http://www.ncbi.nlm.nih.gov/) and manipulated in TextWrangler 

(http://www.barebones.com) Multiple sequence alignments were made using 

ClustalX (Thompson et al. 2002) and shaded within Geneious 

(http://www.geneious.com/).         

 

Generation of overexpression constructs 

The p35S:NF-YB2 and the ten p35S:NF-YA constructs were previously 

described (Cao et al. 2011a) (Siriwardana; in review). NF-YB2E65R was 

amplified from cDNA using mutagenic PCR. pNF-YA2:NF-YA2 was amplified 

using genomic DNA with the promoter region starting approximately 1 KB 

upstream of the start codon. The proof reading enzyme Pfu Ultra II 

(cat#600670; Agilent Technologies) was used for PCR reactions and the 

resulting fragments were ligated into GATEWAYTM entry vector pENTR/D-

TOPO (cat#45-0218; Invitrogen). The EDLL domain (Tiwari et al. 2012) was 

amplified from cDNA and contained Acs1 sites, which were used to clone the 

EDLL domain into the pENTR/D-TOPO backbone of NF-YB2 and NF-YB2E65R 

entry clones. All entry clones generated were sequenced and other than the 

point mutation were identical to sequences at TAIR (http://www.arabidopsis.org 

(Huala et al. 2001). NF-YB2E65R was ligated into the destination vector 

pEarlyGate101 (Earley et al. 2006), pNF-YA2:NF-YA2 into pEarlyGate301 

(Earley et al. 2006), and NF-YB2, NF-YB2-EDLL, and NF-YB2E65R-EDLL into 

pK7FWG2 (Karimi et al. 2002) using the GATEWAYTM LR Clonease II reaction 
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kit (cat#56485; Invitrogen). Table S1 lists primer sequences used for cloning 

and mutagenesis. 

 

Plant transformation, cultivation and flowering time experiments 

Arabidopsis thaliana ecotype Columbia (Col-0) was the wild type for all 

experiments. nf-yb2 nf-yb3 (Cao et al. 2011a) and co-9  (Balasubramanian et al. 

2006) were previously described. Plants were transformed using Agrobacterium 

mediated floral dipping (Clough and Bent 1998). Plants were cultivated in a 

custom-built walk-in chamber under standard long day conditions (16-h light/8-h 

-dark) using plant growth conditions previously described (Siriwardana-in 

review). Leaf number at flowering was measured as the total number of rosette 

and cauline leaves on the primary axis at flowering.   

 

Western Blots  

Total protein was extracted by grinding in lysis buffer (20 mM Tris, pH 8.0, 150 

mM NaCl, 1 mM EDTA, pH 8.0, 1% Triton X-100, 1% SDS with fresh 5 mM DTT, 

10 mM protease inhibitor and 5 mM MG132). NF-YB2-YFP/HA and NF-YA2-

CFP/HA were detected using high affinity anti-HA primary antibody (cat#11 867 

423 001; Roche) and goat anti-rat secondary antibody (cat#SC-2032; Santa 

Cruz Biotechnology). Horseradish peroxidase-based ECL plus reagent was 

used for visualization in a Bio-Rad ChemiDoc XRS imaging system. The 

membrane was stained with Ponceau S (cat#P3504; Sigma-Aldrich) to 

determine equivalent loading and transfer efficiency.        
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Confocal imaging  

p35S:NF-YB2-YFP and p35S:NF-YB2E65R:YFP in nf-yb2 nf-yb3 background, 

and nf-yb2 nf-yb3 seeds were cold stratified in the dark for 48-h then 

germinated and grown on B5 media under 24hr light. Six to seven-day-old 

seedlings were counterstained with propidium iodide (PI) (50 µg/mL) for five 

minutes, washed in DI water for five minutes and whole mounted in fresh DI 

water on standard slides. Hypocotyls were imaged with an Olympus FluoView 

500 using a 60X WLSM objective. XYZ scans were taken with line sequential 

scanning mode where fluorescent signals were sampled using a filter_based 

detection system optimized for YFP and PI with chloroplast autofluorescence 

also detected in the latter. YFP was excited using a 488 nm Argon laser 

whereas PI was excited using a 543nm Helium Neon laser. Approximately 50 

serial sections were imaged with a cubic voxel size of 414 nm x 414 nm x 414 

nm. Image processing took place in ImageJ (http://rsb.info.nih.gov/ij/) where 

average intensity projections where taken from YFP and PI channels and 

merged. 

 

Yeast two-hybrid (Y2H) and three-hybrid (Y3H) analysis 

Entry clones of NF-YA2 and NF-YC9, which were previously described 

(Kumimoto et al. 2010) Siriwardana-in review), were subcloned into pDESTTM22 

(Invitrogen) and pTFT1 (Ciannamea et al. 2006) respectively to obtain an 

activation domain (AD) and bridge construct. The DNA binding domain (DBD) 
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and AD constructs for NF-YB2 and NF-YC9 were previously described 

(Kumimoto et al. 2010). The plasmids were transferred to the yeast strains 

MaV203 (Invitrogen) for Y2H and PJ69-4 (James et al. 1996) for Y3H analysis. 

Protein interactions were tested according to the ProQuestTM manual 

(Invitrogen). For the X-Gal assay nitrocellulose membranes were frozen in liquid 

nitrogen and placed on a filter paper saturated with Z-buffer containing X-Gal 

(5-bromo-4-chloro-3-indoxyl-beta-D-galactopyranoside, Gold Biotechnology, 

cat#Z4281L). For the synthetic dropout medium lacking the amino acid Histidine 

5 mM 3-amino-1,2,4-triazole (3-AT) was added to eliminate nonspecific 

activation.   

 

qPCR analysis  

Total RNA was collected from seven-day-old or nine-day-old seedlings 

according to instructions in the E.Z.N.A Plant RNA Kit (cat#R6827-01; Omega 

Biotek). First-strand cDNA synthesis was performed as previously described 

(Siriwardana-in review). For qPCR a CFX ConnectTM Real-Time PCR Detection 

System (Bio-Rad) with the SYBR Green qPCR Master Mix (cat#K0222; 

Fermentas) was used. Results were analyzed using CFX ManagerTM (Bio-Rad) 

where samples were normalized to a constitutively expressed reference gene 

At2G32170 (Czechowski et al. 2005). Table S2 lists primer sequences used for 

qPCR analysis. 

 

Contributions 
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This project was conceived by Dr. Ben Holt, myself and Dr. Roderick Kumimoto. 

I cloned all the genes and mutant constructs, other than NF-YB2-EDLL, which 

was cloned by Rod Kumimoto. I made the transgenic NF-YA and NF-YB 

overexpressors by Agrobacterium mediated transformation and collected the 

stable lines. I performed the flowering time analysis, western blot, qPCR, and 

multiple sequence alignments. Zachary Myers, an undergraduate at the time 

under my direct supervision, performed the RNA extractions. Daniel Jones 

performed the confocal imaging with my assistance. 
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Figure 3.1. NF-YB2E65R loses interaction with NF-YA subunits. A) Alignment 
of the core domain of human and Arabidopsis NF-YB subunits. * marks the 
position of the conserved glutamic acid required for interaction with NF-YA in 
humans (Nardini et al, 2013). B) NF-YB2 and NF-YB2E65R interact with NF-YC3, 
NF-YC4, and NF-YC9 in Y2H assays. C) NF-YB2 but not NF-YB2E65R interacts 
with NF-YA2 when NF-YC9 is expressed using a bridge vector in Y3H assays.  
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Figure 3.2.  p35S:NF-YB2E65R cannot rescue the nf-yb2 nf-yb3 late flowering 
phenotype. A) Photograph of flowering time in p35S:NF-YB2 and p35S:NF-
YB2E65R in nf-yb2 nf-yb3. B) T1 flowering time quantification of p35S:NF-YB2 
and p35S:NF-YB2E65R in the nf-yb2 nf-yb3 background. C) T1 flowering time 
quantification of p35S:NF-YB2 and p35S:NF-YB2E65R in the Col-0 background. 
D) Protein expression analysis of NF-YB2E65R in the nf-yb2 nf-yb3 background. 
E) Protein localization of NF-YB2E65R in the nf-yb2 nf-yb3 background.     
Asterisks represent significant differences derived from one-way ANOVA (P < 
0.05) followed by Dunnett’s multiple comparison post hoc tests against nf-yb2 nf-
yb3 or Col-0.            
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Figure 3.3. p35SNF-YB2E65R plants cannot express high FT.  Expression of A) 
NF-YB2 B) FT C) AP1.      
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 Figure 3.4. A strong activation domain (EDLL) is not able to recue the NF-
YB2E65R flowering phenotypes. T1 flowering time quantification of p35S:NF-
YB2, p35S:NF-YB2-EDLL, and p35S:NF-YB2E65R-EDLL in A) co-2 B) co-9 C) 
short days D) ft-10 E) Col-0 F) b2b3. Asterisks represent significant differences 
derived from one-way ANOVA (P < 0.05) followed by Bonferroni’s multiple 
comparison tests.            
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Figure 3.5. NF-YA2 maybe a positive regulator of photoperiod dependent 
flowering. A) Flowering time quantification of two independent p35S:NF-YA2, 
p35S:NF-YA7, p35S:NF-YA8, and p35S:NF-YA9 plant lines. B) Flowering time 
quantification of two independent pNF-YA2:NF-YA2 plant lines. C) The 
expression pattern of pNF-YA2-GUS in leaves of 10 day old plants. Asterisks 
represent significant differences derived from one-way ANOVA (P < 0.05) 
followed by Dunnett’s multiple comparison post hoc tests against Col-0.       
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Figure 3.6. FT is upregulated in pNF-YA2:NF-YA2. Expression of A) CO B) FT 
C) AP1. Asterisks represent significant differences derived from Student’s T-tests 
(p<0.05).      
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Figure 3.7. pNF-YA2:NF-YA2-EDLL can induce flowering in the absence of 
CO. Flowering time in A) co-2 B) co-9 C) ft-10 D) Col-0. Asterisks represent 
significant differences derived from one-way ANOVA (P < 0.05) followed by 
Bonferroni’s multiple comparison tests. 
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Supplemental Table 3.1. Cloning primers.  

 
Construct Cloning Primer 

 

NF-YB2 F-ATGGGGGATTCCGACAGGGATTCCG 

R-AGTCCTTGTCCTACCGGAGGCAGGT 

pNF-YA2:NF-YA2 F-CATATGACGTATATGCACATTTTTA 

R-GGTTTTGAAATTGCATTATCCATTGG 

EDLL Domain F- TATAGGCGCGCCGAAGTTTTCGAGTTTGAGTATTTG 

R- TATAGGCGCGCCTCTCTTCCTTTCTTCTGAATCAAG 
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Supplemental Table 3.2. Mutagenic Primers used for cloning the NF-
YB2E65R mutant. The Mutagenic primers were used with the full-length NF-
YB2 cloning primers to make mutations.   

Construct Mutagenic Primer 
 

NF-YB2E65R F- AGTGTGTCTCCCGGTTCATCAGCT 

R- AGCTGATGAACCGGGAGACACACT 
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Supplemental Table 3.3. qPCR primers used to measure gene expression. 

