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Abstract

The problem of �nding the minimum tipping set in a super modular game

is known to be NP-hard. Here, I derive an approximation algorithm to �nd a

small tipping set in such a game. In the special case of the uniform game, the

approximation provides the exact minimum tipping set. Interdependent secu-

rity is a growing �eld. One model used for interdependent security is the airline

security model. This model is used as an example for the approximation meth-

ods, and was the working model for many of the proofs and strategies developed

to �nd tipping sets and their approximations. This algebraic approach, which

makes use of group theory, is then evaluated for accuracy, It is then applied

to a dynamic approach, using a simple learning function without the complete

information often assumed.

This method links the non-greedy approximation to a version of SAT, and

a type of in�uence graphs and the covering problem. The approximation fared

well when �nding the key players in a game, but struggled with cascades.

viii



Chapter 1

1 Game Theory Concepts

Game theory is the study of decision making, usually in competitive systems.

It strives to understand how rational players, be they individuals, companies,

governments, or other entities, make strategic choices, when faced with a com-

petitive situation when the results of their action is not just dependent upon

their own action, but that of other involved parties the strategic choices can be

di�cult to understand. Even with simple interdependency these interactions,

or games, between di�erent players making di�erent choices can exhibit com-

plex behavior. Computer science, math, and information theory have developed

systems to model these behaviors. Such systems have been used in politics, eco-

nomics, computer networks, security, and many other �elds to model behavior.

[8][16]

To gain a greater understanding of this, we �rst need to explore some general

concepts and terminology related to games. We will also develop the needed

notation to represent the ideas.

1.1 Introduction

To aid in further discussion and analysis of the �eld of game theory, let us

de�ne some general terms. These will be used throughout this document. A
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game is a general system in which the involved parties are interacting, and their

results are dependent upon the choices of all or some of the other parties. These

parties are referred to as agents or players. Thus a game has multiple players,

competing, cooperating, or at the bare minimum interacting with each other,

generally with the intent to attempt to get their best results. These results are

called payo�s. The negative of these payo�s are, in some cases, referred to as

losses. Maximizing the payo�s (a common goal) is the same as minimizing the

losses. Each player in a game has options. These options are the set of actions

the player can choose to take, and are referred to as strategies. Each player

can have any number of strategies. A play of a game is the set of each players

choices of strategy. A play of a game determines the payo�s.

Sometimes these payo�s are computed to be the average of their possibilities,

or their expected value. The payo�, or the expected value of the payo� are terms

often used interchangeably. Sometimes these payo�s are referred to as utility,

and the study of the properties of these utilities is called utility theory. It is

worth noting that utility is inherently subjective. That is, each player sets how

they value the various payo� options derived from the strategic choices. Thus

the payo�s of players are inherently non-comparable.

Another important concept in games is rationality. A fundamental concept

of game theory is that each player is assumed to be rational. By behaving

rationally, we mean that the players seek to maximize their own payo� with no

regard for the other players. This is sometimes termed sel�sh, but we will use

the term rational to describe this behavior. [16][18]
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1.2 Types of Games

Often, to study games it is helpful to categorize games based upon their proper-

ties and common characteristics. Then we can study the special cases separately.

Here we show some common types of games.

1.2.1 Pure Strategy Games

Pure strategy games are games in which each of the players must choose exactly

one of their strategies for a play of the game. Thus a single play of the game

is a set of strategies, one from each player in the game. The payo�s are then

strictly determined by the strategic choices of the players and the de�nition of

the game. Each player has to choose their strategy deterministically, and cannot

rely on any random chance or device.

Pure strategy games are more intuitive, than mixed strategy games but often

just as complicated. It is conceptually similar to a discrete problem instead of

a continuous problem.[16][18]

1.2.2 Mixed Strategy Games

Mixed strategy games are similar to pure strategy games, except that each player

can determine their choice randomly, rather than deterministically. In these

games, players may weight their random choices to prefer certain strategies. In

some games, the strategies may have equal weight, and in others it might be

biased toward one choice or another. Often this ability actually simpli�es �nding

solutions, or their existence, when compared to pure strategy games.[16][18] In

competitive situations, it is often bene�cial to choose randomly. For example,

when playing Paper Rock Scissors, the best strategy is to choose all options

uniformly randomly.
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1.2.3 Zero Sum Games

One common type of game is a zero sum game. This is a game in which the

payo�s balance. That is, if one player gains X, the rest of the players must lose

X. It is easy to think of this as a group of players competing for a �xed set

of resources. In order for one player to get a resource, the rest of the player

collectively must have lost that resource.

A game can be Mixed Strategy, and zero sum, or any other combination of

these qualities. A special case of this is the two player zero sum game in mixed

strategies. In this case, we can apply the Minimax theorem. In common terms,

this theorem says that if one player can guarantee a payo� of X, then the other

player will get -X. This is intuitive for a two player game in that a player, in

maximizing payo�, minimizes the opponent's payo�.[16][18]

1.2.4 Non-Zero Sum Games

Alternatively, a game can be non-zero sum. In this case, players are not com-

peting for a �xed resource or uniform value. In this case, one player's gain does

not necessitate the other players' loss. This is often the case in large, complex

interdependent systems.[16][18]

1.3 Solutions

There are several solution concepts in game theory. Generally a solution rep-

resents the state when all players settle. Given their choices, they have chosen

the best they can, maximizing their utility. In the case of mixed strategies, this

means that they choose the weights of strategies to maximize their utility. The

most common type of solution used is a Nash Equilibrium (NE). In a NE, no

player is willing to deviate from his choice alone. Thus it takes more than one
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player to move the system. NE are not necessarily unique solutions, and are not

necessarily optimal. NE are still commonly used because they well represent

how solution naturally evolve from competition. They also often produce feasi-

ble solutions. There can be several NE in a game, and they can be at di�erent

payo� values. [15][16][18]

1.4 Details of Games

Thus far we have introduced some general, intuitive explanations of games. Now

we will explore the relevant precise computational elements of games and the

speci�cs needed for further analysis. After some notes on solutions and game

types, we will more closely examine a special type of game upon which most of

the following work is based.

The study of game theory strives to understand the behavior of agents, be

they people, companies, governments, or other entities in systems. We denote

these players by labeling them as player i. A single player game reduces to an op-

timization problem. Since we are interested in games with multiple players, we

use n to denote the number of players, and index the players i : 1, 2, ..., n for ref-

erence. Generally speaking, these systems are competitive, or non-cooperative.

We assume that these players are rational, that is, that they do what is in their

best interest to maximize their gain and minimize their loss from a situation.

Games can be as simple as Paper, Rock, Scissors, or as complex as derivative

markets. These systems arise in may areas, including advertising, networks,

negotiations, and security. [16][17]

Given a situation or play, each of the players has a set of strategies to follow.

We denote these strategies as si for each player i. The set of strategies can be

any action or combined action taken (or not taken) by a player. Herein, we
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are primarily concerned with the cases when si ∈ {0, 1} where 0 represents the

choice of a player not to take action, and 1 the choice to act or invest. Some-

times, it is in a player's best interest to choose randomly (with some de�ned

weight to each strategy) between these strategies, which is a mixed strategy. al-

though this research is concerned with pure strategy games, wherein the players

are limited to picking one strategy exclusively.

A play s is de�ned by the n-tuple s = (s1,, s2, ..., sn) where si ∈ {0, 1} denotes

the choice of pure strategy by a player i and 1 ≤ i ≤ n.[16] A player i's payo�

or loss function is denoted as ui(s). This is often the average payo� given the

actions of the players. We use S to denote the set of all possible distinct plays.

There are a total of 2n distinct plays denoted by S = {s|s = (s1, s2, ..., sn), si ∈

{0, 1}}in the games we discussed herein.

Of course, the analysis of such complex systems is somewhat divorced from

reality, thus we must develop a model of the payo� functions. It is constructed as

a function U : S → Rn and de�ned by:U(s) = (u1(s), ..., un(s) where each ui is

the payo� function for player i and s is the strategic choice of that player. Thus

U maps S → Rn, the payo�s of each player, given the play s = (s1, ...sn) ∈ S to

the payo� vector for all players. Thus any game is completely de�ned by (S, U).

