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ABSTRACT 
 

Surfactants are well-known as effective drag reducers and viscosifying agents. The 

macroscopic properties of surfactants are dictated by the surfactant type and the condition 

of the solvent in which the surfactant is dissolved. In an aqueous medium, surfactants 

tend to aggregate, forming micelles that can vary in size and shape depending on several 

factors.  

 

Scare information is available on the rheological and drag reduction characteristics of 

surfactant fluids particularly for oilfield operations. The objective of this research is to 

elucidate the rheological and drag reducing behavior of non-Newtonian surfactant fluid 

systems (Aromox® APA-T and APA-TW). In this work, the flow behavior of surfactants 

is studied in the context of pseudoplastic fluids. The rheological properties are measured 

using the Couette-type viscometer and rheometer. Flow behavior and drag reduction are 

investigated in straight pipes and annular ducts of different diameters in recirculation 

mode. 

 

The rheological properties of test solutions (in fresh water, 2% KCl and 2% CaCl2) at 

various concentrations are studied using steady shear and dynamic testing. The results 

showed that the solutions exhibit non-Newtonian behavior at all concentrations, with their 

rheological character influenced by the temperature and ionic content of the base fluid. 

Temperature is observed to have a significant effect on viscosity and dynamic data. The 

apparent viscosity at different temperatures could be reduced to a single master curve 



xxi 

 

using horizontal and vertical shift factors. However, satisfactory scaling could not be 

attained for the dynamic or viscoelastic data. Molecular scaling using characteristic time 

for data at different concentrations proved unsuccessful due to the strong non-Newtonian 

character of surfactant solutions. Scaling relations between rheological parameters and 

concentration indicated the presence of long micelles in APA-T solutions. APA-TW 

solutions, on the other hand, contained branched micelles.  

 

The laminar flow of surfactant solutions is studied using the Carreau and modified power-

law (MPL)–Cross rheological models. These models are used to develop generalized 

Reynolds number expressions. The new definitions are shown to be comparable and in 

some cases more accurate than the generalized Reynolds number for power law fluids. In 

addition, a new flow rate - pressure drop equation, is derived for both models, overcoming 

the limitation imposed by the implicit nature of the Carreau and MPL-Cross models. This 

equation provided improved pressure loss prediction for non-Newtonian fluid flow. 

 

Turbulent flow behavior of test solutions is investigated by measuring pressure drop 

across a straight pipe at various flow rates. The drag reduction character of surfactant 

solutions is observed to be affected by concentration, pipe diameter, pipe roughness, and 

solvent type. Higher percent drag reduction occurred at higher concentrations in larger 

pipes with minimal surface roughness. Surfactant solutions with a monovalent salt had 

increased drag reduction due to the presence of longer micelles. In addition, an analytical 



xxii 

 

Fanning friction factor equation is derived for non-drag reducing fluids. Good agreement 

is observed between predicted and measured data with the new equation. 

 

The problem of axial annular flow of non-Newtonian power law fluids under laminar and 

turbulent flow is examined. By utilizing the modified-slot analogy, Fanning friction factor 

- generalized Reynolds number relationships for a power law fluid are developed and 

presented. Good agreement over the entire range of flow regimes is obtained between 

model predictions and experimental data. The advantage of the proposed approach is that 

it eliminates the need to determine the dimensionless radial position of zero shear stress 

required to solve flow equations. The relationships reported provide an effective means 

of determining friction pressures of non-Newtonian fluids in eccentric annuli.    
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Chapter 1 
 

INTRODUCTION AND SCOPE OF RESEARCH 
 

 

1.1 Introduction 

 

Surfactants are surface-active agents that alter interactions at the interface between two 

immiscible phases (Rosen 2004). These surface-active agents reduce the amount of work 

by decreasing the surface tension required to create an interface. They are widely used in 

fluid circulation as flow improvers or drag reducing agents because they provide as much 

as 80% drag reduction (Kamel and Shah 2010). The molecular structure of any surfactant 

can be divided into the hydrophilic head and hydrophobic tail. When in solution, the 

hydrophobic (tail) group distorts the structure of the surrounding water molecules. 

Conversely, the hydrophilic (head) group is water soluble and forms hydrogen bonds 

(Bewersdoff 1996). The action of the hydrophobic group leads to its orientation toward a 

nonpolar medium, reducing the free energy at the water interface (Rosen 2004). 

 

Rheology plays an important role in the characterization of surfactants. Many surfactants 

form viscoelastic solutions in aqueous media, which can result in shear thinning over a 

particular shear rate range. Several constitutive equations have been used to describe the 

steady shear behavior of surfactants. These models range from simple two-parameter 

models, such as the power law model, to complicated models that contain five or more 

parameters. For the dynamic shear data, the Maxwell model (Heinz 2003) has been shown 

to describe the fluid behavior. When compared to polymers, surfactants can reconstitute 

their structure once the applied shear is removed. Simply put, they are not susceptible to 
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permanent mechanical breakdown under shearing action. The structure (ascertained from 

rheological measurements and flow visualization techniques) of surfactants and polymers 

makes them effective drag reducing agents under turbulent flow. 

 

The phenomenon of drag reduction has been the subject of many studies. Toms (1948) 

observed this phenomenon experimentally, albeit accidentally, under turbulent flow of 

linear macromolecules. His experimental setup was designed to study the mechanical 

degradation of dilute solutions of high-molecular-weight poly (methyl methacrylate) in 

monochlorobenzene. The results showed that in turbulent flow, the flow rate at constant 

pressure drop increased with polymer addition. This phenomenon was originally referred 

to as the “Toms effect” but is now generally called drag reduction. 

 

In 1949, Oldroyd attributed this phenomenon to the “wall effect” or the “wall slip effect” 

(Toms 1977). Central to this concept is that an absence of polymer molecules at the wall 

leads to lower viscosities; thus, slip occurs. However, this mechanism has since been 

discounted because it does not provide a fundamental engineering basis for drag reduction 

(Shenoy 1984) and because of more robust experimental findings that proved otherwise 

(Kostic 1994; Singh 2010). Other explanations for drag reduction include but are not 

limited to viscoelasticity and normal stress, viscosity anisotropy, presence of an absorbed 

layer, and turbulence suppression. 
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The knowledge of drag reduction was improved upon in the late 1950s. The simultaneous 

works of Dodge and Metzner (1959) and Shaver and Merrill (1959) gave credence to 

Toms’ original findings in 1948. Dodge and Metzner (1959) observed low friction factors 

using aqueous carboxymethyl celluose (polymer). Similarly, Shaver and Merill (1959) 

presented experimental findings of a decrease in friction factors for several pseudoplastic 

fluids. Even with all the contributions made thus far, drag reduction (DR) is still not fully 

comprehended because of complexities in the areas of turbulence and mechanisms 

dictating mass transfer (Kostic 1994). 

 

Polymers and surfactants are known to be very effective when used at relatively small 

concentrations. The use of drag reducing agents extends over a wide range of industrial 

applications. Some industrial applications of these additives are in firefighting, sewage 

transport (Sellin and Ollis 1983), paper/pulp industry, pipe line transport of crude oil 

(Burger et al. 1982), district heating and cooling (Gasjelvic 1995) and the oil and gas 

industry for drilling and fracturing operations (Savins 1964; 1967). Surfactants (which 

generally exhibit non-Newtonian behavior) used for hydraulic fracturing operations will 

be considered in this study.  

 

Numerous researchers have published excellent review articles describing various aspects 

of drag reduction (Lumley 1969; Hoyt 1972; Shenoy 1984; Morgan and McCormick 

1990; Matthys 1991; Kostic 1994; Brostow 2008; and Singh 2010). However, many of 

these reviews focused on drag reduction of polymer solutions. With the growth of 
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hydraulic fracturing using surfactant-based fluids, it is important to understand the 

complex behavior of these fluids. 

 

Although the rheological and flow behavior of non-Newtonian drag reducing surfactant 

solutions have been investigated for many years, there are still areas that require further 

and improved understanding in order to fully exploit the industrial applications of 

surfactant fluids. This poor understanding can be attributed to the complex nature of 

surfactant solutions coupled with limited knowledge of their flow behavior under 

turbulent conditions in complex geometries. With the expanded use of surfactant 

solutions in many industries, further investigation is needed to ensure proper design of 

operations that deal with the flow of surfactant solutions. 

  

The present study will provide a fundamental understanding of the complex rheological 

behavior of surfactant solutions and show how these rheological properties affect its drag 

reducing characteristics. The results will be useful in fluid dynamics studies (e.g. pressure 

loss predictions for drilling and hydraulic fracturing operations) and will elucidate the 

relationship between micellar structures on the rheological behavior of surfactants. Also, 

the outcome will have a direct application to industries that deal with recirculation flows 

of drag reducing fluids. 
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1.2 Objective and Scope of Research 

 

Fluid systems account for a significant percent of any industrial operation from an 

economic standpoint. For drilling and hydraulic fracturing jobs, accurate friction pressure 

estimation is required for pump type and size selection to ensure safe and economic 

operations. The implications of poor job design can be costly as well as dire. 

 

The present research seeks to elucidate the rheological and drag reducing behavior of 

non-Newtonian fluid systems. Special emphasis is placed on surfactant solutions at 

several concentrations in various solvent environments. The steady shear and dynamic 

properties are investigated to provide an understanding of the influence of different 

factors on surfactant molecular (micellar) interaction. In addition to researching 

rheological properties, it is necessary to assess the flow behavior (in straight pipes and 

annular ducts) and drag reducing characteristics of these systems for a better 

understanding of the hydrodynamics of surfactant solutions. In this work, the flow 

behavior of surfactants is studied in the context of pseudoplastic fluids. 

 

This dissertation is divided into nine chapters. The fundamentals of rheology and drag 

reducing properties of non-Newtonian fluids are presented in Chapter 2. Chapter 3 

provides a description of the experimental apparatus used in this study. Chapters 4 and 5 

present data on the rheological characterization of surfactant solutions and the effects of 

concentration, temperature, and salts on steady shear and dynamic properties. Chapter 6 

presents new generalized Reynolds number definitions for non-Newtonian fluids in 
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laminar flow. In this chapter, modeling is performed to develop flow rate - pressure drop 

expressions that give higher accuracy at low shear rates for commonly used non-

Newtonian fluids. Chapter 7 presents turbulent flow measurements in terms of flow rate 

and pressure drop, assessing the effects of concentration, conduit size, and salts on drag 

reduction characteristics of surfactant solutions in great detail. In this chapter, a Fanning 

friction factor analytical expression for non-drag reducing pseudoplastic fluids is 

developed. The axial annular flow behavior of pseudoplastic fluids is presented in 

Chapter 8. Chapter 8 focuses on laminar flow of pseudoplastic fluids and Fanning friction 

factor – generalized Reynolds number expressions for power law fluids are presented. In 

this chapter, an empirical Fanning friction factor correlation is developed for turbulent 

flow of drag reducing power law fluids. Conclusions and recommendations from this 

investigation are listed in Chapter 9. 
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Chapter 2 
 

LITERATURE REVIEW 
 

 

2.1 Introduction 

 

This chapter presents a detailed review of surfactants. Surfactants are known to exhibit 

remarkable and unique macroscopic properties when in solution. These unique properties 

are the result of interactions that occur on a microscopic scale. The subjects covered in 

this review include fundamentals of surfactant microstructure, rheological properties, and 

drag reduction characteristics of surfactants and polymeric fluids. In addition, the review 

presents applications of surfactants in the oil and gas industry. 

 

2.2 Microstructures of Surfactants 

 

Surfactants are surface-active agents composed of two parts covalently bonded 

together—a hydrophilic (head or water-loving) group and a hydrophobic (tail or oil-

loving) group. Classification of surfactants is based on the charge of the head group. In 

general, surfactants can be ionic or nonionic. Ionic surfactants, or ionics, can be 

negatively charged, as in the case of anionic surfactants, or positively charged, as with 

cationic surfactants. Another group of surfactants, zwitterionics has both positive and 

negative charges. 

 

The addition of surfactant to a polar solvent leads to the head group remaining in the 

solvent while the tail group is adsorbed at the air-solvent interface. Thermodynamically, 

an increase in surfactant concentration increases the free energy of the system (Raoul 
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2005). A concentration is reached at which the hydrophobic tails tend to come together 

or “self-assemble” to minimize the free energy. This concentration is referred to as the 

critical micelle concentration (CMC). The CMC is determined by a break in the plot of 

certain physiochemical properties (electrical conductivity and surface tension) against 

concentration. For example, surface tension decreases with increasing surfactant 

concentration until a certain point beyond which the surface tension remains fairly 

constant (Rosen 2004). The CMC depends on the hydrophilic species and the condition 

of the solvent (Moroi 1992).  

 

Two critical concentrations (CMC and CMCII) are of significance in the study of 

surfactants. Temperature dependence is greater for CMCII than for CMC. Figure 2.1 is an 

illustration of the concentration-temperature relationship for a typical cationic surfactant. 

The Krafft point in this figure is the point at which the CMC is equal to the saturation 

solubility (Moroi 1992). At temperatures below the Krafft point, the system displays gel-

like characteristics. Temperatures higher than the Krafft point with a corresponding 

concentration increase above the CMC favor the formation of spherical micelles. Further 

increase in concentration leads to the transition from spherical to rod-like micelles. More 

complex structures (vesicles and lamellar) are formed at even higher concentrations. 

 

Some surfactants display certain characteristics such as the formation of shear induced 

structures (SIS) under the action of shear. Such structures can lead to an increase in 

apparent viscosities by a factor of 20-50 (Soltero et al. 2007). These structures (SIS) are 
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unstable and disappear with the addition of more shear (Wang et al. 2011). The exact 

mechanism for this phenomenon still eludes researchers but is believed to be a 

contributing factor to the drag reduction characteristics of surfactant solutions. Surfactant 

microstructures can be visualized using cyro-Transmission electron microscopy (cyro-

TEM), flow birefringence studies, nuclear magnetic resonance (NMR), and small-angle 

scattering (SAS) techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Phase Diagram Schematic for Cationic Surfactants (Chou 1991) 
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2.2.1 Dynamics of Micellar Solutions 

 

The reversible scission mechanism, derived by Cates and Caudau (1990), provides a 

theoretical explanation for stress relaxation in micellar solutions. Stress relaxation can 

occur in two ways: reptation or micellar kinetics (Heinz 2005). The first mechanism, 

reptation (used in polymer dynamics), is due to the movement of a confined chain within 

a tube formed by the presence of surrounding chains. In reptation, diffusion takes place 

along the contour length of the chain. It is characterized by the reptation time (τrep). The 

second mechanism occurs through the breaking and reforming (micellar kinetics) of 

bonds, characterized by the breaking time, τb. The breaking time is the time required for 

a micelle of length (L) to break into two smaller chains. Alternatively, it represents the 

lifetime of a micellar end before recombination (Ezrahi et al. 2006). Equation (2.1) is an 

expression for τb assuming unimolar scission reaction: 

   𝜏𝑏~
1

(𝐾𝐼𝐿)
                                                                                                                      (2.1) 

where, KI is the rate constant for breakage. 

 

Two possible scenarios can occur with both characteristic times: τrep >> τb or τb >> τrep. 

For τrep >> τb, the breaking and reforming of bonds occurs regularly before the chain 

leaves its tube. The shear stress relaxation is expressed as an exponential function: 

   𝜎(𝑡, �̇�) = 𝜎𝑜(�̇�)𝑒𝑥𝑝 (−
𝑡

𝜏𝑅
)                                                                                         (2.2) 

where, σo is the shear stress at time zero. 
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The relaxation time, τR, is associated with chain breakage at a point close enough to a 

given tube segment for reptation to occur before a new chain is lost by recombination 

(Ezrahi et al. 2006). It is expressed as follows: 

   𝜏𝑅 = (𝜏𝑏𝜏𝑟𝑒𝑝)
0.5

                                                                                                         (2.3) 

 

Such a behavior (τrep >> τb) is adequately described by the single relaxation time Maxwell 

model (Eq. 2.4). By fitting the Maxwell model equations to experimental data, the plateau 

modulus (Go) and τR can be determined: 

   𝐺′(𝜔) = 𝐺𝑜
𝜔2𝜏𝑅

2

1+𝜔2𝜏𝑅
2                                                                                                    (2.4a) 

   𝐺′′(𝜔) = 𝐺𝑜
𝜔𝜏𝑅

1+𝜔2𝜏𝑅
2                                                                                                    (2.4b) 

where, Go is the plateau modulus extrapolated to time zero; ω is the angular frequency 

and τR is the relaxation time; G'(ω) is the elastic modulus; and G''(ω) is the viscous 

modulus. 

 

From a plot of G''(ω) against G'(ω), Maxwellian-type behavior is represented by a 

semicircle that matches the experimental data in the low- to intermediate-frequency 

range. At higher frequencies, a deviation may occur due to small-scale processes such as 

Rouse-like breathing modes. An upturn becomes evident in the Cole-Cole plot signaling 

a deviation from Maxwell behavior. For viscoelastic solutions displaying Maxwell 

behavior, the zero shear viscosity (𝜇𝑜) is related to Go and τR as follows: 

   𝜇𝑜 = 𝐺𝑜𝜏𝑅                                                                                                                   (2.5) 
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The Go is proportional to the surfactant volume fraction as expressed below. 

   𝐺𝑜~𝑘𝐵𝑇∅
9

4~∅
9

4                                                                                                           (2.6) 

The relaxation time is expressed as follows:  

   𝜏𝑅~𝐿∅
3

4~∅
5

4                                                                                                                  (2.7) 

Also, the reptation time for polymer-like micelles of length L is expressed as:  

   𝜏𝑟𝑒𝑝 = ∅
3

2𝐿3                                                                                                                  (2.8) 

The zero shear viscosity becomes: 

   𝜇𝑜~𝐿∅3~∅3.5                                                                                                               (2.9) 

where, µo and τR are functions of concentration, temperature, salinity, surfactant type, and 

chain length (Ezrahi et al. 2006). 

 

The second possible scenario for stress relaxation is when τb >> τrep. Here, relaxation due 

to reptation is dominant because no scission occurs before the chain diffuses from its 

tube. The micelles essentially behave like polymer chains. The relaxation time, which is 

equal to τrep, is expressed as follows: 

   𝜎(𝑡, �̇�) = 𝜎𝑜(�̇�)𝑒𝑥𝑝 [−
𝑡

𝜏𝑟𝑒𝑝
]

1

4
                                                                                   (2.10) 

 

The zero shear viscosity is expressed as: 

   µ𝑜~∅
15

4 𝐿3~∅5.25                                                                                                       (2.11) 
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In the high-frequency region, Maxwell relations cannot be applied because short time 

scale processes are dominant. The characteristic time is expressed as: 

   𝜏𝑅~(
𝑙𝑒

𝐿
) 𝜏𝑟𝑒𝑝                                                                                                            (2.12) 

where, le is the entanglement length. 

 

The size of the mean contour length is estimated from Eq. (2.13). 

   
𝐺"𝑚𝑖𝑛

𝐺𝑜
~

𝑙𝑒

𝐿
                                                                                                                   (2.13) 

where, G''min is the minimum value of G'' (when plotted against ω). The above equation 

is valid provided that le/L << 1. 

 

The entanglement length is determined from Go 

   𝐺𝑜~
𝑘𝐵𝑇

𝜉3 ~
𝑘𝐵𝑇

𝑙𝑒

9
5𝑙𝑝

6
5

                                                                                                          (2.14) 

where, ξ is the mesh size (correlation length), or the distance between entanglements, and 

lp is the persistence length (the length over which micelles are rigid). 

 

 

2.3 Rheology of Micellar Solutions 

 

2.3.1 Steady Shear and Viscoelastic Behavior of Surfactant Solutions 

 

Micelles are dynamic structures in which intermicellar interactions occur. Micellar 

solutions generally display viscous and elastic properties, as in the case of entangled rod-

like micelles (Hoffman and Ulbricht 2001). These entanglements are similar to polymers; 
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hence the name “living polymers” is often used for surfactants. In the dilute regime, the 

viscosity of the solution is close to that of the solvent. Above the CMC, worm-like 

micelles form transient entanglements of broad exponential length distribution (Dreiss 

2007) with the length predicted using the mean field theory (Aït Ali and Makhloufi 1997). 

The viscosity of entangled network of rod-like micelles in the low shear rate range can 

be six orders of magnitude greater than that of the solvent. Such high viscosities can aid 

in the transport of solids during oilfield operations such as drilling and hydraulic 

fracturing. 

 

The formation of WLMs is a prerequisite for the remarkable viscoelastic properties of 

such solutions. These WLMs become flexible when the micelle size is greater than the 

persistence length. Viscoelasticity is the outcome of the formation, growth, and 

entanglement of WLMs. 

 

The viscoelastic properties provide information on the structure and dynamics of 

solutions. The mechanical spectra data (G'(ω) and G''(ω)) are important for complete 

characterization of surfactant solutions. Generally, G'(ω) obtained from small amplitude 

oscillatory shear (SAOS) experiments is used to make inferences on the structure of 

solutions and is more reliable than steady shear measurements. Viscoelastic data may be 

described by the single time Maxwell model (Martin 2007) or the generalized Maxwell 

model (Heinz 2003), depending on the measured responses.  
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Usually, these viscoelastic fluids exhibit no yield stress (in most cases), and certain 

scaling laws have been developed based on measurable quantities such as the zero shear 

viscosity (µo), structural relaxation time (τR), and plateau/shear modulus (Go) as presented 

in Sect. 2.2.1. The relaxation time and plateau modulus describe the disentanglement time 

and volume fraction of surfactant solutions, respectively (Hashizaki et al. 2009). Thus, 

the overall viscoelastic behavior is dictated by the plateau modulus (structure) and the 

relaxation time (dynamics).  

 

2.3.2 Factors Affecting Rheological Characteristics of Surfactant Solutions 

 

The structure and dynamics of micellar solutions have significant effects on the bulk 

rheological properties. Rheological behavior is influenced by surfactant type and 

concentration, counterions, temperature, and salts. Changes in any of these factors can 

affect the size and shape of micelles and, as an extension, affect rheology. 

 

Surfactant and counterion concentration: The geometrical shape of microstructures is 

known based on the packing parameter. Transitions from one shape to another depend on 

the concentration of surfactants. It is expected that an increase in surfactant concentration 

causes an increase in the length of micelles. This in turn promotes micellar associations. 

Ionic surfactants have stabilizers (counterions) that promote micellization and higher 

viscosity. The effect of concentration should be considered in connection with the type 

of counterions and the counterion/surfactant molar ratio. From an experimental study on 

the behavior of cetylpridinium chloride (CPyCl) with sodium salicylate (NaSal) at 
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different concentrations, Hoffman and Ulbricht (2001) observed that at a constant 

surfactant concentration with increasing NaSal, the zero shear viscosity goes through a 

maximum, minimum, and final maximum. The authors attributed this to the dependence 

of the solution’s relaxation time on the NaSal concentration. Lin et al. (2001) noted a 

decrease in zero shear rate viscosity, with decreasing counterion/surfactant ratio for 

surfactant concentrations below 100mM. They provided three possible reasons for this 

observation: (1) branches formed in micellar networks, (2) micelles moving 

independently at high concentration, and (3) saturation of network structure.  

 

Temperature: The contour length of micelles decreases exponentially with temperature 

(Raghavan and Kaler 2000), hindering intermicellar interactions. Smaller chain lengths 

limit network formation by entanglements and as such reduce drag reduction 

effectiveness (Jacques et al. 2007). Furthermore, other rheological parameters such as the 

zero shear viscosity, relaxation time, and normal stresses also decrease with temperature. 

 

Surfactant type: The size and geometry of surfactants are affected by the chain length, 

head group, number of carbon atoms in chain, and saturation state of chain. Any change 

in any of these parameters will alter the rheological state of surfactant solutions. 

Surfactants with longer chain lengths are more sensitive to temperature and concentration 

changes (Wang et al. 2011). Interactions between head groups and the alkyl chain affect 

micelle size (Raoul 2005). The alkyl chain length affects the upper and lower temperature 

limits. Longer chains increase both temperature limits for cationic solutions; the increase 
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in temperature limits is undesirable because of a decrease in surfactant solubility (Jacques 

et al. 2007). The presence of double bonds on the alkyl tail reduces the lower temperature 

limit. In addition, an odd number of carbon atoms on the chain results in a decrease in 

both the Krafft temperature and lower temperature limit (Lin et al. 2000). Li et al. (2012) 

stated that below a particular carbon number, solutions display Newtonian behavior. The 

packing of surfactant species increases with smaller head groups within the same chain 

group (Jacques et al. 2007).  

 

Ionic strength: The increase in ionic strength with the addition of salts screens 

electrostatic repulsions between head groups. Correspondingly, the head group area is 

reduced, aggregation of micelles is increased, and WLM formation is favored. 

 

2.4 Drag Reduction Fundamentals 

 

Two definitions of drag reduction are used in literature and are provided here in 

chronological order. Savins (1964) defined drag reduction as an increase in the 

pumpability of a fluid under turbulent flow due to the introduction of certain high 

molecular weight polymers. Similarly, Lumley (1969) defined drag reduction as the 

reduction of skin friction in turbulent flow below that of the solvent. It becomes clear 

from both definitions that drag reduction is a phenomenon associated with turbulent flow.  

 

Drag reduction can be achieved in two ways—active and passive drag reduction (Singh 

2010). The difference between the two is that energy input is required for passive drag 
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reduction (for example, riblets) and the level of drag reduction is small. Active 

techniques, on the other hand, involve the use of substances such as high molecular 

weight polymers and surfactants for drag reduction. Increased drag reduction with 

additives (as much as 70% with polymers and 80% with surfactants) has been reported.  

 

Mathematically, percent drag reduction is expressed as follows: 

   𝐷𝑅(%) = (
∆𝑃𝑠−∆𝑃𝑎

∆𝑃𝑠
) 100  (at constant flow rate)                                                   (2.15a) 

   𝐷𝑅(%) = (
𝑓𝑠−𝑓𝑎

𝑓𝑠
) 100  (at constant Reynolds number)                                          (2.15b) 

where, ΔPs is the pressure loss without additives (i.e., solvent alone), ΔPa is the pressure 

loss with additives, fs is the Fanning friction factor without additives, and fa is the Fanning 

friction factor with additives. Equation (2.15) is valid based on the assumption of density 

remaining unchanged with additives in solution.  

 

The Reynolds number, NRe (or generalized Reynolds number, NReg), is used to designate 

flow regimes—laminar or turbulent. Below a Reynolds number of 2100, laminar flow 

condition exists and the Hagen-Poiseuille equation (Eq. 2.16) is used to calculate the 

Fanning friction factor for both Newtonian and non-Newtonian fluids flowing through a 

circular pipe. 