Gene qPCR primer 
 

NF-YA2 F-TAGAGGATCCGGTGGGAGATTCTTGA 

R-CCAAGAGAATGAACGGGAGAACTTAGG 

NF-YB2 F-CCGGTGGAGGGCAAAACGGGAAC 

R-GGCGGGCAAGGCCTTCTTCA 

FT F- CAGGCAAACAGTGTATGCACCAGG 

R- CCGCAGCCACTCTCCCTCTG 

AP1 F-AGGGAAAAAATTCTTAGGGCTCAACAG 

R-GCGGCGAAGCAGCCAAGGTTCAGTTG 

CO F-GAGCAACAACCTGACCCTGCAAGCCAGA 

R-GAACCGGCCATTGACCCGCGGTCTTATC 
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Supplemental Figure 3.1. Alignment of core domain of NF-YA subunits 
and CCT domain of CCT proteins. * marks the positions where the conserved 
glutamic acid in NF-YB, discusses in this paper that is required for interaction 
with NF-YA, makes physical contact (Nardini et al, 2013).   
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Supplemental Figure 3.2. p35S:NF-YB2E65R cannot rescue the nf-yb2 nf-
yb3 late flowering phenotype. T1 flowering time quantification using the date 
to first bud of p35S:NF-YB2 and p35S:NF-YB2E65R in the nf-yb2 nf-yb3 
background. 
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Supplemental Figure 3.3. p35S:NF-YB2E65R cannot rescue the nf-yb2 nf-
yb3 late flowering phenotype. A) Protein expression in two stable plant lines 
for p35S:NF-YB2 and p35S:NF-YB2E65R in the nf-yb2 nf-yb3 background  B)T3 
stable line flowering time quantification of p35S:NF-YB2 and p35S:NF-YB2E65R 
plant lines in the nf-yb2 nf-yb3 background. Asterisks represent significant 
differences derived from one-way ANOVA (P < 0.05) followed by Dunnett’s 
multiple comparison post hoc tests against nf-yb2 nf-yb3. 
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Supplemental Figure 3.4. Expression of NF-YA2 in pNF-YA2:NF-YA2 
plants. Asterisk represents significant differences derived from Student’s T-
tests (p < 0.05).       
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 Supplemental Figure 3.5. MFT is upregulated in pNF-YA2:NF-YA2.  
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Chapter 4: Mapping protein interaction domains of Arabidopsis 

NF-YC9  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 119 

Summary 

Three unrelated protein families encode NF-Y subunits: NF-YA, NF-YB, and 

NF-YC, which are ubiquitous to eukaryotes. The protein domains necessary for 

NF-Y function are well characterized in animal systems; however, similar 

studies are lacking in plants. Here I analyzed the Arabidopsis NF-YC9 protein, 

whose function has been extensively studied during plant development 

programs, including photoperiodic flowering, light perception and plant abscisic 

acid (ABA) response. I chose to test the protein-protein interactions between 

NF-YC9 and its known interactors CO (photoperiodic flowering), HY5 (light 

perception), ABF3 (ABA responses), NF-YA1, NF-YA2, and NF-YB2 to identify 

the regions of NF-YC9 that interacts with each target. The NF-YC9 protein has 

a conserved domain flanked by two non-conserved domains. I found that, 

similar to animal systems, the conserved domain is required for its interaction 

with target proteins. I also found that the requirement of the non-conserved 

regions varies with the targets. I identified two mutants in NF-YC9, one that 

abolishes interaction with all the targets tested and one that is able to interact 

with the ABF3 and NF-YB2 but loses interaction with CO, HY5, NF-YA1, and 

NF-YA2. By overexpressing the mutant versions of NF-YC9 in plants, I was 

able to show that the specific amino acids are important for NF-YC9 biological 

function. That is, the NF-YC9 mutant that lost interaction with proteins that 

regulate flowering (CO, NF-YA1, and NF-YA2) was unable to drive the normal 

flowering responses of NF-YC9. This is the first study in plants that looks at NF-

Y protein interactions and added to the studies done in animal systems 
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demonstrating that, while the conserved domain is indispensable for protein 

function, the non-conserved regions are also necessary for the interaction 

between NF-YC9 and most of its targets.    
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Introduction 

Protein interactions, especially between transcription factors, are a key 

mechanism through which plants regulate development. NF-Y transcription 

factors are composed of three subunits, NF-YA, NF-YB, and NF-YC. In the 

model plant species Arabidopsis thaliana (Arabidopsis) the NF-Y subunits have 

demonstrated roles in photoperiod dependent flowering (Ben-Naim et al. 2006b; 

Wenkel et al. 2006a; Cai et al. 2007; Chen et al. 2007; Kumimoto et al. 2008a; 

Kumimoto et al. 2010), embryogenesis (West et al. 1994; Lotan et al. 1998; 

Kwong et al. 2003; Lee et al. 2003), abscisic acid (ABA) responses (Nelson et 

al. 2007; Warpeha et al. 2007; Li et al. 2008; Yamamoto et al. 2009; Leyva-

Gonzalez et al. 2012; Kumimoto et al. 2013; Mu et al. 2013), endoplasmic 

reticulum stress responses (Liu and Howell 2010), light signaling (Warpeha et al. 

2007), salt stress responses (Li et al. 2013), photosynthesis (Kusnetsov et al. 

1999; Stephenson et al. 2010), and root elongation (Ballif et al. 2011). The 

molecular mechanisms on how the NF-Y regulates these processes are not well 

understood. However, NF-Y proteins are known to interact with other key 

transcription factors that regulate flowering, light signaling, and ABA responses.   

 

Here I have summarized what is known currently about the nature of NF-Y 

interactions with other transcription factors. During the initiation of flowering, 

several NF-YC subunits interact with CONSTANS (CO), a key regulator of 

photoperiod dependent flowering (Ben-Naim et al. 2006a; Wenkel et al. 2006b; 

Kumimoto et al. 2010). A series of deletion mutants and substitution mutants in 
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CO have led to the identification of the protein domains in CO necessary for 

interaction with the NF-YC subunits (Ben-Naim et al. 2006a; Wenkel et al. 

2006b). The authors were able to demonstrate that the conserved CCT domain 

in CO is necessary for the interaction with NF-YC subunits. CCT stands for CO, 

CO-LIKE (COL), and TIMING OF CAB1 (TOC1) and this domain is shared 

among the 17 member CO-LIKE family of proteins. Although the domains in CO 

necessary for the CO/NF-YC interaction has been tested, the reciprocal test 

identifying the NF-YC protein domain(s) necessary for CO interaction has not 

been done. Similarly, NF-Ys interact with ABFs and HY5, bZIP transcription 

factors that regulate ABA responses (Kang et al. 2002). HY5 is also a key 

transcription factor that regulates light responses and was recently shown to act 

as a mediator between light signaling and ABA responses (Chen et al. 2008). 

Three NF-YC members, NF-YC3, NF-YC4, and NF-YC9, interact with ABF1, 

ABF2, ABF3, ABF4 and HY5 (Kumimoto et al. 2013). In addition NF-YB2 

specifically interacts with ABF3. The protein domains of NF-YB2 that interact 

with ABF3 were studied in detail; however the protein domains of NF-YC that 

are required for interactions remain unidentified. Therefore, although the current 

literature has identified NF-YC interactions with other transcription factors, the 

domain(s) and specific amino acids that mediate these interactions remain 

unknown. Further, although almost all the combinations of NF-YA/NF-YB/NF-

YC proteins can trimerize, the domain(s) and amino acids that are required 

remain unknown.          
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Although NF-Y protein interactions have not been well studied in plant systems, 

NF-Y trimerization has been extensively studied in yeast and animals. A large 

set of deletion mutants and amino acid substitution mutants are available from 

these systems that identified protein domains indispensable or necessary for 

the trimer formation (Sinha et al. 1995; Kim et al. 1996; Sinha et al. 1996). From 

these studies, we know that the NF-YC conserved domain is sufficient for the 

formation of a stable NF-YB/NF-YC complex. However, a larger portion is 

necessary to form a stable complex (Kim et al. 1996). Portions of both the 

conserved and non-conserved domain were essential for NF-YA to interact with 

the NF-YB/NF-YC dimer. 

 

Using the literature from animal systems as a guide, I identified the protein 

interaction domains of one of the NF-YC subunits, NF-YC9. NF-YC9 has a 

conserved domain flanked by two non-conserved regions. I demonstrated that 

the conserved domain of NF-YC9 is indispensable for the interaction with CO, 

HY5, ABF3, NF-YA1, NF-YA2 and NF-YB2. The conserved domain alone was 

not able to interact with any of the target protein, and required partial protein 

regions from non-conserved regions. However, the requirement of the non-

conserved regions varied with the target, where some proteins only required a 

small portion of the non-conserved regions and other required the complete 

region. Further, I was able to identify mutants in NF-YC9, which abolished 

interactions with specific targets. I show that the biochemical assays have 
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biological relevance by introducing the mutants into plants and testing the 

effects of the mutations on protein function.              

 

Results 

NF-YC9 protein has a conserved core domain and non-conserved N-

terminus and C-terminus 

Protein alignment of the ten NF-YC subunits from Arabidopsis and the human 

NF-YC subunit demonstrate that all NF-YC proteins have a highly conserved 

core domain (Figure 4.1, Supplementary Figure 4.1, and Siefers et al. 2009). 

The core domain folds into four α-helixes. In animals αC makes contact with the 

NF-YA subunit and α2 makes contact with the NF-YB subunit (Mantovani 1999; 

Nardini et al. 2013). All the Arabidopsis NF-YC proteins show a high degree of 

identity throughout the core domain (Supplementary Figure 4.2). The core 

domain is flanked on either side by a non-conserved N-terminus and C-

terminus. Phylogenic analysis demonstrates that the NF-YC9 core domain is 

most closely related to NF-YC3 (Supplementary Figure 4.3 and (Siefers et al. 

2009). The NF-YC9 full-length protein also shares a high degree of identity with 

full-length NF-YC3. However, the identity is lower with other full-length NF-YC 

proteins (Supplementary Figure 4.2).  

 

The conserved core domain is required for NF-YC9 protein interactions  

Data from animal systems have shown that the core domain is indispensable 

for interaction with target proteins. Due to the high conservation between the 
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animal and plant core domains, I expected that the same will be true for plants. 

I used directed yeast 2-hybrid assays (Y2H) to test interaction between NF-YC9 

and known targets. All the target proteins tested - CO, HY5, ABF3, NF-YA1, 

NF-YA2, and NF-YB2 - required the conserved core domain for interaction 

(Figure 4.2). Except for NF-YB2, none of the targets interacted with NF-YC9 

when truncations were made to the core domain. NF-YB2 still interacted with 

the core domain when the αC helix was eliminated. In animals, it has been 

shown that the αC helix is required for NF-YA interaction and the α2 helix is 

required for the NF-YB interaction (Mantovani 1999; Nardini et al. 2013). 

However, NF-YB2 did not interact with the core domain alone and required a 

partial sequence from either the N-terminus or the C-terminus for interaction. 