1.5 Super-modular Games

One important class of games is super-modular games. This class of games

stems from a class of functions by the same name. Super-modular functions

are functions with a property known as 'increasing di�erences'.[16]. Intuitively,

'increasing di�erences' means that as more players decide to use a strategy, the

more incentivized others are to do use the same strategy. Mostly,this quality

is utilized in cases with only two strategies, represented by 0 and 1. We use
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the notation si−i to represent the set of strategy choices S for every player

except i. To characterize this, we often examine the di�erence in a player's

payo�s resulting from their choice. To examine tipping, we often consider the

di�erence quantity:

ui(1i, s−i)− ui(0i, s−i)

Intuitively, this quanti�es the proposition of the player i to choose strategy

1 over 0 for any given distinct partial play s−i. If this value is positive, the

player will choose 1 instead of 0. In this paper, this will often be referred to as

the choice to 'invest' (1) or 'not invest' (0). For a game to be super-modular, it

must conform to the following inequality:

ui(1i,s
′

−i)− ui(0i, s
′

−i) ≥ ui(1i, s−i)− ui(0i, s− i) (1)

if s
′
−i ≥ s−iwith strict inequality if s

′
−i > s−i[10][21]

In our case, the underlying binary lattice is de�ned by the 2n binary strings

of 1's and 0's under the partial order de�ned over the binary strings. It turns

out this lattice is also a hypercube of dimension n.[7]

1.6 Tipping

The focus of this work is on tipping. As mentioned above, NE are not unique,

and can vary in value. One NE can be considered superior, or more e�cient,

than another. This prompts the interesting question of �How do we move from

one NE, presumably an ine�cient one, to another one?� This movement can be

achieved by externally motivating a set of players to change and letting the rest

follow suit, ending in another NE. A tipping set is a set of players that motivate

such a change.

A minimum tipping set is the minimum of such tipping sets. The primary
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interest of this work is in �nding the minimum tipping set, or the smallest

amount of players to move from one NE to another.[8][10][3]The phenomenon we

are interested in is tipping. This is the transition from one NE to another, and

typically from an ine�cient NE to an e�cient one. The above super-modularity

condition 1 is su�cient to produce this tipping phenomenon in binary games

(games with two strategies). This has many applications, from market coverage,

social network saturation, and security or technology investment. Generally, this

type of dynamic arises when a single player rationally won't force transition of

the whole system to a new state alone, but if everyone chooses the new state

(or a su�cient number of players) it would be better for everyone, or at least

the investing players. Then, the right players together choose to change, and

everyone, including the initially abstaining players follows suit rationally.

A similar phenomenon is called cascading, in which the players change one

at a time like dominoes, but in a perfect information system, with abstracted

transitional times, cascades don't come into play because each player would

know that the cascade would happen and skip to the investment strategy at the

end.[8][9][10]

1.6.1 De�nitions

The study of games require us to have a set nomenclature. As discussed above,

(S, U) de�nes a game. We let S = {s|s = (s1, s2, ..., sn), si ∈ {0, 1}} so it is

a set of possible strategies for each play. Each si is the strategic choice of the

ithplayer. Here, n is the number of players, or agents in the game, indexed

1, ..., n. In our case, where the strategies are 0 or 1, this set of all actions has

cardinality |S| = 2n. Clearly, this is a n-tuple of n zeros or ones, thus the

cardinality. We use U to be the payo�, equivalently gain or loss, by each of the

players.
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When studying these games, it is often useful to directly examine the impact

a player has on another. The common notation for this is as follows:

4j(s−j) = uj(sj, 1)− uj(s−j, 0)

Where 4j(s−j), is de�ned to be the incentive of player j to invest, given

that all the other players use their strategic choices in s. If this is positive for

payo�, or negative for loss, it is in player j 's best interest to invest, choosing

strategy 1. To examine the impact of a player i on player j, we use the following

extension of this notation:

4j(s−i−j, 0i) = uj(s−i−j, 0i1j)− uj(s−i−j, 0i, 0j) (2)

4j(s−i−j, 1i) = uj(s−i−j, 1i1j)− uj(s−i−j, 1i, 0j) (3)

These show the incentive for player j �rst if player i chose 0, then 1. To

quantify player i 's impact on player j, we use the following:

∆ij = 4j(s−i−j, 1i)−4j(s−i−j, 0i) =

(uj(s−i−j, 1i, 1j)− uj(s−i−j, 1i, 0j))− (uj(s−i−j, 0i1j)− uj(s−i−j, 0i, 0j) (4)

In a super-modular (or monotone) system, this value is always positive (or

negative) by de�nition for all i and j. Thus as more players invest, it can only

incentivized other players to invest as well. Intuitively, if there is an NE at

1n there is some subset of players who will make the other players invest as

9



well. A trivial example of this is would be n− 1 players. Since 1n is a NE, the

remaining 1 player would be su�ciently incentivized to invest. This, coupled

with the presence of a NE at 0nand another at 1nis su�cient to have a tipping

or cascading phenomenon.

1.6.2 Complexity of Tipping

Finding a solution to these kinds of problems is generally possible, but we are

interested in doing this e�ciently, thus we desire a minimum tipping set. This is

much more di�cult given the combinatorial nature of player interactions. The

minimum tipping set is then to be derived from those sets. Hence, the problem

of �nding the minimum tipping set is generally NP-complete. This has been

shown via reductions to SAT class problems.[12]

1.7 Interdependent Airline Security Game (IDS)

1.7.1 History of Airline Security Game

While the study of game theory has become more popular in recent years, it

has a long history of study and applications. Some ancient systems of law were

based on what were later determined to be cooperative game systems, and min-

max solutions �rst were documented in the early 1700's.[2] Game theory, as

a discipline, has borrowed from �elds of information theory, computer science,

and mathematics.

IDS games have been developed and modeled to solve many problems through-

out their history. After the Pan Am incident, these tools were turned to IDS

models for the airline industry. Since then, the �eld has expanded quickly both

in its applications and depth of its academic study.[18]

In particular, Heal and Kunreuther (hereafter H-K) developed a model, using
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game theory, to explain the adoption of of security methods. In this case they

were concerned about entry points to baggage security, but the structure applies

to a much wider set of applications, from technology investment, to subsidies

or marketing.[13][18]

1.7.2 Airline Security Model

Let us formally de�ne the model used for analysis of airline security by H-K.

There are n players labeled 1 through n, each endowed with two pure strategies

denoted by 1 (invest) and 0 ( not invest). A play s is de�ned by the n-tuple

s = (s1,, s2, ..., sn) where si ∈ {0, 1} denotes the choice of pure strategy by

player 1 ≤ i ≤ n. Clearly 0 ≤ 1. There are a total of 2n distinct plays denoted

as follows:

S = {s|s = (s1, s2, ..., sn), si ∈ {0, 1}}

For a, b ∈ S, de�ne a binary relation ≤ as follows:

a ≤ b (or b ≥ a ) when ai ≤ bi for 1 ≤ i ≤ n.

(S,≤) is a poset and is indeed a complete lattice[21]. Let u : s → Rn

where u(s) = (u1(s), u2(s), ..., un(s)) denote the n-tuple of utility functions with

ui : S → R denoting the utility of the player i.

Let S−i denote a play (s1, ..., si−1, ∗, si+1, ..., sn) and (s−i, 1i) denote the play

(s1,, ..., si−1, 1i, si+1, ..., sn).

We now de�ne the airline security game which is predicated on the natural

assumption that no one can die no more than once[9]. The utility, or the pay-

o�, is de�ned in terms of losses and the goal of the players is to minimize these

losses. Let ci > 0 be the cost of investment (choice of strategy 1) in security by

player i, Li > 0 be the cost or loss due to a catastrophic incident, pi > 0 be the
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probability that player i will su�er a catastrophic loss due to his own inaction

(choice of strategy 0) and qij (0 ≤ qij ≤ 1) be the probability that player j will

su�er a catastrophic loss due to inaction of player i. For later reference, de�ne

an n × n matrix Q = [qij] with qii = 0. Clearly, the o�-diagonal elements of

Q de�ne the interdependency among the n players. It can be shown [13]that,

where u
(1)
i is the average cost due to self action and u

(2)
i is the average cost due

to the action of others, the total expected cost is given by:

ui(s) = u
(1)
i (s) + u

(2)
i (s) (5)

u
(1)
i (s) = sici + (1− si)piLi (6)

u
(2)
i = (1− (1− si)pi)(1− Πj 6=i,(1− (1− sj)qji))Li (7)

where Πk
i=1ai = a1a2...ak refers to the product of the ai. Equation 7 gives the

expected loss for a two player IDS game. An example of a three person airline

game is given in Table 1 .

