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Abstract

The analysis of the dynamics of a tracer/drifter/buoy floating on the free surface

of the water waves in the open ocean whose motion is described by the shallow

water model equations is of great interest in Lagrangian data assimilation. A

special case of the low/reduced order version of the linearized shallow water model

equations gives rise to a class of tracer dynamics given a system of two first order,

nonlinear, time varying systems of ordinary differential equations whose flow field

is the sum of a time invariant geostrophic mode that depends on a parameter

u0 ∈ R and a time varying inertial-gravity mode that depends on a set of three

parameters, α̂ =
(
u1(0), v1(0), h1(0)

)T ∈ R3. In this thesis we provide a complete

characterization of the properties of the equilibria of the tracer dynamics along

with with bifurcation as the four parameters in α = (u0, α̂)T ∈ R4 are varied.

It is shown that the impact of the four parameters can be effectively captured

by to systems of intersecting hyperbolas in two dimensions. We then apply the

Forward Sensitivity Method (FSM) to assimilate data in the twin experiments

following the dynamics of the Lagrangian tracers in the shallow water model. In

these experiments, we assume that the error results from the incorrect estimation

of the control vector α =
(
u0, u1(0), v1(0), h1(0)

)T ∈ R4. We also analyze the

sensitivity of the model to changes in the elements of the control vector α in

order to improve placement of the observations. We have found that sensitivity,

together with the condition number of the matrix constructed with sensitivity

values, gives a good prognostications about success of the data assimilation.
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Chapter 1

Introduction

1.1 Motivation

Dynamics started as a branch of physics in the seventeenth century to deal with

description of a change that can be observed for the systems that evolve in time.

Ever since, dynamical models are created and used to describe the evolution of

real systems. In order to use these dynamical models as a forecasting tool, we

must incorporate observations into dynamical system - a process that is known as

dynamical data assimilation. With the steady growth in the interest in ocean cir-

culation systems and their impact on climate change, there has been a predictable

growth in the number of tracer/drifter/buoy type ocean observing systems. There

is a rich and growing literature on the development and testing of data assimi-

lation technology to effectively utilize this new type of data sets. This class of

data assimilation has come to be known as Lagrangian data assimilation. In this

thesis, we consider problems concerning data assimilation in oceanography while

dealing with buoys in Lagrangian models that follow parcels as they move with

the flow.
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Our goal in this research is twofold. First one is to analyze the shallow-

water model behavior following approach presented by Lorenz (1960) [13] that

he applied to the minimum hydrodynamic equations, and further expanded by

(Lakshmivarahan et al., 2006) [8] in a search of equilibrium points of the minimum

hydrodynamic equations model and to explore the bifurcation exhibited by the

tracer dynamics induced by the low/reduced order version of the shallow water

model obtained using the standard Galerkin type projection method. To this

end, instead of relying on numerical methods, we first solve the resulting low

order model which is a linear model equations in u, v and h given in Apte et

al., (2008) [1] in a closed form. Using this explicit solution, we then express the

flow field of the tracer dynamics as a sum of the two parts - a time invariant

nonlinear geostrophic mode, f(x, u0) depending on the geostrophic parameter u0

and a time varying nonlinear part known as the inertial gravity mode, g(x, α̂)

depending on three parameters α̂ = (u1(0), v1(0), h1(0))T ∈ R3. It turns out that

the tracer dynamics controlled by the four parameters α = (u0, α̂) ∈ R4 exhibits

complex behavior.

Second goal is to explore the applicability of the new class of methods called

the forward sensitivity method (FSM) (Lakshmivarahan and Lewis 2010 [10])

for assimilating tracer data and test the impact of observations on assimilation

procedures as it was noticed by [Lakshmivarahan and Lewis (2011) [11]].
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1.2 Previous work

1.2.1 Assimilation of Lagrangian Data into a Numerical

Model

In one of the earlier studies, Carter(1989) [2] examined the process of assimilating

data from a set of 39 neutrally buoyant floats that followed the Gulf stream, which

measured the location and depth collected three times a day, for 45 days. These

RAFOS floats were distributed at approximately ten day intervals during 1984

and 1985. Carter combined this data with the nonlinear shallow water model

that describes a single active layer as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −∂h

∂x
, (1.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −∂h

∂y
, (1.1b)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= −h

(
∂u

∂x
+
∂v

∂y

)
, (1.1c)

where u and v denote the horizontal velocity components, h describes the geopo-

tential height of the active layer and f is the Coriolis parameter. We can notice

that this choice of model physics closely follows the components directly observed

by RAFOS floats. The assimilation of data was done using the well known ex-

tended Kalman filtering model (chapters 27 to 29, Lewis et al., 2006, [12]). This

technique allows for incorporation of the estimate of the field X at time t − 1

and observations Z at time t into the estimate X at time t. This is accomplished

with the use of the following equation

X(t|t) = X(t|t− 1) + K(t)
[
Z(t)−H(t)X(t|t− 1)

]
. (1.2)
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The matrix H describes transformation between the observations and the model

fields. The Kalman gain, K(t) is the key element of this equation that captures

the relative weights used to assimilate the observations into the current model

estimate. It is calculated by

K(t) = P(t|t− 1)HT (t)
[
H(t)P(t|t− 1)HT (t) + R

]−1

. (1.3)

The measurement noise covariance is given by matrix R. In case of measurements

with independent errors, R is a diagonal matrix. The analysis covariance matrix

updated each time the new measurements are available is given by

P(t|t) =
[
I−K(t)H(t)

]
P(t|t− 1), (1.4)

where I is the identity matrix. The description of the evolution of the physical

field in time is captured in the system transition matrix Φ.

X(t|t− 1) = ΦX(t− 1|t− 1), (1.5)

Analogously, the forecast covariance matrix evolves in time

P(t|t− 1) = ΦP(t− 1|t− 1)ΦT + Q, (1.6)

where Q represents the covariance of the model errors. We have to note that Q

is usually not known accurately. Carter in his paper stresses the importance of

choosing a numerical method that would lend itself to Kalman filter application

(chapters 27 to 29, Lewis et al., 2006, [12]). The preferred numerical methods that

are used with the Kalman filter should not increase the size of the state vector
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by using more than two fields for two time steps. Carter noticed that observation

influences only a very limited region and that they have a different impact on the

overall improvement to the forecast. He has also reported a difference whether

observations are taken and assimilated earlier or later during the model evolution.

It is also noted in the paper that one has to deal with the problem of inertia-

gravity waves that can be excited by the data insertion into the model. This has

to be taken under consideration during the design of the Kalman filter.

1.2.2 Assimilation of drifter observations for the recon-

struction of the Eulerian circulation field

Molcard et al., (2003) [14] using a quasi-geostrophic reduced gravity model equa-

tions in a twin experiment set up generated circulation related data and developed

an assimilation scheme that is based on the classical optimum interpolation (OI)

technique (chapter 19, Lewis et al., 2006 [12]) that follows the general Bayesian

theory. The quasi-geostrophic reduced gravity model is given by

∂q

∂t
+ J (ψ, q) =

f0

H
wE + ν∇4ψ − r∇2ψ, (1.7)

where the potential vorticity q is given by

q = ∇2ψ + βy − 1

R2
d

ψ. (1.8)

The geostrophic stream function is denoted by ψ, f0 gives the Coriolis parameter

at a reference latitude, β is the meridional gradient of the Coriolis parameter, the

radius of deformation is Rd =
√
g′H/f0, where g′ is the reduced gravity, H is the

layer depth, wE is the Ekman velocity field proportional to the wind stress curl, ν
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denotes the horizontal eddy viscosity, r is the interfacial friction coefficient. The

Jacobian operator is given by J (ψ, q) = ∂ψ
∂x

∂q
∂y
− ∂q

∂x
∂ψ
∂y

.

In their paper, they treat the model and observations as equal contributors

and try to find their linear combination to represent the true field. Introducing

the derivative of the model-to-observation functional G defined as follows

G =
∂H(ub)

∂ub
, (1.9)

and variables: ua as the model velocity vector after assimilation, ub as the model

velocity vector before assimilation, y representing the vector of observations,

H(ub) as the functional that relates model state variables to the observations,

R0 as the observation error covariance matrix, and Rb is the covariance matrix of

the model uncertainty, they use the following equation to calculate the assimilated

vector field.

ua = ub + RbGT
(
GRbGT + R0

)−1 (
y −H(ub)

)
(1.10)

Superscript T indicates transposition. Equation (1.10) is optimal under several

conditions:

• The true vector u has the prior distribution that is Gaussian with mean ub

and covariance Rb.

• The observation vector y has also the Gaussian distribution with the mean

H(u) and covariance R0. It is assumed that the observation vector has error

characterized by R0 and that the is error depends on instrument resolution

and accuracy.
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• It is assumed that the functional H(u) is linear, which may hold true only

locally. This condition is often not met in case of nonlinear problems. It

can be noted that there is an analogy between (1.10) and the extended

Kalman filter.

Their assimilation algorithm follows M Lagrangian particles released at the same

initial time t = 0 from different positions r0
1, r

,
2 . . . , r

0
M at the same plane. Motion

of these particles can be described as

drm
dt

= u(t, rm), rm(0) = r0
m, m = 1 . . .M,

vm(t) =
drm
dt

.

(1.11)

Here, u(t, r) represents the Eulerian velocity field, while vm(t) stands to rep-

resent the horizontal Lagrangian velocity of the m-th particle. Trajectories of

Lagrangian particles are measured at discrete times equal to n∆t, n = 1, . . . , N .

These observations are denoted as r0
m(n). Their model counterparts are rep-

resented as rbm(n). In their paper, Molcard et al., (2003) [14] introduce finite

difference Lagrangian velocity, both for the observations and model

v0
m(n) =

∆r0
m

∆t
=

r0
m(n)− r0

m(n− 1)

∆t
,

vbm(n) =
∆rbm
∆t

=
rbm(n)− rbm(n− 1)

∆t
.

(1.12)

There is an assumption made that the frequency of measurements is high enough

to capture the spatial gradients of the current. The zero-order assimilation for-
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mulas used are as follows (from equation (5) Molcard et al. 2003):

uaij(n) = ubij(n) + α−1

M∑
m=1

γijm

(
u0
m(n)− ubm(n)

)
,

vaij(n) = vbij(n) + α−1

M∑
m=1

γijm

(
v0
m(n)− vbm(n)

)
.

(1.13)

Here, variables u, v with the single subscript (m) denote the Lagrangian velocity

component of the m-th drifter, while the velocity components u, v with subscripts

(ij) represent the Eulerian velocities at the corresponding grid point, and coeffi-

cient γ approximates the delta function from the derivative of the Gauss function

γijm = Eh

(
xbm(n)− ih, ybm(n)− jh

)
, (1.14)

Eh (x, y) ≡ exp

(
− x2

2h2
− y2

2h2

)
, (1.15)

α = 1 +
σ2
o

σ2
b

, where σ2
o =

σ2
r

∆t2
, (1.16)

where σ2
b is the modeling velocity mean square error and σ2

o denotes the error of

the Lagrangian velocity related to the error σ2
r (the error of independent position

σ2
o = σ2

r/∆t
2). It is assumed that model and observed variables have errors that

are uncorrelated in space and time. It is worth noting that equation (1.13) takes

only two successive data points, that is only one time step ∆t; the particle path is

not represented, just two consecutive locations; authors indicated that the more

advanced algorithms that focus on complete path information are possible. In

this formulation, the position of the Lagrangian particle is converted into the

Lagrangian velocity v information along the particle trajectory that is averaged

over sampling time ∆t by using two endpoints of the particle path and converting

it into vb.
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Using this methodology, Molcard et al., (2003) examined sensitivity to the

sampling period ∆t, since the sampling periods for Lagrangian tracers varies from

minutes to weeks. Experiments for ∆t = 2, 5 and 10 days were conducted. They

all showed trajectories improved by the process of data assimilation, with the error

being the smallest for ∆t = 2 days. For ∆t > 2 days, Molcard proposed repeating

the assimilation procedure in an iterative way, which gave improved results when

compared to only one assimilation run. Sensitivity to model forcing was also

investigated, since control runs and assimilation runs were subject to a difference

in a wind forcing. It was shown that this assimilation technique is effective even

in a presence of large errors in the wind forcing influencing the ocean circulation

model. In addition, numerical experiments were conducted to investigate the

sensitivity of the assimilation to the number of drifters that was varied (9, 16,

36, 49, 100, 144 and 196); it was noted that to a naked eye, difference is not

very noticeable for runs where the number of drifters is larger than 25 over the

area under their study. Lastly, sensitivity to the initial distribution of drifters was

addressed by Molcard et al., (2003). For this purpose, 25 drifters were distributed

over the domain. Their impact was higher when they were placed in the areas

with high average kinetic energy of the subdomain where they were released,

when averaged by the total kinetic energy of the full domain. But even then,

data assimilation experiments showed high sensitivity to their launch location.

Overall, the importance of the initial sampling location is high; a homogeneous

sampling is less efficient than a sampling that is aimed at the high energy regions

of the real ocean. This problem is even more complex in the real ocean, where

oftentimes, drifters are advected away from the energetic regions.
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1.2.3 Assimilation of drifter observations in primitive

equation models of midlatitude ocean circulation

Özgökmen et al., (2003) [15] examined the use of Kalman filter based method

to assimilate drifter observations into the Miami Isopycnic Coordinate Ocean

Model (MICOM). It is a comprehensive large-scale ocean model, that is an ide-

alized reduced-gravity layered primitive equation model. They describe an effort

to assimilate the Lagrangian data (the drifter position r) into ocean general cir-

culation model (OGCM) to correct the Eulerian surface velocity field u. This is

done at the time interval ∆t. In the so called ”Pseudo-Lagrangian” approach,

this is done by approximation of the Eulerian field by ∆r/∆t, assuming that the

sampling period is much smaller than the Lagrangian correlation timescale (order

of magnitude of time scale in which the flow forgets its past behavior). Problem

arises when the sampling time is not much smaller. In their work, Özgökmen

et al., (2003) [15] build on the work of Molcard et al., (2003) [14], by extend-

ing the Lagrangian assimilation procedure to primitive equations and comparing

the Lagrangian and the Pseudo-Lagrangian assimilation techniques. The ocean

model used for their work is a comprehensive large-scale ocean model MICOM, in

its reduced-gravity version. The momentum and the layer-thickness conservation

equations are as follows:

∂u

∂t
+ u · ∇u− fv = −g′h

x
+

1

ρ

∂τx

∂z
+
νH
h
∇ · h∇u, (1.17a)

∂v

∂t
+ u · ∇v + fu = −g′h

y
+

1

ρ

∂τ y

∂z
+
νH
h
∇ · h∇v, (1.17b)

∂h

∂t
+∇ · (uh) = 0. (1.17c)

Here, h is the thickness of a layer of a constant density, u = (u, v) is the layer-
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averaged horizontal velocity vector, g′ = g δρ
ρ

denotes the reduced gravity, g is

gravitational acceleration, f is the Coriolis parameter expressed with the β plane

approximation given by f = f0+βy, the lateral viscosity coefficient is represented

by νH , and the wind stress vector is given by τ = (τx, τ y). After rewriting the

momentum equations (1.17a) and (1.17b), the geostrophic momentum balance is

represented by

T x − f∆v = −g′∂(∆h)

∂x
,

T y + f∆v = −g′∂(∆h)

∂y
.

(1.18)

This is done to use the velocity correction (∆u,∆v) from the Lagrangian drifters

to find the ∆h correction to the layer thickness that approximately satisfies the

momentum equation. Here (T x, T y) represent the ageostrophic momentum terms

in each direction; they capture the acceleration related to time dependence, non-

linearity, forcing, and dissipation. After simplifications due to scale analysis, the

correction to layer thickness is calculated from geostrophic balance

∇2
(
∆hg

)
=
f

g′

[
∂(∆v)

∂x
− ∂(∆u)

∂y

]
, (1.19)

with the homogeneous boundary condition ∆hg → 0. The mass conservation

constrains require that the correction to the layer thickness depends on the cor-

rectional velocity field. Here we see that there is a strong dependence on data

distribution, since correction to (1.18) will be mainly done at the location of

drifters. Therefore the net mass deviation stemming from (1.18) is calculated by

∆m =
1

|A|

∫
A

∆hgdA, (1.20)

where A represents the ocean basin with |A| being its area. The final correction
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is given by ∆h = ∆hg −∆m. This leads to the equation for the assimilation of

the layer thickness as

ha(n) = hb(n) + ∆h. (1.21)

Here, the superscript a denotes assimilated data, and the superscript b denotes

the background (predicted) field.

Data assimilation part follows an array of M Lagrangian trajectories at times

n∆t = 1, 2, . . . N . Observations are indicated by r0
m(n), while model values are

indicated by rbm(n) with m = 1, . . .M . We can express the Lagrangian velocity

calculated from observations and the model by the following finite differences:

v0
m(n) =

∆r0
m

∆t
=

r0
m(n)− r0

m(n− 1)

∆t
,

vbm(n) =
∆rbm
∆t

=
rbm(n)− rbm(n− 1)

∆t
.

(1.22)

At the same time, the Eulerian velocity obtained from the grid is

uij = u(n∆t, i∆r, j∆r), (1.23)

where ∆r is the grid scale and n is the time index. The assimilation equations

for the velocity are given by:

uaij(n) = ubij(n) + β

M∑
m=1

γijm

(
v0
m(n)− vbm(n)

)
, (1.24)

The velocity components u withs subscripts (ij) represent the Eulerian velocities
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at the corresponding grid point, and the assimilation coefficients β and γ are

γijm = exp

−
(
xbm(n)− i∆r

)2

+
(
ybm(n)− j∆r

)2

2∆r2

 ,

β =
σ2
b

σ2
b + σ2

o

, and σ2
o =

σ2
r

∆t2
,

(1.25)

where σ2
b is the modeling velocity mean square error and σ2

o denotes the error of

the Lagrangian velocity related to the error σ2
r (the error of independent position

σ2
o ∼ σ2

r/∆t
2). It is assumed that model and observed variables have errors that

are uncorrelated in space and time, and that the velocity spatial gradients are

small in relation to (∆t)−1. And so, the optimal interpolation based Lagrangian

data assimilation is focused on calculating the velocity correction ∆u = (∆u,∆v)

field used in (1.24) given by

∆uij = β
M∑
m=1

γijm

(
v0
m(n)− vbm(n)

)
(1.26)

and then by applying it as in input to the layer thickness field equation (1.18) to

(1.25); this is done following the multivariate dynamic balancing approach.

Özgökmen et al., (2003) [15] have found that Pseudo-Lagrangian and La-

grangian assimilation gives similar results only for ∆t � TL. For bigger ∆t val-

ues that are between (TL/5 ≤ ∆t ≤ TL/2), Lagrangian approach is better than

Pseudo-Lagrangian. When ∆t ≥ TL, neither of these methods can retrieve useful

Eulerian information, since Lagrangian predictability limits are surpassed. In

order to resolve this issue, Lagrangian assimilation has to be set in the primitive

equations. Twin experiments have shown that the simple dynamical balancing

technique developed in this paper, that corrects the model velocity field, and then
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in term, corrects the layer thickness gives a positive result.

1.2.4 A method for assimilation of Lagrangian data

Kuznetsov et al. (2003) [7] examined the use of extended Kalman filter methodol-

ogy (EKF) to assimilate Lagrangian tracer data. Majority of models in oceanog-

raphy and meteorology use a fixed grid in space. To mesh Lagrangian data with

the Eulerian variables computed in a set grid, they have proposed to augment

the state space by inclusion of the tracer coordinates as an extra data, and then

to apply the EKF to this dynamics. This augmented state vector x = (xF ,xD)

consists of the Eulerian part xF (the state of the flow), and the Lagrangian part

xD (coordinates of the drifters). This approach, in which drifter information is a

part of the dynamical model, allows for tracking drifters along with their corre-

lation with the flow. Positions of ND particles are observed at the regular times

and assimilated into the model. And so, the state vector x(t) has a dimension

N . Its dimension is a product of the number of these variables and the number

of the discretization elements that include Fourier modes, gird points, etc. The

evolution of the state vector can by generalized as follows:

dxf

dt
= M(xf , t), (1.27)

where xf corresponds to the forecasted state, whereas the true state is denoted as

xt, and M represents the dynamic operator. Since (1.27) is usually not a closed

system, to represent the subgrid-scale processes we can represent the dynamics

in a discrete form as a stochastic system

dxt = M(xt, t)dt+ ηt(t)dt. (1.28)
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All of the unresolved processes are described by η as a zero-mean Gaussian white

noise. In a process of the sequential assimilation, the model is updated each time

the observation (xtj ≡ xt(tj)) is given at a given time tj. Observations yoj with

their uncorrelated zero-mean Gaussian errors εtj (with a covariance E[εtj(ε)
t
j
T

]),

and their vector Hj of observation functions can be expressed in terms of

yoj = Hj[x
t
j] + εtj, (1.29)

The number of observations yoj , say Lj, can be different for each update time.