The requirement of the N-terminus or C-terminus was not specific as NF-YB2 

interacted with the core domain when it was fused to either the N-terminus or C-

terminus. Indicating that while part of the core domain was indispensable for the 

interaction (the αC helix was not required for the NF-YB2/NF-YC9 interaction), 

the N-terminus or C-terminus were possibly required to stabilize the protein 

interaction.       

 

The necessity of the N-terminus and C-terminus varies with different 

proteins    

NF-YB2 interacted with the core domain if either the N-terminus or C-terminus 

was attached (Figure 4.2). However, all the other targets required the N-

terminus for interaction. NF-YA2 alone did not interact when the C-terminus 
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was eliminated. Interactions between NF-YC9 and CO, HY5, ABF3 and NF-

YA1 did not require the C-terminus.  

 

The first 58 amino acids were eliminated from the N-terminus of NF-YC9 and a 

truncation was made from AA59 to the end of the core domain. This construct 

still interacted strongly with CO and NF-YB2; however, the interaction with 

ABF3 and NF-YA1 was almost eliminated and the interaction with HY5 was lost. 

This shows that CO and NF-YB2 only require a small portion of the N-terminus 

for stable interactions, whereas ABF3, NF-YA1, and HY5 required a larger 

portion. Taken together these results show that the necessity for the N-terminus 

and C-terminus varies with the target.  

 

NF-YC9F151R V153K loses interaction with CO, HY5, NF-YA1 and NF-YA2 

In humans, the two mutants NF-YCI51D and NF-YCF113R I115K were identified to 

specifically lose interactions with the NF-YA but not the NF-YB. The NF-YCI51D 

mutation is in the α1 helix and the NF-YC9F113R I115K is in the αC helix. Recent 

crystal structure analysis demonstrated that the phenylalanine in NF-YCF113R 

I115K makes physical contacts with NF-YA (Nardini et al. 2013). The core 

domains of human NF-YC and Arabidopsis NF-YA are highly conserved (Figure 

4.1; (Siefers et al. 2009) and, observing the alignment, I found that the 

isoleucine in human NF-YCI51D and phenylalanine in human NF-YCF113R I115K to 

be absolutely conserved. The isoleucine in Human NF-YCF113R I115K was less 

conserved in Arabidopsis and NF-YC9 has a valine in that position. To test the 
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effects of these mutations in Arabidopsis, I created the same mutants in NF-

YC9, NF-YC9I89D and NF-YC9F151R V153K.   

 

NF-YC9I89D lost interaction with all the targets tested (Figure 4.3). This indicates 

that this amino acid is generally required for NF-YC9 protein interactions. The 

NF-YC9F151R V153K double mutant was able to interact with ABF3 and NF-YB2 

(Figure 4.3). The NF-YC9/ABF3 interaction was weaker; however, the NF-

YC9/NF-YB2 interaction was not affected at all. This result is consistent with my 

previous finding that the αC helix was not required for the NF-YB2 interactions 

(the mutant NF-YC9F151R V153K is in the αC helix). However, all the other targets 

tested, CO, HY5, NF-YA1, and NF-YA2, lost interaction when tested against 

the NF-YC9F151R V153K double mutant. This was consistent with my finding that 

these targets required the αC helix for interactions.  

 

pNF-YC9:NF-YC9F151R V153K cannot rescue the late flowering nf-yc triple 

mutants 

I was interested in testing the biological relevance of the Y2H assays performed. 

For this I was interested to see if the NF-YC9F151R V153K mutant affects the 

biological function of the protein. NF-YC9 together with NF-YC3 and NF-YC4 

are required for photoperiod flowering (Kumimoto et al. 2010). The nf-yc3 nf-

yc4 nf-yc9 triple mutant flowers significantly later than the wild type. However, 

when any of the three NF-YC genes are overexpressed in the triple mutant 

background, it is able to rescue the late flowering phenotype (Kumimoto et al. 
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2010). I wanted to test if NF-YC9F151R V153K, which lost interaction with other 

transcription factors involved in promoting flowering - CO and NF-YA1 (Wenkel 

et al. 2006b) and NF-YA2 (Siriwardana C.L. and Holt B.H; unpublished data) - 

was able to rescue the late flowering phenotype of the triple mutant. My 

hypothesis was that the double mutant that cannot interact with CO, NF-YA1, 

and NF-YA2 would not be able to rescue the late flowering phenotype of the 

triple mutant. I did T1 flowering time analysis on pNF-YC9:NF-YC9 and pNF-

YC9:NF-YC9F151R V153K in the triple mutant background to test the ability of the 

constructs to rescue the late flowering phenotype. The results demonstrate that 

while pNF-YC9:NF-YC9 was able to rescue the triple mutant phenotype, pNF-

YC9:NF-YC9F151R V153K was not able to rescue (Figure 4.4). pNF-YC9: NF-

YC9F151R V153K  had a dominant negative effect and flowered later than the triple 

mutant.    

 

To ensure that the flowering responses seen above were not due to the lack of 

protein accumulation, I tested transgenic protein accumulation in the mutants. 

As my control, I used a pNF-YC9:NF-YC9 plant line that was able to strongly 

rescue the late flowering phenotype. Out of the 12 pNF-YC9:NF-YC9F151R V153K 

plant lines tested, six had a similar level of protein expression. However, none 

of these plant lines was able to rescue the late flowering phenotype. This 

demonstrates that transgenic protein accumulated in both constructs, however 

the pNF-YC9: NF-YC9F151R V153K mutant alone was not able to rescue late 

flowering.  
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Discussion 

Here I found that the NF-YC9 protein domains and amino acids required for 

protein-protein interactions were conserved between plants and animals. In 

animals the α2 helix is indispensable for NF-YB/NF-YC interactions and I found 

the same true for plants (Sinha et al. 1996; Nardini et al. 2013). Additionally, I 

was able to show that a portion of the core domain was not required for NF-

YB/NF-YC interactions. The interaction took place both when this region was 

deleted and when a mutation was introduced. The αC region was indispensable 

for interaction with NF-YA proteins. Interestingly the same region was also 

indispensable for interaction with the COL and bZIP targets. This indicates that 

the NF-YB/NF-YC dimer forms using the α2 helix of NF-YC, and the NF-YA 

subunit interacts with the dimer using the αC helixes of NF-YB (Nardini et al. 

2013) and NF-YC. The trimer then may provide a platform for other target 

proteins to interact and initiate transcription.  

 

The NF-YB2 core domain is sufficient for its interaction with NF-YC9 

(Siriwardana C.L. and Holt B.H.; unpublished data), whereas the NF-YC9 core 

domain alone did not interact with NF-YB2. However, the NF-YC9 core domain 

was able to interact when fused to either the N-terminus or C-terminus, 

indicating that the core domain alone is sufficient for the interaction, but it is not 

able to form a stable complex. Sinha et al., (1996) came to a similar conclusion 

where they found that although the core domain is sufficient for interactions, a 
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larger portion is required to form a stable complex. The NF-YA proteins required 

both the core domain and either the N-terminus (NF-YA1) or both the N and C-

terminus (NF-YA2). The COL and bZIP targets tested also required the core 

domain and the N-terminus but not the C-terminus for interactions. CO was able 

to interact when about half of the N-terminus was deleted; however, HY5 and 

ABF3 required the complete N-terminus. This shows that while the conserved 

core domain is indispensable for interactions, the adjacent non-conserved 

regions also play an important role in the interactions.                     

 

The prNF-YC9:NF-YC9 F151R V153K plants were not able to rescue the triple 

phenotype. These results were expected because the mutant did not interact 

with two transcription factors required for flowering, CO (Wenkel et al. 2006b) 

and NF-YA2 (Siriwardana et al., unpublished data). Current data strongly 

suggest that NF-YA are positive regulators of flowering (discussed in Chapter 3). 

However Wenkel et al. (2006) proposed NF-YAs act as negative regulators of 

flowering. In the model proposed by the authors, CO and NF-YA subunits 

compete to bind the NF-YB/NF-YC dimer where CO activates transcription and 

NF-YA subunits exert a negative effect by competing with CO. This hypothesis 

was partly based on the alignments of COL proteins and NF-YA, which share a 

region of homology in their DNA binding domain. However, the region of 

homology does not extend to the subunit interaction domains. In my analysis, 

CO and NF-YA (as well as HY5 and ABF3) interacted with the same domains of 

NF-YC9. Further, the same amino acids were required for CO and NF-YA (as 
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well as HY5 and ABF3) to bind NF-YC9. These data suggest the possibility of a 

replacement model, where CO replaces NF-YA to bind NF-YC9. However, I find 

it unlikely because the NF-YC interaction domain of NF-YA does not share 

homology with CO. It is possible that that NF-YA and CO interacts with NF-YC9 

using the same amino acids. Similarly, NF-YB and NF-YC interact with NF-YA 

using the same amino acids (Nardini et al. 2013) and mutations of these amino 

acids led to the loss of interaction with both NF-YB and NF-YC (Xing et al. 

1994). It is likely that NF-YA interactions with the NF-YB/NF-YC dimer makes a 

platform used by CO and other transcription factors to bind the trimer. Analyzing 

the crystal structure of the NF-Y trimer in complex with its interacting proteins 

will allow us to answer this question.  

 

Here I have shown that the conserved core domain is indispensable for the 

Arabidopsis NF-YC9 to interact with target proteins. The core domain alone was 

not able to interact with target proteins and required portions of the N-terminus 

and C-terminus. This research will be extended in the future to study the protein 

interaction domain in NF-YA, NF-YB and the COL/bZIP targets. A similar 

approach as used here with a set of truncations and mutations in NF-YA and 

NF-YB will be used to study protein regions and specific amino acids required 

for interactions. Further, crystalizing the NF-Y complex with the COL/bZIP 

targets will be both a confirmation of the Y2H and allow us to model the NF-Y 

and its target complexes.                         
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Materials and methods 

Multiple sequence alignments 

Arabidopsis full-length protein sequences were obtained at The Arabidopsis 

Information Resource (TAIR) (http://www.arabidopsis.org (Huala et al. 2001). 

The human NF-YC protein sequence was obtained from the National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Multiple sequence 

alignments were developed using ClustalX program (Thompson et al. 2002) 

within the software program Geneious.    

 

Cloning 

The clones generated and primer sequences are provided (Supplementary 

Table 1). The mutations were made using mutagenic PCR and the mutagenic 

primer sequences are provided (Supplementary Table 2). Each construct was 

amplified from cDNA by PCR using the proof reading enzyme Pfu Ultra II 

(cat#600670) and cloned into the GATEWAYTM entry vector pENTR/D-TOPO 

(cat#45-0218; Invitrogen). All resulting clones were sequenced and other than 

the intentionally introduced mutations were identical to the sequences at TAIR 

(http://www.arabidopsis.org (Huala et al. 2001). All the clones were sub cloned 

into the Y2H expression vectors pDESTTM22 or pDESTTM32 (Invitrogen). The 

pNF-YC9:NF-YC9 construct was previously described (Kumimoto et al. 2010). 