   𝑓 =
16

𝑁𝑅𝑒𝑔
                                                                                                                     (2.16) 

   𝑁𝑅𝑒𝑔 =
𝜌𝑣𝑑

𝜇𝑎
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where, ρ is the fluid density, v is the fluid velocity, d is the internal pipe diameter, and μa 

is the fluid viscosity (apparent viscosity for non-Newtonian fluids). 

 

Under turbulent flow of Newtonian fluids, several expressions for Fanning friction factor 

have been reported, the variations depending on whether the flow conduit is smooth or 

rough. For smooth pipes, the Blasius-type expression (Eq. 2.17) and the Drew correlation 

(Drew et al. 1932) (Eq. 2.18) are frequently used. When pipe roughness is considered, the 

Chen correlation (Chen 1979) is applicable (presented in Chapter 7).  

 

   𝑓 = 0.079𝑁𝑅𝑒
−0.25                                                                                                     (2.17) 

   𝑓 = 0.0014 +
0.125

𝑁𝑅𝑒
0.32                                                                                                   (2.18) 

The Drew correlation is valid for 2,100 < NRe < 3 x 106.  

 

Fluids (used for hydraulic fracturing) that exhibit drag reduction are mostly non-

Newtonian with viscoelastic properties. As a result, the above correlations are not suitable 

for non-Newtonian fluids as they overestimate the Fanning friction factor. Moreover, 

unlike Newtonian fluids in which Fanning friction factor calculations are independent of 

the pipe size, non-Newtonian fluids are dependent on NReg and pipe diameter (diameter 

effect). Several empirical expressions have been reported for non-Newtonian drag 

reducing fluids with and without pipe roughness (Shah 1984; 1990). 
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Figure 2.2 is an illustration of the flow behavior of Newtonian, polymeric, and surfactant 

fluids to explain drag reduction. Curve A represents laminar flow, and the Fanning 

friction factor is determined using Eq. (2.16). Curve B represents the path followed by a 

Newtonian fluid in which the Fanning friction factor is calculated using Eq. (2.18). The 

Virk’s maximum drag reduction asymptote (MDRA) is curve C. As the name implies, 

this expression was empirically developed for maximum drag reduction attainable by 

polymeric fluids (Virk 1975). Typically, Fanning friction factor data for polymers should 

be contained within the B-C envelope. Surfactants, however, can exhibit drag reduction 

at higher levels than polymers are able to exhibit. Zakin et al. (1996) empirically 

determined the corresponding asymptote for non-polymeric (surfactant) fluids (curve D). 

The MDRA for polymers and surfactants will be discussed in detail in later sections. 

 

As stated in the introduction, drag reduction additives are not limited to polymers and 

surfactants; solids, fibers, and other additives are also known to be drag reducing agents. 

In this review, polymers and surfactants will be considered because of their appeal and 

common use in the oil and gas industry. 
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Figure 2.2: Maximum Drag Reduction Asymptotes for Polymers and Surfactants 

 

 

 

2.4.1 Proposed Mechanisms of Drag Reduction 

 

A number of researchers have proposed various mechanisms responsible for drag 

reduction. This review discusses a few of them in no particular order with the aim of 

examining the merits and demerits of each mechanism. Some mechanisms are 

viscoelasticity, molecular stretching, decreased turbulence production, and viscosity 

anisotropy. 

 

In 1949, Oldroyd attributed drag reduction to slip at the wall, or the so-called wall effect 

(Toms 1977). According to him, the absence of polymer molecules at the wall leads to 

lower viscosities and the resulting slip effect at the wall. Several researchers have 

highlighted the shortcomings of this mechanism because of its lack of engineering 

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000

Fa
n

n
in

g 
fr

ic
ti

o
n

 f
ac

to
r

Generalized Reynolds number

A

B

C
D



 

22 

 

foundation (Shenoy 1984). Toms (1977) attributed drag reduction to shear thinning near 

the wall, which causes lower friction factors when compared to only the solvent (Shenoy 

1984). However, Walsh (1967) showed that some shear thickening solutions exhibit drag 

reduction. 

 

Anisotropy in viscosity was proposed to explain the drag reduction phenomenon (as cited 

in Kostic 1994). In this theory, viscosity in the flow direction is low but is high in other 

directions to dampen or suppress turbulent fluctuations (Shenoy 1984). This mechanism 

takes advantage of the shear-rate dependency of typical drag reducing fluids (Kostic 

1994). 

 

Another explanation was based on viscoelasticity and normal stresses of drag reducing 

solutions (Kostic 1994). Although plausible for highly concentrated solutions of polymers 

and surfactants, it falls short for dilute solutions that do not display measurable 

viscoelasticity but are effective drag reducers. Furthermore, data by Lu (1997) suggest 

that viscoelasticity is not required for drag reduction to occur. This should not discount 

the fact that viscoelasticity might be an accompanying characteristic of many surfactant 

drag reducers that have rod-like micelles (Kostic 1994). Recent experimental and 

numerical work by Li et al. (2012) demonstrates that indeed viscoelasticity is important 

and should be considered for surfactant drag reduction. 
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Molecular stretching was postulated as being responsible for drag reduction. According 

to this explanation, added macromolecules tend to increase the resistance to elongational 

flow. This effect is referred to as “shear hardening” (as cited in Truong 2001), which 

hinders turbulent bursts close to the wall. Tulin (1966) claimed that greater turbulence 

dissipation was related to an increase in the laminar sublayer thickness, which is 

responsible for drag reduction (Shenoy 1984). However, this mechanism still lacks 

consensus in the scientific community as it fails to explain drag reduction in dilute 

solutions (Kostic 1994). 

 

Turbulence production interference and turbulence dissipation have been put forward as 

possible causes of drag reduction. Pfenniger (1967) suggested that polymer molecules 

interfere with and possibly reduce turbulence disturbances (as cited in Shenoy 1984). It 

is believed that the process of energy transfer from large to small scale eddies (energy 

cascade) is significantly hindered by macromolecules. As such, turbulence is suppressed 

(Morgan and McCormick 1990), leading to more favorable flow in the streamwise 

direction (Kostic 1994). 

 

Singh (2010) summarized the findings of drag reduction over many years from his studies 

as well as other researchers. He considered experimental and theoretical findings from 

several researchers in his discussion of drag reduction mechanism in terms of changes in 

flow and turbulence structures. This review presents a select list of the main points from 

Singh’s work. 
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 The position of the peak intensity of the streamwise component of velocity is 

shifted farther away from the wall. 

 The velocity of the wall normal component is suppressed. Its peak position is 

moved away from the wall. The Reynolds shear stress, which is a measure of 

turbulence transport, attains its maximum at the center and zero at the wall. 

 Drag reduction additives cause an increase in the non-dimensional streak spacing. 

This spacing increases with drag reduction. 

 Bursting events are more energetic and less frequent with drag reduction increase. 

 

It is plausible that more than one mechanism can be the cause of drag reduction. The 

above discussion is an attempt to review the existing models and possible mechanisms. 

Each represents an observation or a rationalization that may or may not be responsible 

for drag reduction. This is a testament to the varied opinions on the complex nature of 

turbulence coupled with drag reducing polymers and surfactants. 

  

2.4.2 Drag Reduction with Polymers 

The ability for small quantities of polymers, dissolved in various solvents, to reduce 

friction pressure has been utilized for more than 60 years. These substances (polymers) 

are the most studied and commercially attractive method of active drag reduction. 

Examples of drag reducing polymers include guar gum, polyethylene oxide, and 

polyacrylamide. Successful applications have been reported for the pipeline transport of 

crude oil (Burger et al. 1982). Studies on polymeric drag reduction are divided into the 
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onset phenomenon, maximum drag reduction asymptote, and factors affecting drag 

reduction. These topics apply to both polymers and surfactants. 

 

Onset phenomenon: The point at which the Fanning friction factor with polymer additive 

becomes less than that of the solvent is termed the “onset” of drag reduction. Onset is 

attributed to the stretching of polymeric units outside the viscous layer. Generally, two 

types of drag reduction based on the onset point have been identified—Type A and Type 

B (Virk and Wagger 1989). The difference between both relates to where drag reduction 

begins. Drag reduction for Type A applies to random coil polymers and starts in the fully 

turbulent regime, while Type B (fully extended polyelectroytes) starts in the extended 

laminar regime. The onset point is moved to lower NReg values at higher polymer 

concentrations (Morgan and McCormick 1990).  

 

The onset phenomenon is explained using various models of length, time, and energy.  

Virk and Merril (1969) introduced the length scale (as cited in Virk 1975). Using the 

polymer radius of gyration, they defined a dimensionless constant, Γ, which is the ratio 

of length scale of the polymer to that of turbulence (Eq. 2.19). Drag reduction starts when 

Γ is equal to 0.015. 

   𝛤 = [
2𝑅𝑔

𝜇
] [

𝜏𝑤
∗

𝜌
]                                                                                                          (2.19) 

where, Rg is the radius of gyration of the polymer molecule, τw
* is the onset wall shear 

stress, µ is the solution viscosity, and ρ is the solution density. 

 



 

26 

 

The time scale or criterion states that the time scale for turbulence has to be comparable 

with that of the polymer relaxation time (Lumley 1969; Sreenivasan and White 2000). 

Lumley et al. (1969) posited that fluctuating strain rates in the near-wall region imposed 

on the polymer molecules result in higher extensional viscosities (stretching of 

molecules). With higher viscosities, smaller eddies are suppressed or dampened, 

decreasing momentum transport; thus inducing drag reduction (Morgan and McCormick 

1990; Sreenivasan and White 2000). New numerical simulations have given credence to 

the concept of increased extensional viscosities close to the wall (Dimitropoulos et al. 

1998). Sreenivasan and White (2000) noted that matches between simulations and 

experimental data were the result of higher elasticity values introduced in simulation 

models. Ryskin (1987) presented a model (“yo-yo”) similar to that of Lumley et al. 

(1969). However, Morgan and McCormick (1990) pointed out an obvious limitation of 

Ryskin’s model, highlighting the uncertainty in determining α, a parameter used in this 

model. 

 

Tabor and de Gennes (1986) offered an alternative explanation for the onset of drag 

reduction. Their main criticism of the higher extensional viscosities approach is that 

fluctuating strain rates are inadequate to provide any substantial increase in viscosity. 

They proposed that the energy stored by polymer molecules has to be equivalent to the 

turbulence energy for drag reduction to occur. This alters the transfer of energy from 

large- to small-scale eddies and results in an increase in the elastic layer thickness 

resulting in drag reduction (Sreenivasan and White 2000). Based on the energy criterion, 
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Walsh (1967) presented a dimensionless parameter, H, which is the ratio of energy stored 

by the polymer to the turbulence energy (Morgan and McCormick 1990). According to 

Walsh (1967), drag reduction starts when H is approximately equal to 0.01. 

   𝐻 =
8𝑐𝑀[𝜇]2𝜏𝑤

∗

𝑅𝑔𝑇
                                                                                                          (2.20) 

where, M is the polymer molecular weight, Rg is the gas constant, T is the absolute 

temperature, and c is the concentration in g/ml. 

 

Kohn (1973) proved the inadequacies in all three models mentioned above. He stated that 

the polymer molecules acted as “energy sinks.” These molecules store energy in 

deformation for the balance of the viscous sublayer. The removal of stress causes the 

molecules to relax, release stored energy, and become available again for deformation. 

Drag reduction occurs by virtue of polymer molecules reducing turbulence mixing. Kohn 

proposed an energy theory based on mathematical theory of polymer behavior (Kohn 

1973). In his model, drag reduction is a function of energy stored rather than decreased 

turbulence generation; it is not a function of rate of convection as proposed by Walsh 

(1967). The average amount of energy stored or strain energy density is expressed as 

follows: 

   𝑊 =  (
𝑐𝑅𝑇

2𝑀
)∑ ln[1 + (�̇�𝜏𝑖)

2]𝑁
𝑖                                                                                 (2.21) 

where, N is the number of statistical segments per polymer, �̇� is the shear rate, and τi is 

the relaxation time of the ith deformation calculated from Eq. (2.22). 

   𝜏𝑖 =
𝑏2𝑓

6𝑘𝑇𝜆𝑖
                                                                                                                 (2.22)   
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where, parameters b and f are the root mean square (rms) segment length and segment 

friction, respectively, k is the Boltzmann’s constant, and λi is the eigenvalues calculated 

using Pyun and Fixman’s (1965) approximations. These parameters are obtained using 

optimization schemes, minimizing the rms with experimental data. 

 

Kohn’s results compared reasonably with experimental data for the onset of drag 

reduction, supporting his proposition that energy storage is the mechanism responsible 

for drag reduction (Kohn 1974). However, according to Morgan and McCormick (1990), 

Kohn’s theory is difficult to verify because of difficulties in determining the molecular 

parameters. 

 

Maximum drag reduction asymptote: Virk (1970) experimentally determined the MDRA 

for polymers (as cited in Virk 1975). Other asymptotes have been reported (Castro and 

Squire 1968; Giles and Pettit 1967), but Virk’s MDRA is the most accepted expression. 

Drag reduction increases proportionally with concentration up to a particular 

concentration, at which point no further increase occurs. This implies an increase in the 

elastic sublayer. The MDRA is reached when the elastic layer extends across the pipe 

section. The same analogy for drag reduction with concentration applies to drag reduction 

with the generalized Reynolds number. Virk (1970) stated that the MDRA is independent 

of polymer species, molecular weight, and concentration. The expression of the MDRA 

in the Prandtl-Karman coordinates is:  

   𝑓
1

2 = 19 log (𝑁𝑅𝑒𝑔𝑓
1

2) − 32.4                                                                                (2.23) 
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Or explicitly, 

   𝑓 = 0.58𝑁𝑅𝑒𝑔
−0.58  (4000 < NReg < 40,000) 

The regime below the MDRA is given as follows: 

   𝑓
1

2 = [4.0 + 𝛿] log (𝑁𝑅𝑒𝑔𝑓
1

2) − 4.0 − 𝛿 log(√2𝑑)𝜔                                                (2.24) 

where, d is the internal pipe diameter, δ and ω are polymer solution parameters.                                                      

 

Virk (1975) proposed the idea of a three-layer velocity profile. The velocity profile 

consists of the viscous sublayer (close to the wall), the buffer layer, and the logarithmic 

layer. 

   𝑢+ = 𝑦+(0 < 𝑦+ < 5) (viscous sublayer)                                                               (2.25) 

   𝑢+ = 𝑦+(0 < 𝑦+ ≤ 30) (buffer layer)                                                                                     

   𝑢+ = 2.5 ln 𝑦+ + 5.5 (𝑦+ > 30) (logarithmic layer)                                                               

where, 𝑢+ =
𝑢

𝑢𝑇
 and 𝑦+ =

𝑦𝑢𝑇

𝑣
 are dimensionless velocity and distance, respectively. 

 

For drag reducing polymers, the velocity profile for the logarithmic layer is parallel to the 

Newtonian profile, separated by a factor ΔB (see Fig. 2.3). The expression for the 

logarithmic layer is given below: 

   𝑢+ = 2.5 ln 𝑦+ + 5.5 + ∆𝐵                                                                                    (2.26) 

where, ΔB depends on the polymer characteristics and on pipe flow conditions (Singh 

2010). Virk’s MDRA, in terms of dimensionless velocity and distance, is expressed as 

follows: 

   𝑢+ = 11.7 ln 𝑦+ − 17                                                                                             (2.27) 
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The region between the laminar sublayer and the Newtonian turbulent core was termed 

the “elastic sublayer.” This elastic sublayer is described as important for drag reduction, 

with the viscous layer playing only a passive role (Gadd 2000; Tiederman et al. 1985). 

 

 

Figure 2.3: Virk's Three-Layer Model (Singh 2010) 

 

 

 

Factors affecting polymer drag reduction: The effectiveness of polymers as drag reducers 

is a function of molecular weight, polymer flexibility, and the presence of electrolytes 

(Bewersdorff 1996). It has been confirmed experimentally that the higher the molecular 

weight (in the range of 106 Daltons), the greater the polymer flexibility and the better the 

drag reducing ability at a given concentration and Reynolds number (Truong 2001). The 

reverse holds true for lower molecular weight polymers. An increase in polymer 
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concentration causes an increase in drag reduction up to a certain concentration 

(corresponding to the MDRA), above which the drag reduction remains constant.  

 

A major advantage of polymers is that drag reduction is achieved with only a few parts 

per million (ppm) in aqueous and organic solvents (Shenoy 1984). However, 

susceptibility to permanent degradation—especially for high-molecular-weight and 

relatively low-concentration polymers (Cowan 2000)—limits their use in operations that 

require recirculation (Gasljevic 1995).  

 

2.4.3 Drag Reduction with Surfactants 

As described earlier, surfactants are surface-active agents that possess both a hydrophilic 

head and a hydrophobic tail. An increase in surfactant concentration favors self-

association or micellization. Such an association results in the formation of various 

geometrical structures (spherical and rod-like). Drag reduction is exhibited when the rod-

like structure is formed.  

 

A common feature of drag reducing surfactants is the critical/threshold wall shear stress. 

This shear stress corresponds to the point of maximum drag reduction (Savins 1967). An 

increase in shear stress beyond this threshold value causes a drop in drag reduction. 

Further shear results in the pressure loss being the same as that of the solvent. However, 

unlike with polymers, the loss of drag reduction is temporary for surfactants (Gasljevic 

1995). Savins (1967) explained the loss of DR as the disentanglement of the network 
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structure due to higher levels of turbulence. A decrease in shear stress below the critical 

shear stress leads to restructuring or reconstitution of the micellar structure needed for 

effective drag reduction.  

 

Zakin et al. (2007) classified drag reducing surfactants into three categories with 

reference to their microstructure and correlation with drag reduction. These categories 

include the following:  

1. Surfactant systems that form micelles in the quiescent state with high zero shear 

viscosity, shear thinning, formation of SIS, high viscoelasticity, and large first normal 

stress.  

2. Surfactant systems that form WLMs with branching points (smaller unbranched 

WLMs) exhibiting lower drag reduction. Fluids in this category have smaller critical 

shear stress, complex rheological properties, low zero shear viscosities, low 

viscoelasticity and zero first normal stress, and high extensional viscosities.  

3. Systems with vesicles that form WLMs at high shear stress in excess of the critical 

shear stress. 

 

According to Zakin et al. (2007), high viscoelasticity does not always correlate to drag 

reduction. On the other hand, high ratios of extensional viscosities to shear viscosities (~ 

100) have been shown to correlate with surfactant drag reduction (Zhang 2005).  
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The factors that affect the rheological characteristics influence drag reduction. 

Concentration and molecular structure, salts, temperature, pH, and cosolvents, are all 

factors that should be considered. Longer micelles improve drag reduction effectiveness. 

Drag reduction effectiveness depends on the maximum drag reduction ability, the 

effective temperature range (upper and lower limits), and the critical wall shear stress 

(Jacques et al. 2007). 

 

Maximum drag reduction asymptote with surfactants: From several experimental studies, 

it was discovered that the Fanning friction factors measured for surfactants were below 

those predicted by Virk’s MDRA. Zakin et al. (1996) attributed this observation to 

morphological differences and possibly different mechanisms of drag reduction. They 

stated that morphological differences marked by the formation of SIS in surfactants are 

better in altering turbulence production and eddy generation as compared to structures in 

polymers. It should be noted that the mechanisms for drag reduction are widely believed 

to be similar for polymers and surfactants (Li et al. 2012).  

 

The Zakin et al. (1996) surfactant MDRA is expressed as follows: 

   𝑓 ≈ 0.32𝑅𝑒
0.55   (4,000 < NReg < 130,000)                                                                (2.28)                                                                                                                      

The mean velocity profile was found to be steeper than that predicted by Virk’s MDRA 

and is given as follows: 

   𝑢+ = 53.9 log10 𝑦+ − 65   (y+ > 15)                                                                        (2.29)                     
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 2.5 Diameter Effect  

 

The pressure loss for turbulent flow of Newtonian fluids through smooth pipes is a 

function of the Reynolds number. For Newtonian fluid flow in rough pipes, it is a function 

of the Reynolds number and pipe roughness. Pressure loss for non-Newtonian fluids, on 

the other hand, depends on NReg and pipe size (in the case of rough pipes, pipe roughness). 

Simply put, the same fluid at a certain NReg, will have different Fanning friction factor 

values in different pipes. This presents another level of complexity, incorporating more 

parameters to the already complex nature of drag reduction turbulent flow mechanics 

(Gasljevic et al. 1999; 2001). 

 

The diameter effect has more of an impact on surfactant fluid flow than on the flow of 

polymers. Gasljevic et al. (2001) found out that the entrance length (x/D) ratio of 100 for 

polymer solutions is not suitable for surfactants. In other studies (Suzuki et al. 2004) it 

appears that the x/D ratio should be higher for surfactant solutions. The critical wall shear 

stress that precludes degradation occurs at a lower NReg in smaller pipes. Moussa and Tiu 

(1994) accounted for this as due to greater extensional strain at the same NReg in small 

pipes. For non-asymptotic flow situations, the diameter effect is clearly evident in the 

region between onset and degradation. In this region, drag reduction is a strong function 

of pipe size. At flow conditions for asymptotic conditions (MDRA), the Fanning friction 

factor is independent of pipe size (Gasljevic et al. 1999). 
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The diameter effect presents discrepancies between laboratory data and actual field 

results. Although the diameter effect has been the subject of many research efforts, a firm 

understanding is still lacking. Empirical models from robust testing have been developed. 

These models can be described as “scale-up correlations” or “scale-up techniques.” 

Admittedly, these correlations are limited theoretically but are often a practical tool for 

many applications (Gasljevic et al. 1999). Some of these scale-up approaches are 

described below. 

 

2.5.1 Diameter Scale-up Techniques 

 

Whitshitt et al. (1968) suggested a correlation technique using drag reduction and solution 

friction velocity (up
* =√𝜏/𝜌). The reason behind this approach was that the friction factor 

showed a dependence on the wall shear stress. With this method, they obtained an 

accuracy of ±15% regardless of the pipe size. An obvious limitation with this approach 

lies in the determination of the wall shear stress (Gasljevic et al. 1999). Other 

investigators (Savins and Seyer 1977) have recommended using the solvent friction 

velocity (us
*) in place of up

*. The former was an improvement over the latter but its 

(solvent friction velocity) validity was brought into question by Gasljevic et al. (1999) 

for its inapplicability to drag reducing flows.  

 

Gasljevic et al. (2001) evaluated three different scaling approaches in literature. These 

are (1) drag reduction vs. us
* (or wall shear stress, τw), (2) τw vs. bulk velocity (V), and 

(3) drag reduction vs. V. The correlation approaches were applied to experimental data 
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for two surfactants (Ethoquad/NaSal and a nonionic surfactant) and two polymers 

(xanthan gum and partially degraded polyacrylamide). Some pertinent conclusions can 

be drawn from the study of Gasljevic et al. (2001). First, two procedures (drag reduction 

vs. V and τw vs. V) were the most successful for samples tested. Second, solutions that 

have strong diameter effect were scaled better with τw vs. V. Gasljevic et al. (2001) noted 

that different techniques apply to different solutions, but typically fluids that follow the 

three-layer profile proposed by Virk (see Virk 1975) scale well with drag reduction vs. 

V.  

 

Sood and Rhodes (1998) developed a scale-up model based on Prandtl’s mixing length; 

which was adapted for drag reducing fluids. Results using this approach compared 

favorably with experimental data and data from the Trans-Alaska Pipeline. The model, 

however, is an iterative-based approach for pipe scale-up. Hoyt (2003) proposed a 

promising analytical expression for scale-up of drag reducing fluids. Considering the 

mean velocity profile for drag reduction (𝑢+ = 2.5 ln 𝑦+ + 5.5 + ∆𝐵), the scale-up 

expression is the following:  

   𝑁𝑅𝑒2 = [
√𝑓1

√𝑓2
] [

𝐷2

𝐷1
]𝑁𝑅𝑒1                                                                                           (2.30a) 

 

The above equation can be corrected for temperature differences by the kinematic 

viscosities (υ). 

   𝑁𝑅𝑒2 = [
√𝑓1

√𝑓2
] [

𝐷2

𝐷1
] [

𝜐1

𝜐2
] 𝑁𝑅𝑒1                                                                                    (2.30b) 
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The model was developed with the assumption that ΔB is the same for equal shear stress 

in both the small and large pipes. Hoyt (2003) found satisfactory agreement with Eq. 

(2.30) and gathered data. Hoyt’s approach was evaluated for surfactants used in district 

heating application by Ma et al. (2011). Satisfactory predictions were obtained for this 

application. 

 

The discussions above highlight several scale-up correlations with their applicability and, 

in some cases, shortcomings. What is clear is that diameter effect is important and has to 

be accounted for in drag reducing flows. Based on current knowledge, no single scale-up 

law can be applied to all fluids at different conditions primarily because of the 

complicated nature of drag reducing fluids combined with the mechanics of turbulent 

flow. 

 

 

2.6 Surfactants in the Oil and Gas Industry 

 

The application of surfactants in the petroleum industry is varied and diverse. Surfactants 

are used in a myriad of roles within the oil and gas industry. In drilling operations, 

surfactants can act as thinners, lubricants, and emulsifiers. Examples of some surfactants 

are lignosulfonates and sulfonated asphalt, which function as thinners and emulsifiers, 

respectively (Nelson 1982). For cementing operations, surfactants are used as spacer 

fluids that condition the wellbore in preparation for pumping cement. They act as 

viscosifiers when added to completion brines. For enhanced oil recovery operations, 

surfactants are used for interfacial tension reduction. Other applications include the 
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following: matrix diversion, filter cake removal, and wellbore cleanouts (Samuel et al. 

2000).  

 

More recently, surfactants have been developed for hydraulic fracturing operations. 

Exploration and exploitation of less permeable reservoirs encouraged research into the 

development of viscous fluids for stimulation. Polymer fluids, introduced in the 1960s, 

were observed to cause formation damage and thereby hinder production (Kefi et al. 

2004). This is because the relatively large size of polymer molecules has a greater 

tendency to plug pore throats. Thus, it became important for researchers and the industry 

to develop fluids that not only are sufficiently viscous to initiate and propagate fractures 

but also are non-damaging to the formation. This led to the development of polymer-free 

viscoelastic surfactant (VES) fluids. 

 

Viscoelastic surfactants contain molecules that are smaller (5,000 times smaller) than 

guar molecules (Samuel et al. 2000). Moreover, they satisfy other criteria for their 

widespread use. These criteria are low pressure drop in pipes, ability to transport and 

place proppants, and flow back with little or no formation damage (Samuel et al. 2000). 

The role of surfactants has been expanded to operations in low and high temperature 

reservoirs as well as to unconventional plays such as coalbed methane reservoirs (Kefi et 

al. 2004). For coalbed methane applications, viscoelastic surfactants have proved 

effective at minimizing formation damage, which ultimately results in greater production. 
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Chapter 3 

EXPERIMENTAL SETUP AND ANALYSIS 

 

This chapter is divided into two sections. The first section reviews information on the 

surfactants studied and provides a detailed description of the experimental apparatus for 

steady shear and dynamic oscillatory measurements. The second section provides a 

detailed description of the experimental loop used for flow measurements.  