Data assimilation with the Kalman filter focuses on tracking the evolution of the

error covariance matrix defined as

Pf ≡ E[(xf − xt)(xf − xt)T ]. (1.30)

This is done with the tangent linear model (TLM) with the linearized dynamic

operator calculated at xf (t) by the following formula

M ≡ ∂M(xt, t)

∂x
, (1.31)

and expressing the evolution of the error covariance matrix by

dPf

∂t
= MPf + (MPf )T + Q(t), (1.32)

where Q(t) symbolizes our estimation for system noise covariance Qt(t). Data

assimilation proceeds by minimization of the mean-square error

trPa
j = E[(xaj − xtj)

T (xaj − xtj)] (1.33)
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at each update time tj, where xa represents the analysis state. We are using

the model error covariance matrix forecasted with the equation (1.32) to get the

first-order approximation of the optimal analysis state. The update combines the

predicted model state and the innovation vector with the size Lj

xaj = xfj + Kjdj,

dj ≡ yoj −Hj[x
f
j ],

Kj = Pf
jH

T
j

(
HjP

f
jH

T
j + Rj

)−1

,

Hj =
∂Hj

∂x

(1.34)

where Hj is the linearized observation matrix, and our estimation of the covari-

ance matrix of the observation error is given by Rj. The Kalman gain matrix is

Kj, and the updated error covariance matrix is given by

Pa
j = (I−KjHj)P

f
j . (1.35)

In their paper, Lagrangian tracers information (xD) is combined with the

model flow (xF ) into one model state vector x = (xF ,xD)T . The advection of

tracers is followed as

dxfF
dt

= M(xfF , t), (1.36)

dxfD
dt

= M(xfD,x
f
F , t). (1.37)

Equation (1.36) states the model in it original form stated in (1.27), and (1.37)
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describes dynamics of the Lagrangian tracers. The operator (1.31) takes form

M =

 MFF 0

MDF MDD

 , (1.38)

and it has dimension (N + L)× (N + L). Similarly, the error covariance matrix

is given by

P =

 PFF PFD

PDF PDD

 . (1.39)

We can note that MFF and PFF are (N × N) matrices, while MDD and PDD

are (L × L) matrices, their sizes differ a lot, since N � L in real applications.

Therefore, the addition of the Lagrangian model variables does not increase the

overall computational cost. The Kalman gain matrix gets simplified since the

observation function H is linear

K =

 PFD

PDD

 (PDD + R)−1, (1.40)

For their physical model, authors have used the Euler’s equation singular

solution depicting point vortices. Point vortex flows can be used to model 2D

flows that contain strong coherent vortices. The state vector of a flow with NF

point vortices has a dimension N = 2NF , since it follows their positions on

the plane [xm(t), ym(t)], m = 1, . . . , NF . In the complex coordinates xm(t) =

xm(t) + iym(t), the complex valued state vector is z ∈ CNF .

dztm
dt

=
i

2π

NF∑
l=1,l 6=m

Γl
ztm

? − ztl
? + ηFm(t), (m = 1, . . . , NF ) (1.41)
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Here, Γl is circulation of vortex l, and the last term ηF = η
(x)
F + iη

(y)
F captures

the unresolved processes.

E[η
(x,y)
F (t)η

(x,y)
F (t′)] = σ2δ(t− t′)I,

E[η
(x)
F η

(y)
F ] = 0.

(1.42)

Observations are provided by coordinates of the ND Lagrangian tracers. Here,

their coordinates are represented on the complex plane ζ ∈ CNF with their noise

as ηD = η
(x)
D + iη

(y)
D with zero mean. The advection of ND tracers is described

by the following equation

dζtm
dt

=
i

2π

NF∑
l=1

Γl
ζtm

? − ztl
? + ηDm(t), (m = 1, . . . , ND) (1.43)

Analogously to the flow variables, the covariance of tracers position has

E[η
(x,y)
D (t)η

(x,y)
D (t′)] = σ2δ(t− t′)I,

E[η
(x)
D η

(y)
D ] = 0.

(1.44)

The state vector contains all the model equations with all corresponding dynam-

ical variables:

x =

 z

ζ

 ,x ∈ CNF +ND (1.45)

The flow variables xF are corrected by the first N rows of K, which is propor-

tional to the correlation between the flow state and the drifter positions expressed

in PFD.

Numerical experiments focused on comparison of the model without data as-

similation process, and one with extra observations coming from different number

of tracers, and different sampling frequency. Influence of the launch position was

18



also investigated, in particular, relation of the initial position and separatrices of

the streamfunction in the corotating frame.The results point to dependency of

the assimilation on the scales of the motion and noise levels. Success in assimila-

tion is inversely proportional to how chaotic the system is, with biggest tracking

errors related to chaotic vortex initial condition.

1.2.5 Using flow geometry for drifter deployment in La-

grangian data assimilation

Salman et al., (2008) [18] recently explored the effectiveness of drifter deployment

strategies using a nonlinear reduced gravity shallow water model with external

wind forcing and combined it with the Ensemble nonlinear Kalman filter tech-

nology.

∂u

∂t
= −u · ∇u+ fv − g′h

x
+ F u +

1

h

(
∂τxx
∂x

+
∂τxy
∂y

)
, (1.46a)

∂v

∂t
= −u · ∇v − fu− g′h

y
+

1

h

(
∂τyx
∂x

+
∂τyy
∂y

)
, (1.46b)

∂h

∂t
= −∂hu

∂x
− ∂hv

∂y
. (1.46c)

Here, h is the surface height, (u, v) is the fluid velocity vector, g′ is the reduced

gravity, F u is a horizontal wind-forcing acting in a zonal direction

F u =
−τ0

ρH0(t)
cos

(
2πy

Ly

)
, (1.47)

and f is the Coriolis parameter expressed with the β plane approximation given

by f = f0 +βy, with β and f0 being constants, τ0 is the wind stress. To calculate
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the average water depth H0 following equation

H0(t) =
1

LxLy

∫ Lx

0

∫ Ly

0

h(x, y, t)dx dy (1.48)

is used. Lx and Ly are the dimensions of the zonal and the meridional directions.

The dissipation terms are given by the following equation

τij = µh

(
∂ui
∂xj

+
∂uj
∂xi
− δij

∂uk
∂xk

)
, (1.49)

where indices i and j take all possible permutations, while µ represents a constant

eddy viscosity of the flow. One of the ideas described in this paper is search for

Lagrangian coherent structures (LCS) in the numerically generated flow, since it

has become understood that they are responsible for the evolution of the motion of

material particles. This search is quite complicated because there is the non-linear

relation between the flow field and the Lagrangian drifter position. Successful

estimation of LCS aids placement of launch position for the Lagrangian drifters

and this improves data assimilation procedure. The assimilation of Lagrangian

data of ND drifters is conducted with the augmented state vector x = (xT
F ,x

T
D)T ,

where we have (NF×1) equations describing the flow vector XF, and the (2ND×1)

drifter state vector XD. For the ensemble forecast with NE members, following

equation is used
dxfj
dt

= mj(xj, t), j = 1, . . . , NE. (1.50)

Ensemble members are denoted by subscript j, forecast is denoted by superscript

f , and mj represents the evolution operator. The augmented system of equations
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for ensemble members is used to define the covariance matrix as

Pf =
1

NE − 1

NE∑
j=1

(
xfj − xf

)(
xfj − xf

)T
(1.51)

The mean of the state vector calculated for the ensemble x is calculated by

xf =
1

NE

NE∑
j=1

xfj . (1.52)

The analysis state of the system is defined as

xaj = xfj + Kdj, (1.53)

with Kalman gain matrix given by

K =

 ρFD ◦PFD

ρDD ◦PDD

 (ρDD ◦PDD + R)−1 , (1.54)

while the innovation vector dj is represented by

dj = y0 −KxfD,j +
˜
εfj . (1.55)

The observations vector y0 holds spatial coordinates of the drifters in the zonal

and meridional coordinates. The matrix ρ holds distance-dependent correlation

function. The noise in the drifter positions is given by
˜
εfj and is based on the

gaussian distribution with a covariance matrix equal to R and

1

NE

NE∑
j=1

˜
εfj = 0. (1.56)

21



In equation (1.54) operator ◦ indicates the Schur product between two matrices.

Four different drifter locations were analyzed: a uniform drifter deployment

within the ocean basin, a saddle point launch strategy, a vortex launch strategy,

and a mixed combination of saddle and vortex centre launches. Nine drifters

were used for all these experiments. The mixed launch produced the highest con-

vergence for the velocity field whereas the uniform and saddle launches achieved

the minimal error in the height estimation. They have found that bifurcations

of coherent flow structures can lead to rapid dispersion of drifters placed within

such coherent vortices; forecasts made over longer time-scales can differ a great

deal from forecast over the shorter time.

1.2.6 A Bayesian approach to Lagrangian data assimila-

tion

Apte et al., (2008) [1] described a Bayesian perspective based approach to data

assimilation. Their motivation was to follow the issues related to the highly non-

linear characteristics of the Lagrangian data as it influences data assimilation.

This becomes a major problem when the time between the observations is large.

For their study, they have used an idealized ocean model given by the inviscid

linearized shallow water model given by equation (5) in [1]:

∂u

∂t
= v − ∂h

∂x
,

∂v

∂t
= −u− ∂h

∂y
,

∂h

∂t
= −∂u

∂x
− ∂v

∂y
.

(1.57)
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They took into the account first two modes of the Fourier modes for their nu-

merical modeling, with the first component describing the geostrophic mode and

the second one describing the inertia-gravity mode given by equation (6) in [1].

u(x, y, t) = −2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t),

v(x, y, t) = +2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t),

h(x, y, t) = sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t).

(1.58)

After combining (1.57) and (1.58) they have presented the following equations

for amplitudes (equation (7) in [1]):

u̇0 = 0,

u̇1 = v1,

v̇1 = −u1 − 2πmh1,

ḣ1 = 2πmv1,

(1.59)

along with initial conditions [u0(0), u1(0), v1(0), h1(0)]; du0/dt ≡ u̇0 is following

standard notation, as is u̇1, v̇1 and ḣ1.

Apte et al., (2008) described the use of Bayes theorem as applied to a data

assimilation problem with a deterministic dynamic model. The initial conditions

of the deterministic model with an n-dimensional state vector given by

dx

dt
= f(x), x(0) = x0 ∼ ξ, (1.60)

are taken from a prior with probability density function pξ(x0). Noisy observa-

tions yk ∈ Rm represent the state of the system at a specific time tk. If we use
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the solution operator for the dynamics Φ, state of the system can be expressed

as x(t) = Φ(x0, t). Therefore, observations yk can be written as

yk = h[x(tk)] + ηk = h[Φ(x0, tk)] + ηk, (1.61)

where operator h : Rn → Rm. This indicates that the observations can be treated

as the non-linear numerical functions of the initial conditons. For the set of noisy

observations at various times t1, . . . , tk, we can express the total observations

vector yT = (yT1 , . . . ,y
T
k ) as

y = H(x0) + η. (1.62)

We are using H(x0)T =
(
h[x(t1)]T , . . . ,h[(x(tm)]T

)
and ηT = (ηT1 , . . . ,η

T
m). The

random vector η has a probability density function pη : RmK → R. Therefore,

the conditional probability of observations y related to the initial data x0 can be

described as:

p(y|x0) = pη[y −H(x0)]. (1.63)

If we have a prior distribution of initial conditions pζ along with a realization of

the observations ŷ, using Bayes’ theorem, we can write a posterior probability

for the state vector

p(x0|ŷ) =
pη[ŷ −H(x0)]pζ(x0)

p(ŷ)
, (1.64)

where

p(y) =

∫
pη[y −H(x0)]pζ(x0)dx0. (1.65)

It can be noticed that p(y) is only a function of observations and that p(ŷ) has

a constant value for a particular realization of ŷ which is independent of x0.
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Apte et al., (2008) have noted several key features of the this approach to data

assimilation:

• The conditional distribution at time t = 0 of the state of the model in (1.64)

observed during time 0 to tk is the posterior of (1.64).

• To sample the posterior p(x0|ŷ), there is a need for pη. This functional can

contain non-Gaussian errors than can be correlated.

• The problem was investigated under the twin experiments setup. Observa-

tions and posterior’s sampling are generated with the same model dynamics.

• True state of the model x(t)is never mentioned, since it is never known.

Equation (1.62) is different then from y = H(x(t)) + η, by the fact, that

H in not a function of the ’true’ state. Because of the random nature of

errors in the data, all that can be estimated is the probabilistic state of the

system, and we don’t know the best a priori estimate of the system.

• When we present the posterior distribution for the deterministic model, we

have a ’strong constrained formulation’ in mind. Oftentimes, a ’weak con-

strained formulation’ may be needed in the oceanographical applications.

Numerical experiments described by Apte et al., (2008) focus on a short trajec-

tories that stay in one cell, and on a trajectories that get close to the saddle

point and leave the cell. They have found that these instances have different

prior distributions. Examination of results showed that ensemble generated by

the model gives information about the variability of estimations due to different

initial conditions. The posterior distribution is impacted by the model dynamics

together with the assimilated observations. When compared to the Ensemble

nonlinear Kalman filter, Bayesian data assimilation works better in presence of
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bigger interval between observations. It also performs well in presence of the cen-

ter point. Three different methods were used to sample the posterior: Langevin

stochastic differential equation (LSDE), Metropolis adjusted Langevin algorithm

(MALA) and Random walk Metropolis-Hastings (FWMH). For the Lagrangian

data assimilation, the Metropolis-Hastings methodology gives the best results.

1.3 Summary

Lagrangian data assimilation has a long history in meteorology and oceanography.

The above collected papers give a broad overview of different approaches taken

over the years by different authors. There are some underlying common threads in

all of them. First, data assimilation of the Lagrangian data is a very important

part of any modern model that uses data from sensors following the flow to

improve the Eulerian forecast. All of the described assimilation schemes are

sensitive to time period between measurements. Second, improvement in models

that deal with the shallow water models of a different level of complexity and

point vortex systems depends on the initial location of tracers which data is

used to improve forecast. This launch location has high significance when it

comes to being useful for data assimilation. Third, the number of the Lagrangian

tracers used for data assimilation has some importance, however, in some cases,

adding more sensors above a certain level does not increase the overall quality of

improvements to the data assimilation procedures.
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1.4 Organization of the Dissertation

In chapter 2, we give an overview of the shallow water model, and scaling assump-

tion that we make in order to linearize it. In chapter 3, we present a low-order

model used to derive the explicit expressions for the tracer dynamics which is

a system of two first-order, coupled nonlinear, time varying ordinary differential

equations. A complete catalog of all of the equilibria and their character is also

presented. It is followed by examination of the bifurcation of the tracer dynamics

by succinctly summarizing the dependence on the four dimensional parameter set

using a simple two dimensional characterization. In chapter 4, we present a data

assimilation approach known as the Forward Sensitivity Method. It is followed

in chapter 5 by examination of the sensitivity of the shallow water model to

the initial conditions and model parameters, known as the control vector. Thor-

ough evaluation of the Data Assimilation experiments is included in chapter 6.

Concluding remarks are contained in chapter 7.
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Chapter 2

Shallow Water Model

2.1 Introduction

In this chapter, we give a short description of atmospheric and oceanic motion

at a scale that is important to work done in this dissertation. We elaborate on

scaling assumptions taken in our work, as they are applied to linearized shallow

water model.

2.2 Large scale motion

For our study, we are using a model that can be used to describe a motion in the

earth’s ocean and atmosphere alike. The disparity between horizontal and vertical

scales is well known for a large-scale geophysical motions related to the fluid with

stable density. We think of the large-scale motion when it is influenced by the

earth’s rotation. There is a measure one can use to determine the significance

of rotation that is known as the Rossby number. To use it, we need to define

L to be a characteristic length scale, and U to be a horizontal velocity scale
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characteristic of the motion. The angular velocity of the earth’ rotation Ω has

value of |ΩΩΩ| = 7.292× 10−5 rad/s. The non-dimensional parameter Ro is usually

used to denote Rossby number, and for a large-scale motion at the latitude Φ, it

can be expressed as

Ro =
U

(2Ω sin Φ)L
≤ 1.

It is worth indicating that only the component of earth’s rotation perpendicular

to the planetary surface is used in the estimation of the Rossby number. In the

atmosphere, vertical scale is of the order of ten kilometers while horizontal scale

is of the order of thousand kilometers. Similarly, the depth of the ocean almost

never is bigger than six kilometers, and the horizontal extent of major currents

systems is usually huge, that is much longer than six kilometers. Therefore, the

motion occurs within an relatively thin sheet of fluid, and given the large extent

of the horizontal scale of the motion the geometrical constraint produces fluid

trajectories which are very flat. Obviously, the motions described in such way

apply to cases in which stratification does not play a major role.

In meteorology and oceanography, there is a simple model called shallow water

model that describes a motion of this type. We can write a set of equations

following Daley (page 194, (1991)) [3] that states the shallow water model in

cartesian coordinates, where x is the eastward direction, and y is the northward

direction.

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV + g

∂H

∂x
= 0, (2.1a)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ fU + g

∂H

∂y
= 0, (2.1b)

∂H

∂t
+ U

∂H

∂x
+ V

∂H

∂y
+H

(
∂U

∂x
+
∂V

∂y

)
= 0. (2.1c)
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Here, U is the eastward wind component, V is the northward wind component, H

indicates the height of the free surface of the fluid, g is the gravitational constant

while f is the Coriolis parameter. Equations (2.1a) and (2.1b) constitute mo-

mentum equations for the eastward and northward components, while equations

(2.1c) represents the continuity equation. Our goal is to linearize the shallow

water model. Hence, we focus on analysis of the small-amplitude motions. To

this end, we introduce the following U = ũ + u, V = ṽ + v and H = h̃ + h into

the equations (2.1a)-(2.1c), where ũ, ṽ and h̃ indicate a base state, and u, v, and

h indicate perturbations. We also assume a constant Coriolis parameter f equal

f0; this is known as the mid-latitude f -plane assumption.

∂(ũ+ u)

∂t
+ (ũ+ u)

∂(ũ+ u)

∂x
+ (ṽ + v)

∂(ũ+ u)

∂y

− f(ṽ + v) + g
∂(h̃+ h)

∂x
= 0, (2.2a)

∂(ṽ + v)

∂t
+ (ũ+ u)

∂(ṽ + v)

∂x
+ (ṽ + v)

∂(ṽ + v)

∂y

+ f(ũ+ u) + g
∂(h̃+ h)

∂y
= 0, (2.2b)

∂(h̃+ h)

∂t
+ (ũ+ u)

∂(h̃+ h)

∂x
+ (ṽ + v)

∂(h̃+ h)

∂y

+ (h̃+ h)

(
∂(ũ+ u)

∂x
+
∂(ṽ + v)

∂y

)
= 0. (2.2c)

Now, we can think of a basic state in which fluid is at rest (ũ = ṽ = 0) and has

a free surface with height h̃ that is independent of the position and time:

∂ũ

∂t
=
∂ṽ

∂t
=
∂h̃

∂t
= 0,

∂h̃

∂x
=
∂h̃

∂y
= 0.
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂h

∂x
= 0, (2.3a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂h

∂y
= 0, (2.3b)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ h̃

(
∂u

∂x
+
∂v

∂y

)
= 0. (2.3c)

Below we include a shallow water model as stated in Pedlosky([16] page 68.)

representing a deterministic dynamical framework appropriate for the motion

calculations of large space and time scales; motions of atmospheric and oceanic

relevance; this is the set of equations (2.3a)-(2.3a) in which we have dropped

the nonlinear terms u∂u
∂x

, v ∂u
∂y

, u ∂v
∂x

, v ∂v
∂y

, u∂h
∂x

, v ∂h
∂y

, because ∂u
∂t
� u∂u

∂x
, v ∂u

∂y
and

similarly ∂v
∂t
� u ∂v

∂x
, v ∂v

∂y
. We also can observe that h̃� h.

∂u

∂t
− fv = −g∂h

∂x
, (2.4a)

∂v

∂t
+ fu = −g∂h

∂y
, (2.4b)

∂h

∂t
+ h̃

(
∂u

∂x
+
∂v

∂y

)
= 0. (2.4c)

The velocity has horizontal components u and v, f denotes the Coriolis param-

eter, h indicates the height of the surface of the fluid above the reference level

h̃.
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2.3 Scalling assumptions

Using non-dimensional variables ĥ, û, v̂, t̂, x̂, ŷ we can define

u = u0û, where u0 ∼ O(1 cm s−1) ∼ O(1× 10−2 m s−1) ∼ O(0.036 km h−1),

v = u0v̂,

h = h0ĥ, where h0 ∼ O(1× 10−1 m),

t = t̂/f, where f ∼ O(1× 10−4 s−1),

x = Lx̂, where L ∼ O(1× 106 m),

y = Lŷ.