The entry clone pNF-YC9:NF-YC9F151R V153K was sub cloned into the plant 

expression vector pEarlyGate301 (Earley et al. 2006).            
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Y2H analysis 

The respective activation domain (AD) or DNA binding domain (DBD) 

constructs was introduced into the yeast strain MaV203 (Invitrogen). Y2H 

assays were performed according to the instructions in the ProQuestTM manual 

(Invitrogen). For the X-Gal assay nitrocellulose membranes were frozen in liquid 

nitrogen and placed on a filter paper saturated with Z-buffer containing X-Gal 

(5-bromo-4-chloro-3-indoxyl-beta-D-galactopyranoside, Gold Biotechnology, 

cat#Z4281L).   

 

Plant transformation, cultivation and flowering time experiments  

Arabidopsis thaliana ecotype Col-0 was the wild type for all experiments. The 

triple mutant was previously described (Kumimoto et al. 2010). Agrobacterium 

mediated floral dipping was used to transform the triple mutant with pNF-

YC9:NF-YC9 and pNF-YC9:NF-YC9F151R V153K (Clough and Bent 1998). All 

experiments were carried out on plants grown in a custom-built walk-in chamber 

under standard long day conditions (16-h light/8-h dark). Plant growth 

conditions were as previously described (Siriwardana-in review). Leaf number 

at flowering was measured as the total number of rosette and cauline leaves on 

the primary axis at flowering.        

 

Western Blot 

Total protein was extracted from three-week-old soil grown plants by grinding in 

lysis buffer (20 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, pH 8.0, 1% Triton 
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X-100, 1% SDS with fresh 5 mM DTT, 10 mM protease inhibitor and 5 mM 

MG132). NF-YC9/HA was detected using high affinity anti-HA primary antibody 

(cat#11 867 423 001; Roche) and goat anti-rat secondary antibody (cat#SC-

2032; Santa Cruz Biotechnology). Horseradish peroxidase-based ECL plus 

reagent was used for visualization in a Bio-Rad ChemiDoc XRS imaging system. 

The membrane was stained with Ponceau S (cat#P3504; Sigma-Aldrich) to 

determine equivalent loading and transfer efficiency.        

   

Contributions 

This project was conceived by Dr. B. Holt and myself. I cloned all the genes and 

mutant constructs and introduced them into yeast expression vectors. I 

performed all the Y2H experiments.  I made the transgenic pNF-YC9:NF-

YC9F151R V153K overexpressors by Agrobacterium mediated transformation and 

performed the flowering time experiment and western blot. The undergraduate 

researchers, C. Boatwright and Z. Myers, assisted me during the experiments.   
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Figure 4.1. The Arabidopsis NF-YC protein. A) Schematic diagram of the full-
length Arabidopsis NF-YC9 protein. B) Alignment of the Arabidopsis and human 
NF-YC core domains. At: Arabidopsis thaliana; Hs: Homo sapience.       
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Figure 4.2. The conserved core domain is required for NF-YC9 interactions. 
A) Deletions of NF-YC9 domains. B) NF-YC9 truncations.    
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Figure 4.3. NF-YC9F151R V153K loses interaction with CO, HY5, NF-YA1, and 
NF-YA2 but not ABF3 and NF-YB2.  
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Figure 4.4. pNF-YC9:NF-YC9F151R V153K cannot rescue the triple phenotype. 
A) T1 generation flowering time analysis. B) Protein expression in the plant 
lines used for the flowering time analysis. Asterisks represent significant 
differences derived from one-way ANOVA (P < 0.05) followed by Dunnett’s 
multiple comparison post hoc tests against the nf-yc triple mutant. 
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Supplemental Table 4.1. The amino acid sequences of NF-YC9 truncations 
and primers used for amplification.  

Construct Amino acids Primers 
 

NF-YC9 1 - 231 F-ATGGCTATGCAAACTGTGAGAGAAG 

R-GGTTTTGAAATTGCATTATCCATTGC 

N-term 1 - 80 F- ATGGCTATGCAAACTGTGAGAGAAG 

R-GCTGTGGTTCTTGAAATCGGTAGTC 

C-term 158 - 231 F-CGGGGAGGATCCGAGATGAAGTC 

R- GGTTTTGAAATTGCATTATCCATTGC 

HFM 81 - 157 F-CTTCCCCTTGCGAGAATCAAG 

R-GGGAACAATATCCACAAGGAAATC 

N-term + HFM 1 - 157 F- ATGGCTATGCAAACTGTGAGAGAAG 

R- GGGAACAATATCCACAAGGAAATC 

HFM + C-term 81 - 231 F- CTTCCCCTTGCGAGAATCAAG 

R- GGTTTTGAAATTGCATTATCCATTGC 

AA 59 - 157 59 - 157 F-CTTCAAGCATTTTGGGAGAACCAATTC 

R- GGGAACAATATCCACAAGGAAATC 

AA 1 - 135 1-135 F- ATGGCTATGCAAACTGTGAGAGAAG 

R-ATCGTTCTTCTGCAACGTCCGCCT 
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Supplemental Table 4.2. Mutagenic primers used to clone NF-YC9 mutants. 
The Mutagenic primers were used with the full-length NF-YC9 cloning primers 
(Supplementary Table 4.1) to make point mutations.   

 
Construct Mutation Mutagenic Primers 

 

NF-YC9I89D I89D F-AGAATCAAGAAAGCATGAAAGCGGAT 

R-ATCCGCTTTCATGCTTTCTTGATTCT 

NF-YC9F151RV153K F151R V153K F-GATATTTTTGATCGGATATTGTTCCC 

R-GGGAACAATATCCGATCAAAAATATC 
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Supplementary Figure 4.1. Multiple sequence alignment of full- length NF-
YC proteins. The Conserved core domain is underlined in black. At: 
Arabidopsis thaliana; Hs: Homo sapiens. 
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Supplementary Figure 4.2. Identity matrix of the full-length and core 
domain NF-YC proteins. A) Full-length B) core domain. At: Arabidopsis 
thaliana; Hs: Homo sapiens. 
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Supplementary Figure 4.3. NF-YC family phylogenies. Phylogenetic trees 
were constructed by neighbor joining using the full-length protein sequences 
with in MEGA5.2 (Tamura et al. 2011).    
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Chapter 5: Arabidopsis NF-YA are transcriptionally, post-

transcriptionally and post-translationally regulated by light  
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Summary 

NF-Y transcription factors are composed of three independent protein families, 

NF-YA, NF-YAB, and NF-YC. The three proteins form a trimer and then bind 

target CCAAT boxes on genes regulated by the NF-Y. Research from animal 

systems has shown that the NF-YAs are present in limited amounts for trimer 

formation, whereas the NF-YB and NF-YC are abundant. In animals, NF-YA 

proteins are regulated through phosphorylation and ubiquitination followed by 

proteasome-mediated degradation. Similar studies in plants are lacking. In 

general, plant NF-Y are poorly studied and the mechanisms by which these 

transcription factors are regulated is not well understood.  

 

Here I have demonstrated that light, the external environmental cue crucial for 

plants at every developmental stage, plays a vital role regulating the abundance 

of NF-YA transcript and protein levels.  I showed that the stability of NF-YA 

mRNA was light dependent. The same was true for NF-YA proteins. I was 

further able to demonstrate that some NF-YA proteins are degraded through the 

proteasome. Yeast two-hybrid (Y2H) screening identified a kinase, CKB4, as a 

direct physical interactor of NF-YA2. CBK4 is a kinase that phosphorylates its 

targets in response to light signals. The current study is the first to look at NF-

YA transcript and protein stability in response to light, and strongly suggests 

tight regulation of accumulation at multiple levels is imposed on this 

transcription factor family in plants.                 
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Introduction 

Light is arguably the most crucial environmental cue regulating plant 

development. Plants require light for food production through photosynthesis; 

as a result light signaling regulates every step of plant development including 

seed germination, seedling establishment, flowering and fruit set. At the 

molecular level, different wavelengths of light are perceived through specialized 

photoreceptors called phytochromes and cryptochromes (Estelle 2001; Lau and 

Deng 2010). The photoreceptors then initiate a signaling mechanism that 

activates or represses specific targets that lead to differential gene expression. 

A key player in this pathway is the ubiquitin E3 ligase CONSTITUTIVE 

PHOTOMORPHOGENIC 1 (COP1), which is directly and differentially regulated 

by the photoreceptors. COP1 is a negative regulator of photomorphogenesis or 

light induced growth. In the dark, COP1 degrades key transcription factors 

necessary for activating genes that respond to light; and one of the most crucial 

is LONG HYPOCOTYL 5 (HY5). HY5 is also phosphorylated by members of the 

caseine kinase (CKII) family in the dark, which ensures that the residual HY5 

remains in a less active form (Estelle 2001). Recently HY5 was demonstrated to 

physically interact with the Nuclear Factor-Y (NF-Y) transcription factors 

(Kumimoto et al. 2013). 

 

NF-Ys are heterotrimeric transcription factors composed of three independent 

subunits, NF-YA, NF-YB, and NF-YC (Mantovani 1999; Siefers et al. 2009; 
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Fleming et al. 2013). The NF-Ys are sequence specific and bind CCAAT boxes 

on target promoters. Neither of the subunits can bind DNA alone. All three 

subunits trimerize, in a stepwise manner prior to making DNA contact with the 

NF-YA subunit, which contacts with the CCAAT box. Studies in animal systems 

have shown the NF-YB and NF-YC subunits are abundant and that the NF-YA 

is limiting for trimer formation (Dolfini et al. 2012). In animals, the NF-YA 

proteins are regulated via both phosphorylation and proteasome mediated 

degradation (Manni et al. 2008). The lysine (R) residue responsible for tagging 

the protein with ubiquitin has been identified and these R residues are 

conserved in plants (Kumimoto R. W. and Holt B.F. – unpublished data), 

indicating that plant NF-Y are likely to be regulated through a similar 

mechanism. However similar studies are lacking in plant systems.      

 

The regulation of plant NF-Y in general is poorly studied.  The only aspect that 

has been studied is the targeting and degradation of plant NF-YA through 

microRNA. In the model plant Arabidopsis thaliana (Arabidopsis), seven out of 

the ten NF-YA transcripts are targeted by a microRNA, miR169 (Rhoades et al. 

2002). The developmental consequences resulting from the regulation of NF-

YA transcript through miR169 is well studied for developmental programs 

ranging from embryogenesis to flowering responses and during plant stress 

responses (Combier et al. 2006; Li et al. 2008). This interaction has also been 

conserved in other plant species where orthologs of miR169 and NF-YA 

regulate such developmental programs as bud formation and nodulation in 
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legumes (Ni et al. 2013; Potkar et al. 2013). However, how the NF-YA (or the 

NF-Y in general) are regulated in plants, other than being targeted by miR169, 

is not known.  

 

Recently studies of the NF-YC subunits have demonstrated that they are able 

to regulate light responses in plants (Kumimoto R.W. and Holt B.F. – 

unpublished data). Because the NF-Y bind DNA as a trimer, it is likely that NF-

YA and NF-YB subunits show a similar response. Here I show that select NF-

YAs have light related growth phenotypes. I also show that NF-YA transcript 

and protein stability is dependent on light availability. Through a Y2H screen I 

found that NF-YA2 is able to physically interact with a CKII family member 

CKB4. This study is the first to look at NF-YA regulation by light, and strongly 

suggests that the abundance of NF-YA is tightly regulated in plants.    

