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Abstract 

  

Sequence stratigraphic principles provide means to interpret the geological 

framework and likelihood of finding hydrocarbon–bearing rocks. In this work, I show 

that  they  can  also  be  used  to  predict  and  better  interpret  the  microseismic  response  

associated with a hydraulic fracturing stimulation treatment.  

In order to test my hypothesis, first I recognize the presence in the subsurface 

of brittle-ductile couplets, based on a sequence stratigraphic framework provided by 

gamma ray stacking patterns. Then, I use my geological model to better interpret the 

microseismic response recorded during a single stage fracture stimulation treatment 

monitored from three strategically located observation wells. I analyzed and compared 

hydraulic fracturing results inferred by individual processing of microseismic data 

acquired  from  horizontal  and  vertical  sensor  arrays,  as  well  as  the  results  from  

simultaneously processing the signals recorded by all three sensors.  At the end, I 

show how the triple array simultaneous solution provides the most useful data set to 

interpret the stimulation treatment based on the good fit between the microseismic 

events locations obtained under this approach and the theoretical expectation from the 

aforementioned sequence stratigraphic framework.  

 Additionally, this document summarizes significant findings obtained while 

working on my dissertation. I discovered that despite its widespread use, there are 

several issues associated with the implementation of microseismic technology, which 

may lead to erroneous interpretations of the treatment results. In this publication, I 

discuss several examples of common pitfalls, including poor data recording, velocity 
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model artifacts, processing constraints and display limitations. These findings 

underscore the importance of the interpreter’s role in ensuring a high quality outcome 

from a microseismic hydraulic fracturing evaluation. Moreover, I demonstrate that 

microseismic data can also serve to identify subsurface geological features such as 

faults and natural fractures zones through the use of magnitude vs. distance plots.  

 The results from this dissertation not only improve current hydraulic fracturing 

microseismic interpretation workflows, but they also translate into significant costs 

savings associated with more efficient hydrocarbon developing campaigns. 
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 CHAPTER 1: Introduction 

 

Integration of geologic, geophysical and petroleum engineering concepts is not 

an easy task, but the exploration and production industry recognized long ago that it is 

perhaps the best approach to tackle the challenges of hydrocarbon extraction.  This 

dissertation presents several examples of technology advancement based on data 

integration. For Instance, I make the case for using a sequence stratigraphic 

framework (a robust geological model) while implementing borehole microseismic 

monitoring (a geophysical tool) to assess the effectiveness of a hydraulic fracturing 

treatment (a common petroleum engineering operation). The biggest advantage of this 

approach is not only that it is simple and easy to use, but also, as I demonstrate in this 

work, it can significantly enhance the quality of the interpretation of hydraulic 

fracturing treatment results. 

Development of resource plays is taking a crucial role in the energy supply 

chain. Capital investments associated with these operations reach billions of dollars 

annually. Therefore, improvement in the workflows currently in place by the industry, 

carefully outlined in this dissertation, may have a positive impact far beyond the 

academic requirements that this work intends to fulfill.    

In particular, this dissertation studies how the interpretation of borehole 

microseismic data benefits from implementing an integrated analysis, ultimately 

impacting well spacing strategies, estimated ultimate recovery, and total development 

costs.  
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Chapter 1 introduces fundamental principles of the technologies used within 

this dissertation; hydraulic fracturing, borehole microseismic monitoring and sequence 

stratigraphy. Chapter one also elaborates on the geological characteristics of the Eagle 

Ford formation, because I developed most of the ideas presented in this dissertation 

implementing borehole microseismic while evaluating hydraulic fracturing performed 

on the Eagle Ford.  

Chapter 2 underscores the fact that it is common practice to overlook 

fundamental principles during the location of microseismic events, leading to 

potentially erroneous hydraulic fracturing assessments. Examples of microseismic 

results qualitatively illustrate this assertion, showing poor data recording, velocity 

model artifacts, processing constraints and inadequate display choices made during 

practical applications of the technology. My intent is to raise awareness of some 

common pitfalls while also providing recommendations to increase the value of a 

microseismic monitoring job implementation. 

Chapter 3 shows how a simple modification to the velocity model, accounting 

for a 4.5-degree dip supported by geological data, significantly impacts the event final 

locations during a borehole-based hydraulic fracturing monitoring treatment. These 

results underscore the importance of integrating all available data and implementing 

well known quality controls before using microseismic monitoring data for hydraulic 

fracturing evaluation.   

Chapter 4 validates and supports the use of microseismic-derived Magnitude 

vs. Distance Plots (MDP) as a tool to discriminate between fault reactivation (i.e. 

stimulation failure), and successful hydraulic fracturing treatments in the absence of 
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additional subsurface data. Moreover, when combined with other independent 

measurements  such  as  2D  or  3D  reflection  seismic  sections,  as  also  shown  in  this  

chapter, MDP’s could unequivocally characterize the reactivation of a fault based on 

the recognition of microseismic event of relatively higher amplitude sometimes 

associated with a distinctive inferred azimuth change. 

 Chapter 5 describes how I used a sequence stratigraphic framework to analyze 

the microseismic response from a single stage hydraulic fracturing treatment 

monitored by three observation wells. The stratigraphic model that I built, represented 

by brittle-ductile couplets identified from gamma ray stacking patterns, was key to the 

stimulation evaluation. Ultimately, my results underscore the value of using proper 

geological principles on microseismic data analysis.  

Chapter 6 summarizes the main ideas presented within this dissertation and 

provides some recommendations for future research and advancement of the 

microseismic monitoring technique to support the exploitation of resource plays.   
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1.1 Basics of Hydraulic Fracturing 

In this dissertation hydraulic fracturing refers to the mechanism of injecting 

fluids and other additives at high-pressure to increase the flow paths between 

hydrocarbon bearing rocks and a wellbore, which would not otherwise produce 

economically without being stimulated.  

For simplicity, a hydraulic fracture can be conceptualized as the geometric 

body illustrated in Figure 1.1.1 (Martin and Valko, 2007), which can be completely 

characterized by its height (hf),  width  (wf), and half-length (xf). In reality, the 

geometry of a hydraulic fracture is more complex, resembling more the cartoon 

representation shown in Figure 1.1.2 (Paillet, 1985). Observations made from “mine-

back” experiments (Cipolla et al., 2008), coupled with recent fracture images taken via 

downhole video camera (King, 2012), presented in Figures 1.1.3 and 1.1.4, 

respectively, provide evidence of this more complex geometry. The schematic in 

Figure 1.1.5 (Cipolla et al. 2008), depicts possible fracture growth patterns in a hard 

rock formation: simple fracture, complex fracture, complex fracture with fissure 

opening, and complex fracture network. Daneshy (2013) suggests an off-balance 

structure, which combines the geometries of a simple and complex fracture into a 

single pattern, as seen in Figure 1.1.6. 
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Figure 1.1.1. Geometric characteristics of an idealized hydraulic fracture; height (hf), 
half-length (xf) and width (wf) (after Martin and Valko, 2007). 
 

 

 

Figure 1.1.2. Schematic representation of a more realistic fracture model  described by 
unfractured rock and altered rock associated with displacement along a rough surface 
geometry, fracture porosity and infilling minerals (after Paillet, 1985). 
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Figure 1.1.3. Fracture complexity as observed in a “mine-back” experiment and its 
associated schematic representation (after Cipolla et al., 2008). 

 

 

Figure 1.1.4.  Hydraulic fracture photos from vertical wells open hole completions 
taken using Amoco downhole camera. A) Fracture shift in the presence of a ¼ in 
(6mm) shale barrier. B) ¼ in (6mm) wide fracture in a limestone with a rock fragment 
in its interior. Widening of a fracture due to increasing pressure is observed in C) 
before and D) after the pressure increase (after King, 2012). 
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Figure 1.1.5. Schematic representation of fracture types at different complexity levels, 
i.e. Simple fracture, complex fracture, complex fracture with fissure opening, and 
complex fracture network (after Cipolla et al., 2008). 
 
 

 
 
Figure 1.1.6. Plan view of different types of fracture growth patterns (after Daneshy, 
2013). 
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A successful hydraulic fracturing treatment is one in which a fracture is 

initiated and propagated under pressure, and it stays open due to the presence of a 

proppant agent (e.g., sand, bauxite or ceramic), once the pressure is released. Although 

many variations exist, the general process usually involves the following steps:   

1. First, inject a pad of fracturing fluid to initiate the stimulation treatment. The 

pad is usually a fixed volume of a viscosified fluid designed to create fracture 

geometry. 

2. Continue fluid injection with the addition of propping agents (i.e., a mixture 

also known as slurry) to propagate the fracture, and introduce proppant within 

it. 

3. Reduce injection pressure, allowing the fracture to close on the proppant.  

4. Initiate the wellbore flow back to remove excess fracturing fluid and proppant. 

 Two main sets of parameters control hydraulic fracturing results; those related 

to the stimulated formation, referred to as reservoir parameters; and those related to 

the stimulation itself, known as treatment parameters (Daneshy, 2013). Reservoir 

parameters such as permeability, non-propped conductivity, horizontal stress, 

horizontal stress orientations, Poisson’s ratio, and Young’s modulus, are inherent to 

the formation of interest. On the other hand, treatment parameters such as fracturing 

fluid viscosity, pumping rate, treatment volume, pad size, and proppant size, 

concentration, and sequence in the pumping schedule (ramp schedule), can be 

designed to maximize the results of the hydraulic fracturing stimulation (Daneshy, 

2013).  
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When it comes to fracturing fluids, choices are extensive. Nitrogen and 

propane have been used in multiple occasions to stimulate tight formations but most 

commonly a combination of water and smaller amounts of other fluids (i.e., gels, 

friction reducers, crosslinkers, breakers, scale inhibitors, biocides, and surfactants) are 

used in most of the commercial hydraulic fracturing jobs (Economides and Nolte, 

2000).  

Proppants also come in multiple forms (Figure 1.1.7), but usually the selection 

is determined by cost and availability. In principle, the role of the proppant agent is to 

keep the fracture open against the formation pressure, so that a fluid conduit from the 

reservoir into the wellbore is preserved. In reality, proppant crushing and embedment 

over time results in diminished fracture conductivity and productivity loss. A 

schematic representation of the hydraulic, propped and flowing lengths within a 

fracture is shown in Figure 1.1.8.    

 

Figure 1.1.7. Common types of proppants (after LaFollette, 2010). 
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Figure 1.1.8. Schematic representation of different fracture dimensions on their proper 
length relationship, i.e. the hydraulic length is larger than the propped length, which is 
larger than the flowing length (after Maxwell and Cipolla, 2011). 
 

The optimization of hydraulic fracturing treatment parameters has been the 

subject  of  much  work,  both  in  Academia  and  the  Industry.  Table  1  shows  a  

compilation of practical observations on some of the most common parameters. As 

already mentioned, treatment results are highly dependent on the properties of the 

formation; therefore, it is almost impossible to design a fit-for-all treatment recipe. 

This has resulted in a trial and error approach to optimizing the stimulation campaigns 

for individual resource plays. 
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Table 1. Summary observations from a parameter study (Cohen et. al., 2013).

 

Hydraulic fracturing treatments can be diagnosed using real-time (e.g., 

pressure monitoring and microseismic interpretation), and post-treatment methods 

(e.g., radioactive proppant and liquid tracers surveys).  

A more detailed discussion of the use of microseismic data for hydraulic 

fracturing monitoring is presented in the following sections of this dissertation. The 
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use of pressure data for diagnostic purposes, on the other hand, is based on the 

relationship between fluid flow (material balance), rock elasticity and fissure creation / 

propagation. Therefore, net pressure (Pnet) inside the fracture can be expressed by 

Equation 1 (Smith, 2013), which assumes steady state propagation in a linear elastic, 

isotropic and homogeneous medium; incompressible fluid behavior; and tip growth 

proportional to fracture toughness (KIC).   

 

 

(Equation 1) 

 

 

where, 

pnet : net pressure inside the fracture 
v: Poissons’ Ratio 
E: Young modulus 
E’: Plane strain modulus = E/(1- v 2) 
H: fracture height 

: fluid viscosity 
Q: fluid injection rate 
xf: fracture half-length 
KIc-app: fracture toughness (tip effects) 
 
 
Figure 1.1.9 shows a schematic representation of a typical monitoring plot, in 

which bottom hole pressure (BHTP), shut-in tubing pressure (STP), slurry rate and 

proppant concentration are plotted versus time (Martin and Valko, 2007). In general, 

gradual pressure changes are representative of events inside the fracture 

(slurry/proppant movement), whereas sharp pressure changes signal near wellbore 

events (Daneshy, 2013). Pressure and rate measurements are continuously recorded 
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during the fracturing operation, and plotted real-time to make decisions on the 

stimulation treatment.  

 

 
Figure 1.1.9. Schematic representation of a typical hydraulic fracture stimulation plot. 
The graph is a combined representation of bottom hole pressure (BHTP), shut-in 
tubing pressure (STP), slurry rate and proppant concentration with respect to time. 
Values increase in the direction of the arrows (after Martin and Valko, 2007). 

 

Net pressure analysis is relatively inexpensive and the data is readily available, 

however, it is subject to fracture modeling interpretation. There are a number of 

fracture simulators commercially available; most of them assume a simple, two-

dimensional  fracture  geometry  solution  (KGD  or  PKN  models),  or  a  lumped-

parameter 3-D solution, which models fracture growth as bi-wing ellipses meeting at 

the fracture initiation point at the wellbore. It is important to note that the complex 

nature of fracture growth and fracture network development in shale reservoirs, limits 

the applicability of two-wing fracture models in these environments (Economides and 

Martin, 2007). 
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No matter the completion design and the completion system chosen (e.g.,  plug 

and perf,  or sliding sleeves, Figure 1.1.10), hydraulic fractures will always propagate 

perpendicular to the orientation of the least principal stress (Hubbert and Willis, 1957) 

as illustrated in Figure 1.1.11. Therefore, once the least principal stress direction is 

known, a development program supported by horizontal wells tends to be more 

efficient than with vertical wells, because drilling and completion of a horizontal well 

should be a less expensive option than the exploitation of  the same reservoir drainage 

area using multiple vertical wells, as schematically shown in Figure 1.1.12. 

 

 

Figure 1.1.10. Schematic of completion systems a) Plug and perf b) Ball-activated 
sliding sleeve (after Daneshy, 2013) 
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Figure 1.1.11. Schematic representation of hydraulically induced fractures orientations 
(red lines) with respect to a hypothetical horizontal wellbore (green bar) and 
horizontal stress directions. Notice that as the induced fractures are open perpendicular 
to the minimum horizontal stress the azimuth of these fractures will always be parallel 
to the maximum horizontal stress (after Miskimins, 2008). 
 

 
Figure 1.1.12. Hypothetical representation of the drainage areas (blue ellipsoids) 
associated with three hydraulic fracturing treatments on a horizontal wellbore (green 
line) as compare to the drainage area of three individual stimulations treatments on 
vertical wells  (red dots) (after Miskimins, 2008). 
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1.2 Borehole microseismic monitoring of hydraulic fracturing. 

Borehole microseismic is an indirect diagnostic technique that uses low 

magnitude seismic signals, registered at a monitor well, to study induced subsurface 

activity from a varied type of operations. For example, microseismic is commonly 

used to monitor typical operations of geothermal fields, to manage steam or CO2 

injection for enhanced oil recovery, and to study reservoir compaction due to 

production operations (Maxwell et al., 2010b). Recently, borehole microseismic has 

gained popularity in the monitoring of hydraulic fracturing, which is currently its most 

common application.    

During hydraulic fracturing, microseismic monitoring consists in capturing, 

processing, and analyzing seismic signals originated at plane of weakness disturbed by 

the stress changes, and pore pressure increases associated with the injection of 

fracturing fluids, fracture growth, and fluid leak-off into the stimulated formation 

(Warpinski, 2009a). Figure 1.2.1, modified from House and Shemeta (2008), shows 

schematically the relative subsurface location with respect to the hydraulic fracture of 

these shear slippages commonly known as microseismic events. As pointed out by 

multiple authors (e.g. Pearson, 1981, and, Cipolla et al., 2011), a mostly tensile 

mechanism is involved in fracture opening, and does not generate much seismic 

activity. Therefore, it is necessary to analyze the perturbations occurring at the 

periphery of the hydraulic fracture to better estimate the characteristics of the 

stimulated fracture itself (Cipolla et al., 2011).  

The parameters controlling the amount of energy used to generate the 

hydraulic fracture are injection rate and the amount of fluid introduced into the 
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formation. Because the release and capture of seismic energy is only secondary to the 

main hydraulic fracturing process, and the method does not employ a controlled 

seismic source, microseismic monitoring is usually referred to as passive seismic.  

 

Figure 1.2.1. Schematic representation of a hydraulic fracture and its surroundings. 
Creation of a hydraulic fracture (continuous white trace) introduces stress and pore 
pressure changes that originate shear slippages (i.e. microseismic events - brown 
asterisks) at natural planes of weakness (brown traces) on a halo embracing the 
stimulated fracture (dashed white trace)  (Modified from House and Shemeta, 2008). 

 

During hydraulic fracturing, microseismic information is recorded by very 

sensitive sensors (either geophones or accelerometers) positioned inside one or 

multiple boreholes located nearby a treatment well, usually between 45 and 1500 m 

(150 and 5000 ft). Arrangements of 8 to 12 multicomponent sensors are common for 

these type of operations, although a few service companies may provide arrays of 

more than 40 sensors. Regardless of the final sensor configuration, data gets recorded 

at sample rates of 0.5 ms or less, because of the relative high frequencies of 

microseismic events (between 100 and 700 Hz), and is transmitted continuously to the 

surface by fiber-optic wire line (House and Shemeta, 2008).  
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Figure 1.2.2 shows a typical representation of an earthquake seismogram and 

typical observations that can be made on it as the P-wave arrival time and S-wave 

arrival time. Microseismic signals are plotted in a similar way, with time increasing to 

the right on the horizontal axis, and positive to negative amplitudes displayed from top 

to bottom on the vertical axis. Following such analogies, Figure 1.2.3 illustrates a 

seismic record with relatively high signal to noise ratio and Figure 1.2.4, on the other 

hand, shows a typical event from a borehole microseismic experiment. 

Figure 1.2.2. Seismogram example - Typical representation of a seismic signal. This 
time plot (milliseconds in the horizontal axis increasing trough the right) connects 
amplitude  values  (vertical  axis)  registered  at  a  fixed  sampling  rate.  From  a  
seismogram, it is possible to select P-wave and S-wave first arrival time, and the time 
difference between them (Delta T), as shown in the figure (after Geology Labs online, 
University of California; www.sciencecourseware.org/glol/).   
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Figure 1.2.3. Example of high signal to noise (S/N) seismograms generated during a 
microseismic project. Data from each component is plotted on top of each other. Blue 
traces display the information from the vertical component, while red and green traces 
present the data from the two horizontal components. For each sensor display, the 
horizontal axis represents recording time in milliseconds, while the vertical axis 
displays negative and positive values with respect to a horizontal zero base line. P-
wave and S-wave first arrival time are also indicated. A vertical wellbore contains all 
sensors; sensor 1 being the shallowest and sensor 8 the deepest following the vertical 
label (after Woerpel et al., 2010). 
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Figure 1.2.4. Example of a typical microseismic record conformed by traces from 
fifteen borehole tri-component sensors. Microseismic data from each component is 
plotted  on  top  of  each  other.  Blue  traces  display  the  information  from  the  vertical  
component of geophones, while red and green traces present the data from the two 
horizontal components. For each sensor display, the horizontal axis represents 
recording time (in milliseconds) increasing to the right, while the vertical axis displays 
negative and positive values with respect to a horizontal zero base line. P-wave and S-
wave first arrival time are also indicated. A vertical wellbore contains all sensors; 
sensor 1 being the shallowest and sensor 15 the deepest following the vertical label 
(after Forrest et al., 2010). 
 

Once microseismic signals are recorded, and traces (waveforms) are available, 

it is possible to analyze the data following multiple approaches to estimate the location 

of microseismic events. To this end, one of the most commonly used inversion 

techniques consists of running a computer algorithm to first separate individual 

microseismic events (also referred as triggers) from the continuous signal records, and 

then automatically select P-waves and S-waves first arrival times for each trace. A 
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degree of waveform filtering, as well as enhanced event detection sequences, 

commonly accompany and further enhance these automatic-picking algorithms. The 

result from this process is later evaluated by a seismic analyst, whom occasionally 

selects manually each single event in the presence of very low signal to noise ratio 

seismograms.  Once the analyst is comfortable with the time picks, it is possible to 

compute the traveltime difference between P-waves and S-waves, which together with 

a predetermined velocity model, provide the estimated distance from the sensor array 

to the origin of the seismic source in the subsurface, also referred to as the 

microseismic hypocenter, foci, or simply microseismic event location. 

The velocity model implemented in the location workflow described above is 

commonly derived from dipole sonic compressional (Vp) and shear (Vs) velocity logs, 

as the one shown in Figure 1.2.5, calibrated with information obtained from the 

hydraulic fracturing operation. One of such calibration methods, described in the work 

of Warpinski et al. (2005a), consists in recording the precise time of perforation (or 

string shot) firing in addition to its seismic signal, and then modifying the original 

velocity model accordingly in order to better match the known location of the 

perforations.  

