

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

INCREMENTAL KERNEL LEARNING ALGORITHMS

AND APPLICATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

HYUNG-JIN SON
Norman, Oklahoma

2006

UMI Number: 3212011

3212011
2006

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

INCREMENTAL KERNEL LEARNING ALGORITHMS
AND APPLICATIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF INDUSTRIAL ENGINEERING

BY

 Dr. Theodore B. Trafalis (Chair)

 Dr. P. Simin Pulat

 Dr. Mary C. Court

 Dr. Michael B. Richman

 Dr. Suleyman Karabuk

© Copyright by HYUNG-JIN SON 2006
All Rights Reserved.

ACKNOWLEDGEMENTS
ACKNOWLEDGEMENTS

I would like to acknowledge a great many people who have contributed to this

dissertation. I could not finish this dissertation without their support.

First, I am grateful to my committee members, Dr. Theodore B. Trafalis, Dr. P.

Simin Pulat, Dr. Mary C. Court, Dr. Michael B. Richman, and Dr. Suleyman Karabuk. I

express the deepest gratitude to my advisor, Dr. Trafalis. I have been very fortunate to

have him as my advisor. His advice and support never stopped even on weekends. I

really appreciate his guidance. I will never forget Dr. Pulat’s support and

encouragement, especially in my early hard times. I am deeply thankful to her.

I am indebted to Dr. Court who helped me many times as a graduate liaison. She

also gave me good lectures. I am deeply thankful to Dr. Richman. His insightful

comments on research helped me see the correct direction. I would like to acknowledge

Dr. Karabuk. He is always there, and I feel relieved from the fact that his office is

nearby.

My deepest gratitude is to my family. None of this work would be possible

without the love, support, and patience of my parents, Tae-Kyu Son and Soon-Im Lee. I

would like to express my thanks with all my heart. I am also grateful to my lovely wife

Sujeong, and my children, precious Rachael and gallant Bryan.

 iv

Finally, I appreciate the financial support from the National Science Foundation.

This material is based on research funded by the National Science Foundation Grant EIA-

0205628.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

ABSTRACT... x

1. INTRODUCTION ... 1

2. BASIC CONCEPTS .. 5

2.1 Support Vector Machines..5

2.2 Support Vector Regression (SVR)..10

2.3 Incremental learning procedure...14

3. INCREMENTAL REVISED SVM .. 18

3.1 A Reduced Convex Hull SVM (RCH-SVM)..18

3.2 A Revised SVM (RSVM) ...22

3.3 Examples for applying RSVM..28

3.3.1 Description of Examples .. 28

3.3.2 Results for both cases ... 31

3.4 Incremental learning with revised SVM with filters (IRSVMF)33

4. INCREMENTAL REVISED SVR ... 40

4.1 A Reduced Convex Hull SVR (RCH-SVR)..41

4.2 A Revised SVR (RSVR) ...45

4.3 Incremental learning with Revised SVR with Filters (IRSVRF)............................54

4.4 A toy problem for IRSVR...60

4.4.1 Description of experiments .. 61

4.4.2 Experimental results ... 62

5. APPLICATIONS AND COMPUTATIONAL RESULTS 64

5.1 Tornado detection Problem...64

 vi

5.1.1 Description of Experiments for Tornado Detection....................................... 66

5.1.2 Experimental Results.. 68

5.2 Financial Forecasting Problem..70

5.2.1 Description of experiments for financial forecasting..................................... 71

5.2.2 Experimental results ... 72

6. SUMMARY AND FUTURE RESEARCH.. 74

BIBLIOGRAPHY ... 76

APPENDICES ... 80

 vii

LIST OF FIGURES

Figure 1. An example of linearly separable data ... 7

Figure 2. An example of linearly inseparable data .. 8

Figure 3. ε -insensitive loss function... 12

Figure 4. Structure of the incremental learning procedure .. 15

Figure 5. Convex hulls of inseparable data set .. 20

Figure 6. Reduced convex hulls of inseparable data sets... 20

Figure 7. Geometric interpretation of the revised SVM .. 23

Figure 8. Geometric interpretation of the revised SVM .. 29

Figure 9. Linearly separable data (Test) .. 29

Figure 10. Training data in Ripley’s data set... 30

Figure 11. Testing data in Ripley’s data set... 30

Figure 12. Comparisons in categories with linearly separable data................................. 32

Figure 13. Comparisons in categories with linearly inseparable data 32

Figure 14. Incremental SVM learning ... 35

Figure 15. Incremental learning with revised SVM and a filter 37

Figure 16. Supporting hyperplane as a filter.. 38

Figure 17. Three cases of support vector regression.. 41

Figure 18. Inclination of the separating hyperplane .. 53

Figure 19. Diagram for IRSVR.. 55

Figure 20. Diagram for IRSVRT .. 57

Figure 21. Two filters for IRSVRTF ... 58

Figure 22. Diagram for IRSVRTF... 59

Figure 23. A data set generated from the noisy sine function ... 60

Figure 24. Comparison between ISVM and IRSVM with respect to computing time 69

Figure 25. Comparison between ISVM and IRSVM with respect to the number of

support vectors .. 69

 viii

LIST OF TABLES

Table 1. Possible kernel functions ... 10

Table 2. Comparison between revised SVM and standard SVM in both cases............... 31

Table 3. Comparison of different approaches under comparison criteria........................ 62

Table 4. Tornado confusion matrix.. 65

Table 5. List of attributes ... 67

Table 6. Comparison of incremental learning methods ... 68

Table 7. Comparison of methods with respect to FAR and CSI...................................... 70

Table 8. Size of available data in 5 decades .. 71

Table 9. Comparison of different approaches under the comparison criteria.................. 72

Table 10. ANOVA Table for MSE.. 73

Table 11. ANOVA Table for MAE ... 73

 ix

ABSTRACT

ABSTRACT

Since the Support Vector Machines (SVMs) were introduced in 1995, SVMs have been

recognized as essential tools for pattern classification and function approximation.

Numerous publications show that SVMs outperform other learning methods in various

areas. However, SVMs have a weak performance with large-scale data sets because of

high computational complexity. One approach to overcome this limitation is the

incremental learning approach where a large-scale data set is divided into several subsets

and trained on those subsets updating the core information extracted from the previous

subset. This approach also has a drawback that the core information is accumulated

during the incremental procedure. When the large-scale data set has a special structure

(e.g., in the case of unbalanced data set), the standard SVM might not perform properly.

In this study, a novel approach based on the reduced convex hull concept is developed

and applied in various applications. In addition, the developed concept is applied to the

Support Vector Regression (SVR) to produce better performance. From the performed

experiments, the incremental revised SVM significantly reduces the number of support

vectors and requires less computing time. In addition the incremental revised SVR

produces similar results with the standard SVR by reducing computing time significantly.

Furthermore, the filter concept developed in this study may be utilized to reduce the

computing time in other learning approach.

 x

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

Recently modern technology brings numerous changes in various areas. The

existing analog process has been digitized so that a vast number of data is produced and

processed. Currently many devices have been digitized (e.g., TV), and this trend expands

to all areas surrounding our lives. As a typical example of these devices, computers

contribute to the development of internet that produces and stores huge data. It is not

easy to extract necessary information properly from a vast number of data. Selection of

an appropriate learning tool for pattern recognition, learning, prediction, and estimation is

quite important. One of the recent successful techniques in machine learning community

is Support Vector Machines (SVMs).

Since the Support Vector Machines (SVMs) were introduced in 1995 [Vapnik,

1995], SVMs have been recognized as essential tools for pattern classification and

function approximation. Numerous publications show that SVMs outperform other

learning methods in various areas such as text categorization [Joachims, 1998], object

recognition (e.g., speech and image) [Cristianini and Shawe-Taylor, 2000],

bioinformatics [Brown et al., 1999], data-mining [Burges, 1998], financial forecasting

[Yang, 2002], and meteorology [Trafalis et al., 2004]. However, SVMs have a weak

performance on large-scale data sets because of the high computational complexity of the

 1

existing SVM models. Diverse approaches have been proposed to overcome this

limitation, such as decomposition [Osuna, 1997], reduced set SVM [Lee and

Mangasarian, 2001], online learning approach [Cauwenberghs and Poggio, 2001], etc.