 

Results 

p35S:NF-YA have shorter hypocotyls under red light. 

A triple mutant of NF-YC subunits, nf-yc3 nf-yc4 nf-yc9, has significantly longer 

hypocotyls than the wild type in red light conditions (Kumimoto R.W. and Holt 

B.F. – unpublished data). Although minor differences were seen in blue light 

and other light conditions, the most deficient response was seen towards red 

light, indicating that the NF-Y may primarily regulate responses to red light. To 

see if the NF-YAs have a similar response to red light, the overexpressors of all 

10 NF-YA genes were tested in red light. The results showed that six NF-YA 
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lines tested had significantly shorter hypocotyls in comparison to the wild type 

(Figure 5.1). The data suggest that these six NF-YA subunits could potentially 

work with the three NF-YC subunits to regulate light responses.  

 

The light related phenotypes suggested that NF-YA might be able to regulate 

the expression of genes involved in light signaling. The Holt lab has collected 

gene expression data on p35S:NF-YA2 plants (p35S:NF-YA2 had a light 

phenotype above) through a RNA-Seq analysis (Kumimoto R.W. and Holt B.F. 

– unpublished data). I tested for enrichment of Gene Ontology (GO) terms 

related to light signaling in this data set. GO analysis of the data demonstrated 

that the GO term “cellular response to light stimulus” was significantly enriched. 

Key genes that regulate light responses such as PHYTOCHROME 

INTERACTING FACTOR 3 (PIF3), PIF4, and SPA1 were misregulated in 

p35S:NF-YA2 plants (Table 5.1). The child GO terms of “cellular response to 

light stimulus” - “response to red light”, “response to far red light”, “response to 

blue light”, “response to UV” were also enriched. The data strongly suggest that 

NF-YA2 has an important role regulating light responses.  

 

NF-YA genes are differentially regulated in response to light availability 

The availability of key regulators in light signaling, for example HY5, is 

regulated by light (Estelle 2001). Therefore I tested if light can directly regulate 

the abundance of NF-YA. I first looked at NF-YA transcript levels. I tested the 

relative expression of NF-YA genes grown on continuous light or grown on 
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continuous light and transferred to dark for 24-h or 48-h. qPCR results show 

that NF-YAs have differential responses to light availability (Figure 5.2A). 

Transcript levels of NF-YA2, NF-YA4, NF-YA8, and NF-YA10 were down 

regulated in the dark treatments. In contrast NF-YA7 transcript was upregulated 

in the dark.  

 

Transcript levels of some light regulated transcription factors show a clear daily 

oscillation (Carre and Veflingstad 2013). I tested if this was true for the NF-YA. I 

selected NF-YA2, which had a strong response to light availability, to test the 

oscillation under long day cycles (16-h light/8-h dark). The results show that NF-

YA2 transcript did not fluctuate during a 24-h time period (Figure 5.2B). As a 

control, I also tested FT, a gene that is strongly upregulated at the end of long 

days, and the results show FT was 80-fold upregulated (Figure 5.2C).  

 

NF-YA protein are regulated by light 

NF-YA transcript levels were differently regulated by extended periods of 

darkness. This suggested that the protein levels might also show a similar 

response. Two NF-YA genes that had differential response to light at the 

transcriptional level, NF-YA2 and NF-YA7, were selected for the analysis. Total 

protein was extracted from p35S:NF-YA2 and p35S:NF-YA7 plants grown in 

continuous light or grown on continuous light and transferred to dark for 24-h or 

48-h. The results showed that NF-YA2 protein may have degraded when plants 

were treated with dark for 24 or 48-h (Figure 5.3). However it is possible that 
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the decrease in protein level was directly a result of the decrease in transcript. 

NF-YA7 protein levels remained unchanged in the light and dark treatments.  

 

NF-YA proteins are degraded through the proteasome  

The results above suggested that NF-YA2 protein may be degraded in the dark, 

indicating that like animal NF-YA, the protein may be targeted to the 

proteasome for degradation. To test this, a cell free degradation assay was 

performed using the proteasome inhibitor MG132. The results showed that NF-

YA2 protein rapidly degraded in the absence of MG132, however the protein 

was stable in the presence of MG132 (Figure 5.4). This result suggests that NF-

YA2 is targeted to the proteasome for degradation. Further experiments 

showing that NF-YA2 is ubiquitinated will help establish proteasome mediated 

degradation.      

 

CKB4 physically interacts with NF-YA2 

I performed an Y2H library screen to identify novel protein interactors of NF-

YA2. This screen identified seven novel interactors of NF-YA2, one of which 

was CKB4, a component of the CKII kinase complex. CKII kinase 

phosphorylates its targets in response to light signals and the circadian clock 

(Daniel et al. 2004). The ability NF-YA2 to physically interact with CKB4 

suggests that NF-YA2 may be a target that is phosphorylated. The NF-YA2 

protein contains putative CK2 phosphorylation sites (S/T XX D/E). However, 

further experimental validation with kinase assays are required to demonstrate 
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that CKB4 is able to phosphorylate NF-YA2. This data suggests that, like 

animal NF-YA, plant NF-YA may also be phosphorylated and the kinase 

involved in likely CKB4.   

Discussion 

Here I present preliminary data that suggests a mechanism for NF-YA 

regulation through light. NF-YA transcript showed differential response to light 

availability. NF-YA2, NF-YA8, NF-YA4, and NF-YA10 were down regulated 

when at least a 24-h dark treatment was given. In contrast NF-YA7 was 

upregulated in the dark. Arabidopsis NF-Y transcription factors have been 

shown to have opposing regulatory role during plant development (Kumimoto et 

al. 2013; Siriwardana et al. 2014 and Holt lab – unpublished data). It is possible 

that the differential regulation of transcript is partially responsible for the ability 

to opposingly regulate plant development. In contrast to animals, which have 

one of each NF-Y member, plant have multiple NF-Y members/ per family 

(Petroni et al. 2012). However, the significance of this expansion is not well 

understood, and how the closely related NF-Y in plants differently regulates 

plant development is in question. We know that the expanded plant NF-Y have 

specific spatial and temporal distribution patterns (Siefers et al. 2009), which 

accounts for its ability to regulate specific development programs. For example 

NF-YB6 and NF-YB9 are only expressed in the early embryo stage and 

specifically regulate embryogenesis (Lotan et al. 1998). The differential 

regulation of NF-YA transcript by light also may provide such specificity, where 

specific NF-YA regulates plant development according to the availability of light.               
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Animal NF-Y proteins are regulated through phosphorylation and degradation 

by the proteasome (Manni et al. 2008). The data presented here strongly 

suggest a similar mode of regulation for the plant NF-YA proteins. Animal 

literature suggests that NF-YA are the limiting factor for trimer formation (Dolfini 

et al. 2012). The NF-YB and NF-YC are abundant in-vivo, however the NF-Y 

trimer is required for DNA binding (Mantovani 1999), therefore the presence or 

absence of NF-YA could be controlling the ability of the trimer to bind DNA and 

regulate gene expression. Because these data suggest that plant NF-YAs are 

also regulated by similar mechanisms it is possible that NF-YA are also the 

limiting factor in plants. However, future research looking at the abundance and 

activity of plant NF-Y are required to answer this question.  

 

The mechanism by which NF-YA are regulated according to the preliminary 

data given here is strikingly similar to how HY5 is regulated (Estelle 2001). HY5 

protein accumulates only when light is available. In the dark HY5 protein is 

rapidly degraded by the proteasome. The E3 ligase, COP1, attaches ubiquitin 

to HY5 for it to be targeted to the proteasome. It is possible that NF-YAs are 

also ubiquitinated through COP1, and this needs to be tested in the future. HY5 

is also phosphorylated by members of the caseine kinase (CKII) family in the 

dark, which ensures that the residual HY5 remains in the less active form. Here 

I found that NF-YA2 is able to physically interact with a CKII member, CKB4. 

Future experiments are needed to test if CKIIs can phosphorylate NF-YA2; 
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however the data here suggest that this is a possibility. Further, NF-YC proteins 

physically interact with HY5 (Kumimoto et al. 2013). Research from animal 

systems suggests that NF-Y do not require histone modifications to bind DNA, 

and can help requite or make chromatin assessable to other transcription 

factors (Fleming et al. 2013).  Based on the data, it is possible to hypothesize 

that NF-Y help requite HY5 to promoters of targets genes. The regulation of NF-

YA subunits in a mechanism similar to HY5 may ensure that NF-Y complexes 

are not formed in the dark and adds an additional layer of insurance that HY5 

does not activate these promoters. In addition it is possible that miR169 may 

also regulate NF-YA in response to light availability and this needs to be 

investigated.  

       

Preliminary data suggest plant NF-YA are regulated by light. Further 

experiments with more detailed analysis are required to fully understand the 

significance of this regulation. However this data adds to current data that 

demonstrate NF-YA are dynamically regulated in plants trough miR169 by 

adding mechanisms such as phosphorylation and proteasome mediated 

degradation. Studying these regulatory mechanisms will bring us closer to 

understanding why the NF-Y expanded in the plant lineage and how the closely 

related NF-YA gene family differentially regulates plant development.           

Materials and methods 

Plant cultivation and hypocotyl measurements 
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Arabidopsis thaliana ecotype Columbia (Col-0) was used as the wild type for all 

experiments. For hypocotyl measurements, protein extraction and RNA 

extraction seedlings were grown on plates under continuous light unless 

otherwise noted. Seeds were sterilized by treating with 70% ethanol for 5 min 

and 50% household bleach for 5 min followed by five washes of sterile distilled 

water and germinated on Gamborg’s B5 media. Hypocotyl length experiments 

were done in a custom built light chamber, where the 660 nm light wavelength 

was used as red light. For hypocotyl length measurements plants were 

photographed and the hypocotyl was measured using Image J1.46r 

(http://rsb.info.nih.gov/ij/ (Schneider et al. 2012)).     

 

Western blot and cell free degradation assay 

Total protein was extracted from 14-day-old plants by grinding in lysis buffer (20 

mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, pH 8.0, 1% Triton X-100, 1% SDS 

with fresh 5 mM DTT, and 100 µM MG132).  NF-YA-CFP/HA was probed with 

high affinity anti-HA primary antibody (cat#11 867 423 001; Roche) and goat 

anti-rat secondary antibody (cat#SC-2032; Santa Cruz Biotechnology). The Bio-

Rad ChemiDoc XRS imaging system was used for visualizing the protein blot 

after incubations with ECL plus reagent (cat#RPN2132; GE Healthcare). 

Equivalent loading and transfer efficiency was determined by staining the 

protein blot with Ponceau S (cat#P3504; Sigma-Aldrich).   