(2.5)

We can now consider (2.4a)

∂u

∂t
=
∂u0û

∂t̂/f
= (u0f)

∂û

∂t̂
,

∂h

∂x
=
∂h0ĥ

∂Lx̂
=

(
h0

L

)
∂ĥ

∂x̂
,

(2.6)

and so, (2.4a) becomes

fu0
∂û

∂t̂
− fu0v̂ = −gh0

L

∂ĥ

∂x̂
, (2.7)

and finally

∂û

∂t̂
− v̂ = − gh0

fLu0

∂ĥ

∂x̂
= N

∂ĥ

∂x̂
, where N =

gh0

fLu0

. (2.8)

Since g ∼ O(10 m s−2) and f is fixed at g ∼ 10−4,

N =
1× 101 m s−2 × 1× 10−1 m

1× 10−4 s−1 × 1× 106 m× 1× 10−2 m s−1 = 1. (2.9)
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And this gives us scaled equation (2.4a) as

∂û

∂t̂
− v̂ = −∂ĥ

∂x̂
. (2.10)

Similarly, now we can now consider (2.4b) and express its compnents as

∂v

∂t
=
∂u0v̂

∂t̂/f
= (u0f)

∂v̂

∂t̂
,

∂h

∂y
=
∂h0ĥ

∂Lŷ
=

(
h0

L

)
∂ĥ

∂ŷ
,

(2.11)

and so, (2.4b) becomes

fu0
∂v̂

∂t̂
+ fu0û = −gh0

L

∂ĥ

∂ŷ
, (2.12)

and finally, using N defined in (2.8)

∂v̂

∂t̂
+ û = − gh0

fLu0

∂ĥ

∂ŷ
,

∂v̂

∂t̂
+ û = N

∂ĥ

∂ŷ
.

(2.13)

And this gives us equation (2.4b) scaled as

∂v̂

∂t̂
+ û = −∂ĥ

∂ŷ
. (2.14)

Finally, we can consider parts of equation (2.4c)

∂h

∂t
=
∂h0ĥ

∂t̂/f
= (h0f)

∂ĥ

∂t̂
,

h̃

(
∂u

∂x
+
∂v

∂y

)
= h̃

(
∂u0û

∂Lx̂
+
∂u0v̂

∂Lŷ

)
=
h̃u0

L

(
∂û

∂x̂
+
∂v̂

∂ŷ

)
,

(2.15)
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We can combine the above to get

(
fLh0

h̃u0

)
∂ĥ

∂t̂
+

(
∂û

∂x̂
+
∂v̂

∂ŷ

)
= M

∂ĥ

∂t̂
+

(
∂û

∂x̂
+
∂v̂

∂ŷ

)
= 0,

where M =
fLh0

h̃u0

.

(2.16)

Let us analyze M from the above equation using h̃ ∼ O(1× 103 m).

M =
1× 10−4 s−1 × 1× 106 m× 1× 10−1 m

1× 103 m× 1× 10−2 m s−1 = 1. (2.17)

Finally this gives us (2.4c)

∂ĥ

∂t̂
+

(
∂û

∂x̂
+
∂v̂

∂ŷ

)
= 0. (2.18)

And so, we can combine these three equations (2.10, 2.14 and 2.18) in their non-

dimensional form. After dropping the ˆ sign, we have the from as presented in

Apte et al., (2008) [1].
∂u

∂t
= v − ∂h

∂x
,

∂v

∂t
= −u− ∂h

∂y
,

∂h

∂t
= −∂u

∂x
− ∂v

∂y
.

(2.19)

2.4 Summary

We have introduced shallow water equation in their non-linear form. We have

demonstrated the assumptions that lead to linearized model. Thereafter, by

applying appropriate scale factors, we have derived a non dimensional form pre-

sented in equation (2.19); this will constitutes the basis for our analysis in the

subsequent chapters.
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Chapter 3

Linearized Shallow Water Model

and Tracer Dynamics

3.1 Introduction

In this chapter, we introduce a solution to the low order linearized shallow water

model. We find a closed form solution for the time dependent amplitudes and

incorporate them into an analytical solution describing tracer dynamics. This is

followed by the analysis of the equilibria of tracer dynamics. For this purpose,

linearized shallow water model solutions are divided into geostrophic, inertial-

gravity and combine modes. Bifurcation analysis is given for each of these modes.

3.2 Model variables

The linear coupled system of three partial differential equations presented in

(2.19) establishes the basis of our work in this dissertation. Here (x, y)T ∈ R2

denote the two dimensional space coordinates and t ≥ 0 denote the time variable.
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Let u(x, y, t)(v(x, y, t)) denote the east-west (north-south) components of the

velocity field at the spacial location (x, y)T and time t. Let h(x, y, t) denote the

height of the free surface of water measured above a pre-specified mean level.

Equation (2.19) shows the variation of the two components of the velocity field,

u(x, y, t) and v(x, y, t) with respect to the variation of the free surface height

measured from the mean level h(x, y, t).

3.3 Low-order model (LOM)

Lorenz (1960) [13] has shown that one can approximate the solution of a complex

model with the low-order model. This approach has been used with a great

success; a short list of a well know applications in the geophysical domain has

been listed by Laksmivarahan et al., (2006) [8]. Our analysis depends on the

low-order counter part of the infinite dimensional model in (2.19) obtained by

the application of the standard Galerkin type projection method. To this end,

we first express u, v and h in the standard two dimensional truncated Fourier

series consisting of only two terms given by (Apte et al. 2008) [1] in the equation

(6):

u(x, y, t) = −2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t),

v(x, y, t) = +2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t),

h(x, y, t) = sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t).

(3.1)

In each equation above, the first time independent term with constant amplitude

that is proportional to u0 is called the geostrophic mode and the second time de-

pendent terms with amplitudes u1(t), v1(t), h1(t) are called inertial-gravity modes.

In the following, we refer to u0 as the geostrophic parameter and u1(0), v1(0), h1(0)

as the inertial parameters. Without loss of generality we only consider the case
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where n = m = l = 1 in ((3.1)). Following (Apte et al. 2008) [1] the equations

(7)), we combine equations (2.19) and (3.1) to find dynamic equations for the

amplitudes

u̇0 = 0,

u̇1 = v1,

v̇1 = −u1 − 2πmh1,

ḣ1 = 2πmv1,

(3.2)

along with initial conditions [u0(0), u1(0), v1(0), h1(0)]; du0/dt ≡ u̇0 is following

standard notation, as is u̇1, v̇1 and ḣ1. The process of reduction is shown in the

Appendix A.

3.3.1 Analytical solution for amplitudes

In order to find an analytical solution for amplitudes we rewrite equations (3.2)

in a matrix-vector form with a = 2πm.
u̇1

v̇1

ḣ1

 =


0 1 0

−1 0 a

0 a 0

×

u1

v1

h1

 . (3.3)

This can be expressed succinctly as ξ̇ = A ξ, with ξ(0) as initial conditions (I.C),

where

ξ =


u1

v1

h1

 , and A =


0 1 0

−1 0 a

0 a 0

 . (3.4)

Clearly A is a skew-symmetric matrix.
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Property 3.3.1. Let E(t) = 1/2 ξT (t) ξ(t) denote the energy associated with

the state ξ(t). Then (3.3) conserves energy E(t), that is, Ė(t) = 0.

Proof. For,
dE(t)

dt
= ξT (t) A ξ(t)

= u1u̇1 + v1v̇1 + h1ḣ1

= u1[v1] + v1[−u1 − ah1] + h1[av1]

= 0.

(3.5)

since A is a skew-symmetric matrix. Stated in other words, the solution ξ(t)

of the linear system (3.3) always lies on the surface of a sphere centered at the

origin with the radius given by

E(0)1/2 =
[
ξT (0) ξ(0)

]1/2

=
[
u2

1(0) + v2
1(0) + h2

1(0)
]1/2

=
[
u2

1(t) + v2
1(t) + h2

1(t)
]1/2

= E(t)1/2.

(3.6)

3.3.2 Eigenvalues and eigenvectors of A

Derivation of eigenvalues and eigenvectors of A

Let us look again at matrix A defined as

A =


0 1 0

−1 0 a

0 a 0

 . (3.7)
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We can proceed to set the characteristic polynomial

det(A− λI) = |A− λ I| =

∣∣∣∣∣∣∣∣∣∣∣
−λ 1 0

−1 −λ a

0 a −λ

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.8)

Expanding it, we get

−λ

∣∣∣∣∣∣∣
−λ −a

a −λ

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
−1 −a

0 −λ

∣∣∣∣∣∣∣ = −λ(λ2 − λ+ a2) = 0, (3.9)

where solutions are 
λ1 = 0 + i

√
1 + a2

λ2 = 0− i
√

1 + a2

λ3 = 0

. (3.10)

That is, the eigenvalues of a skew-symmetric matrix are purely imaginary or zero

as shown in equation (3.10). It can be verified that the eigenvectors V1,V2,V3

corresponding to λ1, λ2, λ3 are:

V = [V1,V2,V3] =


0 −1/λ a/λ

1 0 0

0 −a/λ −1/λ

 . (3.11)

Now, for the first non-zero eigenvalue we have

AV1 = λ1V1,

A(x + iy) = iλ(x + iy).

(3.12)
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Equating the real and imaginary parts we get

Ax = −λy

Ay = λx
(3.13)

or

y = − 1
λ
Ax,

Ax2 = λ2x.

Analogously, for the second non-zero eigenvalue we have

AV2 = λ2V2,

A(x− iy) = iλ(x− iy).

(3.14)

Again, equating the real and imaginary parts we get

Ax = λy

Ay = λx

or

x = − 1
λ
Ay,

Ay2 = −λ2y.

We will use A2 in our calculations, so let us find it now as

A2 =


0 1 0

−1 0 a

0 a 0




0 1 0

−1 0 a

0 a 0

 =


−1 0 −a

0 −(1 + a2) 0

−a 0 −a2

 . (3.15)

It can be verified that A2 = AA = ATAT = (AA)T , therefore A2 is symmetric

(one for which AT = A) if A is skew-symmetric (one for which AT = −A). Now,
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we continue on finding eigenvectors:

Ax2 = −λ2x, (3.16)


−1 0 −a

0 −(1 + a2) 0

−a 0 −a2




x1

x2

x3

 = −(1 + a2)


x1

x2

x3

 . (3.17)

After expanding, we arrive at


−x1 − ax3 = −(1 + a2)x1

−(1 + a2)x2 = −(1 + a2)x2

−ax1 − a2x3 = −(1 + a2)x3

.

Now, we can solve it after simplifying


x3 = ax1

x2 = x2

x3 = ax1

.

Since we can set x2 to an arbitrary value, let us choose x2 = 1, and then we

can set x1 = x3 = 0. This would give us the normalized first eigenvector V1 =

(0, 1, 0)T . For the second eigenvector, we can set x2 = 0, and x1 = −1. This

would give us x3 = −a, and after normalization we get get the second eigenvector

as V2 = −1/
√

(1 + a2)(1, 0, a)T , and then we would find the third normalized

eigenvector as V3 = −1/
√

(1 + a2)(1, 0,−a)T . It can be verified that the matrix
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of eigenvectors of A

V = [V1, V2, V3] =


0 −1/λ a/λ

1 0 0

0 −a/λ −1/λ

 (3.18)

is an orthogonal matrix, and so, VT = V−1.

Eigendecomposition of A

The Jordan canonical form of matrix A is as follows

A = VΛV−1 = VΛVT , (3.19)

where

Λ =


0 λ 0

−λ 0 0

0 0 0

 ,
or

VTAV = Λ. (3.20)

We know that ξ̇ = A ξ with ξ(0) as initial conditions. Then, following (chapter

31, Lewis et al., (2006) [12])

ξ(t) = eAt ξ(0)

= e(VΛVT )t ξ(0)

= [VeΛtVT ] ξ(0). (3.21)
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The exponential of a matrix

For a moment, we have to shift our attention to finding an exponent of a matrix.

Following Hirsch et al., (2004) [4], we know the exponential function can be

expressed in a form of the infinite series

ex =
∞∑
k=0

xk

k!
. (3.22)

Similarly for A, we can define its exponential as

exp A =
∞∑
k=0

Ak

k!
. (3.23)

In our case, matrix Λ is as follows

Λ =


0 λ 0

−λ 0 0

0 0 0

 = λ


0 1 0

−1 0 0

0 0 0

 .
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So, we can express its powers in the following manner

Λ0 =


1 0 0

0 1 0

0 0 1

 ,

Λ1 = λ


0 1 0

−1 0 0

0 0 0

 ,

Λ2 = −λ2


0 1 0

−1 0 0

0 0 0




0 1 0

−1 0 0

0 0 0

 = −λ2


1 0 0

0 1 0

0 0 0

 ,

Λ3 = −λ3


1 0 0

0 1 0

0 0 0




0 1 0

−1 0 0

0 0 0

 = −λ3


0 1 0

−1 0 0

0 0 0

 ,

Λ4 = −λ4


0 1 0

−1 0 0

0 0 0




0 1 0

−1 0 0

0 0 0

 = λ4


1 0 0

0 1 0

0 0 0

 ,

Λ5 = λ5


1 0 0

0 1 0

0 0 0




0 1 0

−1 0 0

0 0 0

 = λ5


0 1 0

−1 0 0

0 0 0

 , · · ·

44



Therefore, to express exp(Λ) we can look at the few first elements

r(1, 1) = 1 + λ ∗ 0− λ2 ∗ 1− λ3 ∗ 0 + λ4 ∗ 1 + λ5 ∗ 0 + · · ·

= 1− λ2 + λ4 + · · ·

r(1, 2) = 0 + λ ∗ 1− λ2 ∗ 0− λ3 ∗ 1 + λ4 ∗ 0 + λ5 ∗ 1 + · · ·

= λ− λ3 + λ5 + · · ·

r(2, 1) = −λ ∗ 1 + λ2 ∗ 0 + λ3 ∗ 1− λ4 ∗ 0− λ5 ∗ 1 + · · ·

= −λ+ λ3 − λ5 − · · ·

r(2, 2) = 1 + λ ∗ 0− λ2 ∗ 1− λ3 ∗ 0 + λ4 ∗ 1 + λ5 ∗ 0 + · · ·

= 1− λ2 + λ4 + · · ·

Now, we can recall that cos function can be expressed in a form on an infinite

sum

cosλ =
∞∑
k=0

(−1)k
λ2k

(2k)!
.

Analogously, sin function can be expressed as

sinλ =
∞∑
k=0

(−1)k
λ2k+1

(2k + 1)!
.
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Therefore, combining these we can express exp(Λ) as

eΛ =


∑∞

k=0(−1)k λ2k

(2k)!

∑∞
k=0(−1)k λ2k+1

(2k+1)!
0∑∞

k=0(−1)k λ2k+1

(2k+1)!

∑∞
k=0(−1)k λ2k

(2k)!
0

0 0 1



=


cosλ sinλ 0

− sinλ cosλ 0

0 0 1

 .
(3.24)

But we also know that

eΛt =


cos(λt) sin(λt) 0

− sin(λt) cos(λt) 0

0 0 1

 =


c s 0

−s c 0

0 0 1

 , where c = cos(λt), s = sin(λt).

(3.25)

Amplitudes

Combining all of the above terms, we get ξ(t) = e(VΛVT )t ξ(0) expanded as fol-

lows:
u1(t)

v1(t)

h1(t)

 =


0 −1/λ a/λ

1 0 0

0 −a/λ −1/λ




c s 0

−s c 0

0 0 1




0 −1/λ a/λ

1 0 0

0 −a/λ −1/λ




u1(0)

v1(0)

h1(0)

 (3.26)

46



=


s/λ −c/λ a/λ

c s 0

as/λ −ac/λ 1




0 −1/λ a/λ

1 0 0

0 −a/λ −1/λ




u1(0)

v1(0)

h1(0)



=


c+a2

λ2
s
λ

ac−a
λ2

−s
λ

c −as
λ

ac−a
λ2

as
λ

1+ca2

λ2




u1(0)

v1(0)

h1(0)

 .

After we expand the above equation, we have an explicit expressions for the time

varying amplitudes u1(t), v1(t), andh1(t) as a function of time

u1(t) =
c+ a2

λ2
u1(0)+

s

λ
v1(0)+

ac− a
λ2

h1(0),

v1(t) =
−s
λ
u1(0)+ c v1(0)+

−as
λ

h1(0),

h1(t) =
ac− a
λ2

u1(0)+
as

λ
v1(0)+

1 + ca2

λ2
h1(0).

(3.27)

We can notice that for t = 0, we have c = cos(λt) = 1 and s = sin(λt) = 0. We

recall that a = 2πm, and λ =
√

1 + a2 =
√

1 + (2πm)2.

u1(0) =
1 + a2

λ2
u1(0) =

1 + a2

1 + a2
u1(0) = u1(0),

v1(0) = v1(0),

h1(0) =
1 + a2

λ2
h1(0) =

1 + a2

1 + a2
h1(0) = h1(0).

(3.28)
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We can expand equations (3.27) to get full expressions for amplitudes

u1(t) =

(
cos
(
t
√

4π2m2 + 1
)

+ 4m2 π2

)
4π2m2 + 1

u1(0)

+
sin
(
t
√

4π2m2 + 1
)

√
4π2m2 + 1

v1(0)

+

2πm

(
cos
(
t
√

4 π2m2 + 1
)
− 1

)
4 π2m2 + 1

h1(0),

v1(t) = −
sin
(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

u1(0)

+ cos
(
t
√

4π2m2 + 1
)
v1(0)

−
2πm sin

(
t
√

4π2m2 + 1
)

√
4 π2m2 + 1

h1(0),

h1(t) =

2 πm

(
cos
(
t
√

4 π2m2 + 1
)
− 1

)
4 π2m2 + 1

u1(0)

+
2πm sin

(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

v1(0)(
4m2 π2 cos

(
t
√

4π2m2 + 1
)

+ 1

)
4π2m2 + 1

h1(0).

(3.29)

3.4 Tracer dynamics

We proceed with the analysis of the tracer dynamics after rearranging equations

(3.27). We can present a number of interesting features of the shallow water
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model using the version of these equations in (3.30).

u1(t) =
a

λ2

[
au1(0)− h1(0)

]
+

1

λ2

[
u1(0) + ah1(0)

]
c+

v1(0)

λ
s,

v1(t) = v1(0) c− 1

λ

[
ah1(0) + u1(0)

]
s,

h1(t) =
1

λ2

[
h1(0)− au1(0)

]
+

a

λ2

[
u1(0) + ah1(0)

]
c+

av1(0)

λ
s.

(3.30)

Since the solution of equation (3.3) ξ(t) lies on a sphere, it is immediate that

u1(t), v1(t), and h1(t) are not linearly independent.

Let X(t) =
(
x(t), y(t)

)T ∈ R2 denote the position of the tracer particle float-

ing on the free surface of the water. The dynamics of motion of this tracer is

then given by

ẋ = u(x, y, t),

ẏ = v(x, y, t),
(3.31)

where the right hand side of (3.31) is obtained by substituting (3.27) in (3.1) with

u0, a constant. For later reference, define the geostrophic velocity components

f1(x, y) = −2πu0 sin (2πx) cos (2πy) ,

f2(x, y) = 2πu0 cos (2πx) sin (2πy) ,
(3.32)

and the inertial-gravity velocity components

g1(x, y, t) = u1(t) cos (2πmy) ,

g2(x, y, t) = v1(t) cos (2πmy) .
(3.33)

Let f = (f1, f2)T ∈ R2 and g = (g1, g2)T ∈ R2. Then, (3.31) can be rewritten in
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the vector form as

Ẋ(t) = f(x, u0) + g(x, α̂, t), (3.34)

where u1(t), v1(t), h1(t) are given in (3.27). We can also recall that α̂ =(
u1(0), v1(0), h1(0)

)
∈ R3. Clearly, the first component f of the vector field de-

pends on the geostrophic parameter u0 and the second component g depends on

the inertial parameters α̂ ∈ R3. One of our goals in this thesis is to characterize

and catalog the behavior of the solution of (3.34) as the geostrophic and inertial

parameters are varied. It turns out this class of nonlinear time varying dynamics

exhibits many interesting bifurcations as the four parameters (u0, α̂) are varied

in R4.

3.5 Analysis of Equilibria of Tracer dynamics

It is convenient to divide the analysis into three cases.

3.5.1 Case 1: Equilibria in geostrophic mode

By setting the inertial parameter α̂ = 0, we obtain the tracer dynamics given by

the nonlinear autonomous system

Ẋ = f(X, u0) (3.35)

controlled by the geostrophic parameter u0. From (3.32), the Jacobian of the flow

field f(X, u0) is given by

Dx(f) = −4π2u0

cos(2πx) cos(2πy) − sin(2πx) sin(2πy)

sin(2πx) sin(2πy) − cos(2πx) cos(2πy)

 . (3.36)
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We consider two types of equilibria for (3.35)

Type 1 Equilibria:

From (3.35) and (3.32), it follows that f(X, u0) = 0 when sin(2πx) = 0 =

sin(2πy), that is, when

x = y = ±k
2

for k = 0, 1, 2, . . . (3.37)

which is independent of u0. The Jacobian (3.36) at these equilibria becomes

Dx(f) = −4π2u0

1 0

0 −1

 , (3.38)

whose eigenvalues are given by λ1 = 4π2u0 and λ2 = −4π2u0, with e1 = (1, 0)T

and e2 = (0, 1)T as their corresponding eigenvectors. Clearly, this family of equi-

libria corresponds to a saddle for all non-zero values of the geostrophic parameter

u0. In a small neighborhood around the equilibria in (3.37), the system (3.35) is

equivalent to a linear dynamics given by

η̇ = Dx(f)η, (3.39)

with Dx(f) in (3.38) and η(t) =
(
η1(t), η2(t)

)T
.