One of the approaches to overcome this limitation is the incremental learning

approach where a large-scale data set is divided into several subsets and trained on those

subsets updating the core information (support vectors) extracted from a previous subset.

In applying the incremental learning process in SVMs for classification problems, the

process will face several limitations as follows:

First, the number of support vectors is relatively small but critical because these

support vectors create the decision function (separating hyperplane in the feature space)

in a two-class classification problem. However, those support vectors are accumulated as

the incremental learning process is repeated.

Second, support vectors determine the feasible region (decision space) and its

dimension in the feature space. Thus, to execute the standard SVM without appropriate

control of support vectors might expand its dimension in the feature space. In that sense,

it’s important to control the number of support vectors in SVM. Furthermore, to control

the number of support vectors in SVM is effective for feature space reduction.

Third, SVM wastes most computing time for computation of kernel function

values among unimportant data. If SVM is used for training the large-scale data set with

a special structure (e.g., unbalanced data set where there are many data in one class

(unimportant) and few data in the other class (important)), then, consumption of

computing time for kernel function evaluation among data points that are unimportant

should be avoided to reduce the training time.

 2

In this study, a revised SVM based on the reduced convex hull concept is

developed to reduce the number of support vectors, and an incremental learning

procedure incorporating the revised SVM is constructed. To make the incremental

learning applicable to on-line settings, a filter which is discarding unimportant data is

created.

As SVMs are used for classification problems, these can be also applied to

nonlinear regression problems by using Support Vector Regression (SVR) [Vapnik,

1995]. The aim of SVR is to obtain an approximate function that has at most ε deviation

from the actual outputs of all input data. Therefore, SVR considers any deviation greater

than ε ignoring any deviation less than ε. In literature, SVR has been studied in various

areas such as weather prediction [Trafalis et al., 2004], financial forecasting [Yang et al.,

2002].

In applying SVR, the approximate function is quite different from the originally

intended approximate function if there exist noisy data (e.g., outliers) and/or input data

has a special structure such as an unbalanced data set. To overcome this weak point, the

revised SVM concept is extended to the Support Vector Regression. Thus, the revised

SVR scheme is utilized in the incremental approach to deal with vast number of data.

 These revised SVM and SVR concepts are executed in applications to show that

these concepts perform efficiently and effectively to problems with noisy data and/or

special structures.

This dissertation is organized as follows: Chapter 2 describes basic concepts such

as Support Vector Machines (SVMs), Support Vector Regression (SVR), and incremental

 3

learning. In Chapter 3, the revised SVM is developed and applied to the incremental

learning procedure. A filter concept is also developed to drop the most likely

unimportant data in an incremental learning procedure within the revised SVM

framework. Chapter 4 describes the SVR version of the revised SVM concept. Chapter

5 contains description of two applications and computational results. Summary and

future research are discussed in Chapter 6.

 4

CHAPTER 2

BASIC CONCEPTS

2. BASIC CONCEPTS

Several basic concepts of learning procedures such as SVMs, SVR and the

incremental learning procedure, are presented in this chapter.

2.1 Support Vector Machines

SVMs developed by Vapnik [Vapnik, 1995] have been widely used for pattern

classification and nonlinear regression. The basic idea of SVM in a binary classification

problem is to construct a decision hyperplane to separate input data with positive and

negative classes maximizing the margin of separation. SVM can be applied both in a

linearly separable pattern case and a linearly inseparable pattern case. A brief

mathematical explanation of SVM for both cases is as follows:

Consider the training data , where is the input pattern for

the ith datum, and is the corresponding output (

)},(,),,{(11 mm yxyx L ix

iy ± 1). It is assumed that the training

data and corresponding outputs are provided (i.e., supervised learning).

First, the linearly separable pattern case is considered. The term, linearly

separable pattern, means that two or more classes can be separated by decision

hyperplane(s). The equation of a decision hyperplane is

 5

0=+bxwT (2.1)

where is the input vector, is the weight vector, and is a bias. The aim of SVM is

to obtain the optimal values of and for a decision hyperplane, solving

the following optimization problem.

x w b

ow ob 0=+ o
T
o bxw

 Min 2

2
1 w

 s.t.

1][+≥+bxwy i
T

i , mi ,,2,1 L= (2.2)

The data points that satisfy the constraints shown in (2.2) with equality sign

are called support vectors. In other words, the support vectors are critical data points that

are located in the closest positions to the decision hyperplane. In a binary classification

problem, there are two kinds of support vectors, support vectors in the positive class and

those on the negative class.

ix

As shown in Figure 1, data points can be separated by a decision function

. The two points on the line, , are support vectors in the negative

class. The three points on the line, , are also support vectors in the positive

class.

0=+bxwT 1−=+bxwT

1=+bxwT

Minimizing the cost function, www T

2
1)(=Φ with constraints in (2.2) is a

quadratic convex constrained optimization problem with linear constraints. This

constrained optimization problem is transformed by duality theory as follows:

 6

0=+ bxwT

1−=+ bxwT 1=+ bxwT

Figure 1. An example of linearly separable data

Given the training data , the objective is to find the

Lagrange multipliers,

)},(,),,{(11 mm yxyx L

},,,{ 21 mααα L in the following optimization problem.

Max ∑∑∑
= ==

−=
m

i

m

j
j

T
ijiji

m

i
i xxyyF

1 11 2
1)(αααα

s.t. (2.3)

0
1

=∑
=

m

i
ii yα

0≥iα for mi ,,2,1 L=

Different from the linearly separable pattern case, the linearly inseparable pattern case

indicates that data points cannot be separable linearly. A simple example for the linearly

inseparable pattern case is shown in Figure 2.

 7

Some data points in the positive class and some data points in the negative class

are mixed in the middle of space.

Figure 2. An example of linearly inseparable data

In the linearly inseparable patterns case, the cost function contains a penalty term

referring to the misclassification errors as follows: ∑
=

+=Φ
m

i
i

T Cwww
12

1)(ξ . Here, C is

a user-defined parameter that controls the tradeoff between the number of inseparable

data points and complexity of the machine. Thus, the constrained optimization problem

(2.3) in order to address the problem of misclassification of some training data is slightly

changed to the optimization problem shown in (2.4).

The inseparable case differs from the separable case in that the constraints on

alphas are modified to the box constraints with upper bound, C .

 8

Max ∑∑∑
= ==

−=
m

i

m

j
j

T
ijiji

m

i
i xxyyF

1 11 2
1)(αααα

s.t. (2.4)

0
1

=∑
=

m

i
ii yα

Ci ≤≤ α0 for mi ,,2,1 L=

SVM has two major operations. First, an input vector is mapped to a high-

dimensional feature space by a nonlinear transformation. Second, an optimal hyperplane

(decision function) is constructed for separating the mapped data points in the feature

space.

Let be a vector in the input space with dimension d. Let x)(•ϕ be a nonlinear

transformation from the input space to the feature space. It is hard to explicitly obtain

this transformation. The separating hyperplane in the feature space takes the compact

form, where . Therefore, in the feature space the

separating hyperplane is defined as . Note that

represents the inner product of two feature vectors corresponding to the i th input data

point and a general input data point, respectively.

0)(=xwTϕ ∑
=

=
m

i
iii xyw

1
)(ϕα

0)()(
1

=∑
=

m

i
i

T
ii xxy ϕϕα)()(xxi

T ϕϕ

By , we denote the inner-product kernel. It is defined by

. This inner-product kernel , which is a symmetric

function, is used to construct the optimal separating hyperplane in the feature space.

Thus, the final form of the optimal separating hyperplane is defined by

),(ixxK

)()(),(xxxxK i
T

i ϕϕ=),(ixxK

 9

0),(
1

=∑
=

m

i
iii xxKyα

Possible kernel functions are listed in Table 1.