They are super-modular (monotone), which is a commonly exhibited behav-

ior in real world applications. This also means that given extreme NE, the NE

at 1nwill be more e�cient than at 0n. The equations above separate nicely into

a dependent part and an interdependent part. The dependent part is the loss

do to the action or inaction of the player, while the inter-dependent part is the

loss due to the actions of other players.[9][10][13]
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1.7.3 Three Player Game

It is helpful to examine this general model via an example. Examine the three

player case, for players i, j, k. The above payo� formulas are:

ui(s−i, 0i) = piLi + (1− pi)(1− Πj 6=i,(1− (1− sj)qji))Li

ui(s−i, 1i) = ci + (1− Πj 6=i,(1− (1− sj)qji))Li

In the case when no one is investing, for player one these become:

u1(s−1, 01) = p1L1 + (1− p1)(q21 + q31 − q21q31)L1

u1(s−1, 11) = c1 + (q21 + q31 − q21q31)L1

Evaluating these equations for each player gives us the equations in Table .

1.7.4 Structural Signi�cance of Airline Security Game

Binary games are interesting due to their relation with common mathematical

structures. The state space of a game can be represented as a lattice and a

hypercube. Here each state of a game, that is an element of S , is a vertex

whose coordinates are the ordered strategic choices of the players. [7][14] Equi-

libria can be explained using topological �xed point theorems.[4] This can show

connections between �elds of topology and graph theory that may be further

exploited to solve di�cult problems.

Super-modular games provide structure to the game that manifest in many

common problems.[7][19][20][21] These problems are still di�cult enough to be
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of interest, and often re�ective of realistic structures in competitive systems.

Those which involve moving from one uniform state or standard to another,

such as adoption of a policy, standard, or practice can have very real impact on

society. This can also be seen in estimations of how temporary subsidies impact

practices, which impacts economics and politics. This research is interested in

the class of models arising from the airline interdependent security investment

models [5][7][10][13][17]

1.8 Organizational note

Thus far we have explored some general game concepts and developed the basic

tools needed to analyze relevant systems.

In chapter 2 we use these tools, and expand on them to analyze the problem

of �nding a minimum tipping sets. First we explore the details of the required

background information. We then conduct an analysis of the game, including

special cases. We then present a non-greedy approximation method to approx-

imate the minimum tipping set.

In chapter 3 We present some empirical information on di�erent games and

explore the performance of the approximation algorithm.
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Chapter 2

2 Literature

2.1 Introduction and Background

A central concept in game theory is equilibrium. There are several types of

equilibrium, but the most common is Nash Equilibrium (NE). [7][15] An equi-

librium point occurs when the selected play is a play from which no player is

willing to deviate from his strategy alone. These NE are not unique, a game

can have several. They are also not necessarily equal, as NE can exist with dif-

ferent levels of value may exist in which all the players, including NE that are

strictly better, or dominate, other NE. We are interested in the transition from

one equilibrium to another. Given that in a NE no player is willing to deviate

alone, we are interested in �nding a set of players who can move (or tip) the

game to another NE. We are interested in a phenomenon called tipping. Tip-

ping can be thought of as the movement of a game from one equilibrium state

to another. The set of players needed to commit to the new state in order to

move the entire system with them is called a tipping set, and the smallest such

set, if it exists, is the minimum tipping set, which is a focus of this research.[10]

While the study of game theory has become more popular in recent years,

it has a long history of study and applications. Game theory as been applied

across many �elds, solving many problems arising from both cooperative and

competitive systems. Some ancient systems of law were based on what were

later determined to be cooperative game systems. One simple type of solution,

Min-max solutions, were �rst documented in the early 1700's. [2] John von

Neumann's and John Nash's work in the early and mid-1900's launched game
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theory as a separate discipline with wide applications. Since then, the �eld has

expanded quickly both in its applications and depth of its academic study.[18]

Games in general have been used to model a wide range of competitive

systems with rational behavior.[8][9][10][13][16] They provide a framework for

understanding an in�uencing large, seemingly chaotic systems with independent

agents acting in their own best interest. While not always a reliable mechanism

for predicting human behavior, game theory has proven useful in the predic-

tion and optimization of rational agents, investment and business decisions, to

auctions and evolutionary systems.[8] [16]

When we discuss games we are discussing system in which independent

agents act in their own best interest and the results, or payo�s, of the sys-

tem are dependent on the combinations of the players' choices. Recall from

section 1.1 that such a system, or game, is said to be in an equilibrium state if

it is in no player's best interest to change strategy alone. A play of a game is the

players' choice of strategies from each player's strategy set. In this paper, the

strategy set is {0,1}, where 0 means not investing or not taking action, and 1

means investing or taking action. A state of a game is the set of plays, one from

each player. A tipping set is a set of players who, when motivated by external

in�uences such as bribery or coercion, to change their strategy and move the

game to another equilibrium state. [10]

A common way of evaluating these states is to treat them as nodes of a

lattice, with dimension equal to the number of players. They can also be rep-

resented as a hypercube with a dimension equal to the number of players. This

allows us to also leverage tools from established �elds, such as mathematics, to

analyze games.[7][14]
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2.2 Super-modular games

With ever growing dependency through commerce and communication between

various parts of the globe, there is a greater need for the analysis and under-

standing of interdependent security (IS) among interacting agents. IS has been

successfully modeled using the framework of n-person (non-cooperative) game

theory[15]. In a series of seminal papers[9][10][13], H-K describe these models

and their applications to IDS games for airline security, vaccination games to

prevent the spread of infectious diseases, etc. The special features of this model

include the following: (a) each player is endowed with only two pure strategies

or actions, invest (1), and not invest (0) in security measures; (b) the players

are not allowed to use randomized strategies, which in turn implies that we

are interested only in the Nash equilibria (NE) in pure strategies[13]; (c) the

utility (negative of the cost) function for each player has two components. The

�rst component is due to one's own action (1 or 0) and the second component

is due to the action (1 or 0), of the other players. This second component is

called the externality component, which in turn decides the level of interdepen-

dency among the players; and (d) a subset of players acting in collusion, by

the clever choice of their own actions, can in�uence the externalities of other

players not in the coalition so as to force them to change their choice of actions.

This phenomenon, whereby one subset can exert in�uence over another is called

tipping[7][15] or cascading.[10]

A condition for an n-person game to exhibit the tipping / cascading property

is that the payo� (loss) function of the players must satisfy the increasing (or

decreasing) di�erences property. This property is intimately associated with the

super-modularity of the utility functions[10][16]. In this paper we work with the

di�erences in the loss which are the negation of the payo� di�erences. Another
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common reference to this increasing di�erences property is to describe the game

as monotone.

Super-modular functions and functions with increasing di�erences are de-

�ned on lattices[16]. In our case, the underlying binary lattice is de�ned by the

2n binary strings of 1's and 0's under the partial order de�ned over the binary

strings. It turns out this lattice is also a hypercube of dimension n.[7]

2.3 Airline Security Games

As discussed in section 1.8, H-K have written substantially regarding IDS models

and their applications to speci�c �elds of study, notably terrorist risks and airline

security.[9][10][13]

H-K present a model (see below) for analyzing these risks and their impacts

on adoption, player behavior, and tipping. In particular, they draw distinctions

between individual and industry optimal behavior based on the model. This

model allows them to apply tools such as, graphical and algebraic, of game

theory to solve these real world problems. Based on airline industry data, they

determine that acting on game theoretic analysis, the industry as a whole could

save money through the strategic adoption of security procedures. This was

represented by moving from the ine�cient equilibrium without investment to

an e�cient equilibrium with universal investment. This improvement suggests

substantial uses in policy, as illustrated by the Pan Am incident reaction[9].

