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Abstract

Crystallographic groups of solvable Lie groups generalize the crystallographic

groups of Euclidean space. The quotient of a solvable Lie group G by the

action of a torsion-free crystallographic group of G is an infra-solvmanifold

of G. Infra-solvmanifolds are aspherical manifolds that generalize both closed

flat manifolds and closed almost flat manifolds (that is, infra-nilmanifolds).

Here we complete the classification of 4-dimensional infra-solvmanifolds by

classifying torsion-free crystallographic groups of certain 4-dimensional solv-

able Lie groups. The classification also includes those crystallographic groups

with torsion.

We prove that every 4-dimensional infra-solvmanifold is the boundary of

a compact 5-dimensional manifold by constructing an involution on certain

4-dimensional infra-solvmanifolds which is either free, or has 2-dimensional

fixed set.

The Ricci signatures (that is, signatures of the Ricci transformation) of 4-

dimensional Lie groups have been classified. A Ricci signature can be realized

on an infra-solvmanifold M of G if M is a compact isometric quotient of

G, where G has left invariant metric with prescribed Ricci signature. We

classify which Ricci signatures can be realized on certain 4-dimensional infra-

solvmanifolds.

vii



1 Introduction

This dissertation is a study of the crystallographic groups of 4-dimensional

solvable Lie groups and their corresponding 4-dimensional infra-solvmanifolds.

Crystallographic groups of solvable Lie groups generalize the well known crys-

tallographic groups of Rn. Infra-solvmanifolds are aspherical manifolds that

generalize closed flat manifolds. This document is organized as follows: Chap-

ter 1 provides background material and summarizes the main results, Chapter

2 establishes that every 4-dimensional infra-solvmanifold is the boundary of a

compact 5-dimensional manifold, Chapter 3 completes the classification of the

crystallographic groups of the solvable 4-dimensional geometries, and Chapter

4 explores Ricci signature properties of the 4-dimensional geometries. Finally,

we provide some topics for further exploration in Chapter 5.

1.1 Definitions and Notation

1.1.1 (Crystallographic Groups and Infra-Solvmanifolds). For our pur-

poses, we will assume all Lie groups to be connected and simply connected.

Let G be a solvable Lie group. The group of affine diffeomorphisms of G is:

Aff(G) = Go Aut(G),
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which has group operation (a,A)(b, B) = (aA(b), AB). There is an action of

Aff(G) on G. For (a,A) ∈ Aff(G) and g ∈ G,

(a,A).g = aA(g).

Under this action, the subgroup G ∼= {(g, id) | g ∈ G} ⊂ Aff(G) acts on G as

left translations.

Definition 1.1.2. Let K be a maximal compact subgroup of Aut(G). A

discrete subgroup Π of G o K ⊂ Aff(G) is called a crystallographic group of

G when

(1) The quotient Π\G is compact.

(2) The translation subgroup Γ := Π ∩G is of finite index in Π.

The translation subgroup Γ is normal in Π, and we refer to the finite group

Φ := Π/Γ as the holonomy group of Π. Thus, a crystallographic group Π fits

the diagram of short exact sequences

1 −−−→ Γ −−−→ Π −−−→ Φ −−−→ 1y y y
1 −−−→ G −−−→ GoK −−−→ K −−−→ 1.

Condition (2) of Definition 1.1.2 implies that Γ is a discrete subgroup of G

and that Γ\G is compact. That is, Γ is a cocompact lattice of G. For simply

connected solvable Lie groups, a result of Mostow [30, Theorem 6.2] implies

that Γ\G has finite volume if and only if Γ\G is compact. So, the terms

“lattice” and “cocompact lattice” are equivalent for our purposes. Since Γ acts

as left translations on G, it acts freely on G, and we say that the quotient Γ\G

is a solvmanifold when G is solvable, and a nilmanifold when G is nilpotent.

The quotient Π\G is a closed manifold precisely when Π acts freely on G.
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This is equivalent to Π being torsion-free.

Definition 1.1.3. Let Π be a torsion-free crystallographic group of G. The

quotient Π\G is an infra-solvmanifold when G is solvable, and an infra-

nilmanifold when G is nilpotent.

In [22], the various definitions of infra-solvmanifold appearing in the liter-

ature are shown to all be equivalent. Here we have adopted Definition 1 in

[22].

Note that with the Euclidean metric, Isom(Rn) = RnoO(n,R), so an infra-

solvmanifold for G = Rn and K = O(n,R) is simply a closed flat manifold.

Topologically, Condition (2) of Definition 1.1.2 states that an infra-solvmanifold

Π\G is finitely covered by the solvmanifold Γ\G with covering transformation

group Φ. This explains the prefix “infra” and is motivated by the classical

result that any closed flat n-manifold is finitely covered by a flat torus Zn\Rn.

Thus, in our context, infra-solvmanifolds generalize closed flat manifolds, and

solvmanifolds generalize flat tori.

When G is nilpotent, Auslander proved that Condition (1) of Definition

1.1.2 actually implies Condition (2). When G is abelian, this was due to

Bieberbach.

Theorem 1.1.4 (Bieberbach’s First Theorem in the nilpotent case [24, The-

orem 8.3.2]). Let G be nilpotent and

Π ⊂ GoK

be discrete and such that Π\G is compact. Then the translation subgroup

Γ = Π ∩G is of finite index in G, and the quotient Γ\G is compact.
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When G is solvable, Condition (2) in Definition 1.1.2 is needed, because

there are examples of solvable G and discrete subgroups Π ⊂ GoK with Π\G

compact, for which Π ∩G is not of finite index in Π. In other words, Bieber-

bach’s First Theorem does not extend to all solvable Lie groups. Dekimpe,

Lee, and Raymond provide sufficient criteria in [8] for a solvable Lie group to

satisfy Bieberbach’s First Theorem.

Crystallographic groups of solvable Lie groups of type (R) satisfy a rigidity

property:

Theorem 1.1.5 (Rigidity of crystallographic groups [24, Theorem 8.4.3]). Let

G be a solvable Lie group of type (R) and Π, Π ′ be finite extensions of lattices

in G. Then every isomorphism between Π and Π ′ is conjugation by an element

of Aff(G).

Consequently, infra-solvmanifolds of solvable Lie groups of type (R) are rigid:

Theorem 1.1.6 (Rigidity of infra-solvmanifolds [24, Theorem 8.4.3]). Ho-

motopy equivalent infra-solvmanifolds of type (R) are affinely diffeomorphic.

1.1.7 (The 4-Dimensional Geometries). The classification of the 4-dimensional

geometries appears in [43], analogous to Thurston’s eight 3-dimensional geome-

tries [40, 35].

Recall that the 3-dimensional geometry Nil3 is the group of upper triangular

matrices 
1 x z

0 1 y

0 0 1

 ,
and the 3-dimensional geometry Sol3 is the semidirect product R2oφ(u)R where

φ(u) =

[
e−u 0

0 eu

]
.
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Notation 1.1.8. Following Hillman’s convention [16, 17], the term 4-dimensional

solvable geometry will refer to the type (R), solvable, and unimodular groups

R4, Nil3 × R, Nil4, Sol3 × R, Sol4m,n, Sol0
4, and Sol1

4.

In dimension 4, except for Sol1
4, which splits as Nil3 o R, all solvable

geometries are of the form R3 oφ(u) R for φ : R→ GL(3,R):

R4 : φ(u) =


1 0 0

0 1 0

0 0 1

 Nil3 × R : φ(u) =


1 u 0

0 1 0

0 0 1


Nil4 : φ(u) =


1 u 1

2
u2

0 1 u

0 0 1

 Sol3 × R : φ(u) =


e−u 0 0

0 eu 0

0 0 1


Sol0

4 : φ(u) =


eu 0 0

0 eu 0

0 0 e−2u

 Sol4m,n : φ(u) =


eθu 0 0

0 eu 0

0 0 e−(1+θ)u


Sol0

4′ : φ(u) =


eu ueu 0

0 eu 0

0 0 e−2u

 .
(1.1)

For Sol4m,n, θ > 1 is such that φ(u) is conjugate to an element of SL(3,Z).

This guarantees that Sol4m,n has a lattice [23]. The characteristic polynomial

of φ(u) is x3 − mx2 + nx − 1 for m,n ∈ Z. It is known that Sol0
4′ has no

compact forms [23] and therefore does not appear in the list of 4-dimensional

geometries in [43].
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Sol1
4 can be described as the multiplicative group of matrices

1 eux z

0 eu y

0 0 1

 ,
which splits as the semidirect product Nil3 o R. It has 1-dimensional center

(u = x = y = 0 in the above matrix). The quotient of Sol1
4 by its center is

Sol3; we have the short exact sequence

1→ Z(Sol1
4)→ Sol1

4 → Sol3 → 1.

All 4-dimensional solvable geometries are type (R) and unimodular. There-

fore, with a left invariant metric on G,

Isom(G) ⊆ GoK ⊂ Aff(G),

where K is a maximal compact subgroup of Aut(G) [13]. In fact, all of the

4-dimensional solvable geometries admit a left invariant metric so that

Isom(G) = GoK.

The discrete cocompact subgroups Π of Isom(G) acting freely on G yield the

compact isometric quotients of G, denoted Π\G.

All 4-dimensional solvable geometries except Sol0
4 satisfy the generalized

First Bieberbach Theorem [8]: if Π ⊂ Isom(G) ⊆ GoK (G 6= Sol0
4) is discrete

and cocompact, then the translation subgroup Γ = Π ∩G is a lattice of G and

the quotient Φ = Π/Γ is a finite subgroup of K ⊂ Aut(G). Therefore, the

compact isometric quotients of a 4-dimensional solvable geometry G, excluding

Sol0
4, are in fact infra-solvmanifolds of G. The compact isometric quotients of

Sol0
4 are known to be mapping tori of linear self diffeomorphisms of the 3-torus

6



T 3. However, they are not infra-solvmanifolds of Sol0
4. Rather, they can be

realized as infra-solvmanifolds of a different solvable 4-dimensional Lie group.

However, this Lie group is not of type (R), and it also is not a 4-dimensional

solvable geometry. In fact, Sol0
4 does not even admit a lattice and therefore

has no crystallographic groups ([17, Corollary 8.5.1] and [23, Theorem 3.5,

Theorem 4.2]).

Conversely, Hillman has shown that every 4-dimensional infra-solvmanifold

M is geometric. That is, M is diffeomorphic to a compact isometric quotient

of one of the solvable 4-dimensional geometries equipped with left invariant

metric [16, Theorem 8]. Thus, we have

Theorem 1.1.9 ([16, Theorem 8]). (1) Any 4-dimensional infra-solvmanifold

is diffeomorphic to a compact isometric quotient of a 4-dimensional solvable

geometry.

(2) The compact isometric quotients of G, where G is one of the six 4-

dimensional geometries R4, Nil3×R, Nil4, Sol3×R, Sol4m,n, Sol1
4, are precisely

the infra-solvmanifolds of G.

1.2 Main Results

It is a remarkable theorem of Hamrick and Royster that for every closed flat

n-manifold, M , there is an (n + 1)-dimensional compact manifold W with

∂W = M [15]. That is, M bounds. By the works of Gromov and Ruh, a

closed manifold has an almost flat structure if and only if it is diffeomorphic

to an infra-nilmanifold Π\G [12, 33]. Thus, it seems natural to ask if infra-

nilmanifolds bound.
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Conjecture 1.2.1 ([10, Conjecture 1]). If M is an n-dimensional infra-

nilmanifold, then there exists a compact (n+ 1)-dimensional manifold W with

∂W = M .

Some partial results are known [41]. Hillman has asked if all 4-dimensional

infra-solvmanifolds bound [18]. Dimension 4 is the first dimension of interest,

as the only 2-dimensional infra-solvmanifolds are the torus and Klein bottle,

and both are boundaries. Also, it is well known that all closed 3-dimensional

manifolds bound. We shall answer Hillman’s question affirmatively:

Theorem 2.4.5. If M is a 4-dimensional infra-solvmanifold, then M bounds.

That is, there is a compact 5-dimensional manifold W with ∂W = M .

Classifying the crystallographic groups of 4-dimensional solvable geome-

tries is important. The crystallographic groups of R4 have been classified; see

for example [1], while Dekimpe has classified those of Nil3 × R and Nil4 [7].

The infra-solvmanifolds of Sol4m,n have been classified by Hillman [17]. This

is equivalent to a classification of the torsion-free crystallographic groups of

Sol4m,n. Partial classifications of the infra-solvmanifolds of Sol3 × R (torsion-

free crystallographic groups of Sol3×R) are presented in [5, 18]. Here we will

complete the classification of the crystallographic groups of Sol1
4, Sol3 × R,

and Sol4m,n. Easily checked criteria for such groups to be torsion-free are also

provided.

Theorem 3.3.21. There are 14 families of Sol1
4 crystallographic groups. Let

Π be a crystallographic group of Sol1
4. Any subgroup of D4 can be the holon-

omy group of Π, where D4 is the dihedral group of 8 elements. The maximal

holonomy of a torsion-free Sol1
4 crystallographic group, so that Π\G is an

infra-solvmanifold, is D4.
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Theorems 3.4.18-3.4.31. There are 60 families of Sol3×R crystallographic

groups. Let Π be a crystallographic group of Sol3×R. Any subgroup of D4×Z2

can be the holonomy group of Π. If Π is torsion-free, so that Π\G is an infra-

solvmanifold, Π must have holonomy {e}, Z2, Z2
2, Z3

2, Z4, or D4. In particular,

there is no infra-solvmanifold of Sol3 × R with maximal holonomy D4 × Z2.

Theorem 3.5.13. There are 7 families of Sol4m,n crystallographic groups. Let

Π be a crystallographic group of Sol4m,n. The possible holonomy groups of Π

are the subgroups of Z2 × Z2. In particular, the maximal compact subgroup of

Aut(Sol4m,n), Z3
2, cannot be the holonomy of a Sol4m,n crystallographic group. If

Π is torsion-free, so that Π\G is an infra-solvmanifold, Π must have holonomy

{e} or Z2.

We now consider curvature of the 4-dimensional solvable geometries. Let

G be a 4-dimensional solvable geometry. With arbitrary left invariant metric

on G,

Isom(G) ⊆ GoK ⊂ Aff(G),

for a maximal compact subgroup K ⊂ Aut(G) [13]. Depending on choice

of left invariant metric, a 4-dimensional solvable geometry can have different

isometry groups and Ricci signatures. Here are the possible Ricci signatures

on some of the 4-dimensional solvable geometries [21]:

9



G Possible Ricci signatures

R4 (0, 0, 0, 0)

Nil3 × R (0,+,−,−)

Nil4 (0,+,−,−), (+,+,−,−), (+,−,−,−)

Sol3 × R (0, 0, 0,−), (0,+,−,−), (+,+,−,−), (+,−,−,−)

Sol4m,n (0, 0, 0,−), (0,+,−,−), (+,+,−,−), (+,−,−,−)

Sol0
4 (0, 0, 0,−), (0,+,−,−)

Table 1.1: Ricci signatures

Suppose we only consider left invariant metrics on G that induce a particu-

lar Ricci signature. The compact isometric quotients of G may not account for

all infra-solvmanifolds of G, as Isom(G) may be a proper subgroup of GoK,

for a maximal compact subgroup K of Aut(G). Given an infra-solvmanifold

M of G, a Ricci signature can be realized on M if there is a left invariant

metric on G with prescribed Ricci signature such that M = Π\G, for some

Π ⊂ Isom(G).

Theorems 4.3.5, 4.3.8, 4.3.11. (1) If M is an infra-nilmanifold of Nil4,

then any of the three Ricci signatures (0,+,−,−), (+,+,−,−), (+,−,−,−)

can be realized on M .

(2) Every infra-solvmanifold of Sol4m,n is the mapping torus of a linear self

diffeomorphism S of T 3; S has three distinct real eigenvalues. If all eigen-

values have the same sign, then any of (0, 0, 0,−), (0,+,−,−), (+,+,−,−),

(+,−,−,−) can be realized on M . Else, only (0, 0, 0,−) and (0,+,−,−) can

be realized on M .

(3) If M is an infra-solvmanifold of Sol3×R which has an order 4 element

in its holonomy, then only (0, 0, 0,−) can be realized on M .

10



2 Cobordism Classes of 4-Dimensional Infra-Solvmanifolds

In this section, we shall prove that every compact 4-dimensional infra-solvmanifold

bounds. That is, if M is a 4-dimensional infra-solvmanifold, then there is a

compact 5-dimensional manifold W with ∂W = M . In other words, the cor-

bordism class of a 4-dimensional infra-solvmanifold in the unoriented Thom

cobordism group ΩO
4 is trivial. In light of Hillman’s result that 4-dimensional

infra-solvmanifolds are geometric (Proposition 1.1.9), it suffices to show that

all compact isometric quotients of the solvable 4-dimensional geometries bound.

Theorem 2.4.5 is established by exhibiting an involution (if not free) with 2-

dimensional fixed set on infra-solvmanifolds with Nil3 × R, Nil4, Sol3 × R, or

Sol1
4 geometry. We will show that the Stiefel-Whitney number ω4

1(M) van-

ishes by a result of R.E. Stong [38], and from this, it will follow that all

Stiefel-Whitney numbers vanish.

2.1 Translational Involutions

We construct an involution on an infra-solvmanifold M = Π\G when the

center of G, Z(G), is non-trivial. The involution is induced by left translation.

This technique was used to show closed flat n-manifolds bound [15, 11].

Lemma 2.1.1. Let M = Π\G be an infra-solvmanifold with Z(G) non-trivial.

Note Γ∩Z(G) is a lattice of Z(G). Let t be a free generator of Γ∩Z(G) and

11



set s = t
1
2 . Translation by s induces an involution on M if and only if A(s) = s

modulo Γ ∩ Z(G), for all A ∈ Φ. That is, translation by s commutes with the

action of Φ on Γ\G.

Proof. Since s commutes with Γ, translation by s defines a free involution on

the solvmanifold Γ\G. To induce an involution on M , translation by s must

normalize the action of Φ on Γ\G. For any (a,A) ∈ Π, we have

(s, id)(a,A)(−s, id) = (s · a · As−1, A)

= ((I − A)s · a,A) (since s ∈ Z(G)).

Therefore, s induces an involution on M when (I − A)s ∈ Γ ∩ Z(G); that is,

A(s) = s modulo Γ ∩ Z(G), for all A ∈ Φ. Note that Z(G) ∼= Rk for some

k, and s ∈ Z(G). Note that A restricts to a linear map on Z(G), so that we

may write s · a · As−1 = (I − A)s.

2.2 Structure of Fixed Set

Let M̂ denote the solvmanifold Γ\G. We have the coverings

G
q−−−→ M̂

p−−−→ M.

We refer to the involutions induced by translation by s as translational invo-

lutions. Let îs : M̂ → M̂ denote the induced involution on M̂ , is : M → M

denote the induced involution on M , and F denote the fixed set of is on M .

Lemma 2.2.1. The preimage of F in M̂ is a finite disjoint union of closed,

connected, submanifolds. We can write

p−1(F ) =
⋃
η

Eη,

12



where the union is over all possible injective homomorphisms η : 〈̂is〉 ∼= Z2 → Φ

and

Eη = {x̂ ∈ M̂ | s(x̂) = η(̂is)(x̂)}.

Each Eη is a finite disjoint union of components of p−1(F ).

Proof. The fixed set F of the translational involution must be a finite disjoint

union of closed connected submanifolds [6, p.72]. Since p is a finite sheeted

covering, p−1(F ) also admits the structure of a finite disjoint union of closed

connected submanifolds.

If x̂ ∈ p−1(F ), then s(x̂) = (a,A)(x̂) for some unique A ∈ Φ where (a,A) ∈

Π. Thus,

x̂ = s2(x̂) = (a,A)2(x̂).

Since the deck transformation group acts freely, (a,A)2 ∈ Γ, and thus A2 = I.

So η(̂is) = A defines an injective homomorphism η : Z2 → Φ. We warn

the reader the action of η(̂is) = A ∈ Φ on M̂ is induced not just by the

automorphism A, but rather by the affine transformation (a,A). The preimage

of F in M̂ is indexed by all possible injective homomorphisms η : Z2 → Φ.

That is,

p−1(F ) =
⋃
η

Eη.

Note that Eη1 = Eη2 when η1 = η2 and Eη1 ∩ Eη2 = ∅ otherwise.

The actions of s and η(̂is) commute on M̂ by Lemma 2.1.1. By definition,

Eη is the fixed set of the involution η(̂is)
−1 ◦ îs = η(̂is)◦ îs on M̂ . So it must be

a finite disjoint union of closed connected submanifolds [6, p.72], and therefore

must be a finite disjoint union of components of p−1(F ).
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When exp : g→ G is a diffeomorphism, for A ∈ Aut(G), we have Fix(A) =

exp(Fix(A∗)), where A∗ is the automorphism of g induced from A. When G is

a 4-dimensional solvable geometry, G is type (E) and exp is a diffeomorphism.

So Fix(A) is always diffeomorphic to Rk. We have the diagram of coverings,

where the vertical arrows are inclusions.

G
q−−−→ M̂

p−−−→ Mx x x⋃
η q
−1(Eη)

q−−−→
⋃
η Eη

p−−−→ F.

Now we analyze q−1(Eη).

Lemma 2.2.2. Assume that exp : g→ G is a diffeomorphism. The preimage

of Eη in G under q : G → M̂ is a disjoint union of submanifolds of G. In

fact, if η(̂is) = A ∈ Φ with (a,A) ∈ Π, then any component of q−1(Eη) is

Fix(γs−1a,A) for some γ ∈ Γ. Consequently, the preimage of Eη in G is

q−1(Eη) =
⋃
γ∈Γ

Fix(γs−1a,A).

Further, each Fix(γs−1a,A) is a left translate of the connected subgroup Fix(A)

of G and is diffeomorphic to Rn, where n = dim(Fix(A)) = dim(Fix(A∗)).

Proof. Because Eη is a disjoint union of closed submanifolds and q is a covering,

q−1(Eη) is a (possibly not connected) submanifold of G without boundary.

Let A = η(̂is) and let (a,A) ∈ Π. An element x̃ ∈ G projects to x̂ ∈ Eη if

and only if there exists γ ∈ Γ such that s(x̃) = γ(a,A)(x̃), or equivalently,

x̃ = (γs−1a,A)(x̃).

That is, x̃ must be in the fixed set of the affine transformation (γs−1a,A).
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Consequently, the preimage of Eη in G is

q−1(Eη) =
⋃
γ∈Γ

Fix(γs−1a,A).

Some sets in the above union may be empty. The fixed set of an affine

transformation, if non-empty, is just a translation of the fixed subgroup of its

automorphism part; that is, if x0 ∈ Fix(b, B), then

Fix(b, B) = x0Fix(B).

To see this, note that if x0y ∈ x0Fix(B) (so y ∈ Fix(B)), then

(b, B)(x0y) = bB(x0)B(y)

= (b, B)(x0)y

= x0y.

For the other inclusion, note that if z ∈ Fix(b, B), then z = x0x
−1
0 z. We claim

that x−1
0 z is in Fix(B):

B(x−1
0 z) = B(x0)−1B(z)

= B(x0)−1b−1bB(z)

= [(b, B)(x0)]−1 (b, B)(z)

= x−1
0 z.

Any two left translates of Fix(A) are either disjoint or equal. Since exp

is a diffeomorphism, any left translate of Fix(A) is a submanifold of G dif-

feomorphic to Rn, where n = dim(Fix(A)). Since Γ is countable, q−1(Eη) is

expressed as a countable union of submanifolds of G, each of which has dimen-

sion dim(Fix(A)). This forces each component of the submanifold q−1(Eη) to
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have dimension equal to that of Fix(A).

In fact, we claim a component Ẽη of q−1(Eη) is equal to Fix(γs−1a,A) for

some γ ∈ Γ. The argument above shows that x̃ ∈ Ẽη belongs to Fix(γs−1a,A)

for some γ ∈ Γ. Since Fix(γs−1a,A) is connected,

Fix(γs−1a,A) ⊂ Ẽη.

Also, Fix(γs−1a,A) is closed in Ẽη, since it is closed in G. Note that the inclu-

sion Fix(γs−1a,A) ↪→ Ẽη is open by invariance of domain, as both manifolds

have the same dimension. Consequently, Fix(γs−1a,A) = Ẽη.

An important consequence of Lemma 2.2.2 is that all components of F

lifting to Eη must have the same dimension equal to that of Fix(η(̂is)), where

η(̂is) ∈ Φ is the unique automorphism of G coming from η.

Lemma 2.2.3. Let Π\G be an infra-solvmanifold with translational involution

induced by s. Suppose that A ∈ Φ has order 2 and A(s) = s−1. Let η : Z2 → Φ

be the homomorphism η(̂is) = A. Then Eη = ∅.

Proof. Let α = (a,A) ∈ Π and define Π ′ = 〈Γ, α〉. Note that Π ′\G is an

infra-solvmanifold with Z2 holonomy and translational involution i′s induced

by s.

We claim that the group generated by Π ′ and s, 〈Π ′, s〉, is torsion-free.

A general element of 〈Π ′, s〉 with holonomy A is of the form (sγa,A), where

γ ∈ Γ. We have to check that (sγa,A)2 is not the identity, for any γ ∈ Γ. Now

(sγa,A)2 = (sγaA(s)A(γ)A(a), id)

= (γaA(γa), id), (since s ∈ Z(G))

= (γa,A)2 6= (e, id),

16



and this cannot be the identity because (γa,A) ∈ Π and Π is torsion-free.

Consequently, 〈Π ′, s〉 is torsion-free and hence 〈Π ′, s〉 acts freely on G.

Therefore s acts as a free involution on the infra-solvmanifold Π ′\G. Note

that the preimage of Fix(i′s) ⊂ Π ′\G in Γ\G under the double covering Γ\G→

Π ′\G is precisely Eη. Hence Eη must be empty.

2.3 Dimension of Fixed Set

Given a 4-dimensional infra-solvmanifold Π\G with translational involution

is induced by translation by s as defined in Lemma 2.1.1, the fixed set F will

be a disjoint union of submanifolds. We will need to compute the dimension

of Fix(is). By Lemma 2.2.2, a component of F lifts to G as a left translate of

Fix(η(̂is)), where η(̂is) is an involution in Aut(G). Every involution in Aut(G)

belongs to a maximal compact subgroup K of Aut(G). When G is one of the

4-dimensional solvable geometries, Aut(G) has finitely many components, as

Aut(G) is algebraic. A result of Mostow [29, Theorem 3.1] implies that all

maximal compact subgroups of Aut(G) are conjugate. Therefore, we can fix a

maximal compact subgroup K and compute dim(Fix(A)) for each involution

A in K.

Lemma 2.3.1 ([17, p.135]). (1) A maximal compact subgroup of Aut(Nil3×R)

is

O(2,R)× Z2.

(2) If A ∈ O(2,R)×Z2 restricts to the identity on R and has order 2, then

dim(Fix(A)) = 2.
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Proof. A maximal compact subgroup of Aut(Nil3) is O(2,R) and acts as

A =

[
a b

c d

]
:


1 x z

0 1 y

0 0 1

 7−→


1 (ax+ by) 1
2(abx2 + 2bcxy + cdy2 + 2 det(A)z)

0 1 (cx+ dy)

0 0 1

 .
The induced action of A ∈ O(2,R) on Z(Nil3) is multiplication by det(A).

Therefore, Fix(A) is 1-dimensional on Nil3 for all A ∈ O(2,R). A maximal

compact subgroup of Aut(Nil3×R) is O(2,R)×Z2, where O(2,R) ⊂ Aut(Nil3)

and Z2 acts as a reflection on R. Thus, if A ∈ O(2,R) × Z2 restricts to the

identity on R, then dim(Fix(A)) = 2.

Lemma 2.3.2. (1) A maximal compact subgroup of Aut(Nil4) is Z2 × Z2.

(2) Let A ∈ Aut(Nil4) have order 2. If A restricts to the identity on

Z(Nil4), then dim(Fix(A)) = 2.

Proof. Recall the splitting of Nil4 as the semidirect product R3 o R. Letting

g denote the Lie algebra of Nil4, we have g ∼= R3 o R, where R acts by the

matrix 
0 1 0

0 0 1

0 0 0

 .
With standard bases e1, e2, e3 of R3 and e4 of R, g has relations

[e4, e2] = e1, [e4, e3] = e2.

For A ∈ Aut(g), A induces an action on the quotient g/ [g, g] ∼= 〈e3, e4〉, denote

this action by

B =

[
a b

c d

]
.

We will see that B determines the action of A on e1 and e2. The relation

[e4, e3] = e2, implies A(e2) = det(B)e2. Compactness forces det(B) = ±1.
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We also compute

A(e1) = A([e4, e2]) = [A(e4), A(e2)]

= [be3 + de4, det(B)e2] = det(B)de1.

Again, compactness implies d = ±1. Since [e3, e2] vanishes, we have

0 = A([e3, e2]) = [A(e3), A(e2)]

= [ae3 + ce4, det(B)e2] = det(B)ce1.

Thus c vanishes and B must be upper triangular of the form

B =

[
±1 b

0 ±1

]
.

By conjugation we can set b = 0. Thus, a maximal compact subgroup of

Aut(Nil4) cannot be larger than Z2 × Z2. Conversely, we see that

Z2 × Z2 = {(±I3, 1), (±J,−1)} ⊂ Aut(R3 o R), (2.1)

where

J =


1 0 0

0 −1 0

0 0 1

 ,
defines a subgroup of Aut(Nil4). It now follows that a maximal compact

subgroup of Aut(Nil4) is {(±I3, 1), (±J,−1)} ∼= Z2 × Z2.

Note that (−I3, 1) and (−J,−1) do not act as the identity on Z(Nil4).

The remaining involution (J,−1) restricts to the identity on Z(Nil4) and has

2-dimensional fixed subgroup.

Lemma 2.3.3. (1) A maximal compact subgroup of Aut(Sol1
4) is D4.
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(2) Let A ∈ Aut(Sol1
4) have order 2. If A restricts to the identity on

Z(Sol1
4), then

dim(Fix(A)) = 2.

Proof. Both Aut(Sol3) and Aut(Sol1
4) have D4 as their maximal compact sub-

group (Propositions 3.1.4 and 3.1.8),

D4 =

〈[
0 −1

1 0

]
,

[
1 0

0 −1

]〉
= Z4 o Z2.

For A ∈ D4, let Ā be +1 if A is diagonal, and −1 if A is off-diagonal. Then A

acts on Sol3 = R2 o R as

A :

([
x

y

]
, u

)
7−→

(
A

[
x

y

]
, Āu

)
,

and on Sol1
4 as

A =

[
a b

c d

]
:


1 eux z

0 eu y

0 0 1

 7−→


1 eĀu(ax+ by) 1
2(abx2 + 2bcxy + cdy2 + 2 det(A)z)

0 eĀu (cx+ dy)

0 0 1

 .

For both Sol3 and Sol1
4, Ā is the induced action of A on Sol3/R2 ∼=

Sol1
4/Nil ∼= R. Note that multiplication by det(A) is the induced action of

A on Z(Sol1
4). Thus, the only involution in D4 restricting to the identity on

Z(Sol1
4) is

[
−1 0

0 −1

]
and evidently it has 2-dimensional fixed subgroup.

Lemma 2.3.4. (1) A maximal compact subgroup of Aut(Sol3 × R) is

D4 × Z2,

where D4 ⊂ Aut(Sol3) and Z2 acts as a reflection on R.
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(2) Let A ∈ D4 ⊂ D4 × Z2 ⊂ Aut(Sol3 × R) have order 2.

If A =

[
−1 0

0 −1

]
or ±

[
0 1

1 0

]
, then

dim(Fix(A)) = 2.

If A = ±

[
1 0

0 −1

]
, then

dim(Fix(A)) = 3.

Proof. The first statement is clear since a maximal compact subgroup of

Aut(Sol3) is D4. For the second statement, recall that the induced action

of A on the quotient Sol3/R2 ∼= R is +1 if A is diagonal and −1 otherwise.

2.4 Proof of Bounding

The following relations among Stiefel-Whitney classes for 4-manifolds are known.

Lemma 2.4.1 ([37]). For any 4-manifold M ,

(1) ω2
1ω2 = ω1ω3 = 0

(2) ω2
2 = ω4

1 + ω4

Therefore, M is a boundary if and only if the Stiefel-Whitney numbers

ω4
1(M) and ω4(M) are 0.

A solvmanifold Γ\G is parallelizable since one can project a framing of

left invariant vector fields from G to Γ\G. Hence the Euler characteristic

χ(Γ\G) vanishes. Since any infra-solvmanifold Π\G is finitely covered by a

solvmanifold, χ(Π\G) = 0. Therefore, the mod 2 Euler characteristic, which

is ω4(M), vanishes. Hence the only Stiefel Whitney consider is ω4
1(M).
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Proposition 2.4.2 ([38, Proposition 9.2]). A manifold Mn is unoriented

cobordant to a manifold M ′ with differentiable involution having a fixed set

of dimension n− 2 if and only if ωn1 (M) = 0.

We will use this result to show that ω4
1(M) = 0 for a 4-dimensional infra-

solvmanifold, by constructing an involution with 2-dimensional fixed set. It is

well known that any closed manifold with free involution bounds. So, hence-

forth we assume our involution to have non-empty fixed set.

We will also need the following result on the crystallographic groups of

Sol3 = R2 o R. Note that the nil-radical of Sol3 is R2. Let Π ⊂ Isom(Sol3) =

Sol3 oD4 be a crystallographic group with lattice Γ and holonomy Φ. Recall

the action of D4 as automorphisms of Sol3 from Lemma 2.3.3. Let

pr1 : Sol3 → Sol3/R2 ∼= R.

denote the quotient map. If Γ is a lattice of Sol3, then Γ meets the nil-radical

in a lattice Γ ∩ R2 ∼= Z2 and pr1(Γ) ∼= Z is a lattice of R [32, Corollary 8.28].

Proposition 2.4.3 (Lemma 3.2.10). Let Π ⊂ Isom(Sol3) = Sol3 o D4 be

crystallographic and let v denote a generator of pr1(Γ) ∼= Z.

If (b, B) ∈ Π where B = ±

[
1 0

0 −1

]
⊂ D4, then pr1(b) = v

1
2 .

For Nil3 × R geometry manifolds, we need to study the holonomy repre-

sentation

ρ : Φ→ Aut(Z(Nil3 × R))

closely.

Lemma 2.4.4. Let M = Π\G with G = Nil3 × R. Then there is a set of

generators t1, t2 for Γ ∩ Z(G) ∼= Z2, t1 ∈ Z(Nil3), so that with respect to the
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basis t1, t2,

(1) ρ(Φ) ⊂

〈[
1 0

0 −1

]
,

[
−1 0

0 −1

]〉
, or

(2) ρ(Φ) ⊂

〈[
1 1

0 −1

]
,

[
−1 0

0 −1

]〉
.

Proof. We have Z(G) = Z(Nil3)× R. Since

[G,G] = Z(Nil3) = R,

Z(Nil3) is invariant under any automorphism of G. Further, Γ ∩ Z(Nil3) is a

lattice of Z(Nil3) [7, Lemma 1.2.5].

Note that ρ(Φ) has Z(Nil3) as an invariant subspace. Because ρ(Φ) can be

conjugated (over GL(2,R)) into O(Z(G)), we can assume that it leaves the

orthogonal complement of Z(Nil3) invariant as well. The maximal compact

subgroup of O(Z(G)) leaving Z(Nil3) invariant is

Z2 × Z2 =

〈[
1 0

0 −1

]
,

[
−1 0

0 −1

]〉
.

Thus, over GL(2,R), ρ(Φ) can be conjugated into this Z2 × Z2. But over

GL(2,Z), there is one more case.

Let t1, t2 be two generators of Π ∩ Z(G) ∼= Z2, where t1 generates Π ∩

Z(Nil3). It is known that an involution A ∈ GL(2,Z) with vanishing trace

is GL(2,Z) conjugate to either

[
1 0

0 −1

]
or

[
1 1

0 −1

]
[4]. Using this, it is not

hard to see that we can keep t1 the same, but change t2 to t′2 = at1 ± t2 for

a ∈ Z, to put ρ(Φ) in the desired form.

We are now ready to prove the main theorem.

Theorem 2.4.5. All 4-dimensional infra-solvmanifolds are boundaries.
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Proof. The flat 4-dimensional manifolds M = Π\R4 are all boundaries by

Hamrick-Royster [15].

When G = Sol4m,n or Sol0
4, any compact form M = Π\G is a mapping

torus of T 3, and is therefore a T 3 bundle over S1 ([17, Corollary 8.5.1] and [23,

Theorem 3.5, Theorem 4.2]). Because T 3 is orientable, ω1(M) is induced from

the base of the fibration. That is, let p denote the projection p : M → S1.

Now ω1(M) = p∗(c) for some class c ∈ H1(S1; Z2) ∼= Z2. To see that ω1 is

induced from a class in the base of the fibration, note that

H1(M ; Z2) ∼= hom(H1(M ; Z),Z2) ∼= hom(π1(M),Z2).

It is known that ω1(M), under the above isomorphism, is the cohomology

class which assigns 1 to an element of γ ∈ π1(M) if the tangent bundle is non-

orientable when restricted to γ and 0 if the tangent bundle of M is orientable.

Since the fiber of M is orientable, the ω1(M) must come from the base. Then:

ω1(M)4 = (p∗(c))4 = p∗(c4) = p∗(0) = 0.

Of course, ω4(M) vanishes as well.

Case G = Nil4, Sol1
4 :

For M = Π\G when G is Nil4 or Sol1
4, let s = t

1
2 where t is a generator of

Γ ∩ Z(G). We consider the translational involution defined in Lemma 2.1.1.

Our explicit computation of maximal compact subgroups of Aut(Nil4) and

Aut(Sol1
4) shows that A(s) = ±s for any holonomy A ∈ Φ (recall that s is

central). This also follows since Z(G) is invariant under any automorphism

and 1-dimensional. Let η : Z2 = 〈s〉 → Φ be an injective homomorphism.

If η(s)(s) = −s, then Eη = ∅ by Lemma 2.2.3. If η(s)(s) = s, then η(s)
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acts as the identity on Z(G) and η(s) has 2-dimensional fixed subgroup on G

(Lemmas 2.3.2 and 2.3.3). By Lemma 2.2.2, Eη is 2-dimensional. Therefore,

Fix(s) is 2-dimensional.

Case G = Sol3 × R :

Now consider a Sol3 × R geometry manifold Π\G. Let s = t
1
2 where t

is a generator of Γ ∩ Z(G). Since A(s) = ±s for all A ∈ Φ, s defines an

involution on Π\G. Let η : Z2 = 〈s〉 → Φ be an injective homomorphism. If

η(s)(s) = −s, then Eη = ∅ by Lemma 2.2.3.

In the Sol3×R geometry case, not all involutions in Φ inducing the identity

on Z(Sol3 × R) have 2-dimensional fixed subgroup (Lemma 2.3.4). When

η(s) = A, where A is one of

[
−1 0

0 −1

]
or ±

[
0 1

1 0

]
, Eη is 2-dimensional,

since Fix(A) is 2-dimensional. But for

B = ±

[
1 0

0 −1

]
,

Fix(B) is 3-dimensional. However, we shall see that when η(s) = B, Eη is

empty. Note that the nil-radical of Sol3 × R is R3 with quotient R. Let

pr : Sol3 × R→ R

denote the quotient homomorphism by the nil-radical of Sol3 × R. If we let

pr2 : Sol3 × R → Sol3 denote the quotient of Sol3 × R by its center and let

pr1 : Sol3 → R denote the quotient of Sol3 by its nil-radical, then pr factors as

pr1 ◦ pr2,

pr : Sol3 × R
pr2:/Z(Sol3×R)
−−−−−−−−−→ Sol3

pr1:/R2

−−−−−→ R.

Now pr(Γ) is a lattice of R. Let v denote a generator of pr(Γ). By Lemma
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2.2.2, the preimage of Eη in Sol3 × R is given by,

⋃
γ∈Γ

Fix(γs−1b, B) for (b, B) ∈ Π.

However, all sets Fix(γs−1b, B) are empty for any γ ∈ Γ. To see this, suppose

x ∈ Sol3 × R satisfies

γs−1bB(x) = x.

We will apply pr = pr1◦pr2 to both sides. Note that pr(b) = v
1
2 by Proposition

2.4.3, pr(γ) = vn for some n ∈ Z, pr(s) = 0, and

pr(B(x)) = B̄(pr(x)) = pr(x)

(since B is diagonal, B̄ = +1). Thus, application of pr yields

vn+ 1
2 + pr(x) = pr(x),

which is a contradiction. This shows that Eη is empty when η(s) = B.

Therefore, Fix(s) has no 3-dimensional components and is 2-dimensional

in the Sol3 × R geometry case.

Case G = Nil3 × R :

Finally, consider a Nil3 ×R geometry manifold Π\G. Now Z(Nil3 ×R) =

Z(Nil3)×R. We will use either Z(Nil3) or R to induce an involution on Π\G

depending on which case of Lemma 2.4.4 occurs.