The calibration phase is required because in general, vertical velocities 

measured by the sonic tool are different from the horizontal velocities of a layered 

subsurface. Moreover, seismic signals propagate in radial patterns, thus requiring more 

than horizontal and vertical components of the velocity to completely describe the 

microseismic signal travel path. Therefore, none of the calibration approaches 
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currently in use fully compensate for the intrinsic anisotropic characteristic of the 

stimulated zone of interest in resource plays (Eisner et al., 2011).  

The use of sonic logs to build the velocity model carries significant upscaling 

uncertainties as pointed out by Chesnokov et al. (2011). Similar issues arise when the 

velocity model is built using data from surface seismic experiments because velocities 

obtained from the surface, as well as from log measurements, suffer from well-known 

and difficult to compensate dispersion issues (Liner, 2012). 

 

Figure 1.2.5. Smoothed (red line), and blocked (blue line) representations of P-wave 
and S-wave sonic logs (green lines). The vertical axis represents depth in meters, and 
the horizontal axis velocity in km/s (after Woerpel et al., 2010).  

 

The azimuth of the hypocenter, on the other hand, is estimated via hodogram 

analysis, which is an amplitude analysis on a Cartesian plot of the differences recorded 
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from the multicomponent sensors as presented schematically on Figure 1.2.6 (House 

and Shemeta, 2008).  

 

Figure 1.2.6. Z, Y and X geophone component waveforms associated with a single 
microseismic event. Amplitude comparisons of each component during time (lower 
left) provide polarization information, while cross plotting amplitudes variations on a 
particular time window / period provides the event direction (hodogram analysis, 
lower right) (after House and Shemeta, 2008). 
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1.3 Fundamentals of Sequence Stratigraphy 

For more than five decades, sequence stratigraphy has proven to be a key tool 

of the exploration and production geoscientist providing the basis to predict and 

characterize spatial and temporal relationships between the different members of the 

petroleum system (i.e. source, seal and reservoir rocks). This chapter summarizes a 

few sequence stratigraphic principles, as they are fundamental to this dissertation. For 

detailed information on the topic I refer the reader to the works of Payton (1977), Van 

Wagoner et al. (1990), Posamentier and Allen (1999), Emery and Myers (1996), and 

Catuneanu et al. (2011). Those publications introduced and further discussed most of 

the concepts described in the following paragraphs. Slatt (2006) also presents a 

comprehensive review of the sequence stratigraphic concepts together with numerous 

examples describing the application of this theory to the search and exploitation of 

hydrocarbons.  

Sequence stratigraphy refers to the study of genetically related sedimentary 

packages within a chronostratigraphic context (Van Wagoner et al., 1990). Based on a 

sequence stratigraphic framework subsurface data may be analyzed on a much more 

informative manner than just following lithologic rock typing. For example, Figure 

1.3.1 shows common differences between lithostratigraphic and cronostratigraphic 

interpretations of a gamma ray (GR) log. 
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Figure 1.3.1. Tops interpreted in a GR log section based on A) lithostratigraphic and 
B) chronostratigraphic approaches. Tops for formations A, B, and C, and members B1 
and B2, only bear lithological differences. On the other hand, unconformities A and B 
delimit a full sequence and together with a transgressive surface and a maximum 
flooding surface, convey information related to major stratigraphic events and their 
associated components. These sedimentary assemblages, denominated Lowstand, 
Transgressive and Highstand System Tracts, provide a better insight to the type of 
environment, processes and energy associated with the lithological packages inferred 
from the GR log, becoming a powerful tool to correlate multiple sections and predict 
geological occurrences far from the location of  well control (after Slatt, 2006). 

 

The lithostratigraphic description presented in Figure 1.3.1A is independent of 

a depositional reference time-frame, and is mainly supported by lithological 

characteristics. Following such an interpretation approach, it is possible to identify 

three formations (Formations A, B, and, C) as well as two formation members (B1 and 

B2). The chronostratigraphic description in Figure 1.3.1B, on the other hand, provides 

relatively more detail into possible environments and processes framing the deposition 

of the same stratigraphic unit, by identifying the presence of time correlative stratal 

surfaces and delineating a complete stratigraphic sequence. In this context, a sequence 
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is defined as “a relative conformable, genetically related succession of strata that are 

bounded (at their top and base) by unconformities or their correlative conformities” 

(Slatt, 2006), associated with time-specific relative sea level cycles. The deposition of 

a sequence is mainly controlled by relative fall and rises of sea level also influenced 

by location specific tectonic characteristics and sediment supply. Therefore, 

recognizing a sequence carries a series of stratigraphic implications of great value in 

the characterization of a geologic package.  

Figure 1.3.2 shows a schematic relative sea level curve, conformed by a falling 

limb and a rising limb, and the characteristic sedimentary assemblages associated with 

specific times for this particular cycle.   
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Figure 1.3.2. Simplified relative sea level curve (solid red line) diagram – fall and rise. 
Because relative sea level changes between high and low (Y axis) as time progress 
(towards the right on the X axis) the figure represents a complete sea level cycle. As 
sea level changes major sedimentary assemblages form with time. During sea level fall 
and following early rise (1) Slumps/mass transport complex, (2) Lowstand 
fans/sheets/lobes and levees, (3) channel fill/slope fan/early lowstand wedge and, (4) 
Prograding complex/late lowstand wedge get deposited respectively establishing the 
Lowstand System Tract (red labels). Then, as the sea level keeps rising, sediments 
accumulations form the Transgressive System Tract (TST) and the Highstand System 
Tract respectively. See text for expanded description (after Slatt, 2006). 

 

According with sequence stratigraphic principles, as the sea level falls at the 

beginning of a relative sea level cycle, aerial exposure of the shelf and wide-ranging 

relatively low eustatic levels (i.e. low sea levels) do not allow much sediments to 

accumulate on the shelf, shoreline and non-marine environments, thus originating an 

unconformity which becomes a sequence boundary (SB). As time progresses, 

sediments associated with usually drastic falls in sea levels accumulate on top of the 

sequence boundaries, and as the sea level begin to rise, more sediments continue to fill 
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the stratigraphic column. It is following this succession that mass transport deposits 

and basin floor fans, followed by slope fans and a prograding complex fill the deeper 

portions of the basin. These four elements form the sedimentary assemblage known as 

the Lowstand System Tract (LST), which encompasses most of the deep-water 

sediment accumulations. Figure 1.3.2 illustrates schematically the spatial and temporal 

relationships of elements forming the LST. 

 

 

Figure 1.3.3. Schematic shelf to basin three-dimensional representation illustrating 
major stratigraphic elements associated with the sudden fall and early rise of sea level 
within a relative sea level cycle (Lowstand System Tract). During this stage sediments 
are deposited beyond the shelf break as deep water and slope architectural elements, 
while the shelf is mostly exposed. The corresponding highlighted portion of the 
relative sea level curve associated with the diagram is also included for reference 
(lower left corner red insert) See text for expanded description (after Slatt, 2006). 

 

As the relative sea level rapidly continues its rise and sediments keep 

accumulating, a new system tract begins to form as shown in Figure 1.3.4. Previously 

exposed areas of the shelf cut by incised valleys eventually get capped by a 

sedimentary succession, which in these valleys usually begins with fluvial sediments 
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and is followed by estuarine deposits. In the same time frame, typical coastal deposits 

such as (1) barrier islands, (2) lagoon – eolian – beach, (3) shoreface strata and, (4) 

ebb and flood tidal delta also begin to accumulate. Relatively minor amounts of 

sediments reach deep waters during this time interval, and those that make it that far 

are usually particles of relatively small size. The sediments deposited during this 

period of time constitute the Transgressive System Tract (TST).  

The progression described above originates a condensed stratigraphic section 

conforming the vertical upper portion of the TST, a relatively thin, sometimes organic 

rich layer associated with fine grain sediments accumulated during a relatively long 

period of geological time. Indeed, sediment particle sizes collectively display a 

relative decrease from the bottom of the LST to the top of the TST recognized at 

multiple scales. The TST phase is over when the maximum water depth in the shelf is 

reached and the shoreline is also at its maximum landward position.  Because of these 

characteristics, the top boundary of this system tract is called the maximum flooding 

surface (mfs). Figure 1.3.4 illustrates schematically spatial and temporal relationships 

of the TST elements.   
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Figure 1.3.4. Schematic shelf to basin three-dimensional representations illustrating 
major stratigraphic elements associated with the early and relatively fast-rate increase 
in sea level within a relative sea level cycle (Transgressive System Tract). Is within 
this phase that a condensed section is formed, and bounded at its top by a maximum 
flooding surface (mfs), when minimal sedimentation is registered in deep water. The 
corresponding highlighted portion of the relative sea level curve associated with the 
diagram is also included for reference (lower left corner red insert) See text for 
expanded description (after Slatt, 2006). 

 

As the sea level continues to rise, more space becomes available in the shelf 

for sediments to accumulate (a characteristic state denominated an increase in 

accommodation space) supporting sediments progradation seaward, as schematically 

presented in Figure 1.3.5. During this phase, deltas form where rivers are abundant, 

and interdeltaic shorelines develop in their absence. The sediment accumulations 

associated with this period of time are said to be part of the Highstand System Tract 

(HST). Because of its regressive character, the downlapping signatures of the HST 

sediments on top of the mfs are very descriptive of this phase. During this stage very 

few sediments reach deep water and the general transgressive pattern in grain size, 

characteristic of LST and TST assemblages, revert to a coarsening upward HST trend 



31 

related to higher energy processes while depositional environments shift in the 

basinward direction.  

 

 

Figure 1.3.5. Schematic shelf to basin three-dimensional representation illustrating 
major stratigraphic elements associated with the final rising stage of a relative sea 
level cycle (Highstand System Tract).  In this phase sediments prograde seaward when 
the rate of deposition exceeds the rate at which space for sediments to accumulate 
increase. Again no much sediment reaches the deeper portions of the basin. The 
corresponding highlighted portion of the relative sea level curve associated with the 
diagram is also included for reference (lower left corner red insert). See text for 
expanded description (after Slatt, 2006).  

 

The presence of a stratigraphic hierarchy in sequence stratigraphy is also 

relevant. Particles stack together forming a lamina, and lamina sets form beds. 

Following this pattern, relatively conformable succession of genetically related beds, 

bounded by a marine flooding surface or a correlative surface forms a parasequence 

(Van Wagoner, 1990) and parasequence sets, grouped in progradational, agradational 

or retrogradational patterns, according with relationships between the rate of 

deposition and the rate of accommodation, become the building blocks of a sequence.  
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The cyclicity described in previous paragraphs is caused by multiple factors 

such as the formation and  breakup of supercontinents, continental ice growth and 

decay,  Milankovich glacioesutatic cycles and astronomical forces (Payton, 1977), 

thus they are also observed at multiple scales or as commonly refer in the sequence 

stratigraphic jargon, different orders. First and second orders are usually related to 

basin analysis, while third order is typical of exploration plays and prospects. Fourth 

and higher orders refer to variations observed at the reservoir and smaller scales. 

These sequence orders are typically associated with the specific time components 

shown in Figure 1.3.6.   

 

Figure 1.3.6. Scale of variations of relative sea level. Hundreds and tents of millions of 
years cycles represent first and second order variations associated with basin scale 
analysis. Millions of years cycles represent third order variations typically associated 
with play and prospect analysis. Cyclicity at higher levels, for example fourth, fifth 
and sixth order cycles, associated with variations in the scales of hundreds of 
thousands, tens of thousands and thousands years respectively, are more descriptive of 
the reservoir scale (after Slatt, 2006). 

 



33 

In general, several orders of variations act simultaneously, in conjunction with 

other factors such as tectonic influences (e.g. subsidence) and sediment supply, 

originating a more complex interaction pattern, schematically presented as an example 

in the composite relative sea level curve modified by subsidence presented in Figure 

1.3.7.  

 

Figure 1.3.7. Schematic representation of relative sea level variations with time (top 
curve). This curve was formed by adding the effects of basin subsidence at a constant 
rate (.5 foot / 100 year) to the composite curve from fifth, fourth and third order 
eustatic cycles (also shown from top to bottom respectively). The horizontal axis 
represents time in tens of thousands of years, while each curve has its own associated 
vertical axis (in feet) representing the height variations of relative sea level. Third 
order sequence boundaries (SB) and its associated maximum flooding surface (MFS) 
have a significant impact on the overall depositional pattern while small order 
variations may impose major constraints at the reservoir scale (after Slatt, 2006). 
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As Figure 1.3.7 shows, third order SB and mfs have a significant impact on the 

overall shape of the curve (i.e. play and prospect scale), but higher order variations 

probably impose major constrains at the reservoir scale where other stratigraphic 

elements are probably more relevant.  

The superposition of multiple orders is clearly observed when analyzing logs 

responses within a sequence stratigraphic framework. In particular, because high GR 

counts readings may be interpreted as associated with flooding surfaces, the 

identification of these markers serves to recognize multiple orders GR parasequences 

(GRP) as presented in the work of Singh (2008). For instance, Figure 1.3.8 presents 

three GRP identified by the upward-decreasing, upward-increasing, and constant GR 

count on log signatures also supported by the respective visual recognition of the 

associated grain size changes in core samples from three different sections of the 

Barnet Shale. Singh’s work (2008) thus suggests that GR patterns are useful to 

identify parasequences according with a sequence stratigraphic framework.    

 

 

Figure 1.3.8. Barnet Shale example of A) upward-decreasing, B) upward-increasing, 
and C) constant GR API count useful to delimit parasequences from log readings 
(after Singh, 2008). 

 

Sequence stratigraphic analysis extends beyond log examination and is 

applicable to data of multiple scales, from basin long seismic profiles, to outcrop, to 
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core (Van Wagoner et al., 1990).  The use of sequence stratigraphic principles in the 

analysis of surface reflection seismic data (also known as seismic stratigraphy in a 2D 

sense, or seismic geomorphology when related to 3D interpretation) has proven to be 

an excellent exploration and development tool for the Oil and Gas industry. In the 

analysis of surface seismic reflection data, a key principle provided by sequence 

stratigraphy is that seismic reflections are time significant stratal surfaces (Vail et al., 

1977). As the physical properties of rock units change more drastically vertically than 

laterally, the acoustic response obtained by the seismic reflection method is much 

more than a simple lithostratigraphic image. Therefore, a surface seismic reflection 

data set, based on a sequence stratigraphic framework, carries a wealth of information 

and provides a unique perspective of the subsurface. In this context, the power of 

sequence stratigraphy, among other things, relies in using the seismic data to predict 

the presence of certain lithologies away from known control points (Vail et al., 1977). 

Sequence stratigraphic principles can also be used to analyze information from 

core samples integrated with thin sections, log analysis, hydrocarbon systems records 

and basin history, leading to a more coherent geological interpretation. In exploration 

of conventional hydrocarbon accumulations, this integration is very useful as it helps 

to recognize and predict the presence, among other elements, of well-sorted grains of 

relatively high particle size, typically associated with high porosity and permeability 

reservoirs. Moreover, during the analysis of unconventional shale plays, where source, 

reservoir, and seal are essentially the same rock unit, sequence stratigraphy also has a 

key role. For example, based on sequence stratigraphic principles, Slatt and Rodriguez 

(2012) recognized several characteristics of currently productive organic-rich shale 
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plays that serve as the base to propose a predictive model, schematically presented in 

Figure 1.3.8, where condensed sections represent the most prolific candidates for 

exploration and exploitation of unconventional hydrocarbon resources. 

 

 

Figure1.3.8. Schematic representation of a general sequence stratigraphic model for 
shale resource plays. Under this approach, condense sections are the most prolific 
targets for resource play developments. SB - sequence boundary; TSE - transgressive 
surface of erosion; TST - transgressive system tract; HST - highstand system tract; mfs 
- maximum flooding surface; CS - condensed section; RST - regressive system tract  
(after Slatt and Rodriguez, 2010). 
 

On the development stage of a resource play a sequence stratigraphic 

framework also provides opportunities to enhance operational strategies by identifying 

geomechanical characteristics of target zones. For instance, Figure 1.3.9 from Slatt 

and Abousleiman (2011), illustrates cyclic sets of rocks (brittle-ductile pairs) 

recognized in Woodford and Barnett shale data, which correlate well with distinctive 

hydraulic fracture propagation lengths. Slatt and Abousleiman’s observations (2011) 

suggest a combination of sequence stratigraphy and geomechanics principles to 
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properly map the most prospective sections of a resource play. This should be the 

preferred approach to select well placement and improve development efforts. 

 

 

Figure 1.3.9. Schematic hydraulic fractures lengths variations within multiple scales of 
brittle-ductile couplets (after Slatt and Abousleiman, 2011). 

 

This dissertation builds upon prior knowledge, extending and emphasizing the 

use of sequence stratigraphic principles to provide an appropriate framework to 

analyze and interpret borehole microseismic data recorded during hydraulic fracturing 

operations. It is my hypothesis that in a similar way as sequence stratigraphy is used to 

interpret depositional settings and the likelihood of finding hydrocarbons–bearing rock 

units, the same principles could be used to set some expectations regarding the 

sedimentary column response to hydraulic fracturing stimulation and their associated 

microseismic response, thus improving the analysis of this diagnostic tool. 
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1.4 Eagle Ford Geologic Characteristics 

 Hilcorp Energy Resources (HER), a private oil and gas operator, entered the 

Eagle Ford play in the summer of 2009 and rapidly initiated an aggressive 

development campaign. In less than 2 years, HER drilled and completed a total of 97 

horizontal wells. These nimble operations concluded on November 1st 2011, when 

HER  sold  all  its  assets  to  Marathon  Oil  Corporation.  While  working  for  HER,  I  

supported field development through geophysical operations, which provided 

significant insight to the topics discussed here. This section elaborates on the 

geological characteristics of the Eagle Ford formation, because I developed most of 

the ideas presented in this dissertation implementing borehole microseismic while 

evaluating hydraulic fracturing performed on the Eagle Ford. 

Literature related to the rock unit known as the Eagle Ford is abundant. 

Numerous articles describe its various geological characteristics over a relatively large 

area, from the regional and outcrop level to the nanometer and molecular scale. These 

multiscale data-gathering efforts are the result of exploration campaigns at the basin 

scale, and productivity enhancement studies that depend largely in reservoir properties 

orders of magnitude smaller. Understanding these various characteristics and their 

relationships is essential as geologic parameters control the quality of hydrocarbon 

resources, and impose significant constrains to the most efficient exploitation 

approaches. This section summarizes analysis from vast amounts of data, usually 

collected in support of resource play operations, publicly available and in good 

agreement with proprietary information from the subsurface of the area of interest 

associated with this dissertation.   Ultimately, the geological data within this chapter 
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provides the necessary framework to interpret the microseismic response to hydraulic 

fracturing of the Eagle Ford and supports the hypothesis that geological information is 

crucial for the proper evaluation of microseismic data on any formation.   

 

1.4.1 Regional perspective 

In  1887,  Hill  made  the  first  formal  reference  to  the  Upper  Cretaceous  

(Cenomanian – Turonian) Eagle Ford strata, and reported the village of Eagle Ford in 

Dallas County, Texas, as its type locality (Donovan and Staerker, 2010). Outcrop and 

subsurface studies on age-equivalent rocks often refer to these strata as The Eagle 

Ford Group, Eagle Ford Formation, and Boquillas-Flags Formation, among other 

names (Liro et al., 1994; Dawson, 2000; and Lock and Peschier, 2006). For example, 

Boquillas is its common designation in West Texas publications (Donovan and 

Staerker, 2010). Although often labeled “The Eagle Ford Shale” (e.g. Martin et al., 

2011; Bazan et al., 2010; Inamdar et al., 2010; Stegent et al., 2010; and Fan et al., 

2011),  this interval consists mainly of intercalated limestones, carbonate-rich 

mudstones, clay-rich mudstones, and quartzose siltstones (Dawson, 2000; and 

Minisini et al., 2011).  

In Texas, Eagle Ford sediments were deposited in the western portion of the 

Greater Gulf basin (Hendershott, 2012), i.e. the East Texas basin, the San Marcos 

arch, and the Maverick basin, on a southwest - northeast trend parallel to the current 

Texas’ Gulf of Mexico coast strike as shown in the map presented in Figure 1.4.1. 
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Figure 1.4.1. Spatial extent of the Eagle Ford formation in Texas (grey shadow) along 
with properly labeled major structural features of the area. Blue and red lines represent 
the relative positions of the Edwards and Sligo shelf margins respectively. A black 
box towards the south west underscores the region known as the Hawkville trough 
were the Eagle Ford was first targeted as a productive interval. Most of the data 
available in the literature is associated with the Hawkville field, which is located in 
this region (after Hendershott, 2012). 
 

Figure 1.4.2 shows a schematic perspective of the Cenomanian 

paleogeography in the area currently occupied by Texas and Mexico. Major 

geographical features like the relative location of the Cenomanian shoreline, magmatic 

arcs  and  the  connection  with  the  Western  Interior  Seaway  are  all  depicted  in  this  

figure. During this time, the Sabine Uplift and the Western Interior Seaway were all 

mayor sources of siliciclastic sediments (Scott, 2010). These conditions were prone to 

the generation of vast accumulation of carbonate sediments.  
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Figure 1.4.2. Cenomanian paleogeography. Notice how the Western Interior Seaway 
of the Rocky Mountains was connected to the Gulf of Mexico due to first-order and 
second-order eustatic events supporting the deposition and preservation of deepwater 
pelagic carbonates and siliciclastics in front of elevated shallow waters, rift-rimmed, 
Middle Cretaceous platforms. Notice also the presence of active magmatism to the 
west of current day Texas, which are the source of multiples ash beds found in the 
Eagle Ford formation  (after Goldhammer et al., 1998).  