Later, in 2006, H-K explored mathematical approaches to �nding the tipping

set in this problem.[10] Connecting the monotone nature of the game system

with the super modularity of the system allows the increasing di�erences prop-

erty to become of use. Letting each player have a strategy of either 0 or 1,

and a position vector S, they examined the increasing di�erences property. Let
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ui be the payo� function of the player i. These assumptions, along with the

assumption of multiple, usually extreme equilibria, imply that there must exist

a tipping subset. Making use of the natural order on the hypercube of strategy

vectors, H-K have shown that for each agent i, the increasing di�erences yields

the following equation, previously stated in equation 1:

ui(1i,s
′
−i)− ui(0i, s

′
−i) ≥ ui(1i, s−i)− ui(0i, s−i)

with strict inequality if s
′
−i > s−i

Intuitively, this means that the payo� of a player choosing to invest (moving

from 0 to 1) increases, or does not decrease, if other agents choose to invest.

This is quanti�ed, as mentioned previously in equations 234 as:

4j(s−i−j, 0i) = uj(s−i−j, 0i1j)− uj(s−i−j, 0i, 0j) (8)

and

4j(s−i−j, 1i) = uj(s−i−j, 1i, 1j)− uj(s, 1i, 0j) (9)

Equations 8 and 9 combine as follows:

∆ij = 4j(s−i−j, 1i)−4j(s−i−j, 0i) =

(uj(s−i−j, 1i, 1j)− uj(s−i−j, 1i, 0j))− (uj(s−i−j, 0i1j)− uj(s−i−j, 0i, 0j)) (10)

Equations 8, 9 and 10 provide a measure of the incentive to player i when j

changes from 0 to 1.

They then assume that the systems have at least 2 NE, one at 0n and one

at 1n, with the latter dominating (payo�s are better for every player in 1n). To

�nd the (minimum) tipping set, they attempt to �nd subsets of players who,

when their only strategy is 1, motivates all other players to choose 1, then �nd

the minimum such set.

Admitting the di�culty and complexity of this problem, assumptions are
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made to simplify the problem. H-K call it A1:

4ij(s) = 4ik(s) = 4i(s) = 4i

They then give, in the form of Proposition 2, a method for ranking the

players by this quantity to �nd the smallest tipping set.

Proposition 2: Given A1, if a smallest T-set exists, then for some integer F

it consists of the �rst F agents when agents are ranked by the value of 4i.

The �rst part of our recent work focuses on exploring the consequences of

these two assumptions on the game structure, how to better exploit that struc-

ture to �nd minimum tipping sets, and separating A1 into its two assumptions

and addressing them independently.

2.4 Model Analysis

The game (S, u) is super-modular[21] if, for every player i, the following condi-

tion is satis�ed:

ui(s
′
−i, 1i)− ui(s′−i, 0i) ≥ ui(s−i, 1i)− ui(s−i, 0i) (11)

whenever s′−i ≥ s−i. Intuitively, this decreasing di�erence condition states that

the loss for player i to change from strategy 0 to 1 does not increase when a

subset of the other players has already moved from 0 to 1. Recall that the utility

for two players is as follows:

ui(s) = u
(1)
i (s) + u

(2)
i (s) (12)

u
(1)
i (s) = sici + (1− si)piLi (13)
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Figure 1: Game Chart

u
(2)
i = (1− (1− si)pi)(1− Πj 6=i,(1− (1− sj)qji))Li (14)

where Πk
i=1ai = a1a2...ak refers to the product of the ai. An example of a three

person airline game is given in Table 1.

which measures the change in the incentive for player j to change from 0 to 1

resulting from a similar change by player i. It can be veri�ed that the super-

modularity condition[5]implies that 4ij(s−i−j) ≥ 0.
Following H-K[13] the airline security game is state independent (SI) if

4ij(s−i−j) is the same for all s−i−j where s−i−j denotes any one of the 2n−2

strategies by all other players except i and j. Similarly, the above game is said

to be player independent (PI) if 4ij is independent of the choice of i.

Here we only analyze the impact of SI on the tipping set. Our analysis is

predicated on an assumption, namely we consider an n person super-modular

airline security game where there are exactly two NE, one at 0nand another at

1n. Recently, Dhall et al[7] have shown that a strict super-modular game can

have up to 2n/2 NE. Analysis of tipping in super-modular games with more than

two NE is wide open at this time.
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Figure 2: Three Player Lattice

Binary Lattice of dimension 4

Table 1: Three Player Losses

Airline Game matrix for 3 players
Play \

Cost

Player 1 Player 2 Player 3

(000) p1L1 + (1−

p1) ∗ (q21 +

q31 −

q21q31)L1

p2L2 + (1−

p2) ∗ (q12 +

q32 −

q12q32)L2

p3L3 + (1−

p3) ∗ (q13 +

q23 −

q13q23)L3

(001) p1L1 + (1−

p1)q21L1

p2L2 + (1−

p2)q12L2

c3+(q13+q23−

q13q23)L3

(010) p1L1 + (1−

p1)q31L1

c2+(q12+q32−

q12q32)L2

p3L3 + (1−

p3)q13L3

(011) p1L1 c2 + q12L2 c3 + q13L3

(100) c1+(q21+q31−

q21q31)L1

p2L2 + (1−

p2)q32L2

p3L3 + (1−

p3)q23L3

(101) c1 + q21L1 p2L2 c3 + q23L3

(110) c1 + q31L1 c2 + q32L2 p3L3

(111) c1 c2 c3

22



2.5 Analysis

Our recent work focuses on two approaches to exploring this model. First,

we further analyze the assumptions proposed by HK and focus on tipping in

the State Independent cases of the Airline Security game. We present a three

player example and a four player example before analyzing the general case of SI

games. We then turn to the more complex general case games, and an algebraic

method for approximating the minimum tipping set.

2.6 Analysis of SI

To illustrate the key features of our approach to �nding the minimum tipping set

in a super-modular airline security game satisfying the SI condition, we consider

the n=3 and n=4 player cases.

2.6.1 Three player game

Consider the case when i=2 and j=1. Since there are only three players, s−i−j

takes on only two values, 0 and 1. The SI condition stated above becomes:

421(03) = 421(13) (15)

Using the payo� values from Table 1 and the expressions (8) - (10) the above

equality (15) becomes:

[c1 + q31L1]− [p1L1 + (1− p1)q21L1] = [c1 + (q21 + q31 − q21q31)L1]

− [p1L1 + (1− p1)(q21 + q31 + q21q31)] (16)

When simpli�ed, the SI condition (16) becomes

(p1L1)q21q31 = 0 or q21q31 = 0 (17)

because p1L1 > 0 by assumption.
Clearly, there are 3∗ 2 = 6 pairs of (i, j). Considering the other �ve possible

conditions imposed by the SI condition, we get 412(0) = 412(1); 413(0) =
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413(1); 421(0) = 421(1); 423(0) = 423(1) and432(0) = 432(1). Again using

the relations (8) - (10) and the entries in Table 1 we obtain the following three

conditions:

q21q31 = 0, q12q32 = 0, q13q23 = 0 (18)

(18) Verbally, the SI condition requires the product of the o�-diagonal el-

ements in each column of the 3x3 matrix Q to be zero. Suppose we set both

q12 = 0 = q32, then the second column of Q is zero, which implies that player 2

does not have externality and is not a�ected by any other player. This choice

de�nes a degenerate case where player 2 can be dropped from the consideration

for the tipping set. To avoid this degeneracy, it is assumed that in each column

of Q, there is exactly one non zero o�-diagonal entry in each column of Q.

Guided by this non-degeneracy requirement, it follows that the condition

(18) can be enforced modulo a permutation in one of two ways:

q21 = q12 = q13 = 0 and q31 6= 0, q32 6= 0, q23 6= 0 (19)

and

q21 = q32 = q13 = 0 and q31 6= 0, q32 6= 0, q12 6= 0 (20)

Conditions (19) and (20) can be visually depicted as a directed graph with

3 nodes and 3 directed edges where the in degree of each node is one, as shown

in Figures 3a and 3b respectively. It is �tting to call these in�uence graphs.

Clearly any node in the 2-cycle in Figure 3a and any node in the 3 cycle in

Figure 3a is a minimum tipping set.

Remark: Impact of SI on in�uence graphs: Without the SI condition,

the in�uence graph is a complete directed graph. In this case one must consider

the set of all n! possible orderings of 4j's in (8) to �nd the smallest tipping set.