Suppose we can take t1, t2 with t1 ∈ Z(Nil3), as a generating set of Γ∩Z(G)

so that ρ(Φ) is diagonal for this generating set (case (1) of Lemma 2.4.4). Take

s = t
1
2
2 for our involution on M . Lemma 2.2.3 implies that Eη is non-empty

only when η(s)(s) = s. This conditions means that η(s) fixes the R factor

in Z(Nil3 × R) = Z(Nil3) × R. But all such η(s) fixing R must have a 2-

26



dimensional fixed set on Nil3 × R by Lemma 2.3.1.

Now suppose case (2) of Lemma 2.4.4 occurs. This time, we must take

s = t
1
2
1 for our involution. If η(s) acts as a reflection on Z(Nil3), Lemma 2.2.3

implies Eη is empty.

We claim further that Eη is empty when η(s) ∈ Φ with ρ(η(s)) =

[
1 1

0 −1

]
.

To see this, note that translation by s = t
1
2
1 is also induced from translation by

s′ = t
1
2
1 t
−1
2 . But η(s)(s′) = s′−1. Hence Lemma 2.2.3 implies that Eη is empty

in this case.

Thus we conclude that the only non-empty components of Fix(s) can arise

from η(s) ∈ Φ with ρ(η(s)) = id. But Lemma 2.3.1 implies that all such η(s)

have 2-dimensional fixed set. Therefore, when G = Nil3 × R, in either case of

Lemma 2.4.4, we have an involution with fixed set of constant dimension 2.

For any manifold with Nil3 × R,Nil4, Sol1
4, or Sol3 × R geometry, we have

constructed an involution with 2-dimensional fixed set. By Stong’s result

(Proposition 2.4.2), ω4
1(M) = 0. Thus, all Stiefel-Whitney numbers are zero

and we have established that all 4-dimensional infra-solvmanifolds bound.
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3 Crystallographic Groups of the 4-Dimensional Solv-

able Geometries

In the sections below, we compute Aut(G), and the maximal compact subgroup

of Aut(G), where G is one of Sol3, Sol3 × R, Sol4m,n, Sol0
4, and Sol1

4.

3.1 Computation of Aut(G)

To understand Aut(G) when G is one of Sol3 = R2 o R, Sol4m,n = R3 o R, or

Sol0
4 = R3 oR, first note that Sol3 has nilradical R2, and both Sol4m,n and Sol0

4

have nilradical R3. The nilradical is invariant under automorphisms, and we

will apply the following lemmas.

Lemma 3.1.1. Let G = Rn oφ R and suppose that Rn is invariant under all

automorphisms of G. Then α ∈ Aut(G) restricts to an automorphism A of

Rn, and hence, induces an automorphism Ā of the quotient R. There is a

homomorphism

Aut(Rn o R) −−−→ Aut(Rn)× Aut(R)

α −−−→ (A, Ā)

Furthermore, A and Ā must satisfy

φ(Āu) = Aφ(u)A−1 (3.1)

Proof. Let f : R→ Rn be the map (not a homomorphism in general) defined
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by α(0, u) = (f(u), Ā(u)) ∈ Rn oφ R. Then α(x, u) = (Ax + f(u), Ā(u)). The

equality α ((x, u)(y, v)) = α(x, u)α(y, v) yields

f(u) + φ(Āu)(Ay + f(v)) = A(φ(u)(y)) + f(u+ v).

For this to hold for every x,y, u, and v, we must have f(0) = 0, which yields

the desired result.

Next, we calculate the kernel of the map Aut(RnoφR) −→ Aut(Rn)×Aut(R).

Lemma 3.1.2. The kernel of the map Aut(Rn oφ R) −→ Aut(Rn)× Aut(R)

can be identified with the group of crossed homomorphisms Z1(R,Rn). The

crossed homomorphism η ∈ Z1(R,Rn) action is given by

f(x, u) = (x + η(u), u),

and satisfies the cocycle condition

η(u+ v) = η(u) + φ(u)(η(v)). (3.2)

Proof. Let f : Rn oφ R → Rn oφ R be an automorphism which induces the

identities on Rn and R. Then f(x, u) = (x + η(u), u) for a map η : R → Rn.

We compute

f(x, u)f(y, v) = (x + η(u) + φ(u)(y) + φ(u)(η(v)), u+ v),

f(x + φ(u)(y), u+ v) = (x + φ(u)(y) + η(u+ v), u+ v),

which yields the desired conclusion.

Remark 3.1.3. When H1(R,Rn) = 0, every crossed homomorphism is prin-

cipal. This occurs when det(I − φ(u)) 6= 0. That is, for η ∈ Z1(R,Rn), there

exists x0 ∈ Rn such that η(u) = δx0 = (I − φ(u))x0. So when H1(R,Rn) = 0,
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the correspondence η → x0 gives an isomorphism between the group of crossed

homomorphisms and Rn.

Proposition 3.1.4. We have Aut(Sol3) ∼= Sol3 o (R+ × D4), where D4 is

the dihedral group with 8 elements. Under this isomorphism, Sol3 acts as

inner automorphisms, and (R+ ×D4) is identified with the group of matrices

R+×D4 =

〈
k

[
0 −1

1 0

]
, k

[
1 0

0 −1

]〉
, k > 0, (k = 1 yields D4), A ∈ R+×D4

acts on Sol3 as

A :

([
x

y

]
, u

)
7−→

(
A

[
x

y

]
, Āu

)
.

(Ā = +1 if A is diagonal, Ā = −1 otherwise.)

Proof. Any automorphism α restricts to an automorphism of the nilradical

R2 of Sol3, so Lemma 3.1.1 applies. Since eigenvalues are invariant under

conjugation, φ(Āu) and Aφ(u)A−1 must have the same eigenvalues. Hence

Ā = ±1 is forced. That is, we have

Ā(u) = u or Ā(u) = −u.

If Ā(u) = u
(
Ā(u) = −u, respectively

)
, then A must be of the form

A =

[
a 0

0 d

]
∈ GL(2,R)

(
A =

[
0 b

c 0

]
∈ GL(2,R), respectively

)
.

Conversely, for any matrix A,

A =

[
a b

c d

]
:

([
x

y

]
, u

)
7−→

(
A

[
x

y

]
, Āu

)
,

where either a = d = 0 or b = c = 0, defines an automorphism of Sol3.
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Thus the image of Aut(Sol3)→ GL(2,R) is{[
a 0

0 d

]
,

[
0 b

c 0

]
: a, b, c, d ∈ R∗

}
,

and this group is isomorphic to R+×(RoD4), where R+ is the scalar matrices

with positive entries, and

R =

{
Ec =

[
e−c 0

0 ec

]
: c ∈ R

}
and D4 =

{[
±1 0

0 ±1

]
,

[
0 ±1

±1 0

]}
.

By Lemma 3.1.2, we obtain a splitting

Aut(Sol3) ∼= Z1
φ(R,R2) o (R+ × (R oD4)).

But on Sol3, every crossed homomorphism is principal, so that Z1
φ(R,R2) ∼= R2

as described in Remark 3.1.3. Thus we have,

Aut(Sol3) ∼= R2 o (R+ × (R oD4)) ∼= (R2 o R) o (R+ ×D4)

∼= Sol3 o (R+ ×D4).

For the last isomorphism, we observe that the action of R2 o R on Sol3 is by

inner automorphisms. Since Sol3 has trivial center, Inn(Sol3) ∼= Sol3.

The computation of Aut(Sol4m,n) and Aut(Sol0
4) proceeds in an identical fash-

ion.

Proposition 3.1.5. We have Aut(Sol4m,n) ∼= R3 o (R∗)3. Here (R∗)3 is identi-

fied with the group of diagonal matrices in GL(3,R) and acts on the R3 factor

linearly in the semi-direct product. For (x0, A) ∈ R3 o (R∗)3, (x0, A) acts on

Sol4m,n as follows: for (x, u) ∈ Sol4m,n = R3 oφ R,

(x, u)→ (A(x) + (I − φ(u))x0, u).
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Proof. Any automorphism α restricts to an automorphism of the nilradical

R3 of Sol4m,n, so Lemma 3.1.1 applies. Since eigenvalues are invariant under

conjugation, φ(Āu) and Aφ(u)A−1 must have the same eigenvalues. Hence

Ā = +1 is forced. Thus φ(u) and A commute. Computation shows that A

must be diagonal. Thus the image of Aut(Sol4m,n) in Aut(R3) consists only of

diagonal matrices. Conversely, when A is diagonal, (x, u) → (Ax, u) defines

an automorphism of Sol4m,n. So the group of invertible diagonal matrices (R∗)3

lifts back to Aut(Sol4m,n). By Lemma 3.1.2, we obtain a splitting Aut(Sol4m,n) ∼=

Z1
φ(R,R3) o (R∗)3. But on Sol4m,n, every crossed homomorphism is principal.

That is, for η ∈ Z1
φ(R,R3), η(u) = δx0 = (I − φ(u))x0, for some x0 ∈ R3.

Note that we could proceed as in Proposition 3.1.4 and express Aut(Sol4m,n)

in terms of Inn(Sol4m,n) ∼= Sol4m,n, but this will not be necessary.

Proposition 3.1.6. We have Aut(Sol0
4) ∼= R3 o (GL(2,R) × R∗). Here

GL(2,R)×R∗ is identified with the group of block diagonal matrices in GL(3,R)

given by [
A 0

0 b

]
,

and acts on the R3 factor linearly in the semi-direct product. For (x0, A) ∈

R3 o (GL(2,R)× R∗), (x0, A) acts on Sol0
4 as follows: for (x, u) ∈ Sol0

4,

(x, u)→ (A(x) + (I − φ(u))x0, u).

Proof. Any automorphism α restricts to an automorphism of the nilradical

R3 of Sol0
4, so Lemma 3.1.1 applies. Since eigenvalues are invariant under

conjugation, φ(Āu) and Aφ(u)A−1 must have the same eigenvalues. Hence

Ā = +1 is forced. Thus φ(u) and A commute. Computation shows that A

must be block diagonal as in the statement of the proposition. Conversely,
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for B ∈ GL(2,R) × R∗, (x, u) → (Bx, u) defines an automorphism of Sol0
4.

Thus the image of Aut(Sol0
4) in Aut(R3) is GL(2,R)×R∗ and GL(2,R)×R∗

lifts back to Aut(Sol0
4). By Lemma 3.1.2, we obtain a splitting Aut(Sol0

4) ∼=

Z1
φ(R,R3) o (GL(2,R) × R∗). But on Sol0

4, every crossed homomorphism is

principal, so that Z1
φ(R,R3) ∼= R3.

Note that both the geometries Sol3 ×R and Sol1
4 have center R with quo-

tient isomorphic to Sol3. So when G = Sol3 × R or Sol1
4, we have the short

exact sequence

1→ Z(G)→ G→ Sol3 → 1.

When G = Sol3 × R or Sol1
4, an automorphism α̂ of G, induces an automor-

phism α of Sol3, an automorphism Â of the center, and an automorphism Ā

of the quotient R = Sol3/R2.

Aut(G) −−−→ Aut(Sol3)× Aut(R) −−−→ Aut(R)× Aut(R2)× Aut(R)

α̂ −−−→ (α, Â) −−−→ (Ā, A, Â)

(3.3)

Recall that A determines Ā, according to whether A is diagonal or off-diagonal.

Proposition 3.1.7. We have Aut(Sol3 × R) ∼= R o (Aut(Sol3) × R∗). Here

Aut(Sol3)×R∗ acts on Sol3×R in the obvious way as automorphisms on each

factor. The R factor is the kernel of the homomorphism Aut(Sol3 × R) →

Aut(Sol3)×Aut(R), it acts as automorphisms as follows: for

(([
x

y

]
, u

)
, t

)
∈

Sol3 × R and k ∈ R,(([
x

y

]
, u

)
, t

)
→

(([
x

y

]
, u

)
, t+ ku

)
.

The action of Aut(Sol3)× R∗ on R in R o (Aut(Sol3)× R∗) is given by mul-
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tiplication by ÂĀ.

Proof. Clearly, Aut(Sol3)×Aut(R) ∼= Aut(Sol3)×R∗ lifts back to Aut(Sol3×

R). The kernel of Aut(Sol3 × R) → Aut(Sol3) × Aut(R) is the group of

crossed homomorphisms Z1(Sol3,R). Since Sol3 acts trivially on the cen-

ter R, the crossed homomorphisms become genuine homomorphisms, and

Z1(Sol3,R) = hom(Sol3,R) = hom(Sol3/
[
Sol3, Sol3

]
,R) = hom(R,R) = R,

acting as translations of the central R-factor of Sol3×R. We therefore obtain

a splitting Aut(Sol3 × R) ∼= R o (Aut(Sol3)× R∗).

Given α̂ ∈ Aut(Sol1
4), A determines Â. That is, Â = det(A). Of course, Ā

is also determined.

Proposition 3.1.8. We have Aut(Sol1
4) ∼= R o Aut(Sol3). The group R is

the kernel of the homomorphism

Aut(Sol1
4)→ Aut(Sol3).

For k ∈ R, the action on Sol1
4 is given by

1 eux z

0 eu y

0 0 1

 7−→


1 eux z + ku

0 eu y

0 0 1

 .
The action of Aut(Sol3) on R in R o Aut(Sol3) is multiplication by ÂĀ.

Proof. We have seen that the image of Aut(Sol1
4) under

Aut(Sol1
4)→ Aut(Sol3)× Aut(R)→ Aut(R)× Aut(R2)× Aut(R)

is determined by its image in Aut(R2). On the other hand, Aut(Sol3) lifts back

to Aut(Sol1
4). Recall the isomorphism Aut(Sol3) ∼= Sol3 o (R+ ×D4) given in
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Proposition 3.1.4. First, Sol3 ⊂ Sol3 o (R+ ×D4), corresponding to the inner

automorphisms of Sol3 lifts to the inner automorphisms of Aut(Sol1
4). Note

that Inn(Sol1
4) = Inn(Sol3) ∼= Sol3.

For the part R+×D4 of Aut(Sol3), we have that a diagonal or off-diagonal

matrix A ∈ GL(2,R) can be lifted to an automorphism of Sol1
4:

A =

[
a b

c d

]
:


1 eux z

0 eu y

0 0 1

 7−→


1 eĀu(ax+ by) 1
2(abx2 + 2bcxy + cdy2 + 2(ad− bc)z)

0 eĀu (cx+ dy)

0 0 1

 .

This formula is valid only for the cases when either a = d = 0 (Ā = −1) or

b = c = 0 (Ā = +1).

The kernel of Aut(Sol1
4) → Aut(Sol3) is the group of crossed homomor-

phisms Z1(Sol3,R). Since Sol3 acts trivially on the center R, the crossed homo-

morphisms become genuine homomorphisms, and Z1(Sol3,R) = hom(Sol3,R) =

hom(R,R) = R. Thus we have a splitting Aut(Sol1
4) ∼= R o Aut(Sol3).

In summary,

G Aut(G)

Sol3 Sol3 o (R+ ×D4)

Sol3 × R R o (Aut(Sol3)× R∗)
Sol4m,n R3 o (R∗)3

Sol0
4 R3 o (GL(2,R)× R∗)

Sol1
4 R o Aut(Sol3)

Table 3.1: Aut(G) of 4-dimensional solvable geometries

With any left invariant metric on G,

Isom(G) ⊂ GoK ⊂ Aff(G),
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where K is a maximal compact subgroup of Aut(G) [13]. In fact, all of the

4-dimensional solvable geometries admit a left invariant metric so that

Isom(G) = GoK,

where K is any of the maximal compact subgroups listed in the table below.

In the table below, we list K for each of the 4-dimensional solvable geometries.

G K ⊂ Isom(G)

Nil3 × R O(2,R)× Z2

Nil4 Z2 × Z2

Sol3 D4

Sol3 × R D4 × Z2

Sol4m,n Z3
2

Sol0
4 O(2,R)× Z2

Sol1
4 D4

Table 3.2: Maximal compact subgroup of Aut(G)

3.2 Crystallographic Groups of Sol3

In this section, we shall classify the crystallographic groups of Sol3. Given a

Sol3 crystallographic group Q ⊂ Sol3 o D4, Q ∩ Sol3 is a lattice Γ with finite

quotient group Φ ⊆ D4, and we have the short exact sequence

1→ Γ→ Q→ Φ→ 1.

The first step will be to classify the lattices of Sol3 up to isomorphism. For

u ∈ R, let Eu denote the action of R on R2 in Sol3. Our classification, as well

as the notation conventions, will be needed in the 4-dimensional case. See [14]

for another classification.
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3.2.1 (Lattices of Sol3). In this section, we show the well known fact that

there is a one-one correspondence between the isomorphism classes of lattices

(discrete, cocompact subgroups) of Sol3 and the weak-conjugacy classes (see

below) of S ∈ SL(2,Z) with trace, tr(S) > 2.

We say a matrix H ∈ GL(2,Z) is hyperbolic if it has two distinct real

eigenvalues, say λ and 1
λ
, with |λ| + | 1

λ
| > 2. Note that H induces a linear

diffeomorphism of T 2 with directions of both expansion and contraction. Let

S =

[
σ11 σ12

σ21 σ22

]
∈ SL(2,Z) with tr(S) > 2. Such a matrix is a hyperbolic

matrix with both eigenvalues λ, 1
λ

positive.

Let Z2 oS Z be the extension of Z2 by Z with the group operation

(x,m) · (y, n) = (x + Smy,m+ n).

Let

e1 =

([
1

0

]
, 0

)
, e2 =

([
0

1

]
, 0

)
, e3 =

([
0

0

]
, 1

)
.

Then Z2 oS Z has relations

[e1, e2] = 1, e3 · e1 · e−1
3 = eσ11

1 · eσ21
2 , e3 · e2 · e−1

3 = eσ12
1 · eσ22

2 . (3.4)

Notation 3.2.2. For uniformity of statements, we always take

∆ =

[
1
λ

0

0 λ

]

with 1
λ
< 1 < λ.

Lemma 3.2.3. Let S ∈ SL(2,Z) with tr(S) > 2. Let P and ∆ be matrices

such that PSP−1 = ∆ and det(P ) = 1. Then QSQ−1 = ∆ (with det(Q) = 1)

if and only if Q is of the form ±Ed · P for d ∈ R.
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Proof. Recall Ed is a diagonal matrix. If P and Q both diagonalize S, then

(QP−1)∆(QP−1)−1 = ∆. Since trace(S) > 2, S has two distinct positive real

eigenvalues: λ, 1/λ. For QP−1 to leave the two eigenspaces invariant, it should

be a diagonal matrix. Since det(QP−1) = 1, QP−1 = ±Ed for some d ∈ R.

Conversely, Suppose PSP−1 = ∆. Then

(±EdP )S(±EdP )−1 = Ed(PSP−1)E−d = Ed∆E−d = ∆.

With such P and ∆ for S, we define a map

φ : Z2 oS Z −→ Sol3 (3.5)([
x

y

]
, u

)
7−→

(
P

[
x

y

]
, u ln(λ)

)
.

The relation PSP−1 = ∆ guarantees that φ is a homomorphism. Clearly, the

image is a lattice of Sol3. It maps the generators as follows.

e1 7→ t1 = Pe1

e2 7→ t2 = Pe2 (3.6)

e3 7→ t3 = (0, ln(λ))

We denote image of Z2 oS Z as ΓS :

ΓS = 〈t1, t2, t3〉 ⊂ Sol3.

Conversely, we show any lattice of Sol3 is isomorphic to such a ΓS , as the

following proposition shows. We say S,S ′ ∈ SL(2,Z) are weakly conjugate if

and only if S ′ is conjugate, via an element of GL(2,Z), to S or S−1.

Notation 3.2.4. We shall refer to a lattice of Sol3 generated by t1, t2, t3 of

the form in assignment (3.6) in Subsection 3.2.1 as a standard lattice of Sol3.

38



Proposition 3.2.5. There is a one-one correspondence between the isomor-

phism classes of Sol3-lattices and the weak-conjugacy classes of S ∈ SL(2,Z)

with tr(S) > 2. Therefore, any lattice of Sol3 is conjugate to ΓS , for some S,

by an inner automorphism of Sol3.

Proof. Let S ∈ SL(2,Z) with tr(S) > 2. Then the assignment (3.6) in Sub-

section 3.2.1 yields a lattice ΓS ⊂ Sol3.

We show that any lattice Γ is conjugate to ΓS for some S. The intersection

of Γ with the nilradical R2, Γ∩R2, is a lattice of R2, [32, Corollary 8.28]. Let

t1, t2 ∈ R2 be a generating set for Γ ∩ R2, and suppose {t1, t2, t} generates

Γ. Then t is of the form (a, ln(λ)). We can assume that λ > 1, by taking

the inverse of t, if needed. But conjugation by ((Eln(λ) − I)−1a, 0) maps this

lattice to

Γ = 〈(t1, 0), (t2, 0), (0, ln(λ))〉.

Define P by Pe1 = t1 and Pe2 = t2, and set S = P−1Eln(λ)P . We claim that

S ∈ SL(2,Z). Since t3t1t
−1
3 = Eln(λ)t1 must be in Γ, Eln(λ)t1 = tσ11

1 tσ21
2 , for

some integers σ11, σ21, so that P−1Eln(λ)Pe1 = σ11e1 + σ21e2. Similarly, for

integers σ12, σ22, P−1Eln(λ)Pe2 = σ12e1 +σ22e2, which shows that S is integral.

Notice that, in case det(P ) < 0, we can make it positive by taking −t1 in

place of t1. Furthermore, we can assume that det(P ) = 1. For conjugation by

(0, 1√
det(P )

I) ∈ Aff(Sol3) maps this lattice to another which has det(P ) = 1.

Therefore our Γ is, in fact, conjugate to the lattice ΓS .

It remains to show the isomorphism class statement. If S ′ = BSεB−1 with

B ∈ GL(2,Z), where ε = ±1, then an isomorphism between Z2 oS Z and

Z2 oS′ Z is given by ei → Bei for i = 1, 2 and e3 → εe3.

Conversely, suppose two lattices of Sol3 are isomorphic. We may assume
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these lattices are of the form ΓS and ΓS′ . Our goal is to show that S and S ′

are weakly conjugate. We have an isomorphism

φ : Z2 oS Z −→ Z2 oS′ Z.

Since Z2 is the discrete nil-radical (maximal normal nilpotent subgroup) in

both groups, φ restricts to an isomorphism on the Z2 factors, say B ∈ GL(2,Z).

Also, φ induces an isomorphism ε on the quotients. Then ε = ±1. Therefore,

φ is of the form

φ(x,m) = (Bx + η(x,m), εm).

However, one can quickly see that η is independent of x. So η(x,m) = η(m).

Then applying φ to (0, 1)(x, 0)(0,−1) ∈ Z2 oS Z in two different ways, we get

φ((0, 1)(x, 0)(0,−1)) = φ(Sx, 0) = (B(Sx), 0)

φ(0, 1)φ(x, 0)φ(0,−1) = (η(1), ε)(Bx, 0)(η(1), ε)−1 = (S ′εBx, 0)

Thus, BSx = S ′εBx for every x, and we have S ′ε = BSB−1.

3.2.6 (Classification of Sol3 Crystallographic Groups). For our classi-

fication, we first show that Q can be conjugated in Aff(Sol3) in such a way

that the lattice Q ∩ Sol3 is of the form ΓS for some S, see assignment (3.6) in

Subsection 3.2.1.

Proposition 3.2.7. Any crystallographic group Q′ of Sol3 can be conjugated

in Aff(Sol3) to Q ⊂ Sol3 oD4 so that:

(1) We have Q∩Sol3 = ΓS . That is, the translation subgroup of Q is a standard

lattice of Sol3, generated by t1, t2, and t3 as in (3.6) in Subsection 3.2.1.

(2) The holonomy group Φ is generated by at most two elements of D4, and

therefore Q is generated by 〈t1, t2, t3〉, and at most two isometries of the form
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(ta1
1 ta2

2 ta3
3 , A), for A ∈ D4 and real numbers ai.

Proof. Any maximal compact subgroup of Aut(Sol3) is conjugate to D4 ⊂

Aut(Sol3). Then we observe that the conjugations performed in the proof of

Proposition 3.2.5 leave D4 invariant.

For ease of computation, we will assume our Sol3 crystallographic group is

embedded in Sol3 oD4 as in Proposition 3.2.7. Note that Q ∩R2 = 〈t1, t2〉 is

a lattice of R2, isomorphic to Z2. Denote the quotient Q/Γ by ZΦ so that we

have the diagram:

1 1y y
Z2 Z2y y

1 −−−→ ΓS −−−→ Q −−−→ Φ −−−→ 1y/Z2

y/Z2

∥∥∥
1 −−−→ Z −−−→ ZΦ −−−→ Φ −−−→ 1y y

1 1

(3.7)

First we will classify all possible extensions ZΦ which can arise as quotients

of Sol3 crystallographic groups.

Lemma 3.2.8. If Ā = −1, a3 can be taken to be 0. Otherwise, a3 = 0 or 1
2

(mod Z).

Proof. For (ta3
3 , A) ∈ ZΦ, when Ā = −1, we can assume that a3 = 0. That is,

given (ta1
1 ta2

2 ta3
3 , A) ∈ Q, conjugation by (t

−a3
2

3 , I) sets a3 = 0:

(t
−a3

2
3 , I)(ta1

1 ta2
2 ta3

3 , A)(t
a3
2

3 , I) = (t
a′1
1 t

a′2
2 t0

3, A).
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Note that this conjugation keeps the lattice in standard form.

All elements in D4 with Ā = 1 are involutions, so when Ā = 1, we compute

in ZΦ:

(ta3
3 , A)2 = (t

a3+Ā(a3)
3 , I) = (t2a3

3 , I).

For this to be in Z = 〈t3〉, a3 = 0 or 1
2

(mod Z) is forced.

Note that we only have to consider subgroups of D4 ⊂ Aut(Sol3) up to

conjugacy. Using Lemma 3.2.8, we give a complete list of ZΦ.
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— List of ZΦ — (3.8)

Φ ZΦ a3, ( b3)

(0) {1} Z

(1) Z2 =

〈[
1 0

0 −1

]〉
Z× Z(†)

2 a3 = 0

Z a3 = 1
2

(2) Z2 =

〈[
−1 0

0 −1

]〉
Z× Z2 a3 = 0

Z a3 = 1
2

(3) Z2 =

〈[
0 1

1 0

]〉
Z o Z2 a3 = 0

(4) Z4 =

〈[
0 1

−1 0

]〉
Z o Z4 a3 = 0

(5) Z2 × Z2 =

〈[
−1 0

0 −1

]
,

[
1 0

0 −1

]〉
(Z× Z2)× Z(†)

2 a3 = 0, b3 = 0

Z× Z2, a3 = 0, b3 = 1
2

Z× Z(†)
2 , a3 = 1

2
, b3 = 0

(6) Z2 × Z2 =

〈[
0 1

1 0

]
,

[
−1 0

0 −1

]〉
(Z× Z2) o Z2 a3 = 0, b3 = 0

Z o Z2 a3 = 0, b3 = 1
2

(7) Z4 o Z2 =

〈[
0 1

−1 0

]
,

[
1 0

0 −1

]〉
(Z o Z4) o Z(†)

2 a3 = 0, b3 = 0

(Z× Z2) o Z2 a3 = 0, b3 = 1
2
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The groups with (†) mark will be shown to not lift to crystallographic

groups of Sol3. That is, there does not exist a Sol3-crystallographic group

whose quotient is such a ZΦ. See Corollary 3.2.11.

Recall from diagram (3.7) that Q is an extension

1→ Z2 = 〈t1, t2〉 → Q→ ZΦ → 1.

Having classified all possible ZΦ, we now classify all abstract kernels

ϕ : ZΦ → GL(2,Z).

Of course

ϕ(t3) = S

is fixed already. For ᾱ = (ta3
3 , A) ∈ ZΦ, if Ā = +1, ϕ(ᾱ) must commute with

S. Otherwise, ϕ(ᾱ) conjugates S to its inverse.

Recall the embedding

φ : Z2 oS Z −→ Sol3,

of assignment (3.6) in Subsection 3.2.1, where φ(ei) = Pei = ti for i = 1, 2

and φ(e3) = (0, ln(λ)) = t3. We compute, for

[
n1

n2

]
∈ Z2,

(ta1
1 ta2

2 ta3
3 , A)(tn1

1 tn2
2 , I)(ta1

1 ta2
2 ta3

3 , A)−1 =

(ta3
3 A(tn1

1 tn2
2 )t−a3

3 , I).

Such conjugation is independent of a1, a2 and defines an element of GL(2,Z).

That is,

ta3
3 A(tn1

1 tn2
2 )t−a3

3 = tm1
1 tm2

2 ,
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for m1,m2 ∈ Z. With the definition of P and ∆ in assignment (3.6) in Sub-

section 3.2.1, [
m1

m2

]
= P−1∆a3AP

[
n1

n2

]
.

We define

Ã = P−1AP

Sa3 = P−1∆a3P,

so that Sa3Ã = P−1∆a3AP .

Theorem 3.2.9. For each ZΦ in the list (3.8), the following is a complete list

of homomorphisms ϕ : ZΦ → GL(2,Z) with ϕ(t3) = S and

ϕ(ta3
3 , A) = Sa3Ã

ϕ(tb33 , B) = Sb3B̃,

up to conjugation in GL(2,Z).

(0) Φ is trivial,

ZΦ = Z = 〈t3〉.

(1) Φ = Z2: A =

[
1 0

0 −1

]
,

ZΦ = Z = 〈t3, ᾱ = (t
1
2
3 , A)〉.

• ϕ(ᾱ) = −K with det(K) = −1, tr(K) = n > 0, and S = nK + I.

(2a) Φ = Z2: A =

[
−1 0

0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t0
3, A)〉.

• ϕ(ᾱ) = A, and S ∈ SL(2,Z) with tr(S) > 2.
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(2b) Φ = Z2: A =

[
−1 0

0 −1

]
,

ZΦ = Z = 〈t3, ᾱ = (t
1
2
3 , A)〉.

• ϕ(ᾱ) = −K with det(K) = +1, tr(K) = n > 2, and S = nK − I.

(3) Φ = Z2: A =

[
0 1

1 0

]
,

ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A)〉.

• ϕ(ᾱ) = A, and S ∈ SL(2,Z) with σ12 = −σ21.

(3i) Φ = Z2: A =

[
0 1

1 0

]
,

ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A)〉.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, and S ∈ SL(2,Z) with σ11 = σ22.

(4) Φ = Z4: A =

[
0 1

−1 0

]
,

ZΦ = Z o Z4 = 〈t3, ᾱ = (t0
3, A)〉.

• ϕ(ᾱ) = A, and S ∈ SL(2,Z), symmetric and tr(S) > 2.

(5) Φ = Z2 × Z2: A =

[
1 0

0 −1

]
, B =

[
−1 0

0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t
1
2
3 , A), β̄ = (t0

3, B)〉.

• ϕ(ᾱ) = −K, ϕ(β̄) = B (1)+(2a)

• S = nK + I, where K ∈ GL(2,Z), det(K) = −1, and tr(K) = n > 0.

(6a) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t0

3, B)〉.

• ϕ(ᾱ) = A, ϕ(β̄) = B (3)+(2a)
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• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

(6ai) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t0

3, B)〉.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B (3i)+(2a)

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

(6b) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

• ϕ(ᾱ) = A, ϕ(β̄) = −K (3)+(2b)

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2; k12 = −k21.

(6bi) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K (3i)+(2b)

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2; k11 = k22.

(7) Φ = Z4 o Z2: A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

• ϕ(ᾱ) = A, ϕ(β̄) = −K (includes (6a)) (3)+(1)

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0; k12 = −k21.

(7i) Φ = Z4 o Z2: A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

47



• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K (includes (6ai)) (3i)+(1)

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0; k11 = k22.

The proof will be deferred to the end of the section.

Lemma 3.2.10. For ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A)〉, where Φ = Z2, A =[

1 0

0 −1

]
, there is no homomorphism ϕ : ZΦ → GL(2,Z) with

ϕ(t3) = S ∈ SL(2,Z).

Proof. By applying the Rational Zero Theorem to the characteristic polyno-

mial of S, we see that λ must be irrational. The matrix

Sϕ(ᾱ) = P−1∆PP−1AP = P−1∆AP

must be integral. The sum of its eigenvalues, 1
λ
− λ, must be an integer. On

the other hand, since 1
λ

+λ is an integer, we infer that 2λ is an integer, so that

λ is rational, which is a contradiction. .

Corollary 3.2.11. In the list of ZΦ (3.8), the 4 cases with (†) cannot be the

quotient of a Sol3-crystallographic group.

Proposition 3.2.12 (Procedure of finding S and its diagonalizing matrix P ).

With a group ZΦ in the list (3.8), qualifying P and S can be found as follows:

(1) If a3 = 0, ϕ(ᾱ) = S0Ã = Ã = P−1AP should satisfy the following.

a© If A =

[
−1 0

0 −1

]
, then Ã = A (no condition on S).

b© If A =

[
0 1

−1 0

]
, then Ã = A, and σ12 = σ21.
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c© If A =

[
0 1

1 0

]
, then A can be SL(2,Z)-conjugate to either A itself or[

1 0

0 −1

]
. For Ã = A, σ12 = −σ21; for Ã =

[
1 0

0 −1

]
, σ11 = σ22.

(2) If a3 = 1
2
, then Ā = +1. There are two cases.

a© If A =

[
−1 0

0 −1

]
, the condition Sa3 ◦ P−1AP ∈ GL(2,Z) forces S =

nK−I with det(K) = +1, tr(K) = n > 2. Then ϕ(ᾱ) = Sa3 ◦P−1AP =

−K.

b© If A =

[
1 0

0 −1

]
, the condition Sa3◦P−1AP ∈ GL(2,Z) forces S = nK+

I with det(K) = −1, tr(K) = n > 0. Then ϕ(ᾱ) = Sa3 ◦P−1AP = −K.

(3) If Φ has two generators, negotiate so that both conditions are met.

That is, ϕ : ZΦ → GL(2,Z) given by

ϕ(t3) = S

ϕ(α) = Sa3 ◦ P−1AP

ϕ(β) = Sb3 ◦ P−1BP

must be a homomorphism.

Once we found S and ϕ(ᾱ) = Sa3 ◦ P−1AP , we form α = (ta3
3 , A). Then

the unique extension 〈t1, t2, t3, α〉 satisfies the following:

t3(tn1
1 tn2

2 )t−1
3 = tm1

1 tm2
2 , where

[
m1

m2

]
= S

[
n1

n2

]
,

α(tn1
1 tn2

2 )α−1 = tw1
1 tw2

2 , where

[
w1

w2

]
= ϕ(ᾱ)

[
n1

n2

]
.
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The proof requires a series of lemmas.

When a3 = 0, ϕ(ᾱ) = S0Ã = Ã. There are many matrices Ã, depending on

P . We show how to cut down the number of possibilities for Ã. Essentially, we

will be selecting a new set of generators for the lattice ΓS to obtain a simpler

formula for ϕ(ᾱ) = Ã. The following is known (see e.g., [4, p.182]).

Lemma 3.2.13. Let A ∈ GL(2,Z), tr(A) = 0. Then A is SL(2,Z)-conjugate

to one and only one of the following matrices:

±

[
0 1

−1 0

]
,

[
0 1

1 0

]
,

[
1 0

0 −1

]
.

The last two matrices are SL(2,Z)-conjugate to their own negatives.

However, the first two (order 4 elements) are only conjugate by a matrix

of negative determinant. Thus, they are not SL(2,R)-conjugate. A very im-

portant fact for us is:

Corollary 3.2.14.

[
0 1

1 0

]
and

[
1 0

0 −1

]
are GL(2,R)-conjugate but not

GL(2,Z)-conjugate.

For the lemma below, recall that our convention is PSP−1 =

[
1
λ

0

0 λ

]
with

λ > 1.

Lemma 3.2.15. Let P ∈ SL(2,R), S = (σij) ∈ SL(2,Z) with tr(S) > 2.

Then

(a) P−1

[
0 1

−1 0

]
P =

[
0 1

−1 0

]
if and only if P = ±

[
cos t sin t

− sin t cos t

]
.

S is diagonalized by such a P if and only if σ12 = σ21.

(b1) P−1

[
0 1

1 0

]
P =

[
0 1

1 0

]
if and only if P = ±

[
cosh t sinh t

sinh t cosh t

]
.

S is diagonalized by such a P if and only if σ12 = −σ21.

50



(b2) P−1

[
0 1

1 0

]
P =

[
1 0

0 −1

]
if and only if P = ± 1√

2

[
t −1

t

t 1
t

]
, t 6= 0.

S is diagonalized by such a P if and only if σ11 = σ22.

Proof (of Proposition 3.2.12). For cases (1) b© and (1) c©, let S ∈ SL(2,Z), P

be such that

PSP−1 = ∆

P−1AP = B ∈ GL(2,Z).

For a U ∈ SL(2,Z), set S ′ = USU−1 and P ′ = PU−1. We can embed

Z2 oS′ Z into Sol3 using P ′ so that the following diagram commutes:

Sol3 Sol3 (Px, v ln(λ)) (PU−1(Ux), v ln(λ))x x x x
Z2 oS Z −−−→ Z2 oUSU−1 Z (x, v) −−−→ (Ux, v)

Therefore the image of both Z2 oS Z and Z2 oS′ Z in Sol3 is ΓS ; we have

not changed the lattice. The effect is just a change of basis. For this new

embedding of our lattice, note that

Ã′ = P ′
−1
AP ′ = UP−1APU−1 = UÃU−1.

In case (1) b©, we use this fact and Lemma 3.2.13 to find a U such that

UÃU−1 =

[
0 1

−1 0

]
; whereas in case (1) c© we can find a U such that UÃU−1 =[

0 1

1 0

]
or UÃU−1 =

[
1 0

0 −1

]
.

(2) Now we look at the case a3 = 1
2
.
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(2) a© Let A =

[
−1 0

0 −1

]
.

S
1
2 Ã = (P−1∆

1
2P )(P−1AP ) = P−1

[
− 1√

λ
0

0 −
√
λ

]
P

= − 1√
T+2

[
σ11 + 1 σ12

σ21 σ22 + 1

]
.

Note that this is one of the square roots of S. That is,(
− 1√

T+2

[
σ11 + 1 σ12

σ21 σ22 + 1

])2

=

[
σ11 σ12

σ21 σ22

]
.

The condition S 1
2 Ã ∈ GL(2,Z) requires that the trace of S be of the form

n2 − 2 for some integer n > 0. Since
√
T + 2 = n, S must be of the form

S = nK − I, where K =

[
k11 k12

k21 k22

]
.

Then tr(S) = n2 − 2 and det(S) = 1 imposes

k11 + k22 = n 6= 0,

k11k22 − k12k21 = 1.

With such an S,

ϕ(ᾱ) = S
1
2 Ã = − 1√

T+2
(S + I) = − 1

n
(nK) = −K (assuming tr(K) = n > 2).
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(2) b© Let A =

[
1 0

0 −1

]
.

S
1
2 Ã = (P−1∆

1
2P )(P−1AP ) = P−1

[
1√
λ

0

0 −
√
λ

]
P

= − 1√
T−2

[
σ11 − 1 σ12

σ21 σ22 − 1

]
.

Note that this is one of the square roots of S. That is,(
− 1√

T−2

[
σ11 − 1 σ12

σ21 σ22 − 1

])2

=

[
σ11 σ12

σ21 σ22

]
.

The condition S 1
2 Ã ∈ GL(2,Z) requires that the trace of S be of the form

n2 + 2 for some integer n > 0. Since
√
T − 2 = n, S must be of the form

S = nK + I, where K =

[
k11 k12

k21 k22

]
.

Then tr(S) = n2 + 2 and det(S) = 1 imposes

k11 + k22 = n 6= 0,

k11k22 − k12k21 = −1.

With such an S,

ϕ(ᾱ) = S
1
2 Ã = − 1√

T−2
(S − I) = − 1

n
(nK) = −K (assuming tr(K) = n > 0).

This finishes the proof of Proposition 3.2.12, and hence of Theorem 3.2.9.

For Theorem 3.2.9, when there is more than one generator, apply criteria from

both cases (1) and (2) from Proposition 3.2.12.
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Theorem 3.2.16 below will be needed in our classification of both the crys-

tallographic groups of Sol3 and Sol4m,n, and we state it in suitable generality.

Theorem 3.2.16. For each homomorphism ϕ : ZΦ → GL(k,Z), where ZΦ is

an extension of Z = 〈tk+1〉 by a finite group Φ, with ϕ(t3) = S in Theorem

3.2.9 (k = 2, Sol3 case), or ϕ(t4) = S in Section 3.5 (k = 3, Sol4m,n case), we

have an isomorphism H2
ϕ(ZΦ,Zk) ∼= H1(Φ; Coker(I−S)) where Coker(I−S) ∼=

(I −S)−1Zk/Zk ⊂ T k is a finite abelian group. Thus the set of all equivalence

classes of extensions Q,

1 −→ Zk −→ Q −→ ZΦ −→ 1,

is in one-one correspondence with H1(Φ; Coker(I − S)).

Proof. Since det(I −S) 6= 0, H1(Φ; Coker(I −S)) is finite, as Coker(I −S) is

finite.