 

Knowledge of the relative location of the paleogeographic elements presented 

in figures 1.4.1 and 1.4.2 is key as it provides the basis to understand the different 

interactions between sediments sources and the depositional environments associated 

with the Eagle Ford formation. In particular, the presence of two Lower Cretaceous 

shelf margins, the Edwards (Comanchean) and Sligo (Coahuilan) margins (Figure 

1.4.1) delineate the area known as the Hawkville Trough, which may have caused a 

local mini basin, giving distinctive characteristics to the sedimentary column of this 
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area. Also, some of these structural elements could have influenced the occurrence of 

natural fractures within Eagle Ford layers. As all these features refer to the geologic 

time during deposition and preservation of Eagle Ford sediments, current 

characteristics of the region are also significant. For instance, Figure 1.4.3 illustrates 

the  present  day  stress  field  of  the  area  according  to  the  World  Stress  Map  

(Hendershott, 2012). This information is extremely important as the current stress field 

determines fracture orientation, thus impacting drilling and completion operations and 

the overall efficiency of major development plans. 

 

 

Figure 1.4.3. Texas portion of the World Stress Map. The shaded area represents the 
Eagle Ford trend associated with a maximum horizontal compressive stress with 
azimuth southwest – northeast obtained from wellbore breakouts  (after Hendershott, 
2012). 
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For a long time the Eagle Ford formation has been recognized as the 

hydrocarbon source rock for numerous reservoirs of the overlain Austin Chalk and the 

giant East Texas oil field (Liro et al, 1994). Additionally, in recent years the Eagle 

Ford has attracted much attention from the Energy Industry as a resource play (Martin 

et al. 2011) because of its potential to generate and store significant amounts of 

hydrocarbons in Texas and Mexico (Lock and Peschier, 2006). Moreover, its many 

carbonate layers make sections of the Eagle Ford significantly brittle and thus, an 

excellent candidate for hydraulic fracturing. For these reasons, The Eagle Ford has 

been the subject of significant hydrocarbon exploration and production activities along 

an area of more than 50 miles wide and 400 miles long, from the Mexico-Texas border 

to East Texas. Figure 1.4.4 shows the current commercial activity associated with this 

resource play. Green dots on the northern area represent wells producing hydrocarbon 

liquids  from  Eagle  Ford  rocks  associated  with  relatively  shallow  depths,  low  

temperatures and low pressures. Gas wells, shown by red dots, usually produce from 

deeper depths and higher temperatures and pressures. Green and yellow bands depict 

areas of oil and wet gas/condensate, respectively, while the dry gas area is enclosed by 

a red band. 

The map in Figure 1.4.4 also shows the relatively simple monoclinal structure 

with a minor south-southeast dip (~1 degree) towards the current position of the Gulf 

of Mexico (Hendershott, 2012). Major normal faults downward to the coast easily 

recognized in seismic profiles are also present in the area but have been omitted on 

Figure 1.4.4 for simplicity. Most faults are post depositional, usually having vertical 
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separations between 8 and 60 m (25 and 200 ft) along the Eagle Ford section 

(Hendershott, 2012). 

 

 

Figure 1.4.4. South Texas map displaying relevant Eagle Ford formation geographic 
information. (EIA, accessed 2012)  The current commercial activity, indicated by the 
number of oil and gas wells drilled (green and red dots), covers a significant area from 
the Texas-Mexico border to East Texas. Subsurface contours describing a simple 
structure (i.e. depths contours without mayor faults) and thickness of the formation 
overlay green, yellow, and orange bands that correlate with interpreted oil, wet gas, 
and dry gas hydrocarbons windows, respectively. The map also highlights the position 
of outcrops where the formation is studied at the surface level.    

 

1.4.2 Outcrop Characteristics 

Figure 1.4.5, modified from Lock et al., 2010, shows one of many West Texas 

road cuts where it is possible to study the Eagle Ford on the surface. This outcrop is 
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correlative to the subsurface section currently targeted for hydrocarbon production. 

When visible in an outcrop, Eagle Ford rocks usually weathers grey but freshly 

exposed samples display the descriptive black color and oily smell for which this 

“black shale” is famous. This is shown in Figure 1.4.5.   

 

Figure 1.4.5. Typical Eagle Ford (Boquillas) formation outcrop in Highway 90, Val 
Verde County, TX. The inset in the figure shows a close-up view of the outcrop, with 
weathered (gray) and freshly-exposed (black) rock surfaces. The height of the section 
is approximately 30 ft. In this picture, it is possible to observe bed-scale facies 
variations interpreted as outer-shelf deposits by Minisini et al., 2011 (modified from 
Lock et al., 2010).  

 

Thin volcanoclastic beds recognized throughout the formation (Lock et al., 

2010, and, Minisini et al., 2011) are good correlation markers (Minisini et al., 2011). 

Similarly, flooding surfaces and resistant limestone beds observed on the surface 

delineate parasequences representing preferential cyclic stacking patterns easily 

correlated along several miles on the surface (Minisini et al., 2011). It is important to 
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note that detailed fieldwork supports the interpretation of outer-shelf shallow waters as 

the most likely depositional environment associated with Eagle Ford sediments 

analyzed from outcrops, based on the predominance of marine fossils and the 

abundance of lignitic, terrestrial and plant debris (Liro et al., 1994, and, Minisini et al., 

2011). Planktonic foraminifera, calcispheres, and Inoceramids (benthonic organisms 

known to tolerate low oxygen levels) are among the few fauna recognized on these 

rarely burrowed strata (Liro et al, 1994). These observations suggest anoxic conditions 

during deposition. Additionally, the observed thin-bedded stratigraphy, composed 

mainly of small grain size sediments, together with the presence of thin and 

continuous bentonites beds, implies a low energy setting (below storm wave base) 

only perturbed episodically. This hypothesis is supported by the limited amount of 

sandstones and siltstone layers observed in the Eagle Ford (Liro et al, 1994).  

In general, subsurface rock samples share most of the characteristics 

recognized in outcrops. However, the presence of depositional structures such as mass 

transport deposits, which are found in the outcrop but not recognized in analysis 

involving subsurface data, suggest that sediments found in the subsurface were 

probably deposited in more distal portions of the depositional basin and, consequently, 

deeper water environments (Minisini et al., 2011).  

 

1.4.3 Reservoir Characteristics  

Figure 1.4.6, from Stoneburner et al. (2012), shows a typical log response from 

a vertical well that penetrates the entire Eagle Ford interval. In this particular example, 

224 ft of Eagle Ford formation are delimited at the bottom by the Buda limestone, and 
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at the top by the Austin Chalk. Both contacts are unconformable as recognized by the 

abrupt changes of properties registered via GR, resistivity, porosity and sonic logs. 

Based on log responses, the Eagle Ford could be divided into upper and lower 

members, which are also divisions easily observed in outcrops (Donovan and Staerker, 

2010). The typically targeted Eagle Ford interval is located within the Lower Eagle 

Ford member, and it is associated with high resistivity and porosity values, among 

other properties, as shown in the logs presented in Figure 1.4.6. The geomechanical 

properties and anisotropy of the zone of interest could also be evaluated via sonic 

transit time wireline logs and associated computed logs, as the compressional transit 

time (DTC), shear transit time (DTS) and Poisson’s ratio displayed in track 4 of the 

example log shown in Figure 1.4.6. 
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Figure 1.4.6. Typical open borehole logs responses from a vertical well penetrating the 
Eagle Ford shale play. Track one shows caliper (red) and gamma ray (green) curves. 
Track two displays resistivity logs; total (red), medium (purple) and shallow (black). 
Track three contains  porosity measurements; density (red) and neutron (green); and 
Track 4 presents transit time for primary (dark blue) and secondary (cyan) wave pulses 
as well as computed Poisson ratio (light green) using the previous curves. In this 
particular example, the Eagle Ford formation is represented by a 68m (224ft) section 
delimited by the top of Buda Limestone and the base of the Austin Chalk, as clearly 
marked in the log. Within the Eagle Ford formation, a typical target zone has 
relatively high gamma ray, resistivity, porosity and transit time as depicted by the red 
arrow (After Stoneburner, 2012). 
 

A regional southwest-northeast cross-section on a structural strike direction 

was built correlating logs assemblages such as the one previously presented. This is 

shown in Figure 1.4.7. The top of the Buda limestone and the base of the Austin chalk 

are easily correlated due to their unconformable characteristics with the Eagle Ford 

Formation, as observed on GR and resistivity logs. In the same way, a maximum 

flooding surface, which divides the Eagle Ford upper and lower members, is also 

easily tracked regionally. Moreover, Figure 1.4.7 presents the typical South Texas 
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stratigraphic column, because it is possible to recognize the following formations from 

bottom to top: Edwards, Georgetown, del Rio, Buda, Eagle Ford and Austin Chalk.  

 

Figure 1.4.7. Regional southwest - northeast cross-section showing log character 
variability across the Eagle Ford play. GR log is plotted in track 1 while resistivity log 
is plotted in track 2. Continuous colored lines delimit the boundaries between the 
Edwards, Georgetown, Del Rio, Buda, Eagle Ford and Austin Chalk formations as 
annotated. Upper and lower Eagle Ford members are colored blue and purple, 
respectively. Notice how the Eagle Ford section thickens toward the west, from the 
San Marcos Arch area to the Maverick basin (Modified from Matsutsuyu, 2011). 
 

 

The cross section on Figure 1.4.7 easily presents thickness variations across 

Texas but due to the large spatial extent of the Eagle Ford formation, other geological 

characteristics also vary significantly along particular geographical areas. Table 2 

shows value ranges for some of the most relevant properties of the Eagle Ford 

formation.    
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Table 2. Properties of the Eagle Ford Shale 
(modified from Lyle, 2010; Mullen, 2010; and 

Borstmayer et al., 2011). 
 

Depth (ft) 4000 – 14000 

Gross Thickness (ft) 50 – 300 

TOC (%) 2.0 – 6.5 

Vitrinite Reflectance (%Ro) 1.0 – 1.27 

Total Porosity (%) 3 – 18 

Pressure Gradient (psi/ft) 0.43 - 0.84 

Permeability (nD) 1 – 800 

Water Saturation (%) 1 – 31 

Young’s Modulus (psi) 1.00E+06 – 2.00 E+06 

Poisson’s Ratio 0.25 – 0.27 

 

The wide range of Eagle Ford properties observed in Table 2 underscore the 

need for data from specific areas to properly analyze the play. Therefore, the few 

Eagle Ford characteristics and examples presented in the following paragraphs should 

not be considered representative of the entire Eagle Ford formation.  

  

1.4.4 Sample Characteristics  

Due to the extremely low permeability of the fine-grained sedimentary rocks 

associated with resource plays, acquiring and analyzing whole core samples becomes 

essential. Ultimately, cores are the only source of direct and quantitative subsurface 

rock characteristics, such as those presented in Table 2. For instance, visual 
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descriptions of core supported by photographs and simple measurements (e.g. core 

spectral gamma ray), serve as a proxy to infer depositional environments and/or 

fracture density properties. Furthermore, geomechanical, geochemical and 

petrographic analysis made on smaller core fragments provide insight on properties 

controlling fluid flow and hydrocarbon quality, while also allowing to quantify rock 

storage and flow parameters.  

Figure 1.4.8 shows a photograph of an Eagle Ford core. A dark thinly 

laminated lower portion (rich in organic matter) is visually different from the also 

thinly laminated, but lighter color section above it. The upper portion of the core 

presented in Figure 1.4.8 contains abundant foraminifera (fossil fragments), as clearly 

annotated in the figure, associated with an increase in the carbonate content.  This 

characteristic may be associated with a higher tendency to break (brittleness) when the 

rock is subjected to high stress.  

 



52 

 

Figure 1.4.8. Eagle Ford core photograph showing clearly the well-laminated character 
of this section together with the sharp contrast between a foraminifera rich upper 
portion, and a relatively darker bottom portion with a significant smaller content of 
foraminifera. A simple visual inspection makes it possible to infer that there are 
numerous stratigraphic planes of weakness within the entire section and that the upper 
portion of the core likely represents a more brittle section of the subsurface relative to 
a more ductile bottom (modified from Lock et al., 2010). 
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 Figure  1.4.9  shows  core  photographs  from  some  of  the  typical  facies  

encountered within the Eagle Ford section: limestone, calcareous shale, ash beds and 

three types of marl with various amounts of planktonic foraminifera, the most 

pervasive fossil assemblage of the Eagle Ford Section usually agglomerated in thin 

laminations (Stoneburner, 2012).  

 

Figure 1.4.9. Core photographs of different rock facies typically encountered in the 
Eagle Ford formation. Limestones, calcareous shales and marls are the most common 
rock types. The amount of foraminifera and other fossil organisms found in different 
layers usually varies as shown in the marls photographs presented at the top. Ash 
beds/bentonite and other stratigraphycally distinct beds/surfaces are also easily 
recognized in the core and can also be correlated with log readings  (Modified from 
Stoneburner, 2012). 
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As seen on cores, mixed siliciclastics and calcareous beds dominate the upper 

Eagle Ford composition while the darker, organic rich calcareous facies are typical of 

the lower Eagle Ford. From the perspective of the drilling and completion engineer, it 

is important to know that the different facies presented in Figure 1.4.9 will react 

differently to hydraulic stimulation and the organic content varies significantly 

between these different rock assemblages (Stoneburner, 2012). 

From core samples it is possible to interpret depositional environments and 

estimate porosity, permeability and fluid saturations. For example, Figure 1.4.10 

presents porosity measurements made on 353 Eagle Ford samples from 3 different 

wells. The average porosity from this data set is 7.4%, and although the reported error 

is +/- 0.02%, the data suggest greater variability in the porosity range.  

 

Figure 1.4.10. Histogram of 353 helium porosity measurements made on core samples 
from three different Eagle Ford wells. Values vary significantly from 1.90% to 
20.25% with an average porosity of 7.40% +/- 0.02% (after Sondhi, 2011). 
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Another approach to compute porosity from an Eagle Ford sample involves a 

full multiscale analysis as the one presented in Figure 1.4.11. A computed tomography 

(CT) scan image of a whole Eagle Ford core is first taken to provide, among other 

things, good records of the original core. Then, a micro CT scan is acquired on a core 

plug to provide more detailed information via ion milled scanning electron microscope 

(SEM), ultimately providing porosity, and volume fraction relationships from stacks 

of two-dimensional high-resolution images. This level of detail is necessary because in 

fine-grained reservoirs, as the Eagle Ford formation, much of the porosity is in the 

nanometer scale. Three main types of pores; i.e. organic matter pores, intraparticle 

pores, and interparticle pores conform the total porosity (Loucks et al., 2012), and thus 

an accurate value of porosity provides the means to calculate the volume of 

hydrocarbons in place and the approximate actual value of the resource. For this 

reason, multiple porosity estimation methods, including the Gas Research Institute 

(GRI) crushed sample technique (Guidry et al, 1996), as well as the techniques 

mentioned before, are commonly used during a detailed resource play evaluation. It is 

important to note that porosity values obtained from different approaches are often 

associated with a high uncertainty due to the small scale of the measurements and the 

usual measurement errors of each method. Other parameters, such as permeability, are 

also prone to large variability and uncertainty because traditional methods of 

estimating this property, such as direct core analysis or well tests and pressure 

buildups, are also not appropriate due to the same reasons. 
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Figure 1.4.11. Representation of a typical workflow for a multiscale core 
characterization on the Eagle Ford shale. Continuous CT whole-core scans (farthest 
left) followed by micro CT scan of a selected plug from which samples for ion-milled 
SEM scans are taken (properly labeled in the Figure). From these images, porosity and 
mineral composition/kerogen content can be quantitatively determined as shown in the 
lower right corner of the figure (after Walls et al., 2011). 

 

The access to preserved reservoir core samples provides additional support to 

the design of multiple completion parameters such as proppant selection and fracturing 

fluids. Furthermore, measurements made on cores provide the means to verify and 

calibrate similar rock properties usually derived from log readings. 
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1.4.4.1 Geomechanical characteristics 

Depositional processes, primary and diagenetic composition, pore structure 

and fabric directly influence the mechanical properties of rocks. Therefore, the term 

geomechanics is commonly associated with rock studies that take into consideration 

these elements when analyzing the mechanical properties of rocks. In particular, the 

term fabric refers to the spatial and geometric configuration of the elements that 

constitute the rock. The degree of lamination is a typical fabric characteristic, which 

directly influences the rock anisotropy, strength, and fracture toughness. Slatt and 

Abousleiman (2011) suggest that laminae/bedding contacts represent planes of 

weakness for hydraulic fracturing, and sustain their hypothesis in numerous 

observations from the Barnett and Woodford shales. Eagle Ford samples reflect the 

same characteristics cited by Slatt and Abousleiman, including the lack of significant 

authigenic cement along bed/lamination contacts, which weakens the rock at those 

contacts, and geomechanical properties highly dependent on bedding direction 

(perpendicular vs. parallel), as well as the presence of layers with fractures 

perpendicular to the bedding intermixed with non-fractured layers. 

Lithofacies stacking patterns represent another fabric characteristic of the 

Eagle Ford. The facies presented in the core images in Figure 1.4.8 and Figure 1.4.9 

are easily recognized in logs measurements once calibrated, and could be interpreted 

as cyclic patterns associated with eustatic and oxygen levels changes representing the 

brittle-ductile couplets proposed by Slatt and Abousleiman (2011) at the 

parasequences and sequence scale. 
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 Geomechanical measurements from core samples are key inputs into drilling 

and completion designs as they relate to finding sweet spots, mapping fractures and 

fracture behavior, optimizing hydraulic fracturing, understanding fracturing fluid 

behavior, selecting proppants, as well as optimizing horizontal drilling and staged 

completions. In general, results from stress tests at different pressures and 

temperatures provide the basis to understand rock responses to mechanical changes. 

Of particular interest are measurements like the Young’s modulus and Poisson’s ratio, 

which provide a quantitative measure of how much the rock will deform under stress. 

In general, a combination of relatively high Poisson’s ratio and low Young’s modulus 

is characteristic of ductile rocks (those that suffer plastic deformation under high 

stress),  while low Poisson’s ratio combined with high Young’s modulus is typical of 

brittle rocks (those that shatter under high stress). Published values of Young’s 

modulus and Poisson’s ratio for the Eagle Ford range between 1x106 - 2x106 psi, and 

0.25 - 0.27, respectively (Table 2). These values are characteristic of a relatively brittle 

section. 

 In order to better assess the rock response to hydraulic fracturing stimulation 

other parameters should also be considered. For example, the brittleness index, which 

combines mineralogy and organic carbon content, is a useful parameter to predict the 

rock behavior under stress (Jarvie et al., 2007, and Wang and Gale, 2009). 

Nonetheless, parameters like the brittleness index should be considered in conjunction 

with detailed geological analysis. The origin of quartz fragments (e.g. biogenic, 

detrital or digenetic), for instance, impose distinctively different geomechanical 
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characteristics to the rock not always following the general belief that the presence of 

quartz make the rock more brittle (Slatt, 2011). 

1.4.4.2 Geochemical characteristics 

For resource plays exploration and exploitation, geochemical analyses are 

particularly significant, as they provide the basis to quantify the amount and type of 

hydrocarbons of the specific petroleum system. The assessment of the organic 

richness, quality, and maturity of targeted intervals provide the basis to make these 

estimations.  

Results from heating rock samples at controlled environment conditions, an 

experiment known as pyrolysis, provide the parameters to compute Hydrogen Index 

(HI) and Oxygen Index (OI), which together with the Total Organic Carbon (TOC), 

provide quantitative information about the rock richness. Organic richness is usually 

associated with more than 1% total organic content (TOC) and Hydrogen Index (HI) 

greater than 350 mg HC/g for oil-prone source rocks, while 0.5% TOC values and HI 

greater than 150 mg HC/g are expected for gas-prone source rocks  (Hunt, 1996).  

Prospective Eagle Ford sections are particularly organic rich according to TOC 

measurements such as the one presented in Figure 1.4.12. This TOC histogram shows 

most of the readings reaching at least the gas prone generation cut off, and an average 

TOC of 2.45% from 112 samples.   TOC also tends to correlate well with GR log API 

values, which allows, through proper log-core calibration, a good way to estimate 

TOC (Passey et al., 1990).   
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Figure 1.4.12. Histogram distribution of TOC measurements made on 112 samples 
from three Eagle  Ford wells.  TOC values vary from 0.06 to  6.32 % (wt %),  with an 
average of 2.45 +/- 1.49% (wt %) (after Sondhi, 2011). 

  

Vitrinite reflectance (%Ro) is a key maturity parameter, with common values 

for the Eagle Ford ranging between 1.00 and 1.27 as shown in Table 2. These values 

are characteristics of a mature source rock. The Production Index (PI), another 

measurement derived from the pyrolysis experiment, also provides an estimation of 

the maturity of the rock. The temperature at maximum release of hydrocarbon during 

the pyrolysis experiment (Tmax) is also a good maturity estimator. Figure 1.4.13 

presents a graph of Tmax versus HI associated with multiple samples from three Eagle 

Ford wells.  As seen in this Figure, most of the samples from wells A and B fall within 

the “Mature” region, which is associated with type II-III oil gas prone and type III gas 

prone, while samples associated with well C are post mature, and fall within the inert 
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type of the dry gas window. This type of analysis over a multitude of samples is what 

has defined the current hydrocarbons windows presented in Figure 1.4.3.   