Remark: Impact of SI on Nash equilibria: For the general 3-player

24



Figure 3: Three Player Graphs

(a) Three Player
Branch

(b) Three Player
Cycle

game in Table 1, conditions for NE at 000 and 111 are given by

0 ≤ 1− c1
p1L1

≤ q21 + q31 − q21q31; 0 ≤ 1− c2
p2L2

≤ q12 + q32 − q12q32

and

0 ≤ 1− c3
p3L3

≤ q13 + q23 − q13q23

(21)

Under the SI conditions in (19) , the above condition for NE in (21) becomes

0 ≤ 1− c1
p1L1

≤ q31, 0 ≤ 1− c2
p2L2

≤ q32, 0 ≤ 1− c3
p3L3

≤ q23 (22)

Clearly (22) implies (21) but not vice versa. Because our analysis is predi-

cated on the condition that we have two NE at 000 and 111, the conditions for

the tipping set under SI in general do not carry over to general airline games. In

other words, �nding the minimum tipping set in general super-modular games

is more complex than those with SI. Similar arguments can be made using the

SI condition (20) in (21).
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Table 2: Four Player Interdependence Matrix

12 13 14 21 23 24 31 32 34 41 42 43

q12 q13 q14 q21 q23 q24 q31 q32 q34 q41 q42 q43
or or or or or or or or or or or or
q32 q23 q24 q31 q13 q14 q21 q12 q14 q21 q12 q13
q42 q43 q34 q41 q43 q34 q41 q42 q24 q31 q32 q23

2.6.2 The Four Player Game

Setting i=2 and j=1, since s−i−j has four possible values, 00, 01, 10, and 11.

The SI conditions becomes:

421(00) = 421(01) = 421(10) = 421(11) (23)

By combining the relations (8) - (10), with the payo� for the 4 player airline

games[7], the SI condition takes the following form:

either q12 = 0 or q32 = q42 = 0 (24)

Clearly there are 4x3=12 pairs (i, j) with 1 ≤ i, j ≤ 4. Considering each of

these pairs in turn we get a condition similar to (24). For completeness these

12 conditions are given in Table 2 where in each column either the element in

the �rst row is zero or those in the second and third rows are zeros.

Combining these with the non-degeneracy requirement, it turns out that

there are exactly six distinct patterns modulo a permutation for the SI condi-

tions. The resulting six in�uence graphs are given in Figure 4. In Figure 4a

there are two 2-cycles and hence the minimum tipping set has two players, one

from each two cycles. In all the other �ve cases in Figure 4, the graph is weakly

connected. In each of those cases, any player who is a member of the directed

cycle constitutes a minimum tipping set.

Remark: In any given realization of the game satisfying the SI condition,

only one of these in�uence graphs will be applicable. So, in general one could

use the standard depth �rst search to identify the cycles in the in�uence graph.

The minimum tipping set is then made of one node from each cycle. This idea

readily generalizes to the n-person game.
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Figure 4: Four Player In�uence Graphs

(a) Double Cycle (b) Full Cycle

(c) Long Branch (d) Fang Branches

(e) Wide Branch

(f) Three Cycle
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2.7 Analysis of SI - General case

2.7.1 Extreme Equilibria

Many of the tools used to analyze tipping in super modular games are to be ap-

plied only when tipping from one extreme equilibria (0n) to another (1n). Many

game cases do not exhibit this behavior. Here we give methods for reducing SI

games without extreme equilibria to games with extreme equilibria in order to

apply our well known tools.

Given a SI super-modular game without an equilibria at 1n, we can use re-

peated play from 1n or some other method to �nd an equilibria at the highest

level of the the lattice. That is, an equilibria with the largest number of invest-

ing players. By super-modularity, the nodes that will not tip when all others

investing will never invest. Thus they can be removed from the analysis and

assumed to never invest for the payo� calculations of other players. This could

disconnect other players, who would be removed in the same fashion. This

yields a new game with an equilibrium at 1n−v where v is the number of players

not investing in the top equilibrium.

Against the back drop of these examples, we now state the general results.

We begin with a de�nition. An n-person airline super-modular game is non-

degenerate if there is exactly one non-zero o�-diagonal element in each column

of the nxn matrix Q = [qij] with qii = 0. Our �rst result relates the SI condition

to the non-degeneracy de�ned above.

2.7.2 General Airline Security

Lemma 1: SI holds i� each player is e�ected by at most one other player.

Proof :

First we show that State Independence implies if each player is e�ected by

at most one other player.

Let S be the state of a super modular game for which the State Independence

28



holds. That is,

4ij(s−i−j) = pjqij
∏

k/∈{S},k 6=i,j(1−qkj) = 4ij(Q−i−j) = pjqij
∏

k/∈{Q},k 6=i,j(1−
qkj)∀Q

Now, let qij 6= 0. Given any other player, called l, we see that the following

must hold:

4ij(1−i−j−l, 1l) = pjqij = 4ij(1−i−j, 0l) = pjqij(1− qlj)

The k is excluded so that we can see that it is included in the second product,

but not the �rst. Thus we have:

pjqij = pjqij − qlj(pjqij)

Which, along with the previous assumptions that pj 6= 0 implies:

−qlj(pjqij) = 0 =⇒ qlj = 0

Thus State Independence implies the Independence Condition.

Now to show that if each player is e�ected by at most one other player, this

implies State Independence. Assume we have a game as de�ned above for which

the above condition holds. Let us examine

4ij(s−i−j) = pjqij
∏

k/∈{S},k 6=i,j(1− qkj)

If qij = 0 then all 4ij = 0 and the Independence is trivial, so we consider

the case when qij 6= 0. That and the condition that each player is e�ected by

at most one other player implies that all other qkj = 0∀k 6= i which means that

the product terms must be the multiples of 1's regardless of state, so the game

has State Independence. Therefore State Independence and the condition that

each player is e�ected by at most one other player are equivalent.

�

Recall from above that the non-degeneracy condition can be visually de-

picted by the in�uence graphs (IG). Formally, an IG is a directed graph G =

(V,E) with |V | = n and |E| =n with the added requirement that the in degree

of each node is one. Thus every pattern of qij satisfying the non-degeneracy con-

dition �ts within an equivalence class of in�uence graphs where the members of

an equivalence class are obtained by graph automorphisms.

Thus, for n=3, there are exactly two equivalence classes (see Figure 3) and

there are only six equivalence elements for n=4 (see Figure 4). It can be veri�ed

that for n=5, there are exactly thirteen equivalence classes as shown in Table 3.
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At this time, enumerating the number of equivalence classes of in�uence graphs

for any n is open. However, we can readily catalog many of the key structural

properties of these graphs. 1) Given any integer n ≥ 3, there are exactly (n−1)

subsets of in�uence graphs, one corresponding to each value of the parameter

2 ≤ k ≤ n. 2) For a given k in this range, the kth subset contains graphs with

k-cycles. The number nk of k-cycles in a graph in this subset can vary in the

range 1 ≤ nk ≤
⌊
n
k

⌋
3) In a graph with nk cycles, the rest of the (n−knk) nodes

not included in a cycle are attached to the nk cycles in an arbitrary manner or

else they would not be connected. An example of this enumeration for n=5 is

given in Table 3.

We now state our main result relating to the properties of the minimum

tipping set in games satisfying the SI condition.

Theorem 1: In an n-player game with SI, 1) The cardinality, |T| of the

tipping set T is equal to the number of cycles in the in�uence graph induced

by the non-degeneracy condition. Clearly, 1 ≤ |T | ≤ n
2
. 2) While any node in a

given cycle would tip all the players associated with that cycle, the node with

the longest out degree will bring about the tipping in the shortest time.

As an illustration, refer to Figure 5. If we pick P1 as the minimum tipping

set, P1 will �rst force P2 to change who in turn will simultaneously in�uence

P3 and P4. On the other hand, if we pick P2 as the minimum tipping set, then

this will simultaneously force all the other to tip.