First we verify that ϕ(ZΦ) ⊂ GL(k,Z) = Aut(Zk) leaves the group (I −

S)−1Zk ⊂ Rk containing Zk invariant. Suppose a ∈ Rk such that (I − S)a =

z ∈ Zk. Then,

(I − S)
(
ϕ(tk+1)a

)
= (I − S)

(
Sa
)

= S
(
(I − S)(a)

)
= S(z) ∈ Zk.

Now for ϕ(ᾱ), if Ā = +1, then

(I − S)
(
ϕ(ᾱ)a

)
= ϕ(ᾱ)(I − SĀ)a

= ϕ(ᾱ)(I − S)a

= ϕ(ᾱ)z ∈ Zk;
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and if Ā = −1, then

(I − S)
(
ϕ(ᾱ)a

)
= ϕ(ᾱ)(I − SĀ)a

= ϕ(ᾱ)(−S−1)(I − S)a

= ϕ(ᾱ)(−S−1)z ∈ Zk.

These show that, if a ∈ (I −S)−1Zk, then so are ϕ(tk+1)a and ϕ(ᾱ)a. Conse-

quently, (I −S)−1Zk is ϕ(ZΦ)-invariant. Since a− ϕ(tk+1)a = (I −S)a ∈ Zk,

tk+1 acts trivially on Coker(I−S). We obtain an induced action of ZΦ/〈tk+1〉 ∼=

Φ on Coker(I − S), and so H1(Φ; Coker(I − S)) is defined.

Suppose we have a class in H2(ZΦ; Zk), which defines an extension Q.

Since Zk ⊂ Rk has the unique automorphism extension property, there exists

a push-out Q̃ [24, (5.3.4)] fitting the commuting diagram

1 −−−→ Zk −−−→ Q −−−→ ZΦ −−−→ 1y y ∥∥∥
1 −−−→ Rk −−−→ Q̃ −−−→ ZΦ −−−→ 1.

We claim that Q̃ is the split extension Rk o ZΦ. Note that ZΦ contains Z =

〈tk+1〉 as a finite index subgroup, and H2(Z; Rk) vanishes. Then H2(ZΦ; Rk) is

annihilated by the index of Z = 〈tk+1〉 in ZΦ [2, Proposition 10.1]. Therefore,

H2(ZΦ; Rk) vanishes. Thus we can always assume that such a Q is embedded

in Rk oZΦ. Since Z ⊂ ZΦ lifts back to ΓS , it lifts back to Q̃ so that Q̃ contains

(0, tk+1) ∈ RkoZΦ. For any element tnk+1ᾱ ∈ ZΦ, pick a preimage α = (a, ᾱ) ∈

Rk o ZΦ, taking care that a = 0 if ᾱ = id. Clearly, tnk+1ᾱ 7→ a defines a map

η : ZΦ → Rk/Zk = T k. Evidently, η maps into Coker(I − S) ⊂ T k, which in

turn, yields

η : Φ→ Coker(I − S).
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We claim that η is a crossed homomorphism. Let ᾱ, β̄ ∈ Φ, and let η(ᾱ) =

a, η(β̄) = b. Then η(tmk+1ᾱ) = a, η(tnk+1β̄) = b, and we have

(a, tmk+1ᾱ)(b, tnk+1β̄) = (a + ϕ(tmk+1ᾱ)(b), tmk+1ᾱtnk+1β̄)

= (a + ϕ(tmk+1)(ϕ(ᾱ)(b)), tmk+1(ᾱtnk+1ᾱ
−1)ᾱβ̄).

Since ᾱtnk+1ᾱ
−1 = tlk+1 for some l,

η(ᾱβ̄) = a + ϕ(tmk+1)(ϕ(ᾱ)(b))

= η(ᾱ) + Sm(ϕ(ᾱ)(η(β̄)))

= η(ᾱ) + ϕ(ᾱ)(η(β̄)),

where the last equality holds because φ(ᾱ)(η(β̄)) ∈ Coker(I − S), and the

action of S on Coker(I − S) is trivial (if a ∈ Coker(I − S), then (I − S)a ∈

Zk, and hence a = Sa modulo Zk). Thus η is a crossed homomorphism.

Conversely, such a crossed homomorphism η clearly gives rise to an extension

Q. Thus, we obtain a surjective map

Z1(Φ; Coker(I − S))→ H2(ZΦ; Zk),

which we claim is a homomorphism. To see this, given

η : Φ→ Coker(I − S),

we find a 2-cocycle f : ZΦ × ZΦ → Zk representing the extension Q corre-

sponding to η. Fix a lift η̃ : Φ → (I − S)−1(Zk) (not a homomorphism in

general) of η. Then we can write any element of Q as

(n + η̃(ᾱ), tmk+1ᾱ),
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where n ∈ Zk and m ∈ Z. Now, for

(n1 + η̃(ᾱ), tm1
k+1ᾱ) and (n2 + η̃(β̄), tm2

k+1β̄) ∈ Q,

(n1 + η̃(ᾱ), tm1
k+1ᾱ)(n2 + η̃(β̄), tm2

k+1β̄) =

(n1 + Smϕ(ᾱ)(n2) + η̃(ᾱ) + Smϕ(ᾱ)(η̃(β̄)), tm1
k+1ᾱtm2

k+1β̄).

Therefore, Q is represented by the 2-cocycle f : ZΦ × ZΦ → Zk defined by

f(tm1
k+1ᾱ, t

m2
k+1β̄) = η̃(ᾱ) + Smϕ(ᾱ)(η̃(β̄))− η̃(ᾱβ̄).

It is now clear that addition of crossed homomorphisms in Z1(Φ; Coker(I−S))

corresponds to addition of 2-cocycles in Z2(ZΦ; Zk).

Now we shall prove that Q splits if and only if the corresponding η is a

coboundary, i.e. η ∈ B1(Φ; Coker(I − S)). Note that this will imply that

Z1(Φ; Coker(I − S))→ H2(ZΦ; Zk) induces an isomorphism

H1(Φ; Coker(I − S)) ∼= H2(ZΦ; Zk).

A splitting ZΦ → Q induces a homomorphism

s : ZΦ → Q̃.

Suppose s(tk+1) = (z, tk+1) with z ∈ Zk. (Even in this case, our definition of η

shows that, we will pick (0, tk+1) as our preimage of tk+1 so that η(tk+1) = 0,
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and η(ᾱ) = a if s(ᾱ) = (a, ᾱ) for others). Let y = (S − I)−1z. Then

(y, I)(z, tk+1)(−y, I) = (y + z − φ(tk+1)(y), tk+1)

= (z + (I − S)(y), tk+1)

= (0, tk+1),

and

(y, I)(a, ᾱ)(−y, I) = (y + a− φ(ᾱ)y, ᾱ)

= (a + (I − φ(ᾱ))y, ᾱ),

by letting a + (I − φ(ᾱ))y = v,

= (v, ᾱ).

Now,

(v, ᾱ)(0, tk+1)(v, ᾱ)−1 = (v − (ᾱtk+1ᾱ
−1)v, ᾱtk+1ᾱ

−1)

= (v − tĀk+1v, t
Ā
k+1)

= ((I − SĀ)v, tĀk+1).

Since Z is normal in ZΦ, for s to be a homomorphism, we must have (I−SĀ)v =

0 mod Z. This happens if and only if v = 0 mod Z, which holds if and only if

η(ᾱ) = a = (φ(ᾱ)− I)(−y) = (δy)(ᾱ),

so that η is a coboundary.

Remark 3.2.17 (Cocycles and Coboundaries). For each subgroup Φ of D4, we

describe both Z1(Φ; Coker(I−S)) and B1(Φ; Coker(I−S)). For Φ ∼= Z2×Z2,
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we need to check that the commutator of (a, ᾱ) and (b, β̄) is in Z2. For Z4,

there is no cocycle condition to check (since I + ϕ(ᾱ) + ϕ(ᾱ)2 + ϕ(ᾱ)3 = 0).

Likewise for Z4 o Z2, there is no cocycle condition for the order 4 element.

(1) Φ = Z2 = 〈ᾱ〉. Then

Z1(Φ; Coker(I − S)) = {a ∈ Coker(I − S) : (I + ϕ(ᾱ))a = 0},

B1(Φ; Coker(I − S)) = {a = (I − ϕ(ᾱ))v : v ∈ Coker(I − S)}.

(2) Φ = Z4 = 〈ᾱ〉. Then

Z1(Φ; Coker(I − S)) = {a ∈ Coker(I − S)},

B1(Φ; Coker(I − S)) = {a = (I − ϕ(ᾱ))v : v ∈ Coker(I − S)}.

(3) Φ = Z2 × Z2 = 〈ᾱ, β̄〉. Then

Z1(Φ; Coker(I − S)) = {(a,b) ∈ Coker(I − S) : (I + ϕ(ᾱ))a = 0,

(I + ϕ(β̄))b = 0, (I − ϕ(ᾱ))b = (I − ϕ(β̄))a},

B1(Φ; Coker(I − S)) = {(a,b) = ((I − ϕ(ᾱ))v, (I − ϕ(β̄))v) :

v ∈ Coker(I − S)}.

(4) Φ = Z4 o Z2 = 〈ᾱ, β̄| ᾱ2, β̄2, (β̄ᾱ)4〉. Then

Z1(Φ; Coker(I − S)) = {(a,b) ∈ Coker(I − S) : (I + ϕ(ᾱ))a = 0,

(I + ϕ(β̄))b = 0},

B1(Φ; Coker(I − S)) = {(a,b) = ((I − ϕ(ᾱ))v, (I − ϕ(β̄))v) :

v ∈ Coker(I − S)}.
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Suppose we found an extension Q; that is, η ∈ H1(Φ; Coker(I − S)) with

η(ᾱ) = a. Then

Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 ta3
3 , A)〉

has the following presentation:

t3(tn1
1 tn2

2 )t−1
3 = tm1

1 tm2
2 , where

[
m1

m2

]
= S

[
n1

n2

]
,

α(tn1
1 tn2

2 )α−1 = tm1
1 tm2

2 , where

[
m1

m2

]
= ϕ(ᾱ)

[
n1

n2

]
,

αt3α
−1 = tw1

1 tw2
2 tĀ3 , where

[
w1

w2

]
=
(
I − SĀ

)[a1

a2

]
, (3.9)

α2 = tv11 tv22 t
(1+Ā)a3

3 , where

[
v1

v2

]
= (I + ϕ(ᾱ))

[
a1

a2

]
, if A2 = I,

α4 = id, if ord(A) = 4.

Remark 3.2.18. An element of H1(Φ; Coker(I−S)) determines a unique (up

to isomorphism) extension of Z2 by ZΦ, which we can also view as

1→ ΓS → Q→ Φ→ 1.

This also follows from group cohomology. For an element of H1(Φ; Coker(I −

S)) fixes the exponents a1, a2, a3 in equation (3.9), and defines an abstract

kernel Φ→ Out(ΓS). As ΓS has trivial center, H2(Φ;Z(ΓS)) is trivial.

Corollary 3.2.19. Let Q = 〈ΓS , (ta1
1 ta2

2 ta3
3 , A)〉 be an extension in Theorem

3.2.16 with lattice ΓS = 〈t1, t2, t3〉. Suppose ϕ(ᾱ) = −K and S = nK ± I (in

Theorem 3.2.9, A has order 2, Ā = 1, and a3 = 1
2
). Then H1(Φ; Coker(I −

S)) = 0. Therefore, there exists tv11 tv22 which conjugates (ta1
1 ta2

2 t
1
2
3 , A) to (t

1
2
3 , A)

and leaves ΓS invariant.
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Proof. We have det(I −ϕ(ᾱ)) = 1 + det(ϕ(ᾱ))− tr(ϕ(ᾱ)). If det(ϕ(ᾱ)) = −1,

this quantity is nonzero since tr(ϕ(ᾱ)) 6= 0. Else, if det(ϕ(ᾱ)) = 1, we had

that |tr(ϕ(ᾱ))| > 2. Consequently, I − ϕ(ᾱ) is non-singular and we may take

v = (I−ϕ(ᾱ))−1a. Then our v conjugates (t
1
2
3 , A) to (ta1

1 ta2
2 t

1
2
3 , A). It remains

to show v ∈ (I − S)−1Z2. First observe that ϕ(ᾱ) is a square root of S.

ϕ(ᾱ)2 = P−1
√

∆A
√

∆AP = P−1∆A2P (since Ā = +1, A is diagonal)

= P−1∆P = S.

Now

(I − S)v = (I + ϕ(ᾱ))(I − ϕ(ᾱ))v = (I + ϕ(ᾱ))a ∈ Z2.

Lemma 3.2.20. When α = (ta1
1 ta2

2 ta3
3 , A) ∈ Q satisfies a3 = 1

2
and Ā = 1, γα

is not torsion for any γ ∈ ΓS .

Proof. Note that A is necessarily of order 2. Let pr : Sol3 → R denote the

quotient homomorphism of Sol3 by its nil-radical R2. Write γ ∈ ΓS as tn1
1 tn2

2 tn3
3 .

Application of pr to (γα)2 yields

pr(γα)2 = 2n3 + 1,

from which we infer γα is not torsion.

Theorem 3.2.21 (Classification of Sol3-geometry). The following is a com-

plete classification crystallographic groups of Sol3. In each case, we give Φ,

ZΦ, the abstract kernel ϕ : ZΦ → GL(2,Z) (which gives the action of ZΦ on

〈t1, t2〉), equations defining a =

[
a1

a2

]
, b =

[
b1

b2

]
from H1(Φ; Coker(I − S)),

and conditions for Q to be torsion-free. Note that ϕ(t3) = S by definition.

For each abstract kernel ZΦ → GL(2,Z) give in Theorem 3.2.9, we give
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(1) The holonomy Φ, the conditions on S, and the abstract kernel

φ : ZΦ → GL(2,Z)

(this fixes the exponents on t3).

(2) A computation of H1(Φ; Coker(I−S)) (this fixes the exponents on t1, t2).

(3) When the group is torsion-free.

(0) Φ = trivial, S ∈ SL(2,Z) with tr(S) > 2; Q = ΓS .

• Torsion-free

(1) Φ = Z2: A =

[
1 0

0 −1

]
, ZΦ = Z = 〈t3, ᾱ = (t

1
2
3 , A)〉.

• S = nK + I, K ∈ GL(2,Z) with det(K) = −1, tr(K) = n > 0.

• ϕ(ᾱ) = −K

• H1(Φ; Coker(I − S)) is trivial so that a = 0.

• Q = 〈t1, t2, t3, α = (t
1
2
3 , A)〉.

• Torsion-free

(2a) Φ = Z2: A =

[
−1 0

0 −1

]
, ZΦ = Z× Z2 = 〈t3, ᾱ = (t0

3, A)〉.

• S ∈ SL(2,Z) with tr(S) > 2.

• ϕ(ᾱ) = A

• H1(Φ; Coker(I − S)) = Coker(I−S)
2Coker(I−S)

⊆ Z2 × Z2. That is, all a with

(I − S)a ≡ 0, taken modulo 2a.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A)〉.

• Always has torsion
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(2b) Φ = Z2: A =

[
−1 0

0 −1

]
, ZΦ = Z = 〈t3, ᾱ = (t

1
2
3 , A)〉.

• S = nK − I, K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(ᾱ) = −K

• H1(Φ; Coker(I − S)) is trivial so that a = 0.

• Q = 〈t1, t2, t3, α = (t
1
2
3 , A)〉.

• Torsion-free

(3) Φ = Z2: A =

[
0 1

1 0

]
, ZΦ = Z o Z2 = 〈t3, ᾱ = (t0

3, A)〉.

• S ∈ SL(2,Z), tr(S) > 2, with σ12 = −σ21.

• ϕ(ᾱ) = A

• H1(Φ; Coker(I−S)) ⊆ Z2 can be described as all a with (I−S)a ≡ 0,

a2 ≡ −a1 taken modulo (v1 − v2)

2664 1

−1

3775 where (I − S)v ≡ 0.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A)〉.

• Always has torsion

(3i) Φ = Z2: A =

[
0 1

1 0

]
, ZΦ = Z o Z2 = 〈t3, ᾱ = (t0

3, A)〉.

• S ∈ SL(2,Z), tr(S) > 2, with σ11 = σ22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
•H1(Φ; Coker(I−S)) ⊆ Z2×Z2 can be described as all a with (I−S)a ≡

0, 2a1 ≡ 0 (so a1 = 0 or 1
2
) modulo

[
0

2v2

]
where (I − S)v ≡ 0.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A)〉.

• Torsion-free if and only if a1 = 1
2

and a2 6≡ (σ11+1)(2n+1)
2σ12

for any n ∈ Z.
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(4) Φ = Z4: A =

[
0 1

−1 0

]
, ZΦ = Z o Z4 = 〈t3, ᾱ = (t0

3, A)〉.

• S ∈ SL(2,Z), symmetric, and tr(S) > 2.

• ϕ(ᾱ) = A

•H1(Φ; Coker(I−S)) ∼= Coker(I−S)
Im(I−A)

⊆ Z2. That is, all a with (I−S)a ≡ 0,

taken modulo (I − A)a.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A)〉.

• Always has torsion

(5) Φ = Z2 × Z2: A =

[
1 0

0 −1

]
, B =

[
−1 0

0 −1

]
,

ZΦ = Z× Z2 = 〈t3, ᾱ = (t
1
2
3 , A), β̄ = (t0

3, B)〉.

• S = nK + I, K ∈ GL(2,Z) with det(K) = −1 and tr(K) = n > 0.

• ϕ(ᾱ) = −K, ϕ(β̄) = B (1)+(2a)

• H1(Φ; Coker(I − S)) ∼= Coker(I+K)
2Coker(I+K)

⊆ Z2 × Z2. That is, all b with

(I +K)b ≡ 0, taken modulo 2b.

• Q = 〈t1, t2, t3, α = (t
1
2
3 , A), β = (tb11 tb22 , B)〉

• Always has torsion

(6a) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t0

3, B)〉.

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A, ϕ(β̄) = B (3)+(2a)

• H1(Φ; Coker(I−S)) can be described as all a, b with (I−S)a ≡ 0 and
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(I−S)b ≡ 0, a2 ≡ −a1, b1−b2−2a1 ≡ 0, a and b modulo (v1−v2)

2664 1

−1

3775
and 2v for v ∈ Coker(I − S), respectively.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A), β = (tb11 tb22 , B)〉.

• Always has torsion

(6ai) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t0

3, B)〉.

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B (3i)+(2a)

• H1(Φ; Coker(I − S)) can be described as all a, b with (I − S)a ≡ 0

and (I − S)b ≡ 0, 2a1 ≡ 0, 2b2 − 2a2 ≡ 0, a and b taken modulo

[
0

2v2

]
and 2v for v ∈ Coker(I − S), respectively.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A), β = (tb11 tb22 , B)〉.

• Always has torsion

(6b) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

• S = nK − I, K ∈ SL(2,Z) with tr(K) = n > 2; and k12 = −k21.

• ϕ(ᾱ) = A, ϕ(β̄) = −K (3)+(2b)

• H1(Φ; Coker(I−S)) ∼= H1(〈A〉; Coker(I+K)) ⊆ Z2, that is, all a with

(I+K)a ≡ 0 and a2 ≡ −a1 modulo (v1− v2)

2664 1

−1

3775, where (I+K)v ≡ 0.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A), β = (t
1
2
3 , B)〉.

• Always has torsion
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(6bi) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
,

ZΦ = Z o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

• S = nK − I, K ∈ SL(2,Z) with tr(K) = n > 2; k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K (3i)+(2b)

• H1(Φ; Coker(I−S)) ∼= H1(〈A〉; Coker(I+K)) ⊆ Z2×Z2, that is, all a

with (I+K)a ≡ 0 and 2a1 ≡ 0 taken modulo

[
0

2v2

]
, where (I+K)v ≡ 0.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A), β = (t
1
2
3 , B)〉.

• Torsion-free if and only if a1 = 1
2

and a2 6≡ (k11−1)(2n+1)
2k12

for any n ∈ Z.

(7) Φ = Z4 o Z2: A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉.

• S = nK + I,K ∈ GL(2,Z), det(K) = −1, tr(K) > 0; k12 = −k21.

• ϕ(ᾱ) = A, ϕ(β̄) = −K (includes (6a)) (3)+(1)

• H1(Φ; Coker(I − S)) is all a with (I − S)a ≡ 0 and a2 ≡ −a1, taken

modulo (v1 − v2)

2664 1

−1

3775, where (I +K)v ≡ 0.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A), β = (t
1
2
3 , B)〉.

• Always has torsion

(7i) Φ = Z4 o Z2: A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
,

ZΦ = (Z× Z2) o Z2 = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0; k11 = k22.
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• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K (includes (6ai)) (3i)+(1)

• H1(Φ; Coker(I − S)) is all a with (I − S)a ≡ 0 and 2a1 ≡ 0, taken

modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• Q = 〈t1, t2, t3, α = (ta1
1 ta2

2 , A), β = (t
1
2
3 , B)〉.

• Always has torsion

See equation (3.9) for a description of the relations. Of course, when the

holonomy has two generators α, β, we also have:

[α, β] = t for t ∈ ΓS , if Φ = Z2 × Z2;

(αβ)4 = t for t ∈ ΓS if Φ = Z4 o Z2.

Proof. Theorem 3.2.9 classifies all the ZΦ and abstract kernels φ : ZΦ →

GL(2,Z) up to conjugation in GL(2,Z) (which is essentially up to a change

of generating set for the lattice). This fixes a3, b3. Theorem 3.2.16 allows us

to find a1, a2, b1, b2 for each abstract kernel ϕ. This is all we need for a Sol3

crystallographic group Q. The proof of torsion-free criteria for cases (3i),

(6bi) is postponed until Corollary 3.2.24.

(0) See Theorem 3.3.2.

(1) By Proposition 3.2.12 (2) b©, S = nK+I, where det(K) = −1, tr(K) = n >

0. Then ϕ(ᾱ) = Sa3 ◦P−1AP = −K. Corollary 3.2.19 shows H1(Φ; Coker(I−

S)) is trivial, and thus we can take a1 = a2 = 0. By Lemma 3.2.20, Q is

torsion-free.
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(2a) Let A =

[
−1 0

0 −1

]
. There is no condition on S, as ϕ(ᾱ) = S0Ã =

A ∈ GL(2,Z) automatically. Now a must satisfy (I − S)a ∈ Z2 modulo

(I − ϕ(ᾱ))a = 2a, since (I + ϕ(ᾱ))a = 0 ∈ Z2 already. Note that all elements

of H1(Φ; Coker(I−S)) are of order 2, and is generated by at most 2 elements.

Therefore, H1(Φ; Coker(I − S)) is at most Z2×Z2. The square of α is always

the identity. Therefore, Q has torsion.

(2b) Let

A =

[
−1 0

0 −1

]
, a3 = 1

2
.

By Proposition 3.2.12 (2) b©, S = nK − I with det(K) = +1, tr(K) = n > 2.

Then ϕ(ᾱ) = Sa3 ◦P−1AP = −K. By Corollary 3.2.19, we can take a1 = a2 =

0 so that α = (t
1
2
3 , A). By Lemma 3.2.20, Q is torsion-free.

(3) Let

A =

[
0 1

1 0

]
, and Ã = A.

The conditions on S follow from 3.2.12 (1) c©. Let α = (ta1
1 ta2

2 , A). Then a

must satisfy (I − S)a ∈ Z2,

(I+ϕ(ᾱ))a =

[
1 1

1 1

]
a ≡ 0 modulo (I−ϕ(ᾱ))v =

[
1 −1

−1 1

]
v, for (I−S)v ∈ Z2,

computing, we obtain the claimed conditions. Applying the coboundary oper-

ator to the cocycles yields:

(I − ϕ(ᾱ))

[
a1

−a1

]
=

[
2a1

−2a1

]
.

This computation implies that H1(Φ; Coker(I − S)) is at most Z2.
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To show that Q always has torsion, note that a2 ≡ −a1, and

α2 = (ta1
1 t−a1

2 , A)2 = (ta1
1 t−a1

2 · A(ta1
1 t−a1

2 ), I)

= (ta1
1 t−a1

2 · ta1
2 t−a1

1 , I)

= (e, I).

(3i) Let

A =

[
0 1

1 0

]
, and Ã =

[
1 0

0 −1

]
6= A.

Conditions on S follow from 3.2.12 (1) c©. Then a must satisfy (I −S)a ∈ Z2,

(I+ϕ(ᾱ))a =

[
2 0

0 0

]
a ≡ 0 modulo (I−ϕ(ᾱ))v =

[
0 0

0 2

]
v, for (I−S)v ∈ Z2.

This shows that a1 = 0 or 1
2
. Note that H1(Φ; Coker(I − S)) can be at most

Z2 × Z2. The torsion criteria follow from Corollary 3.2.24.

(4) Let

A =

[
0 1

−1 0

]
, and Ã = A.

The conditions on S follow from 3.2.12 (1) b©. By Remark 3.2.17, we just need

a ∈ Coker(I − S), taken modulo Im(I − φ(ᾱ)). Note that det(I − φ(ᾱ)) = 2,

which implies that H1(Φ; Coker(I − S)) is at most Z2. As α4 = e, Q always

has torsion.

(5) Let Φ = Z2 × Z2 = 〈A,B〉, where

A =

[
1 0

0 −1

]
, B =

[
−1 0

0 −1

]
, and a3 = 1

2
.
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This is a combination of (1)+(2a). From case (1), S = I + nK ∈ GL(2,Z)

with det(K) = −1. By Corollary 3.2.19, we can take a1 = a2 = 0. We need b

to satisfy (I−S)b ≡ 0. However, the cocycle conditions for Z2×Z2 in Remark

3.2.17 show that we must have (I − φ(ᾱ))b = (I + K)b ≡ 0. In fact, since

(I −S) = (I −K)(I +K), this condition implies (I −S)b ≡ 0. Since we have

already fixed a1 = a2 = 0, for the coboundary in Theorem 3.2.16, we take b

modulo (I − φ(β̄))v = 2v only when v satisfies (I − φ(ᾱ))v = (I +K)v ≡ 0.

Hence

H1(Φ; Coker(I − S)) ∼=
Coker(I +K)

2Coker(I +K)
⊆ Z2.

As β2 = e, Q is never torsion-free.

(6a) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, and Ã = A.

This is a combination of (3)+(2a). We have (I −S)a ≡ 0 and (I −S)b ≡ 0.

Also, a and b also must satisfy the cocycle conditions in Remark 3.2.17. Note

that (I +φ(ᾱ))a ≡ 0 forces a2 ≡ −a1, whereas (I −ϕ(ᾱ))b− (I −ϕ(β̄))a ≡ 0

forces b1 − b2 − 2a1 ≡ 0, −b1 + b2 − 2a2 ≡ 0. Since a2 ≡ −a1, the second

equation is redundant. We take a and b modulo (I−ϕ(ᾱ))v and (I−ϕ(β̄))v,

respectively, where (I − S)v ≡ 0. As Q contains a subgroup of type (3), Q

has torsion.

(6ai) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, and Ã =

[
1 0

0 −1

]
6= A.

Similar to case (6a), this is a combination of (3i)+(2a). From the cocycle

condition (I+ϕ(ᾱ))a ≡ 0, a1 = 0 or 1
2
. The description of H1(Φ,Coker(I−S))

follows just like in case (6a). As β2 = e, Q has torsion.

(6b) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, Ã = A, and b3 = 1

2
.
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This is a combination of (3)+(2b). To have Ã = A, Proposition 3.2.12

(1) c©, (2) a© force σ12 = −σ21 and S = nK − I, where K ∈ SL(2,Z) with

tr(K) = n > 2, which taken together yield the desired conditions on K. By

Corollary 3.2.19, we can take b1 = b2 = 0. Hence,

α = (ta1
1 ta2

2 , A),

β = (t
1
2
3 , B).

The cocycle conditions in Remark 3.2.17 force (I + ϕ(ᾱ))a ≡ 0 as well as

(I − ϕ(β̄))a = (I + K)a ≡ 0. This shows a ∈ Coker(I + K). Since b1, b2 = 0

is fixed, take a modulo (I − ϕ(ᾱ))v only when (I − ϕ(β̄))v = (I + K)v ≡ 0.

Hence

H1(Φ; Coker(I − S)) ∼= H1(〈A〉; Coker(I +K)) ⊆ Z2.

There is always torsion in Q, as it contains a subgroup of type (3).

(6bi) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, Ã =

[
1 0

0 −1

]
, b3 = 1

2
.

This is a combination of (3i)+(2b); Similar to case (6b), we apply Propo-

sition 3.2.12 (1) c©, (2) a© to obtain S = nK − I, where K ∈ SL(2,Z) with

tr(K) = n > 2, k11 = k22. By Corollary 3.2.19, we can take b1 = b2 = 0.

Hence,

α = (ta1
1 ta2

2 , A),

β = (t
1
2
3 , B).

The argument to establish

H1(Φ; Coker(I − S)) ∼= H1(〈A〉; Coker(I +K)) ⊆ Z2 × Z2
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is identical to that of (6b). In this case, we use ϕ(ᾱ) =

[
1 0

0 −1

]
rather than

ϕ(ᾱ) = A and obtain the desired conditions on a1, a2. The torsion criteria

follow from Corollary 3.2.24.

(7) Φ = Z4 o Z2 : A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
, Ã = A, and b3 = 1

2
.

We apply Proposition 3.2.12 (1) c©, (2) b© to obtain the conditions S = nK+I,

where K ∈ GL(2,Z) with det(K) = −1 and tr(K) > 0; and k12 = −k21. This

is a combination (3)+(1) which includes (6a). By Corollary 3.2.19, we can

take b1 = b2 = 0. Therefore,

α = (ta1
1 ta2

2 , A), β = (t
1
2
3 , B).

For (I − S)a ≡ 0, the only cocycle condition that a must satisfy is (I +

ϕ(ᾱ))a ≡ 0, which forces a2 ≡ −a1 (Remark 3.2.17). However, we have fixed

b1 = b2 = 0. Therefore, when computing the coboundaries, we can take a

modulo (I − ϕ(ᾱ))v only for (I − S)v where v also satisfies (I − ϕ(β̄))v =

(I + K)v ≡ 0. Note that (I + K)v ≡ 0 actually implies (I − S)v ≡ 0 since

(I − S) = (I − K)(I + K). There is always torsion in Q, as it contains a

subgroup of type (4).

(7i) Φ = Z4 o Z2 : A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
, Ã =

[
1 0

0 −1

]
, b3 = 1

2
.

We apply Proposition 3.2.12 (1) c©, (2) b© to obtain S = nK + I, where K ∈

GL(2,Z) with det(K) = −1 and tr(K) = n > 0; and k11 = k22.

This is a combination of (3i)+(1), which includes (6ai). By Corollary 3.2.19,

we can take b1 = b2 = 0. Therefore,

α = (ta1
1 ta2

2 , A), β = (t
1
2
3 , B).
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The description for H1(Φ; Coker(I − S)) follows as in case (7), using ϕ(ᾱ) =[
1 0

0 −1

]
rather than ϕ(ᾱ) = A. There is always torsion in Q, as it contains

a subgroup of type (4).

This finishes the proof of Theorem 3.2.21.

3.2.22 (Detecting Torsion in Sol3 Crystallographic Groups). A crys-

tallographic group Q of Sol3 is torsion-free precisely if it acts freely on Sol3.

Using this fact, we will give proofs of the torsion criteria in Theorem 3.2.21.

Proposition 3.2.23 (Compare [35, Theorem 5.3]). Every Sol3-geometry man-

ifold Q\Sol3 has the structure of

• The mapping torus of a hyperbolic linear self-diffeomorphism of T 2 (Q

is of type (0), (1), or (2b)).

• The union of two twisted I-bundles over Klein bottles (Q is of type (3i)

or (6bi)).

When Q is of type (3i), Q\Sol3 can be described as T 2 × I with T 2 × {0}

identified to itself by the affine involution

([
a1

a2

]
,

[
1 0

0 −1

])
, and T 2 × {1}

identified to itself by the affine involution

([
a1

a2

]
,

[
σ11 −σ12

σ21 −σ11

])
.

If −ϕ(ᾱ) =

[
−1 0

0 1

]
is used instead of ϕ(ᾱ), then Q\Sol3 can be de-

scribed as T 2 × I with T 2 × {0} identified to itself by the affine involution([
a1

a2

]
,

[
−1 0

0 1

])
, and T 2 × {1} identified to itself by the affine involution([

a1

a2

]
,

[
−σ11 σ12

−σ21 σ11

])
.
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When Q is of type (6bi), Q\Sol3 can be described as T 2× I with T 2×{0}

identified to itself by the affine involution

([
a1

a2

]
,

[
1 0

0 −1

])
, and T 2 × {1}

identified to itself by the affine involution

([
a1

a2

]
,

[
−k11 k12

−k21 k11

])
.

Proof. If Q = ΓS is a Sol3 crystallographic group of type (0), then Q ∼=

Z2 oS Z. The action of ΓS on Sol3 is equivalent to an action of Z2 oS Z on

R2 oS R. A fundamental domain for this action is given by the unit cube I3

and evidently Q\Sol3 is given by T 2 × I with T 2 × {0} identified to T 2 × {1}

via S, which we view as a hyperbolic self-diffeomorphism of T 2. Note that

R2 → R2 oS R → R induces the fiber bundle with infinite cyclic structure

group generated by S

T 2 → ΓS\Sol3 → S1.

If Q is of type (1), then Q\Sol3 is the quotient of ΓS\Sol3 by the involution

defined by α =

(
t

1
2
3 ,

[
1 0

0 −1

])
. On the base of T 2 → ΓS\Sol3 → S1, α acts

as a translation. Thus a fundamental domain for the action of α is given by

T 2×
[
0, 1

2

]
. Note that α identifies T 2×{0} with T 2×{1

2
} via ϕ(ᾱ) = −K, which

is a square root of S. This ϕ(ᾱ) is a hyperbolic matrix with one eigenvalue

positive and the other negative, and Q\Sol3 is the mapping torus of ϕ(ᾱ). The

argument for type (2b) is identical, in this case we obtain the mapping torus

of a hyperbolic matrix with both eigenvalues negative.

Now suppose Q is of type (3i). Then Q is the quotient of ΓS\Sol3 by the

involution defined by α =

(
ta1

1 ta2
2 ,

[
0 1

1 0

])
. Here α acts as a reflection on

the base S1. As in the preceding case, a fundamental domain for this action is

given by T 2×
[
0, 1

2

]
. Now α identifies T 2×{0} to itself and T 2×{1

2
} to itself. We

seek criteria for α to act freely on these boundary tori so that they are identified
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to Klein bottles. Then cutting Q\Sol3 along T 2 × {1
4
} yields two twisted I-

bundles over Klein bottles. Indeed, (ta1
1 ta2

2 , A).tx1
1 tx2

2 = ta1
1 ta2

2 A(tx1
1 tx2

2 ) shows

that α acts on T 2 as the affine transformation (a, ϕ(ᾱ)). For an arbitrary

element tx1
1 tx2

2 t
1
2
3 ∈ T 2 × {1

2
},

t3(ta1
1 ta2

2 , A).tx1
1 tx2

2 t
1
2
3 = t3t

a1
1 ta2

2 A(tx1
1 tx2

2 )A(t
1
2
3 )

= t3t
a1
1 ta2

2 A(tx1
1 tx2

2 )t
− 1

2
3

=
(
t3t

a1
1 ta2

2 t−1
3

) (
t3A(tx1

1 tx2
2 )t−1

3

)
t

1
2
3 ∈ T 2 × {1

2
}.

Since conjugation by t3 is the action of S, we see that α acts on T 2 as the

affine transformation (Sa,Sϕ(ᾱ)). But since a ∈ Coker(I −S), this simplifies

to (a,Sϕ(ᾱ)). The condition that σ11 = σ22 ensures that Sϕ(ᾱ) has order 2.

Note that cutting Q\Sol3 along T 2 × {1
4
} results in two components, each a

twisted I-bundle over a Klein bottle.

The argument in case (6bi) is nearly identical. In this case, note that Q

contains a group of type (2b), say Q′, as an index 2 subgroup. Therefore,

Q\Sol3 is the quotient of Q′\Sol3 by α =

(
ta1

1 ta2
2 ,

[
0 1

1 0

])
. But because

Q′\Sol3 admits the structure of a T 2 bundle over S1, the construction for (3i)

applies. A fundamental domain for the action of α on Q′\Sol3 is given by

T 2 × {1
4
}. As in case (3i), α acts on T 2 × {0} affinely as (a, ϕ(ᾱ)). For an

arbitrary element tx1
1 tx2

2 t
1
4
3 ∈ T 2 × {1

4
}, we have

(t
1
2
3 , B)(ta1

1 ta2
2 , A).tx1

1 tx2
2 t

1
4
3

= t
1
2
3B(ta1

1 ta2
2 )BA(tx1

1 tx2
2 )BA(t

1
4
3 )

= t
1
2
3B(ta1

1 ta2
2 )t

− 1
2

3 t
1
2
3BA(tx1

1 tx2
2 )t

− 1
4

3

=
(
t

1
2
3B(ta1

1 ta2
2 )t

− 1
2

3

)(
t

1
2
3BA(tx1

1 tx2
2 )t

− 1
2

3

)
t

1
4
3 ∈ T 2 × {1

4
}.
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Now conjugation by (t
1
2
3 , B) is the action of ϕ(β̄) = −K on T 2. Hence

α acts affinely on T 2 × {1
4
} as (ϕ(β̄)a, ϕ(β̄)ϕ(ᾱ)). But we had the condition

(I − ϕ(β̄))a = (I + K)a ∈ Z2, so this simplifies to (a, ϕ(β̄)ϕ(ᾱ)). As in case

(3i), we obtain a union of two twisted I-bundles over Klein bottles.

Corollary 3.2.24 (Torsion in Sol3 Crystallographic Groups). Consider the

crystallographic groups of Sol3 in Theorem 3.2.21.

A group of type (3i) is torsion-free if and only if

a1 =
1

2
and a2 6≡

(σ11 + 1)(2n+ 1)

2σ12

for any n ∈ Z. (3.10)

A group of type (6bi) is torsion-free if and only if

a1 =
1

2
and a2 6≡

(k11 − 1)(2n+ 1)

2k12

for any n ∈ Z. (3.11)

Proof. By Proposition 3.2.23, for type (3i) groups, we need the affine involu-

tions

([
a1

a2

]
,

[
1 0

0 −1

])
and

([
a1

a2

]
,

[
σ11 −σ12

σ21 −σ11

])
to act freely on T 2, which

occurs precisely when a1 and a2 satisfy (3.10).

For type (6i) groups, we need the affine involutions

([
a1

a2

]
,

[
1 0

0 −1

])
and([

a1

a2

]
,

[
−k11 k12

−k21 k11

])
to act freely on T 2, which occurs precisely when a1 and

a2 satisfy (3.11)

3.3 Crystallographic Groups of Sol1
4

Here we provide a classification of the crystallographic groups of Sol1
4. Given

a crystallographic group Π ⊂ Sol1
4 o D4, Γ̃ := Π ∩ Sol1

4 is a lattice of Sol1
4
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with finite quotient group Φ ⊆ D4. We have the short exact sequence

1→ Γ̃→ Π → Φ→ 1.

The first step will be to classify the lattices Γ̃ of Sol1
4.

3.3.1 (Lattices of Sol1
4). Let G denote either Sol1

4 = Nil o R or Sol3 × R.

Given a lattice Γ̃S of G, Γ̃ ∩ Z(G) ∼= Z is a lattice of Z(G) ∼= R and the

projection map

G→ G/Z(G) ∼= Sol3

maps Γ̃S to a lattice of Sol3, which is isomorphic to ΓS , for some S ∈ SL(2,Z)

with trace(S) > 2. Thus, Γ̃S is the central extension

1 −→ Z −→ Γ̃S −→ ΓS −→ 1.

Such central extensions of Z by ΓS are classified by the second cohomology

group H2(ΓS ; Z).

Theorem 3.3.2. Let S ∈ SL(2,Z) with trace(S) > 2. There is a one-one

correspondence between the equivalence classes of all central extensions

1 −→ Z −→ Γ̃ −→ ΓS −→ 1

and the set Z⊕ Coker(S − I).

Proof. Recall ΓS = Z2 oS Z.

H2(Z2 oS Z; Z) = Free
(
H2(Z2 oS Z; Z)

)
⊕ Torsion

(
H1(Z2 oS Z; Z)

)
= Z⊕ (Z2/(S − I)Z2)

= Z⊕ Coker(S − I).
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The first term Z comes from the central direction. The second term Coker(S−

I) is finite, because det(S − I) = 2 − tr(S) 6= 0. For {q, (m1,m2)} ∈ Z ⊕

Coker(S − I), we shall denote the corresponding Γ̃ by Γ̃(S;q,m1,m2).

Here we shall show that Γ̃(S;q,m1,m2) with q 6= 0 embeds as a lattice in Sol1
4.

An S ∈ SL(2,Z) with tr(S) > 2 produces P and ∆. Then we had the map

(3.5) in Subsection 3.2.1:

φ : Z2 oS Z −→ Sol3 (3.12)([
x

y

]
, u

)
7−→

(
P

[
x

y

]
, u ln(λ)

)
.