 

3.1 Surfactant Samples 

 

The test fluid for this study is tallowalkylamidopropyldimetylamine oxide, which is 

commercially marketed as Aromox® APA-T—and more recently as Aromox® APA-TW 

by Akzo Nobel Chemical Inc (Chicago, Illinois). It consists of 50–65 wt% active 

surfactant, 25–40 wt% propylene (solvent) and 5–10 wt% water (solvent). The structure 

of this surfactant is shown in Fig. 3.1.The chain is composed of carbon atoms in the range 

of C14–C18. Aromox® APA-T (APA-TW) is stable in the temperature range of 40 to 155 

°F and can form viscoelastic gels. In oil and gas operations, it is used as a gelling agent 

for hydraulic fracturing to initiate fractures and aid in proppant transport. 
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Aromox® APA-T has been classified as zwitterionic (Ge 2008) but can be cationic in acid 

solutions and nonionic in neutral or alkaline media (Akzo Nobel Chemical Inc. 2001). 

The gels formed are shear dependent with high viscosity in the low shear rate and 

decreasing viscosity with increasing shear. They are known to be highly elastic and have 

good solids-carrying capacity under high and low shear (Akzo Nobel Chemical Inc. 

2001). Table 3.1 shows the physical properties of this surfactant. 

 

Table 3-1: Physical Properties of Aromox® APA-T 

 

Quantity Property 

color Clear golden liquid 

Freezing point 39–48 °F 

Sp. gr 0.99 at 77 °F 

pH 6–9 

 

Concentrations for rheological characterization are presented in Tables 3.2 and 3.3. These 

concentrations are based on actual field application of Aromox® APA-T and APA-TW. 

 

Figure 3.1: Tallow Amine Oxide 
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Table 3.2: Fluids Tested for Rheological Characterization (APA-T) 

 

Surfactant Conc., % vol. 
Salinity 

2% KCl 

APA-T 

1.5  

2  

3  

4  

 

Table 3.3: Fluids Tested for Rheological Characterization (APA-TW) 
 

Surfactant Conc., % vol. 
Salinity 

2% KCl 2 % CaCl
2
 

APA-TW 

1.5   

2   

3   

4   

5   

6   

 

 

3.1.1 Test Fluid Preparation 

 

Aromox® APA-T and APA-TW are supplied in liquid form, making solution preparation 

straightforward. The same mixing procedure was followed for rheology and flow 

measurements. A test solution was prepared by adding the required volume of surfactant 

to a given volume of water. 
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For laboratory rheology tests, 1 liter of water was used as the basis to which an 

appropriate amount of surfactant was added. The resulting solution was continuously 

mixed in a blender, initially at moderate speed and then at higher speeds to ensure proper 

mixing. The solution was left for 24 hours to hydrate and build structure. To investigate 

the effect of salts on rheology, 2% KCl or 2% CaCl2 was added to the water before the 

introduction of the surfactant. 

 

For flow tests, a scaled-up volume of surfactant was added to water in a 50-barrel mixing 

tank. The hydraulically-driven paddle of the mixing tank was set at a desired moderate 

speed. The mixer was left for approximately two hours to obtain a homogeneous solution. 

This homogeneous solution was left to hydrate for 24 hours before any test was 

conducted. 

 

As defined in the scope of this study, two salts were considered (2% KCl and 2% CaCl2). 

The same mixing procedure was followed, but this time a required amount of salt was 

added to a prepared surfactant solution. The surfactant-salt solution was thoroughly 

stirred for 1 hour. The solution was left for another hour to build viscosity. Hydration was 

confirmed by rheology measurements. 

 

3.2 Rheology Instruments 

 

Rheometers and viscometers are devices used to measure data for the characterization of 

fluid systems. The difference between both relates to equipment configuration and 
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measurement capabilities. Viscometers are relatively simpler setups that yield limited 

data such as shear viscosity. Rheometers, on the other hand, are versatile, sophisticated 

devices that offer flexibility with greater measurement capabilities that preclude 

viscometers. Measuring devices can be grouped into two categories: 

1. Flow through capillary or tube viscometers 

2. Flow in rotational rheometers/viscometers (concentric cylinders, cone and plate, 

and parallel plate) 

Two rheological instruments were used in this investigation. These are the model 35 Fann 

viscometer and the controlled stress Bohlin CS-50 rheometer. The bob-and-cup geometry 

was selected for rheology measurements. 

 

These are devices in which one part moves while the other part is fixed. Viscoelastic 

measurements are conveniently done either in the controlled-stress or controlled-strain 

modes. For controlled-stress rheometers, stress is imposed and the resulting rate is 

measured, while the controlled-strain involves stress measurements under imposed shear 

rate. The assumptions with rotational devices include steady state laminar flow, 

isothermal conditions, and negligible gravity and end effects. 

 

Concentric cylinder: In concentric cylinders, flow is in the gap between two cylinders, 

with the inner cylinder called the bob and the outer the cup. Either the bob or cup can be 

rotated relative to the other. Fluid placed in between both cylinders is sheared, and torque 

is generated on the stationary cylinder because of the viscosity of the fluid. With the 
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torque, shear stress resulting from the applied rate is calculated. The advantages of couette 

rheometers are (1) they are ideal for viscosity measurements in the intermediate shear rate 

range, (2) they are good for low viscosity fluids (less than 100 Pa.s), and (3) they can be 

used for high shear rate applications. The major limitation is that the couette device is 

unable to measure the normal stress.  

 

The working equations for couette rheometers are the following (Macosko, 1994): 

Shear stress:  

   𝜏𝑟𝜃 =
𝑀𝑖

2𝜋𝑅𝑖
2𝐿

                                                                                                                 (3.1) 

Shear rate: 

  �̇�(𝑅𝑖) = �̇�(𝑅𝑜) =
𝛺𝑖�̅�

𝑅𝑜−𝑅𝑖
  (for Ri/Ro ≥ 0.99)                                                                  (3.2) 

For 0.5 < Ri/Ro < 0.99 

   �̇�(𝑅𝑖) =
2𝛺𝑖

𝑛(1−(
𝑅𝑖
𝑅𝑜

)

2
𝑛
)

                                                                                                     (3.3)                                                                               

   �̇�(𝑅𝑜) =
−2𝛺𝑖

𝑛(1−(
𝑅𝑖
𝑅𝑜

)

2
𝑛
)

                                                                                                    (3.4) 

    𝑛 =
𝑑 ln𝑀𝑖

𝑑 ln𝛺𝑖
  

Normal stress: 

   𝑇11 − 𝑇22 =
[𝜏𝑟𝑟(𝑅𝑖)−𝜏𝑟𝑟(𝑅𝑜)]

𝑅𝑜−𝑅𝑖
�̅�                                                                                     (3.5) 

   �̅� =
(𝑅𝑜+𝑅𝑖)

2
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3.2.1 Fann 35 Viscometer 

 

The model 35 Fann viscometer (Fig. 3.2) is the workhorse of the oil and gas industry and 

has been the mainstay in many research and industry laboratories. It is particularly suited 

for measurements in the moderate shear rate range (5–1022 s-1). The equipment 

specifications for the model 35 Fann viscometer are given in Table 3.4. 

 

 

Figure 3.2: Model 35 Fann Viscometer 

 

 

Table 3.4: Specifications of Model 35 Fann Viscometer 

 

Instrument Geometry Dimensions, mm 
Shear Rate Range, 

s-1 

Fann 35 

Viscometer 

Diameter of Bob  Db = 34.49   

5.1 - 1022 
Diameter of Cup Dc = 36.83 

Ratio (β) Db / Dc = 0.9365 
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3.2.2 Bohlin CS-50 Rheometer 

 

The Bohlin CS-50 rheometer (see Fig. 3.3) is a much more versatile instrument. Its 

applicability spans both steady shear and dynamic oscillatory measurements. Further, it 

encompasses the functionality of the Fann 35 viscometer by providing an automated 

system for data acquisition in the low to moderate shear rate range. Complete rheological 

characterization requires measuring the steady as well as dynamic shear properties of test 

samples. The steady shear data provides the apparent viscosity data, which is vital for 

drag reduction calculations. The dynamic data provides viscoelastic properties [G’(ω) 

and G’’(ω)] for inferences about fluid structure. Amplitude sweep tests are run to obtain 

the minimum strain value in the linear viscoelastic region (LVR). Such a test is referred 

to as small amplitude oscillatory shear (SAOS). The SAOS mode is used to ensure the 

sample structure is left intact during each test. 

 

The Bohlin CS-50 has three geometries: bob and cup, cone and plate, and parallel plate. 

Bob and cup geometry is used here, with the dimensions shown in Table 3.5. With this 

apparatus, torque is applied to the test sample, and by means of an optical angular position 

transducer, the resulting displacement is measured. Added test functionality for high 

temperature (284 °F) and pressure conditions (600 psi) are included in the hardware for 

this rheometer. For studying the effect of temperature, a water bath is used to supply or 

remove heat by oil circulation.  
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Figure 3.3: Bohlin CS-50 Rheometer 

 

 

Table 3.5: Specifications of Bohlin CS-50 Rheometer 

 

Geometry Rb, in. Rc, in. Rb/Rc Lb Shear rate range, s-1 

bob and cup 0.492 0.541 0.926 1.476 0.648–1944 

 

Tests were conducted using a required quantity of test fluid. A 13-ml syringe was used to 

load the sample. Measurements at ambient conditions were performed initially in the 

dynamic oscillatory mode to gather viscoelastic data. Steady shear data were acquired in 

the shear rate range specified in Table 3.5. Each test required a time period of 2 hours. 

After each test, this instrument was thoroughly cleaned before the next experiment. 
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3.3 Experimental Flow Loop 

 

Figure 3.4 shows the field scale experimental flow loop at the Well Construction 

Technology Center (WCTC). The loop consists of straight pipes and fully eccentric 

annular sections. Straight pipes that cover the range of field scale diameter are used for 

this study. These are the 1½-in. (200 ft long, 1.188-in. ID) and 2⅞-in. (199.3 ft long, 

2.441-in. ID) pipe sections. In addition, friction pressure data from other pipe sizes (½-

in. and 2⅜-in.) at WCTC are included to add robustness to data evaluation. The various 

annular section dimensions are shown in Table 3.6. 
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Figure 3.4: Schematic of Experimental Setup 
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Table 3.6: Dimensions of Eccentric Annular Sections in Flow Loop 

 

Tubing Type 
Diameter, 

d2 and d1 (in.) 

Equivalent 

Diameter 

(d2 –d1) (in.) 

Length between 

Pressure Ports 

(ft) 

Eccentric Annulus (1) 3 ½ x 1 ¾ 1.000 175 

Eccentric Annulus (2) 5 ½ x 4 0.892 55 

Eccentric Annulus (3) 5 x 3 ½ 0.776 70 

 

 

3.3.1 Fluid Preparation and Pumping 

Test solutions were mixed and stored in two 50-barrel holding tanks mounted on a trailer 

unit (see Fig. 3.5). The solutions are mixed in one tank, as described in Sect. 3.1.1, while 

the second tank is used for water storage (for system calibration and flushing). Series of 

connecting pipes are used to transport fluid to the pumps and into the test section. 
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Figure 3.5: Fluid Mixing and Storage Tanks 

 

 

Two pumps connected in series provide the means to circulate fluid through the entire 

flow loop. These are the Galigher centrifugal and Schlumberger B804 high pressure 

triplex pumps (max. pressure of 10,000 psi at a rate of 290 gpm). The former is used to 

ensure constant supply of fluid for optimum running of the latter. Figures 3.6 and 3.7 

show the centrifugal and triplex pumps. 
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Figure 3.6: Galigher Centrifugal Pump 

 

 

 

Figure 3.7: Schlumberger B804 Triplex Plunger Pump 

 

 

3.3.2 Instrumentation 

In addition to pressure data, other parameters are monitored and recorded to aid in data 

analysis. The instrumentation consists of differential pressure transducers (Honeywell) 
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and a MicroMotion® flow meter. The MicroMotion® flow meter is used to acquire flow 

rate, fluid density, and temperature in real time. The specifications for the pressure 

transducers and MicroMotion® flow meters are listed in Tables 3.7 and 3.8. 

 

Table 3.7: Specifications of MicroMotion® Flow Meters 

 

No. Quantity Model Span, psi 
Rating, 

psi 
Accuracy* 

      Max. Min.     

1 2 STD170V 0–3,000 0–100 6,000 ±0.15% 

2 1 STD170G 0–3,000 0–100 3,000 ±0.15% 

3 2 (1) STD130V 
0–100 0–5 6,000 ±0.75% 

    (2) YSTD130G 

4 4 (1) STD130G 
0–100 0–5 6,000 ±0.075% 

    (2) STD 130V 

5 2 STG98LC 0–6,000 0–500 9,000 ±0.1% 
* Expressed in terms of percentage of calibration span 

 

Table 3.8: Specifications of Pressure Transducers 

 

Item Flowmeter 1 Flowmeter 2 

Model 
DL200 

S228SU 

DS300 

S157SU 

S/N 154891 251696 

Flow rate range, gal/min 0 - 420 0 - 840 

Flow rate accuracy, % ±0.15 ±0.15 

Temperature accuracy, 

°C 
±0.1 ±0.1 

Density accuracy, g/cm3 ±0.0005 ±0.0005 

Operating pressure, psi 740 740 
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3.3.3 Data Monitoring and Acquisition 

Completing the hardware is the data monitoring and acquisition system. With this system, 

a wireless data logger is the medium through which data is acquired and transmitted. 

These data include friction pressure loss, flow rate, temperature, and fluid density. The 

wireless logger system consists of two Fluke Hydra systems (model 2625A) with 

different channels, each representing a recorded parameter. 

 

As the name implies, data are transmitted through a wireless connection to a computer in 

the data acquisition room. The computer is equipped with software that displays graphs 

showing trends of all measured parameters with time. This display makes it easy to assess 

steady state reference points. Measured parameters are monitored to observe changes as 

each test progresses and to record data for subsequent interpretation. 

 

3.3.4 Flow Loop Operation 

The test sample was prepared in the mixing tank at ambient conditions. Prior to each test, 

calibration fluid (water) was pumped from the storage tank at different flow rates 

(turbulent regime) through the test section to (1) ensure that the system is free of debris 

and (2) acquire baseline data for subsequent analysis. Water calibration plots for straight 

pipe and annular sections can be found in Chapter 7 and Appendix II, respectively. Upon 

completion of the water test, a valve was actuated to allow the flow of the test solution in 

recirculation mode. The flow rate, being the control variable, was increased at specified 

intervals to cover both laminar and turbulent flow conditions (30 to 250 gpm). As flow 
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rate was changed, the resulting pressure loss was measured and recorded. A period of 2–

3 minutes of flow was required to achieve steady state. Fluid samples were collected and 

sampled before, during, and after each test as a means of quality control (to rule out 

possible fluid degradation). At the end of testing, water was pumped to flush the test 

section in preparation for future experiments. 

 

3.4 Analysis of Flow Data 

Rheological and flow data were analyzed using the equations presented in this section.  

 

3.4.1 Rheological Data Analysis 

Steady shear data for the 35 Fann Model was recorded in the form of dial reading and 

rotor speed using the standard R1-B1 geometry. These quantities were converted to wall 

shear stress and wall shear rate using the following equations: 

  𝜏𝑤 = 0.01066 × 𝑆 × 𝜃𝑖                                                                                                (3.6) 

   �̇�𝑤 = 1.703 × 𝑁                                                                                                          (3.7) 

where, τw = wall shear stress (lbf/ft
2); S = spring number (1 and 0.2 for the no. 1 and 1/5

th 

spring); θi = dial reading; �̇�𝑤= wall shear rate (s-1); and N = rotor speed (rpm). 

 

For power law fluids (𝜏𝑤 = 𝐾𝑣(�̇�𝑤)𝑛), parameters n and Kv for each solution were 

determined by least squares regression from log-log plots of wall shear stress–wall shear 

rate. The viscometer consistency index can be converted to pipe consistency index (Kp) 

or annular consistency index: 
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   𝐾𝑝 = 𝐾𝑣 [
(3𝑛+1)(1−𝛽

2
𝑛)

4(1−𝛽2)
]

𝑛

                                                                                            (3.8a) 

   𝐾𝑎 =
𝐾𝑝

[
9𝑛+3

8𝑛+4
]
𝑛                                                                                                                  (3.8b)                                    

 where, β is the ratio of bob-to-cup radius; n is the flow behavior index; Kp and Ka are the 

pipe consistency index (lbf s
n/ft2) and annular consistency index (lbf s

n/ft2), respectively. 

 

The power law parameters for test solutions under investigation are reported in Tables 

3.9 and 3.10 for APA-T and APA-TW, respectively. 

 

Table 3.9: Rheological properties of APA-T Solutions 

 

Test Fluid n Kv (lbf sn/ft2) Kp (lbf sn/ft2) 

1.5% Aromox APA-T in fresh water  0.569 0.0036 0.0039 

4% Aromox APA-T in fresh water 0.248 0.0450 0.0540 

 

 

Table 3.10: Rheological properties of APA-TW Solutions 

 

Test Fluid n Kv (lbf sn/ft2) Ka (lbf sn/ft2) 

5% Aromox APA-TW in fresh water  0.387 1.78 x10-2 3.34 x10-2 

5% Aromox APA-TW in 2% KCl  0.269 4.17 x10-2 4.74 x10-2 

5% Aromox APA-TW in 2% CaCl2 0.298 3.22 x10-2 3.66 x10-2 
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3.4.2 Flow Data Analysis 

Flow rate (q) and pressure drop (Δp) were converted to the generalized Reynolds number 

(NReg) and Fanning friction factor (f), respectively. The pressure gradient is related to the 

Fanning friction factor as expressed below: 

   
∆𝑝

𝑙
=

𝑓𝜌𝑢2

25.8𝑑
                                                                                                                    (3.9) 

where, ρ = fluid density (ppg); u = fluid velocity (ft/s); d = internal diameter (in.). 

 

The fluid velocity is calculated from flow rate (q) as expressed below: 

   𝑢 =
𝑞

2.448𝑑2                                                                                                                  (3.10) 

The Reynolds number and generalized Reynolds number for pseudoplastic fluids are 

defined as follows: 

   𝑁𝑅𝑒 =
𝜌𝑢𝑑

𝜇
                                                                                                                   (3.11) 

   𝑁𝑅𝑒𝑔 =
𝜌𝑢𝑑

𝐾𝑝(
8𝑢

𝑑
)
𝑛                                                                                                            (3.12) 

Equations (3.11) and (3.12) are in consistent units. 

 

For a power law fluid, the generalized Reynolds number is expressed as follows: 

   𝑁𝑅𝑒𝑔 = (
1

12
)
𝑛 7.48

32.17×8𝑛−1

𝑑𝑛𝑢2−𝑛𝜌

𝐾𝑝
                                                                               (3.13) 

 

For annular flow, the pipe diameter (d) is replaced with the hydraulic diameter (d2 – d1). 

where, d2 is the inner diameter of outer pipe and d1 is the outer diameter of inner pipe. 
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Chapter 4 

RHEOLOGICAL CHARACTERIZATION OF SURFACTANT 

SOLUTIONS 

 

4.1 Introduction 

Viscoelastic surfactants are widely used in the oil and gas industry for hydraulic 

fracturing operations. These surfactants have the ability to impart high viscosity at low 

shear rates, display shear thinning characteristics, and exhibit drag reducing 

characteristics. As described in Chapter 2, shear degradation with surfactants is temporary 

when compared to permanent degradation with polymers. They are non-damaging to 

hydrocarbon formations because they leave no residue in pore spaces. A drawback of 

surfactants is loss of functionality at elevated temperatures. 

 

Many industrial applications, especially in the chemical and petroleum industries, involve 

solids transport by means of a non-Newtonian carrier fluid. The fluid viscosity at 100 s-1 

is often used to assess the solids transport capability of a fluid. However, rheological and 

atomic force microscopy (AFM) tests on crosslinked guar polymer solutions by Goel et 

al. (2001) highlighted the inadequacies with viscosity (at 100 s-1) as a significant transport 

criterion. They observed that solids transport is qualitatively related to the fluid structure 

as marked by an increase in the storage modulus. From a comprehensive literature review, 

it can be stated that limited information exists on the rheological character of surfactant 

solutions (at concentrations used for industrial operations) as it relates to solids transport 
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capability. The intent of this chapter is to address this issue by providing a systematic and 

detailed investigation of the rheological behavior of surfactant solutions as inferred from 

steady shear and dynamic oscillatory tests. 

 

Surfactant solution rheology is influenced by several factors, including shear rate, 

concentration, temperature, type and concentration of counterion, and solvent type. This 

chapter examines and characterizes surfactant solutions. Steady shear and dynamic 

oscillatory measurements are reported to elucidate the effect of concentration and 

temperature on the rheological behavior of surfactant solutions used for oilfield 

operations. 

 

4.2 Steady Shear Behavior 

4.2.1 Concentration Dependence 

Figures 4.1 and 4.2 show the apparent viscosity as a function of shear rate at 75 °F for the 

surfactant solutions under consideration. Two regions (I and II) can be identified in both 

figures. These are the lower Newtonian and shear thinning regions at low and high shear 

rates, respectively. In the lower Newtonian region, the viscosity (referred to as zero shear 

rate viscosity, µo) is unaffected by shear rate and remains constant. At a certain shear rate 

value (critical shear rate), a transition from I to II occurs. In Region II, the apparent 

viscosity decreases, with shear rate displaying the shear thinning behavior that is common 

to many WLM solutions. The shear thinning region covers approximately four decades 
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of shear rate. As shown in both figures, the shape of the apparent viscosity–shear rate 

curves is dependent on surfactant concentration. 

 

 

Figure 4.1: Apparent Viscosity for APA-T Solutions 

 

 

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

A
p

p
a
re

n
t 

v
is

c
o

s
it

y
 (

c
P

)

Shear rate (s-1)

4% 3%

2% 1.5%



 

 61   

 

 

Figure 4.2: Apparent Viscosity for APA-TW Solutions 

 

The µo is a parameter frequently employed in characterizing non-Newtonian fluids. In the 

drilling industry, it is used as an indicator of solids-carrying capacity of fluids. It is 

believed that the higher the µo, the better the solids-suspension properties of a fluid 

system. Figures 4.3 and 4.4 show µo plotted against concentration for APA-T and APA-

TW samples. The magnitude of µo increases with concentration, as represented by the 

slope of these curves. As observed from both figures, µo for both surfactants vary at the 

same concentration even though the equivalent mass is the same for the samples. APA-T 

solutions have consistently higher µo values than the APA-TW samples.  

 

An increase in surfactant concentration promotes one-dimensional micellar growth due 

to increasing aggregation number and number density of aggregates (Acharya et al. 
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2006). The power-law scaling exponent for APA-T samples is close to the Cates’ 

theoretical value (Cates and Candau 1990) for neutral micelles (µo ~ c3.5). For APA-TW 

samples, the scaling exponent is lower than the theoretical value. The lower value 

suggests the presence and reptation of branched micelles (Lequeux 1992) as the system 

has end-caps and intermicellar connections (Oelschlaeger and Willenbacher 2011). The 

scaling relationship for the APA-T fluid is indicative of long micelles in which micellar 

kinetics (breaking and recombination) occurs several times while reptating out of the 

cylindrical tube (i.e., τb << τrep) (Shashkina et al. 2005).  

 

  

 

Figure 4.3: Zero Shear Rate Viscosity of 1.5 to 4% APA-T 
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Figure 4.4: Zero Shear Rate Viscosity of 1.5 to 6% APA-TW 
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engineering fluid systems. The power law model is a special case of both the Carreau and 

MPL-Cross models. The modified power law was presented by Dunleavy and Middleman 

(1966) and referenced in other studies (Lee and Park 2001).  

 

The Carreau model is expressed as follows: 

   𝜇 =
(𝜇𝑜−𝜇∞)

[1+(𝑡�̇�)2]𝑁
+ 𝜇∞                                                                                                     (4.1) 

   𝑁 =  
1−𝑛

2
  

where, µo = zero-shear rate viscosity; µ∞ = viscosity at infinite shear; t = time constant; n 

= flow behavior index. Usually, µ∞ can be neglected because µ∞ << µo.  

 

The MPL-Cross model is derived by considering two models—the modified power law 

and Cross models. The Cross (1965) model is expressed as follows: 

   𝜇 =
(𝜇𝑜−𝜇∞)

[1+(𝑡�̇�)1−𝑛]
+ 𝜇∞                                                                                                    (4.2) 

The MPL-Cross (Lee and Park 2001) is expressed as follows: 

   𝜇 =
𝜇𝑜

[1+(
𝜇𝑜

𝐾𝑀𝑃𝐿
)�̇�1−𝑛]

+ 𝜇∞                                                                                              (4.3) 

 

Equation (4.3) represents an improvement to the existing MPL; it has a term to account 

for viscosity at high shear rates. Thus, Eq. (4.3) is termed the “extended power law 

model,” or more conveniently “EPL.” 
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Neglecting the µ∞, the EPL model can be recast in the form of the Cross model as follows: 

   𝜇 =
𝜇𝑜

[1+({
𝜇𝑜

𝑘𝑀𝑃𝐿
}

1
𝑐
�̇�)

𝑐

]

                                                                                                     (4.4) 

where, c = 1-n 

 

Non-linear regression was used to fit Eqs. (4.1) and (4.4) to steady shear data. Figures 4.5 

and 4.6 show the fit for 4% APA-T and 5% APA-TW. The fit parameters for the Carreau 

model are summarized in Table 4.1 for other concentrations. Average errors of less than 

10% were calculated. It can be seen from Figs. 4.5 and 4.6 that both models satisfactorily 

describe the steady shear character of both surfactant samples. The Carreau model, 

however, gave the lowest average error. The time constant increases with concentration, 

whereas the flow behavior index (n) decreases with concentration (the degree of shear 

thinning increases with surfactant concentration).  

 

Table 4.1: Carreau Model Parameters 

 

  
Concentration 

(%) 
μo (cP) t (s) N 

APA-T 

4 1659 0.676 0.322 

3 1030 0.543 0.298 

2 115 0.695 0.149 

1.5 58 0.050 0.133 

APA-TW 

6 156 0.047 0.239 

5 109 0.040 0.227 

4 53 0.030 0.189 

3 20 0.014 0.120 

2 15 0.010 0.105 
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Figure 4.5: Model Prediction of Apparent Viscosity for 4% APA-T 

 

 

 

Figure 4.6: Model Prediction of Apparent Viscosity for 5% APA-TW 
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4.2.3 Temperature Dependence 

Temperature has a significant effect on the rheological properties of surfactant solutions. 