 

 

Figure 1.4.13. Crossplot of HI vs. Tmax for multiple samples from three Eagle Ford 
wells.  Well  A  and  B  are  inferred  to  be  associated  with  an  oil  window  while  
measurements from the well C fall clearly within the dry gas window (after Sondhi, 
2011). 
 

Lock et al., 2010, reported results from analytical studies on fresh outcrop 

samples that correlated to the subsurface zone targeted for hydrocarbons exploitation 

in the Eagle Ford. From their work, TOC measurements varied from 1.99 to 5.7 % as 

reported on Table 3, together with other useful values from the pyrolysis analysis. 

Because these measurements were obtained from outcrop samples, they should 
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represent a lower bound of TOC values, as compared to samples that did not suffer 

weathering. However, a few authors report TOC values as high as 5% from Eagle 

Ford outcrop samples (e.g. Liro et al., 1994, and Slatt et al, 2012).  

 

Table 3. Eagle Ford Shale Total Organic Content (TOC), and reported values 
from programmed pyrolysis analysis on five different samples (after Lock et 
al., 2010). 

 

 

 Visual kerogen analysis also provides the means to characterize the quality of 

source rocks because kerogen is the sedimentary organic matter that generates 

hydrocarbons. The atomic ratio of hydrogen to carbon (H/C), and oxygen to carbon 

(O/C) makes possible to classify distinct types of kerogen and their associated 

hydrocarbons. Based on this classification, Eagle Ford samples are consistently 

associated with a type II kerogen, being capable to generate large amounts of oil and 

gas as shown in Figure 1.4.13. In regards to hydrocarbons accumulations, the Stuart 

City/Edwards reef margin represents a good regional reference marker, because north 

of it, Eagle Ford accumulations tend to be oil rich and normally pressured, while south 

of this boundary, hydrocarbon accumulations, tend to be over-pressured dry natural 

gas.  
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Figure 1.4.14. Comparison of pyrolysis and elemental data for kerogen typing of Eagle 
Ford samples in Austin and Waco localities. Most of the samples are consistent with 
type II kerogen (after Liro et al. 1994).  
 

The existence of anoxic or oxic conditions during deposition could also be 

inferred from geochemical interpretations by analyzing the presence of certain 

minerals and specific biomarkers as well as by studying the relative hydrocarbon 

potential (Slatt and Rodriguez, 2012). In particular, the presence of phosphatic nodules 

on Eagle Ford cores reflect characteristic of transgressive conditions during 

deposition. Similarly, disseminated pyrite along the Eagle Ford’s vertical column 

clearly delimits cyclic events, revealing that anoxic conditions fluctuated with time.  

The Eagle Ford thickness,  which could be greater than 100m (30ft), attests to 

the possibility of large amounts of hydrocarbons still remaining within this resource, 

for in the presence of thick source rock, above 60m (200ft) the expulsion processes are 

not as efficient, leading to significant amounts of residual hydrocarbon in place (Slatt 

and Rodriguez, 2012).   



64 

1.4.4.3 Petrographic characteristics  

 The analysis of rock properties via thin sections, x-ray diffraction (XRD) 

analysis,  and  scanning  electron  microscope  (SEM)  imaging  is  referred  to  as  

Petrographic Characterization.  

Lower Eagle Ford thin sections, as the one shown on Figure 1.4.15, reveal the 

character of organic rich beds containing variable carbonate concentrations. 

Carbonates dominate the rock composition, primarily as recrystallized carbonates 

zones and grainstones lamina mainly composed of calcispheres, planktonic 

foraminifera and Inoceramid fragments (Lock and Pechier, 2006).  

 

 

Figure 1.4.15. Eagle Ford thin section from a “black shale” portion of core, which has 
a distinct organic rich matrix. Here it is also easy to recognized Inoceramus fragments, 
disperse calcispheres and winnowed laminae of calcispheres and planktonic 
foraminifera. (after Lock and Pechier,  2006). 
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Thin section analysis also reveals the presence of fractures, which may serve as 

natural conduits for fluids to flow, thus enhancing reservoir permeability. Figure 

1.4.16 shows two thin sections on natural light (A and C), and fluorescence light (B 

and D) to highlight the presence of fractures parallel and perpendicular to bedding.     

 

Figure 1.4.16. Eagle Ford thin sections showing fractures normal and along bedding-
planes through the use of natural light (A and C) and fluorescence light (B and D) 
(after Mullen, 2010). 
 

The interaction of X-rays with the crystalline substance of rock samples, 

referred as XRD analysis, provides particular patterns that characterize and identify 

their constitutive elements and confirm the observations made in thin sections. In this 

regard, calcite is the most abundant mineral and it is present as parts of the matrix, 

fossils fragments, cement filling foraminifer’s chambers, and recrystallization 
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material. Figure 1.4.17 shows graphically the volume percentage of various elements 

for the Buda, Eagle Ford, and, Austin Chalk formations obtained from XRD analysis.  

 

Figure 1.4.17. Mineralogy by XRD of an undisclosed well is penetrating the Eagle 
Ford Shale play. Quartz (Qtz), plagioclase (Plg), calcite (Cal), dolomite (Dol), pyrite 
(Pyr), marcasite (Mar), illite/smectite (I/S), illite/mica (I/M), chlorite (Chl), kaolinite 
(Kao), and kerogen (Ker) (after Stoneburner, 2012). 
 

Most of the Eagle Ford samples reflect a composition very similar to the one 

presented in Figure 1.4.17 where quartz, plagioclase, calcite, dolomite, pyrite, 

marcasite, illite/mica, illite/smectite, chlorite, kaolinite, and kerogen represent the 

major elements of the rock. It is worth noting that the data presented in Figure 1.4.17 

is from an area in the Eagle Ford Shale that has a relatively high kerogen content 

(mostly greater than 6%), and calcite is its major constituent, representing more than 

50% of the section. This composition, however, varies considerably from east to west 

along the basin, as shown in the cross-section presented in Figure 1.4.18. In particular, 
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the changes in the concentration of clay minerals (Illite, smectite, kaolinite and 

chlorite), together with changes in carbonate, quartz, and kerogen content result in 

vertical and lateral anisotropy in rock properties that directly affect log and seismic 

data responses, while also impacting the strength characteristics of the rock. 

 

Figure 1.4.18. X-Ray Diffraction (XRD) information from four undisclosed wells 
penetrating the Eagle Ford Shale play forming a West-East cross section covering 
approximately 250 miles from the Maverick Basin to the East Texas area (see Figure 
1.4.1 to get a relative distance between each area). The percentage of quartz (QTZ%), 
carbonate, clay and kerogen varies considerably. In particular, notice how the relative 
percentage of clay and carbonates changes from west to east (after Stoneburner, 2012). 

 

On a fine-grained reservoir like the Eagle Ford, common rock typing based on 

porosity and permeability relationships is more difficult to perform because of the 

narrow range of porosities associated with the play and the nanodarcy permeability of 
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the  matrix.  Therefore  it  is  necessary  to  study  thin  sections  and  SEM  images  to  

recognize the effect of depositional processes in the reservoir quality and the 

relationship between different components of the rock. These analyses allow to 

understand mineral composition, diagenesis and anisotropy together with a complete 

characterization of the pore structure affecting the porosity and permeability 

relationship for each primary producing zone. Moreover, SEM images provide the 

means to obtain accurate porosity determination and relative permeability quickly in 

multiple directions, eventually aiding in the properties upscaling process (Walls et al., 

2011). Figure 1.4.19 presents SEM images of two Eagle Ford shale samples showing 

distinctive carbonates, pyrite, kaolinite, and organic material fragments, as well as 

pore spaces distributed throughout the sample. 

 

 

Figure 1.4.19. Eagle Ford shale Back-scatter SEM images showing the presence of 
carbonate, dolomite and clay (kaolinite) fragments as well as the presence of pyrite 
framboids, organic matter, fossils (coccoliths) and pore space. Figure a represents a 
higher resolution image compared to figure b as clearly marked on the figure’s scales 
(modified from Lock et al., 2010).   
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Ion-milling, a technique typically used to generate relatively smooth surfaces 

of the samples from which high resolution images of the pore space are taken, should 

be treated with special care (as well as the results from these processes) because the 

milling process may significantly affect the sample analyzed, as shown in Figure 

1.4.20. 

  

 

Figure 1.4.20. Eagle Ford shale SEM images highlighting the occurrence of clay and 
carbonate particles and associated inter particle pores. Figure b represents a higher 
resolution image compared to Figure a, as clearly marked on each the figure scale 
allowing to better observe possible consequences from the ion-beam sample 
preparation process (modified from Loucks et al., 2012). 
   

 Analyzing several SEM samples, multiple authors have postulated that the 

majority of the Eagle Ford microporosity is associated with kerogen (e.g. Walls et al, 

2011, Curtis et al., 2012, and Loucks et al. 2012). This implies a strong influence of 

the maturation process on the Eagle Ford hydrocarbon storage capacity. However, in 

shale plays, and specifically in the Eagle Ford, this organic matter pore type is not the 

only source of porosity. In particular, Slatt and O’Brien (2011) discuss multiple 

sources for pores including porous floccules, porous fecal pellets, fossil fragments 
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(e.g. sponge spicules, coccospheres and their spines, foraminifera with open 

chambers), mineral grains (e.g. pyrite framboids), microchannels within the shale 

matrix (e.g. micro burrows, scours, micro sedimentary structures) and fractures, each 

one contributing to the storage and flow capacity of the rocks. For instance, it is 

possible to observe porosity residing in floccule structures and various fossil 

fragments in SEM images of the Eagle Ford shale presented in Figure 1.4.21 and 

1.4.22, respectively (Slatt and O’Brien, 2011). By properly characterizing pore-type it 

is possible to infer the proper relationships between porosity and permeability, and 

therefore to have a better estimate of flow performance. For example, Walls et al., 

2011, postulates that Eagle Ford samples that show prominent intergranular porosity 

tent to be associated with lower natural permeability. Regardless of their type and 

origins, all these pores provide potential storage space for hydrocarbons accumulations 

such as the oil within the Eagle Ford’s coccolith chamber captured immediately after a 

pyrolysis test presented in Figure 1.4.23.  

 

Figure 1.4.21. a) Cartoon representation of a flocculated clay particle and b) Eagle 
Ford shale SEM image distinctly presenting the same characteristic floccule pattern 
(modified from Slatt and O’Brien, 2011).   
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Figure 1.4.22. Eagle Ford shale SEM images clearly showing the contribution from 
fossil assemblages in the sample porous space. a) Interior of foraminifera partially 
filled with digenetic calcite. b) Hollow coccospheres and spines (modified from Slatt 
and O’Brien, 2011).   
 

 

 

Figure 1.4.23. Eagle Ford shale SEM images clearly showing the contribution from 
fossil assemblages in the porous space. a) Hollow coccospheres and spines. b) Oil 
within coccolith chamber after hydrous pyrolysis (modified from Slatt, 2011). 
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1.4.5 Eagle Ford Sequence Stratigraphic Framework 

This dissertation will use Donovan and Staerker’s (2010) sequence 

stratigraphic framework of the Eagle Ford formation, which builds upon previous 

works by Freeman (1961), Pessagno (1969), Trevino (1988), and Lock and Peshier 

(2006), while it incorporates new insights from recent integrated subsurface and 

outcrop data analysis. Figure 1.4.12 summarizes the Eagle Ford sequence stratigraphic 

framework.  

 

Figure 1.4.24. Eagle Ford sequence stratigraphic framework, Osman canyon 
fieldwork. Eagle Ford facies A and B are associated with a TST while facies C have 
typical  HST  characteristics.  Facies  A,  B  and  C  correspond  with  a  second  order  
sequence delimited by sequence boundaries K63SB and K69SB (authors’ 
nomenclature). Observed lithologies, thickness, % TOC, and references to the canyon 
location and biostratigraphic geologic calibration are also shown. Notice that 
recognizing the K65mfs implies the presence of a condensed section on facies B and  
exhibits the highest TOC values and a significant carbonate content, making  this unit 
very prospective for  hydrocarbon exploration (after Donovan and Staerker, 2010). 
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Donovan and Staerker (2010) recognized multiple scales of regressive-

transgressive cycles following sequence stratigraphic principles, and divided the Eagle 

Ford formation into five facies (A trough E) according with their observations. In 

particular, as seen in Figure 1.4.22, facies A and B are the Lower Eagle Ford member, 

which  represent  a  TST,  while  facies  C  is  associated  with  the  Upper  Eagle  Ford  

member and has characteristics typical of a HST. For example, dark organic rich 

calcareous mudstones are ubiquitous in the TST, while distinctly prograding and 

lighter grey facies are associated with the HST. According with their work, the 

transgressive deposits formed by the Lower Eagle Ford (facies A and B) rests 

unconformable on top of the Buda formation. Following this interpretation, the contact 

between the Buda and Eagle Ford formations forms a regional combined sequence 

boundary/transgressive surface of erosion (SB/TSE) (Slatt and Rodriguez, 2012). This 

surface correlates with the Middle Cretaceous Unconformity at 96 ma described by 

Winkler and Buffler (1988), and recognized regionally in the Gulf of Mexico Basin 

(Haq et al., 1986). Following Donovan and Starker (2010) nomenclature, this major 

sequence boundary is labeled K63SB in Figure 1.4.22.     

Based on the limited observed fauna (i.e. mainly planktonic organisms and 

bottom dwelling low oxygen adapted inoceramids), and the minimal presence of 

depositional structures and bioturbation indicators, sediments from the TST section are 

interpreted to have been deposited in a low energy, anoxic environment, capped by an 

mfs (labeled K65mfs in Figure 1.4.22). Donovan and Starker (2010) identify the 

organic-rich mudstones located immediately below the mfs as the most hydrocarbon 

rich section within the Eagle Ford. This is consistent with observations by Slatt and 
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Rodriguez (2012) for the Eagle Ford and other shale plays, and supports Lock and 

Pechier (2006) suggestions that this portion of the Eagle Ford has significant potential 

for hydrocarbon production. Indeed, this section represents a worldwide deposition of 

hydrocarbon-rich units.  

On top of the mfs the typical Eagle Ford higher order limestone–marls cycles 

(parasequences dominated by the effect of climate and sea level fluctuation) serve as 

evidence of the characteristic depositional patterns, while carbonate content increases 

and limestone beds become more numerous in frequency and thickness (Donovan and 

Starker, (2010). Within these parasequences, it is also possible to recognize bioclastic 

and siliciclastic sediments probably supplied by southwestward prograding deltas, 

which represent proximal deltaic facies on the shallow shelf and distal deltaic facies 

basinward (Dawson and Almon, 2010). Lower TOC of this section corresponds with 

the more proximal facies and higher energy also supporting the interpretation of a 

regressive phase. Therefore, the sediment accumulation associated with Facies C 

could be interpreted as a HST, bounded at the top by a sequence boundary illustrated 

by the marker K69SB on Figure 1.4.22, which corresponds with the global 

unconformity at 89 ma (Haq et al., 1986). 

The subsequent sedimentary accumulations are also properly described within 

a sequence stratigraphic framework as a TST and HST, respectively. Donovan and 

Starker (2010) recognize them as facies D and E of the Eagle Ford, and refer to these 

sections as the Langtry member. However, other authors (e.g., Dawson, 2000) prefer 

to associate the units above the Eagle Ford facies C with the basal members of the 

Austin Chalk, while others report that the whole Langrty member is missing in the 
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subsurface as is the case in the Hawkville field, where this section is indistinguishable 

according to Hendershott (2012).   

Major sequence stratigraphic surfaces and their associated system tracts can be 

identified easily in log records. Figure 1.4.25 shows a typical logging suite run on an 

Eagle Ford section and its sequence stratigraphic interpretation. The whole Eagle Ford 

is considered a second order sequence characterized by the general upward decrease in 

GR API that correlates with the coarsening upward stratigraphic section described in 

previous paragraphs and highlighted by the longest solid black arrow in Figure 1.4.25. 

Additionally, because high GR count readings may be interpreted as local flooding 

surfaces, the identification of these markers serve to identify GR parasequences (GRP) 

following Singh’s (2008) methodology. By implementing this approach, it is possible 

to identify GR upward-increasing and upward decreasing trends in Eagle Ford GR 

logs that serve to recognize multiple parasequences within the same section. These 

GRP are highlighted in Figure 1.4.25 by the use of dashed upward pointing arrows.    
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Figure 1.4.25.  Typical open borehole logs responses from a vertical well penetrating 
the Eagle Ford shale play. Track one shows gamma ray curve. Track two displays 
medium (AIT30) and deep (AITC90) resistivity logs. Track three shows porosity 
measurements; density (green) and neutron (dashed purple); and Track 4 presents 
computed TOC. To the right, based on a GR curve interpretation, a solid arrow 
denotes a general upward decrease of API gamma ray counts at a second order scale 
while dashed arrows represents decreases and increases in API gamma ray counts 
associated with higher order variations (after Treadgold et al., 2010, and Slatt and 
Rodriguez, 2012) 
 

Stacking patterns recognized by GRP are also very useful for development 

operations. For instance, they can be used to predict mechanical properties of 

lithologic sections because high GR readings are usually associated with ductile layers 

prone to shear failure, while low gamma ray measurements usually correlate with 

brittle zones and preferential tensile failure (Badra, 2011), thus having a direct impact 
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in the design and analysis of hydraulic fracturing treatment. Additionally, staying 

away from clay rich zones, recognized by the high gamma ray readings, might help 

mitigate hazards associated with clay swelling induced by drilling fluids. 

 Logs associations such as those shown in Figure 1.4.25, also provide the basis 

to build regional sequence stratigraphic models, such as the cross section presented in 

Figure 1.4.26, where prograding patterns and abrupt truncations are easily recognized 

from the northwest to the south east in accordance with the depositional framework 

discussed in this chapter. 

 

 

Figure 1.4.26. Regional cross-section showing major sequence stratigraphic 
characteristics of the Eagle Ford formation (after Bohacs and Lazar, 2010). 
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CHAPTER 2: Pitfalls locating microseismic events from borehole 

measurements – practical observations from field applications*  

 

Cabarcas, C. 

*Adapted from paper published in Interpretation, Vol 1. No 2 (November 2013); p. 

A11-A17. Copyright 2013, Society of Exploration Geophysicist and American 

Association of Petroleum Geologist. 

 
 
2.1 Abstract 

Borehole microseismic monitoring of hydraulic fracturing is among the best 

tools for reservoir stimulation evaluation. After decades of research and execution, the 

technique has gained a well-deserved place within the engineering toolbox. Moreover, 

in  recent  years,  its  popularity  has  increased  exponentially,  together  with  the  

development of unconventional resources. However, while involved with a significant 

number of borehole microseismic monitoring campaigns, I noticed that it is a common 

practice to overlook fundamental principles during the location of microseismic 

events. This may lead to potentially erroneous hydraulic fracturing assessments. 

Examples of microseismic results qualitatively illustrate this assertion showing poor 

recording, velocity models, processing constraints and display. They also underscore 

the interpreter’s role in ensuring the most reasonable outcome from a microseismic 

hydraulic fracture evaluation. In this respect, any conclusion derived from a 

microseismic experiment should be fully supported by a thorough understanding of the 

impact that multiple acquisition and processing assumptions have on the 
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interpretation, as is the case for all other geophysical techniques. Ultimately, my intent 

is to raise awareness of some common pitfalls while also providing recommendations 

to increase the value of a microseismic monitoring exercise. 

 

2.2 Introduction 

In the oil and gas industry, borehole microseismic serves as an indirect 

diagnostic technique that uses low-magnitude seismic signals registered in a monitor 

well (or multiple wells) to study induced subsurface seismicity during hydraulic 

fracturing. In this particular application, seismic signals recorded throughout the 

stimulation treatment are later processed to obtain, at a minimum, their source 

location. The typical representation of the results of this processing step is a cloud of 

points interpreted as an envelope of activated fracture planes, thus providing an 

immediate first diagnostic of the stimulation work. For example, one common use of 

borehole microseismic is to estimate length, height, and azimuth of induced fractures 

to assess the performance of hydraulic fracturing treatments. The literature describing 

results and benefits from this approach is plentiful, and several decades of research on 

the topic support the case for borehole microseismic monitoring as a robust 

technology as discussed in the works of Warpinski (2009a); Maxwell et al. (2010a, b); 

and; Wuestefeld et al. (2012).  However, geometric parameters obtained from 

borehole microseismic measurements may not always explain production records from 

the stimulated well. Based on my experience, most of these inconsistencies are a direct 

consequence of dislocated acquisition, processing, and interpretation phases, and are 

oftentimes not indicative of intrinsic microseismic technique limitations.  
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Previous publications have recognized pitfalls in the application of borehole 

microseismic technology as a diagnostic tool for hydraulic fracturing. Warpinski 

(2009a) advised the scientific community to ensure that event locations are real and 

not influenced by uncertainties and artifacts of the technology. Maxwell and Cipolla 

(2011) stated that due to location uncertainties, microseismic clouds usually tend to 

overestimate the area affected by the treatment. These authors also emphasized the 

impact that vector fidelity, sampling rate, sensors, array geometries, sensor placement 

(i.e. location bias) and anisotropy corrections have on the accuracy and precision of 

microseismic event locations (Warpinski et al., 2009; Maxwell et al. 2010a, b, c; 

Maxwell, 2010; and, Maxwell and Cipolla, 2011). Le Calvez et al. (2007) discussed 

similar issues and underscored the role of a proper geological framework on 

microseismic interpretation. Other authors such as Fehler et al. (2001), Drew and Le 

Calvez (2007), House and Shemeta (2008), and, Kurosawa (2011) provided examples 

of how picking methodologies could significantly impact the proper location of 

microseismic events, resulting in drastically different interpretations of stimulated 

reservoir volume. Mechanical limitations of the measuring tools (Pavlis, 1986), and, 

other errors such as the use of inaccurate well deviation surveys, surface location and 

depth controls, also contribute to a low quality microseismic evaluation. Personnel 

involved with microseismic operations devote a great deal of effort to address these 

pitfalls; however, they are still common today. This publication provides specific field 

examples of other common pitfalls and offers recommended best practices to avoid 

them in the future, while highlighting the role of the microseismic interpreter in 

addressing the technical challenges of the microseismic evaluation. 
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Following a brief series of comments describing the benefits of interpreter 

involvement on acquisition activities and modeling in advance of field operations, I 

discuss the influence of velocity models and location algorithms on the placement of 

microseismic events, while also making the case in favor of embracing reprocessing 

efforts. By documenting my experiences, I seek to raise the awareness of other 

interpreters about potential pitfalls that could influence their analysis. Additionally, 

this work may support a better implementation of future microseismic experiments, 

and consequently, the growth of borehole microseismic analysis as the preferred 

diagnostic tool for hydraulic fracture monitoring.  