We combine this with Sol3 → Sol1
4

([
x

y

]
, u

)
7−→


1 eux ∗
0 eu y

0 0 1

 .
The only ambiguities are the central slots. So let

e1 =

([
1

0

]
, 0

)
7−→ (Pe1, 0) 7−→ t1 =


1 p11 c1

0 1 p21

0 0 1

 ,

e2 =

([
0

1

]
, 0

)
7−→ (Pe2, 0) 7−→ t2 =


1 p12 c2

0 1 p22

0 0 1

 ,

e3 =

([
0

0

]
, 1

)
7−→ (0, ln(λ)) 7−→ t3 =


1 0 c3

0 λ 0

0 0 1

 ,

t4 =


1 0 1

0 1 0

0 0 1

 .

(3.13)
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where ci’s are to be determined. Then [t1, t2] = t4 (regardless the values of

ci’s).

Lemma 3.3.3. For any integers q,m1,m2, there exist unique c1, c2 for which

{t1, t2, t3, t4} forms a group Γ̃(S;q,m1,m2) with the presentation

Γ̃(S;q,m1,m2) = 〈t1, t2, t3, t
1
q

4 | [t1, t2] = t4, t4 is central,

t3t1t
−1
3 = tσ11

1 tσ21
2 t

m1
q

4 ,

t3t2t
−1
3 = tσ12

1 tσ22
2 t

m2
q

4 〉.

Consequently, Γ̃(S;q,m1,m2) is solvable and contains Γq = 〈t1, t2, t
1
q

4 〉 as its

discrete nil-radical, where Γq is a lattice of Nil.

Proof. We only need to verify the last two equalities. But they become a

system of equations on ci’s

(1− σ11)c1 − σ21c2 =
m1

q
− σ21(σ12 + 1− σ11 + σ11

√
T 2 − 4)

2
√
T 2 − 4

,

−σ12c1 + (1− σ22)c2 =
m2

q
+
σ12(σ21 + 1− σ22 − σ22

√
T 2 − 4)

2
√
T 2 − 4

,

(3.14)

where T = σ11 +σ22. Since I−S is non-singular, there exists a unique solution

for c1, c2.

Remark 3.3.4. (1) There are 1-parameter family of P ’s diagonalizing S with

det(P ) = 1. In the above lemma, the ci’s are independent of choice of P

because equation (3.14) has coefficients only from the matrix S.

(2) Note that a lattice Γ̃(S;q,m1,m2) of Sol1
4 projects to the lattice ΓS of Sol3.

(3) The equation (3.14) also shows the cohomology classification. Sup-

pose {c1, c2} and {c′1, c′2} are solutions for the equations with {m1,m2} and

{m′1,m′2}, respectively. Then (c′1 − c1, c
′
2 − c2) ∈

(
1
q
Z
)2

if and only if (m′1 −
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m1,m
′
2 −m2) ∈ Coker(ST − I) ∼= Coker(S − I). This happens if and only if

Γ̃(S;q,m1,m2) = Γ̃(S;q,m′1,m
′
2).

(4) Notice that c3 does not show up in the presentation of the lattice

Γ̃(S;q,m1,m2). This implies that c3 can be changed without affecting the isomor-

phism type of the lattice.

Notation 3.3.5 (Standard lattice). The lattice generated by

t1 =


1 p11 c1

0 1 p21

0 0 1

 , t2 =


1 p12 c2

0 1 p22

0 0 1

 , t3 =


1 0 c3

0 λ 0

0 0 1

 , t 1
q

4 =


1 0 1

q

0 1 0

0 0 1


with c3 = 0, is called a standard lattice of Sol1

4.

Therefore, any lattice of Sol1
4 is isomorphic to a standard lattice. However,

a non-standard lattice (i.e., c3 6= 0) will be needed when we consider finite

extensions of Γ̃S (in the holonomy Z4 case).

The following lemmas on lattices of Sol1
4 will be needed in the next section.

Lemma 3.3.6. Let Γ̃(S;q,m1,m2) be a lattice of Sol1
4, embedded as in assignment

(3.13). Let r1, r2 ∈ Q. Then

tr11 tr22 = tr22 tr11 tr1r24 .

Proof. We compute that

[tr11 , t
r2
2 ] = t

r1r2 det(P )
4 = tr1r24 .

Lemma 3.3.7. Let Γ̃(S;q,m1,m2) be a lattice of Sol1
4, embedded as in assignment

(3.13). Let a1, a2 ∈ Q. Then, for Ā = ±1,

tĀ3 ta1
1 ta2

2 t−Ā3 = tl11 tl22 tv4, where

[
l1

l2

]
= SĀ

[
a1

a2

]
, and v ∈ Q.
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Proof. The definition of Γ̃(S;q,m1,m2) shows that

[
l1

l2

]
= SĀ

[
a1

a2

]
. It remains to

show that v rational. Because a1 and a2 are rational, there is a positive integer

n so that na1, na2 ∈ Z. By Lemma 3.3.6,

(ta1
1 ta2

2 )n = ta1
1 ta2

2 · · · ta1
1 ta2

2 (n times)

= tna1
1 tna2

2 tu
′

4 , for u′ ∈ Q.

Therefore,

tĀ3 (ta1
1 ta2

2 )nt−Ā3 = tĀ3 tna1
1 tna2

2 tu
′

4 t−Ā3

= tĀ3 tna1
1 tna2

2 t−Ā3 tu
′

4

= tn1
1 tn2

2 tu4 for some n1, n2 ∈ Z, and u ∈ Q,

where the last equality follows from that na1 and na2 are integers, together

with the relations in Lemma 3.3.3.

On the other hand, we have that

tĀ3 (ta1
1 ta2

2 )nt−Ā3 = tĀ3 ta1
1 ta2

2 t−Ā3 · · · tĀ3 ta1
1 ta2

2 t−Ā3 (n times)

= tl11 tl22 tv4 · · · t
l1
1 tl22 tv4(n times)

= tnl11 tnl22 tnv+w
4 for some w ∈ Q,

where the last equality follows from Lemma 3.3.6.

Consequently, we have

tn1
1 tn2

2 tu4 = tnl11 tnl22 tnv+w
4 .

This forces n1 = nl1 and n2 = nl2. Therefore,

nv + w = u.

81



Since n ∈ Z, u,w ∈ Q, it follows that v ∈ Q.

Example 3.3.8. For S =

[
2 1

5 3

]
. We have λ = 1

2

(
5 +
√

21
)
. Take

P =

 − 5d√
21

(
1
2
− 1

2
√

21

)
d

−1
d

−1−
√

21
10d

 ,
(d 6= 0 arbitrary) and q = 1 to get

c1 = 1
42

(
5(7 +

√
21) + 28m1 − 70m2

)
c2 = 1

42

(
−(49 +

√
21)− 14m1 + 14m2

)
.

Therefore, Γ̃(S;1,m1,m2) is represented as follows:

t1 =


1 − 5d√

21
1
42

(
28m1 − 70m2 + 5

√
21 + 35

)
0 1 −1

d

0 0 1

 ,

t2 =


1 − 1

42

(
−21 +

√
21
)
d 1

42

(
−14m1 + 14m2 −

√
21− 49

)
0 1 −1−

√
21

10d

0 0 1

 ,

t3 =


1 0 c3

0 1
2

(
5 +
√

21
)

0

0 0 1

 , t4 =


1 0 1

0 1 0

0 0 1

 .
These have relations

t3t1t
−1
3 = t2

1t
5
2t
m1
4 , t3t2t

−1
3 = t1t

3
2t
m2
4 .

Notice that

S − I =

[
1 1

5 2

]
,

and Coker(S − I) = Z3. Therefore, depending on (m1,m2), we have 3 non-

equivalent Γ̃(S;1,m1,m2)’s. Of course, one can throw in a finer generator t
1
q

4 , in
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place of t4.

3.3.9 (Classification of Sol1
4 Crystallographic Groups). Let Π ⊂ Sol1

4 o

K be a crystallographic group of Sol1
4, where K is a maximal compact sub-

group of Aut(Sol1
4). As all maximal compact subgroups of Sol1

4 are conjugate,

we can assume that K is the maximal compact subgroup

D4 =

〈[
0 −1

1 0

]
,

[
1 0

0 −1

]〉

of Aut(Sol1
4), whose action on Sol1

4 is described in Proposition 3.1.8. Fur-

thermore, we can conjugate Π in Aff(Sol1
4) so that the lattice of Π is some

Γ̃(S;q,m1,m2), where Γ̃(S;q,m1,m2) is embedded in Sol1
4 as in assignment (3.13) in

Subsection 3.3.1.

Proposition 3.3.10. (1) Any crystallographic group Π of Sol1
4 can be conju-

gated into Sol1
4 oD4 in such a way that

Π ∩ Sol1
4 = 〈t1, t2, t3, t

1
q

4 〉,

where

t1 =


1 p11 c1

0 1 p21

0 0 1

 , t2 =


1 p12 c2

0 1 p22

0 0 1

 , t3 =


1 0 c3

0 λ 0

0 0 1

 , t4 =


1 0 1

0 1 0

0 0 1

 .
(2) The holonomy group Φ is generated by at most two elements of D4, and

thus Π is generated by 〈t1, t2, t3, t
1
q

4 〉 and at most two isometries of the form

(ta1
1 ta2

2 ta3
3 ta4

4 , A), for A ∈ D4 and real numbers ai.

Proof. Let Γ̃ = Π∩Sol1
4. This lattice must meet the center of Sol1

4 in a lattice:

Γ̃ ∩ Z(Sol1
4) is a lattice of Z(Sol1

4), say generated by t
1
q

4 . Also Γ̃ ∩ Nil is a
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lattice of the nilradical Nil, so we can find generators 〈t1, t2, t
1
q

4 〉 of this lattice

as given in the statement. The remaining one generator for the lattice Γ̃ must

project down to a generator of the quotient Z. It must be of the form

t′′3 =


1 a c3

0 λ b

0 0 1



Conjugation by


1 a

1−λ 0

0 λ − bλ
1−λ

0 0 1

 maps t′′3 to the form of t3. Recall that

Γ̃/Z(Γ̃) gives rise to S, and we can find P = (pij) diagonalizing S. Assum-

ing det(P ) = 1 (this can always be achieved, as in the case of Sol3), we have

[t1, t2] = t4. Therefore, any lattice is conjugate to a lattice 〈t1, t2, t3, t
1
q

4 〉.

However, we will see that we can always take c3 = 0, except possibly in the

case when the holonomy Φ is Z4. Because lattices of Sol1
4 project to lattices

of Sol3, the projections Sol1
4 → Sol3 and Aut(Sol1

4) → Aut(Sol3) induce a

projection Sol1
4oD4 → Sol3oD4 which carries a Sol1

4 crystallographic group to

a Sol3 crystallographic group. Furthermore, when Π is embedded in Sol1
4 oD4

as in Proposition 3.3.10, the lattice Γ̃S = Γ̃(S;q,m1,m2) projects to a standard

lattice ΓS of Sol3. That is, we have the following commuting diagram:
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1 1y y
1
q
Z 1

q
Zy y

1 −−−→ Γ̃S −−−→ Π −−−→ Φ −−−→ 1y y ∥∥∥
1 −−−→ ΓS −−−→ Q −−−→ Φ −−−→ 1y y

1 1

Here is an outline of our procedure for obtaining the Sol1
4 crystallographic

groups.

(1) For each Sol3 crystallographic group Q from Theorem 3.2.21, classify lifts

of ΓS to lattices of Γ̃S of Sol1
4 (Theorem 3.3.2).

(2) Show that the abstract kernel Φ→ Out(ΓS) will induce an abstract kernel

Φ → Out(Γ̃S), after possibly making the central generator of Γ̃S finer (i.e.,

taking a larger value of q).

(3) Once an abstract kernel Φ → Out(Γ̃S) is fixed, show that after possibly

taking a larger value of q, the obstruction in H3(Φ; Z) to the existence of Π

vanishes. Then the equivalence classes of extensions

1→ Γ̃S → Π → Φ→ 1

are classified by H2(Φ;Z(Γ̃S)) = H2(Φ; Z). The details follow.

Our goal is finding all crystallographic groupsΠ of Sol1
4 which project down
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to Q. In general, it is not true that there exists Π fitting the commutative

diagram of exact sequences

Z Zy y
1 −−−→ Γ̃S −−−→ Π −−−→ Φ −−−→ 1y y ∥∥∥
1 −−−→ ΓS −−−→ Q −−−→ Φ −−−→ 1

Even though Γ̃S always exists, for Π to exist, sometimes the kernel Z needs

to be “inflated”. It turns out that, after appropriate inflation, an extension Π

always exists. We will need the following lemma.

Proposition 3.3.11. Let Q be a Sol3 crystallographic group with standard

lattice ΓS . Suppose in Proposition 3.3.10, we have fixed the ci, as well as set

q = 1, thus fixing the lattice Γ̃(S;1,n1,n2) = 〈t1, t2, t3, t4〉. For any generator

A ∈ Φ, let

α = (ta1
1 ta2

2 ta3
3 ta4

4 , A) = (a,A).

The powers a1, a2, and a3 are determined by the abstract kernel Φ→ Out(ΓS)

(Remark 3.2.18). Consider the effect that conjugation by α has on Γ̃(S;1,n1,n2).

Note that conjugation by α is independent of a4. We have the relations:

αt1α
−1 = tm1

1 tm2
2 tv14 , where

[
m1

m2

]
= ϕ(ᾱ)

[
1

0

]
,

αt2α
−1 = tn1

1 tn2
2 tv24 , where

[
n1

n2

]
= ϕ(ᾱ)

[
0

1

]
,

αt3α
−1 = tw1

1 tw2
2 tĀ3 tv34 , where

[
w1

w2

]
=
(
I − SĀ

)[a1

a2

]
,

αt4α
−1 = tÂ4 ,
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where v1 and v2 are rational numbers. We can adjust c3 so that v3 is rational,

as well.

Proof. First we claim that the image of Γ̃(S;1,n1,n2) under conjugation by α,

µ(α)(Γ̃(S;1,n1,n2)) = αΓ̃(S;1,n1,n2)α
−1,

is a lattice of Sol1
4 lifting the standard lattice ΓS of Sol3.

As conjugation by α defines an automorphism of Sol1
4, µ(α)(Γ̃(S;1,n1,n2)) is

again a subgroup of Sol1
4. Since conjugation by α is an affine diffeomorphism

of Sol1
4, µ(α)(Γ̃(S;1,n1,n2)) is also discrete. Because µ(α)(Γ̃(S;1,n1,n2)) lifts the

standard lattice ΓS of Sol3, and maps the generator t4 of

Z(Sol1
4) ∩ Γ̃(S;1,n1,n2)

to tÂ4 , it follows that µ(α)(Γ̃(S;1,n1,n2)) is cocompact. Therefore µ(α)(Γ̃(S;1,n1,n2))

is a lattice of Sol1
4 lifting ΓS .

All such lifts are given in Lemma 3.3.3. From equation (3.14) in Subsection

3.3.1, we see that for any two solutions c1, c2 and c′1, c
′
2, both c′1−c1 and c′2−c2

must be rational. Thus v1 and v2 are rational numbers.

For

αt3α
−1 = tw1

1 tw2
2 tĀ3 tv34 , where

[
w1

w2

]
=
(
I − SĀ

)[a1

a2

]
, (3.15)

we need only consider two cases by Theorem 3.2.21. First, consider the case

when a3 = 1
2
. Then A must be diagonal, so that Ā = +1:

α = (t
1
2
3 ta4

4 , A)

Ā = +1.
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In the computation below, let t̂3 denote t3 with the (1, 3)-slot set to be zero,

so that t3 = t̂3t
c3
4 .

αt3α
−1 = t

1
2
3A(t3)t

− 1
2

3

= t
1
2
3A(t̂3t

c3
4 )t

− 1
2

3

= t
1
2
3 t̂3t

Âc3
4 t

− 1
2

3

= t
1
2
3 t̂3t

c3
4 t−c34 tÂc34 t

− 1
2

3

= t
1
2
3 t3t

− 1
2

3 t
(Â−1)c3
4 = t3t

(Â−1)c3
4 .

Since Â = ±1, there is always a choice of c3 which makes (Â− 1)c3 ∈ Q.

Now consider the case when a3 = 0, α = (ta1
1 ta2

2 ta4
4 , A). We compute:

αt3α
−1 = ta1

1 ta2
2 A(t3)t−a2

2 t−a1
1

= ta1
1 ta2

2 A(t̂3t
c3
4 )t−a2

2 t−a1
1

= ta1
1 ta2

2 t̂Ā3 tÂc34 t−a2
2 t−a1

1

= ta1
1 ta2

2 t̂Ā3 tĀc34 t−Āc34 tÂc34 t−a2
2 t−a1

1

= ta1
1 ta2

2 tĀ3 t
(Â−Ā)c3
4 t−a2

2 t−a1
1

=
(
ta1

1 ta2
2 tĀ3 t−a2

2 t−a1
1 t−Ā3

)
t3
Āt

(Â−Ā)c3
4 .

Now by Lemmas 3.3.6 and 3.3.7, and using that a1, a2 are rational, we have

(
ta1

1 ta2
2 tĀ3 t−a2

2 t−a1
1 t−Ā3

)
tĀ3 t

(Â−Ā)c3
4 =

(
tb11 tb22 tu4

)
tĀ3 t

(Â−Ā)c3
4

= tb11 tb22 tĀ3 t
u+(Â−Ā)c3
4 ,

for a rational number u. Equating this with equation (3.15), we obtain

tw1
1 tw2

2 tĀ3 tv34 = tb11 tb22 tĀ3 t
u+(Â−Ā)c3
4 .
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Now w1 = b1 and w2 = b2 is forced. Therefore,

v3 = u+ (Â− Ā)c3.

Because Â = ±1, Ā = ±1, and u is rational, c3 can always be chosen so that

v3 is rational.

Proposition 3.3.12. Let Q be a crystallographic group of Sol3, from Theorem

3.2.21. Then there exists ci and q so that the abstract kernel Φ → Out(ΓS)

induces Φ → Out(Γ̃(S;q,m1,m2)), where Γ̃(S;q,m1,m2) = 〈t1, t2, t3, t
1
q

4 〉 is a lattice

of Sol1
4 lifting ΓS .

Proof. The abstract kernel of Φ→ Out(ΓS) is given by, for A ∈ Φ,

µ(α) : ΓS → ΓS , where α = (ta1
1 ta2

2 ta3
3 , A) ∈ Q.

For any integer q > 0, we can form the lattice of Sol1
4

〈Γ̃(S;1,n1,n2), t
1
q

4 〉 = Γ̃(S;q,qn1,qn2).

That is, we add a finer generator of the central direction to Γ̃(S;1,n1,n2).

Now, for each generator of A ∈ Φ, the vi in Proposition 3.3.11 are rational.

Therefore, for q large enough, Γ̃(S;q,qn1,qn2) is invariant under conjugation by

(ta1
1 ta2

2 ta3
3 ta4

4 , A), for each A ∈ Φ. As this conjugation is independent of lift of

(ta1
1 ta2

2 ta3
3 , A) to (ta1

1 ta2
2 ta3

3 ta4
4 , A), with m1 = qn1 and m2 = qn2, we obtain an

abstract kernel Φ→ Out(Γ̃(S;q,m1,m2)).

Proposition 3.3.13. Let Q ↪→ Sol3 o D4 be a crystallographic group for

Sol3 containing ΓS . Assume that the abstract kernel Φ → Out(ΓS) induces

Φ → Out(Γ̃(S;q,m1,m2)). Then for some p > 0, there exists Π which fits the
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following commuting diagram

1 1y y
1
pq

Z 1
pq

Zy y
1 −−−→ Γ̃(S;pq,pm1,pm2) −−−→ Π −−−→ Φ −−−→ 1y y ∥∥∥
1 −−−→ ΓS −−−→ Q −−−→ Φ −−−→ 1y y

1 1

Proof. Since the center of Γ̃(S;q,m1,m2) is 1
q
Z and Φ is finite, H3(Φ; 1

q
Z) is finite.

This means the obstruction class to the existence of the extension vanishes if

we use 1
pq

Z for the coefficients, for some p > 0. That is, it vanishes inside

H3(Φ; 1
pq

Z). Thus, with such pq, the center of Γ̃(S;pq,pm1,pm2) is 1
pq

Z, and an

extension Π exists.

So we can assume that after appropriate inflation, there exists an exten-

sion Π with lattice Γ̃(S;q,m1,m2), for some q > 0. The Seifert Construction

will show that such an abstract extension actually embeds in Sol1
4 o D4 as a

crystallographic group.

Theorem 3.3.14. Let Γ̃ = Γ̃(S;q,m1,m2) be a lattice of Sol1
4, and

1 −→ Γ̃ −→ Π −→ Φ −→ 1

be an extension of Γ̃ by a finite group Φ. Then there exists a homomorphism

θ : Π → Sol1
4 oD4 ⊂ Sol1

4 o Aut(Sol1
4)

carrying Γ̃ onto a standard lattice. This θ is injective if and only if Φ ⊂ D4.
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Such θ is unique up to conjugation by an element of Sol1
4 o Aut(Sol1

4).

Proof. Sol1
4 is completely solvable, and we can apply the Seifert construction

[24, Theorem 7.3.2] with G = Sol1
4 and W = {point}. Since Φ is finite, the

homomorphism ϕ : Π → Out(Γ̃)→ Out(Sol1
4) has finite image in Out(Sol1

4),

and it lifts back to a finite subgroup C of Aut(Sol1
4). But this C can be

conjugated intoD4 ⊂ Aut(Sol1
4), a maximal compact subgroup. Consequently,

we have a commuting diagram

1 −−−→ Γ̃ −−−→ Π −−−→ Φ −−−→ 1y y y
1 −−−→ Sol1

4 −−−→ Sol1
4 oD4 −−−→ D4 −−−→ 1

The essence of the argument is showing that the cohomology set H2(Φ; Sol1
4)

is trivial for any finite group Φ. The uniqueness is a result of [24, Corollary

7.7.4]. It also comes from H1(Φ; Sol1
4) = 0.

After inflation, the Seifert Construction produces a crystallographic group

of Sol1
4. Often we can assume that c3 = 0, that is, Γ̃(S;q,m1,m2) is a standard

lattice of Sol1
4. Recall that Aut(Sol1

4) = R o Aut(Sol3) (Proposition 3.1.8),

where k̂ ∈ R acts by
1 eux z

0 eu y

0 0 1

 7−→


1 eux z + ku

0 eu y

0 0 1

 .
We have the following:

Theorem 3.3.15. For all holonomy groups, except Z4, a crystallographic

group Π of Sol1
4 embeds into Sol1

4 o D4 in such a way that Π ∩ Sol1
4 is a

standard lattice (c3 = 0).
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Proof. Let e denote the identity element of Sol1
4. For the statement concerning

c3, conjugation by (e, k̂) with k = − c3
λ

sets c3 = 0 in t3. However, this

conjugation moves D4 to k̂D4k̂
−1.

Suppose every A ∈ Φ satisfies ĀÂ = +1. Since such A commute with k̂,

conjugation by (e, k̂) leaves the holonomy group Φ inside D4 while moving t3

so that c3 = 0. This applies to, from the list of Theorem 3.2.9, all the groups

lifting Sol3 crystallographic groups of type (2a), (2b), (3), (3i), (6a), (6ai),

(6b), and (6bi).

Suppose Φ contains A =

[
1 0

0 −1

]
. Then Corollary 3.2.19 and Lemma

3.3.16 show that a generator α of Π projecting to A ∈ Φ can be conjugated to

α = (t
1
2
3 , A) (so that a1 = a2 = a4 = 0). Then, we shall show that t3 = t̂3t

c3
4

can be replaced by t̂3 (where t̂3 is t3 with c3 = 0).

α2 = (t
1
2
3 , A)2 = ((t̂3t

c3
4 )

1
2 , A)2 = (t̂3t

c3
4 )

1
2A((t̂3t

c3
4 )

1
2 )

= t̂
1
2
3 t

c3
2

4 · t̂
1
2
3 t
− c3

2
4 = t̂3.

Thus t̂3 = α2 ∈ Π, and we can take t̂3 instead of t3 as a generator for the same

group (which is apparently redundant since α is in the set already). From the

list in Theorem 3.2.9, the groups (1), (5), (7) and (7i) contain such an A

in the holonomy.

The only case that is not covered by these two cases is when Φ = Z4 (type

(4) in the list), which is discussed below in our main classification (Theorem

3.3.21).

Lemma 3.3.16. If det(A) = −1, by conjugation, a4 can be made 0.

Proof. Suppose det(A) = −1. Conjugation by t
−a4

2
4 fixes the lattice Γ̃(S;q,m1,m2),

and moves (ta1
1 ta2

2 ta3
3 ta4

4 , A) to (ta1
1 ta2

2 ta3
3 , A).
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Proposition 3.3.17 (Fixing a4, b4). Consider the commuting diagram in Propo-

sition 3.3.13. Given Q and integers q,m1,m2, we had Γ̃(S;q,m1,m2). The only

thing that remains for the construction of Π is fixing a4, b4. As is well known,

all the extensions Π in the short exact sequence

1→ Γ̃(S;q,m1,m2) → Π → Φ→ 1

are classified by H2(Φ;Z(Γ̃(S;q,m1,m2))) = H2(Φ; Z). When Φ = 〈A〉,

H2(Zp; Z) =


0, if Â = −1;

Zp, if Â = 1,

see [25, Theorem 7.1, p.122] .

In actual calculation, this becomes an equation

αp = tn1
1 tn2

2 tn3
3 tk44

for integers ni and k4 = i
q
, i = 0, 1, · · · , p− 1.

Remark 3.3.18. When Φ = 〈A,B〉 is not cyclic, Â = B̂ = +1 never happens,

so we can set one of a4, b4 to zero. Thus, H2(Φ;Z(Γ̃S)) is cyclic for all Φ.

3.3.19 (Detecting Torsion in Sol1
4 Crystallographic Groups). Given a

lattice Γ̃S of Sol1
4 (which projects to a lattice ΓS of Sol3), the short exact

sequence

1→ Z(Γ̃S)→ Γ̃S → ΓS → 1

induces an S1-bundle over the solvmanifold ΓS\Sol3,

S1 → Γ̃S\(Sol1
4)→ ΓS\Sol3.

The following lemma will be useful for determining when a Sol1
4 crystallo-
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graphic group has torsion.

Lemma 3.3.20. Let Γ̃S be a lattice of Sol1
4, projecting to a standard lattice

ΓS of Sol3, and suppose that for α ∈ Sol1
4 o D4, the group Π = 〈Γ̃S , α〉 is

crystallographic. Let ᾱ denote the projection of α to Sol3 o D4. When the

automorphism part of α acts as a reflection on the center of Sol1
4, Π is torsion-

free if and only if 〈ΓS , ᾱ〉 is torsion-free.

Proof. Obviously, if 〈ΓS , ᾱ〉 is torsion-free, then Π must be torsion-free. For

the converse, suppose that 〈ΓS , ᾱ〉 has torsion. In this case, the action of ᾱ

on the solvmanifold ΓS\Sol3 must fix a point. Observe that the action of α

on the solvmanifold Γ̃S\Sol1
4 is S1 fiber preserving. Therefore, a circle fiber is

left invariant under the action of α. Since α acts as reflection on the fiber, α

must fix a point. Therefore, Π has torsion.

Theorem 3.3.21 (Classification of Sol1
4-geometry). The following is a com-

plete list of crystallographic groups of Sol1
4, viewed as lifts of Sol3 crystallo-

graphic groups, see Theorem 3.2.21.

We assume that in each case q, c1, c2, and c3 are fixed so as to induce an ab-

stract kernel Φ → Out(Γ̃(S;q,m1,m2)) with vanishing obstruction in H3(Φ; Γ̃S).

Recall that this was possible by Proposition 3.3.13 and Theorem 3.3.14. In all

cases, except, Φ = Z4, we can take c3 = 0 (Theorem 3.3.15). In the Z4 holon-

omy case, we have two different (up to isomorphism) choices for c3. Whenever

the holonomy group contains an automorphism which is off-diagonal, the orb-

ifold is non-orientable. To avoid repetition, we do not give the classification

of the exponents on t1, t2 by H2
ϕ(ZΦ; Z2) ∼= H1(Φ; Coker(I − S)), as these

exponents are fixed by Q (see Theorem 3.2.21).
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(0) Φ = trivial

• c3 = 0

• Π = Γ̃(S;q,m1,m2).

• Torsion-free

(1) Φ = Z2: A =

[
1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (t
1
2
3 , A)〉.

• H2(Φ;Z(Γ̃S)) is trivial.

• Torsion-free

(2a) Φ = Z2: A =

[
−1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 ta4
4 , A)〉.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for a4, the solutions of

α2 = t
i
q

4 (i = 0, 1).

• Torsion-free for i = 1

(2b) Φ = Z2: A =

[
−1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (t
1
2
3 ta4

4 , A)〉.

• H2(Φ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2q

.

• Torsion-free
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(3) Φ = Z2: A =

[
0 1

1 0

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A)〉.

• H2(Φ;Z(Γ̃S)) is trivial.

• Always has torsion

(3i) Φ = Z2: A =

[
0 1

1 0

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A)〉.

• H2(Φ;Z(Γ̃S)) is trivial.

• Π is torsion-free if and only if a1 = 1
2

and a2 6≡ (σ11+1)(2n+1)
2σ12

for any

n ∈ Z.

(4) Φ = Z4: A =

[
0 1

−1 0

]
• There are two choices for c3 in t3. They are solutions of d = 0 or

d = 1
q

for c3, where αt3α
−1 = t

(1−σ22)a1+σ12a2

1 t
σ21a1+(1−σ11)a2

2 t−1
3 td4. Each

corresponds to a different abstract kernel Φ→ Out(Γ̃S).

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 ta4
4 , A)〉.

• H2(Φ;Z(Γ̃S)) = Z4. There are 4 choices for a4 which make α4 = t
i
q

4 ,

(i = 0, 1, 2, 3)

• Π is torsion-free only when i = 1, 3.

(5) Φ = Z2 × Z2: A =

[
1 0

0 −1

]
, B =

[
−1 0

0 −1

]
• c3 = 0
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• Π = 〈t1, t2, t3, t
1
q

4 , α = (t
1
2
3 , A)β = (tb11 tb22 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t
i
q

4 , (i = 0, 1).

• Π is torsion-free only when i = 1.

(6a) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A), β = (tb11 tb22 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t
i
q

4 , (i = 0, 1).

• Always has torsion

(6ai) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A), β = (tb11 tb22 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t
i
q

4 , (i = 0, 1).

• Π is torsion-free if and only if i = 1, a1 = 1
2
, a2 = b2 + 1

2
, b1 6≡

σ12(2n+1)
2(σ11−1)

+ 1
2
, b2 6≡ (σ11+1)(2m+1)

2σ12
+ 1

2
for any m,n ∈ Z.

(6b) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A), β = (t
1
2
3 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t3t
i
q

4 , (i = 0, 1).
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• Always has torsion

(6bi) Φ = Z2 × Z2: A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A), β = (t
1
2
3 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z2. There are two choices for b4, the solutions of

β2 = t3t
i
q

4 , (i = 0, 1).

• Π is torsion-free if and only if a1 = 1
2

and a2 6≡ (k11−1)(2n+1)
2k12

for any

n ∈ Z.

(7) Φ = Z4 o Z2: A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A), β = (t
1
2
3 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z4. There are 4 choices for b4, the solutions of (βα)4 =

t
j
q

4 , (j = 0, 1, 2, 3).

• Always has torsion

(7i) Φ = Z4 o Z2: A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
• c3 = 0

• Π = 〈t1, t2, t3, t
1
q

4 , α = (ta1
1 ta2

2 , A), β = (t
1
2
3 tb44 , B)〉.

• H2(Φ;Z(Γ̃S)) = Z4. There are 4 choices for b4, the solutions of (βα)4 =

t
j
q

4 , (j = 0, 1, 2, 3).

•Π is torsion-free if and only if j = 1, 3 and a1 = 1
2

and a2 = −k21+1
2k11

+ i
k11

for i = 0, . . . , k11 − 1.
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Proof. In cases (2a), (2b) and (4), Φ = Zp, p = 2 or 4. Let t
1
q

4 be a free

generator of Γ̃S ∩ Z(Sol1
4). Since det(A) = +1, αp has t4 component t4

p·a4+`,

where ` is independent of a4. The equation

p · a4 + ` = 0

has solutions

a4, a4 + 1
p·q , · · · , a4 + p−1

p·q ,

each corresponding to a different class in H2(Φ;Z(Γ̃S)). In fact, the number `

is always a rational number, and hence so is a4 (or b4). The remaining cases

when Φ = Z2 × Z2 or D4 are similar. We set one of exponents on t4 = 0 by

Lemma 3.3.16, and apply the above technique to find the remaining exponent

on t4.

(0) See Theorem 3.3.2.

(1) Since Â = −1, Lemma 3.3.16 implies a4 can be conjugated to zero. So,

Π = 〈t1, t2, t3, t4, α = (t
1
2
3 , A)〉. As Q is torsion-free, so is Π.

(2a) There are two choices for a4, the solutions of α2 = t
i
q

4 , (i = 0, 1). Recall

that Q is never torsion-free, and thus Π is torsion-free only when α2 = t
1
q

4 .

That is, when i = 1, the class representing Π in H2(Z2;Z(Γ̃S)) corresponds to

the non-split (torsion-free) extension

1→ Γ̃S → Π → Z2 → 1.

(2b) By the Sol3 case, we can take a1 = a2 = 0 so that α = (t
1
2
3 ta4

4 , A). Then

α2 = t3t
2a4
4 . Therefore, a4 = 0 or 1

2q
. As Q is torsion-free, so is Π.

(3) By Lemma 3.3.16, we may assume a4 = 0, equivalently, H2(Φ;Z(Γ̃S))
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vanishes. Let α = (ta1
1 ta2

2 , A). As Q always has torsion, Lemma 3.3.20 applies

to show that Π has torsion. Alternatively, explicit computation, like in the

Sol3 case, also shows that Π has torsion. For a2 ≡ −a1, and one can compute

that

α2 = (ta1
1 t−a1

2 , A)2 = (e, I).

(3i) By Lemma 3.3.16, we may assume a4 = 0, that is H2(Φ;Z(Γ̃S)) vanishes.

Therefore, α = (ta1
1 ta2

2 , A). Lemma 3.3.20 applies to show that Π is torsion-

free precisely when Q is torsion-free, and hence precisely when the criteria

from Theorem 3.2.21 (3i) are satisfied.

(4) This is the only case where a non-standard lattice is present, that is c3 6= 0.

We have the relations

[t1t2] = t4, t4 central,

t3t1t−1
3 = tσ11

1 tσ21
2 tm1

4 ,

t3t2t−1
3 = tσ12

1 tσ22
2 tm2

4 ,

αt1α
−1 = t−1

2 tv14

αt2α
−1 = t1tv24

αt3α
−1 = t(1−σ22)a1+σ12a2

1 tσ21a1+(1−σ11)a2

2 t−1
3 tu4+2c3

4 ,

α4 = t4a4−(a1−a2)2+v4
4 , where

100



(σ11 + σ22 − 2)v1 = (−σ21 + σ22 − 1)m1 + (σ11 − σ21 − 1)m2

+ 1
2(σ11 − σ11σ21 + σ22 − (σ2

11 + σ21 − 2σ11σ21)σ22 − σ11σ
2
22)

− (σ11 + σ22 − 2) · a1

(σ11 + σ22 − 2)v2 = (1− σ21 − σ22)m1 + (σ11 + σ21 − 1)m2

− 1
2(σ11 − σ22)(−1− σ21 + σ11σ22)− (σ11 + σ22 − 2) · a2

2σ12(σ11 + σ22 − 2)u4 =
(
( σ22m1 − σ12m2) + 1

2( σ11 − σ12)σ12σ22

)
· a1

+
(
(−σ12m1 + σ11m2) + 1

2(−σ12 + σ22)σ11σ12

)
· a2

+ 1
2σ12σ22 · a2

1 + (σ22 − σ11σ22) · a1a2 + 1
2(σ11 − 2)σ12 · a2

2,

(σ11 + σ22 − 2)v4 = 2a1(σ22 + σ11(σ21σ22 − σ21 − σ2
22) + 2(σ22 − 1)m1 − 2σ21m2)

+ 2a2(σ11 − σ22(σ11σ21 − σ21 + σ2
11)− 2σ21m1 + 2(σ11 − 1)m2)

Recall that m1,m2 and all σij’s are integers. Since[
a1

a2

]
= 1

σ11+σ22−2

[
σ11 − 1 σ12

σ21 σ22−1

][
u1

u2

]
, u1, u2 ∈ Z,

v1, v2, v4 and u4 are all rational numbers. Note that c3 and a4 appear only once

in αt3α
−1 and α4, respectively. The above equalities show that both c3 and

a4 must also be rational numbers. With a pre-determined q in Π ∩Z(Sol1
4) =

〈t
1
q

4 〉, suppose c3 = −u4

2
(a solution for u4 + 2c3 = 0). Then c′3 = c3 + 1

2q
is

another solution so that

αt3α
−1 = t

(1−σ22)a1+σ12a2

1 t
σ21a1+(1−σ11)a2

2 t−1
3 td4,

where d = 0 or 1
q
. Unless c3 is a multiple of 1

q
, the corresponding lattice is

non-standard. In case c3 = (1
q
)p, then t3 = t̂3 · (t

1
q

4 )p, where t̂3 has no t4-

component. Since (t
1
q

4 )p ∈ Π, we can replace the generator t3 by t̂3 so that
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the lattice becomes standard.

For a4, we have

α4 = t
4a4−(a1−a2)2+v4
4 ,

Then there are 4 choices for a4, a4 = (a1−a2)2−v4+i
4q

, (i = 0, 1, 2, 3). These are

the solutions of

α4 = t
i
q

4 , (i = 0, 1, 2, 3).

For i = 0, 2, Π has torsion. To see this when i = 2, note that

(t
− 1

q

4 α2)2 = t
− 2

q

4 t
2
q

4 = e.

For i = 1, 3, Π is torsion-free.

(5) By Corollary 3.2.19, we can take a1 = a2 = 0. Since det(A) = −1, we may

assume a4 = 0 by Lemma 3.3.16. There are two choices for b4, the solutions of

β2 = t
i
q

4 , (i = 0, 1). Thus H2(Φ,Z(Γ̃S)) = Z2. Like case (2a), Π is torsion-free

only when β2 = t
1
q

4 .

(6a) There are two choices for b4, the solutions of β2 = t
i
q

4 , (i = 0, 1). That is,

H2(Φ,Z(Γ̃S)) = Z2. As Π contains a group of type (3a), it is never torsion-

free. (6ai) There are two choices for b4, the solutions of β2 = t
i
q

4 , (i = 0, 1).

That is, H2(Φ,Z(Γ̃S)) = Z2. For Π to be torsion-free, the subgroups 〈Γ̃S , α〉,

〈Γ̃S , β〉, and 〈Γ̃S , αβ〉, where

αβ =

(
ta1+b1

1 ta2−b2
2 t

b′4
4 ,

[
0 −1

−1 0

])

must all be torsion-free. The group 〈Γ̃S , β〉 is torsion-free precisely when b4

satisfies β2 = t
1
q

4 .
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We need criteria for (ta1
1 ta2

2 , A) and (ta1+b1
1 ta2−b2

2 , AB) to be of infinite order.

By Lemma 3.3.20, these they are of infinite order precisely when they are

infinite order, projected to Sol3. By computing when the appropriate affine

maps in Proposition 3.2.23 are fixed point free, we obtain the conditions a1 =

1
2
, a2 = b2 + 1

2
, b1 6≡ σ12(2n+1)

2(σ11−1)
+ 1

2
b2 6≡ (σ11+1)(2m+1)

2σ12
+ 1

2
for any m,n ∈ Z.

(6b) Note that, a4 = 0 by Lemma 3.3.16, and there are two choices for b4, the

solutions of β2 = t3t
i
q

4 , (i = 0, 1). Hence H2(Φ,Z(Γ̃S)) = Z2. As Π contains a

subgroup of type (3), which has torsion, it must have torsion as well.

(6bi) Note a4 = 0 by Lemma 3.3.16, and there are two choices for b4, the solu-

tions of β2 = t3t
i
q

4 , (i = 0, 1). Thus H2(Φ,Z(Γ̃S)) = Z2. Recall from Theorem

3.2.21 that Q (and hence Π, by Lemma 3.3.20) is torsion-free precisely when

the affine maps ([
a1

a2

]
,

[
1 0

0 −1

])
([

a1

a2

]
,

[
−k11 k12

−k21 k11

])

are fixed point free on T 2, which occurs precisely when a1 = 1
2

and a2 6≡
(k11−1)(2n+1)

2k12
for any n ∈ Z.

(7) We may take a4 = 0 without loss of generality by Lemma 3.3.16. (βα)4 =

t4b4+`
4 shows that there are 4 choices for b4, the solutions of (βα)4 = t4

j
q , (j =

0, 1, 2, 3). Hence H2(D4;Z(Γ̃S)) = Z4. As Π contains a subgroup of type (3),

it has torsion.