Table 1. Possible kernel functions

Type of Classifier Kernel Function

Polynomial of degree d d
i

T
i xxxxK)1(),(+=

Gaussian Radial-basis function (RBF))
2

1exp(),(2

2 ii xxxxK −−=
σ

Two-layer perceptron

(for some 0β and 1β)
)tanh(),(10 ββ += i

T
i xxxxK

Using an inner-product kernel that satisfies Mercer’s Theorem [Vapnik, 1995],

the objective function in (2.4) becomes ∑∑∑
= ==

−=
m

i

m

j
jijiji

m

i
i xxKyyF

1 11

),(
2
1)(αααα . The

resulting decision function is shown to take the form, .)),(sgn()(
1

bxxKyxf i

m

i
ii += ∑

=

α

2.2 Support Vector Regression (SVR)

The SVM can be successfully applied to nonlinear regression as follows: Given

training data where is a data point in the input space X and is

the corresponding target of the model output. The objective is to find an approximation

function , which has at most

)},(,),,{(11 mm yxyx L ix iy

)(xf ε deviation from the actual target for all the iy

 10

training data. In the ε -SV regression [Vapnik, 1995], any deviation that is less than ε is

allowed.

Consider a linear function, bxwxf +><= ,)(where X, w∈ b ∈ ℜ . The

objective of SVR is to minimize the Euclidean norm of as long as deviation from the

actual targets is less than

w

iy ε . This convex optimization problem is shown as follows:

Min 2

2
1 w

s.t. (2.5)

 ε≤−><− bxwy ii , mi ,,2,1 L=

 ε≤−+>< ii ybxw, mi ,,2,1 L=

The implicit assumption in (2.5) is that the problem is feasible as the function that

approximates all input data, with

)(xf

)},(,),,{(11 mm yxyx L ε deviation exists. To construct

a support vector machine for approximating a target, , the following loss function is

used:

d

⎩
⎨
⎧ ≥−−−

=
otherwise

ydforyd
ydL

0
,

),(
εε

ε (2.6)

where ε is a predetermined parameter with positive value.

The loss function in (2.6) is called the ε -insensitive loss function. This loss function

implies that this function has a value only when the deviation of output, , from the

desired target, , is greater than the deviation parameter,

y

d ε . It is graphically presented

as shown in Figure 3.

 11

Figure 3. ε -insensitive loss function

To deal with the infeasible constraints of the optimization problem in (2.5), slack

variables, are introduced to form the following problem: ', ii ξξ

Min ∑
=

++
m

i
iiCw

1

'2)(
2
1 ξξ

s.t. (2.7)

 iii bxwy ξε +≤−><− , mi ,,1L=

 ' , iii ybxw ξε +≤−+>< mi ,,1L=

 0, ' ≥ii ξξ mi ,,1L=

To construct the dual form of the optimization problem (2.7), dual variables

are introduced. Note that),('
ii αα iα corresponds to the constraint with slack iξ , and

corresponds to the constraint with slack . These variables are actually Lagrangian

multipliers for the primal problem. By KKT conditions and Mercer’s theorem [Vapnik,

'
iα

'
iξ

0

-ε

+ε
ξ

-ε

ξ

+ε

 12

1995], the resulting dual optimization problem for nonlinear regression using SVMs is as

follows:

),('ααFMax

∑∑∑∑
== ==

+−−−−−=
m

i
ii

m

i

m

j
jijjii

m

i
iii xxKy

1

'

1 1

''

1

')(),())((
2
1)(ααεαααααα

s.t. (2.8)

0)(
1

' =−∑
=

m

i
ii αα

Ci ≤≤ α0 for mi ,,2,1 L=

Ci ≤≤ '0 α for mi ,,2,1 L=

From the optimality condition, is obtained as follows: w

∑
=

−=
m

i
iii xw

1

')(αα (2.9)

Thus, the approximation function, bxwxf +><= ,)(, is expressed as

∑
=

−=
m

i
iii xxKxf

1

'),()()(αα (2.10)

Note that the two parameters, the deviationε and parameter , which correspond

to the trade-off between the flatness of and the tolerance of deviation,

C

f ε respectively,

are determined by the user. The bias,b , is computed as follows:

iii xwyb ε−><−= , , Ci ≤≤ α0 for mi ,,2,1 L=

iii xwyb ε+><−= , , for Ci ≤≤ '0 α mi ,,2,1 L=

 13

2.3 Incremental learning procedure

Learning (training) is an essential procedure for pattern recognition, which is the

process whereby a received pattern (e.g., data, image, or signal) is assigned to one of a

finite number of predetermined classes (categories). By undergoing a training session,

the class of the particular pattern is identified and decision boundaries (e.g., a decision

hyperplane) are determined.

To obtain the best estimate of the class information in the conventional learning

procedure, it is desirable to consider all available data simultaneously. However, all data

cannot be loaded at once due to memory limits, size of data, and intermittent inflows. To

overcome these limitations, several approaches have been proposed (e.g., [Osuna et al.,

1997]). One of them is the incremental learning approach.

There are two kinds of incremental learning with respect to target concept

[Ruping, 2001]. One of them is the true incremental learning, and the other is the

concept drift. In the true incremental learning, all data contain the same information

about the target concept. The information of a data point cannot be judged from its age.

In other words, if a data point is classified once in a certain class, the class of the data

point is not changed, even though the data point is quite old. In contrast, the target

concept may change between the learning steps in the concept drift. For example, an

input data point was classified in one class a long time ago. At present, the data point

should be classified as being in the other class. In order for this drift concept to be

applied to a learning system, an additional algorithm to the existing learning process must

be added. For details, refer to [Klinkenberg and Joachims, 2000].

 14

The incremental learning approach can be used in the following situations: First,

as mentioned above, when the size of the training data set is huge, and it cannot be

trained simultaneously. Second, when new data are available at periodic intervals (e.g.,

results, which are obtained at a periodic interval in the performance of scientific

experiments). Third, when data are available on a timely basis (on-line).

The structure of the incremental learning procedure is shown in Figure 4.

Phase I Phase II Phase III Phase IV

info

Classifier

info
info

Decision function

Phase N ……….

Figure 4. Structure of the incremental learning procedure

Patterns in phase I are trained to establish a classifier. Based on results obtained

from this classifier, the decision function is created. During this process, the classifier

retains knowledge learned from previous phases. According to the knowledge-based

classifier, the decision function is changed and used to predict the classes of incoming

patterns. The above procedure is adaptive and can be more effective to real time

learning.

 15

When a SVM is utilized as a classifier, it forms the incremental SVM. The

resulting decision function from training a SVM depends on its support vectors. The

support vectors have nice properties for summarizing data characteristics. Training SVM

on the support vectors alone produces the same decision function as training on the whole

data set. Thus, if the last training set (last batch) contains all the examples that are

support vectors in the non-incremental SVM, the resulting classifier in the incremental

approach is the same as the one in the non-incremental approach.

There are two approaches in the incremental SVM. One of them is the batch

approach, and the other is the on-line approach. In the batch approach, the whole data set

is partitioned into several batches if the whole data set is available at present, and each

batch is formed in a certain time frame if the data set is provided periodically. Generally

speaking, SVM is trained on the new data and support vectors produced from the

previous learning step.

In the on-line approach, all data come into a certain algorithm based on SVM and

are trained on-line. Most publications in the on-line approach track the value of alpha

(multipliers in KKT conditions) and its change (e.g., [Cauwenberghs and Poggio, 2001]).

Hence, based on the changed value of the alphas, a new data point is added in the next

step. However, this approach will not work properly if the support vectors are

accumulated. After the data set is trained, the support vectors have multipliers with

positive values. In order to obtain these multipliers’ value the on-line learning algorithm

should train a certain amount of data points like in the batch approach. The on-line

approach also stores support vectors produced in the previous training step as the batch

approach does. Thus, the on-line approach can be considered as a variant of the

 16

incremental approach. An incremental SVM learning algorithm with input data that are

available only on periodical time windows will be called the “on-line algorithm.”

Advantages of the incremental learning with SVMs can be summarized as

follows:

First, it makes the number of support vectors to be as small as possible. Although

the number of support vectors varies depending on the distribution of the data set, the

number of support vectors is relatively smaller than the whole data set. Also, the number

of support vectors is reduced because old support vectors identified long time ago might

be removed in a recent training session.

Second, it can keep the memory and time complexity of the learning algorithm at

a manageable level. As the size of input data is gradually increased, the computing time

for training SVM with an increased size of input data will become exponential. In the

incremental approach, the size of the batch is predetermined both in the case of static data

and in the case of online injection of data. Thus, partitioning data into a batch scheme

makes it possible to train large data sets.