2.8 Complexity and Approximation of Tipping in a Super

modular game

Analysis of tipping is concerned with the di�erence

ui(s−i1i)− ui(s−i0i) (25)

where (s−i, 1i, s−i, 0i) is an edge in the complete lattice considered as a hyper-

cube. A sequence of di�erences along a path in the hypercube connecting the

NE at 0n to the one at 1n is given by
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Table 3: 5 Player Graphs

k

5 n5 = 1

4 n4 = 1

3 n3 = 4

2 n2 = 7

2 n2 = 7
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ui(0
n−11i)−ui(0n−10i) ≥ ui(0

n−21i1j)−ui(0n−21i0j) ≥ ... ≥ ui(1
n−11i)−ui(1n−10i)

(26)

Since 0n and 1n are NE, clearly ui(0
n−11i)−ui(0n−10i) > 0 and ui(1

n−11i)−

ui(1
n−10i) < 0. That is, the above sequence of decreasing real numbers starts

from a positive value and ends up at a negative value. Thus there is a zero

crossing point that corresponds to a subset {k1, ..., ki} players choosing pure

strategy 1. But there are (n)! distinct sequences corresponding to (n)! disjoint

paths in the underlying hypercube. Hence, we get (n)! subsets, one for each

path. The minimum tipping set is then to be derived from those sets. Hence,

the problem of �nding the minimum tipping set is generally NP-complete.[12]

HK proved that for the special case satisfying two conditions (player and

state independence assumptions) there exists a minimum tipping set. Above we

gave a simpler algorithm to �nd such a tipping set for this special case. Here

our goal is to �nd an approximation to the minimum tipping set for the general

case.

2.8.1 An Approximation Algorithm - Hypercube step

Recall that a given decreasing sequence of inequalities of the di�erences in the

losses uniquely induces a mapping of the sequences in (26) onto edges in the

hypercube of dimension n as follows:

(0n−11i, 0
n−10i)

1−→ (0n−21i11, 0
n−20i11)

2−→

(0n−31i1112, 0
n−3, 0i1112)...

(n−1)−−−→ (1n−11i, 1
n−10i) (27)
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where clearly (0n−11i, 0
n−10i)is an edge in the hypercube [19]. Thus, one end

(say the right end) of the starting edge in the above sequence of edges traces a

path living entirely in one sub-cube of dimension(n − 1) whose ith bit is �xed

at 0, namely

0n−10i
1−→ 0n−20i11

2−→ 0n−30i1112...
(n−1)−−−→ 1n−10i (28)

This path is from the NE 0n−10i to a neighbor 1n−10i of the NE 1n. Similarly,

the left end traces a corresponding path in the complementary sub-cube of

dimension n− 1 de�ned by ith bit equal to 1, namely

0n−11i
1−→ 0n−21i11

2−→ ...
(n−1)−−−→ 1n−11i (29)

Here we have a path from the neighbor 0n−11i of the NE at 0n to the NE at

1n. Our approximation algorithm relies on the well-known topological property

of node disjoint path distribution in a hypercube with nodes representing states

of the game.

Theorem 2 [14]: Let x and y be nodes in a hypercube of dimension k where

the Hamming distance between x and y, H(x, y) = r for some 1 ≤ r ≤ k. Then

(a) there are exactly r node disjoint paths each of length r between x and y (b)

there are exactly (k − r) node disjoint paths each of length r + 2 and (c) The

set of all paths in groups a and b are node disjoint.

We apply this theorem to the two nodes x = 0n−11iand y = 1n−11i with

Hamming distance n − 1 in the sub-cube of dimension n − 1 whose ith bit is

�xed at 1. Therefore, there are r=n-1 node disjoint paths each of length n− 1

in that sub-cube.

Thus, if we denote the path in (28) succinctly as
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0n−10i{1, 2, ..., n− 1}1n−10i (30)

where the {} term is the order of dimensions along which you move to the next

node in the path from 0n−10i to 1n−10i. It can be shown [14] that by left circular

shift the elements in the ordered set we can generate the n-1 node disjoint paths

in the n-1 dimensional sub-cube. These are given by

0n−10i



1 2 3 ... n− 2 n− 1

2 3 4 ... n− 1 1

3 4 5 ... 1 2

. . . ... . .

. . . ... . .

. . . ... . .

n− 1 1 2 ... n− 3 n− 2



1n−10i (31)

Likewise there is a corresponding sequence of paths in the other sub-cube

given by

0n1i



1 2 3 ... n− 2 n− 1

2 3 4 ... n− 1 1

3 4 5 ... 1 2

. . . ... . .

. . . ... . .

. . . ... . .

n− 1 1 2 ... n− 3 n− 2



1n1i (32)

Thus, for each player i, there are n − 1 distinct increasing sequences of

inequalities that start from a negative number and end in a positive number.
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Hence, for all n players, there are a total of n(n − 1) = O(n2) sequences and

hence O(n2) subsets of players who are potential candidates for the tipping set.

Our goal is to �nd a minimum tipping set from these O(n2) candidate subsets.

2.8.2 An Example

Consider an example of a n = 4 player airline game with the following values of

the parameters: Li = 1000, ci = 99, pi = 0.1 for all 1 ≤ i ≤ 4 and the matrix of

qij's given by

q =



0 .99 .02 .02

1 0 0 0

0 .99 0 .02

0 .99 .02 0


Then using the expression in (14) we can readily compute the 16× 4 payo�

(or loss in our case) table for each of the 24 = 16 plays for each of the 4 players.

For lack of space, we will not explicitly show this table. It can be veri�ed that

for this choice of parameter values, 04 and 14 are two NE with 14 being better

than 04. 14 is optimal in this case. Applying the approximation algorithm

developed previously, we get three disjoint sequences of inequalities induced by

the three node disjoint paths for Player 1 as follows. Referring to the hypercube

in Figure 2 the �rst disjoint sequence is given by

u1(1000)−u1(0000) ≥ u1(1100)−u1(0100) ≥ u1(1110)−u1(0110) ≥ u1(1111)−u1(0111)

which for the above example becomes 99 ≥ −1 ≥ −1 ≥ −1.

It follows that {2} is a candidate tipping set for player 1. That is, if player
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Table 4: First Candidates

Candidate tipping sets
candidate tipping sets Path 1 Path 2 Path 3

T1 {2} {2, 4} {2, 3, 4}
T2 {1, 3, 4} {1, 3, 4} {1, 3, 4}
T3 {1, 2, 4} {1, 4} {1, 2, 4}
T4 {1, 2, 3} {1, 3} {1, 2, 3}

2 changes his strategy from 0 to 1, some other players can reduce their losses

by switching from 0 to 1. Thus, player 2 has in�uence over those other players.

Similarly, the second sequence

u1(1000)−u1(0000) ≥ u1(1001)−u1(0001) ≥ u1(1101)−u1(0101) ≥ u1(1111)−u1(0111)

which for the above example becomes 99 ≥ 99 ≥ −1 ≥ −1

from which we get {2, 4} as a candidate tipping set. From the third sequence

u1(1000)−u1(0000) ≥ u1(1010)−u1(0010) ≥ u1(1011)−u1(0011) ≥ u1(1111)−u1(0111)

which leads to 99 ≥ 99 ≥ 99 ≥ −1.

from which we get {2,3,4} as a candidate tipping set.

By repeating the above procedure for Players 2, 3, and 4, we can obtain

three candidate tipping sets for each of the players, which is summarized in

Table 4

Our goal is to �nd a minimum tipping set from these n(n−1) = 12 candidate

tipping sets.

In the following Section, we describe a simple algebraic method for extracting

a minimum tipping set.
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2.8.3 An Approximation Algorithm - Algebraic Step

Above, we transformed similar facts about state independent games into a graph

form to examine the in�uence patterns. We constructed these in�uence graphs

by representing each player by a node i with an edge from player 2 to player 1

if player 2's choice to invest impacts or in�uences player 1 directly.

Generating such a graph for this example gives us the graph in Figure 5.

General super modular games lack some of the structure we exploited in state

independent games. Unlike state independent games, one node's in�uence is

not enough to tip given node. In this example, all of the in�uencing nodes are

needed to tip a node, thus adding complexity. To address this added challenge,

we have developed an algebraic method for �nding a minimum tipping set.

Let Σ = {0, 1}, let + and ∗ denote the usual logical AND and OR operators

respectively. For simplicity, a ∗ b is denoted by ab. Then, (Σ,+, ∗) de�nes a

commutative semi-ring. For all a, b ∈ Σ, we have a + a = a, aa = a, a + ab =

a(1 + b) = a.

Let a, b, c, d be the four binary variables corresponding to players 1 though

4 respectively. We now encode a subset {1, 2, 4} of players by abd. Accordingly,

the information in Table 4 can be encoded as follows:

T1 = b+ bd+ bcd = b

T2 = acd+ acd+ acd = acd

T3 = abd+ ad+ abd = ad (33)

T4 = abc+ ac+ abc = ac
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These expressions represent the conditions for each player to choose to invest.