(7i) Like case (7), we take a4 = 0 and there are 4 choices for b4, the solutions of

(βα)4 = t4

j
q , (j = 0, 1, 2, 3), so that H2(D4;Z(Γ̃S)) = Z4. For Π to be torsion-

103



free, 〈Γ̃S , βα〉 is necessarily torsion-free. This forces b4 to satisfy (βα)4 =

t
j
q

4 , (j = 1, 3). Note that β and the holonomy element corresponding to −B,

αβα, are of infinite order when projected to Sol3, and hence also on Sol1
4.

Thus the only remaining holonomy elements to consider are α and

βαβ =

(
t−k11a1−k12a2

1 t−k21a1−k11a2
2 t2b4+v

4 ,

[
0 −1

−1 0

])
.

We need criteria for (ta1
1 ta2

2 , A) and (t−k11a1−k12a2
1 t−k21a1−k11a2

2 A,BAB) to be

infinite order, when projected to Sol3.

By Proposition 3.2.23, we just need to ensure that the appropriate affine

maps are fixed point free on T 2, and this occurs precisely when

a1 = 1
2
, a2 6≡ (σ11+1)(2n+1)

2σ12
,

−k21
2
− k11a2 = 1

2
,

−k11
2
− k12a2 6≡ σ12(2n+1)

2(σ11−1)
.

With a1 = 1
2

and a2 = −k21+1
2k11

+ i
k11

for i = 0, . . . , k11 − 1, using that

det(K) = −1 and K2 = S, one can compute that the remaining criteria are

satisfied. In fact, we compute

(σ11 + 1)(2n+ 1)

2σ12

=
(k2

11 + k12k21 + 1)(2n+ 1)

4k11k12

=
2k12k21(2n+ 1)

4k11k12

=
k21(2n+ 1)

2k11

.

Now, for m ∈ Z,

a2 = −k21 + 1

2k11

+
i

k11

=
k21(2n+ 1)

2k11

+m =⇒

−k21 − 1 + 2i

2k11

=
k21(2n+ 1) + 2mk11

2k11

=⇒

−1 + 2i

2k11

=
2k21(n+ 1) + 2mk11

2k11

,
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a contradiction for any integers i, n,m, as the numerators are of different parity.

For the remaining criterion, we compute

−k11

2
− k12a2 =

−k11

2
− k12

(
−k21 + 1

2k11

+
i

k11

)
=
−k2

11 + k12k21 + k12 − 2k12i

2k11

=
1 + k12 − 2k12i

2k11

.

Now, for m ∈ Z,

1 + k12 − 2k12i

2k11

=
σ12(2n+ 1)

2(σ11 − 1)
+m =⇒

1 + k12 − 2k12i

2k11

=
2k11k12(2n+ 1)

2(k2
11 + k12k21 − 1)

+m =⇒

1 + k12 − 2k12i

2k11

=
2k11k12(2n+ 1)

4k2
11

+m =
k12(2n+ 1) + 2mk11

2k11

=⇒

1− 2k12i

2k11

=
2(nk12 +mk11)

2k11

,

a contradiction for any integers i, n,m, as the numerators are of different

parity. Therefore, with a1 = 1
2

and a2 = −k21+1
2k11

+ i
k11

for i = 0, . . . , k11 − 1,

and (βα)4 = t
j
q

4 , (j = 1, 3), Π is torsion-free.

This completes the proof of Theorem 3.3.21.

We have shown that every Sol1
4 crystallographic groupΠ can be conjugated

so that the holonomy Φ is a subgroup of our fixed D4 ⊂ Aut(Sol1
4). We take

c3 = 0 (standard lattice) for all holonomy groups except Z4. In this case,

we have two values for c3. This corresponds to two distinct abstract kernels,

which give rise to different isomorphism classes. Alternatively, in the Z4 case,

one may assume c3 = 0. Then, however, Φ is not a subgroup of D4. Rather,
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Φ ⊂ k̂D4k̂
−1, where k̂ ∈ R acts by

1 eux z

0 eu y

0 0 1

 7−→


1 eux z + ku

0 eu y

0 0 1

 .
Remark 3.3.22. Let Π and Π ′ be two crystallographic groups of Sol1

4, with

projections to Sol3 crystallographic groups, Q and Q′ , respectively. That is,

Π/(Π ∩ Z(Sol1
4)) ∼= Q,

Π ′/(Π ′ ∩ Z(Sol1
4)) ∼= Q′.

Our classification is up to equivalence of extensions, a finer notion of equiv-

alence than isomorphism. However, we observe that Q and Q′ being isomor-

phic is necessary for Π and Π ′ to be isomorphic. This is easy to see from

the rigidity property of these crystallographic groups (Theorem 1.1.5). Any

isomorphism between Π and Π ′ is conjugation by an element of Aff(Sol1
4) =

Sol1
4oAut(Sol1

4). Such a conjugation must carry Π∩Z(Sol1
4) to Π ′∩Z(Sol1

4),

and hence must induce an isomorphism between Q and Q′.

3.3.23 (Examples). First we show that Sol1
4 o D4 embeds into the affine

group Aff(4) ↪→ GL(5,R). The following correspondence is an injective homo-

morphism of Lie groups, Sol1
4 ↪→ Aff(4),


1 eux z

0 eu y

0 0 1

 −→


1 −1
2
e−uy eux

2
0 z − xy

2

0 e−u 0 0 x

0 0 eu 0 y

0 0 0 1 u

0 0 0 0 1


. (3.16)
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Moreover, the automorphisms[
a 0

0 d

]
,

[
0 b

c 0

]
∈ Aut(Sol1

4)

can also be embedded as

ad 0 0 0 0

0 a 0 0 0

0 0 d 0 0

0 0 0 1 0

0 0 0 0 1


,



−bc 0 0 0 0

0 0 b 0 0

0 c 0 0 0

0 0 0 −1 0

0 0 0 0 1


,

respectively, where a, b, c, d are ±1. Note that, if we remove the first row and

the first column from Aff(4), we get a representation of Sol3 into Aff(3).

If we write the element (a, A) ∈ Sol1
4 oD4 as the product a · A, then the

group operation of Sol1
4 o D4 is compatible with the matrix product in this

affine group. The action of A on a is by conjugation. That is,

(a · A)(b ·B) = aAbB

= a(AbA−1) · AB

= (a, A) · (b, B).

Example 3.3.24 ((4) Non-standard lattice). This is an example where c3 is

non-zero (Theorem 3.3.21). Let A =

[
0 1

−1 0

]
and α = (ta1

1 ta2
2 ta4

4 , A). Let

S =

[
1 2

2 5

]
. Then λ = 3 + 2

√
2, and with

P =

 −1
2

√
2 +
√

2

√
2−
√

2

2

− 1q
2(2+

√
2)

−1
2

√
2 +
√

2

 ,
Π = 〈t1, t2, t3, t4, α〉, where α = (ta1

1 ta2
2 ta4

4 , A) ∈ Sol1
4 o Aut(Sol1

4), has a

107



representation into Aff(4):

t1 =



1 0 1
2

0 1
2
(2m1 −m2 − 3)

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

t2 =



1 −1
2

0 0 1
2
(−m1 − 1)

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


,

t3 =



1 0 0 0 c3

0 1 2 0 0

0 2 5 0 0

0 0 0 1 ln
(
3 + 2

√
2
)

0 0 0 0 1


,

t4 =



1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

(a,A) =



1 −a1

2
−a2

2
0 1

2
(2a4 − a2(m1 + 1) + a1(a2 + 2m1 −m2 − 3))

0 0 1 0 a1

0 −1 0 0 a2

0 0 0 −1 0

0 0 0 0 1


.
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Π has a presentation

[t1, t2] = t4, and t4 is central

t3t1t
−1
3 = t1t

2
2t
m1
4 , t3t2t

−1
3 = t2

1t
5
2t
m2
4 ,

αt1α
−1 = t−1

2 t
1
2

(−4−2a1+m1−m2)

4 , αt2α
−1 = t1t

1
2

(2−2a2−3m1+m2)

4 ,

αt3α
−1 = t−4a1+2a2

1 t2a1
2 t−1

3 t
5a2

1+2c3+a1(−5+5m1−2m2)+a2(3−a2−2m1+m2)
4 ,

αt4α
−1 = t4, α

4 = t
−a2

1+4a4−a2(2+a2+2m1)+2a1(−3+a2+2m1−m2)
4 .

From (I −S)−1 =

[
1 −1

2

−1
2

0

]
, we have Coker(I −S) = Z2 × Z2 generated by

[
1
2

0

]
,

[
0
1
2

]
.

The coboundary is

Im(I − ϕ(ᾱ)) = Im

[
1 −1

1 1

]
=

{[
0

0

]
,

[
1
2

1
2

]}
.

Thus we have only two cases [
a1

a2

]
=

[
0

0

]
,

[
1
2

0

]
.

For simplicity, we shall assume m1 = m2 = 0.

With

[
a1

a2

]
=

[
0

0

]
, Π = 〈t1, t2, t3, t4, α〉, α = (ta4

4 , A) ∈ Sol1
4 o Aut(Sol1

4), has
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a presentation

[t1, t2] = t4, and t4 is central

t3t1t
−1
3 = t1t

2
2, t3t2t

−1
3 = t2

1t
5
2,

αt1α
−1 = t−1

2 t−2
4 , αt2α

−1 = t1t4,

αt3α
−1 = t−1

3 t2c3
4 , αt4α

−1 = t4,

α4 = t4a4
4 .

The minimum q for Γ̃S is q = 1, and we have choices a4 = 0, 1
4
, 1

2
, 3

4
and c3 = 0, 1

2

(any combination of a4 and c3), with the same center. So, there are 8 distinct

groups. Half of them (with c3 = 0) have standard lattices, and the rest (with

c3 = 1
2
) have non-standard lattices.

With

[
a1

a2

]
=

[
1
2

0

]
, Π = 〈t1, t2, t3, t4, α〉, where α = (t

1
2
1 ta4

4 , A) ∈ Sol1
4 o

Aut(Sol1
4), has a presentation

[t1, t2] = t4, and t4 is central

t3t1t
−1
3 = t1t

2
2, t3t2t

−1
3 = t2

1t
5
2,

αt1α
−1 = t−1

2 t
− 5

2
4 , αt2α

−1 = t1t4,

αt3α
−1 = t−2

1 t2t
−1
3 t
− 5

4
+2c3

4 , αt4α
−1 = t4,

α4 = t
− 13

4
+4a4

4 .

The minimum q for Γ̃S is q = 2 (which comes out of αt1α
−1 = t−1

2 t
− 5

2
4 ), and

we have choices a4 = 1
16
, 3

16
, 5

16
, 7

16
and c3 = 1

8
or 3

8
(any combination of a4 and

c3), with the same center. So, there are 8 distinct groups. All these groups

have non-standard lattices, because no c3 is an integer multiple of 1
q

for q = 2.
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Example 3.3.25 ((6bi)). Let Φ = Z2 × Z2 = 〈A,B〉, where

A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
with Ã =

[
1 0

0 −1

]
, B̃ = B.

Then S must be of the form nK − I. Let us take

K =

[
3 2

4 3

]
. Then, S =

[
17 12

24 17

]
.

Note that k11 = k22 and tr(K) = n = 6 > 2. Therefore, S satisfies the

conditions for case (6bi) and

α = (ta1
1 ta2

2 , A),

β = (t
1
2
3 tb44 , B).

Then λ = 17 + 12
√

2, and with

P =

[
− 1

4√2

1
23/4

− 1
4√2
− 1

23/4

]
,

the equation in Lemma 3.3.3 yields

c1 = 1
4
(102 +

√
2 + 2m1 − 3m2)

c2 = 1
8
(−204−

√
2− 3m1 + 4m2).

Coker(I +K) is Z4 × Z2, and we have[
v1

v2

]
=

[
i
4
j
2

]
, i = 0, 1, 2, 3; j = 0, 1.

From (I + ϕ(ᾱ))a = 0, we have

a =

[
a1

a2

]
=

[
i
2

0

]
,

[
0
j
2

]
, i, j = 0, 1. (3.17)
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For any v ∈ Coker(I +K),

(δv)(A) = (I − Ã)v =

[
0

2v2

]
≡

[
0

0

]
.

Therefore, H1(〈A〉; Coker(I+K)) = Z2×Z2 (quotient of Z4×Z2) is generated

by a in (3.17) above. Our group Π has presentation

[t1, t2] = t4, [ti, t4] = 1, for i = 1, 2, 3,

t3t1t
−1
3 = t17

1 t24
2 tm1

4 , t3t2t
−1
3 = t12

1 t17
2 tm2

4 ,

αt1α
−1 = t1t

−51−a2−m1+ 3
2
m2

4 , αt2α
−1 = t−1

2 t−a1
4 ,

αt3α
−1 = t−16a1+12a2

1 t
8(3a1−2a2)
2 t−1

3

· t204a2
1+a1(−272a2+17(60+m1)−24m2)+a2(−714+90a2−12m1+17m2)

4 ,

αt4α
−1 = t−1

4 ,

βt1β
−1 = t−3

1 t−4
2 t
−6+ 1

2
m1−m2

4 , βt2β
−1 = t−2

1 t−3
2 t

1
2

(−108−m1+m2)

4 ,

βt3β
−1 = t3, βt4β

−1 = t4,

α2 = t2a1
1 t

−a1(51+a2+m1)+ 3
2
a1m2

4

β2 = t3t
2b4
4 ,

[α, β] = t4a1−2a2
1 t

−4(a1−a2)
2 t−1

3 t
6a2

1−2b4+ 1
2
a2(306+10a2+5m1−7m2)+a1(−204−12a2− 7

2
m1+5m2)

4 .
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Of the 8 groups, seven groups have torsion, and one is torsion-free.[
a1

a2

]
=

[
0

0

]
,

[
0
1
2

]
: α2 = id,[

a1

a2

]
=

[
1
2

0

]
: Both Π and Q are torsion-free,[

a1

a2

]
=

[
1
2

1
4

]
: (t2t3α)2 = id,[

a1

a2

]
=

[
1
2

1
2

]
: (t−1

1 t3α)2 = id.

Note that

[
a1

a2

]
=

[
1
2

0

]
is the only case that satisfies a1 = 1

2
and a2 6≡

(k11−1)(2m+1)
2k12

= 2m+1
2
≡ 1

2
, as stated in Theorem 3.3.21.

Example 3.3.26 ((7i)). This example has maximal holonomy group D4, but

it does not contain all the possible holonomy actions. For example, groups of

type (6b) or (6bi) are not subgroups of this group. Let Φ = Z4oZ2 = 〈A,B〉,

where

A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
,

and

α = (ta1
1 ta2

2 , A),

β = (t
1
2
3 tb44 , B).

Our S is of the form

S = nK + I,
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where

K =

[
k11 k12

k21 k22

]
with det(K) = −1 and tr(K) = n 6= 0. Now for ϕ(ᾱ), we have two choices.

We can take Ã = A or Ã =

[
1 0

0 −1

]
. Since the former yields always a torsion

group, we take the latter case. Therefore we consider case (7i), k11 = k22.

As an example, we take

K =

[
1 2

1 1

]
, therefore n = k11 + k22 = 2, S = nK + I =

[
3 4

2 3

]
.

Then λ = 3 + 2
√

2, and with

P =

[
− 1

4√
23

1
4√2

− 1
4√

23
− 1

4√2

]
,

the equation in Lemma 3.3.3 yields

c1 =
1

8
(−12 +

√
2 + 4m1 − 4m2)

c2 =
1

4
(−
√

2− 4m1 + 2m2).

Recall we can take c3 = 0 by Theorem 3.3.21. Our crystallographic group
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Π = 〈t1, t2, t3, t4, α, β〉 has a representation into Aff(4):

t1 =



1 0 1
2

0 1
2
(m1 −m2 − 3)

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

t2 =



1 −1
2

0 0 1
2
(m2 − 2m1)

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


,

t3 =



1 0 0 0 0

0 3 4 0 0

0 2 3 0 0

0 0 0 1 ln
(
3 + 2

√
2
)

0 0 0 0 1


(because c3 = 0),

t4 =



1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

(a,A) =



−1 −a2

2
−a1

2
0 1

2
(a1(a2 +m1 −m2 − 3) + a2(m2 − 2m1))

0 1 0 0 a1

0 0 −1 0 a2

0 0 0 −1 0

0 0 0 0 1


,

(b, B) =



−1 0 0 0 b4

0 −1 −2 0 0

0 −1 −1 0 0

0 0 0 1 1
2

log
(
3 + 2

√
2
)

0 0 0 0 1


.
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We have

Coker(I − S) = (Z2)2 =

{
1
2

[
0

0

]
, 1

2

[
0

1

]
, 1

2

[
1

0

]
, 1

2

[
1

1

]}
.

Now

ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K,

yields

I + ϕ(ᾱ) =

[
2 0

0 0

]
, I + ϕ(β̄) =

[
0 −2

−1 0

]
.

Then (I + ϕ(ᾱ))a ≡ 0 yields 2a1 ≡ 0, which is not a new condition. We have

4 choices for a, [
a1

a2

]
= 1

2

[
0

0

]
, 1

2

[
0

1

]
, 1

2

[
1

0

]
, 1

2

[
1

1

]
.

The coboundary Im(I − ϕ(ᾱ)) yields the trivial group, and hence there are 4

non-equivalent groups Π. The group Π has a presentation

[t1, t2] = t4, [ti, t4] = 1 (i = 1, 2, 3),

t3t1t
−1
3 = t3

1t
2
2t
m1
4 , t3t2t

−1
3 = t4

1t
3
2t
m2
4 ,

αt1α
−1 = t1t

3−a2−m1+m2
4 , αt2α

−1 = t−1
2 t−a1

4 ,

αt3α
−1 = t−2a1+4a2

1 t
2(a1−a2)
2 t−1

3 t
3a2

1−a1(3+6a2−3m1+2m2)+a2(6+2a2−4m1+3m2)
4 ,

αt4α
−1 = t−1

4 ,

βt1β
−1 = t−1

1 t−1
2 t

1
2

(−1−2m1+m2)

4 , βt2β
−1 = t−2

1 t−1
2 t−4+m1−m2

4 ,

βt3β
−1 = t3, βt4β

−1 = t−1
4 ,

α2 = t2a1
1 t

−a1(−3+a2+m1−m2)
4 ,

β2 = t3,

(αβ)4 = t
−4b4+a2

1+4a1a2+2a2
2−2a1(3−m1+m2)−2a2(2m1−m2)

4 .
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Out of these 4 groups (by the choice of ai’s), only one group can be torsion-free,

and 3 groups have torsion.[
a1

a2

]
=

[
0

0

]
,

[
0
1
2

]
: α2 = id.[

a1

a2

]
=

[
1
2

1
2

]
:

(
t−1

2 (αβ)2α
)2

= id[
a1

a2

]
=

[
1
2

0

]
: a2 = −k21 + 1

2k11

≡ 0

When mi = 0, a1 = 1
2
, a2 = 0, q = 4 (minimum), b4 takes values j

16
, 0 ≤ j ≤ 4.

When b4 = 0 or 2
16

, Π is torsion-free. When b4 = 1
16

or 3
16

, Π has torsion.

3.4 Crystallographic Groups of Sol3 × R

Here we provide a classification of the crystallographic groups of Sol3 × R.

Given a crystallographic group Π ⊂ (Sol3×R)o(D4×Z2), Γ̃ = Π∩(Sol3×R)

is a lattice of Sol3 × R with finite quotient group Ψ ⊆ D4 × Z2. We have the

short exact sequence

1→ Γ̃→ Π → Ψ→ 1.

3.4.1 (Lattices of Sol3 × R). In the cohomology classification of lattices in

Theorem 3.3.2, the Sol3 × R case corresponds precisely to when q = 0. We

will see that Γ̃(S;0,m1,m2) embeds as a lattice of Sol3 × R.

An S ∈ SL(2,Z) with tr(S) > 2 produces P and ∆. Using P and ∆, we

embed Z2 o Z into Sol3 as in assignment (3.5) in Subsection 3.2.1, which we
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now lift to Sol3 × R. Recall the definition of Sol3 × R as R3 oφ(u) R, where

φ(u) =


e−u 0 0

0 eu 0

0 0 1

 .
The only ambiguities are the central slots. So let

e1 =

([
1

0

]
, 0

)
7−→ (Pe1, 0) 7−→ t1 =



p11

p21

c1

 , 0
 ,

e2 =

([
0

1

]
, 0

)
7−→ (Pe2, 0) 7−→ t2 =



p12

p22

c2

 , 0
 ,

e3 =

([
0

0

]
, 1

)
7−→ (0, ln(λ)) 7−→ t3 =




0

0

c3

 , ln(λ)

 ,

t4 =




0

0

1

 , 0
 ,

(3.18)

where ci’s will be determined later. Then [t1, t2] = e (regardless the values of

ci’s).

3.4.2 (Warning). In this notation, the central factor of Sol3 × R goes to the

3rd slot of R3 ⊂ R3 o R. That is,

Sol3 × R 3 (e, s) 7→




0

0

s

 , 0
 ∈ R3 o R.

Lemma 3.4.3. For any integers m1,m2, there exist unique c1, c2 for which
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{t1, t2, t3, t4} forms a group Γ̃(S;0,m1,m2) with the presentation

Γ̃(S;0,m1,m2) = 〈t1, t2, t3, t4| [t1, t2] = t0
4 = e, t4 is central,

t3t1t
−1
3 = tσ11

1 tσ21
2 tm1

4 ,

t3t2t
−1
3 = tσ12

1 tσ22
2 tm2

4 〉.

Consequently, Γ̃(S;0,m1,m2) is solvable and contains Z3 = 〈t1, t2, t4〉 as its

discrete nil-radical, a lattice of R3 in R3 ⊂ R3 o R.

Proof. We only need to verify the last two equalities. But they become a

system of equations on ci’s

(1− σ11)c1 − σ21c2 = m1

−σ12c1 + (1− σ22)c2 = m2

(3.19)

Since I − S is non-singular, there exists a unique solution for c1, c2.

Remark 3.4.4. (1) There are 1-parameter family of P ’s diagonalizing S with

det(P ) = 1. In the above lemma, the ci’s are independent of choice of P

because equation (3.19) has coefficients only from the matrix S..

(2) The equation (3.19) also shows the cohomology classification. Sup-

pose {c1, c2} and {c′1, c′2} are solutions for the equations with {m1,m2} and

{m′1,m′2}, respectively. Then (c′1 − c1, c
′
2 − c2) ∈ Z2 if and only if (m′1 −

m1,m
′
2 −m2) ∈ Coker(ST − I) ∼= Coker(S − I). This happens if and only if

Γ̃(S;0,m1,m2) = Γ̃(S;0,m′1,m
′
2).

(3) Notice that c3 does not show up in the presentation of the lattice

Γ̃(S;0,m1,m2). This implies that c3 can be changed without affecting the isomor-

phism type of the lattice.
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Notation 3.4.5 (Standard lattice). The lattice generated by

t1 =



p11

p21

c1

 , 0
 , t2 =



p12

p22

c2

 , 0
 , t3 =




0

0

c3

 , ln(λ)

 , t4 =




0

0

1

 , 0


with c3 = 0, is called a standard lattice of Sol3 × R.

Any lattice of Sol3 × R is isomorphic to a standard lattice.

3.4.6 (Classification of Sol3×R Crystallographic Groups). Given a crys-

tallographic group Π ⊂ Isom(Sol3 × R) = (Sol3 × R) o (D4 × Z2), we can

conjugate Π in Aff(Sol3 × R) so that Γ̃(S;0,m1,m2) satisfies criteria of Notation

3.4.5, except possibly for the condition that c3 = 0. Indeed, like the case of

Sol1
4, we will see that c3 = 0 cannot always be achieved when we have fixed

our maximal compact subgroup of Aut(Sol3 × R) to be D4 × Z2. Note that

Γ̃(S;0,m1,m2) projects to a standard lattice of Sol3.

Notation 3.4.7. We will let τ denote the automorphism of Sol3×R given by

a reflection in the central direction. In the description of Sol3 × R as R3 o R,

(x, t) ∈ R3 o R is mapped to (Tx, t) ∈ R3 o R under τ , where

T =


1 0 0

0 1 0

0 0 −1

 .
Proposition 3.4.8. (1) Any crystallographic group Π of Sol3 × R can be

conjugated into (Sol3 × R) o (D4 × Z2) in such way that

Γ̃S = Π ∩ (Sol3 × R) = 〈t1, t2, t3, t4〉
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where

t1 =



p11

p21

c1

 , 0
 , t2 =



p12

p22

c2

 , 0
 , t3 =




0

0

c3

 , ln(λ)

 , t4 =




0

0

1

 , 0
 .

(2) The holonomy group Ψ is generated by at most three elements of D4×Z2,

and therefore Π is generated by 〈t1, t2, t3, t4〉 and at most three isometries of

the form (tb11 tb22 tb33 tb44 , B) for B ∈ D4 × Z2 and real numbers bi.

Proof. Let ρ : Sol3×R→ Sol3 denote projection. Given a lattice Γ̃S of Sol3×R,

Γ̃S must meet the center of Sol3 × R (the R factor of Sol3 × R) in a lattice

Γ̃S ∩ Z(Sol3 × R) ∼= Z. Let t4 denote a generator of Γ̃S ∩ R. Then t4 must be

of the form

t4 =




0

0

`

 , 0
 .

Let ˆ̀ denote the automorphism of Sol3 × R defined by multiplication by ` on

the center:

ˆ̀ :



x

y

t

 , u
 −→



x

y

`t

 , u
 .

After conjugating Γ̃S by (e, ˆ̀)−1 in Aff(Sol3 × R), t4 has the desired form.

For the remaining generators, note that ρ(Γ̃S) must project to a lattice of

Sol3. The conjugations by elements of Aff(Sol3) in Proposition 3.2.5 also lift

to conjugations by elements of Aff(Sol3 × R) (see Proposition 3.1.7), so that

t1, t2, and t3 have the desired form. Therefore, we can assume that ρ(Γ̃S) is a

standard Sol3 lattice ΓS . Finally, observe that the conjugations in Aff(Sol3×R)

do not change the maximal compact subgroup D4 × Z2.
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Similar to the Sol1
4 case, the quotient of Π by Z(Γ̃S) = 〈t4〉,

Q = Π/〈t4〉 = Π/Z,

is a finite extension of the Sol3 lattice ΓS by Ψ. In fact, we have the following

commuting diagram.

1 1y y
Z Zy y

1 −−−→ Γ̃S −−−→ Π −−−→ Ψ −−−→ 1y y ∥∥∥
1 −−−→ ΓS −−−→ Q −−−→ Ψ −−−→ 1y y

1 1

Recall that we have let τ denote the generator of the Z2 factor in D4×Z2.

The inclusion Ψ ↪→ D4×Z2 lifts an inclusion of Φ ↪→ D4, where Φ is one of the

holonomy groups in List (3.8) in Subsection 3.2.6. That is, there is a Φ ⊆ D4

for which the diagram commutes:

Ψ −−−→ D4 × Z2y y/Z2=〈τ〉

Φ −−−→ D4

Crystallographic groups of Sol3 × R do not in general project to crystal-

lographic groups of Sol3, as τ projects to the trivial automorphism of Sol3.

Using the notation of our Sol3 crystallographic group classification, Q fits the

short exact sequence

1→ Z2 = 〈t1, t2〉 → Q→ ZΨ → 1,
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to which Theorem 3.2.16 applies. The group ZΨ fits the short exact sequence

1→ Z = 〈t3〉 → ZΨ → Ψ→ 1.

Similar to the Sol3 case, ZΨ is a subgroup of 1
2
Zo (D4×Z2), where 1

2
Z = 〈t

1
2
3 〉.

That is, any element of ZΨ can be expressed as (ta3
3 , A), where a3 = 0 or 1

2
,

and A ∈ (D4 × Z2). We need to classify all such ZΨ and abstract kernels

ϕ : ZΨ → GL(2,Z). The inclusion ZΨ ↪→ 1
2
Z o (D4 × Z2) lifts an inclusion

of ZΦ ↪→ 1
2
Z o D4, where ZΦ is a group of one of the types from list (3.8) in

Subsection 3.2.6. That is, the following diagram commutes (note that Z2 = 〈τ〉

is central in 1
2
Z o (D4 × Z2)):

ZΨ −−−→ 1
2
Z o (D4 × Z2)y y/Z2=〈τ〉

ZΦ −−−→ 1
2
Z oD4

There are many more such groups in the Sol3×R case than in the Sol3 case.

For example, notice that ZΨ may contain an element of the form γ̄ = (t0
3, τ)

with ϕ(γ̄) = I. Such a ZΨ did not arise in the Sol3 case.

Here is our methodology for classifying the Sol3×R crystallographic groups.

Essentially, we classify all Q, then examine how to lift them to Sol3 × R.

(1) Classify the possible abstract kernels ϕ : ZΨ → GL(2,Z) with ϕ(t3) = S.

This fixes the holonomy group and the exponents on t3.

(2) Apply Theorem 3.2.16 to obtain all Q. This fixes the exponents of t1, t2,

as elements of H2(ZΨ; Z2) ∼= H1(Ψ; Coker(I − S)).

(3) Classify lifts of ΓS to lattices of Γ̃S of Sol3 × R (Theorem 3.3.2).

(4) Determine which Sol3 × R lattices Γ̃S admit an abstract kernel Ψ →

Out(Γ̃S), induced by conjugation by lifts of elements of Q.
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(5) Once an abstract kernel Ψ → Out(Γ̃S) is fixed, the equivalence classes of

extensions

1→ Γ̃S → Π → Ψ→ 1

are classified by H2(Ψ;Z(Γ̃S)) = H2(Ψ; Z), fixing the exponents on t4.

Lemma 3.4.9 (cf. Lemma 3.3.16). If (ta1
1 ta2

2 ta3
3 ta4

4 , Aτ) ∈ Π (A ∈ D4, τ is

reflection on center of Sol3 × R), then by conjugation, a4 can be made 0.

Proof. Conjugation by t
−a4

2
4 fixes the lattice Γ̃(S;0,m1,m2), and moves (ta1

1 ta2
2 ta3

3 ta4
4 , A)

to (ta1
1 ta2

2 ta3
3 , A).

Lemma 3.4.10 (cf. Lemma 3.2.10). Let

A =

[
1 0

0 −1

]
.

If ZΨ contains an element of the form ᾱ = (t0
3, A) or (t0

3, Aτ), then ZΨ cannot

arise as the quotient of a Sol3 × R crystallographic group.

Proof. The matrix

ϕ(t3)ϕ(ᾱ) = Sϕ(ᾱ) = P−1∆PP−1AP = P−1∆AP

must be integral. The sum of its eigenvalues, 1
λ
− λ, must be an integer. On

the other hand, since 1
λ

+λ is an integer, we infer that 2λ is an integer, so that

λ is rational, which is a contradiction. A similar argument works for −A as

well.

3.4.11 (Existence of Ψ → Out(Γ̃S)). Given a Sol3 crystallographic group

Q with abstract kernel Ψ → ΓS , we showed the existence of a Sol1
4 lattice

Γ̃(S;q,m1,m2), lifting ΓS , together with induced abstract kernel Ψ→ Out(Γ̃(S;q,m1,m2))

(Proposition 3.3.13).
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Given β = (tb11 tb22 tb33 tb44 , B) ∈ (Sol3 × R) o (D4 × Z2), here we provide

precise conditions for a Sol3×R lattice Γ̃S = 〈t1, t2, t3, t4〉 to be invariant under

conjugation by β, so that we obtain an abstract kernel Ψ→ Out(Γ̃(S;q,m1,m2)).

The computations below are independent of b4 and so we set b4 = 0. The

conditions on ci in the following tables are of course modulo the integers.

α = (ta1
1 ta2

2 t0
3, A) µ(α) on t1, t2 Conditions on ci

A =

[
−1 0

0 −1

]
, ϕ(ᾱ) = A αt1α

−1 = t−1
1 t2c1

4

αt2α
−1 = t−1

2 t2c2
4

c1 = 0 or 1
2

c2 = 0 or 1
2

A =

[
0 1

−1 0

]
, ϕ(ᾱ) = A αt1α

−1 = t−1
2 tc1+c2

4

αt2α
−1 = t1t

−c1+c2
4

(c1, c2) = (0, 0)

(c1, c2) = (1
2
, 1

2
)

A =

[
0 1

1 0

]
, ϕ(ᾱ) = A αt1α

−1 = t2t
c1−c2
4

αt2α
−1 = t1t

−c1+c2
4

c1 − c2 = 0

A =

[
0 1

1 0

]
, ϕ(ᾱ) =

[
1 0

0 −1

]
αt1α

−1 = t1

αt2α
−1 = t−1

2 t2c2
4

c2 = 0 or 1
2

Table 3.3: Conjugation on t1 and t2 when holonomy action is trivial on center

and a3 = 0

α = (t
1
2
3 , A) µ(α) on t1, t2 Conditions on ci

ϕ(ᾱ) = −K αt1α
−1 = t−k111 t−k212 tc1+k11c1+k21c2

4

αt2α
−1 = t−k121 t−k222 tc2+k12c1+k22c2

4

(c1, c2) ∈ Coker(I+KT )

Table 3.4: Conjugation on t1 and t2 when holonomy action is trivial on center

and a3 = 1
2
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α = (ta1
1 ta2

2 t0
3, Aτ) µ(α) on t1, t2 Conditions on ci

A =

[
−1 0

0 −1

]
, ϕ(ᾱ) = A αt1α

−1 = t−1
1

αt2α
−1 = t−1

2

None

A =

[
0 1

−1 0

]
, ϕ(ᾱ) = A αt1α

−1 = t−1
2 t−c1+c2

4

αt2α
−1 = t1t

−c1−c2
4

(c1, c2) = (0, 0)

(c1, c2) = (1
2
, 1

2
)

A =

[
0 1

1 0

]
, ϕ(ᾱ) = A αt1α

−1 = t2t
−c1−c2
4

αt2α
−1 = t1t

−c1−c2
4

c1 + c2 = 0

A =

[
0 1

1 0

]
, ϕ(ᾱ) =

[
1 0

0 −1

]
αt1α

−1 = t1t
−2c1
4

αt2α
−1 = t−1

2

c1 = 0 or 1
2

A = I αt1α
−1 = t1t

−2c1
4

αt2α
−1 = t2t

−2c2
4

c1 = 0 or 1
2

c2 = 0 or 1
2

Table 3.5: Conjugation on t1 and t2 when holonomy action is reflection on

center and a3 = 0

α = (t
1
2
3 , Aτ) µ(α) on t1, t2 Conditions on ci

ϕ(ᾱ) = −K αt1α
−1 = t−k111 t−k212 t−c1+k11c1+k21c2

4

αt2α
−1 = t−k121 t−k222 t−c2+k12c1+k22c2

4

(c1, c2) ∈ Coker(KT−I)

ϕ(ᾱ) = K αt1α
−1 = tk111 tk212 t−c1−k11c1−k21c24

αt2α
−1 = tk121 tk222 t−c2−k12c1−k22c24

(c1, c2) ∈ Coker(I+KT )

Table 3.6: Conjugation on t1 and t2 when holonomy action is reflection on

center and a3 = 1
2

We now study the holonomy action on the t3 generator of a Sol3×R lattice;

that is, we study αt3α
−1. From the Sol3 relations, equation (3.9) in Subsection
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3.2.6:

αt3α
−1 = tw1

1 tw2
2 tĀ3 tw3

4 , where

[
w1

w2

]
=
(
I − SĀ

)[a1

a2

]
.

Of course, w1 and w2 are integers; we need w3 to be an integer.

α = (ta1
1 ta2

2 t0
3, A) µ(α) on t3 Conditions on ci

Ā = +1 αt3α
−1 = tw1

1 tw2
2 t3t

−c1w1−c2w2
4 c1w1 + c2w2 = 0

Ā = −1 αt3α
−1 = tw1

1 tw2
2 t−1

3 t2c3−c1w1−c2w2
4 c3 = c1w1+c2w2

2
or

c1w1+c2w2

2
+ 1

2

Table 3.7: Conjugation on t3 when holonomy action is trivial on center and

a3 = 0

α = (t
1
2
3 , A) µ(α) on t3 Conditions on ci

ϕ(ᾱ) = −K, (Ā = +1) αt3α
−1 = t3 None

Table 3.8: Conjugation on t3 when holonomy action is trivial on center and

a3 = 1
2

α = (ta1
1 ta2

2 t0
3, Aτ) µ(α) on t3 Conditions on ci

Ā = +1 αt3α
−1 = tw1

1 tw2
2 t3t

−2c3−c1w1−c2w2
4 c3 = − c1w1+c2w2

2
or

− c1w1+c2w2

2
+ 1

2

Ā = −1 αt3α
−1 = tw1

1 tw2
2 t−1

3 t−c1w1−c2w2
4 c1w1 + c2w2 = 0

Table 3.9: Conjugation on t3 when holonomy action is reflection on center and

a3 = 0
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α = (t
1
2
3 , Aτ) µ(α) on t3 Conditions on ci

ϕ(ᾱ) = ±K, (Ā = +1) αt3α
−1 = t3t

−2c3
4 c3 = 0 or 1

2

Table 3.10: Conjugation on t3 when holonomy action is reflection on center

and a3 = 1
2

Remark 3.4.12. When c1 = c2 = c3 = 0, so that Γ̃S = ΓS × Z, the above

criteria on the ci are immediately satisfied.

Lemma 3.4.13 (cf. Theorem 3.3.15). Let Π ⊂ (Sol3 × R) o (D4 × Z2) be a

Sol3×R crystallographic group, with lattice embedded as in Proposition 3.4.8.

If all elements of Π are of the form (x, A) ∈ Π with Ā = 1, or (x, Aτ) ∈ Π

with Ā = −1, then we can assume that c3 = 0 (This is analogous to the Sol1
4

case when ĀÂ = +1 for all holonomy elements A).

Proof. Let k̂ denote the automorphism of Sol3 × R defined as:

k̂ :



x

y

t

 , u
 −→




x

y

t+ ku

 , u
 .

Setting k = c3
ln(λ)

, we see that conjugation by (e, k̂)−1 ∈ Aff(Sol3 × R) sets

c3 = 0, while fixing the maximal compact subgroup D4 × Z2.

3.4.14 (Computation of Cyclic Powers). Before our main classification

result, we provide computations of the cyclic powers of all possible α. This

will be useful for determining the exponents on t4, as well as checking whether

or not a crystallographic group has torsion.
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α = (ta1
1 ta2

2 t0
3t
a4
4 , A) αn (n = ord(A))

A =

[
−1 0

0 −1

]
, ϕ(ᾱ) = A α2 = t

2(a4+a1c1+a2c2)
4

A =

[
0 1

−1 0

]
, ϕ(ᾱ) = A α4 = t

4(a4+a1c1+a2c2)
4

A =

[
0 1

1 0

]
, ϕ(ᾱ) = A α2 = ta1+a2

1 ta1+a2
2 t2a4+a1c1+a2c2−a2c1−a1c2

4

A =

[
0 1

1 0

]
, ϕ(ᾱ) =

[
1 0

0 −1

]
α2 = t2a1

1 t
2(a4+a2c2)
4

Table 3.11: Cyclic powers when holonomy acts trivially on center and a3 = 0

α = (t
1
2
3 ta4

4 , A) αn (n = ord(A))

ϕ(ᾱ) = −K, (Ā = +1) α2 = t3t
2a4
4

Table 3.12: Cyclic powers when holonomy acts trivially on center and a3 = 1
2

α = (ta1
1 ta2

2 t0
3t
a4
4 , Aτ) αn (n = ord(A))

A =

[
−1 0

0 −1

]
, ϕ(ᾱ) = A α2 = e

A =

[
0 1

−1 0

]
, ϕ(ᾱ) = A α4 = e

A =

[
0 1

1 0

]
, ϕ(ᾱ) = A α2 = ta1+a2

1 ta1+a2
2 t

−(a1c1+a2c2+a2c1+a1c2)
4

A =

[
0 1

1 0

]
, ϕ(ᾱ) =

[
1 0

0 −1

]
α2 = t2a1

1 t−2a1c1
4

A = I, α2 = t2a1
1 t2a2

2 t
−2(a1c1+a2c2)
4

Table 3.13: Cyclic powers when holonomy acts as reflection on center and

a3 = 0
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α = (t
1
2
3 ta4

4 , Aτ) αn (n = ord(A))

ϕ(ᾱ) = ±K, (Ā = +1) α2 = t3t
−c3
4

Table 3.14: Cyclic powers when holonomy acts as reflection on center and

a3 = 1
2

3.4.15 (Detecting Torsion in Sol3×R Crystallographic Groups). Given

a lattice Γ̃S of Sol3×R (which projects to a lattice ΓS of Sol3), the short exact

sequence

1→ Z(Γ̃S)→ Γ̃S → ΓS → 1

induces an S1-bundle over the solvmanifold ΓS\Sol3,

S1 → Γ̃S\(Sol3 × R)→ ΓS\Sol3.

Lemma 3.4.16 (cf. Lemma 3.3.20). Let Γ̃S be a lattice of Sol3×R, projecting

to a standard lattice ΓS of Sol3, and suppose that for α ∈ (Sol3×R)o(D4×Z2),

the group Π = 〈Γ̃S , α〉 is crystallographic. Let ᾱ denote the projection of α to

Sol3 oD4. When the automorphism part of α acts as a reflection on the center

of Sol3 × R, Π is torsion-free if and only if 〈ΓS , ᾱ〉 is torsion-free.