The solution of (3.39) is given by

η1(t) = η1(0)e(4π2u0)t and η2(t) = η2(0)e−(4π2u0)t. (3.40)
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Figure 3.1: A display of equilibria of Type 1 - filled circles and Type 2 - un-
filled circles along with the velocity field around them. Filled cir-
cles are saddle points and unfilled circles are centers. The field
plot around these equilibria corresponds to f(x, y) in (3.32) with
u0 = 1.0, u1(0) = v1(0) = h1(0) = 0 and time t = 0.

Type 2 Equilibria:

From (3.35) and (3.32), it again follows that f(X, u0) = 0 when cos(2πx) = 0 =

cos(2πy), that is, when

x = y = ±2k + 1

4
for k = 0, 1, 2, . . . (3.41)
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which is also independent of u0. The Jacobian (3.36) at these equilibria becomes

Dx(f) = −4π2u0

0 −1

1 0

 , (3.42)

whose eigenvalues are purely imaginary and are given by λ1 = i4π2u0 and λ2 =

−i4π2u0, with any pair of unit, orthogonal vectors e1 = 1√
a2+b2

(a, b)T and e2 =

1√
a2+b2

(b,−a)T as corresponding eigenvectors, where a and b are arbitrary real

constants. This family of equilibria correspond to a center for all non-zero values

of the geostrophic parameter u0. In a small neighborhood around this equilibria,

equation (3.35) is equivalent to a linear dynamics

η̇ = Dx(f)η, (3.43)

with Dx(f) in (3.42). The solution of (3.43) is then given by

η1(t)

η2(t)

 =

 cos(bt) sin(bt)

− sin(bt) cos(bt)


η1(0)

η2(0)

 , where b = 4π2u0. (3.44)

It turns out that equation (3.35) with the field f(X, u0) given in (3.32) can

indeed be solved in closed form. It can be verified that (with a = 2π), (3.35) is

equivalent to

dy

dx
= − tan (ay)

tan (ax)
. (3.45)

Expressing (3.45) as

dy

tan (ay)
= − dx

tan (ax)
(3.46)
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Figure 3.2: A display of trajectories of the pure geostrophic mode in equa-
tion (3.35) ẋ = f(x, u0). The values of (x0, y0) = (0.209, 0.109),
(x0, y0) = (−0.209, 0.109), (x0, y0) = (0.209,−0.109), (x0, y0) =
(−0.209,−0.109) are indicated by *.

and integrating, the solution is given by

log
(
sin (ax) sin (ay)

)
= c, (3.47)

where c is the constant of integration. If (x0, y0) is the initial position of the

tracer, from (3.47) the solution of (3.35) can be expressed as

sin (ax) sin (ay) = sin (ax0) sin (ay0) (3.48)

Figure 3.1 is an illustration of the relative disposition type 1 and type 2 equi-

libria along with the vector field around them when u0 = 1.0. Phase plots using
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equation (3.48) for various choices of (x0, y0) are given in Figure 3.2.

3.5.2 Case 2: Equilibria in inertial-gravity mode

By setting the geostrophic parameter u0 to zero and ensuring that α̂ is not equal

to zero, we obtain the second special case for the tracer dynamics given by the

nonlinear nonautonomous system

Ẋ = g(X, α̂, t), (3.49)

whose behavior is controlled by α̂ ∈ R3. Referring to (3.33), the Jacobian of this

flow field is given by

Dx(g) = 2π

0 −u1(t) sin(2πy)

0 −v1(t) sin(2πy)

 . (3.50)

From (3.33) it is immediate that g(x, α̂, t) = 0, when cos(2πy) = 0. Thus, the

equilibria for (3.49) are given by

x arbitrary, and y = ±2k + 1

4
, for k = 0, 1, 2, . . . (3.51)

Again, it is convenient to consider two types of equilbria.

Type a: Equilibria in the upper half plane

This type of equilibria is given by

x arbitrary, and y =
2k + 1

4
, k = 0, 1, 2, . . . (3.52)
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Figure 3.3: A display of equilibria of Type a - dashed line and Type b - solid
line, and the flow field around them. The plot of the time vary-
ing vector field around these equilibria corresponding to g(x, α, t)
in (3.33) at time t = 0 and for values of corresponding parameters
u0 = 0, u1(0) = v1(0) = h1(0) = 1 and time t = 0.

The Jacobian (3.50) evaluated at these equilibria becomes

Dx(g) = 2π

0 −u1(t)

0 −v1(t)

 , (3.53)

whose eigenvalues are given by λ1 = −2πv1(t) and λ2 = 0, where v1(t) depends

on α̂ through (3.27). It can be verified that the eigenvector corresponding to λ1
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is e1 =
(
u1(t)
v1(t)

, 1
)T

and that corresponding to λ2 is any arbitrary non-zero vector

in R2. Dynamics in (3.49) around the equilibrium (3.52) is equivalent to

η̇ = Dx(g)η, (3.54)

with Dx(g) in (3.53). Clearly,

η2(t) = η2(0)e−2πΨ(t), (3.55a)

where Ψ(t) =

∫ t

0

v1(s)ds. (3.55b)

Hence,

η2(t) = −2πη2(0)

∫ t

0

u1(s)η2(s)ds. (3.56)

Type b: Equilibria in the lower half plane

This type of equilibria is given by

x arbitrary, and y = −2k + 1

4
, for k = 0, 1, 2, . . . (3.57)

The Jacobian (3.50) evaluated at these equilibria becomes

Dx(g) = 2π

0 u1(t)

0 v1(t)

 , (3.58)

whose eigenvalues are given by λ1 = 2πv1(t) and λ2 = 0, whose eigenvectors are

the same as in Type a. Again the nonlinear equation (3.49) is equivalent to

η̇ = Dx(g)η (3.59)
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Figure 3.4: A display of trajectories of the pure inertial gravity modes ẋ =
g(x, α, t) in (3.33). The starting points of various trajectories
(x0, y0) = (0.209, 0.109), (x0, y0) = (−0.209, 0.109) ,(x0, y0) =
(0.209,−0.109), (x0, y0) = (−0.209,−0.109) are shown by *.

around the equilibria in (3.57) with Dx(g) in (3.58). The solution of (3.59) is

given by

η2(t) = η2(0)e2πΨ(t)

η1(t) = 2πη1(0)

∫ t

0

u1(s)η2(s)ds
(3.60)

Again it turns out that we can solve (3.49) from (3.33). The second equation in

(3.49) becomes

dy

cos ay
= v1(t)dt, (3.61)
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which on integrating becomes

1

a
ln

(
tan

(
π

4
+
ay

2

))
= c+ Ψ(t), (3.62)

where Ψ(t) is given in (3.55b). If (x0, y0) is the initial position of the tracer, the

solution of (3.62) becomes

tan

(
π

4
+
ay

2

)
= e2πΨ(t) tan

(
π

4
+
ayo
2

)
, or (3.63a)

y(t) =
2

a

arctan

(
e2πΨ(t) tan

(
π

4
+
ayo
2

))
− π

4

 . (3.63b)

The first component of the solution of (3.49) is given by

x(t) = x(0) +

∫ t

0

u1(s) cos (2πy(s))ds. (3.64)

An illustration of the relative disposition of the equilibria and the field corre-

sponding to (3.49) are given in Figure 3.3. Figure 3.4 contains the phase plot(
x(t), y(t)

)
obtained from (3.63) and (3.64) for different initial points.

3.5.3 Case 3: Equilibria in general case

When u0 6= 0 and α̂ 6= 0, we obtain the interesting general case where the

geostrophic and the inertial-gravity modes exert their own influence. Depending

on the relative strength of these component fields, we can obtain a variety of

behavior of the tracer dynamics

Ẋ = f(X, u0) + g(X, α̂, t). (3.65)
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The Jacobian of this flow field is given by

Dx(f + g) = Dx(f) + Dx(g)

= 2π

−2πu0 cos(2πx) cos(2πy) 2πu0 sin(2πx) sin(2πy)− u1(t) sin(2πy)

−2πu0 sin(2πx) sin(2πy) 2πu0 cos(2πx) cos(2πy)− v1(t) sin(2πy)


= 2π

−PC(x, y) PS(x, y)− u1(t) sin(2πy)

−PS(x, y) PC(x, y)− v1(t) sin(2πy)

 ,
(3.66)

where PS(x, y) = 2πu0 sin(2πx) sin(2πy), and PC(x, y) = 2πu0 cos(2πx) cos(2πy).

It can be verified that f(X, u0) + g(X, α̂) = 0 when

x = y = ±2k + 1

4
, for k = 0, 1, 2, . . . (3.67)

To simplify the analysis we consider four types of equilibria.

Type A: Equilibria in the first quadrant

This type of equilibria is given by

x = y =
2k + 1

4
, for k = 0, 1, 2, . . .

In this case, the Jacobian (3.66) becomes

Dx(f + g) = 2π

 0 2πu0 − u1(t)

−2πu0 −v1(t)

 , (3.68)
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whose eigenvalues are given by

λ1,2(t) =
−v1(t)±

√
∆1(t)

2
, (3.69)

where

∆1(t) =
(
v1 (t)

)2 − 8πu0

(
2πu0 − u1 (t)

)
. (3.70)
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Figure 3.5: A display of equilibria of Type A (1/4, 1/4) and B (1/4, - 1/4)-
solid circles and Type C (-1/4, 1/4) and D (-1/4, -1/4) - empty
circles , and the flow field around them. A snapshot of the time
varying vector field given by (3.35) at time t = 0 where u0 = 1.0,
u1(0) = 9.4248, v1(0) = λ and h1(0) = −1.5.
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Type B: Equilibria in the fourth quadrant

This type of equilibria is given by

x = −y =
2k + 1

4
, for k = 0, 1, 2, . . .

In this case, the Jacobian (3.66) takes the form

Dx(f + g) = 2π

 0 −2πu0 + u1(t)

2πu0 v1(t)

 , (3.71)

whose eigenvalues are given by

λ1,2(t) =
v1(t)±

√
∆1(t)

2
, (3.72)

where ∆1 is given in (3.70).

Type C: Equilibria in the second quadrant

x = −y = −2k + 1

4
, for k = 0, 1, 2, . . . (3.73)

The Jacobian (3.66) becomes

Dx(f + g) = 2π

 0 −2πu0 − u1(t)

2πu0 −v1(t)

 , (3.74)

whose eigenvalues are given by

λ1,2(t) =
−v1(t)±

√
∆2(t)

2
, (3.75)
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where

∆2(t) =
(
v1 (t)

)2 − 8πu0

(
2πu0 + u1 (t)

)
. (3.76)
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Figure 3.6: A display of trajectories of (3.35) are given where the starting
points (x0, y0) = (0.209, 0.109), (x0, y0) = (−0.209, 0.109), (x0, y0) =
(0.209,−0.109), (x0, y0) = (−0.209,−0.109) are indicated by *.

Type D: Equilibria in the third quadrant

x = y = −2k + 1

4
, for k = 0, 1, 2, . . .
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The Jacobian (3.66) at this equilibrium becomes

Dx(f + g) = 2π

 0 2πu0 + u1(t)

2πu0 v1(t)

 , (3.77)

whose eigenvalues are given by

λ1,2(t) =
v1(t)±

√
∆2(t)

2
, (3.78)

where ∆2 is given in (3.76).

The character of the equilibria of Types A and B depends on the sign of

∆1(t) in (3.70) and that of the equilibria of Types C and D depends on the sign

of ∆2(t) in (3.76).

3.5.4 Conditions for the sign definiteness of ∆i(t)

From (3.70) and (3.76), since v2
1(t) ≥ 0, a necessary and sufficient condition for

∆i(t) > 0 for all t ≥ 0 is given by

∆1(t) ≥ 0 when u1(t) ≥ 2πu0 if u0 > 0, (3.79a)

u1(t) ≤ 2π|u0| if u0 < 0, (3.79b)

and

∆2(t) ≥ 0 when u1(t) ≤ −2πu0 if u0 > 0, (3.80a)

u1(t) ≥ 2π|u0| if u0 < 0. (3.80b)
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Since u1(t) depends on α̂, for a given value of (u0, α̂), inequalities (3.79a) and

(3.80a) cannot hold simultaneously. Similarly, (3.79b) and (3.80b) cannot also

hold simultaneously. Thus, for a given (u0, α̂), if ∆1(t) ≥ 0 then ∆2(t) ≤ 0,

and vice versa. This is in term implies that if the eigenvalues of Type A and B

equilibria are real, then those of Type C and D are complex conjugates and vice

versa. To further understand the nature of the real eigenvalues, consider the case

when u0 > 0 and u1(t) ≥ 2πu0. For this choice,

∆1(t) = (v1(t))2 − 8πu0(2πu0 − u1(t))

= (v1(t))2 + 8πu0(u1(t)− 2πu0).

(3.81)

Hence
√

∆1(t) > v1(t) and the two eigenvalues are such that

λ1(t) =
−v1(t) +

√
∆1(t)

2
and λ2(t) =

−v1(t)−
√

∆1(t)

2
. (3.82)

This is, when u0 > 0 and u1(t) > 2πu0, the Type A and B equilibria are saddle

points while Type C and D are centers. Stated in other words, Type A and Type

B, and Types C and D have a mutually complementary character. A similar

argument carry over to the case when u0 < 0.

A display of these four types of equilibria along with the flow field around them

is given in Figure 3.5. Some sample solutions of (3.65) obtained numerically are

also given in Figure 3.6.

3.6 Analysis of bifurcations

In Section 3.5 we have cataloged the properties of the set of all equilibria of the

tracer dynamics in different regions of the four dimensional parameter space, R4
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containing (u0, α̂) namely, u0 6= 0 and α̂ = 0 in Case 1, u0 = 0 and α̂ 6= 0 in

Case 2, u0 6= 0 and α̂ 6= 0 in Case 3. In this section we examine the transition

between the equilibria as the parameters are varied continuously.

To this end we start by translating the conditions for the positive definiteness

of ∆i(t) in ((3.79a), (3.79b)) and ((3.80a), (3.80b)) directly in term of (u0, α̂)

using (3.27). Define a new set of parameters U,H and V through a linear trans-

formation suggested by the expressions for u1(t) in (3.30) as

U =
a2

λ2
u1(0)− a

λ2
h1(0),

H =
1

λ2
u1(0) +

a

λ2
h1(0),

(3.83)

V =
1

λ
v1(0). (3.84)

Rewriting (3.83) in matrix form, it can be verified that

U
H

 =
1

λ2

a2 −a

1 a


u1(0)

h1(0)

 . (3.85)

The 2× 2 matrix in (3.85) is non-singular. Hence (3.83) and (3.84) define an in-

vertible linear transformation between
(
u1 (0) , v1 (0)), h1 (0)

)T ∈ R3 to (U, V,H) ∈

R3.

In terms of these new variables, u1(t) in (3.27) now becomes

u1(t) = U +H cos (λt) + V sin (λt). (3.86)

Now invoking the results from Appendix B, we obtain a uniform (in time) lower
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and upper bound on u1(t) given by

U −
√
H2 + V 2 ≤ u1(t) ≤ U +

√
H2 + V 2. (3.87)

Using these bounds, we now translate the conditions for sign definiteness of ∆i(t)

in (3.79) - (3.80) in terms of these new set of parameters. It can be verified that

∆1(t) ≥ 0 when U −
√
H2 + V 2 ≥ 2πu0 and U ≥ 2πu0 if u0 > 0,

(3.88a)

U +
√
H2 + V 2 ≤ −2π|u0| and U ≤ −2π|u0| if u0 < 0,

(3.88b)

and

∆2(t) ≥ 0 when U +
√
H2 + V 2 ≤ −2πu0 and U ≤ 2πu0 if u0 > 0,

(3.89a)

U −
√
H2 + V 2 ≥ 2π|u0| and U ≥ 2π|u0| if u0 < 0.

(3.89b)

Without the loss of generality, in the following we examine the bifurcation in the

new parameter space (U, V,H) ∈ R3 and u0 ∈ R. We consider two cases.

3.6.1 Case 1

To visualize these conditions graphically, consider first the condition for ∆1(t) ≥ 0

where u0 > 0, namely,

U −
√
H2 + V 2 ≥ 2πu0, and U ≥ 2πu0. (3.90)
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Rewriting (3.90) as

(U − 2πu0)2

V 2
− H2

V 2
≥ 1 and U ≥ 2πu0, (3.91)

and referring to Appendix C, it turns out that (3.91) with the equality sign in-

deed represents the equation for a standard hyperbola in the U −H (two dimen-

sional) plane with the following key characteristics: the hyperbola is centered at

(2πu0, 0), its semi-major and semi-minor axes are equal and are given by V ; its ec-

centricity is e =
√

2 and the slopes of its asymptotes are ±1. Since U ≥ 2πu0, we

only have to consider the right branch of hyperbola. Notice that the geostrophic

parameter u0 only affects the location of the center of the hyperbola and v1(0)

(through V) only affects the length of the semi-axes. It is interesting to note that

while the parameter space is really four dimensional, we can succinctly represent

the effects of all the parameters using the standard hyperbola in two dimensions.

Refer to Figure 3.7 for an illustration.

Now consider the case for ∆2(t) ≥ 0 when u0 > 0, namely

U +
√
H2 + V 2 ≤ −2πu0, and U ≤ −2πu0. (3.92)

Rewriting (3.92) as

(U + 2πu0)2

V 2
− H2

V 2
≤ 1, and U ≤ −2πu0, (3.93)

it can be verified that (3.93) with equality sign denotes a hyperbola which shares

all the characteristics of the one described above but centered (−2πu0, 0). Refer

to Figure 3.8 for an illustration. Again, in view of the constraint U ≤ 2πu0, we

only have to consider the left branch of hyperbola.
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Figure 3.7: Hyperbola corresponding to (14.9) C in the center at (2πu0, 0) for
u0 = 1 Let v1(0) = 1 and the semi axes AC = AC ′ = BC = 1. The
asymptotes have slope ±1.
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Figure 3.8: Hyperbola corresponding to (14.11) C in the center at (−2πu0, 0) with
u0 = 1 Let v1(0) = 1 and the semi axes CA = CA′ = CB = CB′ = 1.
The asymptotes have slope ±1.
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Figure 3.9: The combined system of hyperbolas from Figure 3.7 and 3.8. Regions
corresponding to different signs of ∆1(t) and ∆2(t) are shown. Points
on the hyperbola are the bifurcation points.

The complete characterization of the four types of equilibria in Case 3 in

Section 4 is obtained by superimposing two systems of hyperbolas in Figures 3.7

and 3.8. This combined system along with the complete characteristic of various

regions are given in Figure 3.9.

When u0 → 0, the center of the hyperbolas move towards the origin of the

U−H plane. Similarly, when v1(0)→ 0, while the eccentricity e =
√

2 the slopes

of the asymptotes remain constant at ±1, the lengths of the semi axes shrink to

zero.

3.6.2 Case 2

From (3.88), the condition for ∆1(t) ≥ 0, when u0 ≤ 0, becomes

(U + 2π |u0|)2

V 2
− H2

V 2
≤ 1, and U ≤ −2π|u0|. (3.94)
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and from (3.89) the conditions for ∆2(t) ≥ 0, and u0 ≤ 0, becomes

(U − 2π |u0|)2

V 2
− H2

V 2
≥ 1, and U ≤ −2π|u0|. (3.95)

Equations (3.94)-(3.95) with equality sign again represent the system of hyper-

bolas whose properties are quite similar to the one for the case u0 > 0. For

completeness, we provide a snapshot of the field plot at time t = 0 and t = 0.5 for

values of parameters in Region 1, 2 and 3, in figures 3.10, 3.11 and 3.12 (in pages

76-80) respectively. Figure 3.13 gives the field plot at time t = 0 and t = 0.5

corresponding to a bifurcation point on the boundary between Regions 1 and

2. Similarly, figure 3.14 provides the field plot at time t = 0 and t = 0.5 for a

bifurcation point on the boundary between Regions 2 and 3.

3.7 Tracer Dynamics in the Linearized Shallow

Water Model

Now substituting (3.27) into (3.1), we get explicit expression for u(t), v(t), and,

h(t), which is the solution of (2.19). Given that we know u(t), v(t), and h(t) we

can now compute the solution of (3.31) setting

ẋi(t) = u(t),

ẏi(t) = v(t),

(3.96)
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and integrating

xi(t) = xi(0) +

∫ t

0

u(τ)dτ,

yi(t) = yi(0) +

∫ t

0

v(τ)dτ.

(3.97)

Therefore, we can compute the position of the ith drifter using equations (3.27) -

(3.97).

System before substitution of amplitudes listed above

u(t) = −2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t),

v(t) = +2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t),

h(t) = sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t).