Figures 4.7 and 4.8 show a comparison of apparent viscosity-shear rate curves at 100 °F, 

125 °F, and 150 °F for 4% APA-T and 5% APA-TW. The effect of temperature is visible 

in both regions of the apparent viscosity-shear rate plot. The dependence of µo on 

temperature is shown in Fig. 4.9. It is evident that µo increases at 100 °F (Tµomax) and 

subsequently decreases at higher temperatures. The shear thinning region at 100 °F begins 

at lower shear rates. This implies an improved solution structure as indicated by an 

increase in µo. In the shear thinning region, the flow behavior index decreases with 

temperature between 75 °F and 100 °F. Conversely, at higher temperatures (> 100 °F), 

the apparent viscosity decreases with temperature, shear thinning begins at higher shear 

rates, and the flow behavior index increases with temperature.  
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Figure 4.7: Temperature Dependence of Apparent Viscosity of 4% APA-T 

 

 

Figure 4.8: Temperature Dependence of Apparent Viscosity of 5% APA-TW 
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Figure 4.9: Temperature Dependence of Zero Shear Rate Viscosity of SB Fluids 
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This promotes a decrease in the average area of head groups (Acharya et al. 2006). It is 

possible that above Tµomax, micellar joints (intermicellar connections or branching) are 

formed, resulting in lower µo values.   

 

An attempt was made in generating master curves for the 4% APA-T and 5% APA-TW 

solutions at various temperatures using the method of reduced variables. The concept 

behind this technique is to superimpose experimental data at different temperatures (or 

concentrations) onto a reference temperature (or concentration) using calculated vertical 

and horizontal shift factors. Master curves compare polydispersity and molecular weight 

using rheological data (Venkataiah and Mahadevan 1982). Both shift factors have 

physical meanings that are important from a steady shear characterization point of view. 

The horizontal shift factor is indicative of the shear intensity on the fluid, while the 

vertical shift factor correlates with the structural changes that occur under flow conditions 

(Venkataiah and Mahadevan 1982).      

 

The vertical and horizontal shift factors for apparent viscosity and wall shear rate at the 

different temperatures are expressed as follows: 

𝑎𝑇 =
(𝜇𝑜−𝜇𝑠)𝑇

(𝜇𝑜−𝜇𝑠)𝑇𝑟

𝑇𝑟

𝑇
                                                                                                     (4.5a) 

 

    𝑏𝑇 =
(𝜇𝑜)𝑇𝑟

(𝜇𝑜)𝑇
                                                                                                                 (4.5b) 

where, Tr is the reference temperature, T is the temperature, μo is the zero shear 

viscosity, and μs is the solvent viscosity. 
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The resulting master curve (Figs. 4.10 and 4.11) is of the form of the Carreau model, 

expressed as: 

 

   
𝜇

𝜇𝑜
= [1 + (𝛼�̇�)2]−𝑁                                                                                                  (4.6) 

 

Fitting the above equation yields α = 0.532 s and N = 0.406 for 4% APA-T, while α = 

0.0168 s and N = 0.693 for 5% APA-TW. The master curve covers five decades of 

shear rate.    

 

 

Figure 4.10: Reduced Apparent Viscosity Plot for 4% APA-T Solution at Various 

Temperatures 
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Figure 4.11: Reduced Apparent Viscosity Plot for 5% APA-TW Solution at 

Various Temperatures 

 

 

4.2.4 Master Curves for Viscosity Data 

Preceding sections presented and discussed the effects of concentration and temperature 

on the steady shear rheological behavior of test samples. It is evident that micellar 

interactions occur due to changes in both factors. As stated in Sect. 4.2.3, a convenient 

method of evaluating concentration and temperature effects on fluid structure is through 

the use of reduced variables. Here, a molecular approach is used. This molecular 

technique has been successfully applied to polymers as shown by Graessley (1974) and 

involves scaling the shear rate axis with the characteristic relaxation time (λ). 

   𝜆 =
(𝜇𝑜−𝜇𝑠)

𝑐𝑅𝑇
                                                                                                                 (4.7) 
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The apparent viscosity–shear rate relationship can be expressed as follows: 

   
𝜇

𝜇𝑜
= 𝑓(𝜆, �̇�)                                                                                                               (4.8) 

 

Figures 4.12 and 4.13 show the reduced variables scaling approach on APA-T and APA-

TW samples at 75 °F. The values of λ are reported in Table 4.2. Obvious concentration 

dependence is observed from these figures. Apart from the 1.5% APA-T sample, all other 

data points collapse to a single master curve, especially in the low shear rate region. 

Scaling of the APA-TW samples results in a single master curve for concentrations 

greater than 3%. At lower concentrations (1.5–3%), deviations can be observed. This 

suggests that the non-Newtonian character of surfactant samples is concentration 

dependent, as shown by an inability to generate suitable master curves. Thus, the 

molecular scaling approach using the characteristic time is not applicable at low 

surfactant concentrations. 
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Figure 4.12: Master Plot of Apparent Viscosity for APA-T 

 

 

 

Figure 4.13: Master Plot of Apparent Viscosity for APA-TW 
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Table 4.2: Summary of Reduced Variable λ 

 

  
Concentration 

(%) 
λ (s) 

APA-T 

4 5.88 x 10-6 

3 5.07 x 10-6 

2 7.96 x 10-7 

1.5 5.49 x 10-7 

APA-TW 

6 3.72 x 10-7 

5 3.16 x 10-7 

4 1.94 x 10-7 

3 9.23 x 10-8 

2 1.09 x 10-7 

1.5 6.08 x 10-8 

 

 

4.3 Oscillatory Shear Properties 

4.3.1 Concentration Dependence 

Dynamic shear data at 75 °F are shown in Figs. 4.14 and 4.15. There is an increased 

frequency dependence of both moduli at lower surfactant concentration. From the data, 

there is an increase in G'(ω) and G''(ω), with concentration. This increase is attributed to 

greater network entanglements. Higher G'(ω) data reflect a more elastic response with 

better structure of micellar networks. Maxwell-type behavior is evident in the low 

frequency region. The solutions exhibit viscoelastic behavior, with G'(ω) > G'' (ω) at high 

frequencies and G''(ω) > G'(ω) at lower frequencies. The appearance of a crossover point 

(ωc), which depends on concentration, is indicative of structural changes. The inverse of 

the crossover frequency (1/ωc) is the relaxation time (τR) for the samples. The crossover 
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point is a function of the degree of network entanglements within the solution. Higher 

crossover frequencies and lower relaxation times are indicative of less structure. It is 

evident that an increase in concentration shifts the crossover point to lower frequencies. 

With increasing concentration, the number density of micellar entanglements is 

increased. The greater number of entanglements requires longer relaxation times for 

stress relaxation to occur (Kamel 2008).  

 

The Maxwell parameters for both surfactants are reported in Table 4.3. From this table, 

the scaling relationships for APA-T fluid follow a power-law expression with exponents 

different from theoretical values (τR ~c1.25 and Go~c2.25). Lower exponent values for τR 

suggest the formation of micellar joints common to branched micelle networks (Acharya 

et al. 2006; Oelschlaeger and Willenbacher 2011). Higher values indicate the presence of 

long micelles. For APA-T fluid, an exponent of 2.85 (i.e., τR ~c2.85) is determined, which 

implies the presence of long micelles in solution. Due to measurable viscoelasticity 

displayed by APA-TW at only two concentrations (5% and 6% v/v) in fresh water, the 

scaling relationship is based on the steady shear data. 
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Figure 4.14: Storage and Loss Moduli vs. Frequency for APA-T 

 

 

 

Figure 4.15: Storage and Loss Moduli vs. Frequency for APA-TW 
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Table 4.3: Maxwell Parameters for Test Solutions in Freshwater 

 

  
Concentration 

(%) 
τR (s) Go (lbf/ft2) 

APA-T 

4 0.37 0.062 

3 0.133 0.054 

2 0.033 0.04 

1.5 0.025 0.03 

APA-TW 
6 0.035 0.135 

5 0.03 0.111 

 

 

 

4.3.2 Temperature Dependence 

Temperature effect on a 4% APA-T surfactant solution is shown in Fig. 4.16. Figure 4.16 

shows data at 75 °F, 100 °F, and 125 °F; it is evident that the crossover point decreases 

from 2.7 rad/s at 75 °F to 0.65 rad/s at 100 °F. This implies an improved structural 

arrangement (more elasticity), which corresponds to an increase in μo from the steady 

shear data. Such a behavior is odd because it is expected that with temperature rise, there 

should be a reduction in viscosity (Rosen 2004). A valid explanation for the better 

structure is the growth of cylindrical micelles (Kalur et al. 2005; Raghavan and Kaler 

2000) which are known to impart the viscoelastic characteristic displayed by surfactant 

solutions. Thus, a temperature of 100 °F is favorable for organized intermicellar 

interactions. Progressive loss of structure is visible at temperatures between 125 °F and 

200 °F as marked by higher crossover frequencies (Fig. 4.17). In this temperature range, 

the disruption and hindrance of intermicellar interactions are dominant. Under high 

temperatures, it is possible that the lower moduli values are due to the formation of 

spherical micelles, manifested by a loss in viscoelasticity.  
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Figure 4.18 shows the variation of rheological parameters (τR, Go) with temperature for 

the 4% APA-T solution. The τR exhibits a similar trend as μo with an initial increase 

between 75 °F and 100 °F followed by a decline at temperatures greater than 100 °F.  The 

Go remains constant with temperature between 75 °F and 100 °F. Above 100 °F, it 

increases with temperature. The implication of Fig. 4.18 is that there is a decrease in the 

disentanglement time (τR) as well as an increase in the volume fraction of entanglements 

(Go). Hashizaki et al. (2009) attributed this to greater hydrophibicity of surfactant 

solutions. Higher temperatures decrease the interfacial curvature of the micelle assembly 

and cause dehydration of micelle chains. Dehydration tends to favor a more hydrophobic 

character and hence an increase in the volume fraction of entanglements. 

 

To properly isolate the effect of temperature from other possible mechanisms affecting 

structural changes, the time (or frequency)-temperature superposition principle is used. 

The time-temperature superposition (TTS) is primarily used to examine the equivalency 

between frequency and temperature. This principle simply assumes equal temperature 

dependence on relaxation mechanisms (Povolo and Fontelos 1987) and assesses the 

similarity of responses at several temperatures (Raghavan and Kaler 2000). Three 

approaches were tested for reducing the 4% solution to a single master curve for G'(ω). 

The first approach uses the method of reduced variables with the horizontal shift factor 

from Eq. (4.5a). The second approach involves scaling the angular frequency with the 

relaxation time, which has been successfully applied to surfactant solutions (Arora 2004). 



 

 80   

 

The third approach (Figs. 4.19 and 4.20) scales the moduli axis with the plateau modulus 

and the frequency axis with the relaxation time (Macias et al. 2011).  

 

The result of the TTS shows an inability to reduce the data to a single curve. As a result, 

it may be stated that there are possible structural changes within the sample that are not 

solely due to temperature. Fluids displaying this sort of behavior are called 

“thermorheologically” complex fluids.  

 

 

Figure 4.16: Temperature Dependence of Storage and Loss Moduli for 4% APA-T 

(75–125 °F) 
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Figure 4.17: Temperature Dependence of Storage and Loss Moduli for 4% APA-T 

(150–200 °F) 

 

 

 

Figure 4.18: Maxwell Parameters vs. Temperature for 4% APA-T 
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Figure 4.19: Reduced Loss Modulus at Various Temperatures 

 

 

 

 

Figure 4.20: Reduced Storage Modulus at Various Temperatures 
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With these findings, it obvious that structural changes in WLMs occur with increasing 

temperature. The largest value of τR at 100 °F suggests the presence of long micelles as 

stress relaxation is reduced. At higher temperatures (> 100 °F), the presence of shorter 

micelle length (Sect. 4.2.3) is unlikely because the mesh and entanglement network 

density increases with temperature. This is confirmed by an increase in Go with 

temperature. An explanation for this observation can be attributed to branching or 

formation of joints in micellar network. These joints slide along the micelle length, 

resulting in faster stress relaxation (Acharya et al. 2006). 

 

4.4 Summary 

The rheological behavior of surfactant solutions (Aromox® APA-T and APA-TW) at 

different concentrations was investigated using steady shear and dynamic oscillatory 

testing. The influence of concentration and temperature on rheological properties is 

reported. The zero shear rate viscosity increased with concentration, as expected. An 

increase in concentration promotes formation and growth of rod-like micelles. 

Temperature had a significant effect on the rheological character of test solutions. The 

zero shear rate viscosity increased with temperature between 75 °F and 100 °F. 

Correspondingly, the relaxation time increased with temperature within the same range. 

This observation can be attributed to the growth and entangling of worm-like micelles. 

At higher temperatures, the zero shear rate viscosity and relaxation time decreased with 

temperature. The plateau modulus increased with temperature. 
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Scaling relationships with concentration are compared to theoretical values. For APA-T 

solutions, the higher exponents for zero shear rate and relaxation time with concentration 

indicate the presence of long micelles. These longer micelles are responsible for higher 

zero shear rate viscosity and greater viscoelastic response. APA-TW solutions, on the 

other hand, contained branched micelles because scaling exponents are lower than 

theoretical values. 

 

Master curves are generated for 4% APA-T and 5% APA-TW steady shear data at 

different temperatures. However, all attempts to generate master curves for viscoelastic 

data failed due to the thermorheologically complex nature of these fluids. Molecular 

scaling using the characteristic time for data at different concentrations proved 

unsuccessful because the non-Newtonian character of surfactant solutions prevented the 

collapse of data to a single curve. 
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Chapter 5 

EFFECT OF IONIC STRENGTH ON THE RHEOLOGICAL 

BEHAVIOR OF SURFACTANT SOLUTIONS 

 

5.1 Introduction 

Several factors are known to influence the rheological properties of surfactant solutions. 

Some of these factors are concentration, temperature, and electrolytes. Electrolytes are 

known to alter the physicochemical properties of surfactants (Myers 2005; Wang 1993). 

Organic and inorganic salts act as thickening agents that promote formation of wormlike 

micelles (Oelschlaeger and Willenbacher 2011; Wang 1993). Favorable interactions can 

be the result of screening of electrostatic repulsions or the formation of hydrogen bonds 

with water, as in the case of water structure promoters. It is well documented that salts 

can reduce the CMC, thereby inducing structural changes in surfactant solutions. In some 

instances, depending on the nature and type of counterion, salts can induce and regulate 

viscoelasticity in surfactants solutions (Lu et al. 2011). 

 

This chapter studies the rheological behavior of surfactant solutions, at concentrations 

used in oilfield operations, in the presence of inorganic monovalent and divalent salts. 

The salts used here are 2% KCl and 2% CaCl2. Comparisons are made between salt and 

freshwater solutions in terms of micellar growth and degree of entanglements. 

Microstructural changes are investigated and analyzed using steady shear as well as 

dynamic oscillatory measurements.  
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5.2 Steady Shear Behavior 

The apparent viscosity–shear rate curves are shown in Figs. 5.1 and 5.2 for several 

concentrations of the two surfactant solutions containing 2% KCl. The steady shear 

behavior of solutions containing 2% KCl is qualitatively similar to solutions in 

freshwater. However, the addition of salt alters the magnitude of viscosity. At low shear 

rates, a clear Newtonian plateau is observed. Above a particular shear rate, transition to 

shear thinning behavior can be seen in both figures. The apparent viscosity–shear rate 

data can be represented by the Carreau (1972) and MPL-Cross models (Figs. 5.3 and 5.4). 

Parameters (μo, t, and N) for the Carreau model are reported in Table 5.1.  

 

Marked differences in the magnitude of rheological parameters suggest changes in 

micellar structure with salt addition. The μo at all concentrations is greater in magnitude 

than at equivalent concentrations in freshwater (see Tables 4.1 and 5.1). For example, μo 

for the 4% APA-T solution is three times greater in 2% KCl than in freshwater. Similarly, 

μo for the 5% APA-TW sample is two times greater in 2% KCl than in freshwater. Similar 

trends were observed at all other concentrations. The increased flow resistance at low 

shear rates can be attributed to electrostatic screening among head groups. Electrostatic 

screening promotes growth, aggregation, and entanglement of micelles.  

 

Another effect of salts is the faster transition from the lower Newtonian plateau to the  

shear thinning region (i.e., lower critical shear rate). The critical shear rate is a function 

of salt and polymer concentrations. For the 4% APA-T solution, the critical shear rate is 
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reduced from 0.676 s-1 in freshwater to 0.476 s-1 in 2% KCl. This effect is more 

pronounced with the APA-TW samples. For a concentration of 5% APA-TW, the critical 

shear rate is 21.3 s-1 in freshwater but 8.41 s-1 in 2% KCl. From Tables 4.1 and 5.1, it is 

obvious that salts induce greater shear thinning (increase slope of apparent viscosity–

shear rate curve) than surfactant solutions do in freshwater. 

 

 

 

Figure 5.1: Apparent Viscosity of 3 and 4% APA-T in 2% KCl 
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Figure 5.2: Apparent Viscosity of APA-TW in 2% KCl 

 

 

Figure 5.3: Model Predictions for 4% APA-T in 2% KCl 
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Figure 5.4: Model Predictions for 5% APA-TW in 2% KCl 

 

 

 

Table 5.1: Carreau Model Parameters for Test Solutions in 2% KCl 

 

  
Concentration 

(%) 
μo (cP) t (s) N 

APA-T 
4 4482 0.475 0.36 

3 1755 0.704 0.32 

APA-TW 

6 330 0.119 0.281 

5 232 0.109 0.262 

4 142 0.101 0.246 

3 46 0.044 0.191 

2 26 0.0411 0.162 

1.5 25 0.049 0.152 
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5.3 Dynamic Oscillatory Shear Behavior 

The mechanical spectra data [G'(ω) and G"(ω)] are important for the complete 

characterization of surfactant solutions. Generally, the G'(ω) obtained from small strain 

oscillatory experiments is used to make inferences on the structure of fluids (Rochefort 

1986; Rochefort and Middleman 1987). Dynamic oscillatory experiments were 

performed with the Bohlin CS-50 rheometer to measure the G'(ω) and G"(ω). The same 

concentrations to those of the steady shear characterization study are considered. 

Furthermore, the influence of salt (2% KCl) on the micellar structure is studied and 

compared with solutions in freshwater (FW). Salts induce viscoelasticity at lower 

surfactant concentrations. For instance, strong viscoelastic character is exhibited by APA-

TW samples at a concentration of 4% in salt as opposed to 5% in freshwater. 

 

The dynamic oscillatory properties of APA-T and APA-TW samples are shown in Figs. 

5.5 through 5.10. The data in 2% KCl are qualitatively similar to those of freshwater 

samples. However, differences in the magnitude of G' and G'' are observed. Addition of 

salt increases the magnitude of the storage and loss moduli. Figure 5.5 shows the moduli 

data for 4% APA-T solution as a function of angular frequency. In the presence of salt, 

there is an increase in G'(ω) (~ 400%) over the frequency range studied. This suggests 

that in solutions containing 2% KCl, the surfactant micellar structure is improved. 

Similarly, an increase is recorded in G"(ω) (~ 200%) over the entire frequency range 

studied. A trend similar to that of 4% APA-T is observed for the 3% solution (Fig. 5.6). 

At low frequencies, G''(ω) > G'(ω) in FW and 2% KCl. Both moduli are also found to be 
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dependent on frequency. With the addition of 2% KCl, higher G'(ω) (~280%) and G"(ω) 

(~200%) are recorded.  

 

The data for 2% and 1.5% APA-T solutions indicate less structure and an increased 

frequency dependence of G'(ω) and G"(ω) with G'(ω) < G"(ω) at low frequencies (Figs. 

5.7 and 5.8). Crossover points at high angular frequencies indicate structure loss as faster 

stress relaxation processes are dominant. In other words,  an increase in the magnitude of 

the crossover frequency leads to greater frequency dependence and structure loss 

(Rochefort and Middleman 1987). An addition of 2% KCl increases the magnitude of 

G'(ω) as compared to the equivalent concentrations in freshwater.  

 

Similar observations are made for 5% APA-TW in terms of higher G''(ω) and G'(ω) in 

the presence of 2% KCl (see Figs. 5.9 and 5.10). Important inferences can be drawn from 

the foregoing discussion. At higher concentrations, there is less frequency dependence 

and overall better fluid structure as the crossover frequency is shifted to lower 

frequencies. At lower concentrations in the frequency regime studied, greater frequency 

dependence and crossover points at higher frequencies indicate decreased structure. 

Irrespective of concentration, solutions displayed greater viscoelasticity (higher 

magnitude of moduli data) and improved structure with a decrease in the crossover 

frequency with 2% KCl in solution.     
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The relaxation times are determined from oscillatory measurements as the inverse of ωc 

for APA-T samples and from a fit of mechanical spectra data using Maxwell relations for 

APA-TW samples. Table 5.2 shows the variation of τR and Go at different concentrations 

for APA-T and APA-TW. Comparatively, the magnitude of τR is higher in salt than in 

freshwater solutions (see Tables 4.3 and 5.2). The dependence of τR on concentration 

corresponds to trends observed with μo. An increasing trend of τR with concentration 

suggests micellar growth (Oelschlaeger and Willenbacher 2011).  

 

For APA-T samples, Go is determined from oscillatory measurements as 2 times G* (the 

modulus at which G' = G''). Whereas, Go for APA-TW samples is determined from fitting 

Maxwell relations to viscoelastic data. The plateau modulus increased with concentration 

corresponding to observed trends with μo and τR. This can be interpreted as greater 

micellar interactions, which result in an increased number of entanglements, attributed to 

linear micellar growth (Oelschlaeger and Willenbacher 2011).       
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Figure 5.5: Storage and Loss Moduli for 4% APA-T in Freshwater and 2% KCl 

 

 

Figure 5.6: Storage and Loss Moduli for 3% APA-T in Freshwater and 2% KCl 
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Figure 5.7: Storage and Loss Moduli for 2% APA-T in Freshwater and 2% KCl 

 

 

Figure 5.8: Storage and Loss Moduli for 1.5% APA-T in Freshwater and 2% KCl 
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Figure 5.9: Storage and Loss Moduli for 5% APA-TW in Freshwater and 2% KCl 

 

 

Figure 5.10: Storage and Loss Moduli for 6% APA-TW in Freshwater and 2% 

KCl 
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Table 5.2: Maxwell Parameters for Test Solutions in 2% KCl 

 

  
Concentration 

(%) 
τR (s) Go(lbf/ft2) 

APA-T 

4 0.8 0.09 

3 0.6 0.066 

2 0.175 0.05 

1.5 0.133 0.041 

APA-TW 

6 0.103 0.068 

5 0.084 0.058 

4 0.082 0.038 

 

 

5.4 Effect of Divalent Salt  

In the preceding section, the effect of a monovalent salt (2% KCl) was shown to 

drastically alter the rheological properties of surfactant solutions. The zero shear rate 

viscosity, relaxation time, and plateau modulus were higher in 2% KCl than in freshwater. 

Next, the effect of a divalent salt (2% CaCl2) is tested. The steady shear curve (Fig. 5.11) 

is qualitatively similar to solutions in freshwater and 2% KCl. A Newtonian plateau is 

observed at low shear rates, while shear thinning is evident at higher shear rates. Figure 

5.12 shows μo as a function of concentration in 2% CaCl2. The magnitude of the zero 

shear rate viscosity is in the following order; μo (2% KCl) > μo (2% CaCl2) > μo 

(freshwater). In comparison to solutions in 2% KCl, the transition from low Newtonian 

plateau to the shear thinning region is shifted to higher shear rates (delayed shear 

thinning) with 2% CaCl2 in solution.  
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Normalized zero shear rate viscosity (μn = μo(salt)/ μo(freshwater)) provides a means of 

comparing solutions in salt to those in fresh water. KCl (K+ radius) which has an ion 

hydration radius of 2.32 Å promotes a viscosity increase greater than CaCl2 (Ca2+) with 

an ion hydration radius of 3.21 Å. This claim is supported by comparing the normalized 

viscosity of 5% APA-TW solution in KCl (μn = 2.1) and CaCl2 (μn = 1.1). Thus, it can be 

stated that a greater concentration of an inorganic divalent salt is required to give the same 

μo as a monovalent salt. The critical shear rate is higher in CaCl2 than in KCl (see Table 

5.3). These observations imply that the smaller the hydration radius, the more effective 

the salt in promoting micelle growth (Wang, 1993). Micelle growth is favored by 

screening electrostatic repulsions or interference with water structure (Myers 2005; Wang 

1993). The ability to interfere with water molecules has led to the characterization of 

salts/electrolytes as either water structure enhancers or water structure breakers. Charge 

screening is common to ionic surfactant solutions. In nonionic and zwitterionic solutions, 

a combination of electrostatic charge screening and water structure alteration (especially 

above a certain salt concentration) is responsible for micellar structural changes (Myers 

2005).  

 

The dynamic properties for all three base fluids are shown in Fig. 5.13. The fitted 

Maxwell parameters (relaxation time and plateau modulus) for the test solution in 2% 

CaCl2 are 0.044 s and 0.058 lbf/ft
2 for 5% APA-TW. Similarly, the relaxation time and 

plateau modulus are 0.049 s and 0.074 lbf/ft
2 for 6% APA-TW in 2% CaCl2. The 

magnitudes of G' and G'' are greater in 2% CaCl2 than in freshwater. On the other hand, 
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both moduli are lower in 2% CaCl2 than in 2% KCl. The values of relaxation time and 

plateau modulus for 2% CaCl2 lie between those of freshwater and 2% KCl. This implies 

a slight improvement in structure in 2% CaCl2 over that of freshwater. All samples have 

better structure in 2% KCl than in any other base fluid.       

 

 

Figure 5.11: Apparent Viscosity for APA-TW in 2% CaCl2 
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Figure 5.12: Concentration Dependence of Zero Shear Rate Viscosity 

 

 

Figure 5.13: Storage and Loss Moduli for 5% APA-TW in Freshwater, 2% KCl 

and 2% CaCl2 
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Table 5.3: Comparison of Critical Shear Rate in Different Base Fluids 

 

  
Concentration (%) 

Critical shear rate (s-1) 

Freshwater 2% CaCl2 2% KCl 

APA-TW 

6 21.3 18.3 8.4 

5 20.5 17.6 9.2 

4 33.1 23.8 9.9 

3 71.4 32.5 22.9 

 

 

 5.5 Summary 

This chapter investigated the effect of added salts on the steady and dynamic properties. 

Salts are shown to increase the zero shear rate viscosity. Solutions of APA-T and APA-

TW are observed to be more viscoelastic in salts than in freshwater. The crossover 

frequency is observed to decrease with salts in solution, indicating better fluid structure. 

The formation and growth of rod-like micelles as well as greater intermicellar interactions 

are favored in the presence of salts. 