Proof. Obviously, if 〈ΓS , ᾱ〉 is torsion-free, then Π must be torsion-free. For

the converse, suppose that 〈ΓS , ᾱ〉 has torsion. In this case, the action of ᾱ on

the solvmanifold ΓS\Sol3 must fix a point. Observe that the action of α on the

solvmanifold Γ̃S\(Sol3 × R) is S1 fiber preserving. Therefore, a circle fiber is

left invariant under the action of α. Since α acts as reflection on the fiber, α

must fix a point. Therefore, Π has torsion.

Lemma 3.4.17 (cf. Lemma 3.2.20). When β = (tb11 tb22 tb33 tb44 , B) ∈ Π satisfies

b3 = 1
2

and B̄ = 1, γβ is not torsion for any γ ∈ Γ̃S .
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Proof. Note that B is necessarily of order 2. Let pr : Sol3 × R → R denote

the quotient homomorphism of Sol3×R by its nil-radical R3. Write γ ∈ Γ̃S as

tn1
1 tn2

2 tn3
3 tn4

4 . Application of pr to (γβ)2 yields

pr(γβ)2 = 2n3 + 1,

from which we infer γβ is not torsion.

We are now ready the classify the Sol3 × R crystallographic groups. We

will enumerate the Sol3×R crystallographic groups associated to each abstract

kernel ϕ : ZΨ → GL(2,Z). The Sol3×R crystallographic groups will be ordered

according to the abstract kernel in Theorem 3.2.9 that ϕ lifts. We start our

classification with the trivial case ((0) Family). In all cases, we give:

(1) The holonomy Ψ, the conditions on S, and the abstract kernel

ϕ : ZΨ → GL(2,Z)

(this fixes the exponents on t3).

(2) A computation of H1(Ψ; Coker(I−S)) (this fixes the exponents on t1, t2).

As a matter of notation, we set

a =

[
a1

a2

]
,b =

[
b1

b2

]
, and r =

[
t1

t2

]
,

the exponents on t1, t2 corresponding to holonomy elements A or Aτ , B or

Bτ , and τ , respectively.

(3) Conditions on c1, c2, c3 (this fixes the lattice Γ̃S , and induces an abstract

kernel Ψ→ Out(Γ̃S)).

(4) Exponents on t4, which are classified by H2(Ψ;Z(Γ̃S)).

(5) When the group is torsion-free.
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Theorem 3.4.18 ((0) Family). The crystallographic groups of Sol3×R, lifting

an abstract kernel ZΦ → GL(2,Z) of case (0) of Theorem 3.2.9 are:

(0a) Ψ = {e}, ZΨ = 〈t3〉

• S ∈ SL(2,Z) with tr(S) > 2

• c3 = 0

• Π = 〈Γ̃S〉

• Torsion-free

(0b) Ψ = Z2, ZΨ = 〈t3, γ̄ = (t0
3, τ)〉

• S ∈ SL(2,Z) with tr(S) > 2

• ϕ(γ̄) = I

• H1(Ψ; Coker(I − S)) is all r with (I − S)r ≡ 0 and 2r ≡ 0

• c1 = 0 or 1
2
, and c2 = 0 or 1

2

• Two choices for c3 (up to isomorphism), see Table 3.9

• Π = 〈Γ̃S , γ = (tt11 tt22 t0
3, τ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Torsion-free when r 6= 0.

(0c) Ψ = Z2, ZΨ = 〈t3, γ̄ = (t
1
2
3 , τ)〉

S = nK − I, where K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(γ̄) = K

• H1(Ψ; Coker(I − S)) is trivial, so that we can take r = 0.

• (c1, c2) ∈ Coker(I +KT )
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• c3 = 0

• Π = 〈Γ̃S , γ = (t
1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Torsion-free

Proof. The arguments in Theorem 3.2.9 establish the three different possibil-

ities for ZΨ. In particular, (2b) from Theorem 3.2.9 gives the conditions on

S in case (0c). The difference is that ϕ(γ̄) is given by K, not −K, as in

Theorem 3.2.9 (2b).

In case (0b), the cocycle condition for r ∈ Coker(I−S) is that (I+ϕ(γ̄))r =

2r ≡ 0, whereas the coboudary vanishes. This shows our description of

H1(Ψ; Coker(I−S)). In case (0c), H1(Ψ; Coker(I−S)) vanishes by Corollary

3.2.19.

In all cases, the conditions on c1, c2 follow from the Tables 3.5 and 3.6. We

can take c3 = 0 in case (0a) by Lemma 3.4.13, and c3 = 0 is forced in case

(0c) by Table 3.14. Table 3.9 shows that we have two choices for c3 in case

(0b).

Evidently, groups of type (0b) are torsion-free when r 6= 0. The groups of

type (0c) are torsion-free Lemma 3.4.17. In all three cases, we take a4 = 0 by

Lemma 3.4.9, and H2(Ψ;Z(Γ̃S)) vanishes.

Theorem 3.4.19 ((1) Family). The crystallographic groups of Sol3×R, lifting

an abstract kernel ZΦ → GL(2,Z) of case (1) of Theorem 3.2.9,

A =

[
1 0

0 −1

]
, are
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(1a) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t
1
2
3 , A)〉

• S = nK + I, where K ∈ GL(2,Z) with det(K) = −1, tr(K) = n > 0.

• ϕ(ᾱ) = −K

• H1(Ψ; Coker(I − S)) is trivial, so that we can take a = 0.

• (c1, c2) ∈ Coker(I +KT )

• c3 = 0

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Torsion-free

(1b) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t
1
2
3 , Aτ)〉

• S = nK + I, where K ∈ GL(2,Z) with det(K) = −1, tr(K) = n > 0.

• ϕ(ᾱ) = −K

• H1(Ψ; Coker(I − S)) is trivial, so that we can take a = 0.

• (c1, c2) ∈ Coker(KT − I)

• c3 = 0

• Π = 〈Γ̃S , α = (t
1
2
3 , Aτ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Torsion-free

(1c) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t

1
2
3 , A), γ̄ = (t0

3, τ)〉

• S = nK + I, where K ∈ GL(2,Z) with det(K) = −1, tr(K) = n > 0.

• ϕ(ᾱ) = −K,ϕ(γ̄) = I
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• H1(Ψ; Coker(I − S)) is all r with (I +K)r ≡ 0 and 2r ≡ 0

• (c1, c2) ∈ Coker(I +KT ) and c1 = 0 or 1
2
, c2 = 0 or 1

2

• One choice for c3, Table 3.9 gives two different values for c3, but only

one satisfies (αγ)2 ∈ Γ̃S .

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A), γ = (tt11 tt22 t0
3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Torsion-free when r 6= 0.

Proof. First, observe that

ZΨ = 〈t3, ᾱ = (t
1
2
3 , A), γ̄ = (t

1
2
3 , τ)〉

= 〈t3, (t
0
3, Aτ), (t

1
2
3 , τ)〉

cannot be lifted to a Sol3 × R crystallographic group by Lemma 3.4.10, and

we therefore disregard this case.

In cases (1a) and (1b), H1(Ψ; Coker(I−S)) vanishes by Corollary 3.2.19.

In case (1c), Corollary 3.2.19 implies we may take a = 0. Then the cocycle

conditions imply that r must satisfy

(I +K)r ≡ 0

and

(I + ϕ(γ̄))r = 2r ≡ 0.

In all cases, the conditions on c1, c2 follow from the Tables 3.5, 3.4, and

3.6. We can take c3 = 0 in case (1a) by Lemma 3.4.13, and c3 = 0 is forced

in case (1b) by Table 3.14. Table 3.9 shows that we have two choices for c3
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in case (1c). However,

(αγ)2 = tn1
1 tn2

2 t3t
−c3+v
4 ,

for integers ni, and a rational number v. Only one choice for c3 (modulo the

integers) will ensure −c3 + v is integral.

The two choices for a4 in cases (1a) and (1c) arise from Table 3.12:

α2 = t3t
2a4
4 .

Theorem 3.4.20 ((2a) Family). The crystallographic groups of Sol3 × R,

lifting an abstract kernel ZΦ → GL(2,Z) of case (2a) of Theorem 3.2.9,

A =

[
−1 0

0 −1

]
, are

(2aa) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t0
3, A)〉

• S ∈ SL(2,Z) with tr(S) > 2

• ϕ(ᾱ) = A

• H1(Ψ; Coker(I − S)) = Coker(I−S)
2Coker(I−S)

. That is, all a with (I − S)a ≡ 0,

taken modulo 2a.

• c1 = 0 or 1
2
, c2 = 0 or 1

2

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −(a1c1 + a2c2) + i
2
, i = 0, 1

• Torsion-free when i = 1

(2ab) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t0
3, Aτ)〉
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• S ∈ SL(2,Z) with tr(S) > 2

• ϕ(ᾱ) = A

• H1(Ψ; Coker(I − S)) = Coker(I−S)
2Coker(I−S)

. That is, all a with (I − S)a ≡ 0,

taken modulo 2a.

• Two choices for c3 (up to isomorphism), see Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Always has torsion

(2ac) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), γ̄ = (t0
3, τ)〉

• S ∈ SL(2,Z) with tr(S) > 2

• ϕ(ᾱ) = A,ϕ(γ̄) = I

• H1(Ψ; Coker(I−S)) is all a, r with (I−S)a ≡ (I−S)r ≡ 0 satisfying

2r ≡ 0

• c1 = 0 or 1
2
, c2 = 0 or 1

2

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −(a1c1 + a2c2) + i
2
(i = 0, 1)

• Always has torsion

(2ad) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), γ̄ = (t
1
2
3 , τ)〉

• S = nK − I, where K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(ᾱ) = A,ϕ(γ̄) = K
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• H1(Ψ; Coker(I − S)) = Coker(I−K)
2Coker(I−K)

. That is, all a with (I −K)a ≡ 0,

taken modulo 2a.

• (c1, c2) ∈ Coker(I +KT ) and c1 = 0 or 1
2
, c2 = 0 or 1

2

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −(a1c1 + a2c2) + i
2
(i = 0, 1)

•Torsion-free when i = 1

(2ae) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, Aτ), γ̄ = (t
1
2
3 , τ)〉

• S = nK − I, where K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(ᾱ) = A,ϕ(γ̄) = K

• H1(Ψ; Coker(I − S)) = Coker(I−K)
2Coker(I−K)

. That is, all a with (I −K)a ≡ 0,

taken modulo 2a.

• (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , Aτ), γ = (t

1
2
3 , τ)〉

•H2(Ψ;Z(Γ̃S)) = Z2, two choices for a4. We have (αγ)2 = tn1
1 tn2

2 t3t
2a4+v
4

for integers n1, and some rational number v, and therefore two solutions

for a4.

• Always has torsion

Proof. The computation for H1(Ψ; Coker(I − S)) for cases (2aa) and (2ab)

follows immediately from that of case (2a) in Theorem 3.2.21. That for cases
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(2ac), (2ad), and (2ae) follows from computing the appropriate cocycle con-

ditions in Remark 3.2.17, together with application of Corollary 3.2.19. In

particular, in cases (2ad) and (2ae), we take r = 0 by Corollary 3.2.19; the

commutator cocycle condition in cases (2ad) and (2ae) then reduces to

(I − φ(γ̄))a = (I − φ(ᾱ))r

(I −K)a ≡ 0.

In all cases, the conditions on c1, c2 follow from the Tables 3.3, 3.5, and

3.6. We can take c3 = 0 in case (2aa) by Lemma 3.4.13. We have two choices

for c3 in cases (2ab) and (2ac). For cases (2ad) and (2ae), notice that from

Table 3.14, γ2 = t3t
−c3
4 , so that c3 = 0 is forced.

The two choices for a4 in cases (2aa), (2ac), and (2ad) arise from Table

3.12:

α2 = t
2(a4+a1c1+a2c2)
4 .

The torsion criteria are clear, given that Sol3 groups of type (2a) in Theo-

rem 3.2.21 always have torsion. Notice that γ in case (2ad) cannot contribute

torsion by Lemma 3.4.17. Lemma 3.4.16 implies that (2ab) always has tor-

sion, and that (2ac) also has torsion as it contains case (2ab). Case (2ae) is

always torsion by Lemma 3.4.16.

Theorem 3.4.21 ((2b) Family). The crystallographic groups of Sol3 × R,

lifting an abstract kernel ZΦ → GL(2,Z) of case (2b) of Theorem 3.2.9,

A =

[
−1 0

0 −1

]
, are
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(2ba) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t
1
2
3 , A)〉

• S = nK − I, where K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(ᾱ) = −K

• H1(Ψ; Coker(I − S)) is trivial so that a = 0.

• (c1, c2) ∈ Coker(I +KT )

• c3 = 0

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0, 1
2

• Torsion-free

(2bb) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t
1
2
3 , Aτ)〉

• S = nK − I, where K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(ᾱ) = −K

• H1(Ψ; Coker(I − S)) is trivial so that a = 0.

• (c1, c2) ∈ Coker(KT − I)

• c3 = 0

• Π = 〈Γ̃S , α = (t
1
2
3 , Aτ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Torsion-free

(2bc) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t

1
2
3 , A), γ̄ = (t0

3, τ)〉

• S = nK − I, where K ∈ GL(2,Z) with det(K) = +1, tr(K) = n > 2.

• ϕ(ᾱ) = −K,ϕ(γ̄) = I
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• H1(Ψ; Coker(I − S)) all r with (I +K)r ≡ 0, 2r ≡ 0.

• (c1, c2) ∈ Coker(I +KT ) and c1 = 0 or 1
2
, c2 = 0 or 1

2

• One choice for c3, Table 3.9 gives two different values for c3, but only

one satisfies (αγ)2 ∈ Γ̃S .

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A), γ = (tt11 tt22 t0
3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0, 1
2

• Torsion-free when r 6= 0.

Proof. First, note that

ZΨ = 〈t3, ᾱ = (t
1
2
3 , A), γ̄ = (t

1
2
3 , τ)〉

= 〈t3, ᾱ = (t0
3, Aτ), γ̄ = (t

1
2
3 , τ)〉

is a lift of type (2a) from the Sol3 classification, and it corresponds to type

(2ae) in Theorem 3.4.20.

The computation forH1(Ψ; Coker(I−S)) for cases (2ba) and (2bb) follows

immediately from that of case (2b) in Theorem 3.2.21. That for case (2bc)

follows from computing the appropriate cocycle conditions in Remark 3.2.17,

together with application of Corollary 3.2.19.

In all cases, the conditions on c1, c2 follow from the Tables 3.5, 3.4, and

3.6. We can take c3 = 0 in case (2ba) by Lemma 3.4.13. From Table 3.14,

c3 = 0 is forced in case (2bb). Table 3.9 shows that we have two choices for

c3 in case (2bc). However,

(αγ)2 = tn1
1 tn2

2 t3t
−c3+v
4 ,
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for integers ni, and a rational number v. Only one choice for c3 (modulo the

integers) will ensure −c3 + v is integral.

For the torsion criteria, notice that Sol3 groups of type (2b) were always

torsion-free.

Theorem 3.4.22 ((3) Family). The crystallographic groups of Sol3×R, lifting

an abstract kernel ZΦ → GL(2,Z) of case (3) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, are

(3a) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t0
3, A)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A

• H1(Ψ; Coker(I − S)) can be described as all a with (I − S)a ≡ 0,

a2 ≡ −a1 taken modulo (v1 − v2)

2664 1

−1

3775 where (I − S)v ≡ 0.

• c1 − c2 = 0

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Torsion-free when a4 = 1
2

(3b) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t0
3, Aτ)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A
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• H1(Ψ; Coker(I − S)) can be described as all a with (I − S)a ≡ 0,

a2 ≡ −a1 taken modulo (v1 − v2)

2664 1

−1

3775 where (I − S)v ≡ 0.

• c1 + c2 = 0

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Always has torsion

(3c) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), γ̄ = (t0
3, τ)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A,ϕ(γ̄) = I

• H1(Ψ; Coker(I − S)) can be described as all a, r with (I − S)a ≡

(I − S)r ≡ 0, r = (0, 0) or (1
2
, 1

2
),

and a2 ≡ −a1 taken modulo (v1 − v2)

2664 1

−1

3775 where (I − S)v ≡ 0.

• (c1, c2) = (0, 0) or (c1, c2) = (1
2
, 1

2
)

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Always has torsion

(3d) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), γ̄ = (t
1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(γ̄) = K
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• H1(Ψ; Coker(I − S)) can be described as all a with (I − K)a ≡ 0,

a2 ≡ −a1 taken modulo (v1 − v2)

2664 1

−1

3775 where (I −K)v ≡ 0.

• (c1, c2) ∈ Coker(I +KT ), c1 − c2 = 0

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Always has torsion

Proof. The computation for H1(Ψ; Coker(I − S)) for cases (3a) and (3b)

follows immediately from that of case (3) in Theorem 3.2.21. That for cases

(3c) and (3d) follows from computing the appropriate cocycle conditions in

Remark 3.2.17, together with application of Corollary 3.2.19. Let us examine

(3c) in greater detail. Notice that the cyclic power cocycle condition forces

2r ≡ 0. Furthermore, consider the commutator cocycle condition in case (3c):

(I − ϕ(α))r = (I − ϕ(γ))a[
1 −1

−1 1

]
r = 0

This forces r to be either (0, 0) or (1
2
, 1

2
).

In all cases, the conditions on c1, c2 follow from the Tables 3.3, 3.5, and 3.6.

We can take c3 = 0 in case (3b) by Lemma 3.4.13. From Table 3.14, c3 = 0 is

forced in case (3d). For cases (3a) and (3c), we have two choices for c3.

For the choices we have for a4 in cases (3a), (3c), and (3d), note that
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c1 − c2 = 0 and by Table 3.11,

α2 = ta1+a2
1 ta1+a2

2 t2a4+a1c1+a2c2−a2c1−a1c2
4 = t

2a4+a1(c1−c2)−a2(c1−c2)
4 = t2a4

4 .

For the torsion criteria, notice that Sol3 groups of type (3) always have

torsion. Thus Lemma 3.4.16 applies to show that α is always a torsion element

in case (3b), αγ is a torsion element in case (3c), and αγ is a torsion element

in case (3d). Only in case (3a) can we resolve torsion in the central direction

of Sol3 × R.

Theorem 3.4.23 ((3i) Family). The crystallographic groups of Sol3 × R,

lifting an abstract kernel ZΦ → GL(2,Z) of case (3i) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, are

(3ia) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t0
3, A)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
• H1(Ψ; Coker(I − S)) can be described as all a with (I − S)a ≡ 0,

2a1 ≡ 0 (so a1 = 0 or 1
2
) modulo

[
0

2v2

]
where (I − S)v ≡ 0.

• c2 = 0 or 1
2

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −a2c2 + i
2
(i = 0, 1)
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• When i = 0, torsion-free when a1 = 1
2

and a2 6≡ (σ11+1)(2n+1)
2σ12

for any

n ∈ Z

• When i = 1, always torsion-free

(3ib) Ψ = Z2, ZΨ = 〈t3, ᾱ = (t0
3, Aτ)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
• H1(Ψ; Coker(I − S)) can be described as all a with (I − S)a ≡ 0,

2a1 ≡ 0 (so a1 = 0 or 1
2
) modulo

[
0

2v2

]
where (I − S)v ≡ 0.

• c1 = 0 or 1
2

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Torsion-free when a1 = 1
2

and a2 6≡ (σ11+1)(2n+1)
2σ12

for any n ∈ Z.

(3ic) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), γ̄ = (t0
3, τ)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(γ̄) = I

• H1(Ψ; Coker(I − S)) can be described as all a, r with (I − S)a ≡

(I − S)r ≡ 0, 2r ≡ 0, 2a1 ≡ 0 with a taken modulo

[
0

2v2

]
where

(I − S)v ≡ 0.

• c1 = 0 or 1
2
, and c2 = 0 or 1

2

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9
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• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −a2c2 + i
2
(i = 0, 1)

• Torsion-free when r 6= 0, t1 + a1 = 1
2
, t2 + a2 6≡ (σ11+1)(2n+1)

2σ12
for any

n ∈ Z, and...

• when i = 0, in addition a1 = 1
2

and a2 6≡ (σ11+1)(2n+1)
2σ12

for any n ∈ Z

• when i = 1, no additional condition

(3id) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), γ̄ = (t
1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(γ̄) = K

• H1(Ψ; Coker(I − S)) can be described as all a with (I − K)a ≡ 0,

2a1 ≡ 0 modulo

[
0

2v2

]
where (I −K)v ≡ 0.

• c2 = 0 or 1
2
, and (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −a2c2 + i
2
(i = 0, 1)

• Torsion-free ...

• when i = 0, a1 = 1
2

and a2 6≡ (k11+1)(2n+1)
2k12

for any n ∈ Z.

• when i = 1, the 〈Γ̃S , (αγ)〉 must be torsion-free, projected to Sol3.

Proof. The computation for H1(Ψ; Coker(I − S)) for cases (3ia) and (3ib)

follows immediately from that of case (3i) in Theorem 3.2.21. That for cases

(3ic) and (3id) follows from computing the appropriate cocycle conditions in
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Remark 3.2.17, together with application of Corollary 3.2.19. Let us examine

(3ic) in greater detail. Notice that the cyclic power cocycle condition forces

2r ≡ 0. We do not obtain an additional condition on r from commutator

cocycle condition in case (3ic):

(I − ϕ(α))r = (I − ϕ(γ))a[
0 0

0 2

]
r = 0.

In all cases, the conditions on c1, c2 follow from the Tables 3.3, 3.5, and

3.6. We can take c3 = 0 in case (3ib) by Lemma 3.4.13. From Table 3.14,

c3 = 0 is forced in case (3id). For cases (3ia) and (3ic), we have two choices

for c3.

For the choices we have for a4 in cases (3ia), (3ic), and (3id), note that

α2 = t2a1
1 t

2(a4+a2c2)
4 .

For case (3ia), when i = 1, Π is always torsion-free. But when i = 0,

the projection of Π to a Sol3 crystallographic group of type (3i) must be

torsion-free. The torsion criteria now follow from Theorem 3.2.21, case (3i).

For case (3ib), by Lemma 3.4.16, the projection of Π to a Sol3 crystallo-

graphic group of type (3i) must be torsion-free, and hence the desired criteria.

For case (3ic), we first require that r 6= 0 for γ to be of infinite order. In

addition,

γα = (ta1+t1
1 ta2+t2

2 ta4
4 , Aτ)

148



must be infinite order when projected to Sol3 by Lemma 3.4.16. Thus we

obtain the stated conditions on a1 + t1 and a2 + t2.

Now, when i = 1, α is never torsion. But when i = 0, the projection of

α to Sol3 must be of infinite order, and we obtain additional conditions on a1

and a2.

For case (3id), note that when i = 0, both

α = (ta1
1 ta2

2 , A)

αγ = (ta1
1 ta2

2 t
1
2
3 , Aτ)

must be torsion-free, when projected to Sol3. This occurs precisely when the

Sol3 crystallographic group of type (3i),

Q′ = 〈t1, t2, t
1
2
3 , α〉

is torsion-free. Note that the lattice of Q′ is 〈t1, t2, t
1
2
3 〉 = Z2oKZ. The desired

criteria on a1 and a2 now follow by applying the result of Theorem 3.2.21, case

(3i) with K in place of S.

When i = 1, α and γ are always of infinite order. But Lemma 3.4.16

implies that

αγ = (ta1
1 ta2

2 t
1
2
3 , Aτ)

must be of infinite order, when projected to Sol3. This occurs precisely when
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the Sol3 crystallographic group of type (3i),

Q′′ = 〈t1, t2, t3, αγ〉

is torsion-free. We can conjugate αγ by t
− 1

4
3 to obtain

t
− 1

4
3 (ta1

1 ta2
2 t

1
2
3 , Aτ)t

1
4
3 = (t

a′1
1 t

a′2
2 t0

3t
a4
4 , Aτ)

Now one could apply Theorem 3.2.21, case (3i) to obtain criteria on a′1, a′2.

Theorem 3.4.24 ((4) Family). The crystallographic groups of Sol3×R, lifting

an abstract kernel ZΦ → GL(2,Z) of case (4) of Theorem 3.2.9,

A =

[
0 1

−1 0

]
, are

(4a) Ψ = Z4, ZΨ = 〈t3, ᾱ = (t0
3, A)〉

• S ∈ SL(2,Z), symmetric and tr(S) > 2.

• ϕ(ᾱ) = A

• H1(Ψ; Coker(I − S)) ∼= Coker(I−S)
Im(I−A)

.

• (c1, c2) = (0, 0) or (c1, c2) = (1
2
, 1

2
)

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A)〉

• H2(Ψ;Z(Γ̃S)) = Z4, a4 = −(a1c1 + a2c2) + i
4
(i = 0, 1, 2, 3)

• Torsion-free for i = 1, 3

(4b) Ψ = Z4, ZΨ = 〈t3, ᾱ = (t0
3, Aτ)〉

• S ∈ SL(2,Z), symmetric and tr(S) > 2.

• ϕ(ᾱ) = A
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• H1(Ψ; Coker(I − S)) ∼= Coker(I−S)
Im(I−A)

.

• (c1, c2) = (0, 0) or (c1, c2) = (1
2
, 1

2
)

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ)〉

• H2(Ψ;Z(Γ̃S)) is trivial.

• Always has torsion

(4c) Ψ = Z4 × Z2, ZΨ = 〈t3, ᾱ = (t0
3, A), γ̄ = (t0

3, τ)〉

• S ∈ SL(2,Z), symmetric and tr(S) > 2.

• ϕ(ᾱ) = A

• H1(Ψ; Coker(I−S)) is all a, r with (I−S)a ≡ (I−S)r ≡ 0, r = (0, 0)

or (1
2
, 1

2
), and a taken modulo (I − A)v, for (I − S)v ≡ 0.

• (c1, c2) = (0, 0) or (c1, c2) = (1
2
, 1

2
)

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z4, a4 = −(a1c1 + a2c2) + i
4
(i = 0, 1, 2, 3)

• Always has torsion

(4d) Ψ = Z4 × Z2, ZΨ = 〈t3, ᾱ = (t0
3, A), γ̄ = (t

1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z), symmetric with tr(K) = n > 2.

• ϕ(ᾱ) = A,ϕ(γ̄) = K

• H1(Ψ; Coker(I − S)) ∼= Coker(I−K)
Im(I−A)

.

• (c1, c2) ∈ Coker(I +KT ), (c1, c2) = (0, 0) or (c1, c2) = (1
2
, 1

2
)
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• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z4, a4 = −(a1c1 + a2c2) + i
4
(i = 0, 1, 2, 3)

• Always has torsion

Proof. The computation for H1(Ψ; Coker(I − S)) for cases (4a) and (4b)

follows from that of case (4) in Theorem 3.2.21. That for cases (4c) and (4d)

follows from computing the appropriate cocycle conditions in Remark 3.2.17,

together with application of Corollary 3.2.19. For case (4c), notice that the

cyclic power cocycle condition for γ forces 2r ≡ 0. We obtain an additional

condition on r from the commutator cocycle condition in case (4c):

(I − ϕ(α))r = (I − ϕ(γ))a[
1 −1

1 1

]
r = 0,

which forces (t1, t2) = (0, 0) or (t1, t2) = (1
2
, 1

2
).

In all cases, the conditions on c1, c2 follow from the Tables 3.3, 3.5, and 3.6.

We can take c3 = 0 in case (4b) by Lemma 3.4.13. From Table 3.14, c3 = 0 is

forced in case (4d). For cases (4a) and (4c), we have two choices for c3.

For the choices we have for a4 in cases (4a), (4c), and (4d), note that

from Table 3.11

α4 = t
4(a4+a1c1+a2c2)
4 .

Recall that Sol3 groups of type (4) always have torsion. Lemma 3.4.16

shows that groups of type (4b), (4c), and (4d) all have torsion. Only in case
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(4a) can we resolve torsion in the central direction, just like the case of Sol1
4

crystallographic groups of type (4) (Theorem 3.3.21).

Theorem 3.4.25 ((5) Family). The crystallographic groups of Sol3×R, lifting

an abstract kernel ZΦ → GL(2,Z) of case (5) of Theorem 3.2.9,

A =

[
1 0

0 −1

]
, B =

[
−1 0

0 −1

]
, are

(5a) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t

1
2
3 , A), β̄ = (t0

3, B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, and tr(K) = n > 0.

• ϕ(ᾱ) = −K,ϕ(β̄) = B

• H1(Ψ; Coker(I − S)) ∼= Coker(I+K)
2Coker(I+K)

• (c1, c2) ∈ Coker(I +KT ), c1 = 0 or 1
2
, c2 = 0 or 1

2

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A), β = (tb11 tb22 t0
3t
b4
4 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2×Z2, a4 = 0 or 1
2
, b4 = −(a1c1 + a2c2) + i

2
(i = 0, 1)

• Torsion-free when i = 1

(5b) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t

1
2
3 , Aτ), β̄ = (t0

3, B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0.

• ϕ(ᾱ) = −K,ϕ(β̄) = B

• H1(Ψ; Coker(I − S)) ∼= Coker(I+K)
2Coker(I+K)

• (c1, c2) ∈ Coker(KT − I), c1 = 0 or 1
2
, c2 = 0 or 1

2

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (t
1
2
3 , Aτ), β = (tb11 tb22 t0

3t
b4
4 , B)〉
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• H2(Ψ;Z(Γ̃S)) = Z2, b4 = −(a1c1 + a2c2) + i
2
(i = 0, 1)

• Torsion-free when i = 1

(5c) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t

1
2
3 , A), β̄ = (t0

3, Bτ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0.

• ϕ(ᾱ) = −K,ϕ(β̄) = B

• H1(Ψ; Coker(I − S)) ∼= Coker(I+K)
2Coker(I+K)

• (c1, c2) ∈ Coker(I +KT )

• Unique choice for c3 (up to isomorphism), found by solving (αβ)2 ∈ Γ̃S ,

this c3 must satisfy the conditions in Table 3.9

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A), β = (tb11 tb22 t0
3, Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Always has torsion

(5d) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t

1
2
3 , A), β̄ = (t0

3, B), γ̄ = (t0
3, τ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, and tr(K) = n > 0.

• ϕ(ᾱ) = −K,ϕ(β̄) = B,ϕ(γ̄) = I

• H1(Ψ; Coker(I−S)) is all b, r with (I+K)b ≡ (I+K)r ≡ 0, 2r ≡ 0,

and b taken modulo 2b.

• (c1, c2) ∈ Coker(I +KT ), c1 = 0 or 1
2
, c2 = 0 or 1

2

• Unique choice for c3 (up to isomorphism), found by solving (αγ)2 ∈ Γ̃S ,

this c3 must satisfy the conditions in Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (t
1
2
3 ta4

4 , A), β = (tb11 tb22 t0
3t
b4
4 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2×Z2, a4 = 0 or 1
2
, b4 = −(a1c1 + a2c2) + i

2
(i = 0, 1)
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• Always has torsion

Proof. First, observe that

ZΨ = 〈t3, ᾱ = (t
1
2
3 , A), β̄ = (t0

3, B), γ̄ = (t
1
2
3 , τ)〉

= 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t0

3, B), γ̄ = (t
1
2
3 , τ)〉

cannot be lifted to a Sol3 × R crystallographic group by Lemma 3.4.10, and

we therefore disregard this case.

Also, note that

ZΨ = 〈t3, ᾱ = (t
1
2
3 , Aτ), β̄ = (t0

3, Bτ)〉

= 〈t3, ᾱ = (t
1
2
3 ,−A), β̄ = (t0

3, Bτ)〉

is conjugate to a Sol3 × R crystallographic group of type (5c), as A and −A

are conjugate in D4 × Z2.

The statements regarding H1(Ψ; Coker(I − S)) for cases (5a), (5b), and

(5c) follow from that of case (5) in Theorem 3.2.21. The statement for

Case (5d) follows from the cocycle conditions in Remark 3.2.17, together with

application of Corollary 3.2.19.

The conditions on the ci, as well as the choices for the exponents on t4,

follow from our proceeding classification of Sol3×R groups with cyclic holon-

omy.

For the torsion criteria, note that in cases (5a) and (5b), both 〈Γ̃S , α〉 and

〈Γ̃S , αβ〉 are torsion-free by Lemma 3.4.17. In these cases we must take i = 1

to get that 〈Γ̃S , β〉 (and hence Π) is torsion-free. Groups of type (5c) have
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torsion by Lemma 3.4.16. As a group of type (5d) contains a group of type

(5c), it likewise has torsion.

Theorem 3.4.26 ((6a) Family). The crystallographic groups of Sol3 × R,

lifting an abstract kernel ZΦ → GL(2,Z) of case (6a) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, are

(6aa) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, B)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A,ϕ(β̄) = B

• H1(Ψ; Coker(I − S)) is a, b with (I − S)a ≡ (I − S)b ≡ 0, a2 ≡

−a1, b1 − b2 − 2a1 ≡ 0, a and b modulo (v1 − v2)

2664 1

−1

3775 and 2v for

v ∈ Coker(I − S), respectively.

• (c1, c2) = (0, 0) or (1
2
, 1

2
)

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2×Z2, a4 = 0 or 1
2
, b4 = −(a1c1 + a2c2) + i

2
(i = 0, 1)

• Always has torsion

(6ab) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, Aτ), β̄ = (t0
3, B)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A,ϕ(β̄) = B

• H1(Ψ; Coker(I − S)) is a, b with (I − S)a ≡ (I − S)b ≡ 0, a2 ≡

−a1, b1 − b2 − 2a1 ≡ 0, a and b modulo (v1 − v2)

2664 1

−1

3775 and 2v for

v ∈ Coker(I − S), respectively.
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• (c1, c2) = (0, 0) or (1
2
, 1

2
)

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ), β = (tb11 tb22 t0

3t
b4
4 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2, b4 = −(a1c1 + a2c2) + i
2
(i = 0, 1)

• Always has torsion

(6ac) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, Bτ)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A,ϕ(β̄) = B

• H1(Ψ; Coker(I − S)) is a, b with (I − S)a ≡ (I − S)b ≡ 0, a2 ≡

−a1, b1 − b2 − 2a1 ≡ 0, a and b modulo (v1 − v2)

2664 1

−1

3775 and 2v for

v ∈ Coker(I − S), respectively.

• c1 − c2 = 0

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3, Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Always has torsion

(6ad) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, B), γ̄ = (t0

3, τ)〉

• S ∈ SL(2,Z) with σ12 = −σ21 and tr(S) > 2.

• ϕ(ᾱ) = A,ϕ(β̄) = B,ϕ(γ̄) = I

• H1(Ψ; Coker(I−S)) is a, b, r with (I−S)a ≡ (I−S)b ≡ (I−S)r ≡ 0,

r = (0, 0) or (1
2
, 1

2
), a2 ≡ −a1, b1 − b2 − 2a1 ≡ 0,

a and b modulo (v1−v2)

2664 1

−1

3775 and 2v for v ∈ Coker(I−S), respectively.
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• (c1, c2) = (0, 0) or (1
2
, 1

2
)

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2×Z2, a4 = 0 or 1
2
, b4 = −(a1c1 + a2c2) + i

2
(i = 0, 1)

• Always has torsion

(6ae) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, B), γ̄ = (t

1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = B,ϕ(γ̄) = K

• H1(Ψ; Coker(I − S)) is a, b with (I − K)a ≡ (I − K)b ≡ 0, a2 ≡

−a1, b1 − b2 − 2a1 ≡ 0, a and b modulo (v1 − v2)

2664 1

−1

3775 and 2v for

v ∈ Coker(I −K), respectively.

• (c1, c2) ∈ Coker(I +KT ), and (c1, c2) = (0, 0) or (1
2
, 1

2
)

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , B), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2×Z2, a4 = 0 or 1
2
, b4 = −(a1c1 + a2c2) + i

2
(i = 0, 1)

• Always has torsion

(6af) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, Bτ), γ̄ = (t

1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = B,ϕ(γ̄) = K

• H1(Ψ; Coker(I − S)) is a, b with (I − K)a ≡ (I − K)b ≡ 0, a2 ≡

−a1, b1 − b2 − 2a1 ≡ 0, a and b modulo (v1 − v2)

2664 1

−1

3775 and 2v for

v ∈ Coker(I −K), respectively.
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• c1 − c2 = 0, (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.7 and Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , Bτ), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = 0 or 1
2
, two choices for b4. We have

(βγ)2 = tn1
1 tn2

2 t3t
2b4+v
4 for integers n1, and some rational number v, and

therefore two solutions for b4.

• Always has torsion

Proof. First, observe that if a Sol3 × R crystallographic group Π has

ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t0

3, Bτ)〉

= 〈t3, (t
0
3,−A), (t0

3, Bτ)〉,

then it is conjugate to a Sol3×R crystallographic group of type (6ac), as −A

and A are conjugate in D4×Z2 (and Bτ remains fixed under this conjugation).

The statements regarding H1(Ψ; Coker(I−S)) for cases (6aa), (6ab), and

(6ac) follow from that of case (6a) in Theorem 3.2.21. The statements for

cases (6ad), (6ae), and (6af) follow from the cocycle conditions in Remark

3.2.17, together with application of Corollary 3.2.19.

The conditions on the ci, as well as the choices for the exponents on t4,

follow from our proceeding classification of Sol3×R groups with cyclic holon-

omy. In particular, note that in case (6aa), from the cyclic cases, we obtain

two conditions on (c1, c2)

c1 − c2 = 0

c1 = 0 or
1

2
, c2 = 0 or

1

2
,
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and these two conditions force (c1, c2) = (0, 0) or (1
2
, 1

2
).

All Sol3×R crystallographic groups of this type have torsion, just like their

corresponding Sol3 crystallographic groups. In case (6aa), we need the groups

〈Γ̃S , α〉

〈Γ̃S , β〉

〈Γ̃S , αβ〉

to all be torsion-free. All these groups are torsion, when projected to Sol3 crys-

tallographic groups, and so we must resolve the torsion using the R direction

of Sol3 × R. We have:

a4 = 0, i = 0 =⇒ all have torsion

a4 =
1

2
, i = 0 =⇒ 〈Γ̃S , β〉 has torsion

a4 = 0, i = 1 =⇒ 〈Γ̃S , α〉 has torsion

a4 =
1

2
, i = 1 =⇒ 〈Γ̃S , αβ〉 has torsion

Now groups of type (6ad) and (6ae) have torsion, as they contain a group

of type (6aa) as a subgroup. To see that groups of type (6ab), (6ac), and

(6af) have torsion, we may appeal to Lemma 3.4.16.

Theorem 3.4.27 ((6ai) Family). The crystallographic groups of Sol3 × R

lifting an abstract kernel ZΦ → GL(2,Z) of case (6ai) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, are

(6aia) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, B)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.
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• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B

• H1(Ψ; Coker(I−S)) is all a, b with (I−S)a ≡ (I−S)b ≡ 0, 2a1 ≡ 0,

2b2−2a2 ≡ 0, a and b taken modulo

[
0

2v2

]
and 2v for v ∈ Coker(I−S),

respectively.

• c1 = 0 or 1
2
, c2 = 0 or 1

2

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = −(a1c1 +

a2c2) + j
2
(j = 0, 1)

• Torsion-free when j = 1, and...

• when i = 0, a1 = 1
2

and a2 6≡ (σ11+1)(2n+1)
2σ12

for any n ∈ Z

• when i = 1, a1 + b1 6= σ12(2n+1)
2(σ11−1)

for any n ∈ Z and a2 − b2 = 1
2

(6aib) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, Aτ), β̄ = (t0
3, B)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B

• H1(Ψ; Coker(I−S)) is all a, b with (I−S)a ≡ (I−S)b ≡ 0, 2a1 ≡ 0,

2b2−2a2 ≡ 0, a and b taken modulo

[
0

2v2

]
and 2v for v ∈ Coker(I−S),

respectively.

• c1 = 0 or 1
2
, c2 = 0 or 1

2

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ), β = (tb11 tb22 t0

3t
b4
4 , B)〉
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• H2(Ψ;Z(Γ̃S)) = Z2, b4 = −(a1c1 + a2c2) + j
2
(j = 0, 1)

• Torsion-free when j = 1, a1 = 1
2
, a2 = b2 + 1

2
, b1 6≡ σ12(2n+1)

2(σ11−1)
+ 1

2
,

b2 6≡ (σ11+1)(2m+1)
2σ12

+ 1
2

for any m,n ∈ Z.

(6aic) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, Bτ)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B

• H1(Ψ; Coker(I−S)) is all a, b with (I−S)a ≡ (I−S)b ≡ 0, 2a1 ≡ 0,

2b2−2a2 ≡ 0, a and b taken modulo

[
0

2v2

]
and 2v for v ∈ Coker(I−S),

respectively.

• c2 = 0 or 1
2

• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3, Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −a2c2 + i
2
(i = 0, 1)

• Always has torsion

(6aid) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, B), γ̄ = (t0

3, τ)〉

• S ∈ SL(2,Z) with σ11 = σ22 and tr(S) > 2.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B,ϕ(γ̄) = I

•H1(Ψ; Coker(I−S)) is all a, b, r with (I−S)a ≡ (I−S)b ≡ (I−S)r ≡

0, 2a1 ≡ 0, 2b2 − 2a2 ≡ 0, 2r = 0, a and b taken modulo

[
0

2v2

]
and 2v

for v ∈ Coker(I − S), respectively.