(3.98)

Summarizing all our efforts, we get explicit equations for tracer positions as
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follows:

u(t) = −2 π l sin(2π k x) cos(2 π l y) u0

+ cos(2 πmy)


(

cos
(
t
√

4 π2m2 + 1
)

+ 4m2 π2

)
4 π2m2 + 1

u1(0)

+
sin
(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

v1(0)

+

2 πm

(
cos
(
t
√

4 π2m2 + 1
)
− 1

)
4 π2m2 + 1

h1(0)

 ,

v(t) = 2 π k cos(2π k x) sin(2 π l y)u0

− cos(2πmy)

sin
(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

u1(0)

− cos
(
t
√

4 π2m2 + 1
)
v1(0)

+
2 πm sin

(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

h1(0)

 ,

h(t) = sin(2 π k x) sin(2 π l y)u0

+ sin(2 πmy)


2 πm

(
cos
(
t
√

4 π2m2 + 1
)
− 1

)
4 π2m2 + 1

u1(0)

+
2πm sin

(
t
√

4π2m2 + 1
)

√
4 π2m2 + 1

v1(0)

+

(
4m2 π2 cos

(
t
√

4 π2m2 + 1
)

+ 1

)
4π2m2 + 1

h1(0)

 .

(3.99)
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3.8 Summary

In this chapter we have presented a new analytical solution of the linear cou-

pled system of three PDE’s that describe amplitudes of the linear shallow water

model (LSWM). This, in term, allowed us to give a complete stability analy-

sis of the LSWM, after dividing model into three distinct modes (geostrophic,

inertial-gravity and combined). It can be noted that the geostrophic mode is

related to a cellular flow field with hyperbolic fixed points located at (x, y) =

(i/2k, j/2l), i, j ∈ Z. This flow is prevented from mixing by separatrices. In-

troduction of the time-dependent inertial-gravity modes brings mixing. We were

able to find equilibria points of SWM at hand, for each of the three cases. The bi-

furcation analysis was done; the four dimensional parameter space was converted

into two dimensional space with the system of hyperbolas indicating bifurcations.

In addition, we have expressed tracer dynamics in a closed form with the use of

the above mentioned analytical expressions for amplitudes. These findings were

presented by Jabrzemski and Lakshmivarahan (2013) at [5]. These analytical

expressions for tracer dynamics are going to be used for data assimilation and

sensitivity analysis in the subsequent chapters.
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Figure 3.10: A snapshot of the time varying vector field given by (3.31) at time
t = 0 and t = 0.5, where u0 = 1.0, u1(0) = 12.5664, v1(0) = λ
and h1(0) = −2.0. This corresponds to V (0) = 1, U(0) = 4π and
H(0) = 0, which is a point in Region 1 in Figure 9.
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Figure 3.11: A snapshot of the time varying vector field given by (3.31) t = 0
and t = 0.5, where u0 = 1.0, u1(0) = 0.0, v1(0) = λ and h1(0) = 0.0
This corresponds to V (0) = 1, U(0) = 0 and H(0) = 0, which is a
point in Region 2 in Figure 9.
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Figure 3.12: A snapshot of the time varying vector field given by (3.31) A snap-
shot of the time varying vector field given by (3.31) at time t = 0
and t = 0.5, where u0 = 1.0, u1(0) = −12.5664, v1(0) = λ and
h1(0) = 2.0. This corresponds to V (0) = 1, U(0) = −4π and
H(0) = 0, which is a point in Region 3 in Figure 9.
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Figure 3.13: A snapshot of the time varying vector field given by (3.31) A snap-
shot of the time varying vector field given by (3.31) at time t = 0
and t = 0.5, where u0 = 1.0, u1(0) = 7.2832, v1(0) = λ and
h1(0) = −1.1592. This corresponds to V (0) = 1, U(0) = 2π + 1
and H(0) = 0, which is a bifurcation point on the hyperbola sepa-
rating Region 1 and 2 in Figure 9.
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Figure 3.14: A snapshot of the time varying vector field given by (3.31) A
snapshot of the time varying vector field given by (3.31) t = 0
and t = 0.5, where u0 = 1.0, u1(0) = −7.2832, v1(0) = λ and
h1(0) = 1.1592. This corresponds to V (0) = 1, U(0) = −2π− 1 and
H(0) = 0, which is a bifurcation point on the hyperbola separating
Region 2 and 3 in Figure 9.
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Chapter 4

A Framework for Data

Assimilation

4.1 Introduction

We are going to follow the approach known as a forward sensitivity method (FSM)

to data assimilation as its value was demonstrated by Laksmivarahan and Lewis

in [10]. The have demonstrated the utility of FSM to improve correspondence

of model results and observations, and pointed out that sensitivity of the model

to elements of control vector provides insight into model dynamics. They have

also demonstrated that there is a dual relationship to equations stemming from

4D-Var/adjoint equations using a simplified air-sea interaction model in Laksh-

mivarahan (2010) [9] and [10].
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4.2 Model

In our dissertation we are going to focus on horizontal components of tracer

positions. Therefore, our model can be categorized as a deterministic dynamical

system, where x(t) and y(t) describe its state, as shown in equations (4.1). Here,

t ≥ 0 denotes the time, and α belongs to the parameter space R4. We state this

system of ordinary differential equations again for completeness

u = ẋ = F1(x, y,α),

v = ẏ = F2(x, y,α),

(4.1)

We can define

X =

x
y

 , Ẋ =

ẋ
ẏ

 , and

F =

F1

F2

 ,

(4.2)

where X ∈ R2, F ∈ R2, and X(0) ∈ R2 gives initial conditions. We assume that

that the solution X(t) exists and is unique. The time derivatives of x(t) and y(t)

are indicated respectively by ẋ and ẏ. The equation (4.1) becomes

Ẋ = F
(
X(k),α

)
. (4.3)

Discretizing the above equation using an Euler scheme (k indicates the time step),

we get:

X(k + 1)−X(k)

∆t
= F

(
X(k),α

)
,
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or

X(k + 1) = X(k) + F
(
X(k),α

)
∆t. (4.4)

More generally, this can be stated as

X(k + 1) = M(X(k),α), where M(X(k),α) = X(k) + F
(
X(k),α

)
∆t. (4.5)

So, our physical model is given by the above equation, where

M : R2 × R4 → R2, (4.6)

M(X(k),α) =

M1(X(k),α)

M2(X(k),α)

 . (4.7)

4.2.1 Observations

If it is assumed that we have a set of N observations of the position of the tracer

z(k) = h(X̂(k),α) + ν(k),where h : R2 × R4 and ν(k) ∈ N(0, σ2) (4.8)

The mapping h(·) can be called the observation operator, or the forward operator.

We assume that ν(t) is a white Gaussian noise.
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4.2.2 Objective function

We define our objective function as

J(X(0),α) =
1

2σ2

N∑
k=1

[z(k)− h(X(k),α)]2 =
1

2σ2

N∑
k=1

Jk(X(0),α), where

X(0) =

x(0)

y(0)

 is the initial position of the tracers,

α = (u0, u1(0), v1(0), h1(0))T , andσ2 is the variance of observations.

(4.9)

Our goal is to estimate X(0) and/or α based on the set of N observations (4.8)

to minimize (4.9) w.r.t X(0) and α, where X(k) are constrained by the model

dynamics. Therefore, we have a constrained optimization problem with equality

constraints.

Fact 1

Given h(X,α), if X is perturbed by δX and α by δα, then

h(X + δX,α+ δα) ≈ h(X,α) + DX(h)δX + Dα(h)δα, where

DX(h) =

[
∂h

∂x
,
∂h

∂y

]
and

Dα(h) =

[
∂h

∂u0

,
∂h

∂u1(0)
,

∂h

∂v1(0)
,

∂h

∂h1(0)

]
.

(4.10)

Here DX(h) ∈ R1×2 indicates the Jacobian of the forward operator h(·) with

respect to X, and Dα(h) ∈ R1×4 represents the Jacobian of the forward operator

h(·) with respect to α. Therefore, from (4.10), the variation in h denoted by δh
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is given by

δh = h(X + δX,α+ δα)− h(X,α) = DX(h) δX + Dα(h) δα. (4.11)

Fact 2

Let as define

Jk(X(0),α) =
1

2σ2
[z(k)− h(X(k),α)]2. (4.12)

Then we can express its first variation as

δJk =
−1

σ2
[z(k)− h(X(k),α)]δh, (4.13)

and further, using equation (4.11), we get

δJk =
−1

σ2

[
z(k)− h(X(k),α)

] [
DX(h)δX

∣∣∣∣
X=X(k)

+ Dα(h)δα

∣∣∣∣
X=X(k)

]
. (4.14)

If we define a vector of forecast errors

e(k) = z(k)− h(X(k),α), (4.15)

then we can express variation (4.14) as

δJk =
−e(k)

σ2

[
DX(h)δX(k) + Dα(h)δα

]
. (4.16)

Fact 3

We can relate δX(k) to δX(0) and δα using a simple model, that we depict below:
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(X(0),α) //

��

(X(k))

��

(X(0) + δX(0),α+ δα) // (Y (k) = X(k) + δX(k))

(4.17)

Clearly δX(k) is the first variation in X(k) resulting from a first variation δX(0)

in X(0) and from δα in α. From first principles:

δX(k) =

[
∂X(k)

∂X(0)

]
δX(0) +

[
∂X(k)

∂α

]
δα, (4.18)

with the forward sensitivity of the solution at time k w.r.t X(0) is given by the

Jacobian [
∂X(k)

∂X(0)

]
= DX(0)[X(k)],

and the forward sensitivity of the solution at time k w.r.t α is represented by the

Jacobian [
∂X(k)

∂α)

]
= Dα[X(k)].
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Fact 4

Consider the first variation of J in equation (4.9) from Fact 2.

δJ =
−1

σ2

N∑
k=1

e(k)δh {from Fact 2}

=
−1

σ2

N∑
k=1

e(k)
[
DX(h)δX(k) + Dα(h)δα

]
{from Fact 1}

=
−1

σ2

N∑
k=1

e(k)

DX(h)

[∂X(k)

∂X(0)

]
δX(0) +

[
∂X(k)

∂α

]
δα

+ Dα(h)δα


=
−1

σ2

N∑
k=1

e(k)

[
∂X(k)

∂X(0)

]
DX(h)δX(0) +

−1

σ2

N∑
k=1

e(k)

[
∂X(k)

∂α

]
DX(h)δα

+
−1

σ2

N∑
k=1

e(k)Dα(h)δα.

(4.19)

Let < a,b > denote the inner product. We can apply it as follows:

δJ =
−1

σ2

N∑
k=1

〈[
∂X(k)

∂X(0)

]
DT

X(h)e(k), δX(0)

〉

− 1

σ2

N∑
k=1

〈[
∂X(k)

∂α

]
DT

X(h)e(k), δα

〉

− 1

σ2

N∑
k=1

〈
DT
α(h)e(k), δα

〉
=

〈
−1

σ2

N∑
k=1

[
∂X(k)

∂X(0)

]
DT

X(h)e(k), δX(0)

〉

−

〈
1

σ2

N∑
k=1

[
∂X(k)

∂α

]
DT

X(h)e(k), δα

〉

−

〈
1

σ2

N∑
k=1

DT
α(h)e(k), δα

〉
.

(4.20)
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Using first principles, we can express it as

δJ =
〈
∇X(0)J, δX(0)

〉
+ 〈∇αJ, δα〉 . (4.21)

Comparing the like terms on the r.h.s of (4.19) and (4.20), we can get

∇X(0)J =
−1

σ2

N∑
k=1

[
∂X(k)

∂X(0)

]T
DT
X(h) e(k), (4.22)

∇αJ =
−1

σ2

N∑
k=1

[
∂X(k)

∂α

]T
DT
X(h) e(k)

− 1

σ2

N∑
k=1

DT
α(h)

∣∣∣∣∣∣
X=X(k)

e(k).

(4.23)

Fact 5

Left hand side of (4.22) is called the adjoint sensitivity, if it is expressed as the

sum of the products of the forward sensitivity
[
∂X(k)
∂X(0)

]T
DT

X(h) and the forecast

errors e(k). Thus, ∇X(0)J will be non-zero at time k only if both
[
∂X(k)
∂X(0)

]T
DT

X(h)

and e(k) are non-zero. If one of them is small, their contribution will be small.

Similarly, the same can be noted for the other gradient ∇αJ . Therefore, it is of

interest to examine the evolution of
[
∂X(k)
∂X(0)

]
and

[
∂X(k)
∂α

]
with time k.

Fact 6

Consider equation (4.5)

X(k + 1) = M(X(k),α).
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We can differentiate both sides with respect to X(0) and get

[
∂X(k + 1)

∂X(0)

]
= DX(k)(M)

[
∂X(k)

∂X(0)

]
with I.C.

∂X(0)

∂X(0)
= I. (4.24)

Solution of (4.24) gives the forward sensitivity ∂X(k)
∂X(0)

for all k. We can note that

∂X(k)
∂X(0)

∈ R2×2. Analogously, we can differentiate it with respect to α and obtain

[
∂X(k + 1)

∂α

]
= DX(k)(M)

[
∂X(k)

∂α

]
+ Dα(M)

= DX(k)(M)

[
∂X(k)

∂α

]
+

[
∂Mi(k)

∂αj

]
with I.C.

∂X(0)

∂α
≡ 0.

(4.25)

Solution of (4.25) gives the forward sensitivity with respect to α for all k. Note

that ∂X(k)
∂α
∈ R2×4.

4.3 Data Assimilation using Forward Sensitiv-

ity Method (FSM)

Let X(k) be the solution at time k starting with [X(0),α], such that forecast

error can be represented as

e(k) = z(k)− h
(
X(k),α

)
6= 0, (4.26)

where h
(
X(k),α

)T
is the forward operator with X(k) =

(
x(k), y(k)

)T
and

α =
(
u0, u1(0), v1(0), h1(0)

)
. Our goal is to find a correction

(
δX(0), δα

)
such

that the new solution Y(k) = X(k)+δX(k) at time k will annihilate the forecast
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error e(k).

z(k)− h
(
Y(k),α+ δα

)
= 0,

z(k)− h
(
X(k) + δX(k),α+ δα

)
= 0,

z(k)− h
(
X(k),α

)︸ ︷︷ ︸
e(k)

−
[
DX(k)(h)δX(k) + Dα(h)δα

]
= 0.

(4.27)

This gives as expression for the forecast error as

e(k) = DX(h)δX(k) + Dα(h)δα. (4.28)

But from Fact 3 (equation (4.18)) we get

δX(k) =

[
∂X(k)

∂X(0)

]
δX(0) +

[
∂X(k)

∂α

]
δα.

When we substitute equation (4.18) in equation (4.28) we express the forecast

error as

e(k) = DX(k)(h)

[∂X(k)

∂X(0)

]
δX(0) +

[
∂X(k)

∂α

]
δα

+ Dα(h)δα

= DX(k)(h)

[
∂X(k)

∂X(0)

]
δX(0) + DX(k)(h)

[
∂X(k)

∂α

]
δα+ Dα(h)δα

=

DX(k)(h)

[
∂X(k)

∂X(0)

]
︸ ︷︷ ︸

H1

, (DX(k)(h)

[
∂X(k)

∂α

]
+ Dα(h))︸ ︷︷ ︸

H2


δX(0)

δα

 .
(4.29)

Let H1 = DX(k)(h)

∣∣∣∣∣∣
1×2

[
∂X(k)
∂X(0)

]∣∣∣∣∣∣
2×2

be a row vector of size two. We can compute

∂X(k)
∂X(0)

using equation (4.24), and ∂X(k)
∂α

using equation (4.25).
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Let H2 = DX(k)(h)

∣∣∣∣∣∣
1×2

[
∂X(k)
∂α

]∣∣∣∣∣∣
2×4

+ Dα(h))

∣∣∣∣∣∣
1×4

be a row vector of size four.

We can compute ∂X(k)
∂α

using equation (4.25).

Let

ζ =


∂X(0)

. . . .

∂α



}
2

. .}
4

∈ R6,

[
H1(k),H2(k)

]

∂X(0)

. . . .

∂α

 = e(k), or

H(k)ζ = e(k)

(4.30)

with
[
H1(k),H2(k)

]
is a row vector of size 1×6. Equation (4.30) is a linear least

squares problem (chapter 5, Lewis et at. (2006) [12]).

4.3.1 Multiple observations

Let there be N observations of the position of the tracer as it floats in the flow.

Then we have one equation like (4.30) for each time, and we can combine them

to get 

H(1)

H(2)

. . . .

H(N)


ζ =



e(1)

e(2)

. . . .

e(N)


, or

Hζ = e,

(4.31)
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where 

H(1)

H(2)

. . . .

H(N)


∈ RN×6, and



e(1)

e(2)

. . . .

e(N)


∈ RN . (4.32)

If N > 6, the there are more equations than the number of unknowns, and

the system is over-determined. If we apply the method of normal equations, then

the solution is given by:

ζ =
(
HTH

)−1

HTe. (4.33)

The equation giving the optimal solution can be expressed as

(
HTH

)
ζ = HTe. (4.34)

This can also be solved by QR decomposition or using SVD. They are described

in [12] in chapters 5 and 9. Thus, FSM based method gives the correction ζ. We

can improve the estimate by iteratively repeating the above procedure numerous

times.

4.4 Summary

We have provided a general description of the methodology that we are going

to use for our data assimilation experiments. As indicated by Lakshmivarahan

and Lewis (2010) [10], FSM allows for correction of the control vector and initial

conditions given the governing equations of the physical model. We will use

it as a diagnostic tool to better understand measurement placement within a

time domain, and compare sensitivity following different starting points for our
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experiments. We will start off with the investigation of the evolution of the

sensitivity functions derived for the linearized shallow water model that is the

focus of this dissertation. In addition, the FSM methodology outlined in the

chatter will server as a tool for data assimilation that will follow.
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Chapter 5

Sensitivity

5.1 Introduction

In this chapter we will provide the most fundamental definition of sensitivity to

bring it together with FSM and apply ideas from FSM to find sensitivity of the

linearized shallow water model to initial conditions and the control vector. We

will derive analytical formulas for sensitivity, since we have a closed form solution

for trajectories. Using these closed form expressions, we will conduct a series of

numerical experiments to investigate sensitivity of the linearized shallow water

model, and illustrate how placement of measurements influences our ability to

improve model error.

The dependence of the model prediction on initial conditions and parameters

has always been a part of the sensitivity analysis. A comprehensive overview

of sensitivity analysis used for chemical models has been given by Rabitz et

al. (1983) [17]. Rabitz has indicated that sensitivity analysis gives a measure

of model error propagation, and a great insight into fine physical structure of

the model. Obviously, there are some simple calculations that can be applied
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repeatedly to gain a very general idea about this structure, but sensitivity anal-

ysis conducted with well-defined sensitivity gradients answers a wide variety of

questions concerning mutual relation of all of the dependent and independent

variables in the model.

5.2 Basic ideas

We can start by presenting a fundamental measure of sensitivity following (Ap-

pendix E, Lewis et al. (2006) [12]). For a scalar valued function F of a scalar

variable x, we indicate ∆F (x) as a change stemming from a change ∆x in x,

that is, ∆F (x) = F (x + ∆x) − F (x). As a next step, we introduce a relative

change in F (x) as ∆F (x)
F (x)

, and relative change in x as ∆x
x

. And finally we can

formulate a measure of sensitivity of the dependent variable F to changes in the

independent variable x, and apply the standard finite difference approximation

to the derivative of F (x) w.r.t x

SF (x) =

∆F (x)
F (x)

∆x
x

=
∆F (x)

F (x)

x

∆x
≈ dF (x)

dx

(
x

F (x)

)
. (5.1)

Clearly, SF (x) as a measure of sensitivity is related to the first derivative of F

w.r.t x. Along these lines, we can relate the gradient of the dependent variable

F to the measure of the first-order sensitivity.
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5.3 Evolution of sensitivity of the shallow water

model with respect to initial conditions and

parameters

Let us present equations that reflect the sensitivity of the linearized shallow

water model to the control vector and initial conditions. These equations listed

below are used in our DA experiments using FSM and are derived from equations

(3.99) that were presented in the closed form. We are only focusing on (x, y)

components.

Let us bring equation (4.5) again; this and (3.99) gives a starting point for

sensitivity analysis of the linearized shallow water model.

X(k + 1) = M
(
X(k), α

)
, where M

(
X(k), α

)
= X(k) + F

(
X(k), α

)
∆t.

Our physical model describes x(t) and y(t); it was mentioned in (4.6),

M : R2 × R4 → R2,

M(X(k), α) =

M1(X(k),α)

M2(X(k),α)

 .
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M1

(
X(k), α

)
= x(t+ 1)

= x(t) +
[
−2 π l sin

(
2 π k x(t)

)
cos
(
2 π l y(t)

)
u0

+ cos
(
2πmy(t)

)

(

cos
(
t
√

4π2m2 + 1
)

+ 4m2 π2

)
4 π2m2 + 1

u1(0)

+
sin
(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

v1(0)

+

2πm

(
cos
(
t
√

4π2m2 + 1
)
− 1

)
4π2m2 + 1

h1(0)


∆t,

(5.2)

M2

(
X(k), α

)
= y(t+ 1)

= y(t) +
[
2π k cos

(
2 π k x(t)

)
sin
(
2π l y(t)

)
u0

− cos
(
2πmy(t)

) sin
(
t
√

4π2m2 + 1
)

√
4π2m2 + 1

u1(0)

− cos
(
t
√

4 π2m2 + 1
)
v1(0)

+
2 πm sin

(
t
√

4π2m2 + 1
)

√
4π2m2 + 1

h1(0)


∆t.