Third, the incremental learning can predict at a time when the whole data is not

yet available (on-line setting). When the data set is only periodically available (e.g.,

weather data or financial data), the traditional learning approach should wait until all data

are available for training. In contrast, the incremental approach can be applied to train a

small portion of whole data set and has the capability to predict the class of an incoming

data set using the constructed classifier before the next data set arrives.

 17

CHAPTER 3

INCREMENTAL REVISED SVM

3. INCREMENTAL REVISED SVM

To produce a better performance in a large-scale data set with a special structure,

the revised SVM concept is proposed in this chapter. This concept is applied to the

standard SVM in the incremental scheme. For this novel approach to be applied in a

dynamic data-driven application system, the filter concept is also proposed.

3.1 A Reduced Convex Hull SVM (RCH-SVM)

Bennett and Breadensteiner (2000) developed the reduced convex hull SVM

(RCH-SVM) concept giving a geometric explanation of the standard SVM. Crisp and

Burges (1999) also developed the same concept in a geometric interpretation of ν-SVM

independently.

A similar term, “reduced support vector machines”, was used by Lee and

Mangasarian (2001). However, they proposed a different approach, which pursues the

same objective of reducing the number of support vectors. In their work, an m by m

matrix, where m is the number of the whole training data, is reduced to an n by n matrix,

where n is the size of subset that consists of randomly selected data from the training data

 18

set. These selected data are considered as candidates of support vectors. By reducing the

training data, they intended to speed up the computational time.

The RCH-SVM is an extension of the standard SVM. Before the RCH-SVM is

explained, some basic algebraic concepts are reviewed.

Definition 1. (Convex Combination) [Bazaraa, 1990]

Let V be some vector space over ℜ . Let X be a set of elements of V . Then, a convex

combination of elements in the set X is defined as a linear combination of the form

NN xxxx αααα ++++1 L33221 for some where each and 0>N Xxi ∈ 0≥iα , with

 1
1

=∑
=

N

i
iα

Definition 2. (Convex Hull)

Let V be some vector space over ℜ . Let X be a set of elements of V . Then, a convex

hull, conv(X), is defined as the smallest convex set containing X .

Definition 3. (Reduced convex hull) [Bennett, 2000]

Let V be some vector space over ℜ . Let X be a set of elements of V . Then a reduced

convex hull, RCH, of the set X is defined as a set that consists of convex combinations of

the form, RCH = { . },1,0,1|
11

Xxx ii

N

i
i

N

i
ii ∈<≤≤=∑∑

==

µµααα

Geometrically, the reduced convex hull shrinks the convex hulls of two classes so

that noisy data (e.g., outliers) cannot affect the solution significantly. Consider the

following two convex hulls of inseparable data sets.

 19

Class A Class B

Figure 5. Convex hulls of inseparable data set

From Figure 5, clearly the data set cannot be classified linearly with a hyperplane. Thus,

the reduced SVM shrinks the convex hulls in both sides simultaneously as shown in

Figure 6.

Class A Class B

Figure 6. Reduced convex hulls of inseparable data sets

 20

In the separable case, it is clear that the optimal separating hyperplane bisects the

shortest vector connecting the convex hulls of the positive and negative examples in the

feature space.

 Consider the convex hulls of the sets, U and V . Each point of the convex hull of

 can be expressed through the points uU Ui ∈ , where mi ,,2,1 L= . Similarly, each

point in the convex hull of V can be represented through the points, where

. Then, the two convex combinations can be defined as and

, respectively. In the separable case, the optimization problem finding the closest

points can be written as follows:

Vv j ∈

nj ,,2,1 L= ∑
=

m

i
iiua

1

∑
=

n

j
jjvb

1

ba

Min
,

2

112
1 ∑∑

==

−
n

j
jj

m

i
ii vbua

s.t.

1
1

=∑
=

m

i
ia

1
1

=∑
=

n

j
jb

ia≤0 for mi ,,2,1 L=

jb≤0 for nj ,,2,1 L=

 When data are not linearly separable, the convex hulls are reduced because two

convex hulls cannot be linearly separable. After the convex hulls shrink, the separating

hyperplane is constructed by solving the linearly separable problem. It is possible to

 21

obtain the separating hyperplane, because the linearly inseparable problem becomes a

linearly separable one, if the convex hulls are shrunk. The optimization problem that

finds the closest points in the reduced convex hulls is written as follows:

ba

Min
,

2

112
1 ∑∑

==

−
n

j
jj

m

i
ii vbua

s.t.

1
1

=∑
=

m

i
ia

1
1

=∑
=

n

j
jb

µ≤≤ ia0 for mi ,,2,1 L=

µ≤≤ jb0 for nj ,,2,1 L=

3.2 A Revised SVM (RSVM)

The standard SVM produces a huge amount of support vectors, especially when

the positive and negative training samples are highly overlapped with each other. It is

obvious that the big size of support vectors requires more computing time and more

storage space for training. Thus, it is natural to say that reducing the computational time

and cost of the SVM is equivalent to decreasing the number of support vectors.

One efficient way to decrease the number of support vectors is to simplify the

shape of the separating hypersurface. Since the support vectors determine the shape of

the separation hypersurface, support vectors that do not affect the shape of the separation

hypersurface effectively, should be removed.

 22

Furthermore, noisy data (e.g., outliers) might significantly affect the standard

SVM producing an incorrect decision function. As a result, the incorrect decision

function generates unexpected generalization errors and affects sequentially the next

steps in the incremental learning process.

Therefore, the standard SVM must be modified to resolve the above problems

(e.g., computing time and number of support vectors). The geometric interpretation of

the RCH-SVM is quite useful and provides an alternative for modifying the standard

SVM. However, it might be inefficient for particular problems such as unbalanced

problems in which there are huge differences of data sizes in two classes, and asymmetric

importance problems in which the data in one class are few and have very important

meanings, and there are a lot of unimportant data in the other class. For example,

tornadic data are very few (as little as 2%) relatively to nontornadic data in the weather

data. If the RCH-SVM is applied to this tornado detection problem, some valuable

tornadic data will be lost. Thus, in order to properly solve this problem, the following

geometric concept is proposed.

Class A Class B

Figure 7. Geometric interpretation of the revised SVM

 23

Consider a two-class classification problem. It is illustrated graphically in Figure

7. One class (say class B) has very few but very important data. The other class (say,

class A) has many unimportant data. Since class B has important data, the important data

is preserved. The unimportant data in class A will be reduced.

The standard SVM in the linearly separable case takes the following form.

Minimize www T

2
1)(=Φ

s.t.

 , 1][≥+ oi
T
o bxw PNi ,,2,1 L=

 , 1][≥+− oj
T
o bxw NNj ,,2,1 L=

where is the number of data points in the positive class PN

NN is the number of data points in the negative class

Based on the above optimization problem, Lagrange’s function is

∑∑
==

−+−−−+−=
NP N

j
j

T
j

N

i
i

T
i

T bxwbxwwwbwL
11

]1)([]1)[(
2
1),,,(βαβα (3.1)

Applying the Karush-Kuhn-Tucker (KKT) condition,

0
11

=+−=
∂
∂ ∑∑

==
j

N

j
ji

N

i
i xxw

w
L NP

βα (3.2) j

N

j
ji

N

i
i xxw

NP

∑∑
==

−=
11
βα

0
11

=+−=
∂
∂ ∑∑

==

NP N

j
j

N

i
ib

L βα (3.3) ∑∑
==

=
NP N

j
j

N

i
i

11
βα

Here, we assume that

 24

1
11

==∑∑
==

NP N

j
j

N

i
i βα and 0≥iα for PNi,,2,1= & 0≥jβ for NNj,,2,1= , (3.4)

which indicate that are convex combinations. j

N

j
ji

N

i
i xx

NP

∑∑
== 11

& βα

KKT complementary slackness conditions are

0]1)[(=−+ bxw i
T

iα for PNi,,2,1= (3.5)