 

2.3 A note on data acquisition and modeling 

Before I elaborate on the effects that event positioning have on hydraulic 

fracturing evaluations, I would like to share a few comments regarding the acquisition 

phase of microseismic data. Figure 2.1 illustrates inferior data quality recording during 

acquisition operations that cascaded to the processing and interpretation steps. In this 

particular example, only seven out of twelve multicomponent sensors registered data 

with enough signal-to-noise ratio to properly locate microseismic events acquired 

during twenty stages of hydraulic fracturing. That means 42% of the data registered 

during this project had no material use.  

As equipment failure and operational issues can always happen during the 

acquisition of microseismic data, and indeed are very common (Rich, 2012), the key 

lesson from this experience is the need for constant interaction between the service 

company personnel and the operator. By doing so, all acquisition irregularities can be 
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properly identified, documented and addressed. For instance, as a best practice, 

standard reporting documents should contain event statistics (e.g. number of discarded 

triggers) and detailed descriptions of all data manipulation steps. The quality control 

report presented in the work of Zimmer et al. (2007), which includes error bars along 

with the location of events, is a good reference for the type of information a final 

report should include. In this respect, it is important to ensure that error bars are 

associated not only with arrival times and ray path polarization, but also with the 

ultimate location of a given event. Good recordkeeping of field acquisition operations, 

usually known as “observer reports” on reflection seismic acquisitions, will also 

benefit the interpreter and processing team, especially if the recorded data is to be 

reutilized in the future.  

A practical way to quantify the significance of missing information on properly 

located microseismic events is by analyzing synthetic models built during the planning 

stage of the experiment. In addition to supporting the acquisition design, these models 

could become a great aid during acquisition operations, processing, and real-time 

decision-making. For instance, a synthetic model may help in properly placing the 

recording instruments within a monitor well, and in understanding the characteristics 

of the zones of interest (e.g. the influence of high velocity layers). It can also aid the 

quantitative evaluation of missing information from one or more sensors and new 

array configurations if field deployment differs from the tool arrangement originally 

planned. The array configuration in Figure 2.1 shows an example of this situation in 

which some sensors of the array were to be in the stimulated zone, but ultimately only 

sensors located above the zone of interest registered useful data from the treatment. In 
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this respect, I recommend to compare the synthetic model and the actual results from 

the microseismic experiment to better understand the effect of tool positioning and 

background noise on the acquired data, and the overall evaluation of the stimulation 

program.  

Tool placement may also be associated with event location errors, as is 

illustrated in Figure 2.2. A map view of high magnitude microseismic events from a 

single stage hydraulic fracturing treatment on a vertical well is shown in this figure, 

along with the multi-component sensor arrays used to monitor the treatment from two 

adjacent horizontal wells. Sensor arrays and their associated microseismic events are 

shown in red and blue squares and diamonds, respectively. The figure highlights two 

different locations of the same event. This is obviously an artifact. There are multiple 

reasons why this could happen. For example, the differences in move-out observed by 

each array may result in slightly different positioning of the same event. Low signal-

to-noise ratio for events in close proximity to the sensors may also interfere with the 

sensors ability to register such events. To minimize the chance of this pitfall, I 

recommend using multiple sensor arrays strategically placed surrounding the treatment 

well, coupled with an analysis that simultaneously considers all wave forms registered 

during the fracturing treatment.  

 

2.4 Velocity model, location algorithms, and their implications 

Since microseismic monitoring is intrinsically a geophysical method, 

symbiotic relationships exist between time, velocities, and distances while using this 

tool. In particular, velocities are key to properly placing the source of microseismic 
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events in the subsurface, but it is rare to have an excellent estimation of such 

velocities. Multiple authors have already emphasized this fact and described typical 

pitfalls associated with the velocity model (e.g. Warpinski et al., 2005a,b; Wilson et 

al., 2008; Maxwell et al., 2010a; Mizuno et al. 2010, Eisner et al., 2011, and, Cabarcas 

et al., 2012). In this section I show specific examples that illustrate the significance of 

the velocity model and location algorithm on the final placement and interpretation of 

microseismic event sets. 

A common practice in the microseismic event location workflow is to build an 

initial velocity model using compressional (Vp) and shear (Vs) velocities derived from 

dipole sonic logs. Then, a calibration is performed incorporating into the velocity 

model information obtained from the hydraulic fracturing operation. One such 

calibration method is described in the work of Warpinski et al. (2005a) and consists of 

recording the precise time of perforation (or string shot) firing in addition to its 

seismic signal to optimize the initial velocity model. The calibration phase is required 

because, in general, vertical velocities measured by the sonic tool are different from 

the horizontal velocities of a layered subsurface. Moreover, seismic signals propagate 

in radial patterns, thus requiring more than a horizontal and vertical component of the 

velocity to completely describe the microseismic signal travel path. Therefore, none of 

the calibration approaches currently in use fully compensate for the intrinsic 

anisotropic characteristic of the stimulated zone of interest in resource plays (Eisner et 

al., 2011).  

The use of sonic logs to build the velocity model carries significant upscaling 

uncertainties as pointed out by Chesnokov et al. (2011). Similar issues arise when the 
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velocity model is built using data from surface seismic experiments because velocities 

obtained from the surface, as well as from log measurements, suffer from well-known 

and difficult-to-compensate dispersion issues (Liner, 2012).  

To illustrate the significance that the upscaling methodology has in the location 

of microseismic events, Figure 2.3 shows vertical cross sections representing possible 

scenarios for the localization of induced seismic activity (red dots) associated with a 

single hydraulic fracturing stage. As shown in this example, two substantially different 

assessments of the fracture geometry and the mechanical properties of the subsurface 

are implied by blocking the velocity logs using geological boundaries (Figure 2.3a), or 

by implementing a constant 5 m (15 ft) averaging upscaling approach (Figure 2.3b). 

The detailed blocking methodology used to generate Figure 2.3b -a common approach 

preferred by some contractors- it is usually not appropriate for most event location 

workflows. Consequently, the set of points displayed in Figure 2.3b forms lineaments 

that imply the stimulation of simple fractures with limited vertical growth as inferred 

by the flatness of these groups of events. These characteristics are most likely 

processing artifacts. In contrast, sequence stratigraphic principles provide viable 

boundaries during the upscaling process of the velocity model used to locate the 

events presented in Figure 2.3a. Implementing such an upscaling approach, the 

induced seismic activity plots as a cloud around the perforation points on the vertical 

cross section, in accordance with the expected response from this formation. The 

location of these microseismic events also confirms the anticipated relationship 

between rock type / stratification and microseismic events within the vertical 

(stratigraphic) dimension suggested by Slatt and Abousleiman (2011). These results 
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underscore the importance of using a proper geological framework in microseismic 

interpretation. The need to adopt geologically-consistent and mathematically robust 

methodologies to properly upscale sonic log data becomes obvious, such as the one 

presented here or those described by Tiwary et al. (2009), and Liner (2012). Adopting 

a fit-for-all upscaling methodology and neglecting fundamental geological principles 

is a common industry pitfall. 

Other geological assumptions made during the building of the velocity model 

also affect significant variations in the microseismic event location. For instance, 

Figure 2.4 shows an example where a 5-degree dip change suggested two completely 

different hydraulic fracture heights. In this example, the use of a tilted velocity model 

resulted in height differences half of those obtained from the original interpretation 

which did not account for geological dip. It is important to point out that both, the 

original velocity model and the subsequent velocity model that honored geological 

dip, were calibrated using data extracted from perforation shot records. This 

demonstrates that although velocity model calibration is a necessary step in the 

processing sequence, it is not sufficient to provide an acceptable velocity field. 

Therefore, additional steps must be taken to ensure geological characteristics of the 

subsurface are considered when building the velocity model. An earlier publication by 

Cabarcas et al. (2012) discusses in more detail the impact of a dipping velocity model 

on microseismic event locations.  

The location algorithm chosen to place the events in the subsurface may also 

introduce artifacts during microseismic event positioning. As an example, Figure 2.5 

illustrates discrete boundaries among microseismic events associated with a series of 
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thirteen hydraulic fracturing treatments on a map view. In this figure, each hydraulic 

fracturing stage is denoted by a color, and thick red lines have been added to 

emphasize how the processing software arbitrarily assigned event locations to the 

confinement of a predetermined stimulated volume, such that overlapping of 

microseismic events between subsequent stages would be minimized. In this particular 

case, a series of constraints were imposed on the processing results because poor 

height estimates were expected from using only an array of detectors placed 

horizontally inside an adjacent borehole. Unfortunately, as depicted in Figure 2.5, 

constraints were also seen on the horizontal plane as the restrictions imposed were 

excessive. Needless to say, this approach lends itself to potentially erroneous 

interpretations of the stimulated volume and the preferential fracture orientation 

(maximum horizontal stress), as these were all arbitrarily preset at the processing 

stage. 

Once the interpreter is comfortable with the event locations obtained, careful 

choice of a visualization approach should follow to enhance the stimulation 

evaluation. Special attention must be paid to not introducing a negative bias. It is 

important to use all properly located events after efforts were geared toward the 

generation of the most reasonable data set. Figure 2.6 shows a common interpretation 

practice; i.e. to associate the size and color of the symbol representing the event to its 

properties (in this particular case relative recording time and magnitude of the event). 

To minimize any negative impact this type of representation might generate, I 

recommend using more than one visual approach to analyze the available data, as well 

as a thorough understanding of the meaning of each property used to filter the event 
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set. Concepts, such as magnitude, which may be considered universal because of their 

widespread use in the industry, often have different definitions among different 

contractors, as indicated in the work of Shemeta and Anderson (2010), and may lead 

to different interpretations.  

Improper use of microseismic attributes may introduce bias as some events 

could be interpreted as more relevant than others based solely on their relative size or 

color, leading to interpretations that fail to recognize other scenarios. For instance, 

smaller events in Figure 2.6 may be associated with potential fracture containment 

issues and increased health, environmental, and, safety risks (e.g. the unintentional 

stimulation of an adjacent H2S rich formation). In this case, out-of-zone fracture 

growth could also connect the well to an underlying aquifer, negatively impacting the 

well productivity. All these possible outcomes are minimized by the type of display 

chosen, which only implies a small stimulated reservoir volume surrounding the 

treatment well borehole and therefore mistakenly reassuring the interpreter low risk 

perception.   

 

2.5 In support of reprocessing efforts 

Reprocessing efforts are highly encouraged because, while the technology—as 

well as interpretation awareness—improves, the same data set could provide a 

completely different perspective of the stimulated volume. Also, as time elapses, more 

production records are available and a second look at legacy microseismic projects, in 

conjunction with the additional information, could provide a more accurate 
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interpretation of the treatment results, possibly affecting future completion strategies 

or asset development plans.  

 Even the first time a data set is acquired, it is advantageous to involve multiple 

service companies as it minimizes the bias associated with a particular contractor’s 

approach.  As demonstrated in the case study presented by Hayles et al. (2011), 

differences from one contractor to another could be substantial, leading to completely 

different hydraulic fracture assessments. Moreover, in order to minimize a potential 

pitfall, the interpreter should supervise and impose specific guidelines during the 

reprocessing efforts. A good practice is to provide all contractors with the same 

calibrated velocity model, properly evaluate their processing output, and (as is the case 

in depth imaging) keep a significant level of engagement between processors and 

interpreters to ensure the most acceptable outcome from the microseismic experiment. 

Moreover, when the job is finished, the interpreter should request the raw data from 

the contractor (including all “real time” and any preliminary data sets instead of just 

the final results). Ensure that trace headers contain all the information associated with 

each seismic trace, and that ancillary information is properly archived because several 

years may go by before the reprocessing work takes place. These steps would also 

minimize the likelihood of missing relevant data and would better support future data 

trades and/or acquisition and divestiture efforts.  

 

2.6 Final thoughts 

This publication does not provide a solution for the myriad of issues that can 

be found in a typical microseismic job, but rather represents a call for awareness from 
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the interpreter’s point of view. I recommend paying special attention to the acquisition 

and processing steps before engaging in the interpretation phase. As discussed in this 

publication, the microseismic interpreter should be intimately familiar with all aspects 

of the acquisition, the building of the velocity model, and the location algorithm used 

on microseismic event location. In addition, the interpreter should test multiple 

scenarios based on fundamental geological principles and weigh the cost and benefit 

from reprocessing opportunities.  

In the same way that the interpretation of surface reflection seismic is left to an 

experienced seismic interpreter, microseismic data should be manipulated by a 

professional who has developed familiarity with all aspects of this geophysical 

method, or better yet, an integrated multifunctional team that can assess the validity of 

all the assumptions and final interpretation of a microseismic experiment.  
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Figure 2.1. Raw traces from twelve borehole tri-component sensors used in the 
acquisition of a microseismic experiment. The detection of a microseismic event is 
inferred from the response of seven sensors as traces from the other sensors (grayed-
out) only displayed unacceptable noise levels. Microseismic data from each 
component is plotted on top of each other. Blue traces display the information from 
the vertical component geophones, while red and green traces present the data from 
the two horizontal components. For each sensor display, the horizontal axis represents 
recording time increasing in the arrow direction while the vertical axis displays 
negative  and  positive  values  with  respect  to  a  horizontal  zero  base  line.  A  vertical  
wellbore contains all sensors, sensor 1 being the deepest and sensor 12 the shallowest. 
This experiment ended up only having sensors above the treatment zone, though 
modeling supported placing some sensors within the zone of interest.      
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Figure 2.2. Map view of high magnitude microseismic events associated with a single 
stage hydraulic fracturing treatment on a vertical well. The treatment was monitored 
by two arrays (12 sensors each) shown in blue and red squares. Microseismic event 
locations determined by each array are shown in red and blue diamonds, respectively. 
The figure highlights two different locations for the same event.  
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Figure 2.3. Vertical displays of microseismic events (red dots) associated with one 
hydraulic fracturing stage. The upscaling approach applied to compressional (Vp) and 
shear (Vs) logs in order to construct a calibrated velocity model have significant 
consequences on final event locations; a) follows an upscaling methodology that 
favors geological boundaries, and, b) shows the results of applying a constant 5 m (15 
ft) blocking scheme. Notice how the number of layers surges from a to b. For 
illustration purposes, the figure also shows schematic ray paths from one source 
location to twelve borehole sensors located within a vertical wellbore. Depth, distance 
and velocities increase in the arrow’s direction. 
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Figure 2.4. Microseismic events locations within a hydraulically stimulated zone of 
interest according to two different velocity models: (a) a flat layer velocity model,  and 
(b) a model with minor dip (5 degrees) based on the geological characteristics of the 
subsurface. Inclined lines represent geologic horizons related to the zone of interest. 
Dots representing microseismic events are color-coded from those recorded earlier 
(blue) to those recorded later (red) following the displayed color scale.  
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Figure 2.5. Map view of a treatment well (thin red line) and its associated monitor well 
(blue thin line), together with the final location of microseismic events from 13 
hydraulic fracturing stages. Each hydraulic fracturing treatment is color-coded to 
differentiate them. Thick red lines perpendicular to the borehole azimuth highlight 
artificially generated boundaries caused by the location algorithm and probably 
unrelated to the stimulation procedure or its response from the formation.  
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Figure 2.6. A typical illustration of microseismic events associated with a hydraulic 
fracturing stimulation treatment. Dots representing the microseismic events are 
colored  based  on  their  recorded  time  from early  events  to  late  events  following  the  
label in the figure. The sizes of the events are indicative of the events’ magnitude. For 
reference purposes, the figure also displays schematic representation of the treatment 
well, perforation locations for each stage, monitor well, recording sensor locations, 
and horizons of interest. This type of representation relies heavily on the interpretation 
of high magnitude events recorded towards the end of one fracturing stage and 
discards most of the associated activity also available to the interpreter. 
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CHAPTER 3: The impact of dipping velocity models on microseismic 

events locations* 

 

Cabarcas, C., L. Saugier, G Haas, J. Le Calvez, and J.C. Woerpel. 

*Adapted from paper published in the proceedings of the Society of Petroleum 

Engineers Hydraulic Fracturing Technology Conference held in the Woodlands, 

Texas, USA, 6-8 February 2012. Paper 152600-PP. Copyright 2012, Society of 

Petroleum Engineers.  

 

3.1 Abstract 

Once a microseism is detected, its source location can relatively easily be 

identified if the velocity characteristic of the medium traversed by the recorded 

waveforms is known. Unfortunately, this is rarely the case. Velocity models are used 

to estimate, with some degree of confidence, microseismic event locations. This work 

shows how a simple modification to the velocity model, accounting for a 4.5-degree 

dip supported by geological data, significantly impacts the event final locations during 

a borehole-based hydraulic fracturing monitoring job.  Overall geometry of the 

hydraulically-induced fracture system interpreted (e.g. height) is the most affected. For 

instance, when a preliminary event location is selected without introducing the 

observed structural component of the beds, these measurements could change by as 

much  as  fifty  percent.  For  the  reservoir  engineer,  sometimes  unaware  of  the  

assumptions made at the microseismic processing level, these differences could imply 

major changes to the field development plans.  These results underscore the 
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importance of integrating all available data and implementing well known quality 

controls before using microseismic monitoring data for reservoir analysis.   

 

3.2 Introduction  

 Microseismic monitoring of hydraulic fracturing treatments is a powerful 

stimulation diagnostic technique when properly implemented. This paper describes 

one of the many parameters having a significant impact on the location of each 

microseismic event, the subsurface velocity model, which ultimately shapes the 

microseismic analysis. Despite its relevance, the importance of using accurate velocity 

models is sometimes underestimated. Several authors have already emphasized the 

significance of choosing an appropriate subsurface velocity model, and its impact on 

microseismic event location and subsequent interpretation. For instance, Warpinski 

(2009a) points out the velocity model as “the most important element in the whole 

process of microseismic mapping”, and describes how differences between vertical 

velocities (measured by logs) and horizontal velocities (used for ray path modeling), 

could originate event misplacements in the order of hundreds of feet. Wilson et al. 

(2008) also presented a case study on the variability originated by modified velocity 

structures in the presence of high velocity layers, thus underscoring the importance of 

the velocity model on any microseismic interpretation. Maxwell (2009) and Maxwell 

et al. (2010a, b), on the other hand, recognized that the velocity model, often built 

following calibration procedures such as the one described by Warpinski et al. 

(2005a), can result in oversimplified versions of the subsurface structure, which may 

carry significant uncertainty into the final event mapping. None of these previous 



100 

studies, however, have addressed the effect of dipping velocity models in the event 

location and subsequence interpretation.  This work highlights how geometric 

differences of velocity models, associated with known geological characteristics of the 

subsurface, may significantly affect the location of microseismic events and the 

overall stimulation diagnostic.  

 

3.3 Geologic Framework 

 The main objective of the microseismic monitoring experiment described on 

this publication was to diagnose the performance of a multistage hydraulic fracturing 

treatment designed to stimulate a hydrocarbon bearing, low permeability reservoir. 

Surface reflection seismic and open hole logs across the area of interest suggest an 

image of the subsurface that is structurally and stratigraphycally simple. No major 

faults are believed to cut through the zone of interest. Moreover, the target zone 

consists of a predictable succession of thinly laminated beds dipping at a relatively 

constant angle of 4.5 degrees.  

 

3.4 Layout of the Monitoring System  

 The treatment and monitor wells were both drilled parallel to one another with 

an 85.5 degree inclination, 300m (1000ft) apart, as shown in Figure 3.1. Microseismic 

events were registered in the monitor well via a receiver array consisting of eight 

multi-component seismic sensors, each separated by 30m (100ft). This array of 

seismic sensors was sequentially positioned along three different locations within the 

observation well during the job execution, in order to keep a reasonable separation 
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distance between the monitoring tool and the stimulated zones. For the first nine 

fracturing stages the sensor array was positioned along two different sections of the 

horizontal portion of the monitor well, while the last four stages were monitored with 

the sensor array positioned in the vertical section.  

 Figure 3.1 illustrates schematically one of the positions of the sensor array, 

represented by green triangles, as well as the perforation clusters planned, each one 

color-coded relative to its associated fracturing stage. Different treatment designs and 

perforation clusters were also evaluated during this multistage hydraulic fracturing 

job, but their details are beyond the scope of this paper.   