 

The valency and size of salt counterion on rheological properties are reported. A 

monovalent salt, 2% KCl, is observed to be more effective at promoting favorable 

micellar interactions than a divalent salt (2% CaCl2). The increase in rheological 

parameters with the addition of both salts depends on the size of salt counterion, with 

potassium (smallest ion) producing the highest increase in viscosity. 
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Chapter 6 

THEORETICAL STUDY OF LAMINAR PIPE FLOW OF NON-

NEWTONIAN FLUIDS 

 

6.1 Introduction 

Equations for flow characteristics of Newtonian fluids are widely available and accepted 

for accurate prediction of pressure loss across a pipe section in all flow regimes. 

Analytical equations for Newtonian fluid hydraulics can be found in literature. The same 

cannot be stated for non-Newtonian fluids in terms of a unique set of flow equations. This 

is due to the complex nature of non-Newtonian fluids as well as non-Newtonian flows. 

 

The linear relationship between shear stress and shear rate for Newtonian fluids cannot 

generally be applied to non-Newtonian fluids. As a consequence, several time-

independent and time-dependent constitutive (rheological) models have been developed. 

Some of these equations are based on analytical methods while others are strictly 

empirical. Any study on the flow behavior of non-Newtonian fluids begins with the 

selection of the rheological model that best describes the steady shear behavior. 

Depending on the nature of this equation, analytical or numerical solutions can be 

obtained. 

 

Many oilfield non-Newtonian fluids of the time-independent type typically have a low 

shear rate viscosity region preceding the shear thinning region. At even higher shear rates, 
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a second Newtonian region is encountered. Rheological models such as the power law 

model are routinely employed because of their simplicity and ease of application. It is 

worth noting that the power law model takes into account only the shear thinning interval 

of the shear stress—shear rate flow curve. The lower and upper Newtonian regions are 

ignored. This might affect the accuracy of friction pressure predictions made using the 

power law model. 

 

This chapter presents a review of mathematical models for laminar pipe flow. 

Specifically, it discusses the flow behavior of power law, Carreau, and MPL-Cross fluids. 

It also presents a new easily adaptable pressure drop – flow rate equation for laminar flow 

of Carreau and MPL-Cross fluids and compares predictions, using this new equation, with 

experimental data found in literature.     

  

6.2 Fundamental Equations for Laminar Pipe Flow 

Figure 6.1 illustrates flow through a straight pipe of length l and diameter d. The resulting 

pressure loss, Δp, across the pipe length is measured as a function of flow rate, q. 
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Figure 6.1: Laminar Flow in a Pipe 

 

 

 

For horizontal flow, the shear stress can be related to the pressure gradient by the 

expression. 

   𝜏 =
𝑟

2

∆𝑝

𝑙
                                                                                                                      (6.1) 

The maximum (wall) shear stress (τw) occurs at the pipe wall, while the zero shear stress 

occurs at the pipe center. The relationship between wall shear stress and pipe radius is 

expressed as follows: 

   𝜏𝑤 =
𝑅

2

∆𝑝

𝑙
                                                                                                                    (6.2) 

The forms of Eqs. (6.1) and (6.2) indicate a linear relationship between shear stress and 

pipe radius. Combining these equations gives the expression below: 

   
𝜏

𝜏𝑤
=

𝑟

𝑅
                                                                                                                         (6.3) 

Equation (6.3) is independent of fluid rheology and applies to both Newtonian and non-

Newtonian fluids. 
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6.3 Average Velocity  

The Rabinowitsch-Mooney equation (Rabinowitsch 1929; Mooney 1931) provides a 

relationship between average velocity and wall shear stress. The closed form of the 

integral is expressed in Eq. (6.4). 

   
8𝑢

𝑑
=

4

𝜏𝑤
3 ∫ 𝜏2�̇�(𝜏)𝑑𝜏

𝜏𝑤

0
                                                                                                (6.4) 

 

Equation (6.4) is valid for laminar flow of any time-independent fluid with non-slip at the 

pipe wall. Direct numerical integration of Eq. (6.4) is dependent on the nature of the 

rheological model. Analytical expressions for Newtonian, Bingham plastic, power law, 

and Herschel-Bulkley models are expressed in Eqs. (6.5) – (6.8), respectively. 

   
8𝑢

𝑑
=

𝜏𝑤

𝜇
                                                                                                                         (6.5) 

   
8𝑢

𝑑
=

𝜏𝑤

𝜇𝑝
[1 −

4

3
(

𝜏𝑦

𝜏𝑤
) +

1

3
(

𝜏𝑦

𝜏𝑤
)
4

]                                                                                   (6.6) 

   𝜏𝑤 = 𝐾 (
3𝑛+1

4𝑛
)
𝑛

(
8𝑢

𝑑
)
𝑛

                                                                                                     (6.7) 

   
8𝑢

𝑑
=

4𝑛

3𝑛+1
(
𝜏𝑤−𝜏𝑦

𝐾
)

1

𝑛
[1 −

1

2𝑛+1

𝜏𝑦

𝜏𝑤
[1 +

2𝑛

𝑛+1

𝜏𝑦

𝜏𝑤
(1 + 𝑛

𝜏𝑦

𝜏𝑤
)]]                                          (6.8) 

 

For n = 1, Eq. (6.8) is reduced to Eq. (6.6), which is the Buckingham equation for 

Bingham plastic fluid. The preceding equations can be expressed in terms of either 

average velocity or frictional pressure loss (Δp). This implies that the average velocity 

can be determined if Δp is known, and vice versa. 
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6.4 Velocity Distribution 

This section presents results for computation of velocity profiles using the power law, 

Carreau, and MPL-Cross models. Rheological parameters are determined by fitting fluid 

models to experimental data for 4% APA-T solution. The shear rate profile is calculated 

using the Newton-Raphson method for root extraction.  

   �̇�(𝑟)𝑖+1 = �̇�(𝑟)𝑖 −
[
 
 
 

�̇�(𝑟)𝑖+
𝜇𝑜�̇�(𝑟)𝑖

(1+(𝑡�̇�(𝑟)𝑖)
2
)

𝑚−𝜏𝑤
𝑟

𝑅

]
 
 
 

1−2𝜇𝑜𝑚(𝑡�̇�(𝑟)𝑖)
2
(1+(𝑡�̇�(𝑟)𝑖)

2
)
−(1+𝑚)

+𝜇𝑜(1+(𝑡�̇�(𝑟)𝑖)
2
)
−𝑚                          (6.9) 

where, 𝑚 = 
1−𝑛

2
  

 

The velocity profile is determined using the finite difference method, as expressed below. 

At the wall (R = 1), the velocity is zero (uN = 0), while the velocity is greatest at the pipe 

center.   

   �̇�(𝑟) =
𝑑𝑢

𝑑𝑟
= −

(𝑢𝑁−𝑖+1−𝑢𝑁−𝑖)

∆𝑟
                                                                                                 (6.10) 

 

Equation (6.10) can be solved for each i from 1 to N at a specified value of ΔP. The same 

procedure was performed for the MPL-Cross model to generate a velocity distribution 

plot.  

 

Figure 6.2 shows the measured apparent viscosity as a function of shear rate for 4% APA-

T. In addition, the rheological parameters obtained from fitting both fluid models are 

reported in Table 6.1. Using these parameters, velocity profiles through 2 ⅞-in. pipe are 
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determined. Simulated profiles are determined for a flow rate of 30 gpm in the laminar 

flow regime. Further, the velocity at each radius was normalized using the numerically 

obtained average velocities for Carreau and MPL-Cross models, while analytically 

determined average velocity is used for the power law model. 

 

 

Figure 6.2: Apparent Viscosity for 4% APA-T 
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Table 6.1: Rheological Model Parameters 

 

 

Model Parameters 

Power 

law 

n 0.31 

Kv (lbf s
n/ft2) 0.034 

Carreau 

μo (cP) 1276 

n 0.3 

t (s) 0.721 

MPL-

Cross 

μo (cP) 1417 

n 0.25 

t (s) 0.57 

 

 

Velocity and normalized distributions for the laminar flow of 4% APA-T are shown in 

Figs. 6.3 and 6.4. As expected, the shapes of velocity profiles for all models are 

qualitatively similar. The highest velocity at the pipe center is predicted by the Carreau 

model, while the power law predicted the lowest. This can be attributed to apparent 

viscosity variation with shear rate. At higher shear rates, the power law model 

underpredicts the apparent viscosity. Conversely, at lower shear rates, the power law 

model overpredicts the apparent viscosity; hence, the lower magnitude of velocity at the 

pipe center. Normalized velocity profiles show a trend reversal with respect to the power 

law model because this model had the lowest average velocity prediction of the models 

examined. 
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Figure 6.3: Laminar Flow Velocity Profiles 

 

 

Figure 6.4: Normalized Velocity Profiles for Laminar Flow 
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6.5 Frictional Pressure Loss 

As earlier stated, the Rabinowitsch-Mooney equation can be solved for either average 

velocity or frictional pressure loss. In most cases, however, the flow rate or average 

velocity is the control variable while pressure loss is the measured (or estimated) 

parameter. Simply rewriting Eqs. (6.5) – (6.8), the friction pressure can be calculated for 

Newtonian as well as non-Newtonian fluids. These flow equations can be conveniently 

expressed in terms of dimensionless quantities. Such relationships are useful in 

formulating empirical and graphical relationships for Newtonian and non-Newtonian 

fluids. For complex models (Carreau and MPL-Cross models), analytical equations 

cannot be derived. In this section, simple expressions are developed for both the Carreau 

and MPL-Cross models. 

 

6.5.1 Dimensionless Expressions 

Frictional pressure loss can be expressed using the Darcy-Weisbach equation (in 

consistent units) as: 

   
∆𝑝

𝑙
=

2𝜌𝑓𝑢2

𝑑
                                                                                                                (6.11) 

where, f is the Fanning friction factor; u is the average velocity; ρ is the fluid density; and 

d is pipe diameter. 

 

The Fanning friction factor is the ratio between frictional to inertia forces. It can be 

defined using the Hagen-Poiseulle and Darcy-Weisbach equations as follows: 

   𝑓 =
2𝜏𝑤

𝜌𝑢2                                                                                                                     (6.12) 
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   𝑓 =
16
𝜌𝑢𝑑

𝜇

                                                                                                                    (6.13) 

 

The denominator from Eq. (6.13) is the Reynolds number definition for Newtonian fluids. 

This represents the ratio of viscous to inertia forces. 

   𝑁𝑅𝑒 =
𝜌𝑢𝑑

𝜇
                                                                                                                  (6.14) 

The Reynolds number provides a way to distinguish different flow regimes. For NRe ≤ 

2100, laminar flow prevails, while NRe > 4000 represents turbulent flow. The values 

between these two points represent transitional flow.  

 

Metzner and Reed (1955) proposed a generalized Reynolds number equation for time-

independent fluids, which is expressed as follows: 

   𝑁𝑅𝑒𝑔 =
𝜌𝑢𝑑

𝐾′(
8𝑢

𝑑
)
𝑛′−1

                                                                                                        (6.15) 

where, 𝑛′ =
𝑑 ln(𝜎𝑤)

𝑑 ln(
8𝑢

𝑑
)
                                                                                                    

 

The generalized approach by Metzner and Reed (1955) extends well-established 

procedures for determining friction factors for Newtonian fluids to non-Newtonian time-

independent fluids. Applying the same reasoning for the formulation of Eq. (6.15), 

Madlener et al. (2009) proposed a generalized Reynolds number expression for the 

extended Herschel-Bulkley model. In this study, generalized Reynolds number 

expressions are derived by adopting the Metzner and Reed (1955) and Madlener et al. 

(2009) approach for Carreau and MPL-Cross models. 
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   𝑁𝑅𝑒𝑔,𝐶𝑎 =
𝜌𝑢𝑑

[
 
 
 
 
 

(𝜇𝑜−𝜇∞)(
3𝑛′+1

4𝑛′ )

(1+(𝑡(
3𝑛′+1

4𝑛′ )
8𝑢
𝑑

)

2

)

1−𝑛
2

+𝜇∞(
3𝑛′+1

𝑛′ )

]
 
 
 
 
 
                                                                  (6.16) 

where, 𝑛′ =

8𝑢

𝑑
[𝜇∞−2𝑡2(𝜇𝑜−𝜇∞)(

𝑛−1

2
)(

8𝑢

𝑑
)
2
(1+𝑡2(

8𝑢

𝑑
)
2
)
−(1+

1−𝑛
2 )

+(𝜇0−𝜇∞)(1+𝑡2(
8𝑢

𝑑
)
2
)
−(

1−𝑛
2 )

]

𝜇∞
8𝑢

𝑑
+(𝜇𝑜−𝜇∞)

8𝑢

𝑑
(1+𝑡2(

8𝑢

𝑑
)
2
)
−(

1−𝑛
2

)
 

   𝑁𝑅𝑒𝑔,𝑀𝑃𝐿 =
𝜌𝑢𝑑

[
𝜇𝑜(

3𝑛′+1

4𝑛′ )

(1+𝑡(
8𝑢
𝑑

)
1−𝑛

)

+𝜇∞(
3𝑛′+1

4𝑛′ )]

                                                                                (6.17) 

where, 𝑛′ =

8𝑢

𝑑
[𝜇∞−

(1−𝑛)𝜇𝑜
2(

8𝑢
𝑑

)
1−𝑛

𝐾𝑀𝑃𝐿(1+𝑡�̇�𝑤
1−𝑛)

2+
𝜇0

1+𝑡(
8𝑢
𝑑

)
1−𝑛]

𝜇∞
8𝑢

𝑑
+

𝜇𝑜�̇�𝑤

1+𝑡(
8𝑢
𝑑

)
1−𝑛

 

Full derivations of Eqs. (6.16) and (6.17) can be found in Appendix III. 

 

6.5.2 Evaluation of Reynolds Number Definitions 

Experimental friction pressure loss data for 4% APA-T in a 2 ⅞-in. pipe are used to 

validate the various Reynolds number definitions (Eqs. 6.16 and 6.17). The friction 

pressure data are converted to Fanning friction factor as shown in Fig. 6.5. The solid black 

line corresponds to the 16/NReg line for laminar flow. The new Reynolds number 

definitions are compared with the generalized Reynolds number for power law. Table 6.2 

is a summary of the percent error deviation for each definition. 
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Figure 6.5: Evaluation of Reynolds and Generalized Reynolds Number Definitions 

 

 

 

Table 6.2: Percent Deviation Comparison of Reynolds Number Definitions 

 

  Reynolds number 

q (gpm) Power law 

Carreau  

(Eq. 6.16) 

MPL-Cross  

(Eq. 6.17) 

30 17.29 14.65 3.38 

50 12.41 9.44 2.25 

75 8.80 5.37 6.10 

Ave. Dev 12.83 9.82 3.91 

 

 

From Fig. 6.5 and Table 6.2, it is evident that all Reynolds number definitions compare 

favorably with experimental data. Individual data points have deviations of less than 20%. 

Average deviation values are less than 15% with all definitions. For the data set, the 

Carreau and MPL-Cross definitions compare favorably with the generalized Reynolds 

number for power-law fluids on both an individual data-point basis and average-deviation 
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basis. At flow rates of 50 and 75 gpm, the Carreau and MPL-Cross models offer improved 

estimates of friction pressure. 

 

6.5.3 Generalized Shear Stress–Shear Rate Expression 

The form of the Rabinowitsch-Mooney equation can be transformed into Eq. (6.18) for 

substitution of both the Carreau and MPL-Cross models. 

    
8𝑢

𝑑
=

4

3
[�̇�𝑅 −

1

𝜏𝑤
3 ∫ 𝜏3𝑑�̇�

�̇�𝑅

0
]                                                                                             (6.18) 

Dimensional analysis is performed generating dimensionless parameters as defined 

below: 

   �̇�′ = 𝑡�̇�                                                                                                                       (6.19a) 

   𝜏′ =
𝑡𝜏

𝜇𝑜
           

   𝜏𝑤
′ =

𝑡𝜏𝑤

𝜇𝑜
            

   (
8𝑢

𝐷
)
′

= 𝑡 
8𝑢

𝐷
                                                                                                                   (6.19d) 

 

The Carreau and MPL-Cross models can now be written in dimensionless form as 

follows: 

   𝜏′ = �̇�′[1 + (�̇�′)2]
𝑛−1

2                                                                                                (6.20) 

   𝜏′ = �̇�′[1 + (�̇�′)1−𝑛]−1                                                                                              (6.21) 

 

Using dimensionless forms of the Carreau and MPL-Cross models, the following 

expressions for the generalized flow exponent (local gradient) are derived. 
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𝑛′ = (1 + ((
8𝑢

𝑑
)
′

)
2

)

1−𝑛

2

[
1

2
(𝑛 − 1) ((

8𝑢

𝑑
)
′

)
2

(1 + ((
8𝑢

𝑑
)
′

)
2

)

−1+
1−𝑛

2

+ (1 +

((
8𝑢

𝑑
)
′

)
2

)

1

2
(𝑛−1)

]               

   𝑛′ = (1 + ((
8𝑢

𝑑
)
′

)
1−𝑛

) [
1

1+((
8𝑢

𝑑
)
′
)
1−𝑛 −

(1−𝑛)((
8𝑢

𝑑
)
′
)
1−𝑛

(1+((
8𝑢

𝑑
)
′
)
1−𝑛

)

2]                                                                                                                             

 

The generalized flow exponent for the power law model is the same as the global flow 

exponent and remains constant irrespective of flow rate variations. The same cannot be 

stated for the other models. The next step is to assess the effect of variations in flow rate 

with corresponding changes in the magnitude of the generalized flow exponent. 

 

For illustrative purposes, Table 6.3 presents a summary of percent changes in n' caused 

by flow rate variations from 0.1% to the maximum variation studied, 10%. It is evident 

from this table that apart from the power law model, the MPL-Cross model is least 

sensitive to flow rate variations than the Carreau model. The percent changes in n' are 

lower with increasing n for the MPL-Cross model. As an example, at 10% flow rate 

variation, percent changes in n' of 1.33% and 0.086% are calculated for n of 0.1 and 0.8, 

respectively.  
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The Carreau model, on the other hand, is the most sensitive with respect to variations in 

flow rate. With the Carreau model, percent changes in n' at 10% flow rate variation are -

2.3% and 3.6% for n of 0.1 and 0.8, respectively. It is clear that some models are more 

sensitive to flow rate variations than others. Thus, for fluids sensitive to flow rate changes, 

proper attention should be given to the choice of rheological model that best describes 

the fluid while accounting for local flow exponent changes. Failure to consider local flow 

exponent changes might result in inaccurate pressure loss predictions. 

 

Table 6.3: Percentage change in n' with variations in flow rate 

 

Flow 

exponent 

Model Change in n' (%) 

    ε (0.1%) ε (1%) ε (2%) ε (5%) ε (10%) 

n = 0.1 Carreau -0.024 -0.239 -0.475 -1.17 -2.272 

MPL-Cross 0.014 0.14 0.276 0.681 1.33 

Power law - - - - - 

n = 0.5 Carreau 0.015 0.153 0.308 0.784 1.61 

MPL-Cross 0.005 0.05 0.1 0.244 0.48 

Power law - - - - - 

n = 0.8 Carreau 0.035 0.348 0.698 1.757 3.554 

MPL-Cross 0.001 0.01 0.018 0.044 0.086 

Power law - - - - - 

 

 

 

As mentioned earlier, one of the objectives of this study is to develop flow rate - pressure 

drop relationships for the Carreau and MPL-Cross fluids. The Rabinowitsch-Mooney 

equation can be expressed in dimensionless form. 

  (
8𝑢

𝑑
)
′

=
4

3
[�̇�𝑅

′ −
1

(𝜏𝑤
′ )

3 ∫ (𝜏3)′𝑑�̇�′�̇�𝑅
′

0
]                                                                           (6.22) 
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Equation (6.22) is numerically integrated to obtain dimensionless wall shear stress–

apparent wall shear rate profiles for flow indices in the range 0.1–1. These profiles are 

shown in Figs. 6.6 and 6.7. 

 

 

 

Figure 6.6: Dimensionless Wall Shear Stress vs. Dimensionless Apparent Wall 

Shear Rate for Carreau Fluid 
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Figure 6.7: Dimensionless Wall Shear Stress vs. Dimensionless Apparent Wall 

Shear Stress for MPL-Cross Fluid 

 

The profiles can be approximated by the equation below (Derezinski 1990):  

   𝜏𝑤
′ = 𝑎(�̇�𝑤

′ − 𝑏)𝑐 − (𝑑�̇�𝑤
′ )                                                                                        (6.23) 

where, a, b, c, and d are constants for a given flow behavior index value in Carreau and 

MPL-Cross models. 

 

The values of a, b, c, and d are determined by least square regression. It was discovered 

that Eq. (6.23) was deemed satisfactory in describing both models. The parameters in this 

equation are reported in Tables 6.4 and 6.5. The constants in both tables are valid for 

dimensionless wall shear rates in the range 0–1500. Simple interpolation can be used to 

determine the parameters for exponent values between those reported. 
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Table 6.4: Equation Constants for Carreau Model 

 

n a b c d 

0.1 0.577 0.00103 0.296 0.00365 

0.2 0.648 0.00103 0.354 0.0037 

0.3 0.687 0.00105 0.436 0.00556 

0.4 0.787 0.00109 0.649 0.00644 

0.5 0.813 0.00121 0.685 0.00902 

0.6 0.849 0.00144 0.731 0.0162 

0.7 0.905 0.00178 0.789 0.0383 

0.8 1.004 0.0511 0.829 0.0231 

0.9 1.043 0.0352 0.904 0.0228 

1 1.022 0 1 0.0222 

 

 

Table 6.5: Equation Constants for MPL-Cross Model 

 

n a b c d 

0.1 0.576 0.247 0.283 0.00295 

0.2 0.558 0.156 0.381 0.00396 

0.3 0.573 0.153 0.469 0.00628 

0.4 0.585 0.13 0.561 0.0111 

0.5 0.565 0.0475 0.672 0.0251 

0.6 0.638 0.0289 0.797 0.1022 

0.7 0.639 0.0176 0.853 0.112 

0.8 0.792 0.0047 0.929 0.277 

0.9 0.857 0.00301 0.968 0.345 

1 0.873 0 1 0.099 

 

 

The validity of Eq. (6.23) is tested for a flow index of 0.4. An average deviation of 3% is 

calculated between Eq. (6.23) and the numerical solution of Eq. (6.18) for both models 

(Fig. 6.8). For practical purposes, a 10% deviation is deemed adequate for pressure loss 

calculations. If higher accuracy to cover a wider range of dimensionless apparent wall 
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shear rate is desired, a more complex approximation than Eq. (6.23) can be derived. The 

pressure loss (in consistent units) can be determined for a specified flow rate and pipe 

size by substituting the definitions given in Eqs. (6.19a) to (6.19d) into Eq. (6.23). 

 

 

Figure 6.8: Comparison of Eq. (6.23) with Numerical Solution 

 

 

 

 

   
∆𝑝

𝑙
=
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[𝑎 (𝑡

8𝑢

𝑑
− 𝑏)

𝑐

− (𝑑 𝑡
8𝑢

𝑑
)]                                                                          (6.24) 

 

Equation (6.24) is valid for laminar flow only.  

 

The applicability of Eq. (6.24) is demonstrated using experimental data for 4% APA-T 

solution and laminar flow data from the study of Pereira and Pinho (1994) for 0.4, 0.5, 
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and 0.6% tylose solutions. Rheological model parameters for 4% APA-T are given in 

Table 6.1. The results of calculations are presented in Tables 6.6 and 6.7. In Table 6.7, 

the comparison of predictions with experimental flow data of Pereira and Pinho (1994) is 

presented. Data by Pereira and Pinho (1994) were gathered for flow in a 26 mm inside 

diameter vertical pipe. A complete experimental setup description can be found in their 

paper. The rheological parameters were obtained by fitting the Carreau model to steady 

shear data. Rheological parameters for 0.4% tylose solution are: µo = 0.0208 Pa s, n = 

0.725, t = 0.0047 s. Rheological parameters for 0.5% tylose solution are: µo = 0.0344 Pa 

s, n = 0.660, t = 0.005 s. Similarly, rheological parameters for 0.6% tylose solution are: 

µo = 0.0705 Pa s, n = 0.637, t = 0.0112 s.  

 

It can be seen from these tables that the new flow rate-pressure drop equation compares 

favorably with experimental data especially for fluids described by the Carreau model. 

However, from Table 6.7, a higher percentage deviation is calculated for 0.4% tylose at 

a velocity of 1.77 ft/s. All other points are within 10% deviation.  

 

Table 6.6: Percentage Deviations for Laminar Pressure Gradient Prediction and 

Measured Data for 4% Aromox® APA-T 

 

  Pressure loss (psi) 

Flow rate (gpm) Experimental  Carreau MPL-Cross 

32.5 3.11 3.12 3.49 

50.0 3.35 3.67 4.09 

76.6 3.67 4.28 4.77 

Ave. Dev. (%)   8.8 21.5 
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Table 6.7: Percentage Deviations for Laminar Pressure Gradient Prediction and 

Measured Data for 4, 5, and 6% Tylose 

 

Fluid Velocity 

(m/s) 

Exp. pressure 

gradient 

(Pa/m) 

Cal. pressure 

gradient 

(Pa/m) 

Dev. 

(%) 

0.4% Tylose 0.54 371 515 38.9 

1.13 853 931 9.1 

0.5% Tylose 0.56 826 839 1.6 

1.41 1674 1690 0.9 

0.6% Tylose 1.14 2402 2359 1.8 

2.8 5038 4596 8.8 

 

 

6.6 Summary 

The laminar flow behavior of non-Newtonian fluids is investigated using the Carreau and 

MPL-Cross rheological models. These models are considered because they provide better 

fit to experimental data while covering a wider range of shear rates not afforded by the 

widely used power law model. Reynolds number definitions based on both models are 

proposed; they are equivalent to the Metzner-Reed generalized Reynolds number. 

Evaluations of these definitions show satisfactory prediction accuracy. 

 

A new pressure drop – flow rate equation is derived for non-Newtonian fluids. This 

equation can easily be adapted for either the Carreau or MPL-Cross model. This equation 

provides satisfactory accuracy for laminar flow of non-Newtonian fluids described by 

both rheological models.  
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Chapter 7 

TURBULENT PIPE FLOW OF NON-NEWTONIAN FLUIDS 

 

7.1 Introduction 

The preceding chapter presented laminar flow equations for Carreau and MPL-Cross type 

fluids. As discussed in Chapter 6, a considerable amount of work based on established 

principles for laminar flow of Newtonian and non-Newtonian is readily available in the 

literature. Turbulent flow of Newtonian fluids is given by several theoretical equations as 

well as empirical correlations. These approaches are well-established and can be applied 

to hydraulic calculations with a high degree of accuracy. The same cannot be stated for 

turbulent flow of non-Newtonian fluids.  