 

qPCR Analysis 
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Total RNA was extracted using the E.Z.N.A. Plant RNA Kit (cat#R6827-01; 

Omega Biotek) according to the manufacturers instructions. Genomic DNA was 

digested during RNA extraction by treating the columns with DNase 

(cat#E1091; Omega Biotek). First-strand cDNA was synthesized using the 

Superscript III First-Strand Synthesis System (cat#18080-051; Invitrogen). 

qPCR was performed using a CFX ConnectTM Real-Time PCR Detection 

System (Bio-Rad) with the SYBR Green qPCR Master Mix (cat#K0222; 

Fermentas). Gene expression analysis was done using the CFX ManagerTM 

software (Bio-Rad). Normalized expression, ∆∆Cq, was selected as the analysis 

mode. Samples were normalized to a constitutively expressed reference gene, 

At2g32170 (Czechowski et al. 2005). Three biological replicates were used for 

the qPCR.   

 

Contributions 

This project was conceived by Dr. B. Holt and myself. I performed the hypocotyl 

length analysis, plant cultivation, RNA extraction and qPCR, western blots, and 

cell free degradation assays. I also performed the Y2H library screen that 

identified CKB4 as an interactor of NF-YA2.  Z. Myers assisted me during RNA 

extraction and western blots. I performed the GO analysis on RNA-seq data 

collected and analyzed by Dr. B. Holt and Dr. K. Kumimoto with the assistance 

of Bioo-scientific, Austin, TX.    
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Table 5.1.   List of genes that belong to the overrepresented GO term 
“cellular response to light stimulus”  

 

Gene ID Fold 
change 

Annotation 

AT1G08830 197.00 CSD1|copper/zinc superoxide dismutase 1 

AT2G42540 10.63 COR15A|COR15|cold-regulated 15a 

AT4G25560 3.79 LAF1|AtMYB18|MYB18|LONG AFTER FAR-RED 
LIGHT 1|myb domain protein 18 

AT1G09530 3.74 PIF3|POC1|PAP3|phytochrome interacting factor 
3|PHOTOCURRENT 1|PHYTOCHROME-

ASSOCIATED PROTEIN 3 

AT2G28190 2.34 CSD2|CZSOD2|copper/zinc superoxide dismutase 
2 

AT2G43010 -19.04 PIF4|SRL2|AtPIF4|phytochrome interacting factor 4 

AT5G24120 -9.2 SIGE|SIG5|ATSIG5|sigma factor E|SIGMA 
FACTOR 5 

AT5G04190 -9.94 PKS4|phytochrome kinase substrate 4 

AT2G46790 -3.12 APRR9|PRR9|TL1|Arabidopsis pseudo-response 
regulator 9|pseudo-response regulator 9|TOC1-

LIKE PROTEIN 1 

AT1G07180 -3.81 ATNDI1|NDA1|ARABIDOPSIS THALIANA 
INTERNAL NON-PHOSPHORYLATING NAD ( P ) 

H DEHYDROGENASE|alternative NAD(P)H 
dehydrogenase 1 

AT5G02810 -2.27 PRR7|APRR7|pseudo-response regulator 7 

AT4G34190 -2.09 SEP1|stress enhanced protein 1 

AT1G54160 -2.69 NFYA5|NF-YA5|NUCLEAR FACTOR Y A5|"nuclear 
factor Y, subunit A5" 

AT3G59060 -2.26 PIL6|PIF5|phytochrome interacting factor 3-like 
6|PHYTOCHROME-INTERACTING FACTOR 5 

AT2G46340 -2.09 SPA1|SUPPRESSOR OF PHYA-105 1 
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Figure 5.1. Percent hypocotyl elongation in red light for p35S:NF-YA 
plants. Plants grown in red light was compared to dark to calculate percent 
hypocotyl elongation. Asterisks represent significant differences derived from 
one-way ANOVA (P < 0.05) followed by Dunnett’s multiple comparison post hoc 
test against Col-0.       
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Figure 5.2.  NF-YA transcripts are opposingly regulated by light. A) 
Relative expression of NF-YA transcript in Col-0 plants grown under continuous 
light or grown under continuous light and transferred to dark for 24 or 48-h. B) 
Oscillation of NF-YA2 transcript level during a 24-h time period in long days. C) 
Oscillation of FT transcript level during a 24-h time period in long days. 
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Figure 5.3. NF-YA proteins are regulated by light. Western blot showing total 
protein extracted from plants grown in continuous light or grown in continuous 
light and transferred to dark for 24-h or 48-h for A) p35S:NF-YA2 B) p35S:NF-
YA7.   
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Figure 5.4. NF-YA2 proteins are degraded through the proteasome. Cell 
free degradation assay in the absence or presence of the proteasome inhibitor 
MG132.  
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Chapter 6: Summary of yeast 2-hybrid analysis done to 

understand protein-protein interactions of the NF-Y   
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Introduction 

Chapter 6 includes a collection of yeast 2-hybrid (Y2H) experiments done to 

answer a wide variety of questions related to the NF-Y and its protein 

interactions. Y2H detects protein-protein interactions between two proteins 

(Fields and Song 1989). This technique utilizes properties of a transcription 

factor in yeast, GAL4. GAL4 has two separable functionally essential domains: 

a DNA binding domain (DBD) and an activation domain (AD). The two domains 

are required to be in close proximity to activate transcriptions, however they are 

not required to be covalently attached. In Y2H, the two proteins of interest are 

fused to the DBD or the AD. If the two proteins physically interact it brings the 

DBD and AD into close proximity and the complex is able to initiate transcription. 

Both reporter genes, such as lacZ and auxotrophic markers such as HIS3 or 

URA3 fused to artificial promoters, are used as targets of GAL4. Since the 

development of Y2H in 1989 by Fields and Song, the Y2H technique has 

gained immense popularity as a simple yet powerful semi in-vivo tool to detect 

protein-protein interactions.  

 

I used Y2H to gain insight on the NF-Y protein interactions in plants. A majority 

of the work presented here has been published elsewhere in collaboration with 

other lead authors or will be published in the future.        
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Results 

Brachypodium NF-YC proteins physically interact with Arabidopsis NF-YB, 

CO and TOC1 

 

This work was published in BMC Biotechnology.  

Cao S., Siriwardana C.L., Kumimoto R.W., Holt B.F. III. (2011) Construction 

of high quality GatewayTM entry libraries and their application to yeast two-

hybrid for the monocot model plant Brachypodium distachyon. BMC 

Biotechnology. 11:53.      

 

I did a set of experiments to see if NF-Y from different species are able to 

physically interact.  Available literature demonstrated that the NF-Y proteins are 

highly conserved in plants (Siefers et al. 2009), suggesting that they may be 

able to physically interact. Previous studies had demonstrated that the 

Arabidopsis NF-YC proteins interacted with the Arabidopsis CO, TOC1, NF-

YB2, and NF-YB3 (Kumimoto et al. 2010). I tested the ability of three NF-YC 

subunits in Brachypodium distachyon (Brachypodium), an emerging grass 

model species, to interact with Arabidopsis CO, TOC1, NF-YB2, and NF-YB3. 

The results demonstrated that the Arabidopsis and Brachypodium proteins are 

able to physically interact (Figure 6.1). This showed that the NF-Y in 

Arabidopsis and Brachypodium are structurally and functionally conserved.  

Further, Dr. S. Cao developed a high quality yeast two-hybrid library for 

Brachypodium, and the ability of Arabidopsis and Brachypodium proteins to 



 165 

interact suggested that this library can be utilized for plant species other than 

Brachypodium.         

 

The Brachypodium orthologs of Arabidopsis NF-YB2 and NF-YB3 

physically interact with Arabidopsis NF-YC proteins that regulate 

flowering. 

 

This work was published in PLoS ONE.  

Cao S., Kumimoto R.W., Siriwardana C.L., Risinger J.R., Holt B.F. III. (2011) 

Identification and characterization of NF-Y transcription factor families in the 

monocot model plant Brachypodium distachyon. PLoS ONE. 6:6.  

 

I further extended the cross-species protein interaction assays by testing 

interaction between Arabidopsis NF-YC and Brachypodium NF-YB proteins 

during flowering. In Arabidopsis two NF-YB proteins, NF-YB2 and NF-YB3, and 

three NF-YC proteins, NF-YC3, NF-YC4, and NF-YC9, physically interacted 

and regulated flowering (Kumimoto et al. 2008b; Kumimoto et al. 2010). Loss-

of- function nf-yb2 nf-yb3 mutants were extremely late flowering; however the 

late flowering phenotype was rescued by overexpressing either NF-YB2 or NF-

YB3 (Risinger and Holt, unpublished data). J. Risinger tested if two 

Brachypodium NF-YB genes that are orthologs of Arabidopsis NF-YB2 and NF-

YB3 are able to rescue the late flowering phenotype of the Arabidopsis nf-yb2 

nf-yb3 mutants. The results showed that the Brachypodium NF-YB were able to 
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rescue the Arabidopsis mutants, demonstrating that they are functionally 

compatible (Cao et al. 2011a). This result indicated that the Brachypodium NF-

YB proteins are able to make a functional protein complex with the Arabidopsis 

NF-YC proteins, NF-YC3, NF-YC4, and NF-YC9. I tested this possibility using a 

Y2H assay and found that the Brachypodium NF-YB and Arabidopsis NF-YC 

were able to physically interact (Figure 6.2). I concluded that the Brachypodium 

NF-YB proteins physically interacted with Arabidopsis NF-YC subunits and 

functionally complemented the Arabidopsis NF-YB proteins.    

 

NF-Y proteins interact with the ABRE-binding bZIP transcription factors 

that regulate ABA signaling.  

 

This work was published in PLoS ONE.  

Kumimoto R.W., Siriwardana C.L., Gayler K.K., Risinger J.R., Siefers N., 

Holt B.F. III. (2013) NUCLEAR FACTOR Y transcription factors have both 

opposing and additive roles in ABA-mediated seed germination. PLoS ONE. 8:3. 

 

Abscisic acid (ABA) is a plant stress response hormone. The ABA signaling 

cascade results in the activation of a group of bZIP transcription factors that 

binds and regulates ABA response genes. Recently a bZIP transcription factor 

that regulates ABA responses, bZIP67, were shown to interact with NF-Y 

subunits (Yamamoto et al. 2009). bZIP67 was able to make a complex with the 

NF-YB/NF-YC dimer and activate the promoter of CRUCIFERIN C (CRC), 
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which encodes a seed storage protein. The NF-Y trimer was also shown to 

interact with a bZIP transcription factor, bZIP28, during endoplasmic stress 

responses (Liu and Howell 2010). The two NF-Y/bZIP interactions suggested 

that NF-Y/bZIP interactions may be ubiquitous during plant stress responses. 

To investigate this possibility, I used network analysis to study whether bZIP 

transcription factors associate with the NF-Y. I found that the bZIP/NF-Y 

interactions are commonly predicted (Figure 6.3). Other than NF-Y/bZIP 

interactions the network analysis also predicted the NF-Y interactions with 

CONSTANS-LIKE (COL) proteins. The Holt lab previously showed that the NF-

Y/COL interactions are common in plants (Kumimoto et al. 2010; Cao et al. 

2011b), demonstrating that the network analysis predictions could be 

experimentally validated.  

 

To further investigate the NF-Y/bZIP protein interactions I used Y2H analysis. 