 

 

Figure 3.1. Schematic map view showing the relative location of treatment and 
monitor wells. Green triangles represent receivers on the monitor well while colored 
disks represent the planned perforations on the treatment well. Different disc groups 
are color-coded relative to their associated fracturing stage. Background grid spacing 
is 400 ft. (Only one of the three different locations of the receiver array is shown in 
this figure). 
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3.5 Velocity Model 

 Time signals (i.e. seismograms) registered in the monitor well are associated 

with a specific microseismic event in the subsurface via the use of an appropriate 

velocity model, which must be properly scaled in vertical and horizontal directions. 

The  detection  range  of  the  sensor  array  determines  the  maximum length  at  which  a  

signal can be registered, typically 600 to 1500m (2000-5000ft). Horizontal scaling of 

the velocity model is then achieved by means of an anisotropic analysis. There are a 

number of ways in which an anisotropy analysis can be performed. In this study I 

chose to manipulate Thomsen (1986) parameters to account for known differences 

between horizontal and vertical velocities. The vertical component of the velocity 

model, on the other hand, is impacted by the subsurface dip angle and therefore, it 

must be considered. Although in this case the dip angle of the formation is fairly 

constant, showing relatively small values within the target zone, it is taken into 

account in the velocity model. Thus, in this study, an anisotropy calibrated velocity 

model consisting of a constant dip layered velocity sequence, based on a 1D sonic log, 

is used. This may be called a 1.5D anisotropic model.  

 

3.5.1 Velocity Model Building 

 The first step in the velocity model creation is smoothing and upscaling P-

wave and S-wave sonic logs acquired in a vertical well (pilot hole). These sonic logs 

provide a good representation of the subsurface surrounding the zone of interest.  

 The pilot hole was drilled to support the design of directional plans and for 

geological control. The bottom section of this borehole was later plugged and 
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abandoned. The treatment well was drilled from the same surface location as the pilot 

hole, as illustrated in Figure 3.1.   

 Since 15m (50ft) is a typical sonic log wavelength, a smoothing of 15 to 30m 

(50-100ft) is commonly used to work with a simplified data set. Original sonic logs 

(black), and a series of color-coded upscaled versions, generated by averaging across 

different length intervals, are shown in Figure 3.2. The selected 1D model (green), 

resulting from the use of an 80 ft smoothing window, is also shown in this figure. 

                                      

Figure 3.2. Schematic representation of smoothing and upscaling of sonic logs. Depth, 
Vp and Vs increase in the arrow direction. The selected 1D model resulting from the 
use of an 80 ft smoothing window is shown in green.  
 

 The horizontally layered model generated by using the selected upscaled sonic 

logs is shown in Figure 3.3. True well paths are overlaid in Figure 3.3a. For this 

particular study, 1500m (5000ft) laterals are drilled parallel to bedding along the zone 

of interest and both the zone of interest and the treatment lateral well dip 4.5 degree. 

This implies a velocity model depth error of at least 120m (400ft) from landing point 

to bottom hole location (almost twice the thickness of the zone of interest) if the model 
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shown in Figure 3.3a is used. A tilted velocity model with a 4.5 degrees dip is required 

to keep the entire borehole in the correct layer as shown in Figure 3.3b. 

 

Figure 3.3. Schematic representation of the P-wave velocity model and coordinate 
rotations. a) True well paths.  b) Well paths rotated by 4.5 degrees lay in correct 
relation to horizontal layers. Layers are thinner in the rotated model by cos (4.5) = 
0.997. A Similar velocity model was built using S-wave velocities.  
 

3.5.2 Anisotropy Corrections 

 Anisotropic calibration of the velocity model was accomplished by recording 

perforation shots from the treatment well. Modeled times were obtained by ray-tracing 

with a strong anisotropy vertical transverse isotropy ray tracer engine in one 

dimension. Mismatch between the observed arrival onsets and model times (residual 

times) is minimized by interactive adjustment of anisotropy parameters defined by 

Thomsen (1986). The P-wave moveout observed from the receiver arrays determines 

Thomsen-epsilon, while the SH-wave moveout and S-P time determines Thomsen-

gamma. When SV-wave information is present, it constrains Thomsen-delta; 

otherwise it is left as zero. This is a good approximation in most hydrocarbon bearing 

shales. Figure 3.4a shows the mismatch of isotropic model times with the perforation 

shot waveforms. After adjustment for Thomsen epsilon and gamma, the arrivals are 

well matched by the selected anisotropic model, as observed in Figure 3.4b. 
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Anisotropic travel times for P-, SH- and SV-waves are calculated for all the grid 

points of a subsurface space to all receivers and stored in a lookup-table utilized to 

automatically locate the microseismic events in the subsurface.  

 

  

           a) Isotropic model                 b) Anisotropic model 

Figure 3.4. Anisotropy calibration from a perforation shot. The bottom shuttle P-wave 
model time is set to the picked time, so all other model times are relative. a) Isotropic 
model times for P-waves (blue circles) and SH-waves (red circles). P-wave moveout is 
too large and SH-wave time is too late. b) Anisotropic model times with Thomsen-
epsilon 0.26 and Thomsen-gamma 0.21 provide a good fit to the arrivals. 
 

3.6 Event Location  

 I determined event locations following the Coalescent Microseismic Mapping 

technique described by Woerpel et al. (2010). This automated picking methodology 

follows the conventional Geiger method, requiring many iterations of ray-tracing for 

each event to be located in real time. This means a simplified velocity model with only 

two or three layers must be used to reduce the calculation time. Implementing a look-

up-table, however, becomes very practical in a way that all ray-tracing is done before 
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the treatment starts, allowing for an anisotropic velocity model with more than 100 

layers, without reduction in processing speed as the job is being executed.  

 Travel times are calculated by a 1D anisotropic ray-tracer, which assumes 

horizontal layers. Therefore, a mathematically equivalent method of rotating the 

coordinate system by 4.5 degrees is used, following the wells azimuth direction. All 

wellhead locations and deviation logs are first rotated to a flattened coordinate system 

(Figure 3.3b) before loading them into the ray-tracer. At the end of the location 

process, located hypocenters, the positions from where the microseism is believed to 

be originated, are rotated back to the true coordinate system.  

 

3.7 Real-time Editing and Geiger Relocation 

 As each event is auto-located, its hypocenter is displayed in a 3D visualization 

software. From here, it is easy to retrieve waveforms associated with a given 

hypocenter with modeled times plotted for quality control as shown in Figure 3.4. 

Outlier events are then reviewed following this step.  If modeled times do not fit the 

arrival onsets, the arrival times are then re-picked by hand, and the event may be 

relocated by a conventional Geiger least squares inversion method of arrival times. 

The waveforms associated with outlier events are then revised, and if the model times 

fit valid arrivals, the hypocenter location is retained. This process increases the level 

of confidence associated with each event location, resulting in higher quality 

processing of the data and all subsequent analyses.  
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3.8 Results and Discussion 

 The results from the microseismic monitoring job are presented in Figures 3.5 

and 3.6. Figure 3.5, shows the hypocenters plotted relative to a cross-section view of 

the wells path. A horizontally layered velocity model with zero dip was used to 

generate this data set in real time, as the fracturing treatment was being executed. 

Figure 3.6, on the other hand, shows the results obtained a few weeks after the 

treatment was completed and the data reprocessed using an anisotropic velocity model 

with a 4.5 dip as previously explained in this work.  

 

 

Figure 3.5. Schematic representation of the monitor and treatment well paths (blue and 
green lines), and the location of microseismic events (color dots) associated to each 
hydraulic fracturing stage obtained using a horizontally layered velocity model with 
zero dip. The top and bottom of the velocity model layer associated to the target zone 
is illustrated by black solid lines. Placement of the sensor array during one of the 
treatment stages is depicted by green triangles for reference purposes. 
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Figure 3.6. Schematic representation of the monitor and treatment well paths (blue and 
green lines), and the location of microseismic events (color dots) associated to each 
hydraulic fracturing stage obtained using an anisotropic velocity model with a 4.5 
degree dip. The top and bottom of the velocity-model-layer associated to the target 
zone, showing good agreement with the well trajectory, is illustrated by purple and 
brown planes. Placement of the sensor array during one of the treatment stages is 
depicted by green triangles for reference purposes.   
  

 Direct comparison of Figures 3.5 and 3.6 shows that the location of 

microseismic events is significantly affected by the velocity model used, which then 

impacts the interpretation of the estimated stimulated volume (ESV). This is 

particularly evident in the spread of hypocenters along the vertical direction, with the 

majority of the events lying across the target horizon when a 4.5 dip is taken into 

account in the velocity model (Figure 3.6). In contrast, a much larger spread in the 

vertical location of microseismic events is observed in Figure 3.5, which can 

potentially lead to misleading conclusions regarding fracture containment. 

 In general, layered subsurface velocity models cause the microseismic events 

to preferentially align along the interface between velocity layers with significant 

velocity contrast. This is observed in Figure 3.7 (detailed view of Figure 3.5), where a 
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sequence of horizontally aligned dots (hypocenters) line up along the layer boundaries 

due to this processing artifact. The presence of these well-aligned dots could 

potentially be misinterpreted as a consequence of the hydraulic treatment, instead of a 

layer within the velocity model.  

                    

 

                      a                                            b                                           c 

Figure 3.7. Example of location artifacts associated with the velocity model. a) 
Detailed view of Figure 3.5. b) Yellow dashed lines highlighting processing artifacts. 
c) Velocity model used to locate the events. Color scale same as Figure 3.3. 
 

 It is important to note that the artifacts originated by the implementation of an 

incorrect velocity model were observed throughout the job execution, independently 

of the placement of the sensor array within the wellbore. Nonetheless, as expected, the 

impact of the artifact was less noticeable when the sensor array is placed in the vertical 

section of the monitor well, due to its location relative to the source of hypocenters.  

 The workflow followed to generate the results shown in this paper required 

additional time to re-process the data gathered during the fracturing treatment. 

Nowadays, however, tilted velocity models can be implemented in real time, thus 
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allowing for more accurate placement of microseismic events and better decisions 

regarding fracturing diagnostics and overall field development strategies. 

 

3.9 Conclusions and Recommendations 

 This work showed how implementing a tilted velocity model, based on a 

simple coordinate rotation during processing steps, made significant changes to 

previously estimated microseismic event locations. When targeted hydrocarbon 

bearing beds have even a relatively small dipping angle, this observed subsurface 

characteristic should be accounted for during the event location process, particularly in 

the vicinity of significant velocity contrasts.  

 Given these results, it is my recommendation that the microseismic interpreter 

fully understands the assumptions made to locate microseismic events so that 

subsequent treatment analyses are supported by robust data. 
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4.1 Abstract 

 On a multistage fracturing job monitored from a borehole for microseismic 

activity, high magnitude microseismic events are characteristic of reactivated faults. 

When plotted against their distance from the monitor-well and compared to events 

from other hydraulic stimulation stages, it becomes apparent that these microseismic 

events are associated with fault reactivation. Here, I present an example Magnitude vs. 

Distance Plot used to discriminate between fault reactivation (i.e. stimulation failure) 

and other successfully completed stages. Plot analysis and treatment records suggested 

reactivation of a fault during the hydraulic fracturing, but no other subsurface data 

supported this interpretation. As soon as a 3D reflection seismic volume was available, 

it was clear that microseismic events aligned with a fault plane interpreted on seismic 

profiles, corroborating the hypothesis of a preexisting fault reactivation. This work 

shows that in the absence of other subsurface data (or integrated with all the available 
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information), Magnitude vs. Distance Plots provide a useful tool to analyze 

stimulation results and support decisions regarding completion strategies in real time.  

 

4.2 Introduction  

 Sheriff (1999) defines a fault as a displacement of rocks along a shear surface. 

Most of this movement releases energy that propagates as elastic waves (i.e. seismic 

information). Magnitude is a measure of this energy. The works of Shemeta and 

Anderson (2010), and Baig and Urbancic (2010) review in detail the magnitude 

concept within the context of the microseismic technology.  Maxwell and Cipolla 

(2011) describe the fundamentals of fault mechanics as pertinent to microseismic 

exploration. For the purposes of this publication, I rely on the aforementioned 

publications simply stating that magnitude values of the recorded microseismic events 

are proportional to the size of the surface and the displacement involved in faulting. 

Therefore, assuming that surfaces and displacements associated with preexisting faults 

are bigger than those of hydraulically induced fractures, then, during hydraulic 

stimulation, registered higher magnitudes should characterize fault reactivation. 

 Borehole microseismic is a diagnostic tool used to monitor seismic activity 

generated during hydraulic fracturing. Magnitude is usually one of the parameters 

derived from borehole microseismic measurements. In practice, microseismic 

recording sensors only detect microseismic events occurring within a certain radius 

from them, usually no more than a few thousand feet. One way to quantify this 

phenomenon is with a Magnitude vs. Distance Plot (MDP). This plot shows the 
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relationship between the energy associated with a particular event and its distance 

from the monitor well.  

 The MDP is a useful analysis tool in microseismic interpretation for all the 

information it summarizes on a simple graphic display, as demonstrated in the 

schematic diagram presented in Figure 4.1 (Zimmer, 2011). For instance, events with 

a combination of highest magnitude and greatest distance away from the monitor well 

define the maximum detection distance, which can be used to plan the maximum 

distance for monitor well placement in future jobs. The rest of the recorded events 

populate the middle upper left portion of the MDP graph, forming a quasi-triangular 

pattern. Notice that closer to the monitor well it is possible to detect relatively lower 

magnitudes and therefore more events than farther away from it. The curved base of 

this triangular shape also identifies the minimum detection limit due to ambient noise 

(Ambient or background noise refers to all other signals registered by the 

microseismic sensors, commonly not associated with the stimulation job). Finally, an 

upper boundary depicted by the constant high magnitude value associated with all the 

stages of a particular treatment-well also delimits the events set. 
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Figure 4.1. Schematic Magnitude vs. Distance Plot (Zimmer, 2011). During a 
hydraulic stimulation treatment monitored from a borehole for microseismic activity 
most detected microseismic events fall within the quasi-triangular area with concave 
downward base colored dark green. Copyright 2011, SPE. Reproduced with 
permission of SPE. Further reproduction prohibited without permission. 
 

 The presence of faults in the subsurface and their reactivation during hydraulic 

stimulation thus becomes noticeable on MDP’s, because magnitudes of events 

associated with fault reactivation are usually higher than the rest. Figure 4.2 shows a 

MDP example from a Barnett shale stimulation (Warpinski, 2009a). In this particular 

example, the typical maximum magnitude of microseismic events associated with the 

stimulation treatment is -2.5, and the group of events with significantly higher 

magnitudes (as high as -0.5) could be detected in response to fault reactivation. 
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Figure 4.2. Magnitude vs. Distance Plot from a multistage horizontal hydraulic 
stimulation job in the Barnett shale (Warpinski, 2009a). As highlighted, high 
magnitude events are interpreted as the result of fault reactivation. Copyright 2009, 
SPE. Reproduced with permission of SPE. Further reproduction prohibited without 
permission. 
 

 Also highlighted in Figure 4.2 is the biased data. This area of the graph 

represents the low magnitude events identified only because of their proximity to the 

monitor well. For some interpretation purposes, it is common to discard these events 

during the analysis phase in order to compare events without the bias associated with 

the location of the sensors. In that sense, the MDP also results to be a very useful tool 

for filter parameters selection. However, I do not favor totally discarding these low 

magnitudes microseismic events, as in my opinion, they contain most of the 

information from the hydraulic fracturing stimulation. For example, Figure 4.3 shows 

differences between a data set of events and a filtered version of it based on a 
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particular magnitude threshold. By eliminating these data points, it is difficult to 

convey a robust interpretation for parameters such as stimulated fracture azimuth 

based solely on filtered microseismic events. Indeed, it seems that this portion of the 

well has not been stimulated at all while production records prove otherwise. 

 

 

Figure 4.3. Map view of all events from a multistage hydraulic fracturing stimulation 
(A) and its associated filtered version based on an arbitrary magnitude value (B). 
(Internal Hilcorp’s report) Each colored-dots set aggregates all microseismic events 
associated with an individual fracturing stage. By evaluating only the filtered version, 
it is very difficult to come up with a stimulation evaluation.   
 

 As an additional example illustrating the use of MDPs, Figure 4.4, from 

Warpinski et al. (2008), shows the MDP associated expression of fault reactivation for 

hydraulic fracture stimulation from multiple geographical regions.  
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Figure 4.4.  Magnitude vs. Distance Plot of microseismic events detected during a 
variety of treatments monitored at multiple geographical regions (Warpinski et al., 
2008). Different multistage hydraulic fracturing stimulation treatments are each 
represented by a single color, based on the legend shown in the figure. Copyright 
2008, SPE. Reproduced with permission of SPE. Further reproduction prohibited 
without permission. 
 
 A few other examples of Magnitude vs. Distance Plots suggesting the 

reactivation of faults are available in the literature (e.g., Wolhart et al., 2006; Downie 

et al., 2010 and; Maxwell and Cipolla, 2011). Nevertheless, to the best of my 

knowledge, no publication has presented multiple independent data in support of the 

fault reactivation interpretation. This work illustrates an integrated case study in which 

fault reactivation is interpreted based on independent data sets, including microseismic 

MDP, 3D reflection seismic sections, and pressure plots in order to build confidence in 

the use of MDP’s as a robust interpretation tool. 
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4.3 Fault reactivation identification – an integrated case study 

 I used the Magnitude vs. Distance Plot evaluation technique described in the 

previous section to discern fault reactivation in a microseismic monitoring exercise 

performed real-time during hydraulic fracturing operations. The results are shown in 

Figure 4.5. In this figure, the higher magnitudes events associated with possible 

reactivated faults are highlighted by a dotted blue oval.  

 

 

Figure 4.5. Magnitude vs. Distance Plot from a multi stage hydraulic stimulation job 
monitored from a borehole for microseismic activity. Different colors represent event 
sets from different stages. Most of the stages generate microseismic event that 
predictably populate the graph (i.e. lower magnitude events can be detected near to the 
monitor  well  while  farther  away  from  the  monitor  well  only  relatively  higher  
magnitudes event can be detected). Stages yellow, cyan, and especially stage red, 
suggest fault reactivation due to their higher magnitude, as compared to magnitudes 
from other stages. Magnitude and distance increase respectively in the direction 
pointed by the arrows.  
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 When implementing the hydraulic stimulation no surface seismic data was 

available and subsurface geologic maps, built solely on sparse wells information, did 

not foresee the possibility of a fault in the area. This encouraging geologic model also 

supported the drilling and stimulation of the treatment well.  

 More than a year after the stimulation of the well associated with Figure 4.5, 

newly available 3D reflection seismic data provided a better image of the subsurface 

near the well. Unfortunately, due to resolution limitations, the broadband frequency 

data from this 3D reflection seismic survey does not provide unequivocal evidence for 

the presence of a fault. However, coupling the 3D seismic data with the microseismic 

events interpreted as the response of fault reactivation it is possible to infer the 

presence of a fault in the seismic image. This is clearly illustrated in Figure 4.6 by 

showing sections with and without the microseismic events. The simple image of the 

microseismic events overlaid on the 3D seismic vertical section suggests the presence 

of an antithetic fault in the subsurface and its possible reactivation due to hydraulic 

fracture stimulation. The microseismic event set aligned very well in the direction of 

the interpreted fault plane. 
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Figure 4.6. (A) Vertical seismic section parallel to the azimuth of a treatment well 
monitored for microseismic activity (courtesy of Seitel, Inc.) (B) Same seismic line 
overlaid by microseismic events from a stage interpreted as associated with a fault 
reactivation. Microseismic events align very well depicting the trace for an antithetic 
normal fault verging opposite to the inclination of the reflectors, and, beds.  
 
 Further analyses implementing the use of simple seismic attributes also 

enhance and support this interpretation. For example, after computing Similarity on 

the 3D seismic volume and extracting a surface slice from this volume at the zone of 

interest, it is possible to interpret the presence of a fault crossing the path of the 

treatment well. The good correlation between microseismic events lineation and the 

extrapolation of Similarity trends provides further evidence for the hypothesis of fault 
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reactivation due to the hydraulic fracturing treatment. This is illustrated in the map 

view presented on Figure 4.7.  

 

Figure 4.7. Similarity horizon slice extracted along the stimulated zone of interest 
monitored for microseismic activity. The original seismic data used as input into the 
similarity algorithm is the property of Seitel Inc. Highly similar data is colored in grey 
shades while areas with low similarity values are tinted black as shown in the figure 
label. Microseismic events from the hydraulic stimulation stage believed to have 
reactivated a fault are aligned very well with a Similarity anomaly that also represents 
a fault system trace. The treatment well is shown for reference purposes. The red line 
labeled L-L’ represents the direction and length of the line shown in Figure 4.6. 
 

 As an additional support for the fault reactivation interpretation, Figure 4.8 

displays the microseismic events associated with a later hydraulic fracturing stage.  A 

zoom-in over the area presented in Figure 4.7 makes clear an azimuth change 
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observed between a regular stimulation and a fault reactivation. This characteristic, 

solely based on microseismic event location, provides another tool to derive 

subsurface geological information not emphasized in previous publications. It is thus 

my claim that in the absence of additional supporting data (e.g. 3D seismic coverage) 

an azimuth change observed from microseismic sets coupled with anomalously high 

magnitudes for the same events, could create enough evidence for interpreting a fault 

reactivation. Moreover, when integrated with treatment pressure information, these 

microseismic observations could be used in the decision-making process of changing a 

predesigned treatment job and could significantly reduce completion costs.  