 

Most fluids used in the oil and gas industry are non-Newtonian. In the case of drilling and 

hydraulic fracturing applications, these fluids display drag reducing characteristics. As 

such, solutions to turbulent flow equations of non-Newtonian fluids can be intractable 

because of a greater level of complexity. The presence of drag reducing agents adds a 

dimension of complexity to flow hydrodynamics. Unfortunately, no universal set of flow 

equations has been reported for non-Newtonian drag reducing fluids. The intractability 

of solutions has not deterred research into drag reducing flows. Several approaches are 

available for predicting friction pressure. In deriving equations or correlations, limiting 

assumptions are imposed to arrive at friction pressure relationships. 
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In this chapter, the turbulent flow behavior of non-Newtonian fluids through pipes is 

studied. The first part of this chapter deals with drag reduction behavior of test solutions 

with respect to the effects of various factors (concentration, pipe diameter, and salinity). 

The second part presents a Fanning friction factor relationship for purely viscous non-

Newtonian fluids.  

 

7.2 Flow Data Calibration and Analysis 

Figure 7.1 is an example of recorded signals after elimination of transient data points. On 

this plot are measured data, including flow rate, fluid density, temperature, and pressure 

drop. The pressure loss and flow rate are converted to dimensionless quantities. The 

pressure loss is converted to Fanning friction factor, while the flow rate is converted to 

the generalized Reynolds number. The equations used for conversion can be found in 

Chapter 3. 
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Figure 7.1: Recorded Data for 5% APA-TW through 2 ⅞-in. Pipe 

 

 

7.2.1 Water Calibration Test 

System calibration was performed with water to validate pressure drop–flow rate 

measurements. This serves as a reference for data comparison with test solutions. Under 

turbulent flow, two correlations are considered: the Drew correlation (Drew et al. 1932) 

for smooth pipes and Chen correlation (Chen 1979) for rough pipes. Pipe roughness 

affects pressure loss measurements and should be considered in any analysis. As such, 

the height of roughness projections is determined using the Chen correlation (Chen 1978). 

 

The Drew correlation is expressed as follows: 

   𝑓 = 0.0014 +
0.125

𝑁𝑅𝑒
0.32                                                                                                   (7.1) 
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where, f is the Fanning friction factor and NRe is the solvent Reynolds number. 

 

The Chen correlation is expressed as: 

   
1

√𝑓
= −4 log [

ℎ

3.7065𝑑
−

5.0452

𝑁𝑅𝑒
log {

1

2.8257
(

ℎ

𝑑
)
1.1098

+
5.8506

𝑁𝑅𝑒
0.8981}]                                  (7.2) 

where, h/d = relative roughness (dimensionless). 

 

The explicit form of the Chen correlation makes it appealing for data analysis. Figures 

7.2 and 7.3 show calibration plots for 1½-in. and 2⅞-in. pipes. The roughness projection 

height was determined by curve fitting (Eq. 7.2) to experimental turbulent data. Projection 

height in inches can be seen in the legends of both plots.    

 

 

Figure 7.2: Water Data for 1½-in. Pipe 
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Figure 7.3: Water Data for 2⅞-in. Pipe 

 

 

7.3 Flow Behavior and Drag Reduction Characteristics 

As stated in Chapter 2, surfactant drag reduction is a function of concentration, 

temperature, pipe size, and the presence of salts. This section presents results of the flow 

behavior of surfactant solutions in straight pipes. The focus here is on turbulent flow data 

and drag reduction phenomena associated with the test fluid. This work elucidates the 

effects of surfactant concentration, pipe size and roughness, and solvent type on drag 

reduction characteristics of Aromox® APA-T and APA-TW.  

 

7.3.1 Concentration Effect 

Figure 7.4 shows Fanning friction factor dependence on the generalized Reynolds number 

at ambient temperature for two surfactant concentrations (1.5% and 4% v/v Aromox® 
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APA-T) in ½-in. straight pipe. From this figure, it is obvious that Aromox® APA-T can 

be classified as a Type-B drag reducer; there is no clear transition as the data points lie 

close to the extended laminar line in the flow regime transition region (in the generalized 

Reynolds number range of 2100 to 4000). Figure 7.5 is an alternative form of Fig. 7.4 

expressed in terms of percent drag reduction vs. generalized Reynolds number. The 

maximum drag reduction for 1.5% solution is 55% at a generalized Reynolds number of 

5524, whereas for the 4% solution, it is 63% at a generalized Reynolds number of 10202. 

Evidently at lower concentrations, the maximum drag reduction occurs at lower 

generalized Reynolds numbers than it does at higher concentrations.  

 

The higher drag reduction with concentration is because of the formation/growth of rod-

like micelles and favorable intermicellar associations altering turbulence structures. Drag 

reduction is influenced by the amount of energy drag reduction additives can extract from 

flow (Rochefort 1986). Long flexible micellar structures aid in further dampening of 

eddies at higher NReg. Concentration increase thickens the elastic sublayer, which results 

in higher drag reduction.  
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Figure 7.4: Fanning Friction Factor Plot for 1.5% and 4% APA-T in ½-in. Pipe 

 

 

 

Figure 7.5: Effect of Concentration of Drag Reduction 
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7.3.2 Pipe Diameter and Roughness Effect 

The pipe diameter effect is shown in Figs. 7.6 and 7.7 for 4% APA-T and 5% APA-TW 

solutions. Figure 7.6 shows a decrease in Fanning friction factor with diameter for 4% 

APA-T solution. A corresponding drag reduction increase can be seen in Fig. 7.7 with a 

maximum of 55% for 1½-in. pipe as compared to 62% for the 2⅞-in. pipe. This is in 

agreement with observations by Berman et al. (1978), Mansour et al. (1988), and Salem 

(1996). Drag reduction is attributed to the interaction between molecules in solution and 

turbulence structures. Berman et al. (1978) explained this observation in terms of rate of 

strain and persistence time of turbulence eddies.  

 

The persistence time is the length of time molecules are elongated under high-strain 

without the effects of rotation (Mansour et al. 1988). Under high-strain rate and time scale 

conditions, molecules are continuously stretched and aligned in the direction of flow. This 

continues until an equilibrium rate is reached for a fluid and pipe size. Changes to any of 

these factors results in a change in equilibrium. The equilibrium level is increased 

proportionally with pipe diameter as micelles have more time to be stretched. A 

consequence of this is greater interaction and interference with eddies and an increase in 

drag reduction, provided that no limitations to molecule stretching exist. 

 

For the APA-TW solution, two effects can be seen—pipe diameter and pipe roughness. 

Roughness values in the 1½-in. and 2⅞-in. are 0.000475-in. and 0.00578-in., respectively. 

Maximum percent drag reduction are 68% and 69% for the 1½-in. and 2⅞-in. pipes. It is 
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evident that the diameter effect is nullified by roughness. Roughness is less important in 

laminar flow but can be significant under turbulent conditions. This is because in laminar 

flow, the viscous sublayer is thicker, thereby containing the roughness projections. Under 

turbulent flow, the viscous sublayer is thin; thus, roughness projections interfere with 

flow, resulting in higher friction pressures (Shah 1990). 

 

 

Figure 7.6: Fanning Friction Factor Plot for 4% APA-T and 5% APA-TW in 1½- 

and 2⅞-in. Pipes 
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Figure 7.7: Effect of Pipe Diameter and Surface Roughness on Drag Reduction 
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turbulence structures. Elongation of micelles causes an enhancement in drag reduction 

(Kulicke et al. 1989).   

 

 

Figure 7.8: Fanning Friction Factor Plot for 5% APA-TW in Different Solvents 
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Figure 7.9: Effect of Solvent Type on Drag Reduction 

 

 

 

7.4 Purely Viscous Non-Newtonian Fluids 

 

An analytical expression relating the Fanning friction factor to the generalized Reynolds 

number for a purely viscous pseudoplastic fluid is derived. In deriving this relationship, 

the following assumptions apply: 

1. Steady state conditions 

2. Constant density of fluid (incompressible fluid) 

3. Prevalent isothermal conditions 

4. Fully developed flow  

 

30

40

50

60

70

80

90

0 5000 10000 15000 20000 25000

5% APA-TW in FW, 2-7/8"

5% APA-TW in 2% CaCl2, 2-7/8"

5% APA-TW in 2% KCl, 2-7/8"

D
ra

g
 R

e
d

u
c
ti

o
n

,
%

Generalized Reynolds number, NReg



 

 134   

 

The implicit relation of Dodge and Metzner (1959) is widely accepted for friction factor 

determination. The Dodge and Metzner (1959) equation, which is based on the mixing 

length approach, requires numerical techniques to obtain the Fanning friction factor.  

   
1

√𝑓
=

4

(𝑛′)0.75
log [𝑁𝑅𝑒𝑔𝑓1−

𝑛′

2 ] −
0.395

(𝑛′)1.2
                                                                          (7.3) 

 

In this work, a simple equation that relates the Fanning friction factor to the generalized 

Reynolds number is sought. To achieve this aim, the dimensionless velocity and distance 

from the wall are used. A relationship between the dimensionless distance (yw
+) and the 

apparent viscosity for the viscous sublayer was presented by Edwards and Smith (1980). 

   𝑦𝑤
+ =

𝑦(𝑢∗)
2−𝑛
𝑛

(
𝐾

𝜌
)

1
𝑛

                                                                                                                 (7.4) 

 

For a Newtonian fluid, the dimensionless turbulent velocity profile can be expressed as: 

   𝑢+ = 8.57(𝑦+)
1

7                                                                                                             (7.5a) 

 

Similarly, the dimensionless turbulent velocity profile for a non-Newtonian fluid can be 

written as (Edwards and Smith 1980): 

   𝑢+ = 8.57(𝑦𝑤
+)

1

7                                                                                                        (7.5b) 

 

Wilson and Thomas (1985) suggested that the viscous sublayer near the wall is thicker 

for the case of turbulent pipe flow of a non-Newtonian fluid. This increase in thickness 
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can be accounted for by comparing the area under the rheogram of the non-Newtonian 

fluid to that of a Newtonian one between zero shear rate and the wall shear rate. With 

respect to dissipative energy, they assumed that the non-Newtonian fluid behaves 

Newtonian with the viscosity multiplied by the area ratio, α. 

 

Adopting this assumption, the dimensionless turbulent velocity profile can be expressed 

as:  

   𝑢+ =
𝑢𝑧

𝑢∗ = 8.57 (
𝑦𝑤

+

𝛼
)

1

7
                                                                                                       (7.6)  

   𝛼 =
𝐴𝑁𝑁

𝐴𝑁
            

where, ANN is the area under the rheogram of a non-Newtonian fluid and AN is the area 

under the rheogram of a Newtonian fluid. 

 

For a yield-pseudoplastic fluid, α is expressed as: 

   𝛼 =
2

𝑛+1
(1 + 𝑛

𝜏𝑜

𝜏𝑤
)                                                                                                          (7.7) 

 

Upon simplification, Eq. (7.7) reduces to the following expression for power law fluids. 

      𝛼 =
2

𝑛+1
      

  

Thus, Eq. (7.5a) can be rewritten as: 

   𝑢+ =
𝑢𝑧

𝑢∗
= 8.57 ((𝑛 + 1)

𝑦𝑤
+

2
)

1

7

                                                             



 

 136   

 

An expression for the average velocity can be obtained by integrating the dimensionless 

turbulent velocity profile over the pipe cross section. 

   𝑢 =
2

𝑅2 ∫ �̅�𝑧𝑟𝑑𝑟
𝑅

0
  

   𝑢 =
2

𝑅2 ∫ 𝑢∗ (8.57 (
𝑦𝑤

+

𝛼
)

1

7
)𝑟𝑑𝑟

𝑅

0
                                                                                   (7.8a) 

By letting r = R – y and substituting Eq. (7.4) into (7.8a). 

   𝑢 = 2𝑢∗ ∫ (8.57 (
𝑦(𝑢∗)

2−𝑛
𝑛

𝛼
)

1

7

)(1 −
𝑦

𝑅
) 𝑑

𝑦

𝑅

1

0
                                                                (7.8b) 

To obtain a Fanning friction – generalized Reynolds number relationship, the following 

definitions are used. 

   
𝑢∗

𝑢
= √

𝑓

2
                                                                                                                           (a) 

   𝑁𝑅𝑒𝑔 =
𝜌𝑑𝑛𝑢2−𝑛

𝐾
                                                                                                                  (b) 

Substituting the relations (a) and (b) into Eq. (7.8b) and integrating, the Fanning friction 

factor equation is derived. 

   𝑓 =
2(

2𝑛

77𝑛)

1
(3𝑛+1)

[(𝑛+1)
𝑁𝑅𝑒𝑔

2
]

1
(3𝑛+1)

                                                                                                           (7.9) 

 

Equation (7.9) represents a modification of the relationship presented by Irvine (1988). 
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7.4.1 Evaluation of Equation 

The accuracy of Eq. (7.9) is assessed using experimental data of Yoo (1974) for 0.3 < n 

< 0.892. Figures 7.10 and 7.11 show comparisons between predictions and experimental 

data for n = 0.892 and 0.675, respectively. On the same plot, predictions using the Dodge 

and Metzner (1959) correlation are shown. In addition, a cross plot between measured 

Fanning friction factor and predicted Fanning friction factor is shown in Fig. 7.12. The 

cross plot shows that most data points lie within the ±10% tolerance band. Furthermore, 

an average percent deviation of 6.6% was calculated. This compares favorably with 

predictions by the implicit Dodge and Metzner (1959) correlation.    

 

 

Figure 7.10: Fanning Friction Factor vs. Generalized Reynolds Number for 

Experimental Data of Yoo (1974) with n = 0.892 
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Figure 7.11: Fanning Friction Factor vs. Generalized Reynolds Number for 

Experimental Data of Yoo (1974) with n = 0.675 

 

Figure 7.12: Cross Plot of Measured Fanning Friction Factor vs. Predicted Fanning 

Friction Factor 

0.001

0.01

1000 10000

F
a
n

n
in

g
 f

ri
c
ti

o
n

 f
a
c
to

r,
 f

Generalized Reynolds number, NReg

Data from Yoo (1974)

Eq. (7.9)

Dodge and Metzner

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.004 0.005 0.006 0.007 0.008 0.009

f 
(M

e
a
s
u

re
d

)

f (Predicted)

Data of Yoo (1974)
10%
-10%



 

 139   

 

7.5 Summary 

In this chapter, the turbulent flow behavior of surfactant-based fluids was investigated. 

Flow data were measured using field scale flow-loop to study the effect of various factors 

on drag reduction characteristics of test solutions. The drag reduction character of 

surfactant fluids is observed to be strongly affected by concentration, pipe diameter, pipe 

surface roughness, and solvent type. Favorable drag reduction is recorded with increases 

in concentration, pipe diameter, and presence of salts. However, pipe roughness is shown 

to have a negative effect on drag reduction.  

 

A new turbulent friction factor equation is developed for purely viscous fluids in smooth 

pipes. This equation is shown to predict friction factor with reasonable accuracy for non-

drag reducing solutions. Satisfactory agreement is obtained between predicted and 

measured data with the new equation  
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Chapter 8 

LAMINAR AND TURBULENT ANNULAR FLOW OF NON-

NEWTONIAN FLUIDS 

 

8.1 Introduction 

 

The preceding chapters (Chapters 6 and 7) presented information on laminar and 

turbulent pipe flow behavior of purely viscous and drag reducing fluids (surfactant 

solutions). Flow of Newtonian and non-Newtonian fluids in annular geometries is 

typically encountered in many industrial applications, with those in the petroleum and 

chemical industries as notable examples. In the petroleum industry, annular flow 

situations arise in oil well drilling, well completion operations, and hydraulic fracturing 

jobs. Annular flow modeling presents a greater level of complexity as compared with 

flow through cylindrical ducts. As a result, flow field modeling can be described as 

nontrivial and has been the subject of many studies.  

 

Generally, fluids are broadly classified as Newtonian or non-Newtonian depending on 

the shear rate dependence (or not) of viscosity. Analytical solutions to annular flow of 

Newtonian fluids can be found in many standard chemical or petroleum engineering texts. 

Non-Newtonian fluids, however, represent a greater challenge because solutions to flow 

equations can be intractable. This challenge can be attributed to a wide range of 

rheological character exhibited by many industrial fluids. Industrial fluid systems are 
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often described by complex rheological models that have up to five or six unknown 

parameters. 

 

In the literature, analytical (exact and approximate) and numerical solutions to annular 

flow problems have been derived and reported. The nature of these solutions is related to 

the form of the chosen rheological model. Axial laminar flow of Bingham plastic and 

power law fluids has been reported by Fredrickson and Bird (1958) as well as by Hanks 

and Larsen (1979). Analytical solutions to laminar flow of yield-pseudoplastic fluids have 

been presented by Hanks (1979) and Gucuyener and Mehmetoglu (1992). Concentric 

annular flow of Eyring and Powell-Eyring fluids was investigated by Nebrensky and 

Ulbrecht (1968) and Russell and Christiansen (1974), respectively. Analytical and 

numerical solutions to eccentric annular flow have been reported by Haciislamoglu and 

Langlinais (1990) for power law and yield-pseudoplastic fluids. Similarly, a solution to 

flow of a Bingham plastic fluid in an eccentric annulus was presented by Walton and 

Bittleston (1991). 

 

Many of the studies in the literature deal with laminar flow of non-Newtonian fluids. For 

turbulent flow of non-Newtonian fluids, a comprehensive theoretical solution to the 

equation of motion is not possible. In other words, universal solutions to turbulent non-

Newtonian fluid flow are unavailable. Consequently, empirical and semi-theoretical 

approaches have been proposed by several researchers for the purpose of pressure loss 

estimation.  
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Turbulent flow is encountered in many industrial processes. For example, in drilling and 

hydraulic fracturing operations, fluid systems are routinely pumped under turbulent 

conditions through pipes and annular ducts. Thus, there is a need to understand flow 

hydrodynamics in such situations (especially in annular ducts) as well as to develop a 

relationship for friction pressure estimation.  

 

This chapter examines the axial annular flow of pseudoplastic fluids and has three 

motivations. The first motivation is driven by the objective to develop an approach for 

determining friction pressure loss suitable for field-wide applications. Here, the power 

law model is selected because of its simplicity and ease of use for fluid characterization 

and flow modeling. In achieving this aim, a modified-slot flow approximation is used to 

derive Fanning friction factor–generalized Reynolds number expressions. Prediction 

comparisons are made between the current approach and the narrow slot approximation. 

The second motivation seeks to model the flow of a Carreau fluid (Carreau 1972) through 

a concentric annulus. The Carreau model is selected because it encompasses a wider range 

of shear rates, which can be encountered in many industrial processes. With the Carreau 

model, the flow equation is solved numerically to determine the location of zero shear 

stress as well as to present design charts in the form of dimensionless pressure drop–flow 

rate plots for diameter ratios (к) of 0.1, 0.5, and 0.9 as a function of the flow behavior 

index. The third motivation of this chapter is to investigate the turbulent annular flow 

behavior of non-Newtonian drag reducing fluids as well as to develop a simple 
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relationship for determining friction pressure without resorting to complicated numerical 

computations. 

 

8.2 Review of Previous Work on Annular Flow 

 

The hydrodynamics of annular flow present additional complexities when compared to 

flow in straight pipes. Studies on annular flow (Heyda 1959; Fredrickson and Bird 1958; 

Redberger and Charles 1962; Haciislamoglu and Langlianis 1990; Cummings 1993) have 

been reported in the literature. Laminar and turbulent flow of Newtonian fluids (Heyda 

1959; Redberger and Charles 1962) and non-Newtonian fluids (Fredrickson and Bird 

1958; McEachern 1966; Ballal and Rivlin 1975 and 1979; Kazakia and Rivlin 1979; 

Haciislamoglu and Langlianis 1990; Ogugbue and Shah 2010) have been studied 

experimentally, analytically, and numerically.   

 

Fredrickson and Bird (1958) derived flow rate expressions for both Bingham plastic and 

power law fluids in cylindrical annuli. McEachern (1966) solved the governing 

momentum equation to derive flow rate expressions for generalized Newtonian and Ellis 

fluids. Although important, these earlier efforts focused on flow between two concentric 

cylinders and represent only an idealized description of wellbore annular flow. In 

wellbores, an eccentric annular geometry is expected (Fig. 8.1). Eccentricity is defined 

by the following expression: 

   휀 =
𝛿

(𝑟2−𝑟1)
                                                                                                                                 

For concentric annuli, ε = 0, while for a fully eccentric annuli, ε = 1. 
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Figure 8.1: Concentric, Partially Eccentric, and Fully Eccentric Annular 

Geometries 

 

Pressure losses in an eccentric annulus can be as low as 40 to 50% that of a concentric 

annulus (Haciislamoglu and Langlinais 1990; Cartalos et al. 1996). Eccentricity is a 

parameter that is impossible to control (Cartalos et al. 1996) in field operations. For 

horizontal wells however, a fully eccentric annulus is assumed as gravitational forces 

cause the inner pipe to rest on the bottom of the outer pipe or the wellbore. 

 

Heyda (1959) presented an analytical solution for the velocity profile of steady-state 

laminar flow of Newtonian fluids in between eccentric cylinders (see Redberger and 

Charles 1962). Redberger and Charles (1962) extended the work of Heyda (1959) by 

using bipolar coordinates to numerically obtain a relationship between flow rate and 

pressure drop. Ballal and Rivlin (1975, 1979) considered the flow of a viscoelastic fluid, 

characterized by the Rivlin-Ericksen constitutive equation, in between two eccentric 

cylinders. They studied how the motion of one cylinder affects the eccentric annular flow 

field. Similarly, Kazakia and Rivlin (1976) expanded on the work of Ballal and Rivlin 
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(1975) by calculating the forces that occur due to the rotational motion of the inner 

cylinder about the axis of the outer one. 

 

In 1975, Guckes (1975) presented an approach to predict flow rate and velocity 

distribution for laminar flow of incompressible non-Newtonian fluids (Bingham plastic 

and power law). Haccislamoglu (1989) stated that the Guckes’ approach is susceptible to 

numerical instabilities at high eccentricities (see Azouz et al. 1992).   

 

Approximate analytical solutions to eccentric annular flow using the “slot model” have 

been reported by Tao and Donovan (1955), Vaughn (1965), Iyoho and Azar (1981), Uner 

et al. (1988), and Luo and Peden (1990). As Haciislamoglu (1989) has pointed out, the 

mathematical analyses used in some of these studies were erroneous because of the use 

of inaccurate governing equations (see Azouz et al. 1992; Cummings 1993).    

 

Feldman et al. (1981) presented numerical solutions using bipolar coordinates for 

developing fully eccentric annular flow. Velusamy et al. (1994) highlighted the 

shortcomings of the work of Feldman et al. (1981), stating that it applies to a limited 

range of eccentricities (ε > 0.5) and radius ratios (> 0.5). They provided a complete set of 

solutions by considering a wider range of eccentricities and diameter ratios. 

 

Using transformations to bipolar coordinates, Haciislamoglu and Langlinais (1990) 

studied the eccentric annular flow of yield-pseudoplastic fluids. They presented velocity 
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and viscosity profiles at different eccentricities. Haciislamoglu and co-workers 

(Haciislamoglu and Langlinais 1990; Haciislamoglu and Cartalos 1994), furthermore, 

developed widely accepted frictional pressure loss correlations for both laminar and 

turbulent flow of power law fluids. They presented the ratio of pressure loss in an 

eccentric annulus to that in a corresponding concentric one as a function of the power law 

flow behavior index, diameter ratio, and eccentricity. Silva and Shah (2000), and later 

Ogugbue and Shah (2010), developed empirical correlations to determine laminar and 

turbulent Fanning friction factors for polymeric fluid flow in concentric and fully 

eccentric annuli. These correlations are valid for conditions under which the experiments 

were conducted. 

 

8.3 Theoretical Development of Annular Flow 

 

The assumptions used in this work are as follows: 1) steady state and laminar conditions 

prevail, 2) fluid is incompressible under isothermal conditions, 3) flow is fully developed, 

and 4) no-slip boundary condition exists at the wall. For one-dimensional flow, the 

momentum equation in cylindrical coordinates can be expressed as: 

   
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) = −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 =

𝑑𝑝

𝑑𝑧
                                                                                       (8.1) 

where, r is the radial distance, ρ is the fluid density, dp/dz is the pressure gradient, and τrz 

is the shear stress. 

 

With Eq. (8.1), the shear stress distribution in an annulus is obtained as: 

   𝜏𝑟𝑧 =
∆𝑝

2𝑙
(𝑟′ −

𝜆2

𝑟′),                                                                                                                       (8.2) 
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where, r′ =
r

r2
, λ is the dimensionless distance of zero shear stress, and l is the length. 

 

8.4 Laminar Flow in an Eccentric Annulus 

 

Fredrickson and Bird (1958) studied the axial flow of non-Newtonian fluids in concentric 

annuli. They presented an expression to determine the volumetric flow rate or pressure 

drop. This expression, however, required numerical techniques to obtain solutions, 

rendering their approach cumbersome. To overcome the difficulties with the Fredrickson 

and Bird (1958) approach, Hanks and Larsen (1979) presented a simple explicit 

relationship between pressure drop (Δp) and flow rate (q) that took geometry effects into 

consideration. Prasanth and Shenoy (1992) also derived the same relationship:  

   𝑞 =
𝜋𝑛𝑑2

3

8(3𝑛+1)
(

𝑑2

4𝐾

∆𝑝

𝑙
)

1

𝑛
[(1 − 𝜆2)

𝑛+1

𝑛 − к
𝑛−1

𝑛 (𝜆2 − к2)
𝑛+1

𝑛 ]                                                         (8.3) 

where, n is the flow behavior index, l is pipe length, к is the diameter ratio (d1/d2), and K 

is the consistency index. The parameter, λ, is the location of maximum velocity. It can be 

determined by solving the following condition reported by Fredrickson and Bird (1958):  

   ∫ (
𝜆2

𝜉
− 𝜉)

1

𝑛
𝑑𝜉 − ∫ (𝜉 −

𝜆2

𝜉
)

1

𝑛
𝑑𝜉 = 0

1

𝜆

𝜆

к
                                                                                       (8.4) 

 

The solution to Eq. (8.3) involves satisfying the condition in Eq. (8.4). This requires an 

iterative procedure that limits its applicability. 

 

David and Filip (1995) proposed an alternative technique. They used a quasisimilarity 

approach between flow through parallel plates (qpl) and concentric annular flow to obtain 
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a simple, approximate, and explicit expression for determining the volumetric flow rate. 