0]1)([=−+− bxw i
T

iβ for NNj,,2,1=

Note that support vectors correspond to 0>iα for PNi,,2,1= and 0>jβ for

. Expanding (3.1), NNj,,2,1=

∑ ∑∑∑ ∑∑
= === ==

++++−−=
N PNP PP N

j

N

i
j

N

j
jj

T
j

N

i

N

i
i

N

i
ii

T
i

T bxwbxwwwbwL
1 111 112

1),,,(βββαααβα (3.6)

we obtain ∑∑
==

++−=
NP N

j
j

T
j

N

i
i

T
i

T xwxwwwbwL
11

2
2
1),,,(βαβα (3.7)

since and from (3.4). 0)(
11

=− ∑∑
==

PN N

i
i

N

j
jb αβ 1

11
==∑∑

==

NP N

j
j

N

i
i βα

Substituting (3.2) into (3.7), (3.7) becomes

]2[
2
1),,,(

1 11 11 1
∑∑∑∑∑∑
= == == =

−+=
P NN NP P N

i

N

j
j

T
iji

N

i

N

j
j

T
iji

N

i

N

j
j

T
iji xxxxxxbwL βαββααβα

][
1 11 1
∑∑∑∑
= == =

−−
P NP P N

i

N

j
j

T
iji

N

i

N

j
j

T
iji xxxx βααα][

1 1 11
∑ ∑∑∑
= = ==

−+
P N NNN

i

N

i

N

j
j

T
iji

N

j
j

T
iji xxxx βββα + 2

=][
2
1

1 11 11 1
∑∑∑∑∑∑
= == == =

+−
N NP PP N N

i

N

j
j

T
iji

N

i

N

j
j

T
iji

N

i

N

j
j

T
iji xxxxxx ββααβα + 2

Set),(),,,(βαβα QbwL = . Then, the dual problem becomes

 25

Max][
2
1),(

1 11 11 1
∑∑∑∑∑∑
= == == =

+−=
N NP PP N N

i

N

j
j

T
iji

N

i

N

j
j

T
iji

N

i

N

j
j

T
iji xxxxxxQ ββααβαβα

s.t. (3.8)

1
1

=∑
=

PN

i
iα

1
1

=∑
=

NN

j
jβ

iα≤0 for PNi ,,2,1 L=

jβ≤0 for NNj ,,2,1 L=

Geometrically, the revised SVM takes the following form:

Min
2

112
1 ∑∑

==

−
NP N

j
jj

N

i
ii xx βα (3.9)

with the convex combination constraints, and , where 1
1

=∑
=

PN

i
iα 1

1
=∑

=

NN

j
jβ jα≤0 for

 and PNi ,,2,1 L= jβ≤0 for NNj ,,2,1 L= .

The function in (3.9) can be expanded as follows:

)]()[(
2
1

1111
∑∑∑∑
====

−−
NpNp N

j
jj

N

i
ii

T
N

j
jj

N

i
ii xxxx βαβα

)](2[
2
1

1 11 11 1
∑∑∑∑∑∑
= == == =

−+=
P NN NP P N

i

N

j
j

T
iji

N

i

N

j
j

T
iji

N

i

N

j
j

T
iji xxxxxx βαββαα

Then (3.9) is equivalent to

Max)(
2
1

1 11 11 1
∑∑∑∑∑∑
= == == =

+−
N NP PP N N

i

N

j
j

T
iji

N

i

N

j
j

T
iji

N

i

N

j
j

T
iji xxxxxx ββααβα (3.10)

 26

The objective function, (3.10), is exactly the same as the final form of the objective

function in the revised SVM problem (3.8).

By the kernel trick, mentioned in section 2.1, the dual problem, (3.8), is changed

to the following form:

Max)],(),([
2
1),(),(

1 11 11 1
∑∑∑∑∑∑
= == == =

+−=
N NP PP N N

i

N

j
jiji

N

i

N

j
jiji

N

i

N

j
jiji xxKxxKxxKQ ββααβαβα

s.t.

1
1

=∑
=

PN

i
iα

1
1

=∑
=

NN

j
jβ

iα≤0 for PNi ,,2,1 L=

jβ≤0 for NNj ,,2,1 L=

Geometrically, the revised SVM in the linearly inseparable case takes the following form:

 Min
2

112
1 ∑∑

==

−
NP N

j
jj

N

i
ii xx βα

s.t.

1
1

=∑
=

m

i
ia

1
1

=∑
=

n

j
jb

10 ≤≤ iα for PNi ,,2,1 L=

µβ ≤≤ j0 for NNj ,,2,1 L=

 27

By imposing an upper bound on each multiplier, jβ , which is less than 1, the convex hull

that consists of data points in the unimportant class shrinks. In contrast, the convex hull

in the important class is preserved. The resulting revised SVM for the linearly

inseparable case forms as follows:

Max)],(),([
2
1),(),(

1 11 11 1
∑∑∑∑∑∑
= == == =

+−=
N NP PP N N

i

N

j
jiji

N

i

N

j
jiji

N

i

N

j
jiji xxKxxKxxKQ ββααβαβα

s.t.

1
1

=∑
=

PN

i
iα

1
1

=∑
=

NN

j
jβ

10 ≤≤ iα for PNi ,,2,1 L=

µβ ≤≤ j0 for NNj ,,2,1 L=

3.3 Examples for applying RSVM

3.3.1 Description of Examples

An example for the linearly separable case with two sets of two-dimensional data,

which are the training and testing sets, is created. There are 164 training data points and

404 testing data points in this example. These training and testing data are illustrated in

Figures 8 and 9.

As an example of the inseparable case, a synthetic two-class data set on two

dimensions is used [Ripley, 1994]. This data set, which was created by Ripley, has been

 28

Separable data (Train)

-12

-9

-6

-3

0

3

6

9

12

-12 -9 -6 -3 0 3 6 9 12

X1

X2

Negative
Positive

Figure 8. Geometric interpretation of the revised SVM

Separable data (Test)

-12

-9

-6

-3

0

3

6

9

12

-12 -9 -6 -3 0 3 6 9 12

X1

X2

Negative
Positive

Figure 9. Linearly separable data (Test)

widely used in many publications (e.g., [Osuna and Girosi, 1998; Ripley, 1996]). This

set contains linearly inseparable data with 250 data points for the training set and 1000

 29

data points for the test set. These training and testing data points are illustrated in Figures

10 and 11.

Ripley data (Train)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1

X1

X
2

Negative
Positive

Figure 10. Training data in Ripley’s data set

Ripley data (Test)

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

-1.5 -1 -0.5 0 0.5 1 1.5

X1

X
2

Negative
Positive

Figure 11. Testing data in Ripley’s data set

 30

3.3.2 Results for both cases

Several criteria, such as the number of support vectors, ratio of support vectors,

generalization rate, and CPU time, are considered in these experiments. The number of

support vectors is counted for the positive and negative example cases. The ratio of the

support vectors (for both cases) against the whole data set is also computed. The

generalization rate indicates the rate that the decision function classifies the test data

correctly. CPU time is measured for the training speed. Under these criteria, the

standard SVM and the revised SVM are compared in the separable and inseparable cases.

Results produced from the revised SVM and the standard SVM are shown in

Table 2. Their comparisons are illustrated in Figures 12 and 13.

Table 2. Comparison between revised SVM and standard SVM in both cases

 Separable case Inseparable case

 Revised SVM Standard
SVM Revised SVM Standard

SVM
number of SVs
in positive side 1 64 1 53

number of SVs
in negative
side

2 64 2 53

Ratio of SVs
(%) 1.8 78 1.2 42.4

Gen. Rate (%) 46.8 71.53 71.6 55.7
CPU time
(sec) 7.4 16.7 30.9 13.2

 31

Comparison (separable)

0
10
20
30
40
50
60
70
80
90

po
s S

Vs

ne
g S

Vs

Rati
o o

f S
Vs v

s S
et

Gen
era

liz
ed

 ra
te

CPU

Categories

Va
lu

es

Revised SVM
Traditional SVM

Figure 12. Comparisons in categories with linearly separable data

Comparison (inseparable)

0
10
20
30
40
50
60
70
80

po
s S

Vs

ne
g S

Vs

Rati
o o

f S
Vs v

s S
et

Gen
era

liz
ed

 ra
te

CPU

Categories

Va
lu

es

Revised SVM
Traditional SVM

Figure 13. Comparisons in categories with linearly inseparable data

The number of support vectors is significantly diminished so that the portion of

the support vectors in the whole data set is lowered in both cases. The standard SVM has

a better generalization rate in the separable case, whereas the revised SVM has a better

rate in the inseparable case. The revised SVM might have a worse generalization error

because the supporting hyperplane on the negative side is pulled into the negative class

 32

region. In terms of computing time, the revised SVM and standard SVM have an

advantage over the separable case and inseparable case, respectively.