• c1 = 0 or 1
2
, c2 = 0 or 1

2
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• Two choices for c3 (up to isomorphism), see Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = −(a1c1 +

a2c2) + j
2
(j = 0, 1)

• Always has torsion

(6aie) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, B), γ̄ = (t

1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B,ϕ(γ̄) = K

• H1(Ψ; Coker(I−S)) is all a, b with (I−K)a ≡ (I−K)b ≡ 0, 2a1 ≡ 0,

2b2−2a2 ≡ 0, a and b taken modulo

[
0

2v2

]
and 2v for v ∈ Coker(I−K),

respectively.

• c1 = 0 or 1
2
, c2 = 0 or 1

2
, and (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , B), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = −(a1c1 +

a2c2) + j
2
(j = 0, 1)

• Torsion-free when j = 1, and when the torsion-free criteria for 〈Γ̃S , α, β〉

(6aia), and 〈Γ̃S , γα, β〉 (6aib) are satisfied.

(6aif) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t0
3, Bτ), γ̄ = (t

1
2
3 , τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = B,ϕ(γ̄) = K
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• H1(Ψ; Coker(I − S)) can be described as all a, b with (I − K)a ≡

(I −K)b ≡ 0, 2a1 ≡ 0, 2b2− 2a2 ≡ 0, a and b taken modulo

[
0

2v2

]
and

2v for v ∈ Coker(I −K), respectively.

• c2 = 0 or 1
2
, (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.7 and Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (tb11 tb22 t0

3t
b4
4 , Bτ), γ = (t

1
2
3 , τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), two choices for

b4. We have (βγ)2 = tn1
1 tn2

2 t3t
2b4+v
4 for integers n1, and some rational

number v, and therefore two solutions for b4.

• Always has torsion

Proof. Observe that if a Sol3 × R crystallographic group Π has

ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t0

3, Bτ)〉

= 〈t3, (t
0
3,−A), (t0

3, Bτ)〉,

then it is conjugate to a Sol3×R crystallographic group of type (6aic), similar

to the situation in Theorem 3.4.26.

See Theorem 3.2.21, case (6ai), for H1(Ψ; Coker(I − S)) in cases (6aia),

(6aib), and (6aic). For cases (6aid), (6aie), and (6aif) use the cocycle

conditions in Remark 3.2.17, together with Corollary 3.2.19. The conditions

on the ci follow from previous cases. The computation of H2(Ψ;Z(Γ̃S)) is

similar to that in Theorem 3.4.26, and so we obtain the stated exponents on

t4.

The groups of type (6aic) (and hence also those of type (6aid) and (6aif))

always have torsion by Lemma 3.4.16.
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In case (6aia), we must take j = 1 to ensure that 〈Γ̃S , β〉 is torsion-free.

When i = 0, 〈Γ̃S , αβ〉 is torsion-free. When i = 1, 〈Γ̃S , α〉 is torsion-free. Thus,

i = 0 =⇒ 〈Γ̃S , α〉 must be torsion-free projected to Sol3

i = 1, =⇒ 〈Γ̃S , αβ〉 must be torsion-free projected to Sol3

Both the groups 〈Γ̃S , α〉 and 〈Γ̃S , αβ〉 are Sol3 crystallographic groups of type

(3i). The projection of αβ to Sol3 is

(ta1+b1
1 ta2−b2

2 , AB).

By computing when the appropriate affine maps in Proposition 3.2.23 are

fixed point free, we obtain the desired conditions. See also Theorem 3.3.21,

case (6ai).

In case (6aib), we must take j = 1. Lemma 3.4.16 then implies that both

the groups 〈Γ̃S , α〉 and 〈Γ̃S , αβ〉 must both be torsion-free when projected to

Sol3. The proof for this case now proceeds as in Theorem 3.3.21, case (6ai).

For case (6aie), we must take j = 1, which is is necessary for the group

〈Γ̃S , γ, β〉 to be torsion-free. Then, Π will be torsion-free precisely when the

groups 〈Γ̃S , α, β〉 and 〈Γ̃S , γα, β〉 are torsion-free, as the union of these three

Z2
2 holonomy Sol3 × R crystallographic groups exhausts Π.

Theorem 3.4.28 ((6b) Family). The crystallographic groups of Sol3×R lifting

an abstract kernel ZΦ → GL(2,Z) of case (6b) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, are

(6ba) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t
1
2
3 , B)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.
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• ϕ(ᾱ) = A,ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) ∼= H1(〈A〉; Coker(I + K)), that is, all a with

(I +K)a ≡ 0 and a2 ≡ −a1 modulo (v1 − v2)

2664 1

−1

3775, for (I +K)v ≡ 0.

• c1 − c2 = 0, (c1, c2) ∈ Coker(I +KT )

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = 0 or 1
2
, b4 = 0, 1

2

• Torsion-free when a4 = 1
2
, b4 = 0

(6bb) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, Aτ), β̄ = (t
1
2
3 , B)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) ∼= H1(〈A〉; Coker(I + K)), that is, all a with

(I +K)a ≡ 0 and a2 ≡ −a1 modulo (v1 − v2)

2664 1

−1

3775, for (I +K)v ≡ 0.

• c1 + c2 = 0, (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2, b4 = 0, 1
2

• Always has torsion

(6bc) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t
1
2
3 , Bτ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K
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• H1(Ψ; Coker(I − S)) ∼= H1(〈A〉; Coker(I + K)), that is, all a with

(I +K)a ≡ 0 and a2 ≡ −a1 modulo (v1 − v2)

2664 1

−1

3775, for (I +K)v ≡ 0.

• c1 − c2 = 0, (c1, c2) ∈ Coker(KT − I)

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 , Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Always has torsion

(6bd) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t
1
2
3 , B), γ̄ = (t0

3, τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K,ϕ(γ̄) = I

• H1(Ψ; Coker(I − S)) can be described as all a, r with (I + K)a ≡

(I +K)r ≡ 0, r = (0, 0) or (1
2
, 1

2
) and a2 ≡ −a1,

a taken modulo (v1 − v2)

2664 1

−1

3775 where (I +K)v ≡ 0.

• (c1, c2) = (0, 0) or (c1, c2) = (1
2
, 1

2
), and (c1, c2) ∈ Coker(I +KT )

• Unique choice for c3 (up to isomorphism), found by solving (βγ)2 ∈ Γ̃S ,

this c3 must satisfy the conditions in Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = 0 or 1
2
, b4 = 0, 1

2

• Always has torsion
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Proof. First, observe that if a Sol3 × R crystallographic group Π has

ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t

1
2
3 , Bτ)〉

= 〈t3, (t
1
2
3 ,−A), (t

1
2
3 , Bτ)〉,

then it is conjugate to a Sol3 × R crystallographic group of type (6bc), as

conjugation by t
− 1

4
3 sends (t

1
2
3 ,−A) to (t0

3,−A), and −A and A are conjugate

in D4 × Z2.

Also, note that

ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B), γ̄ = (t

1
2
3 , τ)〉

= 〈t3, ᾱ = (t0
3, A), β̄ = (t0

3, Bτ), γ̄ = (t
1
2
3 , τ)〉

is a lift of type (6a) from the Sol3 classification, and it corresponds to type

(6af) in Theorem 3.4.26.

The statements regarding H1(Ψ; Coker(I − S)) for cases (6ba), (6bb),

and (6bc) follow from that of case (6b) in Theorem 3.2.21. The statement

for case (6bd) follows from the cocycle conditions in Remark 3.2.17, together

with application of Corollary 3.2.19.

The conditions on the ci, as well as the choices for the exponents on t4, fol-

low from our proceeding classification of Sol3×R groups with cyclic holonomy.

In case (6bd), from the cyclic cases, we obtain three conditions on (c1, c2)

c1 − c2 = 0

c1 = 0 or
1

2
, c2 = 0 or

1

2

(c1, c2) ∈ Coker(I +KT ),

168



and the first two conditions force (c1, c2) = (0, 0) or (1
2
, 1

2
).

For case (6ba), notice that both 〈Γ̃S , α〉 and 〈Γ̃S , αβ〉 project to Sol3 groups

with torsion, whereas 〈Γ̃S , β〉 is already torsion-free on Sol3 × R. These three

groups are torsion-free only when a4 = 1
2

and b4 = 0. Lemma 3.4.16 implies

the remaining groups of this type all have torsion.

Theorem 3.4.29 ((6bi) Family). The crystallographic groups of Sol3 × R

lifting an abstract kernel ZΦ → GL(2,Z) of case (6bi) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, B =

[
−1 0

0 −1

]
, are

(6bia) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t
1
2
3 , B)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) ∼= H1(〈A〉; Coker(I + K)), that is, all a with

(I +K)a ≡ 0 and 2a1 ≡ 0 taken modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c2 = 0 or 1
2
, (c1, c2) ∈ Coker(I +KT )

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = 0, 1

2

• Torsion-free...

• when i = 0, b4 = 0, a1 = 1
2

and a2 6≡ (k11−1)(2n+1)
2k12

for any n ∈ Z.

• when i = 1, b4 = 0, always

• when i = 0, b4 = 1
2
, a1 = 1

2
and a2 6≡ (σ11+1)(2n+1)

2k12
for any n ∈ Z.
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• when i = 1, b4 = 1
2
, 〈Γ̃S , αβ〉 must be torsion-free, projected to Sol3.

(6bib) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, Aτ), β̄ = (t
1
2
3 , B)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) ∼= H1(〈A〉; Coker(I + K)), that is, all a with

(I +K)a ≡ 0 and 2a1 ≡ 0 taken modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c1 = 0 or 1
2
, (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2, b4 = 0, 1
2

• Torsion-free if and only if a1 = 1
2

and a2 6≡ (k11−1)(2n+1)
2k12

for any n ∈ Z.

(6bic) Ψ = Z2
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t
1
2
3 , Bτ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) ∼= H1(〈A〉; Coker(I + K)), that is, all a with

(I +K)a ≡ 0 and 2a1 ≡ 0 taken modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c2 = 0 or 1
2
, (c1, c2) ∈ Coker(KT − I)

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 , Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −a2c2 + i
2
(i = 0, 1)

• Torsion-free...
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• when i = 0, a1 = 1
2

and a2 6≡ (k11−1)(2n+1)
2k12

for any n ∈ Z.

• when i = 1, 〈Γ̃S , αβ〉 is torsion-free, projected to Sol3.

(6bid) Ψ = Z3
2, ZΨ = 〈t3, ᾱ = (t0

3, A), β̄ = (t
1
2
3 , B), γ̄ = (t0

3, τ)〉

• S = nK − I, where K ∈ SL(2,Z) with tr(K) = n > 2 and k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K,ϕ(γ̄) = I

• H1(Ψ; Coker(I−S)) is all a, r with (I+K)a ≡ (I+K)r ≡ 0, 2a1 ≡ 0,

and 2r = 0, a taken modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c1 = 0 or 1
2
, c2 = 0 or 1

2
, (c1, c2) ∈ Coker(I +KT )

• Unique choice for c3 (up to isomorphism), found by solving (βγ)2 ∈ Γ̃S ,

this c3 must satisfy the conditions in Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = 0, 1

2

• Torsion-free when r 6= 0 and when the torsion-free criteria for 〈Γ̃S , α, β〉

(6bia), and 〈Γ̃S , γα, β〉 (6bib) are satisfied.

Proof. First, observe that if a Sol3 × R crystallographic group Π has

ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t

1
2
3 , Bτ)〉

= 〈t3, (t
1
2
3 ,−A), (t

1
2
3 , Bτ)〉,

then it is conjugate to a Sol3×R crystallographic group of type (6bic), similar

to the situation in Theorem 3.4.28.
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Also, note that

ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B), γ̄ = (t

1
2
3 , τ)〉

= 〈t3, ᾱ = (t0
3, A), β̄ = (t0

3, Bτ), γ̄ = (t
1
2
3 , τ)〉

is a lift of type (6ai) from the Sol3 classification, and it corresponds to type

(6aif) in Theorem 3.4.27.

See Theorem 3.2.21, case (6bi), for H1(Ψ; Coker(I − S)) in cases (6bia),

(6bib), and (6bic). For case (6bid), use the cocycle conditions in Remark

3.2.17, together with Corollary 3.2.19. The conditions on the ci follow from

previous cases. The computation of H2(Ψ;Z(Γ̃S)) is identical to that in The-

orem 3.4.28, and so we obtain the stated exponents on t4.

In case (6bia), the subgroup 〈Γ̃S , β〉 is torsion-free by Lemma 3.4.17.

i = 0, b4 = 0 =⇒ 〈Γ̃S , α〉, 〈Γ̃S , αβ〉 must be torsion-free projected to Sol3

i = 1, b4 = 0 =⇒ already torsion-free

i = 0, b4 =
1

2
=⇒ 〈Γ̃S , α〉 must be torsion-free projected to Sol3

i = 1, b4 =
1

2
=⇒ 〈Γ̃S , αβ〉 must be torsion-free projected to Sol3

Thus, when i = 0, b4 = 0, we apply the criteria for case (6bi) in Theorem

3.2.21. When i = 1, b4 = 0, both 〈Γ̃S , α〉 and 〈Γ̃S , αβ〉 are already torsion-free.

When i = 0, b4 = 1
2
, 〈Γ̃S , αβ〉 is torsion-free, and we apply the criteria for case

(3i) in Theorem 3.2.21 to ensure that 〈Γ̃S , α〉 is torsion-free.

In case (6bib), Lemma 3.4.16 applies to show that the projection of Π to

a Sol3 group of type (6bi) must be torsion-free, so we apply the criteria for

case (6bi) in Theorem 3.2.21.

In case (6bic), when i = 0, the projection of Π to Sol3 must be torsion-
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free. When i = 1, 〈Γ̃S , α〉 is already, torsion-free, but we must ensure that

〈Γ̃S , αβ〉 is torsion-free when projected to Sol3.

When Π is of type (6bid), of course r 6= 0 is necessary and sufficient for

the group 〈Γ̃S , γ, β〉 to be torsion-free. Then, Π will be torsion-free precisely

when the groups 〈Γ̃S , α, β〉 and 〈Γ̃S , γα, β〉 are torsion-free, as the union of

these three Z2
2 holonomy Sol3 × R crystallographic groups exhausts Π. See

Example 3.4.34.

Theorem 3.4.30 ((7) Family). The crystallographic groups of Sol3×R lifting

an abstract kernel ZΦ → GL(2,Z) of case (7) of Theorem 3.2.9,

A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
, are

(7a) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0, and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and a2 ≡ −a1, taken

modulo (v1 − v2)

2664 1

−1

3775, where (I +K)v ≡ 0.

• c1 − c2 = 0, (c1, c2) ∈ Coker(I +KT )

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = 0 or 1
2
, b4 = 0 or 1

2

• Always has torsion

(7b) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t

1
2
3 , B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0, and k12 = −k21.
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• ϕ(ᾱ) = A,ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and a2 ≡ −a1, taken

modulo (v1 − v2)

2664 1

−1

3775, where (I +K)v ≡ 0.

• c1 + c2 = 0, (c1, c2) ∈ Coker(I +KT )

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2, b4 = 0 or 1
2

• Always has torsion

(7c) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , Bτ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0, and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and a2 ≡ −a1, taken

modulo (v1 − v2)

2664 1

−1

3775, where (I +K)v ≡ 0.

• c1 − c2 = 0, (c1, c2) ∈ Coker(KT − I)

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 , Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = 0 or 1
2

• Always has torsion

(7d) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t

1
2
3 , Bτ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0, and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K
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• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and a2 ≡ −a1, taken

modulo (v1 − v2)

2664 1

−1

3775, where (I +K)v ≡ 0.

• c1 + c2 = 0, (c1, c2) ∈ Coker(KT − I)

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , Aτ), β = (t

1
2
3 , Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z4, four choices for a4, the solutions of (αβ)4 =

tj4, (j = 0, 1, 2, 3).

• Always has torsion

(7e) Ψ = D4 × Z2, ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B), γ̄ = (t0

3, τ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) > 0, and k12 = −k21.

• ϕ(ᾱ) = A,ϕ(β̄) = −K,ϕ(γ̄) = I

• H1(Ψ; Coker(I−S)) is all a, r with (I−S)a ≡ (I−S)r ≡ 0, a2 ≡ −a1

and (t1, t2) = (0, 0) or (1
2
, 1

2
),

a taken modulo (v1 − v2)

2664 1

−1

3775, where (I +K)v ≡ 0.

• (c1, c2) = (0, 0) or (1
2
, 1

2
), (c1, c2) ∈ Coker(I +KT )

• Unique choice for c3 (up to isomorphism), found by solving (βγ)2 ∈ Γ̃S ,

this c3 must satisfy the conditions in Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = 0 or 1
2
, b4 = 0 or 1

2

• Always has torsion
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Proof. Observe that

ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B), γ̄ = (t

1
2
3 , τ)〉

= 〈t3, (t
0
3, A), (t0

3, Bτ), (t
1
2
3 , τ)〉,

does not lift to a Sol3 × R crystallographic group by Lemma 3.4.10.

The statements regarding H1(Ψ; Coker(I−S)) for cases (7a), (7b), (7c),

and (7d) follow from that of case (7) in Theorem 3.2.21. The statement for

case (7e) follows from the cocycle conditions in Remark 3.2.17, together with

Corollary 3.2.19. Note also that the conditions on the ci follow from previous

cases.

However, the holonomy Ψ is no longer a direct product of cyclic groups. In

case (7a), the holonomy Ψ = D4 acts trivially on Z(Γ̃S), and with this trivial

action,

H2(D4; Z) = Z2 × Z2.

Indeed, solving α2 ∈ Γ̃S and β2 ∈ Γ̃S yield the choices a4 = 0 or a4 = 1
2
, and

b4 = 0 or b4 = 1
2
.

In case (7b), we set a4 = 0 by Lemma 3.4.9, and obtain the two choices for

b4 by solving β2 ∈ Γ̃S . Case (7c) is similar, except that we take b4 = 0. For

(7d), 〈Γ̃S , αβ〉 is a Sol3 × R group of type (4a), so that we obtain 4 choices

for a4.

A Sol3×R group of type (7a) contains a subgroup of type (4a), 〈Γ̃S , αβ〉.

In the notation of Theorem 3.4.24, 〈Γ̃S , αβ〉 corresponds to the torsion case,

that is, i = 0 or 2. Thus, all groups of type (7a) (and hence of type (7e))

have torsion.

176



The Sol3×R groups of type (7b) and (7c) have a subgroup of type (4b),

〈Γ̃S , αβ〉, which has torsion.

For case (7d), Lemma 3.4.16 applied to the subgroup 〈Γ̃S , α〉 shows that

Π has torsion.

Theorem 3.4.31 ((7i) Family). The crystallographic groups of Sol3×R lifting

an abstract kernel ZΦ → GL(2,Z) of case (7i) of Theorem 3.2.9,

A =

[
0 1

1 0

]
B =

[
1 0

0 −1

]
, are

(7ia) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and 2a1 ≡ 0, taken

modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c2 = 0 or 1
2
, (c1, c2) ∈ Coker(I +KT ).

• Two choices for c3 (up to isomorphism), see Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = 0 or 1

2

• Always has torsion

(7ib) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t

1
2
3 , B)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K
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• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and 2a1 ≡ 0, taken

modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c1 = 0 or 1
2
, (c1, c2) ∈ Coker(I +KT ).

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3, Aτ), β = (t

1
2
3 tb44 , B)〉

• H2(Ψ;Z(Γ̃S)) = Z2, b4 = 0 or 1
2

• Always has torsion

(7ic) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , Bτ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K

• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and 2a1 ≡ 0, taken

modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c2 = 0 or 1
2
, (c1, c2) ∈ Coker(KT − I).

• c3 = 0, must satisfy conditions in Table 3.7

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 , Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z2, a4 = −a2c2 + i
2
(i = 0, 1)

• Always has torsion

(7id) Ψ = D4, ZΨ = 〈t3, ᾱ = (t0
3, Aτ), β̄ = (t

1
2
3 , Bτ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K
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• H1(Ψ; Coker(I − S)) is all a with (I − S)a ≡ 0 and 2a1 ≡ 0, taken

modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c1 = 0 or 1
2
, (c1, c2) ∈ Coker(KT − I).

• c3 = 0, must satisfy conditions in Table 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , Aτ), β = (t

1
2
3 , Bτ)〉

• H2(Ψ;Z(Γ̃S)) = Z4, four choices for a4, the solutions of (αβ)4 =

tj4, (j = 0, 1, 2, 3).

• Torsion-free j = 1, 3 and a1 = 1
2

and a2 = −k21+1
2k11

+ i
k11

for i =

0, . . . , k11 − 1

(7ie) Ψ = D4 × Z2, ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B), γ̄ = (t0

3, τ)〉

• S = nK + I, K ∈ GL(2,Z), det(K) = −1, tr(K) = n > 0, k11 = k22.

• ϕ(ᾱ) =

[
1 0

0 −1

]
, ϕ(β̄) = −K,ϕ(γ̄) = I

• H1(Ψ; Coker(I −S)) is all a, r with (I −S)a ≡ (I −S)r ≡ 0, 2a1 ≡ 0,

2r ≡ 0, a taken modulo

[
0

2v2

]
, where (I +K)v ≡ 0.

• c1 = 0 or 1
2
, c2 = 0 or 1

2
, (c1, c2) ∈ Coker(I +KT ).

• Unique choice for c3 (up to isomorphism), found by solving (βγ)2 ∈ Γ̃S ,

this c3 must satisfy the conditions in Tables 3.7 and 3.9

• Π = 〈Γ̃S , α = (ta1
1 ta2

2 t0
3t
a4
4 , A), β = (t

1
2
3 tb44 , B), γ = (tt11 tt22 t0

3, τ)〉

• H2(Ψ;Z(Γ̃S)) = Z2 × Z2, a4 = −a2c2 + i
2
(i = 0, 1), b4 = 0 or 1

2

• Always has torsion
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Proof. The group

ZΨ = 〈t3, ᾱ = (t0
3, A), β̄ = (t

1
2
3 , B), γ̄ = (t

1
2
3 , τ)〉

= 〈t3, (t
0
3, A), (t0

3, Bτ), (t
1
2
3 , τ)〉,

does not lift to a Sol3 × R crystallographic group by Lemma 3.4.10.

See Theorem 3.2.21, case (7i), for H1(Ψ; Coker(I − S)) in cases (7ia),

(7ib), (7ic), and (7id). For case (7ie) use the cocycle conditions in Re-

mark 3.2.17, together with Corollary 3.2.19. The conditions on the ci follow

from previous cases. The computation of H2(Ψ;Z(Γ̃S)) is identical to that in

Theorem 3.4.30, and so we obtain the stated exponents on t4.

A Sol3×R group of type (7ia) contains a subgroup of type (4a), 〈Γ̃S , αβ〉,

which has torsion, as in Theorem 3.4.30. Thus, all groups of type (7ia) (and

hence of type (7ie)) have torsion.

Also, like in Theorem 3.4.30, groups of type (7ib) and (7ic), have a torsion

subgroup of type (4b), that is 〈Γ̃S , αβ〉.

Only case (7id) remains. Our criteria for Π to be torsion-free are identical

to the Sol1
4 case (Theorem 3.3.21, case (7i)). First, the subgroup of type

(4a), 〈Γ̃S , αβ〉, must be torsion-free, which occurs when j = 1, 3 in (αβ)4 = tj4.

By Lemma 3.4.17, the elements β and αβα cannot contribute torsion. The

only remaining elements are α and βαβ. That is, we need the groups 〈Γ̃S , α〉

and 〈Γ̃S , βαβ〉 to be torsion-free. They are torsion-free precisely when their

projection to Sol3 groups of type (3i) are torsion-free by Lemma 3.4.16. The
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projections of α and βαβ to Sol3 are:

(ta1
1 ta2

2 , A),

(t−k11a1−k12a2
1 t−k21a1−k11a2

2 A,BAB)

The proof now proceeds exactly as in the Sol1
4 case (Theorem 3.3.21, case

(7i)). See Example 3.4.35.

Remark 3.4.32. In each case, one must explicitly check that a group Π

exists with the lattice Γ̃S and given exponents on the ti. In particular, for

generators A and B of Ψ, let α and β be generators of Π, projecting to A and

B, respectively. For each relation r(A,B) = e between A and B in Ψ, we need

to check that r(α, β) ∈ Γ̃S .

In the special case when c1 = c2 = c3 = 0, so that the lattice Γ̃S is a direct

product ΓS×Z, once we have an abstract kernel Ψ→ Out(Γ̃S) these conditions

are immediately satisfied, and an extension exists.

For example, suppose that

Ψ = 〈A,B〉 = Z2 × Z2.

Then for

α = (ta1
1 ta2

2 ta3
3 ta4

4 , A)

β = (tb11 tb22 tb33 tb44 , B)

With a1, a2, a3, and a4 given in the classification, we also need to check that

αβα−1β−1 = tn1
1 tn2

2 tn3
3 tn4

4 .

for integers ni. In fact, n1, n2, n3 are always integral (Theorem 3.2.16). But it

181



must be checked that n4 is integral for an extension to exist.

3.4.33 (Examples).

Example 3.4.34 ((6bid)). Here we give an example of a torsion-free Sol3×R

crystallographic group with Z3
2 holonomy. See Theorem 3.4.29. Take

K =

[
3 2

4 3

]
. Then, S =

[
17 12

24 17

]
.

Note that k11 = k22 and S satisfy the conditions for case (6bid) in Theorem

3.4.29. Form Z2 oS Z and embed it in Sol3 as a standard lattice, ΓS . We lift

ΓS to the lattice Γ̃S = ΓS × Z of Sol3 × R. Simply set c1 = c2 = c3 = 0 in

Notation 3.4.5. We have defined our lattice Γ̃S of Π. Now we must define

α = (ta1
1 ta2

2 t0
3t
a4
4 , A),

β = (t
1
2
3 tb44 , B),

γ = (tt11 tt22 t0
3, τ),

so that Π is torsion-free. Let us set

a =

[
a1

a2

]
=

[
0

0

]

r =

[
t1

t2

]
=

[
1
2

0

]

a4 =
1

2

b4 = 0.

Notice that a and r satisfy all cocycle conditions. Checking the torsion criteria

of Theorem 3.4.29, we see that the group 〈Γ̃S , γ, β〉 is torsion-free since r 6= 0.
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The Sol3×R group of type (6bia), 〈Γ̃S , α, β〉, is torsion-free by our choice of a4

and b4. Finally, we check that the Sol3 × R group of type (6bib), 〈Γ̃S , γα, β〉,

is torsion-free. Note that

γα = (t
1
2
1 t0

2t
0
3t

1
2
4 , Aτ).

The exponent on t1 is 1
2
, and as for the exponent on t2,

0 6≡ (k11 − 1)(2n+ 1)

2k12

=
(2n+ 1)

2
= n+

1

2
,

for any n ∈ Z. Therefore the criteria for 〈Γ̃S , γα, β〉 to be torsion-free are

satisfied. From this it follows that Π is torsion-free.

So Π\(Sol3 × R) defines an infra-solvmanifold of Sol3 × R with Z3
2 holonomy.

This example is analogous to the following flat 4-manifold Π ′\R4 with Z3
2

holonomy. We define

Π ′ ⊂ R4 o O(4,R)
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by Π ′ = 〈Z4, α, β, γ〉, where

α =




0

0

0
1
2

 ,


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




β =




0

0
1
2

0

 ,

−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




γ =




1
2

0

0

0

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 .

Example 3.4.35 ((7id)). Here we give an example of a torsion-free Sol3×R

crystallographic group with D4 holonomy. See Theorem 3.4.31. We take

K =

[
1 2

1 1

]
, therefore n = k11 + k22 = 2, S = nK + I =

[
3 4

2 3

]
.

As in Example 3.4.34, Z2 oS Z and embeds in Sol3 as a standard lattice, ΓS .

We lift ΓS to the lattice Γ̃S = ΓS × Z of Sol3 × R by setting c1 = c2 = c3 = 0

in Notation 3.4.5. Now we must define

α = (ta1
1 ta2

2 t0
3t
a4
4 , Aτ),

β = (t
1
2
3 , Bτ),

so that Π is torsion-free. We compute that (αβ)4 = t4a4
4 with ci = 0, and we
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define

a =

[
a1

a2

]
=

[
1
2

0

]

a4 =
1

4
.

Note that the cocycle conditions on a are satisfied; namely, a ∈ Coker(I −S).

Also the torsion-free criteria for case (7id) of Theorem 3.4.31 are satisfied, as

(αβ)4 = t4, a1 = 1
2
, and a2 = −k21+1

2k11
≡ 0.

Thus Π\(Sol3 × R) is an infra-solvmanifold of Sol3 × R with D4 holonomy.

3.5 Crystallographic Groups of Sol4m,n

We have the family of solvable Lie groups of the form R3 oφ R, where

φ(u) =


eθu 0 0

0 eu 0

0 0 e−(1+θ)u

 , θ > 1.

The parameter θ corresponds precisely to the isomorphism type of the Lie

group. Since we are concerned with crystallographic groups, we need to assume

that θ is chosen so that our Lie group admits a lattice. This is equivalent

to φ(u0) being conjugate to an element of SL(3,Z), for some u0. Then the

characteristic polynomial of φ(u0) is x3−mx2 +nx−1 = (x−eθu)(x−eu)(x−

e−(1+θ)u) for m,n ∈ Z, and we will denote the group R3 oφ R by Sol4m,n. It

is known that there are only countably many such θ [23]. For the rest of this

section, fix such a θ.

Here we provide a classification of the crystallographic groups of Sol4m,n.
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Given a crystallographic group

Π ⊂ Sol4m,n o Z3
2,

Γ̃ = Π ∩ Sol4m,n is a lattice of Sol4m,n with finite quotient group Φ ⊂ Z3
2. We

have the short exact sequence

1→ Γ̃→ Π → Φ→ 1.

The arguments in this section are nearly identical to those used in our

classification of Sol3 crystallographic groups. For u ∈ R, let Eu denote the

action of R on R3 in Sol4m,n.

3.5.1 (Lattices of Sol4m,n). First we will describe the lattices of Sol4m,n. Let

S ∈ SL(3,Z) have three distinct real eigenvalues λ1, λ2,
1

λ1λ2
, satisfying λ1 = λθ2

and

λ1 > λ2 > 1 >
1

λ1λ2

.

Notation 3.5.2. We always take

∆ =


λ1 0 0

0 λ2 0

0 0 1
λ1λ2

 ,
with λ1 > λ2 > 1 > 1

λ1λ2
.

We form the semi-direct product Z3 oS Z and embed this group in Sol4m,n

as a lattice. Let P be a matrix with det(P ) = 1 diagonalizing S:

PSP−1 = ∆ = Eln(λ2),

where the last equality follows from λθ2 = λ1.
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With such P and ∆ for S, we define a map

φ : Z3 oS Z −→ Sol4m,n (3.20)

(n, u) 7−→ (Pn, u ln(λ2))

The equality PSP−1 = ∆ = Eln(λ2) guarantees that φ is a homomorphism.

The image is a lattice of Sol4m,n, and it maps the generators as follows.

e1 7→ t1 = Pe1

e2 7→ t2 = Pe2 (3.21)

e3 7→ t3 = Pe3

e4 7→ t4 = (0, ln(λ2)).

We denote image of Z3 oS Z as ΓS :

ΓS = 〈t1, t2, t3, t4〉 ⊂ Sol4m,n.

Notation 3.5.3. A lattice of Sol4m,n generated by t1, t2, t3, t4 of the form in

assignment (3.21) is a standard lattice of Sol4m,n.

Conversely, we show any lattice of Sol4m,n is isomorphic to such a ΓS as the

following proposition shows.

Proposition 3.5.4 (cf. Proposition 3.2.5). There is a one-one correspondence

between the isomorphism classes of Sol4m,n-lattices and the conjugacy classes of

S ∈ SL(3,Z) with three distinct real eigenvalues λ1 > λ2 > 1 > 1
λ1λ2

such that

λθ2 = λ1. Therefore, any lattice of Sol4m,n is conjugate to ΓS , for some S, by an

inner automorphism of Sol4m,n.

Proof. We show that any lattice Γ is conjugate to ΓS for some S. The intersec-

tion of Γ with the nilradical R3, Γ∩R3, is a lattice of R3, [32, Corollary 8.28].
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Let t1, t2, t3 ∈ R3 generate Γ ∩R3, and let {t1, t2, t3, t} generate Γ. Then t is

of the form (a, ln(λ2)), for some λ2. We can assume that λ2 > 1 by taking the

inverse of t, if needed. Conjugation by ((Eln(λ2) − I)−1a, 0) maps this lattice

to

Γ = 〈(t1, 0), (t2, 0), (t3, 0) (0, ln(λ2))〉.

Define P by Pei = ti, for i = 1, 2, 3, and set S = P−1Eln(λ2)P . As Eln(λ2)

acts on 〈t1, t2, t3〉 as an integral matrix, S ∈ SL(3,Z) necessarily. Notice

that, in case det(P ) < 0, we can make it positive by taking −t1 in place

of t1. Furthermore, we can assume that det(P ) = 1. For conjugation by

(0, 1
3
√

det(P )
I) ∈ Aff(Sol4m,n) maps this lattice to another which has det(P ) = 1.

Therefore Γ is conjugate to ΓS in Aff(Sol4m,n).

We now show the isomorphism class statement. If S ′ = BSB−1 with

B ∈ SL(3,Z), then an isomorphism between Z3 oS Z and Z3 oS′ Z is given by

ei → Bei for i = 1, 2, 3 and e4 → e4.

Conversely, suppose two lattices of Sol4m,n are isomorphic. We may assume

these lattices are of the form ΓS and ΓS′ . We have an isomorphism

φ : Z3 oS Z −→ Z3 oS′ Z.

Since Z3 is the discrete nil-radical of both groups, φ restricts to an isomorphism

on the Z3 factors, say B ∈ GL(3,Z). Also, φ induces an isomorphism ε on the

quotients, so that ε = ±1. Therefore, φ is of the form

φ(x,m) = (Bx + η(x,m), εm).

Evidently, η is independent of x. So η(x,m) = η(m). Then applying φ to
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(0, 1)(x, 0)(0,−1) ∈ Z3 oS Z in two different ways, we get

φ((0, 1)(x, 0)(0,−1)) = φ(Sx, 0)

= (B(Sx), 0)

φ(0, 1)φ(x, 0)φ(0,−1) = (η(1), ε)(Bx, 0)(η(1), ε)−1

= (S ′εBx, 0)

Thus, BSx = S ′εBx for every x, and we have S ′ε = BSB−1. Now, ε = +1 is

forced since, by definition, both S and S ′ have two eigenvalues greater than

1, and one eigenvalue less than 1. Furthermore, by taking −B in place of B

if needed, we can assume that B ∈ SL(3,Z). Thus, S and S ′ are conjugate in

SL(3,Z).

3.5.5 (Classification of Sol4m,n Crystallographic Groups).

Proposition 3.5.6. Any crystallographic group Π of Sol4m,n can be conjugated

in Aff(Sol4m,n) to Π ⊂ Sol4m,n o Z3
2 so that:

(1) We have Π ∩ Sol4m,n = ΓS . That is, the translation subgroup of Π is a

standard lattice of Sol4m,n, generated by t1, t2, t3, and t4 as in assignment

(3.21) in Subsection 3.5.1 .

(2) The holonomy group Φ is generated by at most three elements of Z3
2, and

therefore Π is generated by 〈t1, t2, t3, t4〉, and at most three isometries of the

form (ta1
1 ta2

2 ta3
3 ta4

4 , A), for A ∈ Z3
2 and real numbers ai.

Proof. Any maximal compact subgroup of Aut(Sol4m,n) is conjugate to Z3
2 ⊂

Aut(Sol4m,n) (see Proposition 3.1.5). Observe that the affine conjugations in

Proposition 3.5.4 leave this maximal compact subgroup Z3
2 fixed, while putting

the lattice in standard form.
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We will assume any Sol4m,n crystallographic group is embedded in Sol4m,n o

Z3
2 as in Proposition 3.5.6. In fact, we will see that the group Z3

2 can never

occur as a holonomy group of a Sol4m,n crystallographic group. In fact, the

maximal holonomy of a Sol4m,n crystallographic group is Z2
2.

Notation 3.5.7. Let

τ1 =


−1 0 0

0 1 0

0 0 1

 , τ2 =


1 0 0

0 −1 0

0 0 1

 , τ3 =


1 0 0

0 1 0

0 0 −1

 ,
denote the automorphisms generating the maximal compact subgroup Z3

2 of

Aut(Sol4m,n) (see Proposition 3.1.5).

Note that Π∩R3 = 〈t1, t2, t3〉 is a lattice of R3. Denote the quotient Π/Z3

by ZΦ so that we have the diagram:

1 1y y
Z3 Z3y y

1 −−−→ ΓS −−−→ Π −−−→ Φ −−−→ 1y/Z3

y/Z3

∥∥∥
1 −−−→ Z −−−→ ZΦ −−−→ Φ −−−→ 1y y

1 1

(3.22)

Note that the quotient Z in the above diagram is generated by t4, not

t3, as was the case for Sol3. First we will classify all possible ZΦ, as well as

abstract kernels ϕ : ZΦ → GL(3,Z), which can arise as quotients of Sol4m,n

crystallographic groups. The holonomy Φ is a subgroup of Z3
2 = 〈τ1, τ2, τ3〉.
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Lemma 3.5.8 (cf. Lemma 3.2.8). For ᾱ = (ta4
4 , A) ∈ ZΦ, a4 = 0 or 1

2

(mod Z).

Proof. Note that Ā = +1 for all A ∈ Z3
2. Thus,

(ta4
4 , A)2 = (t2a4

4 , I).

For this to be in Z = 〈t4〉, a4 = 0 or 1
2

is forced.

Lemma 3.5.9 (cf. Lemma 3.2.10). If ZΦ is an extension of Z by Φ that is

the quotient of a crystallographic group Π of Sol4m,n, then ZΦ cannot contain

an element of the form ᾱ = (t0
4,±τi).

Proof. Recall that the lattice of Π is of the form ΓS . The trace of S must be

integral:

λ1 + λ2 +
1

λ1λ2

∈ Z.

Note that the matrix

ϕ(t4)ϕ(ᾱ) = Sϕ(ᾱ) = P−1∆PP−1(±τi)P = P−1∆(±τi)P.

must be integral, and so must have integral trace. We will argue the claim for

±τ1. Then,

∓λ1 ± λ2 ±
1

λ1λ2

∈ Z.

Of course, the Rational Zero Theorem implies that all eigenvalues of S must

be irrational. From the above equations, we infer that 2λ1 ∈ Z, so that λ1 is

rational, a contradiction. Therefore, ZΦ cannot contain (t0
4,±τ1). The proof

of the claim for ±τ2 and ±τ3 is identical.

Remark 3.5.10. From Theorem 3.2.16, an element of H1(Φ; Coker(I − S))

fixes the exponents on the ti in Proposition 3.5.6, and hence defines an abstract
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kernel Φ→ Out(ΓS). As ΓS has trivial center, H2(Φ;Z(ΓS)) is trivial, and we

have a unique (up to isomorphism) extension of ΓS by Φ, which we can also

view as

1→ Z3 → Π → ZΦ → 1.

Proposition 3.5.11. Let Π = 〈ΓS , (ta1
1 ta2

2 ta3
3 t

1
2
4 , A)〉 be an extension in Theo-

rem 3.2.16 defining a Sol4m,n crystallographic group with lattice ΓS = 〈t1, t2, t3, t4〉.

Then H1(Φ; Coker(I − S)) = 0. Therefore, there exists tv11 tv22 tv33 which conju-

gates (ta1
1 ta2

2 ta3
3 t

1
2
4 , A) to (t

1
2
4 , A), and leaves ΓS invariant.

Proof. Note that A has order 2 and Ā = 1. Further, ϕ(ᾱ) = P−1
√

∆AP . As

I −
√

∆A is non-singular,

P−1(I −
√

∆A)P = I − P−1
√

∆AP = I − ϕ(ᾱ)

is non-singular and we may take v = (I − ϕ(ᾱ))−1a. Then our v conjugates

(t
1
2
3 , A) to (ta1

1 ta2
2 ta3

3 t
1
2
4 , A). It remains to show v ∈ (I −S)−1Z3. First observe

that ϕ(ᾱ) is a square root of S.

ϕ(ᾱ)2 = P−1
√

∆A
√

∆AP = P−1∆A2P (since A is diagonal)

= P−1∆P = S.

Now

(I − S)v = (I + ϕ(ᾱ))(I − ϕ(ᾱ))v = (I + ϕ(ᾱ))a ∈ Z3.

Lemma 3.5.12 (cf. Lemma 3.2.20). When α = (ta1
1 ta2

2 ta3
3 ta4

4 , A) ∈ Π satisfies

a4 = 1
2
, γα is infinite order for all γ ∈ ΓS .

Proof. Let pr : Sol4m,n → R denote the quotient homomorphism of Sol4m,n by

its nil-radical R3. Write γ ∈ ΓS as tn1
1 tn2

2 tn3
3 tn4

4 . Application of pr to (γα)2
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yields

pr(γα)2 = 2n4 + 1,

from which we infer γα is not torsion.