T1 gives the conditions for player a, T2, for b, and so on.

First, we can algorithmically trim the number of players to examine. While

this is not needed in order to get an answer, it improves both the accuracy of

the approximation and the typical run time.

1) Any case in which a player's action is determined entirely by a single

other player, we can collapse those players. In the context of the game, this is

because the in�uences caused by the impacting player contains the in�uences of

the other. In this example, b completely determines the action of a. This means

that the impact of b contains the entire impact of a, and that when picking

minimum tipping sets, there is no reason to pick a. Collapsing a into b requires

moving a's in�uences to b. This is to make sure that b now in�uences all players

that a previously did. This should be done one at a time in order to stop cycles

when a node is in�uenced only by itself.

If no such players exist, we simply move on to the next step. Then from 33

we get:

T2 = bcd;T3 = bd;T4 = bc

2) We also do not want to double count a player. If a player is externally

motivated to invest, we do not care about the conditions to tip that player. To

re�ect that, we add to each expression the set consisting only of that player.

This yields:

T2 = b+ bcd = b; T3 = c+ bd; T4 = d+ bc

This canceling and trimming procedure can be thought of as a variant of

Unit Propagation, which is a technique used in solving satis�ability problems.
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Figure 5: Multi-Graph

Now we are ready for the core procedure. We want the value of each of these

expressions to be 1, which is the same as their product being 1. Thus we want

to �nd the minimum subset variables to set to 1 such that

T2 ∗ T3 ∗ T4 = 1

Substituting from above we get:

(b)(c+ bd)(d+ bc) = 1

(bc+ bd)(d+ bc) = (bcd+ bc+ bd+ bcd) = 1

Thus we have candidate tipping sets of bcd, bc, bd bcd. Any of these will give

a tipping set, but since we are interested in minimum tipping sets, we take one

of the smaller sets bc or bd. to choose for our minimum set.

2.9 Approximation Complexity

The algebraic step of the approximation presented is far from trivial. In fact,

we are approximating what is known as the Minimum Monotone Satis�ability

Assignment (MMSA)[6]

An instance of the MMSA problem is a monotone formula τ over a basis of

logical-and and logical-or (or disjunction and conjunction). A solution takes the

form of an assignment of the independent variables of τ such that τ is true. The
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objective function that is minimized is the number of variables in the assignment

which are equal to true.[1]

The transformation to this problem is trivial. The combined equation T2 ∗

T3 ∗ T4 = 1 is exactly the required tautology, with 1 representing true and the

Boolean semi-ring over * and + is exactly the logical operators for the MMSA

problem. The length of the propositions is bound by a function of the number

of players. Thus we have an easy transformation to MMSAn>3.

This problem is not only a complex problem to solve, but it is complex to

approximate within a factor of 2log(1−o(1)n [1] In graph terms, this is equivalent to

solving (or approximating) the label-cover of a bipartite graph.[6] This is still an

improvement, just not to the worst case. The run time of these approximations

are much faster than the original NP problem we are addressing. This is due,

in large part, the algebraic collapsing method above and is similar to the use of

Unit Propagation in SAT problems.
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Chapter 3

3 Applications

3.1 Airline Security - The Uniform Case

One special form of the Airline Security game is the uniform case. In this case,

the agents behave identically with

pi = pj = p, ci = cj = c, Li = Lj = L, qij = qkl = q (34)

By examining the behavior of the approximations in this case along with

the case's properties, we gain some insight regarding the performance of the

method. The most relevant property of the uniform game is the following:

Lemma 2: A uniform game can be tipped by any set S of players with

|S| > n− 1− log(c/pL)
log(1−q) .

Proof : Generally, the decision of player i to invest is determined by:

piLi + (1− pi)Qi(S)Li − (c+Qi(S)Li) > 0 (35)

where Qi(S) = 1−
∏

i 6=j,j /∈S(1− qji)

If 35 is true, the player i will invest.

35reduces through simpli�cation as follows:

piLI − c+Qi(S)Li − piQi(S)Li −Qi(S)Li > 0

piLi − c− piQi(S)Li > 0

piLi(1−Qi(S)) > c

1−Qi(S) > ci
piLi

In a uniform game, this becomes:
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1−Q(S) > c
pL

with Q(S) = 1− (1− q)n−1−|S|

Note that this quantity is independent of identity, and only depends on p,c,L,

q, and the number of investing players in S.

Let n − 1 − |S| = k Then the condition becomes: 1 − (1 − (1 − q)k) =

(1− q)k > c
pL

Since all are constant except for k, we can see that we can determine the

number of players needed to tip the system as:

k ∗ log(1− q) > log( c
pL

)

k < log(c/pL)
log(1−q)

n− 1− |S| < log(c/pL)
log(1−q)

|S| > n− 1− log(c/pL)
log(1−q)

This is the same for all players. Thus if one player is tipped by |S| investing

players, all the remaining ones will be as well thus there can be no cascades.

Note that all players payo� is the same, so the choice of which players are

chosen is irrelevant. Any |S| players will tip the system.

�

Corollary 1: In the uniform game, there can be no cascades.

Proof : By above lemma, all players are tipped by any |S| other players.

Less than |S| players will not tip any single player by the construction of the

condition from a single activation function. If it were to tip a single player then

all the other players would make the same decision and tip, thus giving a tipping

set less than |S|.

�

Lemma 3: The hypercube left shift sampling will �nd a set of n-1 groups

of |S| consecutive players to tip each individual player.

Proof: Since any s=|S| players will tip a given player, the �rst set of length

s that is tested will tip the player, thus the �rst length s consecutive player
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set is chosen. Now, as per the algorithm, we left shift our starting point, then

repeat. This gives us another length s set that is shifted one player to the left.

Thus we end up with n-1 length s tipping sets for each player.

�

Theorem 3 Given the above a uniform game and n-1 groups of |S| players

tipping each single player, the algebraic simpli�cation will �nd the optimal

solution.

Proof : Given an order there are only n di�erent length s contiguous sets of

players. Each player has the n-1 that do not contain themselves. Thus given

any length s candidate set S, it will be contained in the possible candidates list

for all the players not contained in S.

This along with simple Boolean algebra, gives the correct result. That is,

the set S will tip all players except the ones in S, which would be externally

motivated by having selected S as the tipping set.

�

Example

Now we look at how the approximation system behaves in this context. Since

any k players will tip any player. For players a,b,c, and d, set the following

parameters:

p = 0.1, c = 99, q = .009, L = 1000 (36)

For clarity, examine what happens when |S|=2. This means that any 2

players will tip any player, thus each player's set of candidate tipping sets will

be the �rst two corrected players and the corresponding �rst two from every left

shift. So for players a,b,c,d, we would have:
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a : bc, cd, bd

b : cd, ad, ac

c : ab, bd, ad

d : ab, bc, ac

Now, when we apply the algebraic method on this set, we get:

a = a+ bc+ cd+ bd

b = b+ cd+ ad+ ac

c = c+ ab+ bd+ ad

d = d+ ab+ bc+ ac

This system of equations simplify as:

a ∗ b ∗ c ∗ d = 1

(a+ bc+ cd+ bd)(b+ cd+ ad+ ac)(c+ ab+ bd+ ad)(d+ ab+ bc+ ac) = 1

(ab+ ad+ ac+ bc+ cd+ bd)(cd+ bc+ ac+ ab+ bd+ ad) = 1

ab+ ad+ ac+ bc+ cd+ bd = 1

This �nds several size 2 tipping sets, which is the optimal. [3]
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3.2 Empirical Results

In order to test our approximation method, we chose a couple of models. First,

we chose the well studied and analyzed airline security investment model from

Heal and Kunreuther.[9]

3.2.1 Airline Security - Methodology

In this model, detailed in the sections above, we start with the number of

players n. There are n players labeled 1 through n, each endowed with two

pure strategies denoted by 1 (invest) and 0 ( not invest). A play s is de�ned

by the n-tuple s = (s1,, s2, ..., sn) where si ∈ {0, 1} denotes the choice of pure

strategy by player 1 ≤ i ≤ n. For each player, we have the loss of an event,

Li, the probability of such an event occurring due to player i's inaction, pi, and

the cost of investment ci. These together determine the dependent component

of the loss. We then also have the matrix of interdependency, where each entry

qji is the probability of player i su�ering a loss due to the inaction of player j.