(5.3)

We have given general equations to find sensitivity in (4.10); here we provide

Jacobians of the solution X(t) that will be used to trace sensitivity of the shallow

water model:

Dα(M) =

[
∂M

∂u0

,
∂M

∂u1(0)
,
∂M

∂v1(0)
,
∂M

∂h1(0)

]
, and

DX(M) =

[
∂M

∂x
,
∂M

∂y

]
.

(5.4)
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5.3.1 Sensitivity to elements of

the control vector α

Dα(M)(1,1) = −2 π l cos(2π l y) sin(2 π k x) , (5.5)

Dα(M)(1,2) =

cos(2πmy)

(
cos
(
t
√

4 π2m2 + 1
)

+ 4m2 π2

)
4π2m2 + 1

, (5.6)

Dα(M)(1,3) =
sin
(
t
√

4π2m2 + 1
)

cos(2πmy)
√

4π2m2 + 1
, (5.7)

Dα(M)(1,4) =

2 πm cos(2πmy)

(
cos
(
t
√

4π2m2 + 1
)
− 1

)
4π2m2 + 1

, (5.8)

Dα(M)(2,1) = 2π k cos(2π k x) sin(2 π l y) , (5.9)

Dα(M)(2,2) = −
sin
(
t
√

4 π2m2 + 1
)

cos(2πmy)
√

4 π2m2 + 1
, (5.10)

Dα(M)(2,3) = cos
(
t
√

4π2m2 + 1
)

cos(2πmy) , (5.11)

Dα(M)(2,4) = −
2πm sin

(
t
√

4π2m2 + 1
)

cos(2πmy)
√

4 π2m2 + 1
, (5.12)

Dα(M)(3,1) = sin(2π k x) sin(2 π l y) , (5.13)

Dα(M)(3,2) =

2 πm sin(2πmy)

(
cos
(
t
√

4 π2m2 + 1
)
− 1

)
4 π2m2 + 1

, (5.14)

Dα(M)(3,3) =
2 πm sin

(
t
√

4 π2m2 + 1
)

sin(2πmy)
√

4 π2m2 + 1
, (5.15)

Dα(M)(3,4) =

sin(2πmy)

(
4m2 π2 cos

(
t
√

4π2m2 + 1
)

+ 1

)
4π2m2 + 1

. (5.16)
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5.3.2 Sensitivity to elements of

the initial conditions X(0)

DX(0)(M)(1,1) = −4 k l π2 u0 cos(2π k x) cos(2 π l y) , (5.17)

DX(0)(M)(1,2) = 4 l2 π2 u0 sin(2π k x) sin(2 π l y) (5.18)

− 2πm sin(2πmy)

v1(0) sin
(
t
√

4π2m2 + 1
)

√
4π2m2 + 1

+

u1(0)

(
cos
(
t
√

4 π2m2 + 1
)

+ 4m2 π2

)
4 π2m2 + 1

+

2πmh1(0)

(
cos
(
t
√

4π2m2 + 1
)
− 1

)
4 π2m2 + 1

 ,

DX(0)(M)(2,1) = −4 k2 π2 u0 sin(2π k x) sin(2 π l y) , (5.19)

DX(0)(M)(2,2) = +4 k l π2 u0 cos(2π k x) cos(2 π l y) (5.20)

+ 2 πm sin(2πmy)

u1(0) sin
(
t
√

4 π2m2 + 1
)

√
4 π2m2 + 1

− v1(0) cos
(
t
√

4 π2m2 + 1
)

+
2πm sin

(
t
√

4π2m2 + 1
)

√
4 π2m2 + 1

h1(0)

 ,

DX(0)(M)(3,1) = 2π k u0 cos(2π k x) sin(2 π l y) , (5.21)
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DX(0)(M)(3,2) = 2π l u0 sin(2π k x) cos(2π l y) (5.22)

+ 2 πm cos(2πmy)


h1(0)

(
4m2 π2 cos

(
t
√

4π2m2 + 1
)

+ 1

)
4 π2m2 + 1

+
2πmv1(0) sin

(
t
√

4 π2m2 + 1
)

√
4π2m2 + 1

+

2 πmu1(0)

(
cos
(
t
√

4 π2m2 + 1
)
− 1

)
4π2m2 + 1

 .

5.4 Numerical experiments

5.4.1 Experiment 5.1

In this experiment, we are running a combined mode, with control vector and

initial conditions given in Table 5.1. The goal of this experiment is to show and

analyze the sensitivity of the model to the initial conditions and elements of the

control vector.

Table 5.1: Experiment 5.1: Base control vector α and initial conditions X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.000 0.000 0.500 0.000 0.209 0.109 0.5 2.5e-05
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Figure 5.1: Experiment 5.1: Sensitivity of x(t) w.r.t. x(0)
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Figure 5.2: Experiment 5.1: Sensitivity of x(t) w.r.t. y(0)
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Figure 5.3: Experiment 5.1: Sensitivity of y(t) w.r.t. x(0)
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Figure 5.4: Experiment 5.1: Sensitivity of y(t) w.r.t. y(0)
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Figure 5.5: Experiment 5.1: Sensitivity of x(t) w.r.t. u0
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Figure 5.6: Experiment 5.1: Sensitivity of x(t) w.r.t. u1(0)

We can make several general comments about the sensitivity functions for this

particular experiment. When it comes to initial conditions, x depends initially on

x0 as seen in Figure 5.1, but not on y0 as depicted in Figure 5.2. However, by the
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Figure 5.7: Experiment 5.1: Sensitivity of x(t) w.r.t. v1(0)
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Figure 5.8: Experiment 5.1: Sensitivity of x(t) w.r.t. h1(0)

end of our simulation, x depends much more on y0 than on x0. This dependence

is similar in the middle part of the run, when it initially decreases, then increase

and decreases again before reaching high values at the end of the run. We have a

104



0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [h]

∂
y
/ 

∂
u
0

Figure 5.9: Experiment 5.1: Sensitivity of y(t) w.r.t. u0
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Figure 5.10: Experiment 5.1: Sensitivity of y(t) w.r.t. u1(0)

reverse situation with values of y when it comes to initial conditions as depicted

in Figures 5.3 and 5.4.

Sensitivity to the control vector elements shares common treats. It starts
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Figure 5.11: Experiment 5.1: Sensitivity of y(t) w.r.t. v1(0)
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Figure 5.12: Experiment 5.1: Sensitivity of y(t) w.r.t. h1(0)

from nearly zero, and after several zero crossings goes to a maximum value at

the end of the simulation at time 0.5. We can see that at the end of the run,

sensitivity of x to u0 seen in Figure 5.5 is much bigger than to u1(0) as depicted
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in Figure 5.6, and they are reverse in sign. There is not much initial sensitivity of

x to h1(0), but it intensifies by the end of the run. Similar pattern of sensitivity

characterizes y.

5.4.2 Experiment 5.2

In this experiment, we are running a combined mode, with control vector and

initial conditions given in Table 5.2. We have kept u0, u1(0) , v1(0) and h1(0)

identical to Experiment 5.1, but we have changed the initial conditions x0 , y0.

Table 5.2: Experiment 5.2: Base control vector α and initial conditions X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.000 0.000 0.500 0.000 0.0 0.0 0.5 2.5e-05
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Figure 5.13: Experiment 5.2: Sensitivity of x(t) w.r.t. x(0)
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Figure 5.14: Experiment 5.2: Sensitivity of x(t) w.r.t. y(0)
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Figure 5.15: Experiment 5.2: Sensitivity of y(t) w.r.t. x(0)
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Figure 5.16: Experiment 5.2: Sensitivity of y(t) w.r.t. y(0)
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Figure 5.17: Experiment 5.2: Sensitivity of x(t) w.r.t. u0
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Figure 5.18: Experiment 5.2: Sensitivity of x(t) w.r.t. u1(0)

We can notice that the character of sensitivity functions have changed a great

deal when compared to Experiment 5.1. There is a small initial dependence of

x(t) on initial condition x0 that grows and stay generally large for a duration
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Figure 5.19: Experiment 5.2: Sensitivity of x(t) w.r.t. v1(0)
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Figure 5.20: Experiment 5.2: Sensitivity of x(t) w.r.t. h1(0)

of the experiment, as seen in Figure 5.13. By looking at Figure 5.14, we can

state that this is not the case for dependence of x(t) on y0 that starts from zero

and grows, but is much smaller than dependence on x0. We can notice that
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Figure 5.21: Experiment 5.2: Sensitivity of y(t) w.r.t. u0
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Figure 5.22: Experiment 5.2: Sensitivity of y(t) w.r.t. u1(0)

y(t) depends on initial conditions in a different way. For almost one third of the

simulation, y(t) does not depends on x0, but depends a great deal on y0, as seen

in Figures 5.15 and 5.16. This dependence subsides when it comes to y(0), since
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Figure 5.23: Experiment 5.2: Sensitivity of y(t) w.r.t. v1(0)
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Figure 5.24: Experiment 5.2: Sensitivity of y(t) w.r.t. h1(0)

it falls to nearly zero levels after one fifth of the simulation time.

We can notice in Figures 5.17 and 5.18 that u(t) does not depend initially on

u0 or u1(0). This dependence grows with the simulation time, and is inversely
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dependndent on u0, and directly dependent on u1(t). We can also notice that for

this simulation, x(t) is sensitive more to u1(0) than to v1(0).

Judging from Figure 5.22, y(t) is sensitive to u1(0) more than to v1(0) that is

depicted in Figure 5.23.

5.4.3 Experiment 5.3

In this experiment, we are running a combined mode, with control vector and

initial conditions given in Table 5.3. While the control vector α is the same as

the two previous experiments, initial conditions are moved to the point (0.1, 0.1).

Table 5.3: Experiment 5.3: Base control vector α and initial conditions X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.000 0.000 0.500 0.000 0.1 0.1 0.5 2.5e-05
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Figure 5.25: Experiment 5.3: Sensitivity of x(t) w.r.t. x(0)
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Figure 5.26: Experiment 5.3: Sensitivity of x(t) w.r.t. y(0)
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Figure 5.27: Experiment 5.3: Sensitivity of y(t) w.r.t. x(0)
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Figure 5.28: Experiment 5.3: Sensitivity of y(t) w.r.t. y(0)
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Figure 5.29: Experiment 5.3: Sensitivity of x(t) w.r.t. u0
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Figure 5.30: Experiment 5.3: Sensitivity of x(t) w.r.t. u1(0)

We can notice in Figure 5.25 that x(t) sensitivity starts around one, then

goes through a zero crossing point at time 0.13 to reach value −2, then it grows

to about 3.5 to have a zero crossing again at time 0.36 do drop to −5.5. While
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Figure 5.31: Experiment 5.3: Sensitivity of x(t) w.r.t. v1(0)
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Figure 5.32: Experiment 5.3: Sensitivity of x(t) w.r.t. h1(0)

behavior is similar to this in Figure 5.1, values of sensitivity are bigger than in the

Experiment 5.1. Sensitivity of x(t) w.r.t. y0 start from zero, but it reaches values

bigger than in the Experiment 5.1 as well. We can see in Figure 5.27 that y(t) is
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Figure 5.33: Experiment 5.3: Sensitivity of y(t) w.r.t. u0
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Figure 5.34: Experiment 5.3: Sensitivity of y(t) w.r.t. u1(0)

initially not sensitive to value of x(0), but it reaches value in the order of 7.5 by

the end of the simulation. Its graph has three zeros crossings, and behaves quite

differently than the one from Figure 5.3 in Experiment 5.1. When we compare
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Figure 5.35: Experiment 5.3: Sensitivity of y(t) w.r.t. v1(0)
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Figure 5.36: Experiment 5.3: Sensitivity of y(t) w.r.t. h1(0)

sensitivity y(t) from Figure 5.28 with the one from the Experiment 5.1 Figure

5.4, we can notice than they have similar shape but y(t) sensitivity values in the

Experiment 5.3 are almost twice as big.
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5.5 Summary

In this chapter, we have analyzed model sensitivity, that is the dependence of the

linearized shallow water model on initial conditions and parameters. We have

shown that the shallow water model can exhibit different behavior that depends

on the initial conditions and the control vector. This gives us a great insight into

the fine structure of the tracer dynamics. By analyzing sensitivity plots, we can

answer in the quantitative way, which parameters control tracer position for a

given prediction to a bigger degree. We can also see in included plots that for the

linearized shallow water model, there is no identical dependence on parameters

and initial conditions; they have to be analyzed case by case. This determination

of parametric sensitivity is very important for the successful data assimilation.

This is studied in the next chapter.
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Chapter 6

Numerical experiments in Data

Assimilation

6.1 Introduction

In the previous chapter, we have conducted numerical experiments in which we

have analyzed sensitivity of tracer dynamics to the initial conditions X(0) and

elements of the control vector α. Our findings would suggest that there is a

reason for different influence of measurements taken with in a temporal domain.

In this chapter, we demonstrate the effectiveness of the forward sensitivity

method (FSM) by conducting a series of numerical experiments conducting DA.

We differ the number of observations, their temporal distribution and the obser-

vational error variance. We need to bring some definitions we can use to compare

different data assimilation experiments.
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6.1.1 Root-mean-square error

We use the root-mean-square (RMSE) error to estimate the goodness of our data

assimilation scheme, that is, to evaluate a difference between the values that

are observed and values that are estimated by the model. It represents a very

valuable measure of forecast errors and it allows for comparison between forecast

and different number of observations and their placement. Predicted values ŷt at

n different times are compared with the observed values

RMSE =

√∑n
t=1(yt − ŷt)2

n
(6.1)

6.1.2 Condition number of a matrix

Let us bring up a definition of the condition number of a matrix, usually indicated

as κ, from (page 667, Lewis et al. (2006)) [12]. For matrix A ∈ Rm×m, where

A−1 is the inverse of A,

κ(A) = ‖A‖‖A−1‖. (6.2)

The condition number of a matrix describes how the sensitivity of the solution

of a system of linear equations depends on error in the data. It can be said that

matrices with small condition number are well conditioned; singular matrices

have infinite condition numbers. We will use a spectral condition number defined

on (page 668, Lewis et al. (2006))

κ2(A) = ‖A‖2‖A−1‖2 =
maxi |λi|
mini |λi|

. (6.3)
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6.1.3 Methodology

The observations that are used for data assimilation experiments are created using

”Base” trajectory by adding the noise with the observational error variance σ of

different magnitudes given in Table 6.1. In every experiment, control vectors

used for ”Base” trajectory are shown alongside the perturbed control vectors

that we try to improve. We start each numerical experiment with the incorrect

control vector. The forward sensitivity method uses sensitivity functions that

use that erroneous solution. We use FSM to assimilate a different number of

observations, and since we have four elements of the control vector, for number of

observations bigger than four, we have an overdetermined system. Our numerical

experiments use observations from four different temporal ranges described as:

START, MIDDLE, FINISH, UNIFORM. They are described in the next section.

We keep track of the condition number, the ratio of the largest to the smallest

of HTH, since the inverse of HTH influences the optimal adjustments to the

control vector. We have to look at the observation spacing in some temporal

ranges. We can infer some characteristic of the measurement distribution and

compare condition numbers.

We use the iterative process correcting elements of the control vector. After

first iteration, we apply the correction and repeat the process, that is, we make

another forecast using the corrected control vector. We have shown results of

the firs three steps of the iteration. Clearly, FSM improves forecast at each step;

we track improvements by following RMS error between observations and the

forecast.
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Table 6.1: Values of the observational error variance σ and σ2 used in data as-
similation experiments to create perturbed observations

σ σ2

1 0.0707 0.0050
2 0.0866 0.0075
3 0.1000 0.0100
4 0.1118 0.0125
5 0.1225 0.0150
6 0.1323 0.0175
7 0.1414 0.0200

6.2 Data assimilation

Each of our data assimilation experiments consist of four separate data assim-

ilations that deal with different distribution of measurements called: START,

MIDDLE, FINISH and UNIFORM. They differ by placing measurements as fol-

lows: START puts all measurements in the first third of the temporal domain,

MIDDLE puts all measurements in the second third or the temporal domain,

FINISH puts all measurements in the last third of the temporal domain, and

finally UNIFORM distributes measurements over the entire period of modeling.

6.2.1 Experiment 6.1

Experiment base configuration is shown in Table 6.2. These values are used to

create observations in a twin-experiment by adding a random noise with different

σ2 values shown in Table 6.1. Then, control vector α values are modified as shown

in 6.3. Then, four separate experiments are conducted with different distribution

of measurements. We can see a trajectory of the Lagrangian tracer, and data

assimilation.
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Table 6.2: Experiment 6.1: Base control vector α and initial conditions X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.000 0.000 0.500 0.000 0.209 0.109 0.5 2.5e-05

Table 6.3: Experiment 6.1: Perturbed control vector α and initial conditions
X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

0.986523 -0.001833 0.546079 0.136232 0.209 0.109 0.5 2.5e-05

0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

X

Y

 

 

Base

First

Third

Observation

Figure 6.1: Experiment 6.1: Trajectory with 4 measurements, START distribu-
tion

In table 6.4, we can see a summary of similar experiments described so far

with 4 measurements. They differ by increasing value of σ2, by which we perturb

observations in the twin-experiment. We can see in all experiments except one,
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Table 6.4: Experiment 6.1: Comparison of data assimilations for a set of distri-
butions and errors with 4 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0190 0.0056 1.7e+04 1.7e+04
0.007 0.0579 0.0138 2.5e+04 1.8e+04
0.010 0.0565 0.0162 2.4e+04 2.0e+04

START 0.013 0.0361 0.0122 1.7e+04 1.8e+04
0.015 0.0418 0.0129 1.7e+04 1.8e+04
0.018 0.0211 0.0095 1.9e+04 1.7e+04
0.020 0.0479 0.0288 2.0e+04 3.0e+04
0.005 0.0395 0.0073 3.5e+04 3.1e+04
0.007 0.1411 0.0511 5.7e+04 3.0e+04
0.010 0.1428 0.0600 5.8e+04 3.2e+04

MIDDLE 0.013 0.0675 0.0188 3.8e+04 3.1e+04
0.015 0.1059 0.0468 3.5e+04 3.2e+04
0.018 0.0609 0.0177 3.6e+04 3.0e+04
0.020 0.0429 0.0171 3.3e+04 3.4e+04
0.005 0.0574 0.0145 1.1e+05 1.4e+05
0.007 0.2377 0.1652 1.5e+05 1.1e+05
0.010 0.2335 0.1798 1.5e+05 1.3e+05

FINISH 0.013 0.1174 0.0609 9.2e+04 1.2e+05
0.015 0.1774 0.1651 8.1e+04 1.0e+05
0.018 0.1185 0.0568 9.5e+04 1.3e+05
0.020 0.1067 0.1812 1.1e+05 1.2e+05
0.005 0.0319 0.0071 2.2e+05 1.3e+05
0.007 0.1400 0.0592 4.8e+04 8.4e+04
0.010 0.1260 0.0613 5.2e+04 1.4e+05

UNIFORM 0.013 0.0773 0.1497 2.5e+05 5.1e+04
0.015 0.1153 0.5134 1.0e+06 6.0e+04
0.018 0.0628 0.0269 3.9e+04 9.7e+04
0.020 0.0513 0.0209 4.6e+04 1.7e+05

consecutive iterations improve match between the model and observations. In a

run with a uniform distribution, and σ2 set to 0.0125, RMS error increase and
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Figure 6.2: Experiment 6.1: Cost function for three steps of data assimilation,
START measurement distribution

condition number κ is about three times bigger than in most other experiments.
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Figure 6.3: Experiment 6.1: Sensitivity functions, START measurement distri-
bution, measurements times indicated along the sensitivity plot by
*

129



0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

X

Y

 

 

Base

First

Third

Observation

Figure 6.4: Experiment 6.1: Trajectory with 4 measurements, MIDDLE distri-
bution
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Figure 6.5: Experiment 6.1: Cost function for three steps of data assimilation,
MIDDLE measurement distribution
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Figure 6.6: Experiment 6.1: Cost function for three steps of data assimilation,
MIDDLE measurement distribution, measurements times indicated
along the sensitivity plot by *
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Figure 6.7: Experiment 6.1: Trajectory with 4 measurements, FINISH distribu-
tion
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Figure 6.8: Experiment 6.1: Cost function for three steps of data assimilation,
FINISH measurement distribution
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Figure 6.9: Experiment 6.1: Sensitivity functions, FINISH measurement distri-
bution, measurements times indicated along the sensitivity plot by
*
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Figure 6.10: Experiment 6.1: Trajectory with 4 measurements, UNIFORM dis-
tribution
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Figure 6.11: Experiment 6.1: Cost function for three steps of data assimilation,
UNIFORM measurement distribution
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Figure 6.12: Experiment 6.1: Sensitivity functions, UNIFORM measurement dis-
tribution, measurements times indicated along the sensitivity plot
by *
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6.2.2 Experiment 6.2

In this experiment, we are going to continue with the way it was organized in

Experiment 6.1, and we are going to investigate whether the increased number of

measurements within the set period always lead to better correction of the control

vector α. We are going to use 4, 8, 16, 32, 64 and 128 measurements within

periods described in the Experiment 6.1. Base control vector and perturbed

control vector are like the one described in the Experiment 6.1.