3.4 Incremental learning with revised SVM with filters (IRSVMF)

The standard SVM can be applied to the incremental learning with the format as

shown in section 2.3. When a SVM is utilized as a classifier, it forms the incremental

SVM. The resulting decision function from training a SVM depends on its support

vectors. The support vectors have nice properties for summarizing data characteristics.

Training SVM on the support vectors alone produces the same decision function as

training on the whole data set. Thus, if the last training set (last batch) contains all the

examples that are support vectors in the non-incremental SVM, the result in the

incremental approach is the same as the one in the non-incremental approach.

There are two approaches in the incremental SVM with respect to a data-driven

format. One of them is the batch approach, and the other is the on-line approach. In the

batch approach, the whole data set is partitioned into several batches, if the whole data set

is available at present. Each batch is formed in a certain time frame if the data set is

provided periodically. Generally speaking, SVM is trained on the new data and the

support vectors produced from the previous learning step. In the on-line approach, all

data come into a certain algorithm based on SVM and are trained on-line.

In existing literature, several approaches have been explored in the incremental

SVM learning framework. Syed et al. (1999) shows performance of the true incremental

SVM approach with the standard SVM in several data sets. They report that there is no

drop in the prediction accuracy of the SVM even when it is used in the incremental

 33

framework. Ruping (2001) tried to remove old support vectors by adding another penalty

function in the objective function.

Most publications in the on-line approach track the value of alpha (multipliers in

KKT conditions) and its change. Hence, based on the changed value of the alphas, a new

data point is added in the next step.

Cauwenberghs and Poggio (2001) propose an on-line formulation for the SVM. If

the solutions are computed whenever a new data point is added, the algorithm wastes

computing time and memory. Thus, their algorithm keeps the KKT optimality condition

at every step. They store support vectors and update their multipliers’ values (variables

in the feature space), producing a new solution. This means that the algorithm should test

and potentially train on all the data. It is quite fast and useful if the number of support

vectors is relatively small compared to the size of whole data. Since the resulting storage

requirement is determined by the number of support vectors, if the number of support

vectors are relatively high, this formulation is limited.

As a variant of Cauwenberghs and Poggio’s approach, Simple SVM is proposed

by Vishwanathan, Smola, and Murty (2003). Their algorithm decomposes the kernel

matrix by LDL decomposition, and it relaxes the box constraints imposed on the

multipliers temporarily ignoring the KKT optimality conditions. Solving the problem

without the box constraints, a new solution is checked by the box constraints to identify

support vectors or error vectors, which are located in between supporting hyperplanes. In

short, as this algorithm reduces constraints (i.e., the box constraints), it tries to improve

computing time. However, the number of variables is increased if the number of support

vectors is relatively large compared to the whole data set. Then, there is no significant

 34

reduction of computing time, though the algorithm reduces the box constraints. Thus, this

algorithm performs especially well only when the number of support vectors is quite

small.

However, these approaches will not work properly if the support vectors are

accumulated. After the data set is trained, the support vectors have multipliers with a

positive value. In order to obtain these multipliers’ value, the on-line learning algorithm

should train a certain amount of data points like in the batch approach. The on-line

approach also stores support vectors produced in the previous training step similar to the

batch approach. Thus, the on-line approach can be considered as a variant of the

incremental approach. An incremental SVM learning algorithm with input data that are

available only on periodical time windows will be called the “on-line algorithm.”

The structure of the incremental approach with SVM is shown in Figure 14.

Batch 1 Batch 2 Batch 3 Batch 4 Batch N

SVsSVs

SVM

SVs

……….
.

Whole data set

Decision function

Figure 14. Incremental SVM learning

 35

If the whole data set is available, the set is partitioned into several subsets, which

are called “batches”. If the input data are available at a specific interval, each batch

contains input data of each time interval. If input data are injected into the system on-

line, input data are filled up to a certain level of size. In the literature (e.g., [Demeniconi

and Gunopulos, 2001]), the size of the batch has been used to be arbitrarily determined.

The appropriate batch size can be obtained in terms of a trade-off between generalization

error rate and computing time. For details, refer to [Son et al., 2005].

SVM trains the input data in the first batch. The support vectors extracted from

SVM are added to the next batch (i.e., batch 2) in order to obtain a decision function.

Then, data in the second batch are trained to adapt the decision function. This iterative

procedure is repeated until all batches are trained. After all data are trained, the final

decision function is made for classification.

In this study, we utilize the revised SVM instead of the standard SVM for training

data in the incremental learning process. A filter is created to remove most likely

unimportant data prior to training process. The structure of the proposed incremental

learning process is shown in Figure 15.

If the whole data set is available, it is divided into several batches. In on-line

setting, only the first batch is created. As described in section 2.3, the optimal batch size

will be determined in terms of trade-off between generalization error and computing

time. Data in the first batch is trained by the revised SVM identifying the support

vectors. These support vectors are included in the second batch. The supporting

hyperplane based on the support vectors of the unimportant class plays a role as a filter.

 36

Because most of the unimportant data are located in the halfspace of the

supporting hyperplane of the unimportant class in the feature space, this supporting

hyperplane in Fig. 16 is a good yardstick for removing the possible unimportant data

before training.

Whole data set

Batch 1 Batch 2 Batch 3 Batch N

Revised SVM

SVs
SVs SVs

Filter

……

Update

Decision function

Figure 15. Incremental learning with revised SVM and a filter

 37

Class B Class A

Supporting
hyperplane

Figure 16. Supporting hyperplane as a filter

In Figure 16, the supporting hyperplane is a line passing through the two support

vectors of the reduced convex hull. If the supporting hyperplane is used as a filter, three

points on the right side of the supporting hyperplane are passed in the filter. These points

will be used to construct the decision function in SVM because the optimal separating

hyperplane is computed by support vectors on both classes. Data points passing this filter

are put in the next batch until the size of the batch is filled up to the optimal batch size.

This filter is updated in every batch as the optimal separating hyperplane is modified in

every batch. Thus, this approach requires fewer batches than the traditional batch method

in the incremental learning procedure. Hence, a new algorithm for incremental learning

with revised SVM and a filter is proposed as follows:

 38

==

Step 1. Determine the optimal batch size based on generalization error rate and

computing time.

Step 2. Train data in the first batch by revised SVM.

Step 3. Store data points representing support vectors in the next batch.

Step 4. Inject a new point to the filter.

Step 5. If a new data point is located outside of the filter, then discard the data point

 Otherwise, store it in the next batch.

Step 6. If the size of data in a batch is equal to the optimal batch size, go to the next step

 Otherwise, go to step 4.

Step 7. Train the data in the batch and obtain support vectors, and corresponding

 decision function.

Step 8. Update the filter. Go to step 3.

==

 39

CHAPTER 4

INCREMENTAL REVISED SVR

4. INCREMENTAL REVISED SVR

The Support Vector Regression (SVR) discussed in section 2.2, has been utilized

in time series prediction [Cao, 2003], financial forecasting problem [Yang, 2002], and

other scientific applications [Song et al., 2002]. The standard SVR may produce

distorted performance if noisy data (e.g., outliers) exist. Furthermore, the standard SVR

doesn’t perform properly if a large-scale data set is used as input. This is because the

standard SVR requires more memory space and computing time as the standard SVM

does. Therefore, the standard SVR should be also revised to produce better performance

in large-scale data sets. In SVR, it is critical to reduce the support vectors because it is

practically impossible to train all data points simultaneously when a huge data set is

provided and because support vectors are accumulated when the incremental learning

approach is applied. In this chapter, the standard SVR is revised to overcome limitations

that are mentioned above, extending previous work by Bi and Bennett (2003). Then the

revised SVR concept is applied to the incremental approach. For dynamic data driven

applications (DDDAS), the filter concept which is developed in chapter 3 is also used in

the incremental SVR approach.