Thus we have a loss function for each non-investing player given by:

piLi + (1− pi)Li(1−
∏

i 6=j,j /∈S

(1− qji))

and each investing player by:

ci + Li(1−
∏

i 6=j,j /∈S

(1− qji))

As previously discussed, the interesting structure stems from the matrix

of qji while the pi, Li, ci are simple constraints for the system. Thus, for our

purposes, we set the p, L, c to all be invariant among players, and with bounds

giving room to choose a wide range of q.
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Table 5: Set Variables

p .1

L 10000
c 900

We used three di�erent case sizes, 10 players, 15 players, and 20 players. For

each of these scenarios, a set of games is randomly generated. We set the values

for p's, L's, and c's as denoted in Table 5, then randomly generate q's. The q's

completely determine the interdependence dynamics, thus the choice of p, L,

and c is only important to give the possibility of extreme equilibria as discussed

previously. The q's are chosen from a uniform distribution between 0 and p.

This makes sure the q's are less than or equal to the p's, which matches typical

scenarios in game examples. A game is a valid, or viable, if it has NE at both all

0 and all 1. The set variables are chosen to allow some range of viable games, so

we can have a good amount of valid games from the randomization. After the

q's are generated, the games were evaluated and thrown out if extreme NE were

not found. A smaller sample size for 20 players was used due to computational

limitations. Results are summarized in Tables 6 and 7.

3.2.2 Observations

As expected, the approximation runs were not optimal, but did give reasonable

approximations for the tipping sets. The sets given were always tipping sets,

but smaller sets often existed. One interesting note is that the di�erence in

approximate and exact solutions, in terms of percent error, decreased as the

number of players increased. This may be due to the completely random distri-

bution of the q's. This would be roughly equivalent to the system not having

many long cascades, which is consistent with random generation.
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Table 6: Results Summary (Mean)

Players Exact Approx Di� % Di� Sample Size Std Dev

10 4.68 7.20 2.53 54% 826 0.189
15 8.89 12.08 3.19 35% 999 0.073
20 13.37 17.04 3.67 27% 99 0.052

Table 7: Results Summary (Median)

Players Exact Approx Di� % Di� Sample Size Std Dev

10 5 7 2 40% 826 0.189
15 9 12 3 33% 999 0.073
20 13 17 4 31% 99 0.052

3.3 Dynamic Game Implications

There is another class of attempted approximations to �nding minimum tipping

sets. These involve solving the problem in a continuous space, using dynamic

approaches. For some cases this works well, mirroring partial investments and

partial results. In other cases, mostly all or nothing cases, or ones with certain

key players in�uencing others, these systems may not work as well. Here the

learning method employed by Kearns and Ortiz for approximating tipping sets

is used and examined[11].

3.3.1 Method Summary

One of the cases examined in [11] was a non-uniform transfer case. While this

did not meet the requirements to use the primary method in their work, a second

learning / dynamics method as also used for non-uniform transfer examples.

To generate a tipping set, the system is simulated with subsets of players

clamped to constant investment. The other players investment is then consid-

ered in the continuous space between 0 and 1. Each player is allowed to adjust

their amount of investment according to what is best for them. Formally, each

player adjusts their level of investment, xt at time t by:
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xt+1 = xi + (0.05 ∗ (u(0is−i)− u(1i, s−i)))

This has been translated to the u notation for consistency, but was derived

from base variables in [11].

This is then iterated on t until a solution is found (or 500 rounds). The

players clamped to 1 were chosen in a greedy method. For many of the previ-

ously examined cases, a NE is not guaranteed, but we have made sure the cases

examined here do have NE when all players are investing.

3.3.2 Constraints

The initial parameters p, L, c are set to match the settings in [11]. One of the

key indicating factors used was Ri = ci
Li
. In these simulations, given that c and

L are constant across players, we can use R = c
L
. These are:

p = 0.01

L = 10000

c = 90

These allow for the payo� ratio of Ri = .009 used in [11] to be preserved.

This implies that a low payo� occurrence, such as being impacted by the lack

of security investment, is roughly 110 times worse than investing. The qij are

then generated randomly from a normal distribution to �ll out the game.

To maintain consistency, the cases examined are still required to have a NE

at all players investing, which was not required in [11]. We remove the restraint

that there is an NE at all players not investing in order to help accommodate the

other restriction set forth in [11]. The players initial state is still non-investment.

In the cases used, 50 iterations were su�cient to reach equilibrium.

For the dynamic method, the game was run starting with no players clamped

to invest, then adding players in order until the whole system tipped. Typical

results are shown in Figure 6. All players not plotted in the graphs in Figure 6
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are locked into investing.

The same method was then run clamping the results of the algebraic method

to invest, obtaining the results in Figure 7. Again, all players not plotted in the

�gures are locked into investing.

3.3.3 Results and Commentary

The plotting / learning route used in the dynamic method was run �rst against

all players, then against candidate tipping sets from the algebraic method. In

the second case, we used only players from the candidate tipping sets as players

who can be locked into investment. This validated that the algebraic method

did �nd feasible solutions, and solutions that converge quickly. Both methods

performed well, although some better for di�erent types of cases.

Generally the algebraic method does well at identifying key players to tip the

system, but fails to take advantage of cascade e�ects, and thus overestimates

the size of the tipping sets. The dynamic method fairs better with cascades,

but does little to identify key players, using a simple greedy approach to adding

players to the tipping set. This observation prompts investigation into using a

combination of the methods.

The results of the two methods were often similar. This appears to be

because of the random nature of our interdependence. As observed above, dif-

ferently constructed games can have signi�cant impacts on performance. Games

with key players can be missed by the dynamic method, and games with long

cascades in their optimal solutions often are missed by the algebraic method.

3.3.4 Combination of Methods

Given the characteristics above, a combination of these two methods was at-

tempted. To do this, the algebraic method was used to identify key players,
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Figure 6: Dynamic Results

(a) (b) (c)

(d) (e) (f)

then the dynamic method was used. to trim away players not needed to tip the

system. This means that fewer combinations of players locked to investment

need be considered. It also takes advantage of the algebraic method's ability to

�nd key players as well as the dynamic method's ability to cope with cascades.

A case was chosen that had such cascades, a known weakness of the algebraic

method. The tipping set was still required to tip the entire system, but could be

chosen only from the output of the algebraic method. The results are in Figure

8. In this case, the algebraic method found a candidate set of eight players,

which was reduced to four by the dynamic method.

As previously mentioned, all players without an investment graph are clamped

to investing.
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Figure 7: Algebraic Results

(a) (b) (c)

(d) (e) (f)

Figure 8: Mix Results

(a) (b) (c)

(d) (e) (f)
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Chapter 4

4 Work Summary

We have analyzed the methods for �nding minimum tipping sets in SI games,

and transformed the problem into a graph theory problem. We then presented

a graph-based algorithm to �nd a minimum tipping set. We then examined

the complexity of the general case of Airline Security games. This motivates an

approximation method, backed by hypercube sampling and an algebraic method

to approximate the minimum tipping set for general Airline Security games.

This method is then placed in context with dynamic methods for identifying

tipping sets in airline security games.
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Chapter 5

5 Open Questions

There are several possible improvements on the performance of the above meth-

ods. Methods of trimming the input space could show great improvements, as

restricting the number of players has large bene�ts. It is of interest if the

players can be subdivided before running the algorithm, to tip the system in

groups. There are also tunable parameters that could be investigated. Allowing

short cascades, for example, could improve the accuracy of the approximated

sets. There is also the fact that the algebra used in the approximation can use

compacting methods to collapse some of the combinations of candidates.

This could also impact more loosely de�ned games. There are many types of

games that lack some of the structure of the airline security games, but similar

methods may be able to be employed. It appears these methods would work

well in pure dynamic games, without perfect foresight. There is also promise

from incorporating incremental incentives, instead of all at once. The work

examining methods used in [11] show promise in examining how this complex

approximation could be incorporated into existing methods of approximation.

It may also become easier to solve the problem with a relaxed concept of tipping,

for example, if there is interest in hitting most of a group, not the whole group.
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