Table 6.5: Experiment 6.2: Base control vector α and initial conditions X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.000 0.000 0.500 0.000 0.209 0.109 0.5 2.5e-05

Table 6.6: Experiment 6.2: Perturbed control vector α and initial conditions
X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

0.986523 -0.001833 0.546079 0.136232 0.209 0.109 0.5 2.5e-05
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Table 6.7: Experiment 6.2: Comparison of data assimilations for a set of distri-
butions and errors with 4 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0190 0.0056 1.7e+04 1.7e+04
0.007 0.0579 0.0138 2.5e+04 1.8e+04
0.010 0.0565 0.0162 2.4e+04 2.0e+04

START 0.013 0.0361 0.0122 1.7e+04 1.8e+04
0.015 0.0418 0.0129 1.7e+04 1.8e+04
0.018 0.0211 0.0095 1.9e+04 1.7e+04
0.020 0.0479 0.0288 2.0e+04 3.0e+04
0.005 0.0395 0.0073 3.5e+04 3.1e+04
0.007 0.1411 0.0511 5.7e+04 3.0e+04
0.010 0.1428 0.0600 5.8e+04 3.2e+04

MIDDLE 0.013 0.0675 0.0188 3.8e+04 3.1e+04
0.015 0.1059 0.0468 3.5e+04 3.2e+04
0.018 0.0609 0.0177 3.6e+04 3.0e+04
0.020 0.0429 0.0171 3.3e+04 3.4e+04
0.005 0.0574 0.0145 1.1e+05 1.4e+05
0.007 0.2377 0.1652 1.5e+05 1.1e+05
0.010 0.2335 0.1798 1.5e+05 1.3e+05

FINISH 0.013 0.1174 0.0609 9.2e+04 1.2e+05
0.015 0.1774 0.1651 8.1e+04 1.0e+05
0.018 0.1185 0.0568 9.5e+04 1.3e+05
0.020 0.1067 0.1812 1.1e+05 1.2e+05
0.005 0.0319 0.0071 2.2e+05 1.3e+05
0.007 0.1400 0.0592 4.8e+04 8.4e+04
0.010 0.1260 0.0613 5.2e+04 1.4e+05

UNIFORM 0.013 0.0773 0.1497 2.5e+05 5.1e+04
0.015 0.1153 0.5134 1.0e+06 6.0e+04
0.018 0.0628 0.0269 3.9e+04 9.7e+04
0.020 0.0513 0.0209 4.6e+04 1.7e+05
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Table 6.8: Experiment 6.2: Comparison of data assimilations for a set of distri-
butions and errors with 8 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0621 0.0184 1.2e+04 1.4e+04
0.007 0.0182 0.0085 1.6e+04 1.4e+04
0.010 0.0190 0.0131 1.4e+04 1.6e+04

START 0.013 0.0309 0.0141 1.8e+04 1.5e+04
0.015 0.0874 0.0375 2.7e+04 1.4e+04
0.018 0.0339 0.0220 1.9e+04 1.5e+04
0.020 0.0456 0.0266 1.8e+04 1.4e+04
0.005 0.1538 0.0984 2.8e+04 3.2e+04
0.007 0.0502 0.0167 4.1e+04 3.5e+04
0.010 0.0156 0.0139 3.5e+04 3.6e+04

MIDDLE 0.013 0.0872 0.0358 4.5e+04 3.6e+04
0.015 0.1810 0.0865 6.6e+04 2.8e+04
0.018 0.0927 0.0475 4.9e+04 3.3e+04
0.020 0.0830 0.0402 4.3e+04 3.7e+04
0.005 0.2532 0.1322 7.9e+04 6.9e+04
0.007 0.0900 0.0312 1.1e+05 1.2e+05
0.010 0.0261 0.0213 1.2e+05 1.2e+05

FINISH 0.013 0.1243 0.0636 1.1e+05 1.4e+05
0.015 0.2422 0.1288 1.7e+05 1.2e+05
0.018 0.1412 0.0913 1.1e+05 1.5e+05
0.020 0.1350 0.0658 1.1e+05 1.3e+05
0.005 0.1642 0.1307 2.9e+04 1.6e+04
0.007 0.0546 0.0173 4.7e+04 3.3e+04
0.010 0.0080 0.0069 3.8e+04 3.9e+04

UNIFORM 0.013 0.0807 0.0274 5.1e+04 3.4e+04
0.015 0.1776 0.0880 5.2e+04 8.6e+03
0.018 0.0946 0.0429 5.6e+04 3.4e+04
0.020 0.0977 0.0407 4.8e+04 2.7e+04
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Table 6.9: Experiment 6.2: Comparison of data assimilations for a set of distri-
butions and errors with 16 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0496 0.0108 2.3e+04 1.5e+04
0.007 0.0494 0.0132 1.1e+04 1.4e+04
0.010 0.0178 0.0139 1.7e+04 1.5e+04

START 0.013 0.0355 0.0157 2.0e+04 1.5e+04
0.015 0.0481 0.0254 1.2e+04 1.5e+04
0.018 0.0489 0.0209 1.1e+04 1.5e+04
0.020 0.0237 0.0187 1.4e+04 1.5e+04
0.005 0.1127 0.0351 5.1e+04 3.6e+04
0.007 0.1253 0.0669 3.4e+04 3.3e+04
0.010 0.0293 0.0112 4.0e+04 3.7e+04

MIDDLE 0.013 0.0858 0.0303 5.0e+04 3.8e+04
0.015 0.1033 0.0461 3.5e+04 3.5e+04
0.018 0.1131 0.0573 3.4e+04 3.4e+04
0.020 0.0389 0.0304 3.6e+04 4.0e+04
0.005 0.1752 0.1834 1.2e+05 1.1e+05
0.007 0.2175 0.1758 8.0e+04 1.3e+05
0.010 0.0394 0.0133 1.1e+05 1.2e+05

FINISH 0.013 0.1481 0.0998 1.2e+05 1.4e+05
0.015 0.1801 0.1638 8.9e+04 1.1e+05
0.018 0.1905 0.1706 8.8e+04 1.2e+05
0.020 0.0384 0.0252 1.1e+05 1.2e+05
0.005 0.1182 0.0536 4.4e+04 3.8e+04
0.007 0.1429 0.1263 2.8e+04 2.7e+04
0.010 0.0249 0.0105 4.4e+04 4.1e+04

UNIFORM 0.013 0.0967 0.0384 4.3e+04 3.5e+04
0.015 0.1163 0.0786 2.9e+04 3.2e+04
0.018 0.1264 0.0964 2.8e+04 3.3e+04
0.020 0.0326 0.0293 3.7e+04 3.9e+04
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Table 6.10: Experiment 6.2: Comparison of data assimilations for a set of distri-
butions and errors with 32 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0087 0.0066 1.6e+04 1.5e+04
0.007 0.0397 0.0134 1.2e+04 1.5e+04
0.010 0.0359 0.0130 2.0e+04 1.5e+04

START 0.013 0.0595 0.0203 2.3e+04 1.5e+04
0.015 0.0256 0.0238 1.6e+04 1.6e+04
0.018 0.0417 0.0273 2.0e+04 1.5e+04
0.020 0.0303 0.0271 1.7e+04 1.6e+04
0.005 0.0143 0.0053 4.1e+04 3.9e+04
0.007 0.0995 0.0425 3.5e+04 3.8e+04
0.010 0.0792 0.0250 5.0e+04 4.0e+04

MIDDLE 0.013 0.1336 0.0557 5.8e+04 3.6e+04
0.015 0.0199 0.0186 3.9e+04 3.9e+04
0.018 0.0892 0.0428 5.2e+04 3.9e+04
0.020 0.0410 0.0339 4.0e+04 3.9e+04
0.005 0.0213 0.0058 1.1e+05 1.1e+05
0.007 0.1716 0.1376 9.3e+04 1.2e+05
0.010 0.1507 0.0915 1.3e+05 1.3e+05

FINISH 0.013 0.2217 0.1664 1.6e+05 9.9e+04
0.015 0.0180 0.0172 1.1e+05 1.1e+05
0.018 0.1564 0.0867 1.3e+05 1.3e+05
0.020 0.0324 0.0298 1.1e+05 1.1e+05
0.005 0.0160 0.0066 4.4e+04 4.2e+04
0.007 0.1151 0.0704 3.0e+04 3.0e+04
0.010 0.1020 0.0408 4.1e+04 3.1e+04

UNIFORM 0.013 0.1499 0.0844 4.6e+04 2.4e+04
0.015 0.0197 0.0192 4.3e+04 4.2e+04
0.018 0.1019 0.0497 4.2e+04 3.2e+04
0.020 0.0313 0.0262 4.4e+04 4.2e+04
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Table 6.11: Experiment 6.2: Comparison of data assimilations for a set of distri-
butions and errors with 64 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0542 0.0161 2.2e+04 1.5e+04
0.007 0.0145 0.0110 1.5e+04 1.6e+04
0.010 0.0800 0.0300 1.0e+04 1.4e+04

START 0.013 0.0709 0.0265 1.1e+04 1.5e+04
0.015 0.0239 0.0198 1.4e+04 1.5e+04
0.018 0.0303 0.0251 1.8e+04 1.5e+04
0.020 0.0282 0.0258 1.7e+04 1.6e+04
0.005 0.1354 0.0650 6.4e+04 3.6e+04
0.007 0.0183 0.0114 3.9e+04 3.9e+04
0.010 0.1866 0.1402 2.7e+04 3.1e+04

MIDDLE 0.013 0.1592 0.1037 3.0e+04 3.0e+04
0.015 0.0380 0.0209 3.6e+04 4.0e+04
0.018 0.0495 0.0265 4.6e+04 3.9e+04
0.020 0.0442 0.0249 4.5e+04 3.9e+04
0.005 0.2312 0.1393 1.7e+05 1.2e+05
0.007 0.0220 0.0115 1.2e+05 1.1e+05
0.010 0.2840 0.1718 8.2e+04 5.6e+05

FINISH 0.013 0.2506 0.1277 7.9e+04 9.5e+04
0.015 0.0520 0.0190 1.2e+05 1.1e+05
0.018 0.0794 0.0313 1.1e+05 1.2e+05
0.020 0.0830 0.0398 1.1e+05 1.2e+05
0.005 0.1555 0.0801 5.3e+04 1.4e+04
0.007 0.0190 0.0105 4.4e+04 4.2e+04
0.010 0.2010 0.1273 3.3e+04 5.4e+04

UNIFORM 0.013 0.1757 0.1409 2.7e+04 2.2e+04
0.015 0.0416 0.0197 3.9e+04 3.9e+04
0.018 0.0573 0.0264 4.3e+04 3.8e+04
0.020 0.0509 0.0274 3.9e+04 4.0e+04
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Table 6.12: Experiment 6.2: Comparison of data assimilations for a set of distri-
butions and errors with 128 measurements

Distribution of σ2 RMS Error κ
measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0530 0.0141 1.1e+04 1.5e+04
0.007 0.0368 0.0119 1.2e+04 1.5e+04
0.010 0.0441 0.0169 1.2e+04 1.5e+04

START 0.013 0.0227 0.0182 1.5e+04 1.6e+04
0.015 0.0349 0.0185 1.2e+04 1.6e+04
0.018 0.0469 0.0268 1.2e+04 1.6e+04
0.020 0.0807 0.0379 2.3e+04 1.5e+04
0.005 0.1235 0.0631 3.4e+04 3.5e+04
0.007 0.0971 0.0397 3.6e+04 3.7e+04
0.010 0.0981 0.0429 3.4e+04 3.9e+04

MIDDLE 0.013 0.0306 0.0210 4.1e+04 3.9e+04
0.015 0.0748 0.0311 3.5e+04 4.1e+04
0.018 0.0952 0.0441 3.5e+04 3.9e+04
0.020 0.1770 0.0844 6.7e+04 3.4e+04
0.005 0.2040 0.1753 8.7e+04 9.9e+04
0.007 0.1871 0.1869 8.6e+04 9.8e+04
0.010 0.1527 0.1052 1.0e+05 1.3e+05

FINISH 0.013 0.0327 0.0355 1.1e+05 1.1e+05
0.015 0.1251 0.0664 1.1e+05 1.3e+05
0.018 0.1643 0.1274 9.9e+04 1.3e+05
0.020 0.2742 0.1449 1.7e+05 7.9e+04
0.005 0.1406 0.1152 2.8e+04 2.5e+04
0.007 0.1230 0.0923 3.2e+04 3.7e+04
0.010 0.1088 0.0577 3.0e+04 2.9e+04

UNIFORM 0.013 0.0280 0.0226 3.9e+04 4.4e+04
0.015 0.0862 0.0363 3.5e+04 3.6e+04
0.018 0.1153 0.0670 3.2e+04 3.1e+04
0.020 0.1919 0.1158 6.1e+04 2.1e+04
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Figure 6.13: Experiment 6.2: Root-mean-square (RMSE) error of observations
as a function of number of experiments σ2 = 0.005, START mea-
surement distribution.
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Figure 6.14: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.005, START measurement distribution.
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Figure 6.15: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.005, MIDDLE measurement
distribution.
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Figure 6.16: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.005, MIDDLE measurement distribution.
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Figure 6.17: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.005, FINISH measurement
distribution.
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Figure 6.18: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.005, FINISH measurement distribution.
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Figure 6.19: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.005, UNIFORM measurement
distribution.
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Figure 6.20: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.005, UNIFORM measurement distribution.
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Figure 6.21: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.0075, START measurement
distribution.
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Figure 6.22: Experiment 6.2: Condition number κ a function of number of ex-
periments σ2 = 0.0075, START measurement distribution.
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Figure 6.23: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.0075, MIDDLE measurement
distribution.
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Figure 6.24: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.0075, MIDDLE measurement distribution.
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Figure 6.25: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.0075, FINISH measurement
distribution.
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Figure 6.26: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.0075, FINISH measurement distribution.
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Figure 6.27: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.0075, UNIFORM measure-
ment distribution.
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Figure 6.28: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.0075, UNIFORM measurement distribution.
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Figure 6.29: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.01, START measurement
distribution.
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Figure 6.30: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.01, START measurement distribution.
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Figure 6.31: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.01, MIDDLE measurement
distribution.
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Figure 6.32: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.01, MIDDLE measurement distribution.
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Figure 6.33: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.01, FINISH measurement
distribution.
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Figure 6.34: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.01, FINISH measurement distribution.
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Figure 6.35: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.01, UNIFORM measurement
distribution.
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Figure 6.36: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.01, UNIFORM measurement distribution.
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Figure 6.37: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.02, START measurement
distribution.
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Figure 6.38: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.02, START measurement distribution.

168



4 8 16 32 64 128
0

0.05

0.1

0.15

0.2

Numer of measurments

R
M

S
E

 

 

1st iteration

3rd iteration

Figure 6.39: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.02, MIDDLE measurement
distribution.
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Figure 6.40: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.02, MIDDLE measurement distribution.
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Figure 6.41: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.02, FINISH measurement
distribution.
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Figure 6.42: Experiment 6.2: Condition number κ as a function of number of
experiments σ2 = 0.02, FINISH measurement distribution.
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Figure 6.43: Experiment 6.2: Root-mean-square error of observations as a func-
tion of number of experiments σ2 = 0.02, UNIFORM measurement
distribution.
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Table 6.13: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.005

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0190 0.0056 1.7e+04 1.7e+04
8 0.0621 0.0184 1.2e+04 1.4e+04

START 16 0.0496 0.0108 2.3e+04 1.5e+04
32 0.0087 0.0066 1.6e+04 1.5e+04
64 0.0542 0.0161 2.2e+04 1.5e+04
128 0.0530 0.0141 1.1e+04 1.5e+04
4 0.0395 0.0073 3.5e+04 3.1e+04
8 0.1538 0.0984 2.8e+04 3.2e+04

MIDDLE 16 0.1127 0.0351 5.1e+04 3.6e+04
32 0.0143 0.0053 4.1e+04 3.9e+04
64 0.1354 0.0650 6.4e+04 3.6e+04
128 0.1235 0.0631 3.4e+04 3.5e+04
4 0.0574 0.0145 1.1e+05 1.4e+05
8 0.2532 0.1322 7.9e+04 6.9e+04

FINISH 16 0.1752 0.1834 1.2e+05 1.1e+05
32 0.0213 0.0058 1.1e+05 1.1e+05
64 0.2312 0.1393 1.7e+05 1.2e+05
128 0.2040 0.1753 8.7e+04 9.9e+04
4 0.0319 0.0071 2.2e+05 1.3e+05
8 0.1642 0.1307 2.9e+04 1.6e+04

UNIFORM 16 0.1182 0.0536 4.4e+04 3.8e+04
32 0.0160 0.0066 4.4e+04 4.2e+04
64 0.1555 0.0801 5.3e+04 1.4e+04
128 0.1406 0.1152 2.8e+04 2.5e+04
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Table 6.14: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.075

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0579 0.0138 2.5e+04 1.8e+04
8 0.0182 0.0085 1.6e+04 1.4e+04

START 16 0.0494 0.0132 1.1e+04 1.4e+04
32 0.0397 0.0134 1.2e+04 1.5e+04
64 0.0145 0.0110 1.5e+04 1.6e+04
128 0.0368 0.0119 1.2e+04 1.5e+04
4 0.1411 0.0511 5.7e+04 3.0e+04
8 0.0502 0.0167 4.1e+04 3.5e+04

MIDDLE 16 0.1253 0.0669 3.4e+04 3.3e+04
32 0.0995 0.0425 3.5e+04 3.8e+04
64 0.0183 0.0114 3.9e+04 3.9e+04
128 0.0971 0.0397 3.6e+04 3.7e+04
4 0.2377 0.1652 1.5e+05 1.1e+05
8 0.0900 0.0312 1.1e+05 1.2e+05

FINISH 16 0.2175 0.1758 8.0e+04 1.3e+05
32 0.1716 0.1376 9.3e+04 1.2e+05
64 0.0220 0.0115 1.2e+05 1.1e+05
128 0.1871 0.1869 8.6e+04 9.8e+04
4 0.1400 0.0592 4.8e+04 8.4e+04
8 0.0546 0.0173 4.7e+04 3.3e+04

UNIFORM 16 0.1429 0.1263 2.8e+04 2.7e+04
32 0.1151 0.0704 3.0e+04 3.0e+04
64 0.0190 0.0105 4.4e+04 4.2e+04
128 0.1230 0.0923 3.2e+04 3.7e+04
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Table 6.15: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.01

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0565 0.0162 2.4e+04 2.0e+04
8 0.0190 0.0131 1.4e+04 1.6e+04

START 16 0.0178 0.0139 1.7e+04 1.5e+04
32 0.0359 0.0130 2.0e+04 1.5e+04
64 0.0800 0.0300 1.0e+04 1.4e+04
128 0.0441 0.0169 1.2e+04 1.5e+04
4 0.1428 0.0600 5.8e+04 3.2e+04
8 0.0156 0.0139 3.5e+04 3.6e+04

MIDDLE 16 0.0293 0.0112 4.0e+04 3.7e+04
32 0.0792 0.0250 5.0e+04 4.0e+04
64 0.1866 0.1402 2.7e+04 3.1e+04
128 0.0981 0.0429 3.4e+04 3.9e+04
4 0.2335 0.1798 1.5e+05 1.3e+05
8 0.0261 0.0213 1.2e+05 1.2e+05

FINISH 16 0.0394 0.0133 1.1e+05 1.2e+05
32 0.1507 0.0915 1.3e+05 1.3e+05
64 0.2840 0.1718 8.2e+04 5.6e+05
128 0.1527 0.1052 1.0e+05 1.3e+05
4 0.1260 0.0613 5.2e+04 1.4e+05
8 0.0080 0.0069 3.8e+04 3.9e+04

UNIFORM 16 0.0249 0.0105 4.4e+04 4.1e+04
32 0.1020 0.0408 4.1e+04 3.1e+04
64 0.2010 0.1273 3.3e+04 5.4e+04
128 0.1088 0.0577 3.0e+04 2.9e+04
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Table 6.16: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.0125

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0361 0.0122 1.7e+04 1.8e+04
8 0.0309 0.0141 1.8e+04 1.5e+04

START 16 0.0355 0.0157 2.0e+04 1.5e+04
32 0.0595 0.0203 2.3e+04 1.5e+04
64 0.0709 0.0265 1.1e+04 1.5e+04
128 0.0227 0.0182 1.5e+04 1.6e+04
4 0.0675 0.0188 3.8e+04 3.1e+04
8 0.0872 0.0358 4.5e+04 3.6e+04

MIDDLE 16 0.0858 0.0303 5.0e+04 3.8e+04
32 0.1336 0.0557 5.8e+04 3.6e+04
64 0.1592 0.1037 3.0e+04 3.0e+04
128 0.0306 0.0210 4.1e+04 3.9e+04
4 0.1174 0.0609 9.2e+04 1.2e+05
8 0.1243 0.0636 1.1e+05 1.4e+05

FINISH 16 0.1481 0.0998 1.2e+05 1.4e+05
32 0.2217 0.1664 1.6e+05 9.9e+04
64 0.2506 0.1277 7.9e+04 9.5e+04
128 0.0327 0.0355 1.1e+05 1.1e+05
4 0.0773 0.1497 2.5e+05 5.1e+04
8 0.0807 0.0274 5.1e+04 3.4e+04