 40

4.1 A Reduced Convex Hull SVR (RCH-SVR)

Consider the training data set where and

. A hard

)},(,),,(),,{(2211 mm yxyxyx L n
ix ℜ∈

ℜ∈iy ε -tube for a fixed 0>ε is defined as the hyperplane

satisfying bxwy T += ε≤−><− bxwy ii , and ε≤−+>< ii ybxw, where

. As shown in Figure 3 in chapter 2, the smallest tube, mi ,,2,1 L= 0ε -tube, can be

obtained from the following optimization problem [Bi and Bennett, 2003].

ε
ε,,bw

Min

s.t.

ε≤−><− bxwy ii , mi ,,2,1 L=

 ε≤−+>< ii ybxw, mi ,,2,1 L=

Based on the determination of ε which is user-defined and 0ε which is obtained from the

above optimization problem, there are three possible cases for 0>ε in the dual space as

shown in Figure 17.

(c) (b)(a)

Figure 17. Three cases of support vector regression

 41

 Based on the relationship between ε and 0ε , Bi and Bennett (2003) investigated

when a hard ε -tube or a soft ε -tube exists. First, a hard ε -tube exist, when 0εε > . In

this case, the convex hulls of both classes are linearly separable as shown in Figure 17

(a). This indicates that there exists a (,) that satisfies the constraints of (4.1). w b

ε≤−><− bxwy ii , mi ,,2,1 L=
 (4.1)

 ε≤−+>< ii ybxw, mi ,,2,1 L=

Next theorem can be used to give conditions for the existence of a hard ε -tube.

Theorem 1 (Gale’s Theorem of the alternative)

Exactly one of the following two systems has a solution.

(System 1) bAx ≤

(System 2) , , 0=AyT 0<byT 0≥y

Proof.

Refer to [Bazaraa, 1990]

Consider the two sets of the augmented vectors, and as follows: +S −S

 },,2,1,{ mi
y

x
S

i

i L=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

ε
(4.2)

 },,2,1,{ mi
y

x
S

i

i L=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=−

ε

 42

By Gale’s Theorem, a hard ε -tube exists for 0>ε if and only if the following system in

(, v) has no solution, given the two sets as shown in (4.2). u

0)()(<−−+ ∑∑
i

ii
i

ii yvyu εε ; (4.3)

∑∑ =
i

ii
i

ii xvxu ; ; ; ; 1=∑
i

iu 1=∑
i

iv 0≥iu 0≥iv

It means that a hard ε -tube exists for 0>ε if and only if the convex hulls of the

two sets given in (4.2) are linearly separable.

 Since a regression problem in the primal formulation becomes a classification

problem in the dual formulation, the reduced convex hull concept can be directly applied

to the standard SVR.

Thus, the reduced convex hull SVR seeks the closest points in the reduced convex

hulls of the two augmented data sets. Consider the convex hulls of the two sets given in

(4.2) as follows:

 }

}

0,1|{)(≥== ∑∑
+∈

++
i

i
i

Si
ii uuzuSConv

(4.4)

 0,1|{)(≥== ∑∑
−∈

−−
i

i
i

Si
ii vvzvSConv

 where & ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

εi

i
i y

x
z ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

εi

i
i y

x
z

The closest points of the two convex hulls in (4.4) can be obtained by solving the

following optimization problem in (,). u v

 43

vu

Min
,

2

2
1 ∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ i

i
i

i

i
i

i

i v
y

x
u

y
x

εε

s.t. (4.5)

1
1

=∑
=

m

i
iu

1
1

=∑
=

m

i
iv

iu≤0 for mi ,,2,1 L=

jv≤0 for mj ,,2,1 L=

Second, a hard ε -tube exists, which is the same as the smallest hard tube when

0εε = . In this case, the convex hulls of the two sets are not strictly separable as shown

in Figure 17(b) with a hard 0ε -tube separating the two convex hulls. However, it is

practically impossible that user selects the smallest 0ε -tube, and that there is no outlier in

input data.

Third, the convex hulls of two sets are overlapped when 0εε < as shown in

Figure 17 (c). This is called soft ε -tube. In applications, this case is very common and

easily found. To resolve the soft ε -tube case, the reduced convex hull concept is very

useful. Consider the reduced convex hulls of sets and as follows: +S −S

}0,1|{)(CuuzuSConv i
i

i
Si

ii ≤≤== ∑∑
+∈

++

(4.7)

 }0,1|{)(CvvzvSConv i
i

i
Si

ii ≤≤== ∑∑
−∈

−−

 where & ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

εi

i
i y

x
z ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

εi

i
i y

x
z

 44

Since these convex hulls are not separable, the convex hulls are reduced based on .

Thus, the mathematical programming problem of RCH-SVR is presented as follows:

C

vu

Min
,

2

2
1 ∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ i

i
i

i

i
i

i

i v
y

x
u

y
x

εε

s.t. (4.8)

1
1

=∑
=

m

i
iu

1
1

=∑
=

m

i
iv

Cui ≤≤0 for mi ,,2,1 L=

Cvi ≤≤0 for mi ,,2,1 L=

Thus, solutions from the optimization problem in (4.8) separate two reduced convex hulls

by bisecting the connection of the closest points in each class.

4.2 A Revised SVR (RSVR)

 In section 4.1, three cases based on the relationship between ε and 0ε are

considered. It is nearly impossible to construct the hard ε -tube in real-world

applications because the size of data to be considered is huge. Thus, only the soft ε -tube

case will be investigated. The resulting formulation can be easily applied to the soft ε -

tube case.

 Although it is quite effective to reduce the number of support vectors when the

reduced convex hull SVR approach is utilized, the drawbacks of this approach still exist.

 45

First, the upper bound of variables C is fixed by the user. This means that the convex

hulls shrink at the same rate on both sides (lower and upper parts of the regression line).

Thus, this approach might not reflect recent trends. Second, when the reduced convex

hull SVR is applied to the incremental approach, strict application of the reduced convex

hull SVR (e.g., at the high shrink rate) might lose essential information (i.e., some

support vectors) extracted from the previous step. Hence the upper bound of variables

must be flexible in order to cope with the above situations.

C

Consider the following optimization problem mentioned in (2.7) of chapter 2.

Min ∑
=

++
m

i
iiCw

1

'2)(
2
1 ξξ

s.t. (4.9)

ii
T

i bxwy ξε +≤−− mi ,,1L=

'
iii

T ybxw ξε +≤−+ mi ,,1L=

 0, ' ≥ii ξξ mi ,,1L=

In (4.9), the objective function and constraints can be reformulated as follows:

 Min ∑
=

++
m

i
ii

T Cww
1

')(
2
1 ξξ

s.t. (4.10)

ii
T

i bxwy ξε ≤−−−)(mi ,,1L=

')(iii
T ybxw ξε ≤+−+ mi ,,1L=

 0, ' ≥ii ξξ mi ,,1L=

 46

By introducing Lagrangian multipliers , , , and , the Lagrangian function of

(4.10) can be constructed as follows:

iα '
iα iη

'
iη

∑∑ −−++−++=
= i

ii
T

ii

m

i
ii

T ybxwCwwL))(()(
2
1

1

' εξαξξ

∑∑ +−++−−−
i

iiii
i

ii
T

ii ybxw)())(('''' ξηξηεξα (4.11)

Differentiating the Lagrangian function with respect to , b , , and , the optimality

conditions can be obtained as follows:

w iξ
'
iξ

∑ =−−=
∂
∂

i
iii xw

w
L 0)('αα (4.12) ∑ −=

i
iii xw)('αα

∑ =−=
∂
∂

i
iib

L 0)('αα (4.13)

0=−−=
∂
∂

ii
i

CL ηα
ξ

 (4.14) ii C αη −=

0''
' =−−=

∂
∂

ii
i

CL ηα
ξ

 (4.15) ''
ii C αη −=

By substituting , , and which are obtained from (4.12), (4.14), and (4.15)

into(4.11), the resulting function becomes

w iη
'
iη

F

∑∑∑
=

++−−=
m

i
iiji

i j
jjii CxxF

1

''')())((
2
1 ξξαααα

∑ ∑ −−+−+−
i

iijjjii ybxx))()((' εααξα

 47

∑ ∑ ++−−−−
i

iijjjii ybxx))()((''' εααξα

∑ −+−−
i

iiii CC))()[('' ξαξα (4.16)