 



123 

 

Figure 4.8. Close-up view of Figure 4.7 together with the addition of the microseismic 
events recorded during a subsequent hydraulic fracturing stage. White arrows 
highlight the associated azimuth interpreted from the microseismic events set 
associated with each stage.  
 

4.4 Conclusions  

 The example presented in this publication serves to validate and support the 

use of microseismic- derived Magnitude vs. Distance Plots as a tool to identify fault 

reactivation in the absence of additional subsurface data. Moreover, as shown in this 

case study, when combined with other independent measurements (e.g. 2D or 3D 

reflection seismic sections) MDP’s could unequivocally characterize the reactivation 
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of a fault based on higher amplitudes and possible azimuth changes. This work also 

shows that 3D seismic is a powerful tool to mitigate drilling and completion risks as 

those encountered when faults are not anticipated along the well path. Availability of 

3D seismic data beforehand could have improved well placement and possibly 

resulted in lower completion costs and better well performance.  
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CHAPTER 5: Sequence stratigraphic principles applied to the 

analysis of borehole microseismic data* 

 

Cabarcas, C., and R. Slatt.  

*Adapted from paper accepted for publication in Interpretation, manuscript ID INT-

2013-0151R1. Copyright 2014, Society of Exploration Geophysicist and American 

Association of Petroleum Geologist.  

 

5.1 Abstract 

  Based on a sequence stratigraphic framework developed using gamma ray 

stacking patterns, I identified brittle-ductile couplets, which allowed me to better 

interpret the microseismic response recorded during a single-stage hydraulic fracture 

stimulation treatment monitored from three strategically-located observation wells. I 

analyzed and compared hydraulic fracturing results inferred by individual processing 

of microseismic data acquired from horizontal and vertical sensor arrays, as well as 

the results from simultaneously processing the signals recorded by all three sensors.  

Ultimately, I decided in favor of the triple array simultaneous solution as the most 

useful data set to interpret the stimulation treatment due to the location of the 

microseismic events coupled with the theoretical expectation from my sequence 

stratigraphic framework. The final data set not only allowed me to better interpret the 

hydraulic fracturing results, but it also helped me improve recommendations in 

support of the field development campaign.   
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5.2 Introduction 

 This publication integrates concepts from hydraulic fracturing, earthquake 

seismology and sequence stratigraphy. Principles of hydraulic fracturing can be found 

in multiple monographs such as Economides and Nolte (2000), while the theory 

behind the use of earthquake seismology methods to monitor hydraulic fracturing-

induced microseismicity from downhole boreholes is discussed in various 

publications, as in the works of House and Shemeta (2008), Warpinski (2009), and 

Maxwell, (2010). Nevertheless, because of the recent exponential growth of hydraulic 

fracturing and microseismic monitoring associated with the vast exploitation of 

resource plays, new and innovative applications of these tools are continuously 

evolving, making it necessary to be attentive of the latest literature.  

 Regarding the topic of sequence stratigraphy, the works of Payton (1977), Van 

Wagoner et al. (1990), Emery and Myers (1996), Posamentier and Allen (1999), and 

Catuneanu et al. (2011), among others, provide detailed information on the subject. 

For more than four decades, sequence stratigraphy has proven to be a key tool for the 

exploration and production geoscientist, providing the basis to predict and characterize 

spatial and temporal relationships between the different rock units of the petroleum 

system (i.e., source, seal and reservoir rocks).  

 Sequence stratigraphy refers to the study of genetically-related sedimentary 

packages within a chronostratigraphic context (Van Wagoner et al., 1990). Based on a 

sequence stratigraphic framework, subsurface data may be analyzed in a much more 

informative manner rather than simply following lithologic rock typing.  
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 The depositional model implied by sequence stratigraphy is observed at multiple 

scales, from basin analysis to exploration plays and prospects, going beyond reservoir 

studies and interpretations at higher scales. In general, several orders of eustatic sea 

level cyclicity act simultaneously (Slatt, 2013), resulting in a complex interaction of 

stratigraphic patterns. The superposition of multiple orders of eustatic sea level 

cyclicity is a key characteristic revealed when analyzing log responses within a 

sequence stratigraphy framework. In particular, because high gamma ray (GR) API 

readings may be interpreted as associated with flooding surfaces (fs), the identification 

of  these  markers  serve  to  recognize  gamma  ray  parasequences  (GRP)  such  as  

presented in the work of Singh (2008), and Abouelresh and Slatt (2012). For instance, 

Figure 5.1 presents three GRP identified by upward-decreasing, upward-increasing, 

and constant GR API units on log signatures, also supported by associated grain size 

and other characteristic geological changes observed in core samples from three 

different sections of the Barnett Shale.  

 Sequence stratigraphic analysis extends beyond log analysis and is applicable to 

data of multiple scales; from basin-long seismic profiles, to outcrop, to core (Van 

Wagoner et al., 1990).  The use of sequence stratigraphic principles in the analysis of 

surface reflection seismic has proven to be an excellent exploration and development 

tool for the Oil and Gas industry. In the analysis of surface seismic reflection data, a 

key principle provided by sequence stratigraphy is that seismic reflections are time-

significant stratal surfaces (Vail et al., 1977). Therefore, a surface seismic reflection 

data set interpretation based on a sequence stratigraphic framework carries a wealth of 

information and provides a unique perspective of the subsurface. In this context, the 
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power of sequence stratigraphy, among other things, relies on using the seismic data to 

predict the presence of certain lithologies away from known control points.  

 Sequence stratigraphic principles also improve the analysis of information from 

core samples and its integration with thin sections, log analysis, hydrocarbon systems 

records, and basin history, leading to a more coherent geological interpretation. In 

exploration of conventional hydrocarbon accumulations, this integration is very useful, 

as it helps to recognize and predict the presence, among other elements, of well-sorted 

grains of relatively high particle size that are typically associated with high porosity 

and permeability reservoirs. Moreover, during the analysis of unconventional shale 

plays, where source, reservoir, and seal are essentially the same rock unit, sequence 

stratigraphy also has a key role. For example, based on sequence stratigraphic 

principles, Slatt and Rodriguez (2012) recognized several characteristics of currently 

productive organic-rich shale plays that serve as the basis to propose a predictive 

model where condensed sections represent the most prolific candidates for 

hydrocarbon resource rocks.  

 In the development stage of a resource play, a sequence stratigraphic framework 

also provides opportunities to better identify geomechanical characteristics of target 

zones. For instance, Slatt and Abousleiman (2011) merged concepts from sequence 

stratigraphy and geomechanics to recognize typical fabric characteristics, which 

supports the hypothesis that laminae/bedding contacts represent planes of weakness 

for hydraulic fracturing; the lack of significant authigenic cement along 

bed/lamination contacts weakens the rock at those contacts, and geomechanical 

properties are highly dependent on bedding direction (perpendicular vs. parallel), as 
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well as the presence of layers with fractures perpendicular to the bedding intermixed 

with non-fractured layers. Additionally, the authors recognized layers of similar 

geomechanical characteristics that represent brittle-ductile couplets at the 

parasequence and sequence scale. Brittle–ductile couplets correlate well with 

distinctive hydraulic fracture propagation lengths. As shown in Figure 5.2, longer 

lengths are associated with thicker and perhaps more brittle sections as compared to 

ductile sections and fracture length also diminishes for higher order couplets.  

 To build the brittle-ductile couplets model illustrated in Figure 5.2, Slatt and 

Abousleiman (2011) relied on lithofacies stacking patterns to identify cyclic units 

associated with eustatic changes in sea level as presented in Figure 5.3. This 

methodology, validated via core and outcrop observations, provides a practical 

workflow that combines principles of sequence stratigraphy and geomechanics to 

properly map and develop the most prospective sections of a resource play. The 

robustness of this technique allows its extrapolation to other resource plays even in the 

absence of whole core data.      

 This present publication builds upon prior knowledge, extending and emphasizing 

the use of sequence stratigraphic principles to provide an appropriate framework to 

analyze borehole microseismic data recorded during hydraulic fracturing operations. 

In a similar manner as sequence stratigraphy is used to interpret stratigraphic 

architecture, and the likelihood of finding hydrocarbon–bearing rock units, it is also 

possible to use the same principles to predict the sedimentary column response to 

hydraulic fracturing stimulation and their associated microseismic records. 
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5.3 Monitoring equipment layout and hydraulic fracturing operations 

 The results presented in this publication deal with microseismic data acquired to 

assess  the  near  wellbore  stress  distribution  of  a  zone  of  interest  in  support  of  a  

subsequent development campaign. Monitoring a single-stage hydraulic fracturing 

treatment on a vertical well was a key element of this project. The monitoring 

equipment layout is illustrated schematically in Figure 5.4. To ensure high quality 

measurements, three sensor arrays were strategically placed in three observation wells, 

spaced approximately 120 degrees around a vertical borehole, which was subjected to 

a fracture stimulation treatment. The average distance between the stimulated well and 

the center of the arrays in the observation wells was circa 180 m (600ft). The 

observation wells included two horizontal wells and a vertical monitor well explicitly 

drilled for the microseismic experiment and the acquisition of multiple modalities of 

vertical seismic profiles (VSP); the latter experiment, however, is beyond the scope of 

this publication.  

 An 8-level multicomponent receiver array measuring 210m (700ft), which was 

located inside the vertical observation well, was partially straddled on the zone 

perforated in the treatment well – i.e., two multicomponent sensors positioned across 

the zone of interest. Two 12-level multicomponent sensor arrays were also 

strategically positioned horizontally inside the two horizontal observation wells, 

covering a longitudinal distance of 170m (550ft). The separation between sensors was 

15m (50ft) for the horizontal arrays and 30m (100ft) for the vertical array. The sensors 

were geophones with a 3Hz to 1600Hz dynamic response.   
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 Since the perforation job preceded a diagnostic fracture injection test (DFIT) 

performed weeks in advance of the monitored hydraulic stimulation, a string shot was 

used to properly calibrate the microseismic experiment (i.e. sensors rotations and 

velocity model optimization). In particular, an initial velocity model constructed by 

blocking acoustic logs registered at the vertical treatment well, using sequence 

stratigraphic relevant surfaces as the boundaries of interval velocity blocks, was 

optimized based on best fitting string shot locations. Moreover, the final velocity 

model also included time-distance relationships computed from properly recording the 

string shot firing time. This additional information provided more confidence in the 

velocity model and the estimated position of microseismic events. However, the 

validity of this velocity structure decreases as the distance between the microseismic 

event location and the perforated interval increases. Additionally, a very detailed 

quality control workflow was implemented during the acquisition and processing of 

the data, following the recommendations presented by Cabarcas (2013). 

 At an average rate of 24 bpm, the treatment introduced in the subsurface 909 bbl 

of slickwater, 765 bbl of YF-120ST crosslinked gel, and 302 bbl of WF-120ST linear 

gel, with 6280 lb of 100-mesh white sand and 110,840 lb of 40/70-mesh premium 

white sand. Note: The fracture treatment was preceded by a 25 bbl (15% HCl) acid 

treatment and, during sweeps and flushes, linear gel followed the 5 ppg 40/70-mesh 

sand concentrations. Treatment parameters and monitoring data are presented in Table 

4 and Figure 5.5, respectively. Notice the temporary drop in pressure following pump 

failure at approximately 1 hour after the start of the job. Pumpability was good overall, 
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except for this incident, which was quickly resolved with minor impact to the 

operations.  

Table 4. Treatment design parameters  

Rate (bpm) 24 

Pressure (psi) 5,921 

Slickwater (bbl) 909 

YF-120ST Crosslinked Gel (bbl) 765 

WF-120 Linear Gel (bbl) 302 

15% HCl Acid (bbl) 25 

100 - Mesh White sand (lb) 6,280 

40/70 - Mesh Premium White Sand (lb) 110,840 

Total Proppant (lb) 117,120 

 

5.4 Data quality and initial results 

  Moderate moment magnitudes (Mw) computed from the seismic signals averaged 

-3.5 and -3.3 Newton meters (Nm) for the horizontal arrays and -3.2 Nm for the 

vertical array. The farthest imaged event locations included an event 270m (880ft) 

away from the horizontal arrays, and an event 375m (1,230ft) from the vertical array. 

To estimate these and all microseismic event locations, P-wave and S-wave arrival 

times  selected  automatically,  together  with  the  optimized  velocity  model,  served  as  

input to a location algorithm based on the principles proposed by Nelson and Vidale 

(1990), where a grid search over a pre-computed space of possible locations provides 

quick estimates to event positioning. Nevertheless, an analyst reviews each selection 

and manually adjusts automatic choices when necessary, for instance in the presence 

of dubious picks associated with traces having low signal-to-noise ratio (S/N). 
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Moreover, additional adjustments of the velocity structure also occur during the 

location process, such as a best fitting based on location residual minimizations 

according to predetermined velocity and location thresholds.  

 Microseismic events uncertainties for the events located from the horizontal array 

averaged +/- 20m (70ft) in the Z direction (i.e. elevation or depth), +/- 10m (32ft) in 

the azimuthal position and +/- 13m (43ft) in the radial direction (the shortest distance 

between the tool and the event, also simply referred as distance). For the events 

located from the vertical sensor array the uncertainties averaged +/- 9m (28ft) in 

elevation, +/- 13m (43ft) in azimuthal position and +/-12m (41ft) in distance. It is 

important to note that these error estimations are theoretical computation based on the 

assumption of good quality data and a valid velocity model. The error calculations 

refer to the results from a Monte Carlo simulation and not to direct uncertainty 

measurements  associated,  for  example,  with  instrument  errors  or  the  actual  

microseismic source location, which remains unknown for all signals except the string 

shot. Therefore, the location measurements error can be higher than the values 

reported. Nevertheless, the overall data quality for this project is high due to the high 

S/N observed on waveforms and the use of receivers forming a triple array 

configuration. Additionally, low anisotropy values computed independently by VSP 

inversion and microseismic data analysis make little to no difference to the 

microseismic event locations when incorporated in event positioning (i.e., by the use 

of anisotropic velocity models), providing more confidence in the final results.  

 Figure 5.6 presents initial microseismic results on a vertical view of the 

subsurface. The GR from the vertical section is included for reference. GR counts and 
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specific depth values were intentionally omitted to protect the confidentiality of the 

data, but a 24m (80ft) mark is included as a vertical scale and to highlight the 

perforated interval on the GR curve.  API units increase from left to right, while depth 

increases from top to bottom in the directions pointed by the arrows. The treatment 

well and a horizontal scale are also included for reference. The figure displays 

microseismic event locations obtained from individual processing of signals recorded 

by a vertical (Figure 5.6a) and a horizontal (Figure 5.6b) sensor array. Note: the 

response from the horizontal arrays used in this study are very similar, therefore, only 

one of them is shown in Figure 5.6b. Microseismic events are shown as pink circles 

sized by magnitude; with larger magnitude events depicted as larger circles. 

 On a first look interpretation, the lack of microseismic activity below the 

perforated interval in Figures 5.6a and 5.6b suggests that the underlying formation 

serves as a good seal, which is expected, for this is mainly composed of a high-

strength limestone, but it is difficult to support any other meaningful conclusion from 

the data at hand. Fundamentally different stimulated volume estimates can be inferred 

from the results shown in Figure 5.6. Microseismic events recorded from the vertical 

sensor array (Figure 5.6a) suggest that not only the perforated zone was stimulated, 

but also an asymmetric fracture zone, approximately 410m (1350ft) long, was created 

150m (500ft) above the perforated interval. It is important to note that very few events 

were registered by the vertical array in the zone between the perforated interval and 

the large cloud of events above it. In comparison, Figure 5.6b shows a single cloud of 

events, approximately 210m (700ft) long and 90m (300ft) high, registered by the 
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horizontal array. These contrasting results illustrate how challenging the interpretation 

of a borehole microseismic job can be.  

5.5 Data analysis and interpretation 

Many interpretations could explain the ambiguity of the preliminary results 

presented in Figure 5.6. For example, the results presented in Figure 5.6 could simply 

be the expression of artifacts associated with acquisition and processing steps. The 

vertical array solution may suffer from high velocity layers “trapping” the rays that 

approximate signal propagation and support event location estimations. Similarly, the 

horizontal array solution, commonly known to have elevation estimation deficiencies, 

relies on take-off or arrival angles assumptions that impose significant constraints in 

results obtained from this geometry, possibly increasing the gap between horizontal 

and vertical array solutions. Additionally, notice that the difference in the position of 

the events located using the horizontal array compared to the events located using the 

vertical array is greater than the sum of the reported vertical uncertainties, which 

corroborates my concerns regarding current uncertainties reporting practices as 

discussed in the previous section and also reviewed by Cabarcas (2013). However, I 

minimized these constraints through detailed quality control during all phases of the 

acquisition and processing of this project and assumed that the main reason for the 

observed discrepancies relies in the sensor arrays not always identifying the same 

events (i.e. not all the microseismic events located by the vertical array are included in 

the horizontal array solution and vice versa).  

 Ultimately, recognizing acquisition and processing limitations, I recommend to 

first estimate the microseismic event locations via simultaneous processing of the 
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microseismic signals gathered from all observation wells and then to rely on an 

appropriate sequence stratigraphic framework to interpret the results.  

 During the acquisition and analysis stages of a microseismic monitoring job, a 

multiple array configuration is preferred because it minimizes the bias and constraints 

associated with a single observation well (Warpinski et al., 2005; Johnston and 

Shrallow, 2011; Seibel et al., 2011; Lim et al., 2012; and, Murer et al., 2012). 

Furthermore, as pointed out by Maxwell and Le Calvez (2010), significantly different 

results are expected from the use of vertical and horizontal sensor arrays, and not a 

single configuration is completely better than another. In this work, both vertical and 

horizontal layouts were used simultaneously in data processing, which compensates 

for those differences. Figure 5.7 shows waveforms associated with a microseismic 

event recorded simultaneously by the three sensor arrays. Note that events clearly 

registered simultaneously by the three sensor arrays represent a smaller sample from 

the total number of recorded events, creating a more representative event set from the 

monitoring job. Additionally, processing a three dimensional network of sensors all 

together enriches data output, as this allows the estimation of other microseismic 

source characteristics based on seismic moment tensor inversion (Baig and Urbancic, 

2010, and Warpinski and Du, 2010). A discussion of such analysis is beyond the scope 

of this paper.    

 Once the triple array solution is obtained, it is necessary to analyze GR stacking 

patterns and build a model of brittle-ductile couplets for the stratigraphic column of 

interest, as shown in Figure 5.8, to apply my proposed workflow. I selected the 

stacking patterns boundaries presented in Figure 5.8 based on high GR readings 
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interpreted as fs (flooding surfaces) and their associated SB (sequence boundaries) at 

two different scales. It is important to note that the maximum flooding surface (mfs), 

interpreted from the highest GR reading, constitutes the boundary between the brittle 

and ductile sections at a first order interpretation and that I interpret the sharp GR 

readings contrast, inside the first order ductile section, as an erosive base representing 

a combined sequence boundary/transgressive surface of erosion (SB/TSE). This 

gamma-ray vertical stratigraphy is common to many unconventional resource shales 

(Slatt and Rodriguez, 2012; Slatt, in press). 

 Solid upward-pointing arrows depict the first order of analysis in Figure 

5.8, while dashed upward-pointing arrows illustrate a higher order of detail, resulting 

in my GRP interpretation. The green rectangles and red ovals in Figure 8 depict 

schematically brittle-ductile couplets. In this regard, I emphasize that the selection of 

fs and SB based on gamma ray log observations is a non-unique solution, i.e. other 

interpretations may be possible in the absence of additional and independent support 

information (e.g. whole core, biostratigraphic data, etc.). Moreover, notice how the 

number of fs and SB increases for higher order analyses, and while the mfs selection is 

fairly simple, the designation of fs and SB for second and higher orders becomes more 

subtle. For that reason, to supplement our interpretation, I  included a lithostratigraphic 

column built from mud-logging records, and an acoustic impedance log (i.e., the 

product of velocity and density logs) in Figure 8. They represent an example of 

independent information that also could help the interpreter to discern small 

differences in ductile vs. brittle behavior of the subsurface. 
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 It is important to note that in this work the term brittle is not rigorously defined, it 

rather applies to rocks easily damaged as compared to ductile rocks. I refer the reader 

to the work by Handin and Hager (1957), Hetenyi (1966) and Perez (2013), among 

other publications presenting full-length discussions regarding the brittleness term. 

Moreover, I recognize that other properties such as the strength of the formation or the 

stress regime acting upon it, which are not discussed in my model, do have a 

significant impact on the formation’s response to hydraulic fracturing treatment. 

Therefore, I recommend combining geological and geomechanical principles for a 

more quantitative interpretation of hydraulic fracturing stimulation results. 

  Figure 5.9 presents the results obtained when microseismic signals recorded 

using a triple array configuration were simultaneously processed to estimate the 

subsurface location of their source. I interpret these results in the context of the 

sequence stratigraphic framework presented in Figure 5.8, expecting (within the same 

order) longer fracture lengths for brittle sections as compared to ductile sections. I 

observed more microseismic activity in the first order brittle layer, which could be 

associated with induced hydraulic fractures of longer lengths in accordance with my 

sequence stratigraphic model, also included in Figure 5.9 for reference. This 

observation holds true at a second order interpretation scale; notice how most of the 

events encircled by the big ellipse line up with brittle regions (green rectangles in first 

and second order interpretations), while ductile sections, which may act as seals and/or 

hydrocarbon source (storage) rocks, show minimal microseismic activity (i.e. the 

region between ellipses, which lines up almost perfectly with red ovals depicting 

ductile sections of the stratigraphic column). It is important to note that the 
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microseismic activity associated with the out-of-zone fracture growth does not 

necessary imply that this upward zone is propped or even hydraulically connected. 