UNIFORM 16 0.0967 0.0384 4.3e+04 3.5e+04
32 0.1499 0.0844 4.6e+04 2.4e+04
64 0.1757 0.1409 2.7e+04 2.2e+04
128 0.0280 0.0226 3.9e+04 4.4e+04
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Table 6.17: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.015

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0418 0.0129 1.7e+04 1.8e+04
8 0.0874 0.0375 2.7e+04 1.4e+04

START 16 0.0481 0.0254 1.2e+04 1.5e+04
32 0.0256 0.0238 1.6e+04 1.6e+04
64 0.0239 0.0198 1.4e+04 1.5e+04
128 0.0349 0.0185 1.2e+04 1.6e+04
4 0.1059 0.0468 3.5e+04 3.2e+04
8 0.1810 0.0865 6.6e+04 2.8e+04

MIDDLE 16 0.1033 0.0461 3.5e+04 3.5e+04
32 0.0199 0.0186 3.9e+04 3.9e+04
64 0.0380 0.0209 3.6e+04 4.0e+04
128 0.0748 0.0311 3.5e+04 4.1e+04
4 0.1774 0.1651 8.1e+04 1.0e+05
8 0.2422 0.1288 1.7e+05 1.2e+05

FINISH 16 0.1801 0.1638 8.9e+04 1.1e+05
32 0.0180 0.0172 1.1e+05 1.1e+05
64 0.0520 0.0190 1.2e+05 1.1e+05
128 0.1251 0.0664 1.1e+05 1.3e+05
4 0.1153 0.5134 1.0e+06 6.0e+04
8 0.1776 0.0880 5.2e+04 8.6e+03

UNIFORM 16 0.1163 0.0786 2.9e+04 3.2e+04
32 0.0197 0.0192 4.3e+04 4.2e+04
64 0.0416 0.0197 3.9e+04 3.9e+04
128 0.0862 0.0363 3.5e+04 3.6e+04

178



Table 6.18: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.0175

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0211 0.0095 1.9e+04 1.7e+04
8 0.0339 0.0220 1.9e+04 1.5e+04

START 16 0.0489 0.0209 1.1e+04 1.5e+04
32 0.0417 0.0273 2.0e+04 1.5e+04
64 0.0303 0.0251 1.8e+04 1.5e+04
128 0.0469 0.0268 1.2e+04 1.6e+04
4 0.0609 0.0177 3.6e+04 3.0e+04
8 0.0927 0.0475 4.9e+04 3.3e+04

MIDDLE 16 0.1131 0.0573 3.4e+04 3.4e+04
32 0.0892 0.0428 5.2e+04 3.9e+04
64 0.0495 0.0265 4.6e+04 3.9e+04
128 0.0952 0.0441 3.5e+04 3.9e+04
4 0.1185 0.0568 9.5e+04 1.3e+05
8 0.1412 0.0913 1.1e+05 1.5e+05

FINISH 16 0.1905 0.1706 8.8e+04 1.2e+05
32 0.1564 0.0867 1.3e+05 1.3e+05
64 0.0794 0.0313 1.1e+05 1.2e+05
128 0.1643 0.1274 9.9e+04 1.3e+05
4 0.0628 0.0269 3.9e+04 9.7e+04
8 0.0946 0.0429 5.6e+04 3.4e+04

UNIFORM 16 0.1264 0.0964 2.8e+04 3.3e+04
32 0.1019 0.0497 4.2e+04 3.2e+04
64 0.0573 0.0264 4.3e+04 3.8e+04
128 0.1153 0.0670 3.2e+04 3.1e+04
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Table 6.19: Experiment 6.2: Comparison of data assimilations for a set of dis-
tributions with different number of measurements and errors with
σ2 = 0.02

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

4 0.0479 0.0288 2.0e+04 3.0e+04
8 0.0456 0.0266 1.8e+04 1.4e+04

START 16 0.0237 0.0187 1.4e+04 1.5e+04
32 0.0303 0.0271 1.7e+04 1.6e+04
64 0.0282 0.0258 1.7e+04 1.6e+04
128 0.0807 0.0379 2.3e+04 1.5e+04
4 0.0429 0.0171 3.3e+04 3.4e+04
8 0.0830 0.0402 4.3e+04 3.7e+04

MIDDLE 16 0.0389 0.0304 3.6e+04 4.0e+04
32 0.0410 0.0339 4.0e+04 3.9e+04
64 0.0442 0.0249 4.5e+04 3.9e+04
128 0.1770 0.0844 6.7e+04 3.4e+04
4 0.1067 0.1812 1.1e+05 1.2e+05
8 0.1350 0.0658 1.1e+05 1.3e+05

FINISH 16 0.0384 0.0252 1.1e+05 1.2e+05
32 0.0324 0.0298 1.1e+05 1.1e+05
64 0.0830 0.0398 1.1e+05 1.2e+05
128 0.2742 0.1449 1.7e+05 7.9e+04
4 0.0513 0.0209 4.6e+04 1.7e+05
8 0.0977 0.0407 4.8e+04 2.7e+04

UNIFORM 16 0.0326 0.0293 3.7e+04 3.9e+04
32 0.0313 0.0262 4.4e+04 4.2e+04
64 0.0509 0.0274 3.9e+04 4.0e+04
128 0.1919 0.1158 6.1e+04 2.1e+04
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6.2.3 Experiment 6.3

In a setup similar to Experiment 5.2, we are going to conduct data assimilation

experiments.

Table 6.20: Experiment 6.3: Base control vector α and initial conditions X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.000 0.000 0.500 0.000 0.0 0.0 0.5 2.5e-05

Table 6.21: Experiment 6.3: Perturbed control vector α and initial conditions
X(0)

u0 u1(0) v1(0) h1(0) x0 y0 t time step

1.129419 0.170145 0.549086 -0.040774 0.000 0.000 0.5 2.5e-05
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Table 6.22: Experiment 6.3: Comparison of data assimilations for a set of distri-
butions and errors with 4 measurements, start (0,0)

Distribution of Number of RMS Error κ
measurements measurements of observations

Iteration Iteration
1st 3rd 1st 3rd

0.005 0.0359 0.0275 5.3e+19 5.0e+19
0.007 0.0691 0.0426 1.7e+20 1.4e+20
0.010 0.0357 0.0281 2.5e+19 1.0e+20

START 0.013 0.0169 0.0163 2.6e+20 1.1e+20
0.015 0.0143 0.0143 1.4e+20 5.7e+19
0.018 0.0469 0.0360 6.6e+20 3.7e+19
0.020 0.0144 0.0143 8.3e+20 7.1e+20
0.005 0.1249 0.0568 2.6e+21 2.7e+19
0.007 0.1776 0.0482 1.3e+19 1.6e+19
0.010 0.0890 0.0292 1.7e+18 3.5e+18

MIDDLE 0.013 0.0448 0.0164 9.4e+18 1.1e+19
0.015 0.0367 0.0115 1.5e+19 3.9e+18
0.018 0.0706 0.0347 5.8e+18 8.5e+19
0.020 0.0593 0.0406 5.2e+19 2.2e+19
0.005 0.7448 0.5471 2.9e+18 6.3e+17
0.007 0.3430 0.0838 8.9e+18 1.1e+18
0.010 0.7248 0.5323 9.6e+18 1.6e+18

FINISH 0.013 0.6104 0.4216 1.8e+20 9.1e+18
0.015 0.4433 0.0225 1.8e+21 1.4e+19
0.018 0.5804 0.3634 1.5e+18 4.0e+18
0.020 0.5687 0.0187 1.0e+19 2.8e+19
0.005 0.2856 0.1408 4.8e+20 1.4e+21
0.007 0.1190 0.1053 2.6e+20 5.0e+19
0.010 0.2664 0.0503 1.1e+20 7.9e+20

UNIFORM 0.013 0.1738 0.0402 7.9e+20 4.7e+22
0.015 0.0559 0.0277 3.4e+21 4.5e+22
0.018 0.1651 0.0862 1.3e+21 1.2e+20
0.020 0.1081 0.0178 1.8e+21 2.3e+21
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Figure 6.44: Experiment 6.3: Track START σ2 = 0.005
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Figure 6.45: Experiment 6.3: Track MIDDLE σ2 = 0.005
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Figure 6.46: Experiment 6.3: Track FINISH σ2 = 0.005
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Figure 6.47: Experiment 6.3: Track UNIFORM σ2 = 0.005
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Figure 6.48: Experiment 6.3: Track START σ2 = 0.0075
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Figure 6.49: Experiment 6.3: Track MIDDLE σ2 = 0.0075
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Figure 6.50: Experiment 6.3: Track FINISH σ2 = 0.0075

−0.6 −0.4 −0.2 0 0.2
−0.5

0

0.5

1

X

Y

 

 

Base

First

Third

Observation

Figure 6.51: Experiment 6.3: Track UNIFORM σ2 = 0.0075
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Figure 6.52: Experiment 6.3: Track START σ2 = 0.01
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Figure 6.53: Experiment 6.3: Track MIDDLE σ2 = 0.01
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Figure 6.54: Experiment 6.3: Track FINISH σ2 = 0.01
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Figure 6.55: Experiment 6.3: Track UNIFORM σ2 = 0.01
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Figure 6.56: Experiment 6.3: Track START σ2 = 0.0125
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Figure 6.57: Experiment 6.3: Track MIDDLE σ2 = 0.0125

189



−0.6 −0.4 −0.2 0 0.2
−0.5

0

0.5

1

X

Y

 

 

Base

First

Third

Observation

Figure 6.58: Experiment 6.3: Track FINISH σ2 = 0.0125
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Figure 6.59: Experiment 6.3: Track UNIFORM σ2 = 0.0125
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Figure 6.60: Experiment 6.3: Track START σ2 = 0.015
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Figure 6.61: Experiment 6.3: Track MIDDLE σ2 = 0.015
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Figure 6.62: Experiment 6.3: Track FINISH σ2 = 0.015
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Figure 6.63: Experiment 6.3: Track UNIFORM σ2 = 0.015
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Figure 6.64: Experiment 6.3: Track START σ2 = 0.0175
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Figure 6.65: Experiment 6.3: Track MIDDLE σ2 = 0.0175
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Figure 6.66: Experiment 6.3: Track FINISH σ2 = 0.0175
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Figure 6.67: Experiment 6.3: Track UNIFORM σ2 = 0.0175
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Figure 6.68: Experiment 6.3: Track START σ2 = 0.02
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Figure 6.69: Experiment 6.3: Track MIDDLE σ2 = 0.02
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Figure 6.70: Experiment 6.3: Track FINISH σ2 = 0.02
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Figure 6.71: Experiment 6.3: Track UNIFORM σ2 = 0.02
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6.3 Summary

Experiments 6.1 and 6.2 using (4, 8, 16, 32, 64 and 128) measurements dis-

tributed in four distinct patterns: START, MIDDLE, FINISH and UNIFORM

prove effectiveness of the forward sensitivity method applied to data assimilation

of the linear shallow water model tracers. In almost all cases, after third iteration

improving match between observations and model prediction, root-square mean

error is reduced. Method proves effective in a presence of wide selection of the

observational error variance used to generate observations. Visual inspection of

the forecast error shows its close relation to model sensitivity and distribution of

observations (START, MIDDLE, FINISH and UNIFORM). In cases where obser-

vations are taken in a period when sensitivity is higher, overall forecast error is

smaller when compared to cases when sensitivity is lower. For cases when trajec-

tories are well within the cell, condition number κ is in order of 104 to 105. It is

noted that increasing the number of observations does not necessarily reduce the

root-square mean error by much; this fact depends however on the observational

error variance σ.

Experiments are indicating that even when the condition number κ is of order

of 1020, there can be an improvement made to the control vector, if the location

of measurements is in the time period when the model has high sensitivity to the

control vector, as shown in Experiment 6.3.

Results illustrating the model sensitivity to initial conditions are the elements

of the control vector together with the data assimilation experiments described

by Jabrzemski and Lakshmivarahan (2014) [6] were presented at the American

Meteorological Society Annual Meeting.
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Chapter 7

Conclusions

Our work in this dissertation is centered on the linearized shallow water model

used by other researchers to evaluate Lagrangian data assimilation. It is divided

into two major parts.

First one, focuses on finding the closed form solution to the linearized shallow

water model. This in turn, allows us to provide a complete characterization of the

properties of equilibria of the tracer dynamics given by a system of two first order

nonlinear time varying ordinary differential equations. This dynamics is derived

from a low order or reduced order spectral model obtained using Galerkin type

projection of the linearized shallow water equations, while the tracer dynamics

is controlled by four parameters, we provide a succinct characterization of the

bifurcation using a system of hyperbolas in two dimensions. The shallow water

model is thoroughly analyzed after looking separately at the geostrophic mode,

the inertia-gravity mode, and both of them combined. We find that most ap-

plications of the shallow water model in meteorology and oceanography use the

model within region 2, and we don’t have to be concerned with the bifurcations

in the control space.
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Second part focuses on application of the forward sensitivity method to a

problem that is historically done in meteorology and oceanography with the use

of 4D-Var method. Several experiments investigated sensitivity of the LSWM to

initial conditions and control vector elements. They gave a good illustration of the

fact that the sensitivity has to be considered on the case by case basis. Therefore,

model sensitivity gives a great insight into the model dynamics and its relation

to the forecasting error. In this respect, FSM provides information about how

each element of the control vector influences the solution; it shows the relation

of the magnitudes of sensitivity together with their temporal distribution. This

in turn helps to guide the placement of observations, or determines the impact

of the observations on the forecast improvement.

Number of numerical experiments conducted with the use of FSM to assim-

ilate data explains possible difficulties with the judicious placement of the ob-

servations by highlighting the fine physical structure of the model; there is a big

value in using the closed form solution derived in the first part of this dissertation

in accomplishing this second goal. Influence of the temporal distribution of the

observations can be explained by evaluation of the sensitivity functions that are

also derived in the closed form. There is a definite relation between a distribution

of the observations and forecast error. Data assimilation of observations taken in

the temporal domain related to the high sensitivity has smaller error forecast and

better match of forecasted and measured tracer positions. It is worth noting that

increasing the number of observations does not always lead to the improvement of

the forecast error as a difference between the observations and predicted values.

Future work with the use of FSM and LSWM should focus on analyzing

possible improvement to the initial condition estimation subject to the initial

incorrect tracer position. Next, the forward sensitivity method can be used to
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improve the initial conditions and the elements of the control vector, when both

of them are incorrect. We have investigated only the measurements related to the

horizontal position of a tracer, data assimilation of the height measurements can

also be of interest. Data assimilation experiments can investigate FSM usefulness

in analyzing data assimilation in the model while the small changes in the control

vector can lead to bifurcations of the model.
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Mariano, A. J. Assimilation of drifter observations for the reconstruction

of the eulerian circulation field. Journal of geophysical research 108, C3

(2003), 3056.

203
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Appendix A

Reduction process

We start with the linearized shallow water model equations (2.19):

∂u

∂t
= v − ∂h

∂x
, (A.1)

∂v

∂t
= −u− ∂h

∂y
, (A.2)

∂h

∂t
= −∂u

∂x
− ∂v

∂y
. (A.3)

We express u, v and h in the standard two dimensional truncated Fourier series

consisting of only two terms given (3.1)

u(x, y, t) = −2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t),

v(x, y, t) = +2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t),

h(x, y, t) = sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t).

(A.4)
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Let us take (A.1) and substitute corresponding parts of (A.4):

L.H.S =
∂u(x, y, t)

∂t

=
∂(−2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t))

∂t

= cos(2πmy)
∂u1(t)

∂t
,

R.H.S = v − ∂h

∂x

= 2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t)

−
∂
(
sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t)

)
∂x

= 2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t)

− 2πk cos(2πkx) sin(2πly)u0

= cos(2πmy)v1(t).

Now we can combine it

L.H.S = cos(2πmy)
∂u1(t)

∂t
= cos(2πmy)v1(t) = R.H.S,

and simplify to get

∂u1(t)

∂t
= v1(t).
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Similarly, we can look at (A.2) and substitute corresponding parts of (A.4):

L.H.S =
∂v(x, y, t)

∂t

=
∂
(
2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t)

)
∂t

= cos(2πmy)
∂v1(t)

∂t
,

R.H.S = −u− ∂h

∂y

= 2πl sin(2πkx) cos(2πly)u0 − cos(2πmy)u1(t)

−
∂
(
sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t)

)
∂y

= 2πl sin(2πkx) cos(2πly)u0 − cos(2πmy)u1(t)

− 2πl sin(2πkx) cos(2πly)u0

− 2πm cos(2πmy)h1(t)

= − cos(2πmy)u1(t)− 2πm cos(2πmy)h1(t).

Now we can combine it

L.H.S = cos(2πmy)
∂v1(t)

∂t
= − cos(2πmy)u1(t)− 2πm cos(2πmy)h1(t) = R.H.S,

and simplify to get

∂v1(t)

∂t
= −u1(t)− 2πmh1(t).
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Finally, we can look at (A.3) and substitute corresponding parts of (A.4):

L.H.S =
∂h(x, y, t)

∂t
=
∂
(
sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t)

)
∂t

= sin(2πmy)
∂h1(t)

∂t
,

R.H.S = −∂u
∂x
− ∂v

∂y
= −

∂
(
−2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t)

)
∂x

−
∂
(
2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t)

)
∂y

= 2πl2πk cos(2πkx) cos(2πly)u0+

− 2πk2πl cos(2πkx) cos(2πly)u0 + 2πm sin(2πmy)v1(t)

= 2πm sin(2πmy)v1(t).

Now we can combine it

L.H.S = sin(2πmy)
∂h1(t)

∂t
= 2πm sin(2πmy)v1(t) = R.H.S,

and simplify to get

∂h1(t)

∂t
= 2πmv1(t).

Using the fact that u0 is constant, we can get the equations describing amplitudes

as follows

u̇0 = 0,

u̇1 = v1,

v̇1 = −u1 − 2πmh1,

ḣ1 = 2πmv1,

which is exactly the set of equations presented in (3.2).
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Appendix B

Bounds on u1(t) in (2.14)

Let A and B be two real numbers with at least one of them non-zero. For

0 ≤ x ≤ 2π, consider the function

f(x) = A cosx+B sinx. (B.1)

The behavior of f(x) in the interval [0, 2π] is given in the following

Property B.0.1.

(a) f(x) attains its extremum values at x∗ where tanx∗ = B/A

(b) The distribution of
(
x∗, f(x∗)

)
pair for various values and signs of A and B

are given in Table A.

(c) If f(x∗) is a maximum / minimum, then f(x∗+π) is a minimum / maximum.

(d) For all x ∈ [0, 2π],

−
√
A2 +B2 = fmin ≤ f(x) ≤ fmax =

√
A2 +B2. (B.2)
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Proof. Setting the derivative of f(x) to zero, the claim (a) follows. Hence

cosx∗ =
A√

A2 +B2
and sinx∗ =

B√
A2 +B2

. (B.3)

Consider the case when A > 0 and B > 0 and A > B. For this choice of A

and B, it can be verified that 0 ≤ x∗ ≤ π/4. Further, it is easy to verify that the

second derivative of f(x) is negative at x∗ and positive at (x∗ + π). Hence f(x∗)

is a maximum and f(x∗+π) is a minimum from which one of the entries in Table

A and claim (c) follows. Considering these and (A.3) with (A.1), the claim (d)

immediately follows

Table B.1: Distribution of the pairs
(
x∗, f(x∗)

)
Ratio A B x∗ belongs to f(x) =
|A| > |B| + + [0, π/4] fmax
or - - [0, π/4] fmin
0 ≤ |B|

|A| ≤ 1 - + [−π/4, 0] fmin
+ - [−π/4, 0] fmax

|A| < |B| + + [π/4, π/2] fmax
or - - [π/4, π/2] fmin
|B|
|A| ≥ 1 - + [−π/2,−π/4] fmax

+ - [−π/2,−π/4] fmin
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Appendix C

Definition and properties of

standard hyperbola

Equation for a standard hyperbola with center at x0, y0) is given by (Spigel

(1968))

(x− x0)2

a2
− (y − y0)2

b2
= 1 (C.1)

where a and b are called the length of the semi major and semi minor axes

respectively. The graph of the hyperbola in (C.1) is given in Figure B1.

C is the center of the hyperbola whose coordinates are (x0, y0) with respect

to the origin 0. AA′ = 2a is the major axis, and BB′ = 2b is the minor axis. F

and F ′ are called the foci and CF = CF ′ =
√
a2 + b2. The eccentricity e of this

hyperbola is given by e =
√
a2+b2

a
> 1. The slope of the asymptote HG′ is (b/a)

and the of the asymptote H ′G is −(b/a). The hatched region indicate where

(x− x0)2

a2
− (y − y0)2

b2
> 1.
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Figure B.1: An illustration of the standard hyperbola given by (C.1).
AA′ = 2a, BB′ = 2b, c is the center, F and F ′ are foci.

CF = CF ′ =
√
a2 + b2. The eccentricity c =

√
a2+b2

a > 1.
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