Two NF-YB subunits, NF-YB2, NF-YB3, and three NF-YC subunits, NF-YC3, 

NF-YC4, and NF-YC9, are involved in ABA mediated seed germination 

(Kumimoto et al. 2013). Further NF-YB1 was involved drought tolerance 

(Nelson et al. 2007). I tested if these subunits are able to interact with bZIP 

transcription factors that regulate ABA responses ABF1, ABF2, ABF3, ABF4, 

and HY5. The results showed that the three NF-YC subunits interacted with all 

the bZIP proteins tested and NF-YB2 interacted with ABF3 (Figure 6.4). This 

showed that NF-YC subunits ubiquitously interacted with the bZIP proteins, 

whereas the NF-YB proteins conferred specificity.  
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NF-YB2 and NF-YB3 proteins are highly conserved and share an identical 

conserved histone fold motif (HFM) (Siefers et al. 2009). Since ABF3 interacted 

with NF-YB2 and not NF-YB3, it was hypothesized a region outside the 

conserved HFM is required for the ABF3/NF-YB2 interaction. NF-YB2 HFM is 

flanked by a less conserved N-terminus and C-terminus. J. Risinger made 

constructs with the N-terminus, C-terminus, HFM, N-terminus + HFM, and C-

terminus + HFM. None of these constructs interacted with ABF3, demonstrating 

that the full-length protein is required for interactions (Figure 6.5). This result led 

to the hypothesis that the HFM flanking regions may be providing a stabilizing 

platform. To test this possibility J. Risinger constructed chimeric proteins of NF-

YB2 and NF-YB10. NF-YB10 is distantly related to NF-YB2 and does not 

interact with ABF3. The N-terminus and HFM of NF-YB2 fused to the C-

terminus of NF-YB10 was able to interact with ABF3. The complementary 

construct (N-terminus and HFM of NF-YB10 fused to C-terminus of NF-YB2) or 

the N-terminus and HFM of NF-YB10 were not able to interact with ABF3. This 

result demonstrated that the N-terminus and HFM of NF-YB2 confer specificity 

and the C-terminus stabilizes the NF-YB2/ABF3 protein complex.                    

 

Most Arabidopsis NF-YB proteins are able to physically interact with the 

NF-YC proteins that regulate flowering.  

Plant NF-Y transcription factors have undergone an extensive expansion 

compared to animals (Siefers et al. 2009), however the significance of this 
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expansion is not well understood. To get insight in to the expansion of the NF-

YB family J. Risinger studied the ability of the complete NF-YB gene family to 

drive flowering. Two NF-YB subunits NF-YB2 and NF-YB3 are known to 

regulate flowering (Kumimoto et al. 2008b). The nf-yb2 nf-yb3 double mutant is 

extremely late flowering; however the late flowering phenotype was rescued by 

overexpressing either NF-YB2 or NF-YB3. When six other NF-YB genes that do 

not have a known role in flowering were overexpressed some genes were able 

to rescue the flowering phenotype and others were not (Risinger J.R., and Holt 

B.H., unpublished data). I used a Y2H assay to test if the NF-YB subunits used 

in the rescue experiment was able to interact with three NF-YC subunits that 

regulate flowering, NF-YC3, NF-YC4, and NF-YC9. The results showed that all 

the NF-YB subunits, other than NF-YB10, were able to interact with the NF-YC 

subunits (Figure 6.6). These results indicated that the NF-YB/NF-YC 

interactions are ubiquitous and was not the limiting factor for some NF-YB to 

rescue and others not to rescue the late flowering phenotype.  

 

The NF-YB proteins have a highly conserved histone fold motif (HFM). The 

HFM alone, of select NF-YB genes, were able to rescue the nf-yb2 nf-yb3 late 

flowering phenotype (Risinger J.R., and Holt B.H., unpublished data). This data 

led to the hypothesis that the HFM is able to form a stable functional protein 

complex with the NF-YC subunits. I used a Y2H analysis to test if the HFM of 

NF-YB proteins can interact with NF-YC subunits and found that they were able 

to interact (Figure 6.7). The results confirmed the hypothesis that the NF-YB 
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HFM alone is able to interact and form a functional protein complex with NF-YC 

proteins.    

 

A Y2H library screen identified novel interactors of NF-YA2  

The developmental process regulated by the NF-Y in plants is not well 

understood. Currently we know that the NF-Y primarily regulates photoperiod 

dependent flowering, ABA and other stress responses, embryogenesis, and 

nodulation in legumes (Petroni et al. 2012). Identifying novel proteins that 

interacts with NF-Y can potentially lead to the identification of yet unknown 

development programs regulated by the NF-Y. Y2H library screens are a 

powerful technique to detect novel protein interactors. I screened an Y2H library 

to identify novel interactors of a NF-YA subunit, NF-YA2. I was able to identify 

seven interacting proteins of NF-YA2 (Table 6.1). All of these are novel 

interactors that have not previously been published as NF-YA2 interacting 

proteins. Three of the interacting proteins, CKB4, ARC6, and LSU1 have been 

well studied in literature. 

 

CKB4 encodes a casein kinase II beta chain (CKII) (Perales et al. 2006; 

Moreno-Romero et al. 2011). CKII are highly conserved serine/threonine 

kinases composed of two α subunits and two β subunits, with four members of 

each subunit in Arabidopsis. In plants CKII are primarily known to regulate the 

circadian clock and light regulated development. Known targets of CKII are 

transcription factors regulating circadian and light responses and include HY5 
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(Hardtke et al. 2000), LONG HYPOCOTYL IN FAR-RED LIGHT 1 (HFR1) (Park 

et al. 2008), LONG AFTER FAR-RED LIGHT 1 (LAF1) (Seo et al. 2003), LATE 

ELONGATED HYPOCOTYL (LHY) (Sugano et al. 1998), and PHYTOCHROME 

INTERACTING FACTOR 1 (PIF1) (Bu et al. 2011). The NF-Ys also have a role 

during circadian and light regulated development and is known to regulate or 

interact with targets of the CKII (Kumimoto et al. 2013) and Holt B. F., 

unpublished data), therefore it is likely that NF-YA subunits are also targeted by 

the CKII during circadian and light regulated development, adding an additional 

layer  of regulation. Recently CKII subunits were also shown to regulate 

flowering time in Arabidopsis. Multiple order mutants of CKII subunits are late 

flowering and have reduced FT expression (Mulekar et al. 2012). The target of 

CKII during regulation of flowering is not known; it is possible that CKII targets 

NF-YA2, which can be responsible for the phenotype. Further, phosphorylation 

by CKII demonstrates a novel mechanism by which the NF-YA proteins are 

regulated in plants.    

 

ACCUMULATION AND REPLICATION OF CHLOROPLASTS 6 (ARC6), is a 

transmembrane protein localized to the chloroplast that plays a major role in 

chloroplast division (Glynn et al. 2008). arc6 mutants are characterized by 

having one to two oversized chloroplasts per mesophyll cell (Pyke et al. 1994). 

Further research is needed to demonstrate the role played by NF-Y during 

chloroplast divisions, however in animal systems, NF-Y have been extensively 

published to be involved in cell division (Ly et al. 2013). Similar studies in plant 
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systems are lacking, and the interaction between NF-YA2 and ARC6 is a 

possible starting point to investigate the role played by NF-Y during cell division 

in plants.  

 

Genomic analysis in Arabidopsis identified RESPONSE TO LOW SULFUR 1 

(LSU1), as a protein that confered adaptation to low sulfur environments 

(Maruyama-Nakashita et al. 2005). NF-Y subunits have not been associated 

with sulfur deficiency to date, however they have been shown to respond to 

another macromolecule essential for plant growth, nitrogen. NF-YA genes are 

strongly upregulated and its target miR169 is strongly down-regulated by 

nitrogen starvation (Zhao et al. 2011). A similar mechanism of regulation may 

take place during sulfur deficiency and warrants further investigations to the role 

played by NF-Y during sulfur deficiency and the significance of the interaction 

with LSU1.  

 

Chapter 6 demonstrated the versatility of the of the Y2H technique in answering 

a wide variety of questions and as a tool to develop new hypothesis. I was able 

to demonstrate interaction between the NF-YB/ NF-YC subunits, interspecies 

interactions among the plant NF-Y subunits, and NF-Y/bZIP interaction during 

ABA and light responses.  I was also able to identify novel interactors of NF-

YA2 through a Y2H library screen, which can be used as starting points to 

develop hypothesis to further the study of NF-Y in plant systems.     
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Materials and methods 

Directed Y2H analysis and Y2H library screen 

The respective activation domain (AD) or DNA binding domain (DBD) 

constructs was introduced into the yeast strain MaV203 (Invitrogen). Directed 

Y2H assays were performed according to the instructions in the ProQuestTM 

manual (Invitrogen). For the X-Gal assay nitrocellulose membranes were frozen 

in liquid nitrogen and placed on a filter paper saturated with Z-buffer containing 

X-Gal (5-bromo-4-chloro-3-indoxyl-beta-D-galactopyranoside, Gold 

Biotechnology, cat#Z4281L).   

 

The Y2H library used in the screen was previously described, and was a 

GatewayTM ready library made from mixing equal parts of hormone treated and 

untreated seedlings, flowers, developing seeds, and primary leaves (Burkle et 

al. 2005). The Y2H library screen was performed according to the instructions in 

the ProQuestTM manual (Invitrogen).      

 

Protein-protein interaction network 

Individual protein-protein interaction networks were built for NF-YC3, NF-YC4, 

and NF-YC9 using GeneMANIA (http://www.genemania.org (Mostafavi et al. 

2008; Warde-Farley et al. 2010)). Selection criteria to develop the network map 

in GeneMANIA were predicted interactions and physical interactions with a 50-

gene output. Default settings in GeneMANIA were used for network weighting. 

The individual network maps built in GeneMANIA for NF-YC3, NF-YC4, and 
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NF-YC9 were downloaded as text files and combined to build a protein 

interactome  in Cytoscape 2.8.0 (http://www.cytoscape.org (Cline et al. 2007)). 

Data from Y2H library screens and directed Y2H assays done in the Holt lab 

and published interactions (Kumimoto et al. 2010) of NF-YC3, NF-YC4, NF-YC9 

were manually added to the protein interactome in Cytoscape.        

 

Contributions 

I was a co-author, but not the lead author, in the publications presented in this 

chapter. My contribution was to conceive the Y2H experiments with the lead 

author and Dr. B. Holt.  I performed all the directed Y2H experiments discussed 

in this chapter. Cloning the genes and ligating into Y2H vectors were performed 

by R. Kumimoto, J. Risinger, A. Robbins, or myself.  I performed the Y2H library 

screen with NF-YA2. I also performed the network analysis.         
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Table 6.1. Novel interactors of NF-YA2 identified through an Y2H library 
screen.  