 The small ellipse in Figure 5.9 encircles microseismic events located in the target 

zone around the perforated interval. This event cloud is approximately 50m (160ft) 

high and 90m (300ft) long and it corresponds to the most likely stimulated area, 

according to my interpretation. Moreover, these microseismic events fall within a 

ductile region (red oval) on a first order interpretation, which explains its small 

dimensions compared to the events cloud above it. Nonetheless, when analyzed at a 

higher level of detail, the small events cloud (small ellipse) occurs at the boundary of a 

brittle-ductile transition, which maximizes the probability of achieving an effective 

stimulation treatment, despite its location within a first order ductile region. It is my 

recommendation to align the perforations as much as possible with relatively more 

brittle sections of the stratigraphic column, as it was the case in this particular 

example.   

 In summary, the results from the triple array configuration in Figure 5.8 not only 

resemble the results in Figure 5.6a (vertical array), but also honor the expected 

behavior from the brittle-ductile couplets model presented in Figure 5.8, allowing us 

to confidently discard, the conflicting response from the horizontal array in Figure 

5.6b, which also showed the largest measurement error as discussed in the 

experimental section.  

 Ultimately, this stratigraphic approach to microseismic data interpretation 

provided a higher level of confidence in the evaluation of the hydraulic fracturing 

treatment. Moreover, based on these observations, I conclude that the use of less 
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viscous fracturing fluids and lower proppant concentrations could aid fracture 

containment for this particular stress regime. These results underscore, once again, the 

value of microseismic information to explain stimulation results and to provide the 

necessary data to support changes to the original fracturing design proposed for the 

development campaign. 

5.6 Conclusions 

 For the first time, I demonstrate that in the presence of a sequence stratigraphic 

framework provided by gamma ray stacking patterns in conjunction with lithologic 

information, it is possible to identify brittle-ductile couplets to aid in the interpretation 

of  the  microseismic  response  from  a  single  stage  hydraulic  fracturing  treatment.  

Moreover, the simultaneous processing of microseismic data from a triple sensor array 

configuration coupled with a sequence stratigraphic based interpretation provided a 

high degree of confidence in the inferred results of the stimulation treatment and the 

decisions made upon it.  
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Figure 5.1. Barnett Shale example of A) upward-decreasing, B) upward-increasing, 
and C) constant GR API counts. These observations are fundamental to delimit 
parasequences from gamma-ray log patterns (after Singh, 2008). 
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Figure 5.2. Schematic hydraulic fractures lengths variations within multiple scales of 
brittle-ductile couplets (after Slatt and Abousleiman, 2011). 
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Figure 5.3. (a) Barnett Shale gamma-ray log showing parasequence boundaries (wavy 
blue lines) and parasequence patterns (red arrows). (b) 14 gamma-ray parasequences 
(GRP) for the well. (c) Core facies description and (f) explanation. (d) Relative sea-
level curve for the complete Barnett Shale sequence (brown dashed line) and the 14 
parasequences listed alongside the gamma-ray log (solid blue curve). (e) Three scales 
of ductile-brittle couplets. Sequence, parasequence and bedset refer to first, second 
and third order respectively. FS: flooding surface; RST: regressive system tract; and, 
TST/CS: transgressive system track / condensed section (after Singh, 2008, and Slatt 
and Abousleiman, 2011). 
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Figure 5.4. Map view of borehole layouts and sensor locations associated with a single 
stage hydraulic fracturing treatment on a vertical well (green star). The stimulation 
was monitored by three arrays, two horizontal arrays of twelve multicomponent 
sensors each, and a vertical array of eight multicomponent sensors shown as red, blue, 
and purple squares respectively. 
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Figure 5.5. Treatment summary plot describing how treating pressure, slurry rate, 
proppant and bottom hole proppant concentrations changed during the stimulation 
treatment (time increases to the right on the horizontal axis).  
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Figure 5.6. Vertical section representation of the subsurface illustrating the relative 
position of microseismic events (pink circles sized by magnitude) associated with a 
single stage hydraulic fracturing treatment. Locations were estimated independently 
from microseismic signals recorded from a) a vertical and b) a horizontal array.  GR 
profile (in API units) is also included for reference. Note: GR counts and depth were 
intentionally omitted to protect the confidentiality of the data.  API counts increase 
from left to right, while depth increases from top to bottom. The perforated interval 
and the target zone, approximately 24m (80ft), are also depicted. 
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Figure 5.7. Microseismic waveforms associated with a single microseismic event as 
recorded by thirty two borehole tri-component sensors. Microseismic data from each 
component is plotted on top of each other. Green traces display the information from 
the vertical component geophones, while red and blue traces present the data from the 
two horizontal components. For each sensor display, the horizontal axis represents 
recording time while the vertical axis displays negative and positive amplitude values 
with respect to a horizontal zero base line. 
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Figure 5.8. Two orders of brittle-ductile couplets (green rectangles and red ovals) 
interpreted from the identification of gamma-ray log parasequence stacking pattern 
and subsurface lithologic information. Gamma-ray (GR) and impedance logs, together 
with a schematic geologic column depicted from mud-logging records, are also 
included. According with this interpretation, different orders of hydraulic fracturing 
are expected from the brittle and ductile zones as shown schematically in Figure 2. 
Note: logs units and specific depth measurements intentionally omitted to protect the 
confidentiality of the data. GR and impedance units increase from left to right, 
whereas depth increases from top to bottom as implied by the small black pointing 
arrows. A mark, approximately 24m (80 ft) long, highlights the target zone. 
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Figure 5.9. Vertical section representation of the subsurface illustrating the relative 
position of microseismic events (pink circles sized by magnitude) associated with a 
single-stage hydraulic fracturing treatment. Microseismic events locations are 
estimated following a simultaneous triple array processing, as opposed to the 
individual sensor arrays solutions previously illustrated in Figure 6. Notice how most 
of the event clouds coincide with the brittle sections identified from the stacking 
pattern interpretation shown in Figure 8 (green rectangles and red ovals). GR profile is 
also included for reference. Note: GR counts and depth are intentionally omitted to 
protect the confidentiality of the data. API counts increase from left to right, whereas 
depth increases from top to bottom. A mark, approximately 24m (80 ft) long, 
highlights the perforated target zone. 
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CHAPTER 6: Conclusions 

  

 I demonstrated that brittle-ductile couplets identified using gamma ray stacking 

patterns provide a robust framework to interpret the microseismic response from a 

single stage hydraulic fracturing treatment. Moreover, the simultaneous processing of 

microseismic data from a triple sensor array configuration, coupled with a sequence 

stratigraphic based interpretation, provided a high degree of confidence in the inferred 

results from the stimulation treatment, and the decisions made from it to support future 

development campaigns. It is my opinion that these statements holds true in other 

geological regions provided that the microseismic data used to evaluate the hydraulic 

fracturing treatment follows simple, but meaningful acquisition and processing quality 

control procedures. In particular, the microseismic interpreter should be intimately 

familiar with all aspects of the acquisition, the building of the velocity model, and the 

location algorithm used to locate microseismic events in the subsurface.  

After all efforts have been made to obtain a proper microseismic data set, an 

integrated analysis also provides significant insights about the subsurface. For 

instance, in this dissertation I validated the use of microseismic-derived Magnitude vs. 

Distance Plots (MDP) as a tool to identify fault reactivation, and showed that when 

combined with other independent measurements such as 3D reflection seismic 

sections, MDP could unequivocally characterize the reactivation of a fault based on 

higher amplitudes and azimuth changes. 

 In closing, just as an experienced seismic interpreter often performs the 

interpretation of surface reflection seismic, a professional who has developed 
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familiarity with all aspects of borehole microseismicity, in addition to the engineering 

basis of the stimulation treatment and the geological principles governing the 

subsurface, should carry the analysis of data from microseismic experiments. A best 

practice will be to have a multifunctional team evaluating the validity of all 

assumptions made at every step of the project, collaborating together in order to 

generate a proper integrated interpretation of borehole microseismic data from 

hydraulic fracturing stimulation treatments. 
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Appendices 

 

Appendix A: Micro MDPs can be a big tool in fault finding* 

Cabarcas, C and O. Davogustto. 

* Adapted from article published February 2013 in The Geophysical Corner, a regular 

column in the AAPG EXPLORER magazine, edited by Satinder Chopra. Copyright 

2013, American Association of Petroleum Geologist. 

 

 Microseismic technology is crucial these days for understanding reservoirs and 

planning development programs:  

 Borehole microseismic is used to monitor seismic activity generated during 

hydraulic fracturing. 

 The displacement of a rock along a shear wave is referred to as a fault, and the 

energy released by such a movement propagates as a seismic wave; a measure 

of this energy within the domain of microseismic technology is referred to as 

magnitude. 

 The magnitude values of the recorded microseismic events are proportional to 

the size of the surface and the displacement involved in faulting. Assuming 

that surfaces and displacements associated with preexisting faults are bigger 

than those of hydraulically induced fractures, during hydraulic stimulation, the 

registered higher magnitudes should characterize fault reactivation. 
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 Magnitude is usually one of the parameters derived from borehole 

microseismic measurements. Additionally, microseismic recording sensors only detect 

microseismic events occurring within a certain radius from them – usually no more 

than a few thousand feet. One way to quantify this phenomenon is with a Magnitude 

vs. Distance Plot (MDP). This plot shows the relationship between the energy 

associated with a particular event and its distance from the monitor well. 

 The MDP is a useful analysis tool in microseismic interpretation for all the 

information it summarizes on a simple graphic display. 

 Events with a combination of highest magnitude and highest distance away 

from the monitor well define the maximum detection distance, which can be used to 

plan the maximum distance for monitor well placement in future jobs. The rest of the 

recorded events populate the middle upper left portion of the MDP graph, forming a 

quasi-triangular pattern.  

 The presence of faults in the subsurface – and their reactivation during 

hydraulic stimulation – thus becomes noticeable on MDPs, because magnitudes of 

events associated with fault reactivation are usually higher than the rest. 

* * * 

 I use the MDP technique to discern fault reactivation in this microseismic 

monitoring exercise, performed real-time during hydraulic fracturing operations.  

 

 In Figure 1, the higher magnitudes’ events associated with possible reactivated 

faults are highlighted by a dotted blue circle.  
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 When implementing the hydraulic stimulation no surface seismic data was 

available – and subsurface geologic maps, built solely on sparse wells information, did 

not foresee the possibility of a fault in the area. This encouraging geologic model also 

supported the drilling and stimulation of the treatment well. 

 More than a year after the stimulation of the well associated with Figure 1, 

newly available 3-D reflection seismic data provided a better image of the subsurface 

near the well. Unfortunately, due to resolution limitations, the broadband frequency 

data from this 3-D reflection seismic survey does not provide unequivocal evidence 

for the presence of a fault. By coupling the 3-D seismic data with the microseismic 

events interpreted as the response of fault reactivation, however, I infer the presence of 

a fault in the seismic image. 

 

 In Figure 2 I show sections with and without the microseismic events.  

 The overlay of microseismic events on the 3-D seismic vertical section 

suggests the presence of an antithetic fault in the subsurface and its possible 

reactivation due to hydraulic fracture stimulation. The microseismic event set aligned 

very well in the direction of the interpreted fault plane. 

 By computing similarity on the 3-D seismic volume and extracting a surface 

slice  from  seismic  data  at  the  zone  of  interest,  I  interpret  the  presence  of  a  fault  

crossing the path of the treatment well. 

 The good correlation between microseismic event lineaments and the 

extrapolation of similarity trends provides further evidence supporting my hypothesis 
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of fault reactivation due to the hydraulic fracturing treatment – which I illustrate in 

figure 3. 

 

 Figure 3 also shows that the azimuth of the event cloud associated with the 

fault reactivation is different from the azimuth inferred from previous stimulation 

stages. 

 This characteristic, solely based on microseismic event location, provides 

another tool to derive subsurface geological information not generally emphasized. 

 I suggest that in the absence of additional supporting data, an azimuth change 

observed from microseismic sets – coupled with anomalously high magnitudes for the 

same events – could be interpreted as an indication of fault reactivation.  

 Moreover, when integrated with treatment pressure information, these 

microseismic observations could be used in the decision-making process of changing a 

predesign treatment job – and could significantly reduce completion costs.  

 The example presented here serves to validate and support the use of 

microseismic-derived MDPs as a tool to identify fault reactivation in the absence of 

additional subsurface data. 

 Moreover, when combined with other independent measurements, MDPs could 

unequivocally characterize the reactivation of a fault based on higher amplitudes and 

possible azimuth changes. 

 I also show that 3-D seismic is a powerful tool to mitigate drilling and 

completion risks as those encountered when faults are not anticipated along the well 

path. Availability of 3-D seismic data beforehand could have improved well 
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placement and possibly resulted in lower completion costs and better well 

performance. 
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permission to publish this work, as well as its support on the application of new 
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Appendix B: Monitoring the unexpected; understanding hydraulic fracturing 

issues using microseismic data* 

Cabarcas, C and O. Davogustto. 

* Adapted from article submitted to The Geophysical Corner, a regular column in the 

AAPG EXPLORER magazine, edited by Satinder Chopra. Copyright 2013, American 

Association of Petroleum Geologist. 

 

 There are many examples in the literature that illustrate the use of 

microseismic information to monitor hydraulic fracturing treatments in resource plays. 

Most of these examples describe typical benefits from analyzing microseismic data, 

for instance, estimating the stimulated volume and fracture geometry associated with 

newly created flow paths. Here, using two specific examples, I discuss a less popular 

approach; the use of microseismic data to recognize unexpected out of zone fracture 

growth.  

 

*** 

 Figure 1 shows the first example, a three dimensional perspective of the 

subsurface depicting both a treatment and a monitor well, along with colored spheres 

which represent microseismic events associated with three hydraulic fracturing stages. 

The lateral  sections of  both wells  are  parallel  and approximately 245m (800ft)  apart.  

As seen in this Figure, the microseismic events for the red and green stages gather as 

clouds around the perforations in the zone of interest. However, this is not the case for 

the subsequent stage (represented by pink spheres), as much of the fracture growth 
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takes place vertically and horizontally away from the target zone. This is not 

uncommon; throughout multiple fracturing treatments I have observed microseismic 

activity near the heel of the well, which is not part of the original stimulation design.  

 It is important to point out that different contractors processed this data, and 

the results were very similar. This minimizes the possibility of a processing artifact. 

Indeed, the waveform characteristics; the travel time between the P and S waves, the 

array response move-out, and the azimuth calculated from the particle motion of the 

event waveforms, all indicate that the events generated in the last stage occurred in a 

location far from the target zone.  There may be different reasons for these unexpected 

results. For instance, fracturing fluids leakage due to poor casing integrity or along an 

open fault are both plausible explanations. Stress concentration near the heel of the 

well as the result of the drilling process together with high pressures generated during 

fracturing, could also explain the out of zone fracture growth seen in Figure 1.  

 Coupling microseismic and pressure data along with production records has 

proved valuable in root cause analyses for unexpected results. In this particular 

example, real-time processing of the microseismic data interpreted in the context of a 

sudden decrease in the tubing pressure shortly after the start of pumping supported the 

hypothesis of out of zone fracture growth. This integrated analysis allowed the on-site 

crew to quickly make changes to the original fracture design in an effort to arrest the 

fracture containment issue.  

 

*** 
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The second example deals with microseismic data acquired as part of an experiment 

designed to assess the near wellbore stress distribution of a zone of interest, in support 

of a future development campaign. Monitoring a single stage hydraulic fracturing 

treatment on a vertical well was a key element of this project. To ensure high quality 

measurements, multiple sensor arrays, strategically placed in three monitor wells 

surrounding the vertical treatment well, captured all the microseismic signals from this 

experiment. Figure 2 shows a vertical section of the subsurface with the treatment well 

and the microseismic events locations (blue dots) obtained from simultaneous 

processing of the signals from all arrays. For simplicity, the Figure shows only one of 

those sensors arrays (green squares). From this Figure, it is clear that the vast majority 

of events originated outside of the formation of interest, approximately 150m (500ft) 

above the perforated interval depicted by a blue arrow.  

 It is worth noting that the subsurface location of a string shot as estimated by 

its seismic signal correlated well with its known location, nearby the perforated 

interval. This provided enough information to build a calibrated velocity model giving 

a high degree of confidence in the output of the microseismic experiment. 

 The post treatment stress profile inferred from the microseismic activity in 

Figure 2 suggests an out of zone fracture growth episode. Based on these observations, 

I concluded that the use of less viscose fracturing fluids and lower proppant 

concentrations could aid fracture containment for this particular stress regime. These 

results underscore, once again, the value of microseismic information to explain 

unexpected results and to provide the necessary data to support changes to the original 

fracturing design.   
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*** 

 A final thought - Fracture containment issues have been the subject of much 

discussion and debate in recent years, partly because of environmental concerns 

related to groundwater pollution with fracturing fluids during stimulation operations. 

In this respect, microseismic data has proved to be a valuable tool to quantify any 

potential risk. Microseismic surveys from thousands of hydraulic fracturing treatments 

demonstrate that all recorded instances of out of zone fracture growth are limited to a 

few hundred feet around the stimulated zone, as shown in Figure 2, much deeper than 

common sources of underground water typically used for human activities.  
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Figure 1. Three-dimensional perspective of the subsurface showing microseismic 
events (red, green, and pink spheres) associated with three hydraulic fracturing stages 
on a horizontal treatment well. The figure also shows a sensor array in green. The 
distance between the lateral sections of the wells is approximately 245m (800ft). 
Microseismic events for the red and green stages occur near the perforations in the 
zone of interest, whereas those for the pink stage lie out of the target zone, suggesting 
out of zone fracture growth.  
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Figure 2. Microseismic events (blue dots) associated with a single stage hydraulic 
fracturing treatment on a vertical well. The figure shows the perforated interval (blue 
arrow), and a sensor array within the vertical monitor well in green for reference. 
Significant microseismic activity approximately 150m (500ft) above the perforated 
interval suggests out of zone fracture growth.  
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Appendix C: List of acronyms and abbreviations 

%Ro  Vitrinite reflectance 
3-D  Three dimensional 

min,  Sh  Minimum horizontal principal stress 
max, SH  Maximum horizontal principal stress 
PR  Poisson’s ratio 

 Viscosity 
API  American Petroleum Institute 
BH prop con  Bottom hole proppant concentration 
BHTP  Bottom hole pressure 
Cal  Calcite 
CALI  Caliper  
Chl  Chlorite 
CS  Condensed Section 
CT  Computed Tomography 
DFIT   Diagnostic Fracture Injection Test 
Dol  Dolomite 
DTC  Compressional transit time  
DTS  Shear transit time  
E  Young’s modulus 
E’  Plane strain modulus 
ESV  Estimated Stimulated Volume 
GAPI  Gravity API 
GR  Gamma Ray  
GRI  Gas Research Institute 
GRP  Gamma Ray Parasequences 
H/C  Atomic ratio of hydrogen to carbon 
HCL  Hydrochloric acid  
HEC  Hilcorp Energy Company 
HER  Hilcorp Energy Resources 
Hf  Fracture height 
HI  Hydrogen Index 
HST  Highstand System Tract 
I/M  Illite/Mica 
I/S  Illite /Smectite 
Kao  Kaolinite 
Ker  Kerogen 
KGD  Khristianovich and Zeltov and Geertsma and de-Klerk 
KIc-app  Fracture toughness (tip effects) 
LST  Lowstand System Tract 
Mar  Marcasite 
MDP  Magnitude vs Distance Plot 
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mfs  maximum flooding surface 
Mw  Moment magnitude 
NPHI  Neutron porosity  
O/C  Atomic ratio of oxygen to carbon 
OI  Oxygen Index 
PI  Production Index 
Plg  Plagioclase 
Pnet  Net pressure 
Prop Con  Proppant Concentration 
P-waves, Vp  Primary (Compressional) wave velocity 
PKN  Perkins and Kern–Nordgren  
Pyr  Pyrite 
Q  Fluid injection rate 
Qtz  Quartz 
RHOB  Bulk density  
RM  Medium Resistivity  
RST  Regressive System Tract 
RT  Deep Resistivity  
RXO  Shallow Resistivity   
S/N  Signal to Noise ratio 
SB  Sequence Boundary 
SEM  Scanning Electron Microscope 
SH-waves  Horizontally polarized shear waves velocity 
STP  Shut-in tubing pressure 
Sv  Vertical principal stress 
SV-waves  Vertically polarized shear waves velocity 
Tmax  Temperature at maximum release of hydrocarbon during   

 pyrolysis 
TOC  Total Organic Content 
TSE  Transgressive Surface of Erosion 
TST  Transgressive System Tract 
Vs  Shear velocity 
VSP  Vertical Seismic Profile 
Wf  Fracture width 
Xf  Fracture half-length 
XRD  X-ray diffraction 
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Appendix D: List of units 

bbls  barrels 
bpm – bbl/min  barrels per minute 
ft  foot 
Hz  Hertz 
in  inches 
km/s  kilometers per second 
lb  pounds 
m  meter 
mm  millimeters 
ms  milliseconds 
Nm  Newton meters 
ppa  pounds per proppant added  
ppg  parts per gallons 
psi  pounds per square inch 
psi/ft  pounds per square inch per foot 
  

  
    
  
  

 