Their approach eliminates the difficulties with calculating λ in Eq. (8.4), as this parameter 

is not required. With the David and Filip (1995) approach, the flow rate is: 

   𝑞 = 𝑞𝑝𝑙 [1 −
1

93
𝑛−

5

9 (
1

к
− 1)

9

10
]

−1

                                                                                               (8.5) 

where, 𝑞𝑝𝑙 =
𝜋𝑛𝑅3

2(2𝑛+1)
(1 + к)(1 − к)2+

1

𝑛 (
∆𝑝

𝑙

𝑅

2𝐾
)

1

𝑛
                                                                          (8.6) 

In the region of к ≥ 0.4 and n ≥ 0.1, percent deviations were less than 1%.  

 

Equation (8.5) can be expressed in dimensionless form using the Fanning friction factor 

and generalized Reynolds number: 

   𝑞 = 𝑢
𝜋

4
(𝑑2

2 − 𝑑1
2)                                                                                                                       (8.7) 

   
∆𝑝

𝑙
=

2𝑓𝜌𝑢2

𝑔𝑐(𝑑2−𝑑1)
                                                                                                                                      (8.8) 

where, f is the Fanning friction factor, ρ is the fluid density, u is the fluid velocity, gc is 

the conversion factor, d1 is the outer diameter of the inner pipe, and d2 is the inner 

diameter of the outer pipe. 

 

By substituting Eqs. (8.7) and (8.8) into Eq. (8.5) and making algebraic manipulations, 

the following form of the Fanning friction factor–generalized Reynolds number 

expression is obtained: 

   𝑓 [
𝛽𝑑2

3𝑛+1
𝑛

(𝑑1+𝑑2)(𝑑2−𝑑1)
𝑛+1
𝑛

]

𝑛

𝜌𝑢2−𝑛

12𝑛−1𝑔𝑐𝐾(
2𝑛+1

3𝑛
)
𝑛 = 24                                                                              (8.9) 
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where, 𝛽 = (1 + к)(1 − к)2+
1

𝑛 [1 −
1

93
𝑛−

5

9 (
1

к
− 1)

9

10
]

−1

                                                        (8.10) 

From Eq. (8.9), it is obvious that the effective diameter for concentric annuli can be 

expressed as: 

   𝑑𝑒𝑓𝑓 =
𝛽𝑑2

3𝑛+1
𝑛

(𝑑1+𝑑2)(𝑑2−𝑑1)
𝑛+1
𝑛

                                                                                                             (8.11) 

 

Pilehvari and Serth (2009) derived a similar expression for effective diameter. The term 

β, however, is expressed as an explicit relationship (Eq. 8.10), which eliminates the 

iterative calculation procedure Pilehvari and Serth (2009) suggested. The effective 

diameter can be recast in a generalized form using n' and Ka': 

   𝑛′ =
𝑑 ln(𝜏𝑤)

𝑑 ln(�̇�𝑤)
                                                                                                                                (8.12) 

   𝜏𝑤 = 𝐾 ′(�̇�𝑤)𝑛′
                                                                                                                             (8.13) 

   𝑁𝑅𝑒𝑔 =
𝜌𝑢2−𝑛′

   (𝑑𝑒𝑓𝑓)𝑛
′

12𝑛′−1𝐾𝑎
′

                                                                                                               (8.14) 

   𝛽 = (1 + к)(1 − к)
2+

1

𝑛′ [1 −
1

93
𝑛′−

5

9 (
1

к
− 1)

9

10
]

−1

                                                                  (8.15) 

   𝑑𝑒𝑓𝑓 =
𝛽𝑑2

3𝑛′+1

𝑛′

(𝑑1+𝑑2)(𝑑2−𝑑1)
𝑛′+1

𝑛′

                                                                                                            (8.16) 

 

The foregoing equations are applicable to laminar axial flow in a concentric annulus. The 

effective diameter can be corrected for eccentric annular flow using a conversion term. 
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8.4.1 Eccentric Annular Flow Correlations 

 

Haciislamoglu and Langlinais (1990) numerically investigated laminar flow through 

eccentric annuli. They presented an expression (by regression), relating pressure drop in 

an eccentric annulus to pressure drop in a concentric annulus:  

   
∆𝑝𝑒𝑐𝑐

∆𝑝𝑐𝑜𝑛𝑐
= 𝑅𝑐 = 1 − 0.072

𝑛
к0.8454 − 1.5휀2√𝑛 к0.1852 + 0.96휀3√𝑛 к0.2527               (8.17) 

where, ε is pipe eccentricity. In the region 0.3 ≤ к ≤ 0.9, 0 ≤ ε ≤ 0.9, and 0.4 ≤ n ≤ 1, a 

relative deviation of less than 5% was obtained with Eq. (8.17). 

 

Similarly, Pilehvari and Serth (2009) presented a conversion correlation using numerical 

data by Fang et al. (1999) and Escudier et al. (2002). Their correlation is expressed as 

follows: 

   
∆𝑝𝑒𝑐𝑐

∆𝑝𝑐𝑜𝑛𝑐
= 𝑅𝑐 = 1 − 0.1019휀𝑛 к0.8454 − 1.6152휀2𝑛0.085 к0.7875 +

1.1434휀3𝑛0.0547 к1.1655                                                                                                 (8.18) 

Equation (8.18) is valid for 0.2 ≤ n ≤ 1.0, 0.2 ≤ к ≤ 0.8, and 0 ≤ ε ≤ 0.98. 

 

In this study, the form of Eq. (8.17) is adopted. It was deemed necessary to develop a 

correction term by using experimental data (with realistic field annular geometries) for 

widely used oilfield fluids. Thus, regression is performed on experimental flow data for 

guar fluid (at concentrations of 20, 30, 40, and 60 lb/Mgal) and a surfactant solution [5% 

(v/v) Aromox® APA-TW] through fully eccentric annuli. The rheological properties and 



 

 151   

 

flow data (with tubing configurations) for the fluids used are given in Table 8.1 and Fig. 

8.2, respectively. The resulting correlation for 
∆𝑝𝑒𝑐𝑐

∆𝑝𝑐𝑜𝑛𝑐
 is given as: 

   
∆𝑝𝑒𝑐𝑐

∆𝑝𝑐𝑜𝑛𝑐
= 𝑅𝑐 = 1 −

0.0456

𝑛
к0.7786 − 1.437√𝑛 к0.03672 + 0.965√𝑛 к0.4288                   (8.19) 

Equation (8.19) is valid for 0.25 ≤ n ≤ 0.65 and 0.64 ≤ к ≤ 0.82. 

 

Using these conversion correlations, the effective diameter for laminar flow in an 

eccentric annulus can be calculated using Eq. (8.20). 

   𝑑𝑒𝑓𝑓 =
𝛽𝑑2

3𝑛′+1

𝑛′

(𝑑1+𝑑2)(𝑑2−𝑑1)
𝑛′+1

𝑛′ (𝑅𝑐)
1
𝑛

                                                                                                        (8.20) 

 

The accuracy of Eq. (8.19) is evaluated by comparing predictions with experimental data 

for welan gum solutions at two concentrations: 1.75 and 2.25 lb/bbl. Specifically, laminar 

flow data in fully eccentric annuli are used for comparative analysis. The flow loop 

consists of 3.5-in. x 1.75-in., and 5.5-in. x 4-in. fully eccentric annuli. For the purpose of 

analysis, the friction pressure and flow rate were converted to the generalized Reynolds 

number and Fanning friction factor using Eqs. (8.14) and (8.21), respectively.  

   𝑓 = 154.65
(𝑑2−𝑑1)(𝑑2

2−𝑑1
2)

2
∆𝑝

𝑙𝜌𝑞2                                                                                                             (8.21) 

The parameters in Eq. (8.20) are in oilfield units. 

 

Figures 8.3 and 8.4 show comparisons of the predicted and measured data using 1.75 and 

2.25 lb/bbl welan solutions using Eq. (8.19) and the effective diameter definition for 

eccentric annular flow. It can be seen from both figures that reasonably good matches 
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were obtained between the measured data and predictions with Eq. (8.19). Average 

percent deviations of 6.0% and 13.7% are calculated for 1.75 lb/bbl welan solution in 3.5-

in. x 1.75-in., and 5.5-in. x 4-in. eccentric annuli, respectively. Similarly, average percent 

deviations of 4.9% and 12.2% are calculated for 2.25 lb/bbl welan solution in 3.5-in. x 

1.75-in., and 5.5-in. x 4-in. eccentric annuli, respectively. Thus, the satisfactory matches 

confirm the accuracy and reliability of Eq. (8.19) in predicting pressure losses for the 

laminar flow of non-Newtonian fluids in fully eccentric annuli. 
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Table 8.1: Rheological Properties of Test Fluids 

 

Fluid Concentration Flow Geometry (in.) n Kv (lbf sn/ft2) 

Guar* 20 lbm/Mgal 3.5 x 1.75 0.618 2.93E-03 

5.5 x 4 and 5 x 3.5 0.651 1.86E-03 

30 lbm/Mgal 3.5 x 1.75 0.546 8.85E-03 

5.5 x 4 and 5 x 3.5 0.536 6.94E-03 

40 lbm/Mgal 3.5 x 1.75 0.436 2.51E-02 

5.5 x 4 and 5 x 3.5 0.471 1.67E-02 

60 lbm/Mgal 3.5 x 1.75 0.36 8.27E-02 

5.5 x 4 and 5 x 3.5 0.341 7.79E-02 

Aromox® 

APA-TW 

5% 3.5 x 1.75, 5.5 x 4, 5 x 3.5 0.387 1.78E-02  

  * Adapted from Ogugbue and Shah (2010) 
 

 

 

Figure 8.2: Composite Plot of Fanning Friction Factor vs. Generalized Reynolds 

Number for Laminar Flow of Guar and Aromox® APA-T Solutions 
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Figure 8.3: Fanning Friction Factor vs. Generalized Reynolds Number for Laminar 

Flow of 1.75 lb/bbl Welan Solution. Fluid Data: n = 0.206, Kv = 0.084 lbf sn/ft2 

 

 

Figure 8.4: Fanning Friction Factor vs. Generalized Reynolds Number for Laminar 

Flow of 2.25 lb/bbl Welan Solution. Fluid Data: n = 0.177, Kv = 0.137 lbf sn/ft2 
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The correlations above (Eqs. 8.17 - 8.19) are valid for laminar flow of non-Newtonian 

fluids. For turbulent flow of non-drag reducing non-Newtonian fluids, the Dodge and 

Metzner correlation (Dodge and Metzner 1959) is used in combination with the effective 

diameter definition given in Eq. (8.16). The Dodge and Metzner correlation is expressed 

as: 

   
1

√𝑓
=

4

(𝑛′)0.75 log [𝑁𝑅𝑒𝑔𝑓1−
𝑛′

2 ] −
0.395

(𝑛′)1.2                                                                                         (8.22) 

 

8.4.2 Comparison with Experimental Data 

 

The accuracy of friction pressure predictions using the proposed approach for concentric 

and eccentric annular flow is evaluated. In addition, prediction comparisons are made 

between the current approach and the narrow slot approximation. The power law laminar 

flow equation using the narrow slot approximation is given in Appendix IV. Experimental 

flow data for concentric annuli from studies of Okafor and Evers (1992) and Langlinais 

et al. (1983) are considered for comparative purposes. Flow data from Okafor and Evers 

(1992) were gathered in the laminar regime, whereas data by Langlinais et al. (1983) 

covered both laminar and turbulent regimes. For eccentric annular flow, experimental 

data (for three fluids -1, 2, and 3) are obtained from the study of Subramanian (1995), as 

reported by Pilehvari and Serth (2009) and the study of Ahmed (2005). Experimental data 

(XCD-PAC2 and XCD-PAC3) from the study of Ahmed (2005) were gathered in the 

laminar flow regime. 
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Figures 8.5 and 8.6 show predictions with the present approach, slot flow approximation 

results, and experimental results of Okafor and Evers (1992) for two fluids (A and B). 

Fluid A has the following properties: ρ = 8.9 lb/gal, n = 0.581, and Kv = 0.00775 lbf s
n/ft2. 

Similarly, the properties of Fluid B are: ρ = 8.65 lb/gal, n = 0.163, and Kv = 0.157 lbf 

sn/ft2. Both figures show excellent agreement between the predicted and measured data. 

Average percent deviations of 9.7% and 6.6% were calculated for fluids A and B, 

respectively. Good agreement can be seen between the slot flow approximation and 

experimental data with average percent deviations of 14% and 3.5% for fluids A and B, 

respectively.  

 

In Fig. 8.7, comparisons between pressure loss predictions for concentric annular flow 

with experimental results of Langlinais et al. (1983) are shown. Slot flow approximation 

results are presented in this figure. The fluid properties are: ρ = 8.8 lb/gal, n = 0.784, and 

Kv = 0.00144 lbf s
n/ft2. Excellent agreement can be observed between predictions and 

experimental data, with an average percent deviation of 5.9%. A good match is obtained 

between the slot flow approximation and experimental data with an average percent 

deviation of 8%.  
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Figure 8.5: Comparison of Predictions with Measured Data of Okafor and Evers 

(1992) for Fluid A. Annulus Dimension: 3.0469 x 1.8984-in. 

 

 

Figure 8.6: Comparison of Predictions with Measured Data of Okafor and Evers 

(1992) for Fluid B. Annulus Dimension: 3.0469 x 1.8984-in. 
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Figure 8.7: Comparison of Predictions with Measured Data of Langlinais et al. 

(1983), Annulus Dimension: 2.441 x 1.315-in. 

 

Figures 8.8 through 8.10 show experimental data from the study of Subramanian (1995), 

model predictions and slot flow approximation results using the effective diameter 

definition for fully eccentric annular flow of three fluids – 1, 2, and 3. Fluid 1 has the 

following properties: ρ = 8.53 lb/gal, n = 0.602, Kv = 0.00199 lbf s
n/ft2. Fluid 2 has the 

following properties: ρ = 8.68 lb/gal, n = 0.488, Kv = 0.0197 lbf s
n/ft2. The properties of 

Fluid 3 are: ρ = 8.72 lb/gal, n = 0.397, Kv = 0.0848 lbf s
n/ft2. Also evident from these plots 

are comparisons among the various conversion correlations given in Eqs. (8.17) – (8.19). 

Satisfactory agreement is observed between model predictions (irrespective of the 

correlation) and experimental data. Table 8.2 reports the average percent deviation 

between the predicted and measured data. In addition, the mean percent deviations using 

the iterative approach by Pilehvari and Serth (2009) are reported in Table 8.2. It is evident 
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that the present approach compares favorably and eliminates the need to adopt the 

Pilehvari and Serth (2009) iterative scheme. For subsequent eccentric annular flow 

analysis, the Haciislamoglu and Langlinais correlation is used. With the slot flow 

approximation, average percent deviations of 20.6%, 17.3%, and 8.2% are calculated 

between predictions and flow data for fluids 1, 2, and 3, respectively. 

 

 

Figure 8.8: Comparison of Predictions with Measured Data of Subramanian (1995) 

for Fluid 1. Annulus Dimension: 5.023 x 2.375-in. 
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Figure 8.9: Comparison of Predictions with Measured Data of Subramanian (1995) 

for Fluid 2. Annulus Dimension: 5.023 x 2.375-in. 

 

 

 

Figure 8.10: Comparison of Predictions with Measured Data of Subramanian (1995) 

for Fluid 3. Annulus Dimension: 5.023 x 2.375-in. 
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Table 8.2: Comparison of Mean Average Percent Deviation between Predictions 

and Experimental data of Subramanian (1995) 

 

Fluid Eq. 

(8.19) 

Haciislamoglu and 

Langlinais 

correlation  

Pilehvari and 

Serth 

correlation 

Pilehvari and 

Serth approach* 

1 15.6 11.2 13.5 14.9 

2 15.0 11.4 10.9 10.3 

3 9.0 7.7 6.2 5.6 

* Reported by Pilehvari and Serth (2009) 

 

Predictions with the current approach, slot flow approximation results, and experimental 

data from the study of Ahmed (2005) are presented in Figs. 8.11 and 8.12. XCD-PAC2 

has the following properties: ρ = 8.33 lb/gal, n = 0.305, Kv = 0.148 lbf s
n/ft2. XCD-PAC3 

has the following properties: ρ = 8.33 lb/gal, n = 0.489, Kv = 0.0231 lbf s
n/ft2. From both 

figures, the current approach and experimental data are in good agreement. Average 

percent deviations of 16.2% and 12.8% are calculated for XCD-PAC2 and XCD-PAC3 

between model predictions and experimental data. On the other hand, higher percent 

average deviations are calculated between the slot flow approximation and experimental 

data; percent average deviations of 25% and 20.4% for XCD-PAC2 and XCD-PAC3 are 

calculated, respectively.  
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Figure 8.11: Comparison of Predictions with Measured Data of Ahmed (2005) for 

XCD-PAC2. Annulus Dimension: 1.38 x 0.68-in. 

 

 

Figure 8.12: Comparison of Predictions with Measured Data of Ahmed (2005) for 

XCD-PAC3. Annulus Dimension: 1.38 x 0.5-in. 
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8.5 Annular Flow of Power Law Fluid 

 

As earlier stated, Fredrickson and Bird (1958) and Hanks and Larsen (1979) derived 

relationships between flow rate and pressure drop for power law fluids. The rheological 

model for the power law fluid is expressed in Eq. (8.23). 

   𝜏𝑟𝑧 = 𝐾 (−
𝑑𝑢

𝑑𝑟
)
𝑛

                                                                                                                           (8.23) 

 

In this study, the approach by Mishra and Mishra (1976) with improvements is adopted. 

The normalized velocity distribution is of the form: 

𝑢𝑟

𝑢𝑚
= (1 − 𝑍

𝑛+1

𝑛 ),                                                                                                                        (8.24) 

where, Z is the dimensionless distance from zero shear stress, n is the flow behavior index, 

ur is the velocity distribution, and um is the maximum velocity. The velocity profiles for 

the two regions in the annulus are expressed as (Mishra and Mishra 1976): 

 

Inner Region (r1≤ r ≤ rm) 

𝑢1

𝑢𝑚
= 1 − (

𝑟𝑚−𝑟

𝑟𝑚−𝑟1
)

𝑛+1

𝑛
                                                                                                                   (8.25) 

Outer Region (rm≤ r ≤ r2) 

𝑢2

𝑢𝑚
= 1 − (

𝑟−𝑟𝑚

𝑟2−𝑟𝑚
)

𝑛+1

𝑛
,                                                                                                                 (8.26) 

where, rm is the radius of maximum velocity, r1 is the outer radius of the inner pipe, and 

r2 is the inner radius of the outer pipe. 
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With Eqs. (8.25) and (8.26), the average velocity can be expressed as: 

𝑢

𝑢𝑚
= [

(𝑛+1)

(1+к)
] [

(2𝑛+1)(1+к)+2𝑛𝜆

(3𝑛+1)(2𝑛+1)
]                                                                                                      (8.27) 

 

In conventional drilling, the diameter ratios tend to be greater than 0.5. For coiled tubing 

operations, higher diameter ratios (> 0.8) are encountered. Thus, the slot approach is 

deemed suitable for the present study. By combining the slot approximation with the 

quasisimilarity factor presented by David and Filip (1995), the maximum velocity (um) 

expression can be written as: 

   𝑢𝑚 = (
∆𝑝

𝐾𝑙
)

1

𝑛
(

𝑛

𝑛+1
) (

ℎ

2
)

𝑛+1

𝑛
(1 −

1

93
𝑛−

5

9 (
1

к
− 1)

9

10
)

−1

,                                                            (8.28) 

where, h is the height of the slot, K is the consistency index, and к is the diameter ratio. 

 

An expression for h (for an eccentric annulus) was derived by Vaughn (1965) and 

subsequently modified by Iyoho and Azar (1981). 

   ℎ = (𝑟2
2 − 휀2𝑐2 sin2 𝜃)

1

2 − 𝑟1 + 휀𝑐 cos 𝜃                                                                               (8.29a) 

As a basis for derivation, Eq. (8.29a) is reduced to Eq. (8.29b) for a concentric annulus: 

   ℎ = 𝑟2 − 𝑟1                                                                                                                              (8.29b) 

 

A Fanning friction factor–generalized Reynolds number relationship is derived by 

substituting Eqs. (8.28) and (8.29b) into Eq. (8.27) as well as by using the following 

pressure loss equation: 

   𝑓 =
∆𝑝(𝑑2−𝑑1)𝑔𝑐

2𝑙𝜌𝑢2                                                                                                                                (8.30) 
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   𝑓 (𝑤𝑑ℎ
(𝑛+1)

(1+к)
[
(2𝑛+1)(1+к)+2𝑛𝜆

(3𝑛+1)(2𝑛+1)
])

𝑛 𝑢2−𝑛𝜌

𝑘(
𝑛

𝑛+1
)
𝑛
𝑔𝑐8𝑛−1

= 16                                                            (8.31) 

   𝑤 = (1 −
1

93
𝑛−

5

9 (
1

к
− 1)

9

10
)

−1

  

 

For slot flow, λ = 1. Eq. (8.31) represents an expression for determining the Fanning 

friction factor. By comparison with the relationship f NReg = 16, the following generalized 

Reynolds number and effective diameter (deff) expressions can be obtained: 

   𝑁𝑅𝑒𝑔 =
𝑢2−𝑛𝑑𝑒𝑓𝑓

𝑛 𝜌

𝑘(
𝑛

𝑛+1
)
𝑛
𝑔𝑐8𝑛−1

                                                                                                                  (8.32) 

   𝑑𝑒𝑓𝑓 = (𝑤𝑑ℎ
(𝑛+1)

(1+к)
[
(2𝑛+1)(1+к)+2𝑛

(3𝑛+1)(2𝑛+1)
])                                                                                            (8.33) 

 

The effective diameter can be modified to account for eccentric annular flow with the 

conversion factor developed by Haciislamoglu and Langlinais (1990). Thus, the effective 

diameter for eccentric annular flow is expressed as: 

   𝑑𝑒𝑓𝑓 = (𝑤𝑑ℎ
(𝑛+1)

(1+к)
[
(2𝑛+1)(1+к)+2𝑛

(3𝑛+1)(2𝑛+1)
]

1

(𝑅𝑐)
1
𝑛

)                                                                                  (8.34) 

 

8.5.1 Evaluation of Fanning Friction Factor Relationship 

 

The accuracy of predictions using the proposed approach is compared with experimental 

data from various sources in literature. For concentric annular flow, pressure drop data 

from the studies of Okafor and Evers (1992) and Langlinais et al. (1983) are used for 

comparative purposes. For fully eccentric annular flow, flow data from the studies of 
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Subramanian (1995) and Ahmed (2005), are used. The fluid properties for experimental 

data used as well as annular dimensions are reported Sect. 8.4.2. 

 

Figures 8.13 to 8.15 are Fanning friction factor–generalized Reynolds number plots for 

concentric annular data. Figures 8.13 and 8.14 show predictions with the current 

approach, slot flow approximation results, and experimental results of Okafor and Evers 

(1992) for two fluids—A and B. It is obvious that there is good agreement between the 

proposed method and experimental data. Average percentage deviations of 6.9% and 

6.3% are calculated for fluids A and B, respectively. Figure 8.15 shows a comparison 

between the predictions and experimental results of Langlinais et al. (1983). There is a 

satisfactory match between the predictions and flow data, as an average deviation of 7.4% 

is calculated. In Figs. 8.13 to 8.15, good matches are obtained between slot flow 

approximation results and experimental data (see Sect. 8.4.2). 
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Figure 8.13: Comparison of Predictions with Experimental Results of Okafor and 

Evers (1992) – Fluid A. Annulus Dimension: 3.0469 x 1.8984-in. 

 

 

 

Figure 8.14: Comparison of Predictions with Experimental Results of Okafor and 

Evers (1992) – Fluid B. Annulus Dimension: 3.0469 x 1.8984-in. 
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Figure 8.15: Comparison of Predictions with Experimental Results of Langlinais et 

al. (1983). Annulus Dimension: 2.441 x 1.315-in. 
 

 

Figures 8.16 to 8.18 show comparisons between predictions and experimental data from 

Subramanian (1995) for flow in an eccentric annulus for fluids 1, 2, and 3. Slot flow 

approximation results can be seen in these figures. In all these figures, there is a 

reasonable match between predictions and experimental data. However, slightly higher 

average percentage deviations are calculated as compared with the concentric case 

described above. Average percentage deviations of 12.3%, 9.1%, and 8.7% are calculated 

for fluids 1, 2, and 3, respectively. With the slot approximation, average percent 

deviations of 20.6%, 17.3%, and 8.2% are calculated for fluids 1, 2, and 3, respectively.  
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Figure 8.16: Comparison of Predictions with Experimental Results of Subramanian 

(1995) – Fluid 1. Annulus Dimension: 5.023 x 2.375-in. 
 

 

 

 

 

Figure 8.17: Comparison of Predictions with Experimental Results of Subramanian 

(1995) – Fluid 2. Annulus Dimension: 5.023 x 2.375-in. 
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Figure 8.18: Comparison of Predictions with Experimental Results of Subramanian 

(1995) – Fluid 3. Annulus Dimension: 5.023 x 2.375-in. 

 

Model predictions, slot flow approximation results, and flow data from the study of 

Ahmed (2005) are presented in Figs. 8.19 and 8.20. It is clear from both figures that model 

predictions accurately match experimental data; percent average deviations of 1.9% and 

13.2% for XCD-PAC2 and XCD-PAC3 are calculated, respectively. However, higher 

percent deviations are calculated between slot flow approximation predictions and flow 

data; average percent deviations of 25% and 20.4% are calculated for XCD-PAC2 and 

XCD-PAC3, respectively. 
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Figure 8.19: Comparison of Predictions with Experimental Results of Ahmed 

(2005) for XCD-PAC2. Annulus Dimension: 1.38 x 0.68-in. 

 

 

 
 

Figure 8.20: Comparison of Predictions with Experimental Results of Ahmed 

(2005) for XCD-PAC3. Annulus Dimension: 1.38 x 0.5-in. 
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8.6 Annular Flow of Carreau Fluid 

 

The preceding sections focused on friction pressure estimation for annular flow of a 

power law fluid. In this section, the Carreau model is considered. The Carreau model has 

the advantage of having a broader range of shear rates spanning the low and high shear 

rate regions as compared with the power law model. The power law model represents the 

simplest constitutive equation that relates the apparent viscosity to the rate of shear of a 

generalized Newtonian fluid. The shortcomings of the power law model are well known.  

 

The power law model yields infinite viscosity in the zero shear rate range which can be 

described as physically unrealistic. At high shear rates, the power law model predictions 

zero viscosity. As a rheological model, the Carreau model provides a way of describing 

many fluid systems from a fluid characterization standpoint. The Carreau model is 

suitable for structural fluids that display complex behavior. However, for flow field 

modeling, it is impossible to obtain simple analytical solutions useful for field 

applications. Dealing with the Carreau model requires utilizing numerical techniques to 

solve flow equations. 