AGI 
Number 

Gene Name Notes 
 

AT2G44680 CKB4 Encodes casein kinase II beta chain (CKII) 

AT5G42480 ARC6 Encodes accumulation and replication of chloroplast 6 

AT3G49580 LSU1 Encodes response to low sulfur 1 

AT1G34380  Encodes 5’-3’ exonuclease family protein 

AT2G39280  Encodes gyp1 super family protein 

AT5G61200  Unknown protein  

AT2G36220  Unknown protein 
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Figure 6.1. Interaction between Brachypodium NF-YC and select 
Arabidopsis proteins. The Brachypodium NF-YC orthologs Bradi1g32200, 
Bradi1g67980, and Bradi3g05270 were cloned as Gal4 DNA binding domain 
(DBD) fusions and directly tested for the ability to physically interact with 
previously described Gal4 activation domain (AD) fusions to full length 
Arabidopsis CO, TOC1, NF-YB2, and NF-YB3. EV - empty vector; MC - 
manufacturer’s (Invitrogen) controls (+ strong interactor, +/- weak interactor, - 
non-interactor). 
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Figure 6.2. BdNF-YB3 and BdNF-YB6 can physically interact with 
Arabidopsis NF-YC3, 4, and 9. DBD, DNA-binding domain; AD, activation 
domain. EV - empty vector; MC - manufacturer’s (Invitrogen) controls (+ strong 
interactor, +/- weak interactor, - non-interactor) 
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Figure 6.3. NF-YC3, NF-YC4, and NF-YC9 protein-protein interaction 
network. Both demonstrated and GeneMANIA predicted protein-protein 
interaction data for NF-YC3, NF-YC4, and NF-YC9 were visualized using 
Cytoscape. Predicted physical interactions are depicted as dashed lines, while 
demonstrated interactions are depicted as solid lines. Input nodes NF-YC3, NF-
YC4, and NF-YC9 are shown as squares. Circle nodes are those predicted data 
from GeneMANIA. Octagonal nodes represent demonstrated physical 
interactions. Related protein nodes are colored as follows: red-bZIP; blue-CCT; 
green-H2A; orange/tan-NF-YB; yellow-NF-YA; gray-unclassified interacting 
proteins.           
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Figure 6.4.  NF-YB and NF-YC subunits interact with bZIP transcription 
factors. Directed Y2H interactions between NF-YB or NF-YC subunits fused to 
DNA binding domains (DBD) and select bZIP proteins fused to activation 
domain (AD). Two independent colonies are shown for the activation of a β-
galactosidase reporter gene. A) NF-YC3, NF-YC4, and NF-YC9 interactions 
with ABF1-4 and HY5. B) NF-YB1, NF-YB2, and NF-YB3 interactions with 
ABF1-4 and HY5. MC = manufacturers controls (+ = strong positive, +/- = 
intermediate positive, - = negative, EV = empty vector.  
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Figure 6.5. Full length NF-YB2 is required for the ABF3 interaction. Y2H 
assays were performed between AD:ABF3 and DBD fused to A) Full length NF-
YB2 (AA 1-90), B2HFM (AA 26-121), B2N (AA 1-25), B2C(AA 122-190), 
B2N+B2HFM (AA 1-122), and B2HFM+B2C (AA 122-190); B) Chimeric 
constructs – full length NF-YB10 (AA 1-228), NF-YB2/NF-YB10, NF-YB10/NF-
YB2, NF-YB10/NF-YB2, NF-YB10N(AA 1-27), and NF-YB10C (AA 123-228).  
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Figure 6.6. NF-YB1 - NF-YB10 interact with NF-YC3, NF-YC4, and NF-YC9. 
NF-YB subunits were expressed as DNA binding domain (DBD) constructs and 
NF-YC subunits as activation domain (AD) constructs. EV = empty vector.       
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Figure 6.7. The conserved core domain of NF-YB1, NF-YB2, and NF-YB10 
are sufficient for interaction with NF-YC subunits. NF-YB core domains 
were expressed as DNA binding domain (DBD) constructs and NF-YC subunits 
as activation domain (AD) constructs. EV = empty vector.       
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Chapter 7: Conclusion 
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Conclusions and Future Directions 

The NF-Y, consisting of three independent gene families, NF-YA, NF-YB, and 

NF-YC, has expanded in plants compared to animals. For example the model 

plant Arabidopsis thaliana (Arabidopsis) has 10 members per family compared 

to one member of each family in humans.  The significance of this expansion is 

not well understood, primarily due to lack of studies done on plant NF-Y. Here I 

studied in detail the role of NF-YA genes during seed germination and flowering. 

I also studied biochemical properties of the NF-Y by looking at protein stability 

and protein interaction domains. These studies showed the highly conserved 

nature of NF-Y in eukaryotes and, at the same time, gave insights into how the 

expanded NF-Y families in plants have diverged to have unique, and led us to 

better understand this gene family.     

 

Gene duplications events that led to the expansion of the NF-Y in plants may 

have been conserved due to the ability of the NF-Y to diverge in the responses 

it regulates. Specifically the plant NF-Y may have evolved unique and opposing 

functions. The first insight on the NF-Ys having unique roles in the same 

developmental response came from the finding that three NF-YC subunits were 

able to act as either positive or negative regulators of seed germination 

(Kumimoto et al. 2013).  This research added on to this by identifying NF-YA 

subunits that also have divergent regulatory roles during seed germination. Two 

closely related paralogs were less sensitive to ABA whereas several other 

members of the same gene family were hypersensitive. As the NF-Y bind DNA 
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as a trimeric complex it is likely that NF-YB subunits might also regulate seed 

germination in a divergent manner. Preliminary data from the Holt lab supports 

this hypothesis, however further careful analysis is required to understand the 

role of the 10 NF-YB genes during seed germination. The NF-Ys also have 

opposing roles regulating photoperiod dependent flowering responses, where 

several NF-YA and NF-YB have been shown to be either positive or negative 

regulators of flowering responses. The current study done to look at the 

response of NF-YA during ABA mediated seed germination was the first to look 

at all 10 members of the gene family simultaneously. Similar studies on the 

complete set of NF-Y genes during various developmental stages will provide 

greater insight to the significance of the expansion of this gene family in plants.  

 

This study also answered a key question about the role of NF-YA during 

flowering time. NF-YAs were shown to be required for the NF-YB/NF-YC dimer 

to drive flowering and NF-YA2 was identified as a possible positive regulator of 

flowering. Further questions remain to be answered on the mechanism by 

which the NF-Y/CO complex activates the FT promoter and how it is fine-tuned 

to only drive expression at a precise time point during plant development. An 

attractive hypothesis is that the NF-Y/CO complex can remove a repressor 

complex bound on the FT promoter. TEMPRANILLO (TEM) proteins are able to 

bind the FT promoter downstream of the CO binding site and act as negative 

regulators of FT expression, and possibly can represent a target for testing. 

Further, TEM is misregulated in CO and NF-Y mutants (Holt lab unpublished 
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data) and this could potentially lead to a feedback loop where the levels of 

possibly CO, NF-Y and TEM are regulating each other. Recent studies in 

animal systems have shown that it is likely that both the classical NF-Y trimer 

and NF-YB/NF-YC dimers can be bound to DNA (Ceribelli et al. 2008). 

Although these data are preliminary and further studies are ongoing in animals 

systems, this opens up a similar possibility for plant systems. For example, we 

cannot rule out the possibility of two separate NF-Y complexes are formed on 

the FT promoter, for example the classical NF-Y trimer sitting on the CCAAT 

boxes, and a CO/NF-YB/NF-YC complex bound on the CORE sites. In this case 

the NF-YB/NF-YC subunits may dimerize and interact with each other and NF-

YA or CO.  

 

The nature of protein-protein interaction between plant NF-Y has not been 

carefully studied. However, similar studies have extensively been done on 

animal systems. Here I successfully used the studies in animal systems as a 

guide to understanding protein-protein interaction in plants. I identified a mutant 

of NF-YB2, which was published to lose interactions with NF-YA but not NF-YC 

based on animal literature. An extensive study on the protein domains 

necessary for interactions was done with NF-YC9. The full-length NF-YC9 

protein was truncated or mutated based on the available data from animal 

systems. I found that most aspects of protein-protein interactions were highly 

conserved between plants and animals. Similar assays with truncations and 

mutations on the plant NF-YA and NF-YB proteins will further expand our 
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understanding of NF-Y complex formation. Further, crystal structure analysis of 

a plant NF-Y complex alone and with an interacting protein such as CO or HY5 

would enable us to more fully understand how the plant NF-Y interact with each 

other and their targets.        

 

The NF-Y in plants has only been shown to regulate a limited number of 

development responses. However the vast distribution of CCAAT boxes on 

promoters and the large potential NF-Y combinations that can form due to the 

expansion of the gene family suggests that NF-Y should have the ability to 

regulate a diverse set of developmental responses (Siefers et al. 2009; Petroni 

et al. 2012). Further studies such as screens (mutant screens, yeast two-hybrid 

screens), and whole genome analysis and data mining will give insight on to 

developmental responses regulated by the NF-Y. A developmental response 

that animals NF-Y regulate, which has received attention due to its role in 

cancer, is cell division (Mantovani 1999), a role that has not been investigated 

in plants. The highly conserved nature of animal and plant NF-Y strongly 

suggests that plant NF-Y also should have an intrinsic role regulating cell 

division.         

  

The study of NF-Y in animal systems is well in advanced of similar studies in 

plant systems. Currently a large focus on animal systems is to understand the 

nature of the NF-Y in the transcription machinery that regulates gene 

expression (Dolfini et al. 2012). The emerging picture is that NF-Y can bind 
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DNA irrespective of histone modifications on chromatin, and constitutes one of 

the early regulatory elements that bind DNA. Once bound, the NF-Y may recruit 

chromatin remodeling machinery and transcription regulators. It is also thought 

that NF-Y binding may make DNA accessible for other transcription factors to 

bind. Similar studies in plants are lacking and it is an area of great interest that 

a plant biologist can venture into.  

 

Here my studies were primarily done on model plant species. Studying a model 

species gave the advantage of having a vast array of information and resources. 

The next step is to use the knowledge gained from the model plant species and 

apply it to crops. A good example of this comes from the study of NF-YB during 

drought responses (Nelson et al. 2007). The authors discovered that 

Arabidopsis NF-YB2 overexpressors are resistant to drought. The next step the 

authors took was to perform a large-scale field experiment using the NF-YB2 

ortholog from Zea mays (corn) ZmNF-YB1. ZmNF-YB1 overexpressors were 

also drought resistant. I have studied the role of NF-YA during seed germination 

and flowering time, two processes that are important for crop production. 

Therefore the knowledge gained from the studies presented here could be used 

in field conditions to produce crops with improved traits.    

 

The primary goal of this dissertation was to understand the role played by 

Arabidopsis NF-YA during seed germination and flowering responses. The 

study identified opposing roles for the NF-YA during seed germination and the 
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NF-YAs were shown to act as positive regulators of flowering. This study also 

gave insight to the nature of protein-protein interactions and protein 

biochemistry of the NF-Y. This data added to the current literature by 

demonstrating the conserved nature of the NF-Y in eukaryotes, while adding 

insight on the opposing regulatory abilities that some members of the same 

gene family have evolved. These data strongly suggested that while many 

aspects of the NF-Y remain conserved between eukaryotes the expansion in 

plant systems allowed the NF-Y to differentially and specifically regulate plant 

development.     
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