Theorem 3.5.13 (Classification of Sol4m,n-geometry). The following is a com-

plete list of crystallographic groups of Sol4m,n. In each case, we give Φ, ZΦ, the

abstract kernel ϕ : ZΦ → GL(3,Z) (which gives the action of ZΦ on 〈t1, t2, t3〉),

equations defining a =


a1

a2

a3

, and b =


b1

b2

b3

 from H1(Φ; Coker(I − S)),

and whether Π is torsion-free. Note that ϕ(t4) = S by definition, where

S ∈ SL(3,Z) has three distinct real eigenvalues

λ1 > λ2 > 1 >
1

λ1λ2

such that λθ2 = λ1.

(0) Φ = trivial

• Π = ΓS

• Torsion-free

(1a) Φ = Z2: A = τi, ZΦ = Z = 〈t4, ᾱ = (t
1
2
4 , A)〉.

• ϕ(ᾱ) = K is a square root of S, with one negative eigenvalue.

• H1(Φ; Coker(I − S)) is trivial so that a = 0.

• Π = 〈ΓS , α = (t
1
2
4 , A)〉 = Z3 oK Z

• Torsion-free
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(1b) Φ = Z2: A = −τi, ZΦ = Z = 〈t4, ᾱ = (t
1
2
4 , A)〉.

• ϕ(ᾱ) = K is a square root of S, with two negative eigenvalues.

• H1(Φ; Coker(I − S)) is trivial so that a = 0.

• Π = 〈ΓS , α = (t
1
2
4 , A)〉 = Z3 oK Z

• Torsion-free

(2a) Φ = Z2: A = −I, ZΦ = Z× Z2 = 〈t4, ᾱ = (t0
4, A)〉.

• ϕ(ᾱ) = −I

• H1(Φ; Coker(I−S)) = Coker(I−S)
2Coker(I−S)

⊆ Z3
2. That is, all a with (I−S)a ≡

0, taken modulo 2a.

• Π = 〈ΓS , α = (ta1
1 ta2

2 ta3
3 t0

4, A)〉

• Always has torsion

(2b) Φ = Z2: A = −I, ZΦ = Z = 〈t4, ᾱ = (t
1
2
4 , A)〉.

• ϕ(ᾱ) = K is a square root of S, with three negative eigenvalues.

• H1(Φ; Coker(I − S)) is trivial so that a = 0.

• Π = 〈ΓS , α = (t
1
2
4 , A)〉 = Z3 oK Z

• Torsion-free

(3a) Φ = Z2 × Z2: A = −I, B = τi,

ZΦ = Z× Z2 = 〈t4, ᾱ = (t0
4, A), β̄ = (t

1
2
4 , B)〉.

• ϕ(ᾱ) = −I, ϕ(β̄) = K is a square root of S, with one negative eigen-

value.

• H1(Φ; Coker(I−S)) ∼= Coker(I−K)
2Coker(I−K)

⊆ Z3
2. That is, all a with (I−K)a ≡

0, taken modulo 2a.
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• Π = 〈ΓS , α = (ta1
1 ta2

2 ta3
3 t0

4, A), β = (t
1
2
4 , B)〉

• Always has torsion

(3b) Φ = Z2 × Z2: A = −I, B = −τi,

ZΦ = Z× Z2 = 〈t4, ᾱ = (t0
4, A), β̄ = (t

1
2
4 , B)〉.

• ϕ(ᾱ) = −I, ϕ(β̄) = K is a square root of S, with two negative eigen-

values.

• H1(Φ; Coker(I−S)) ∼= Coker(I−K)
2Coker(I−K)

⊆ Z3
2. That is, all a with (I−K)a ≡

0, taken modulo 2a.

• Π = 〈ΓS , α = (ta1
1 ta2

2 ta3
3 t0

4, A), β = (t
1
2
4 , B)〉

• Always has torsion

Proof. Straightforward application of Lemmas 3.5.8 and 3.5.9 show the various

possibilities for ZΦ. In particular, there is no ZΦ with Φ = Z3
2, as any such

ZΦ cannot occur as the quotient of a Sol4m,n crystallographic group by Lemma

3.5.9.

In cases (1a), (1b), and (2b), recall from the proof of Proposition 3.5.11

that

ϕ(ᾱ) = P−1
√

∆AP

is a square root of S. When A = τi, −τi, and −I, then ϕ(ᾱ) has one, two, and

three negative eigenvalues, respectively. We denote ϕ(ᾱ) by K. Proposition

3.5.11 shows that we may take a = 0 in cases (1a), (1b), and (2b). That is,

H1(Φ; Coker(I − S)) is trivial in these cases.

In cases (2a), the cocycle condition on a vanishes since

(I + ϕ(ᾱ)) = I − I = 0.
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The coboundaries are

(I − ϕ(ᾱ))a = 2a,

for a ∈ Coker(I − S). Therefore,

H1(Φ; Coker(I − S)) =
Coker(I − S)

2Coker(I − S)
⊆ Z3

2,

where the last inclusion follows from the fact that H1(Φ; Coker(I − S)) is

generated by at most 3 elements of order 2.

In cases (3a) and (3b), we can set b = 0 by Proposition 3.5.11. The

commutator cocycle condition then forces a ∈ Coker(I−K), so that (I−K)a ≡

0. Having fixed b = 0, the coboundaries are

(I − ϕ(ᾱ))a = 2a,

for a ∈ Coker(I −K). Hence,

H1(Φ; Coker(I − S)) =
Coker(I −K)

2Coker(I −K)
⊆ Z3

2.

Lemma 3.5.12 shows that (1a), (1b), and (2b) all are torsion-free. Indeed,

Π is isomorphic to Z3 oK Z in these cases. In case (2a), α2 = e, and cases

(3a) and (3b) also have torsion, as they contain a type (2a) subgroup.

Remark 3.5.14. The quotient of Sol4m,n by a crystallographic group Π of type

(0), (1a), (1b), or (2b) is the mapping torus of a linear self-diffeomorphism

of T 3. These were known to be all the infra-solvmanifolds of Sol4m,n [23]. On

the other hand, our classification here includes the crystallographic groups

with torsion, and shows that Z3
2 cannot occur as the holonomy of any crystal-

lographic group of Sol4m,n.
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4 Curvature of 4-Dimensional Infra-Solvmanifolds

Depending on choice of left invariant metric, a 4-dimensional solvable geometry

can have different isometry groups and Ricci signatures. Here are the possible

Ricci signatures on the 4-dimensional solvable geometries of the form R3 o R

(all but Sol1
4.) [21]:

G Possible Ricci signatures

R4 (0, 0, 0, 0)

Nil3 × R (0,+,−,−)

Nil4 (0,+,−,−), (+,+,−,−), (+,−,−,−)

Sol3 × R (0, 0, 0,−), (0,+,−,−), (+,+,−,−), (+,−,−,−)

Sol4m,n (0, 0, 0,−), (0,+,−,−), (+,+,−,−), (+,−,−,−)

Sol0
4 (0, 0, 0,−), (0,+,−,−)

Table 4.1: Ricci signatures

Suppose we only consider left invariant metrics on G that induce a partic-

ular Ricci signature. This may place restrictions on the size of the isometry

group, and hence the compact isometric quotients of G may not account for

all infra-solvmanifolds of G. Given an infra-solvmanifold M of G, a Ricci

signature can be realized on M if there is a left invariant metric on G with

prescribed Ricci signature such that M = Π\G, for some Π ⊂ Isom(G). We

will only consider 4-dimensional solvable geometries of the form R3 o R. As
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there is only one possible Ricci signature for metrics on Nil3 × R, and Sol0
4

has no infra-solvmanifolds (though it has compact forms), we examine which

Ricci signatures can be realized on infra-solvmanifolds with Nil4, Sol4m,n, and

Sol3 × R geometry.

4.1 Ricci Curvature

Let M be a Riemannian n-manifold. First, we recall the definition of the

Ricci quadratic form r and Ricci transformation r̂, which are both measures

of curvature at a point p ∈M . We will use Milnor’s definitions [27].

Definition 4.1.1. The Ricci quadratic form at p is a real valued quadratic

function on Tp(M). Fix an orthonormal basis (e1, . . . , en) of Tp(M). For

v ∈ Tp(M),

r(v) =
n∑
i=1

〈Rvei
(v), ei〉.

If v is a unit vector, then r(v) is the Ricci curvature in the direction of

v. It is n − 1 times the average of the sectional curvatures of the 2-planes

containing v.

Definition 4.1.2. The Ricci transformation at p ∈M is the self-adjoint map

r̂ : Tp(M)→ Tp(M) defined by

r̂(v) =
n∑
i=1

Reiv(ei).

The Ricci quadratic form r and the Ricci transformation r̂ are related by

the identity

〈r̂(v), v〉 = r(v).
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Definition 4.1.3. The eigenvalues of the Ricci transformation r̂ at p are the

principal Ricci curvatures of the metric at p.

Definition 4.1.4. The collection of signs of the principal Ricci curvatures at

p is the Ricci signature of the metric at p.

4.2 Computation of Ricci Signatures for Metric Lie Al-

gebras

When G is a Lie group, any left invariant metric can be specified by declaring

a basis (v1, v2, . . . , vn) of the tangent space at the identity Te(G) ∼= g to be

orthonormal. We use left translation by g to propagate the metric across the

tangent bundle: We declare `g∗v1, `g∗v2, . . . , `g∗vn to be an orthonormal basis

for Tg(G).

Proposition 4.2.1 (cf. [34], Proposition 1.3). There is a one-one correspon-

dence between the set of all left invariant metrics on a Lie group and the group

of upper triangular matrices with positive diagonal entries.

Proof. By choosing a basis for g, we can identify g with Rn, so that the stan-

dard basis vectors e1, . . . , en form an orthonormal basis for g. Any other metric

on G can be specified by declaring Ae1, . . . Aen to be an orthonormal basis,

for A ∈ GL(n,R). We obtain the same metric if and only if A is orthogonal.

By the Gram-Schmidt process, A can be written uniquely as KB, where K is

orthogonal, and B is an upper triangular matrix with positive entries.

Left translation by g ∈ G is an isometry carrying e ∈ G to g. In particular,

the Ricci signature at any point g ∈ G is the same as the Ricci signature

at the identity. So we may speak of the Ricci signature of the left invariant
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metric. The Ricci signature of a left invariant metric can be computed from

the structure of the Lie algebra g and the orthonormal basis v1, v2, . . . , vn of g

[27].

Notation 4.2.2. Suppose a metric Lie algebra g has a codimension 1 ideal

u. Let b be a unit vector orthogonal to u, and let L denote the restriction of

ad(b) to u:

L(u) = [b, u] .

Let S be the self-adjoint transformation 1
2
(L + L∗). The ideal u may also be

thought of as a metric Lie algebra; let us denote the Riemannian connection

for u by ∇.

Lemma 4.2.3 ([27, Lemma 5.5]). For any u, v ∈ u, we have the following

expressions for ∇:

∇bb = 0 and ∇bu = 1
2
(L− L∗)u

∇ub = −Su and ∇uv = ∇uv + 〈Su, v〉b.

Proposition 4.2.4 ([9]). Suppose a Lie algebra g has an ideal u of codimension

1. Assume that u is abelian, so that the Lie bracket and ∇ vanish on u, as

well as tr(L) = 0, so that tr(S) = 0. Then, for u ∈ u, we have the following

formula for the Ricci transformation:

r̂(u) =
1

2
[L,L∗] (u) =

1

2
(LL∗ − L∗L)(u).
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Proof. We compute, for an orthonormal basis e1, . . . , en of g, with en = b,

r̂(u) =

(
n−1∑
i=1

∇[ei,u]ei −∇ei
∇uei +∇u∇ei

ei

)
+∇[b,u]b−∇b∇ub+∇u∇bb

=

(
n−1∑
i=1

−〈Su, ei〉∇ei
b

)
+

(
n−1∑
i=1

〈Sei, ei〉∇ub

)
− SLu+ 1

2
(L− L∗)Su

=

(
n−1∑
i=1

〈Su, ei〉Sei

)
− tr(S)Su− SLu+ 1

2
(L− L∗)Su

= SSu− SLu+ 1
2
(L− L∗)Su

= 1
4
(L+ L∗)(L+ L∗)u− 1

2
(L+ L∗)Lu+ 1

4
(L− L∗)(L+ L∗)u

= 1
2

(LL∗ − L∗L)u = 1
2

[L,L∗]u.

Proposition 4.2.5 ([27, Lemma 2.3]). Suppose a Lie algebra g has an ideal

u of codimension 1. Let b be a unit vector orthogonal to u. Then

r̂(b) = −tr(S2)b,

where S2 is the self-adjoint transformation 1
2
(L+ L∗).

Proof. Take an orthonormal basis e1, . . . , en of g, with en = b.

r̂(b) =

(
n−1∑
i=1

∇[ei,b]ei −∇ei
∇bei +∇b∇ei

ei

)
+∇[b,b]b−∇b∇bb+∇b∇bb

=
n−1∑
i=1

∇−Lei
ei −∇ei

1
2
(L− L∗)ei + 〈Sei, ei〉∇bb

=
n−1∑
i=1

〈−SLei, ei〉b− 〈Sei, 1
2
(L− L∗)ei〉b

=
(
−tr(SL)− 1

2
tr(SL− SL∗)

)
b.
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Now we have, using that tr(L) = tr(L∗), tr(LL∗) = tr(L∗L),

−tr(SL)− 1
2
tr(SL− SL∗) = tr

(
−1

2
LL− 1

2
L∗L− 1

4
LL− 1

4
L∗L+ 1

4
LL∗ + 1

4
L∗L∗

)
= −1

2
tr(LL)− 1

2
tr(L∗L).

Now note that

−tr(S2) = −1
4

(tr(LL) + tr(L∗L) + tr(LL∗) + tr(L∗L∗))

= −1
4

(2tr(LL) + 2tr(L∗L)) = −1
2
tr(LL)− 1

2
tr(L∗L).

4.3 Ricci Signatures of the 4-Dimensional Solvable Ge-

ometries

From here on, we specialize to the case when g is the Lie algebra of a 4-

dimensional solvable geometry of the form R3 oψ R. Note that R3 oψ R is

completely determined by the matrix ψ(1):

R : ψ(1) =


0 0 0

0 0 0

0 0 0

 Nil3 × R : ψ(1) =


0 1 0

0 0 0

0 0 0


Nil4 : ψ(1) =


0 1 0

0 0 1

0 0 0

 Sol3 × R : ψ(1) =


−1 0 0

0 1 0

0 0 0


Sol0

4 : ψ(1) =


1 0 0

0 1 0

0 0 −2

 Sol4m,n : ψ(1) =


θ 0 0

0 1 0

0 0 −(1 + θ)


(4.1)
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Let e1, e2, e3, e4 denote the standard basis vectors for g ∼= u o R:

e1 =


1

0

0

0

 , e2 =


0

1

0

0

 , e3 =


0

0

1

0

 , e4 =


0

0

0

1

 .

Any left-invariant metric on G can be uniquely specified by an upper triangular

matrix:

B′ =


b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44

 , (4.2)

with b11, b22, b33, b44 > 0, and declaring the vectors vi = B′ei to be an orthonor-

mal basis for g. Note that v1,v2,v3 form an orthonormal basis of the ideal

u = R3 of g, while v4 is a unit vector orthogonal to this ideal.

Let L denote the transformation adv4 restricted to the ideal u = R3 =

〈v1,v2,v3〉, and set

B =


b11 b12 b13

0 b22 b23

0 0 b33

 . (4.3)

With respect to the basis (vi), note that L has matrix form

B−1ψ(b44)B.

By a theorem of Gordon and Wilson [13], with any left-invariant metric on

a 4-dimensional solvable geometry,

Isom(G) ⊆ GoK ⊂ Aff(G),
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where K is a maximal compact subgroup of Aut(G). That is, the group of

isometries fixing the identity, Isome(G), must be a subgroup of K ⊂ Aut(G).

Given α ∈ Aut(G), let α∗ denote the induced automorphism of g. Recall that

we have identified g with R4 by taking the standard basis for g ∼= R3 o R, and

so we may view α∗ as an element of GL(4,R). Of course, Aut(G) ∼= Aut(g).

Lemma 4.3.1. Suppose an orthonormal basis of g is specified by such a matrix

B′ in assignment (4.2). Let α∗ ∈ Aut(g). Then α∗ defines an isometry of g if

and only if α∗ is orthogonal when expressed in terms of the basis

vi = B′ei.

That is,

B′−1
α∗B′ ∈ O(4,R).

We will restrict our attention to the ideal R3 of g ∼= R3 o R. This ideal is

the nilradical of g, and so we have the restriction homomorphism

p : Aut(g)→ Aut(R3) = GL(3,R).

If α∗ ∈ Aut(g) is an isometry of g, then α∗ must restrict to an isometry of the

ideal R3 = 〈v1,v2,v3〉. Therefore,

B−1p(α∗)B ∈ O(3,R).

The condition B−1p(α∗)B ∈ O(3,R) will put rather strict restrictions on

B, for certain choices of p(α∗) in the image of p(Aut(g)). This in turn will

place restrictions on the possible Ricci signatures. Recall in our discussion of
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the crystallographic groups of Sol4m,n that we have fixed the notation:

τ1 =


−1 0 0

0 1 0

0 0 1

 , τ2 =


1 0 0

0 −1 0

0 0 1

 , τ3 =


1 0 0

0 1 0

0 0 −1

 .
We also will set

A =


0 −a 0
1
a

0 0

0 0 1

 .
Lemma 4.3.2.

(1) The condition B−1(±τ1)B ∈ O(3,R) forces b12 = b13 = 0.

(2) The condition B−1(±τ2)B ∈ O(3,R) forces b12 = b23 = 0.

(3) The condition B−1(±τ3)B ∈ O(3,R) forces b13 = b23 = 0.

(4) The condition B−1(±A)B ∈ O(3,R) forces b12 = b13 = b23 = 0.

Proof. For (1),

B−1(±τ1)B = ±


−1 −2b12

b11
−2b13

b11

0 1 0

0 0 1

 ∈ O(3,R)

forces b12 = b13 = 0.

For (2),

B−1(±τ2)B = ±


1 2b12

b11

2b12b23
b11b22

0 −1 −2b23
b22

0 0 1

 ∈ O(3,R)

forces b12 = b23 = 0.

For (3),

B−1(±τ3)B = ±


1 0 2b13b22−2b12b23

b11b22

0 1 2b23
b22

0 0 −1

 ∈ O(3,R)
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forces b13 = b23 = 0.

For (4), we compute that

B−1(±A)B = ±


− b12
ab22

− b212
ab11b22

− ab22
b11

− b12b13
ab11b22

− ab23
b11

+ −b13b22+b12b23
b11b22

b11
ab22

b12
ab22

b13
ab22
− b23

b22

0 0 1

 .
As A has positive determinant, this matrix must be in SO(3,R). As the upper

2 × 2 diagonal block must be in SO(2,R), we must have b12 = 0. From the

(1, 3) and (2, 3) entries of this matrix, we obtain the equations

−b13 − ab23 = 0,

b13 − ab23 = 0,

which force b13 = b23 = 0, as well.

Definition 4.3.3. Given an infra-solvmanifold M of G, a Ricci signature can

be realized on M if there is a left invariant metric on G with prescribed Ricci

signature such that M = Π\G, for some Π ⊂ Isom(G).

Suppose a basis of the Lie algebra g is specified by B′ as in assignment

(4.2). Recall that L denotes the transformation adv4 restricted to the ideal

u = R3 = 〈v1,v2,v3〉. With respect to this basis (vi), note that L has matrix

form

N = B−1ψ(b44)B.

By Lemma 4.2.5,

r(v4) = −tr(S2) < 0.

We claim that tr(S2) > 0 for all G of the form R3 o R, except for the trivial

case G = R4. To see this, simply note that the matrix form of S is 1
2
(N+NT ),

which is a symmetric matrix. Thus, the v4 direction always corresponds to
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negative Ricci curvature, and we always put it as the last sign in the Ricci

signature notation:

(∗, ∗, ∗,−).

By Proposition 4.2.4, with respect to the basis v1,v2,v3 of R3, the matrix

form of r̂, restricted to R3, is given by

r̂
∣∣
R3 =

1

2

[
N,NT

]
=

1

2
(NNT −NTN).

To obtain the Ricci signature of the metric with basis given by B′, we need to

compute the signs of the eigenvalues of r̂
∣∣
R3 .

4.3.4 (Nil4). The crystallographic groups Π of Nil4, and their associated infra-

nilmanifolds Π\Nil4 are classified in [7]. The maximal holonomy of an infra-

nilmanifold of Nil4 is Z2
2. With standard basis for the Lie algebra of Nil4,

Isom(Nil4) = Nil4 o Z2
2,

where Z2
2 is as defined in equation (2.1) in section 2.3. Note that Z2

2 consists

of diagonal matrices.

Theorem 4.3.5. If M is an infra-nilmanifold of Nil4, then any of the three

Ricci signatures (0,+,−,−), (+,+,−,−), (+,−,−,−) can be realized on M .

Proof. Declare the basis of the Lie algebra of Nil4 given by

B′ =


b11 0 0 0

0 b22 0 0

0 0 b33 0

0 0 0 b44

 ,

to be orthonormal. That is, declare vi = B′ei to be orthonormal As B′ is
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diagonal,

Isom(Nil4) = Nil4 o Z2
2,

where Z2
2 is the maximal compact subgroup in equation (2.1) in section 2.3,

regardless of the diagonal entries of B′.

Recall that with respect to the basis v1,v2,v3, the matrix form of r̂ re-

stricted to R3 is given by

r̂
∣∣
R3 =

1

2

[
N,NT

]
=

1

2
(NNT −NTN), where N = B−1ψ(b44)B.

We compute that the eigenvalues of this matrix are{
b2

22b
2
44

2b2
11

,−b
2
33b

2
44

2b2
22

,
1

2

(
−b

2
22b

2
44

b2
11

+
b2

33b
2
44

b2
22

)}
.

By choosing different values for b11, b22, b33, and b44, the third eigenvalue can be

positive, negative, or vanishing. Therefore, any of the three Ricci signatures

(0,+,−,−), (+,+,−,−), (+,−,−,−) can be realized on M .

4.3.6 (Sol4m,n). Recall that we have the family of Lie algebras R3 oψ(t) R, where

ψ(1) =


θ 0 0

0 1 0

0 0 −(1 + θ)

 .
The parameter θ > 1 corresponds precisely to the isomorphism type of the

Lie algebra. Let an orthonormal basis of g be specified by B′ in assignment

(4.2). To realize metrics on certain infra-solvmanifolds of Sol4m,n, we will see

that B must have a certain form. For these various forms of B, we record the

eigenvalues of r̂
∣∣
R3 in Table 4.2.
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B Eigenvalues of r̂
∣∣
R3 =

1
2

[
N,NT

]
= 1

2
(NNT −NTN), where N = B−1ψ(b44)B

b11 0 0

0 b22 b23

0 0 b33

 {
0,− b23

√
b222+b223b

2
44(2+θ)2

2b222
,
b23
√
b222+b223b

2
44(2+θ)2

2b222

}

b11 0 b13

0 b22 0

0 0 b33

 {
0,− b13

√
b211+b213b

2
44(1+2θ)2

2b211
,
b13
√
b211+b213b

2
44(1+2θ)2

2b211

}

b11 b12 0

0 b22 0

0 0 b33

 {
0,− b12

√
b211+b212b

2
44(−1+θ)2

2b211
,
b12
√
b211+b212b

2
44(−1+θ)2

2b211

}

Table 4.2: Eigenvalues of r̂
∣∣
R3 for Sol4m,n

Lemma 4.3.7. Let

M = Π\Sol4m,n

for Π ⊂ Sol4m,noAut(Sol4m,n) be an infra-solvmanifold of Sol4m,n, diffeomorphic

to an infra-solvmanifold M ′ = Π ′\Sol4m,n of type (1a) (respectively, (1b)) in

Theorem 3.5.13.

If the image of the holonomy of Π ′ in Aut(R3) is generated by τi (respec-

tively, −τi), then the image of the holonomy of Π in Aut(R3) must also be

generated by τi (respectively, −τi).

Proof. Since Π and Π ′ are isomorphic, Theorem 1.1.5 implies that Π and Π ′

are conjugate in Aff(Sol4m,n). Hence the holonomy groups must be conjugate

in Aut(Sol4m,n). But the image of Aut(Sol4m,n) (and hence also that of Aut(g))

in Aut(R3) under restriction is the group of diagonal matrices (R∗)3, and ±τi

is central in (R∗)3.
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Theorem 4.3.8. For each type of torsion-free Sol4m,n crystallographic group

Π in Theorem 3.5.13, we list the Ricci signatures which can be realized on the

infra-solvmanifold Π\Sol4m,n.

Infra-Sol4m,n Holonomy Realizable Ricci Signatures

(0) {e} (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

(1a) Z2 (0,0,0,-), (0,+,-,-)

(1b) Z2 (0,0,0,-), (0,+,-,-)

(2b) Z2 (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

Table 4.3: Realizable Ricci signatures on infra-Sol4m,n manifolds

Proof. In cases (0) and (2b), Lemma 4.3.2 does not provide any restriction on

B. Of course, Table 4.2 shows that (0, 0, 0,−) and (0,+,−,−) are realizable

on M . In fact, we can explicitly realize the Ricci signature (+,+,−,−) with

B′ =


b11 0 b13 0

0 b22 b23 0

0 0 b33 0

0 0 0 b44

 .

With this choice of B′, the determinant of r̂
∣∣
R3 = 1

2
(NNT −NTN) is:

−b
2
13b

2
23b

6
44(−1 + θ)2(2 + θ)2(1 + 2θ)2

8b2
11b22

2 < 0.

Since θ > 1, when we take b13 and b23 to be nonzero, the three eigenvalues of

r̂
∣∣
R3 must have signs (+,+,−), as the trace of 1

2
(NNT −NTN) vanishes. On
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the other hand, we realize the Ricci signature (+,−,−,−) with

B′ =


b11 b12 b13 0

0 b22 0 0

0 0 b33 0

0 0 0 b44

 .

With this choice of B′, the determinant of r̂
∣∣
R3 = 1

2
(NNT −NTN) is:

b2
12b

2
13b

6
44(−1 + θ)2(2 + θ)2(1 + 2θ)2

8b4
11

> 0.

When b12 and b13 are nonzero,the eigenvalues of r̂
∣∣
R3 must have signs (+,−,−),

as the trace of 1
2
(NNT −NTN) vanishes.

By Lemma 4.3.7, the image of the holonomy in Aut(R3) of any infra-

solvmanifold diffeomorphic to an infra-sovlmanifold of type (1a) (or (1b)) is

generated by τi (or −τi).

In case (1a), when the holonomy of Π is generated by τ1, τ2, or τ3, Lemma

4.3.2 forces b12 = b13 = 0, b12 = b23 = 0, or b13 = b23 = 0, respectively. Table

4.2 shows that the eigenvalues of r̂
∣∣
R3 can only have signs (0, 0, 0) or (0,+,−).

Likewise, in case (1b), when the holonomy of Π is generated by −τ1, −τ2,

or −τ3, Lemma 4.3.2 forces b12 = b13 = 0, b12 = b23 = 0, or b13 = b23 = 0,

respectively. Again, Table 4.2 shows that the eigenvalues of r̂
∣∣
R3 can only have

signs (0, 0, 0) or (0,+,−). Consequently, in both cases (1a) and (1b), only the

Ricci signatures (0, 0, 0,−) and (0,+,−,−) can be realized on Π\Sol4m,n.

4.3.9 (Sol3×R). When G = Sol3×R, the image of Aut(g) under the restriction

homomorphism

Aut(g)→ Aut(R3),
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is the subgroup of GL(3,R) consisting of matrices of the form[
A 0

0 k

]
,

where A is of the form

[
a 0

0 d

]
or

[
0 b

c 0

]
. See Proposition 3.1.7.

Lemma 4.3.10. Let

M = Π\(Sol3 × R)

and

M ′ = Π ′\(Sol3 × R)

for Π,Π ′ ⊂ Sol3×Ro Aut(Sol3×R) be two diffeomorphic infra-solvmanifolds

of Sol3 × R.

(1) If τi (respectively, −τi), for i = 1, 2, is in the image of the holonomy of

Π ′ in Aut(R3), then τj (respectively, −τj), for j = 1, 2, is in the image of the

holonomy of Π in Aut(R3).

(2) If τ3 (respectively, −τ3) is in the image of the holonomy of Π ′ in Aut(R3),

then τ3 (respectively, −τ3) is in the image of the holonomy of Π in Aut(R3)

(In our classification of Sol3×R crystallographic groups, we denoted τ3 by τ).

(3) If


0 1 0

−1 0 0

0 0 1

 is in the image of the holonomy of Π ′ in Aut(R3), then


0 −a 0
1
a

0 0

0 0 1

, for some real number a, is in the image of the holonomy of Π in

Aut(R3).

Proof. Since Π and Π ′ are isomorphic, Theorem 1.1.5 implies that Π and
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Π ′ are conjugate in Aff(Sol3 × R). Hence their holonomy groups must be

conjugate in Aut(Sol3 × R). Moreover, the image of the holonomy groups in

Aut(R3) must be conjugate in the image of Aut(Sol3 × R) in Aut(R3).

For (1), note that the only conjugates of τ1 and −τ1 in the image of Aut(Sol3×

R) in Aut(R3), are τ2 and −τ2, respectively.

For (2), note that τ3 is central in the image of Aut(Sol3 ×R) in Aut(R3), and

so has no conjugates.

For (3), note that in the image of Aut(Sol3 × R) in Aut(R3),


0 1 0

−1 0 0

0 0 1

 is

conjugate to any matrix of the form


0 −a 0
1
a

0 0

0 0 1

, a > 0.

Theorem 4.3.11. For each type of torsion-free Sol3×R crystallographic group

Π in Section 3.4, we list the Ricci signatures which can be realized on the infra-

solvmanifold Π\(Sol3 × R).
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Infra-Sol3 × R Holonomy Realizable Ricci Signatures

(0a) {e} (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

(0b), (0c) Z2 (0,0,0,-), (0,+,-,-)

(1a), (1b) Z2 (0,0,0,-), (0,+,-,-)

(1c) Z2
2 (0,0,0,-)

(2aa) Z2 (0,0,0,-), (0,+,-,-)

(2ad) Z2
2 (0,0,0,-), (0,+,-,-)

(2ba) Z2 (0,0,0,-), (0,+,-,-)

(2bb) Z2 (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

(2bc) Z2
2 (0,0,0,-), (0,+,-,-)

(3a) Z2 (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

(3ia), (3ib) Z2 (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

(3ic), (3id) Z2
2 (0,0,0,-), (0,+,-,-)

(4a) Z4 (0,0,0,-)

(5a), (5b) Z2
2 (0,0,0,-)

(6aia), (6aib) Z2
2 (0,0,0,-), (0,+,-,-)

(6aie) Z3
2 (0,0,0,-), (0,+,-,-)

(6ba) Z2
2 (0,0,0,-), (0,+,-,-)

(6bia), (6bib) Z2
2 (0,0,0,-), (0,+,-,-)

(6bic) Z2
2 (0,0,0,-), (0,+,-,-), (+,+,-,-), (+,-,-,-)

(6bid) Z3
2 (0,0,0,-), (0,+,-,-)

(7id) D4 (0,0,0,-)

Table 4.4: Realizable Ricci signatures on infra-(Sol3 × R) manifolds

Proof. We can view Sol3 × R as Sol4m,n with θ = −1. Therefore, Table 4.2

applies.

The image of the holonomy in Aut(R3) of any infra-solvmanifold of Sol3×R

diffeomorphic to an infra-solvmanifold of type (1c) must contain τ3 and either

τ1 or τ2, by Lemma 4.3.10. Then Lemma 4.3.2 forces the condition b12 = b13 =
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b23 = 0 on B. Now apply Table 4.2 with θ = −1. Therefore, only the Ricci

signature (0, 0, 0,−) can be realized.

By Lemma 4.3.10, the image of the holonomy in Aut(R3) of any infra-

solvmanifold diffeomorphic to an infra-solvmanifold of type (4a) or (7id)

contains an element of the form
0 −a 0
1
a

0 0

0 0 1

 .
Now Lemma 4.3.2 places the condition b12 = b13 = b23 = 0 on the matrix B.

Thus Table 4.2 shows that the eigenvalues of r̂
∣∣
R3 all vanish in these cases.

Therefore, only the Ricci signature (0, 0, 0,−) can be realized in cases (4a)

and (7id).

The image of the holonomy in Aut(R3) of any infra-solvmanifold of Sol3×R

diffeomorphic to an infra-solvmanifold of type (5a) must contain −τ3, τ1, and

τ2. For type (5b), the image of the holonomy in Aut(R3) must contain −τ3,

−τ1, and −τ2. In both cases, b12 = b13 = b23 = 0 by Lemma 4.3.2. Now apply

Table 4.2 with θ = −1 to see that only the Ricci signature (0, 0, 0,−) can be

realized.

The image of the holonomy in Aut(R3) of any infra-solvmanifold of Sol3×R

diffeomorphic to an infra-solvmanifold of type (2ad) or (2bc), must contain

both τ3, and −τ3. Then Lemma 4.3.2 forces the condition b13 = b23 = 0 on B.

We can make the signs of the eigenvalues of r̂
∣∣
R3 either (0,+,−) or (0, 0, 0),

by choice of b12 (Table 4.2 with θ = −1).

The argument for cases (0b), (0c), (1a), (1b), (2aa), and (2ba) is sim-

ilar. In these cases, any infra-solvmanifold of Sol3 × R diffeomorphic to an

infra-solvmanifold of the above types must have a holonomy element project-
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ing to τi or −τi in Aut(R3). Lemma 4.3.2 places conditions on B, and Table

4.2 with θ = −1 yields the desired result. In case (2bb), no condition on B is

forced, as the image of the holonomy in Aut(R3) is −I.

It remains to argue for cases (3a), (3ia), and (3ib). We claim that any

of the four Ricci signatures of Sol3 × R are realizable. In fact, with basis

B′ =


4 −3 b13 0

0 5 b13 0

0 0 b33 0

0 0 0 b44

 , (4.4)

we compute that

B′−1


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

B′ =


3
5

4
5

0 0
4
5
−3

5
0 0

0 0 1 0

0 0 0 −1

 ∈ O(4,R).

Thus, with any orthonormal basis of this form, the isometry group contains[
0 1

1 0

]
, in the notation of Theorems 3.4.22 and 3.4.23. With B′ of this form,

the determinant of r̂
∣∣
R3 is

1

800
b2

13

(
75− b2

13

)
b6

44.

As r̂
∣∣
R3 has vanishing trace, the eigenvalues of r̂

∣∣
R3 have signs (+,−,−) and

(+,+,−), when 75−b2
13 > 0 (b13 6= 0) and 75−b2

13 < 0, respectively. Of course,

when b2
13 = 75, the eigenvalues of r̂

∣∣
R3 have signs (0,+,−). This proves that

the four Ricci signatures can be realized in cases (3a) and (3ia). For case
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(3ib), with basis

B′ =


4 3 −b13 0

0 5 b13 0

0 0 b33 0

0 0 0 b44

 , (4.5)

we compute that

B′−1


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

B′ =

−3

5
4
5

0 0
4
5

3
5

0 0

0 0 −1 0

0 0 0 −1

 ∈ O(4,R).

Thus, with orthonormal basis of this form, the isometry group contains[
0 1

1 0

]
τ , in the notation of case (3ib) of Theorem 3.4.23. With B′ of this

form, the determinant of r̂
∣∣
R3 is again

1

800
b2

13

(
75− b2

13

)
b6

44.

So, all four Ricci signatures realized in cases (3a) and (3ia) are also realized

in case (3ib).

In cases (3ic), (3id), (6aia), (6aib), (6aie), (6ba), (6bia), (6bib), and

(6bid), b13 = b23 = 0, as the holonomy must contain either τ3 or −τ3 . Only

two Ricci signatures are realizable depending on choice of b12. In fact, in these

cases, we can use the basis (4.4) with b13 = 0, to realize the Ricci signature

(0,+,−,−).

For case (6bic), the holonomy generator Bτ in Theorem 3.4.29 restricts

to −I in GL(3,R), and does impose any restriction on B, and we argue just

like in cases (3a) and (3ia).
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5 Topics for Further Research

There are remaining questions about the topology and geometry of 4-dimensional

infra-solvmanifolds (Problems 5.1.1 and 5.2.1 below). Another direction for

further research is to extend known partial results for Conjecture 1.2.1 to cer-

tain infra-solvmanifolds (Problems 5.3.3 and 5.3.2 below). Another interesting

project is to characterize which solvable Lie groups satisfy the First Bieberbach

Theorem (Problem 5.4.1 below).

5.1 Geometric Description of Infra-Solvmanifolds

Hillman provides a geometric classification of infra-solvmanifolds of Sol3 × R

in [18] as Seifert fiberings over 2-dimensional flat orbifolds. We have pro-

vided a complete classification of all crystallographic groups of Sol3 ×R. The

torsion-free crystallographic groups Π correspond to infra-solvmanifolds Π\G.

However, we do not give a correspondence between our classification and Hill-

man’s classification.

Problem 5.1.1. Find the correspondence between the torsion-free crystallo-

graphic groups of Sol3 × R described here, and the classification Hillman pro-

vides in [18]. Also describe the infra-solvmanifolds of Sol1
4, as Hillman does

for Sol3 × R in [18].
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5.2 Pin± Structures on Infra-Solvmanifolds

The group Spin(n) is the double cover of SO(n). The groups Pin+(n) and

Pin−(n) are two double covers of O(n). They are the same topologically, but

have different group structures. The groups Pin±(n) allow a generalization

of Spin structures to non-orientable manifolds; an orientation together with a

Pin+ (or Pin−) structure is equivalent to a Spin structure. An orientable Rie-

mannian manifold M has a Spin structure precisely when the Stiefel Whitney

class ω2(M) vanishes. A Riemannian manifold M has a Pin+ structure if and

only if ω2(M) vanishes and has a Pin− structure if and only if ω2(M)+ω2
1(M)

vanishes.

Hillman begins to explore which 4-dimensional infra-solvmanifolds admit

Pin+ and Pin− structures in [19]. This is related to a question of Ron Stern: is

there an orientable aspherical surface bundle over the torus T 2 which does not

admit a Spin structure? A 4-dimensional infra-solvmanifold may provide such

an example. Putrycz and Szczepanski determined that only three orientable

flat 4-manifolds are not Spin [31]. However, these are not surface bundles over

the torus.

Problem 5.2.1. Determine which 4-dimensional infra-solvmanifolds admit

Pin+ and Pin− structures.

5.3 Bounding Problem for Infra-Solvmanifolds

Since all 4-dimensional infra-solvmanifolds bound, some n-dimensional infra-

nilmanifolds bound, and all closed flat n-manifolds bound, it is reasonable to

ask if n-dimensional infra-solvmanifolds bound.
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Conjecture 5.3.1. Let M = Π\G be an n-dimensional infra-solvmanifold.

Then there exists a compact (n+ 1)-dimensional manifold W with ∂W = M .

Hamrick and Royster used translational involutions to show that closed flat

n-manifolds bound [15]. Marc Gordon introduced translational involutions in

his proof that certain closed flat manifolds bound [11]. When G is solvable

and has non-trivial center, translational involutions can also be used, as was

done in here in the proof of Theorem 2.4.5.

Problem 5.3.2. Let M = Π\G be an n-dimensional infra-solvmanifold. As-

sume that G has non-trivial center. Is there a compact (n + 1)-dimensional

manifold W with ∂W = M?

On the other hand, Conjecture 5.3.1 may be false. To give a counterexample

to Conjecture 5.3.1 or (Conjecture 1.2.1), we would need an infra-solvmanifold

(or infra-nilmanifold) with a non vanishing Stiefel-Whitney number. In [42, 20]

there are examples of flat manifolds with non-trivial Stiefel Whitney classes

and this should be useful to approach:

Problem 5.3.3. Give an example of an infra-solvmanifold or infra-nilmanifold

which does not bound.

5.4 Bieberbach’s First Theorem on Solvable Lie Groups

It is not well understood when a solvable Lie group satisfies Bieberbach’s First

Theorem (Theorem 1.1.4). Even a 4-dimensional solvable geometry, Sol0
4, does

not satisfy it. See [8] for more examples of solvable Lie groups which do not

satisfy Bieberbach’s First Theorem.
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Problem 5.4.1. Characterize the solvable Lie groups for which Bieberbach’s

first theorem holds.

Good progress has been made by Dekimpe, Lee, and Raymond, who give

a sufficient, but not necessary, condition for a solvable Lie group to satisfy

Bieberbach’s first theorem [8]. In [3], Buser gives a geometric proof of Bieber-

bach’s First Theorem for Rn, inspired by Gromov’s work on almost flat mani-

folds. Essentially, the idea is to show that the isometries in a crystallographic

group of Rn with very small rotation part are in fact pure translations. Exam-

ining Buser’s argument when Rn is replaced with a solvable Lie group should

provide a simple characterization of solvable Lie groups satisfying Bieberbach’s

First Theorem.
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