 

The Carreau model is expressed as: 

   𝜏𝑟𝑧 =
µ𝑜

[1+(𝑡|
𝑑𝑢

𝑑𝑟
|
2
)]

1−𝑛
2

(−
𝑑𝑢

𝑑𝑟
)                                                                                                           (8.35) 

where, µo is the zero shear rate viscosity, t is the time constant, and du/dr is the velocity 

gradient. 
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In solving the equation of motion, the following dimensionless parameters are used: 

   𝑞′ =
𝑞 𝑡

2𝜋𝑟2
3  

   ∆𝑝′ =
∆𝑝𝑡𝑟2

2𝑙𝜇𝑜
  

   𝑢′ =
𝑢 𝑡

𝑟2
  

   𝜏′ =
𝜏 𝑡

𝜇𝑜
  

   �̇�′ = 𝑡 �̇�  

   𝑟′ =
𝑟

𝑟2
  

 

Substituting these parameters into Eq. (8.35) gives the dimensionless expression for the 

Carreau model: 

   𝜏′ =
�̇�′

[1+(�̇�′)2]
1−𝑛

2

                                                                                                                           (8.36) 

The momentum equation (Eq. 8.1) and the shear stress distribution expression (Eq. 8.2) 

can be rewritten as: 

   
1

𝑟′

𝑑

𝑑𝑟′
(𝑟′𝜏′) = 2∆𝑝′                                                                                                                        (8.37) 

   𝜏′ = ∆𝑝′ (𝑟′ −
𝜆2

𝑟′
)                                                                                                                       (8.38) 

Combining Eqs. (8.36) and (8.37) results in the following expression: 

   ∆𝑝′ (
𝜆2

𝑟′ − 𝑟′) =
𝑑𝑢′

𝑑𝑟′

[1+|
𝑑𝑢′

𝑑𝑟′|
2

]

1−𝑛
2

                                                                                                     (8.39) 
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Equation (8.39) is solved numerically for the location of zero shear stress (λ) and 

dimensionless volumetric flow rate (q'). Parameters λ and q' were determined for Δp', 

ranging from 0.1 to 10,000, and n varying from 0.2 to 0.8 in intervals of 0.2. The results 

are presented in Figs. 8.21 and 8.22 for λ as a function of Δp' (for diameter ratios (к) of 

0.1 and 0.5). In both figures, λ is normalized with respect to the location of zero shear 

stress for a Newtonian fluid (λN). Dimensionless plots of pressure drop against flow rate 

are shown in Figs. 8.23 to 8.28 for the diameter ratios studied (0.1, 0.5, and 0.9). 

 

The following observations can be made from annular flow of a Carreau fluid: 

1. The location of zero shear stress is not constant for Δp' < 10. This is evident with 

a decrease in diameter ratio for each flow behavior index value. The magnitude 

of λ increases with Δp' until a certain point above which it remains constant. 

2. At high diameter ratios, λ remains constant. 

3. Curves corresponding to various flow behavior indices collapse to a single line at 

low Δp' values, which is more evident at high diameter ratios. 

4. There is a decrease in the magnitude of q' with an increase in diameter ratio for 

the same Δp'. 
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Figure 8.21: Computed Values of λ/λN against Dimensionless Pressure Drop for к = 

0.1 

 

 

 

Figure 8.22: Computed Values of λ/λN against Dimensionless Pressure Drop for к = 

0.5 
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Figure 8.23: Dimensionless Plot of Pressure Drop vs. Flow Rate for Carreau Fluid 

in Annulus, к = 0.1 

 

 

Figure 8.24: Dimensionless Plot of Pressure Drop vs. Flow Rate for Carreau Fluid 

in Annulus, к = 0.1 (Δp' < 10) 
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Figure 8.25: Dimensionless Plot of Pressure Drop vs. Flow Rate for Carreau Fluid 

in Annulus, к = 0.5 
 

 

 

Figure 8.26: Dimensionless Plot of Pressure Drop vs. Flow Rate for Carreau Fluid 

in Annulus, к = 0.5 (Δp' < 10) 
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Figure 8.27: Dimensionless Plot of Pressure Drop vs. Flow Rate for Carreau Fluid 

in Annulus, к = 0.9 

 

 

 

Figure 8.28: Dimensionless Plot of Pressure Drop vs. Flow Rate for Carreau Fluid 

in Annulus, к = 0.9 (Δp' < 10) 
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8.7 Drag Reducing Turbulent Flow 

 

Fluids used in the oilfield are known to display non-Newtonian character and to be 

effective drag reducers in the case of drilling and stimulation fluids. Drag reduction, 

associated with turbulent flow, implies a reduction in friction pressure by the interaction 

between molecules in the fluid and turbulence structures. 

 

The complexity of drag reducing flows renders modeling difficult. Therefore, empirical 

correlations between the Fanning friction factor and generalized Reynolds number are 

common in the literature. In this study, an explicit Fanning friction factor correlation has 

been developed. The difference between the proposed correlation and attempts by other 

researchers is the inclusion of a relative roughness term. Experimental data for guar (20, 

30, 40, and 60 lb/Mgal) and 5% Aromox® APA-TW solutions are used for correlation 

development. The choice of different fluids at several concentrations allows for a more 

robust correlation to cover a wider range of flow behavior indices. 

 

8.7.1 Development of Turbulent Fanning Friction Correlation 

 

The need to develop a friction factor correlation was stated in the previous section. In 

achieving this aim, a correlation is developed using only turbulent flow data (Fig. 8.29). 

The resulting correlation is expressed in terms of the generalized Reynolds number, 

diameter ratio (к), and relative roughness (h/dh) as: 

   𝑓 = 0.002527
𝑑1

𝑑2
+

16.966

𝑁𝑅𝑒𝑔
1.1106 + 0.04102 (

ℎ

𝑑ℎ
) − 0.000521                                                   (8.40) 
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The form of Eq. (8.40) was deemed satisfactory for describing the eccentric annular flow 

behavior of guar and 5% Aromox® APA-TW solutions. This correlation is valid for 0.213 

≤ n ≤ 0.651, 0.636 ≤ d1/d2 ≤ 0.818, 0.003 ≤ h/dh ≤ 0.0867, and 2,100 ≤ NReg ≤ 20,000. 

 

For turbulent flow of drag reducing fluids in straight pipes (d1/d2 = 1), Eq. (8.40) reduces 

to the following expression. 

   𝑓 = 0.002006 +
16.966

𝑁𝑅𝑒𝑔
1.1106 + 0.04102 (

ℎ

𝑑ℎ
)                                                                 (8.41) 

 

 

Figure 8.29: Composite Plot of Fanning Friction Factor vs. Generalized Reynolds 

Number for Turbulent Flow of Guar and Aromox® Solutions 
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8.7.2 Evaluation of Turbulent Fanning Friction Correlation 

 

Comparisons between experimental data and correlation predictions are given in Figs. 

8.30 and 8.31. The data shown are for turbulent flow of 1.75 and 2.25 lb/bbl welan 

solutions in 3.5-in. x 1.75-in. and 5.5-in. x 4-in. eccentric annuli. Fluid properties are 

reported in Sect. 8.4.1. In both figures, it is evident that the predicted values closely match 

the experimental data. An average percent deviation of 3.1% is determined for 1.75 lb/bbl 

welan in both 3.5-in. x 1.75-in. and 5.5-in. x 4-in. eccentric annuli. For 2.25 lb/bbl, 

average percent deviations of 4.9% and 11.2% are calculated for flow in 3.5-in. x 1.75-

in. and 5.5-in. x 4-in. eccentric annuli, respectively.  

 

 
 

Figure 8.30: Fanning Friction Factor vs. Generalized Reynolds Number for 

Turbulent Flow of 1.75 lb/bbl Welan Solution 
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Figure 8.31: Fanning Friction Factor vs. Generalized Reynolds Number for 

Turbulent Flow of 2.25 lb/bbl Welan Solution 

 

 

For completeness, Eq. (8.41) is evaluated for turbulent flow of drag reducing fluids in 

straight pipes. Correlation predictions and experimental data for 1.75 lb/bbl and 2.25 

lb/bbl welan solutions in 2⅞-in. straight tubing are shown in Figs. 8.32 and 8.33, 

respectively. Reasonable accuracy can be seen from both figures; percent average 

deviations of 13.9% and 10.6% are calculated for 1.75 lb/bbl and 2.25 lb/bbl welan 

solutions, respectively. 
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Figure 8.32: Fanning Friction Factor vs. Generalized Reynolds Number for 

Turbulent Flow of 1.75 lb/bbl Welan Solution in 2⅞-in. Straight Tubing 

 

 

 

Figure 8.33: Fanning Friction Factor vs. Generalized Reynolds Number for 

Turbulent Flow of 2.25 lb/bbl Welan Solution in 2⅞-in. Straight Tubing 
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8.8 Summary 

 

An effective diameter definition for the flow of non-Newtonian fluids in concentric and 

eccentric annuli, modeled as a modified-slot, has been presented. The use of this 

definition is compared with flow data in the literature. In all cases, satisfactory agreement 

is obtained between model predictions and measured data. In addition, a concentric-to-

eccentric friction pressure conversion correlation is developed for fully eccentric annular 

laminar flow. 

 

The annular axial flow of pseudoplastic fluid of the power law and Carreau type was 

studied. In this work, a Fanning friction factor–generalized Reynolds number relationship 

for a power law fluid is developed for both concentric and eccentric annular flow. 

Comparisons of predictions using the proposed approach with experimental data are 

shown to be satisfactory. The new relationship is shown to outperform the narrow slot 

approximation for fully eccentric annular flow. The main advantage of the new 

relationship is that it eliminates the need for determining the location of zero shear stress. 

With this approach, the need for heavy or complicated numerical techniques is not 

required, thus making the new method appealing for field applications. Design charts are 

developed for annular flow of Carreau fluid by virtue of numerical methods for several 

diameter ratios as a function of flow behavior index.  

 

An empirical Fanning friction factor correlation for the turbulent flow of drag reducing 

fluids is presented. This correlation was developed using field scale experimental data in 
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different annular geometries. Reasonably good agreement is obtained between correlation 

predictions and experimental data.   

 

Potential applications of the developed equations include 1) drilling and hydraulic 

fracturing operations and 2) processes in the chemical industry that require flow through 

annular sections. It is anticipated that this work will find application in industries that 

handle flow of non-Newtonian fluids through concentric and eccentric ducts. 
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Chapter 9 

CONCLUSIONS AND RECOMMENDATIONS 

  

9.1 Conclusions 

An extensive investigation of the rheological and drag reducing properties of two 

surfactant solutions (Aromox® APA-T and APA-TW) has been performed. The results 

from this study allow the following conclusions to be made: 

 The temperature dependence of viscosity data can be analyzed using horizontal 

and vertical shift factors. Master curves in the form of the Carreau model are 

developed for steady shear data. The thermorheologically complex nature of 

surfactant solutions resulted in an inability to generate suitable master curves for 

the dynamic data. 

 Salts are observed to have a profound effect on the rheological character of the 

surfactant solutions investigated. With 2% KCl (monovalent salt), a three-fold 

increase in the zero-shear rate viscosity is measured. A smaller increase is 

measured with 2% CaCl2 (divalent salt). With salts in solution, the test fluids 

displayed improved structure as the crossover frequency is shifted to smaller 

frequencies. 

 New Reynolds number and generalized Reynolds number expressions have been 

developed for non-Newtonian Carreau and MPL-Cross fluids. These expressions 

incorporate a wider range of shear rates than the power law model. These new 
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definitions are shown to provide satisfactory prediction accuracy for laminar flow 

conditions. 

 An equation for estimating pipe flow friction pressure of Carreau and MPL-Cross 

fluids is presented. This equation yielded good prediction accuracy for laminar 

flow of non-Newtonian fluids. Accompanying dimensionless wall shear stress–

wall shear rate curves for both fluid models were generated for flow indices in the 

range of 0.1 to 1. 

 The drag reduction behavior of surfactant solutions is affected by concentration, 

pipe diameter, surface roughness, and salts. The drag reduction effectiveness of 

test fluids is improved at higher surfactant concentrations. This increase in drag 

reduction effectiveness is attributed to greater intermicellar associations. Drag 

reduction is higher in larger pipes provided that surface roughness is minimal. 

Salts added to test fluid resulted in higher drag reduction when compared to 

solutions in freshwater.  

 An analytical Fanning friction factor equation as a function of the generalized 

Reynolds number for non-Newtonian pseudoplastic fluids in turbulent flow has 

been derived. Predictions with this equation reasonably agree with experimental 

data found in literature, with an average deviation of 10%. 

 The annular flow behavior of pseudoplastic fluids is investigated. Analytical 

Fanning friction factor – generalized Reynolds number relationships are 

developed for concentric and eccentric annular flow. Good agreement is obtained 

between friction pressure predictions and experimental data. In addition, design 
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charts in the form of dimensionless pressure drop against dimensionless flow rate 

are presented for the annular flow of Carreau fluids. 

 An empirical Fanning friction correlation has been developed for turbulent flow 

of drag reducing fluids in fully eccentric annuli. Satisfactory agreement was 

obtained between correlation predictions and experimental data. 

 

9.2 Recommendations for Future Studies 

 

 Employ sophisticated visual techniques (small-angle neutron scattering or Cyro-

TEM) to investigate the interaction between surfactant molecules and salt ions. 

This will provide conclusive results on the role of salt counterion size on the 

rheological and drag reduction character of surfactant solutions. 

 Investigate the effect of temperature on the rheological and drag reduction 

behavior of surfactants in different brines to provide a better understanding of 

surfactant drag reduction performance at higher temperatures. 

 Studies on the effect of thixotropy, elongational viscosity, and viscoelasticity on 

the flow character of non-Newtonian fluids in straight pipes and annular ducts are 

recommended. This will be beneficial to industries that handle flow of 

rheologically-complex fluids.  

 Further research into the transitional flow behavior of non-Newtonian fluids is 

recommended. Some studies have shown that the critical Reynolds number for 

flow regime transition is affected by the rheological model used. 
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 For an academic pursuit, a detailed and systematic study on the synergistic effect 

between surfactants and polymers in terms of rheological behavior and drag 

reducing flow characteristics for oilfield applications is recommended. 

 Conduct studies on two-phase solid-liquid flow for a wider class of non-

Newtonian fluids. The Reynolds number definitions derived in the present study 

can provide a basis for future work on wellbore cleanout and proppant transport. 
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APPENDIX I 

NOMENCLATURE 

 

 
a, b, c, d Constants in Eq. (6.23) 

c Concentration 

c Concentric radial clearance (r2 – r1), in. 

conc Concentric 

d Diameter, in. 

d1 Outer diameter of inner pipe, in. 

d2 Inner diameter of outer pipe, in. 

De Deborah number, dimensionless 

deff Effective diameter, in.  

dh Hydraulic diameter (d2 – d1), in. 

dp/dz, Δp/l Pressure gradient, psi/ft 

Ec End cap energy 

ecc Eccentric 

Ee Energy component 

f Fanning friction factor 

G' Storage modulus, lbf/ft
2 

G'' Loss modulus, lbf/ft
2 

G* Complex modulus, lbf/ft
2 

gc Conversion factor 

Go Plateau modulus, lbf/ft
2 

h Roughness projection, in. 

h Slot height in Eqs. (8.28) and (8.29) 

k Constant in deriving Eq. (7.13) 

K Consistency index, lbf s
n/ft2 

Ka Annular consistency index, lbf s
n/ft2 

KB Boltzman constant 
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KI Rate constant for breakage 

KMPL Consistency index for MPL-Cross model, lbf s
n/ft2 

Kp Pipe consistency index, lbf s
n/ft2 

Kv Viscometer consistency index, lbf s
n/ft2 

l Pipe length, ft 

lc Contour length 

le Entanglement length 

lp Persistence length 

M Molecular weight 

n Flow behavior index 

n' Local flow exponent, dimensionless 

N, n Flow exponent, dimensionless 

NRe Solvent Reynolds number, dimensionless 

NReg Generalized Reynolds number, dimensionless 

Q, q Flow rate, gal/min  

qpl Flow rate through parallel plate 

R Gas constant in Eqs. (2.20) and (4.7) 

R Radius of outer pipe 

Rc Concentric-to-eccentric conversion ratio 

Rg Radius of gyration 

r1 Outer radius of inner pipe, in.  

r2 Inner radius of outer pipe, in. 

ri Outer radius of inner pipe, in. 

rm Radius of maximum velocity, in. 

ro Inner radius of outer pipe, in. 

S Spring constant 

T Temperature, K or °F 

t Time constant in Eqs. (3.1) and (3.2) 

Tr Reference temperature, K or °F 
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u Average velocity, ft/s 

u(r) Velocity distribution 

u*, uτ Friction velocity 

um Maximum velocity 

ur Velocity distribution 

Z Dimensionless distance 

Δp Pressure drop, psi 

u+ Dimensionless velocity 

y Distance from wall 

y+ Dimensionless distance from wall for Newtonian fluid 

yw
+ Dimensionless distance from wall for non-Newtonian fluid 

�̅�𝑧  Time average velocity 

 

 

GREEK SYMBOLS 

 

�̇�′  Dimensionless shear rate 

�̇�𝑅  Shear stress at the wall, s-1 

�̇�𝑤  Wall/Pseudo shear rate, s-1 

�̇�𝑤
′   Dimensionless wall shear rate 

�̇�  Shear rate, s-1 

𝜇∞  Viscosity at infinite shear, cP 

𝜏𝑤
′   Dimensionless wall shear stress 

𝜏𝑤
∗   Onset wall shear stress 

Ø Surfactant volume fraction 

β Ratio of bob to cup, dimensionless 

γ Shear strain 

δ Phase angle, boundary layer thickness 

δ Offset distance between the center of inner and outer pipes for 

eccentricity definition 
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ε Eccentricity factor 

ζc Mesh size 

η* Complex viscosity, cP 

μ Apparent viscosity, cP 

μo Zero shear rate viscosity, cP 

θ Eccentric angle 

θi Dial reading 

λ Characteristic rel. time (Eq. 4.7) 

λ Dimensionless radial location of zero shear stress for annular 

flow in Chapter 8 

λN Dimensionless radial location of zero shear stress for 

Newtonian fluid 

μn Normalized viscosity, dimensionless 

μp Plastic viscosity, cP 

μs Solvent viscosity, cP 

ν No. density of entanglements 

ξ Non-dimensional radial coordinate 

ρ Fluid density, lb/gal (ppg) 

σ Shear stress relaxation 

τ Shear stress, lbf/ft
2 

τ' Dimensionless shear stress 

τb Breaking time, s 

τR Relaxation time, s 

τrep Reptation time, s 

τrz, τ Shear stress, lbf/ft
2 

τw Wall shear stress, lbf/ft
2 

τwc Critical shear stress, lbf/ft
2  

τy Yield stress, lbf/ft
2 

ω Angular frequency, rad s-1 
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ωc Cross over frequency, rad s-1 

к Diameter ratio (d1/d2) 
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APPENDIX II 

Water Test for Annular Flow 

 

Acquired water data were used for system check and calibration as well as to establish a 

baseline for subsequent analysis. Turbulent flow water data were analyzed and compared 

with published correlations. Specifically, the Chen correlation (Eq. II.1) was used in 

combination with the Haciislamoglu et al. (Eq. II.2) correlation. 

 

   
1

√𝑓
= −4 log [

ℎ

3.7065𝑑
−

5.0452

𝑁𝑅𝑒
log {

1

2.8257
(

ℎ

𝑑
)
1.1098

+
5.8506

𝑁𝑅𝑒
0.8981}]                                             (II.1) 

 

   
∆𝑝𝑒𝑐𝑐

∆𝑝𝑐𝑜𝑛𝑐
= 𝑅𝑐 = 1 − 0.072

𝑛
к0.8454 − 1.5휀2√𝑛 к0.1852 + 0.96휀3√𝑛 к0.2527                 (II.2)    

 

For annular flow, the pipe diameter (d) is replaced with the hydraulic diameter (d2 – d1). 

where, d2 is the inner diameter of outer pipe and d1 is the outer diameter of inner pipe. 

 

Figure II.1 shows a comparison between water test data and predictions with the 

combined Chen and Haciislamoglu et al. correlations for flow in 3.5 x 1.75-in., 5.5 x 4-

in., and 5 x 3.5-in. eccentric annular sections. Good agreement is obtained between 

measured and predicted data with tubing roughness values of 0.00525-in., 0.0507-in., and 

0.0359-in. calculated for 3.5 x 1.75-in., 5.5 x 4-in., and 5 x 3.5-in. eccentric annular 

sections, respectively. 
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Figure II.1: Fanning Friction Factor vs. Reynolds Number for Water in Eccentric 

Annuli 
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APPENDIX III 

DERIVATION OF GENERALIZED REYNOLDS NUMBER 
 

 

The approach by Metzner and Reed (1955) is extended here to derive generalized 

Reynolds number expressions for the Carreau and MPL-Cross models. A similar 

approach was followed by Madlener et al. (2009) in deriving a generalized Reynolds 

number expression for the extended Herschel-Bulkley rheological model. For laminar, 

the Fanning friction factor is related to the Reynolds number by the expression below: 

   𝑁𝑅𝑒 =
16

𝑓
                                                                                                                   (III.1) 

The Fanning friction factor is expressed as: 

   𝑓 =
2𝜏𝑤

𝜌𝑢2                                                                                                                     (III.2) 

 

The viscosity of non-Newtonian fluids is a function of shear rate and a constant viscosity 

value cannot be used.  

 

An expression for the wall shear rate for non-Newtonian was derived by Mooney (1931) 

as: 

   �̇�𝑤 =
3

4
(
8𝑢

𝑑
) +

1

4
(
8𝑢

𝑑
)

𝑑 ln(
8𝑢

𝑑
)

𝑑 ln(𝜏𝑤)
                                                                                    (III.3) 

The logarithmic differentiation term on the right hand side of Eq. (III.3) is the inverse of 

the local gradient nꞌ. 

   
1

𝑛′ =
𝑑 ln(

8𝑢

𝑑
)

𝑑 ln(𝜏𝑤)
                                                                                                               (III.4) 
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Substituting Eq. (III.4) into (III.3) gives the expression below: 

   �̇�𝑤 =
3𝑛′+1

4𝑛′
(
8𝑢

𝑑
)                                                                                                        (III.5) 

 

Using Eq. (4.1) for a Carreau fluid and Eq. (III.5), the generalized Reynolds number can 

be expressed as: 

   𝑁𝑅𝑒𝑔 =
𝜌𝑢𝑑

[
 
 
 
 
 

(𝜇𝑜−𝜇𝑤)(
3𝑛′+1

4𝑛′ )

(1+(𝑡(
3𝑛′+1

4𝑛′ )
8𝑢
𝑑

)

2

)

1−𝑛
2

+𝜇∞(
3𝑛′+1

4𝑛′ )

]
 
 
 
 
 
                                                                      (III.6) 

With 

   𝑛′ =

8𝑢

𝑑
[𝜇∞−2𝑡2(𝜇𝑜−𝜇∞)

1−𝑛

2
{
8𝑢

𝑑
}
2
(1+{𝑡

8𝑢

𝑑
}
2
)
−(1−

1−𝑛
2

)

+(𝜇𝑜−𝜇∞)(1+{𝑡
8𝑢

𝑑
}
2
)
−(

1−𝑛
2

)

]

𝜇∞
8𝑢

𝑑
+(𝜇𝑜−𝜇∞)

8𝑢

𝑑
(1+{𝑡

8𝑢

𝑑
}
2
)
−(

1−𝑛
2

)
                  (III.7) 

 

Similarly, combining Eq. (4.4) for the MPL-Cross fluid and Eq. (III.5) gives the 

generalized Reynolds number expression below: 

   𝑁𝑅𝑒𝑔 =
𝜌𝑢𝑑

[
𝜇𝑜(

3𝑛′+1

4𝑛′ )

(1+𝑡{
8𝑢
𝑑

}
1−𝑛

)

+𝜇∞(
3𝑛′+1

4𝑛′ )]

                                                                                  (III.8) 

With 

   𝑛′ =

8𝑢

𝑑

[
 
 
 
 

𝜇∞−
(1−𝑛)(𝜇𝑜)2{

8𝑢
𝑑

}
1−𝑛

𝐾𝑀𝑃𝐿(1+𝑡{
8𝑢
𝑑

}
1−𝑛

)

2+
𝜇𝑜

(1+𝑡{
8𝑢
𝑑

}
1−𝑛

)
]
 
 
 
 

𝜇∞
8𝑢

𝑑
+

𝜇𝑜
8𝑢
𝑑

(1+𝑡{
8𝑢
𝑑

}
1−𝑛

)

                                                                   (III.9) 
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APPENDIX IV 

SLOT FLOW APPROXIMATION 

 

The narrow slot approximation (Fig. IV.1) is widely used in practical applications for its 

simplicity. With this approximation, the Reynolds number is expressed as: 

   𝑁𝑅𝑒 =
928𝜌𝑢𝑑𝑒𝑓𝑓

𝜇𝑒𝑓𝑓
                                                                                                       (IV.1) 

where, ρ = fluid density (ppg); u = average velocity (ft/s); deff = effective diameter (in.); 

and µeff = effective viscosity (cP). 

 

 

Figure IV.1: Slot Flow Approximation 

 

The slot equation is used as the effective diameter to represent annular flow. 

   𝑑𝑒𝑓𝑓 = 0.816(𝑑2 − 𝑑1)                                                                                           (IV.2) 

The effective viscosity for power law fluids is expressed as: 
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   𝜇𝑒𝑓𝑓 = [
𝐾(𝑑2−𝑑1)1−𝑛

144𝑢1−𝑛 ] [
2+

1

𝑛

0.028
]

𝑛

                                                                                   (IV.3) 

 

For laminar flow, the Fanning friction factor is expressed as: 

   𝑓 =
16

𝑁𝑅𝑒
                                                                                                                     (IV.4) 

 

For turbulent flow, the Dodge-Metzner equation is used. 

   
1

√𝑓
=

4

(𝑛′)0.75 log [𝑁𝑅𝑒𝑔𝑓1−
𝑛′

2 ] −
0.395

(𝑛′)1.2                                                                      (IV.5) 

 

The frictional pressure loss for eccentric annular flow can be calculated as: 

   𝑓𝑒𝑐𝑐 = 𝑅𝑐𝑓𝑐𝑜𝑛𝑐                                                                                                            (IV.6) 

where, Rc is a conversion (correction) term that is a function of the flow index, diameter 

ratio, and eccentricity. In this work, the Haciislamoglu and Langlinais (1990) function is 

used. 

  𝑅𝑐 = 1 − 0.072
𝑛

к0.8454 − 1.5휀2√𝑛 к0.1852 + 0.96휀3√𝑛 к0.2527                            (IV.7) 

where, ε is pipe eccentricity; к is the diameter ratio; and n is the flow behavior index.  

 

 