Since from (4.13) and cancellations, (4.16) becomes ∑ =−
i

ii 0)('αα

ji
i j

jjii xxF ∑∑ −−−=))((
2
1 '' αααα

∑∑ +−−+ εαααα)()(''
iiiii y (4.17)

Then equation (4.17) is kernelized with respect to , and with the constraints from the

optimality conditions the following dual optimization problem is constructed as follows:

ix

),('ααFMax

∑∑∑∑
=== =

+−−+−−−=
m

i
ii

m

i
iii

m

i

m

j
jijjii yxxK

1

'

1

'

1 1

'')()(),())((
2
1 ααεαααααα

s.t. (4.18)

0)(
1

' =−∑
=

m

i
ii αα

Ci ≤≤ α0 for mi ,,2,1 L=

Ci ≤≤ '0 α for mi ,,2,1 L=

In chapter 3, the revised SVM concept is effectively applied to the classification

problem while the shrink rates on two classes are different. Since the regression problem

in the primal space becomes a classification problem in the dual space, the revised SVM

 48

concept is naturally applied to this regression problem. There exists a difference between

the revised SVM and the revised SVR. In the revised SVM, the target value indicates the

class label such as and 1+ 1− in a binary classification problem. In contrast, in the

revised SVR the target value is a real value instead of the class label. Thus, the

appropriate expressions should be modified to accommodate the revised SVR case.

Consider two sets of the augmented vectors, and . +S −S

 },,2,1,{ mi
y

x
S

i

i L=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

ε
(4.19)

 },,2,1,{ mi
y

x
S

i

i L=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=−

ε

where & ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

εi

i
i y

x
z ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

εi

i
i y

x
z

Then their revised convex hulls are as follows:

}10,1|{)(CuuzuSConv i
i

i
Si

ii ≤≤== ∑∑
+∈

++

(4.20)

 }20,1|{)(CvvzvSConv i
i

i
Si

ii ≤≤== ∑∑
−∈

−−

 where 12,10 ≤< CC

Since these convex hulls generally are not separable, the convex hulls are reduced based

on and . Thus, the mathematical expression of the revised SVR in the dual space

is presented as follows:

1C 2C

 49

vu

Min
,

2

2
1 ∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ i

i
i

i

i
i

i

i v
y

x
u

y
x

εε

s.t. (4.21)

1
1

=∑
=

m

i
iu

1
1

=∑
=

m

i
iv

10 Cui ≤≤ for mi ,,2,1 L=

20 Cvi ≤≤ for mi ,,2,1 L=

The objective of this problem is to obtain the closest points between the different

reduced convex hulls of the two sets. Then the separating hyperplane can be obtained as

the bisector of the segment defined by the two closest points of the reduced convex hulls.

This separating hyperplane becomes the regression function in the primal space.

 Different from the classification problem, the regression problem uses the

augmented vectors & which form the convex combinations

in both sides. Since the regression problem seeks to predict the target based on the input

data, only the input data are kernelized in the revised convex hull concept. Thus, the

augmented vectors & are transformed to the augmented

feature space by the transformation function

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

εi

i
i y

x
z ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

εi

i
i y

x
z

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+

εi

i
i y

x
z ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

εi

i
i y

x
z

)(•φ so that the resulting images in the

feature space are & . Because the target depends on the input , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ε

φ

i

i

y
x)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ε

φ

i

i

y
x)(

iy ix

 50

the weights are obtained with the input , and those are applied to the target . Thus,

the objective function in (4.8) is reformulated as follows:

ix iy

∑∑∑∑ −−++−
i

ii
i

ii
i

ii
i

ii yvyuxvxu)()(
2
1

2

εε (4.22)

The formulation (4.22) can be expanded as follows:

∑∑∑ −−++−
i

ii
i

ii
i

iii yvyuxvu)()()(
2
1

2

εε

∑∑∑∑ −−++−−
i

ii
i

ii
j

jjj
i

iii yvyuxvuxvu)()())()()((
2
1 εε

∑∑∑∑ −−++−−
i

ii
i

ii
i j

j
T
ijjii yvyuxxvuvu)()()))(((

2
1 εε (4.23)

In (4.23), the term is transformed by a transformation function, j
T
i xx)(•φ resulting to

)()(ji xx φφ . By Mercer’s theorem, the inner-product kernel)()(),(jiji xxxxK φφ= can

be computed. Thus, the kernelized expression of (4.23) becomes

∑∑ −−
i j

jijjii xxKvuvu)),())(((
2
1

 (4.24) ∑∑ −−++
i

ii
i

ii yvyu)()(εε

By making the change of variables, and in the above expression, (4.24)

becomes

'
iiu α= iiv α=

∑∑ −−
i j

jiiiii xxK)),())(((
2
1 '' αααα

 (4.25) ∑∑ −−++
i

ii
i

ii yy)()(' εαεα

 51

Since the objective function is minimized in (4.21), when we change from the

minimization problem to the maximization problem with the function in (4.25), (4.25)

becomes

Max ∑∑
= =

−−−
m

i

m

j
jijjii xxK

1 1

''),())((
2
1 αααα

∑∑
==

+−−+
m

i
ii

m

i
iiiy

1

'

1

')()(ααεαα (4.26)

The objective function in (4.26) is exactly the same as the objective function in (4.18).

Thus, the revised convex hull concept can be directly applied without any problem.

Accordingly, the optimization problem in (4.21) becomes

),('ααFMax

∑∑∑∑
=== =

+−−+−−−=
m

i
ii

m

i
iii

m

i

m

j
jijjii yxxK

1

'

1

'

1 1

'')()(),())((
2
1 ααεαααααα

s.t. (4.27)

1
1

=∑
=

m

i
iα

1
1

' =∑
=

m

i
iα

10 Ci ≤≤ α for mi ,,2,1 L=

20 ' Ci ≤≤ α for mi ,,2,1 L=

Thus, solutions from the optimization problem in (4.27) separate two differently

reduced convex hulls by bisecting the segment that connects the closest points in each

class. The appropriate choices of and depend on the user. The general criterion

to determine two upper bounds can be described in the following manner.

1C 2C

 52

If a convex hull shrinks too much, the separating hyperplane leans to the reduced

convex hull in dual space. In contrast, if the other convex hull shrinks much more than

the previous convex hull, the separating hyperplane is inclined more to the other convex

hull. There are three possible cases as shown in Figure 18.

(a) (b) (c)

Figure 18. Inclination of the separating hyperplane

Thus, if the trend of data points goes upward as shown in Figure 18(a), the upper

convex hull should be shrunk much more than the lower convex hull. If data points show

the horizontal trend as shown in Figure 18(b), the reduced convex hull approach which is

mentioned in the previous section is directly applied. If the trend of data points goes

downward as shown in Figure 18(c), the lower convex hull should be reduced much more

than the upper convex hull.

 53

4.3 Incremental learning with Revised SVR with Filters (IRSVRF)

In the literature, few publications regarding the incremental SVR are reported so

far [Liu and He, 2005; Ma, 2003; Wang, 2005]. Most of them concentrate on the updates

of multipliers in SVR. These works are extensions of the on-line learning approach by

Cauwenberghs and Poggio (2001). As mentioned before, these works are a variant of the

incremental approach, and on-line updating of variables also requires dramatically

increasing computing time if the support vectors are accumulated.

The Revised SVR concept with flexible upper bounds, mentioned in the previous

section, is suitable for the incremental approach. The general format of the incremental

revised SVR is similar to the incremental revised SVM. However, there are some

differences between them.

First, the upper bounds of multipliers are flexible. If the pattern of recent data

seems to be upward, the corresponding reduced convex hull should be shrunk more. This

kind of pattern can be detected by the discarded data. Second, the running batch is

possible. In this situation, old support vectors can be removed. Third, two filters are

used on both sides. Thus, if a new data point is outside of the reduced supporting

hyperplane, the data point will be removed from training.

 Therefore, three approaches in the framework of the incremental learning process

are proposed in this study.

 The first is the incremental revised support vector regression (IRSVR). The

revised convex hull concept is applied to the incremental learning procedure. Since the

revised convex hull concept is used, the number of support vectors is dramatically

 54

decreased. Accordingly the computing time is also reduced. In a dynamic data driven

application, such as the financial market, “time” is a critical factor in fluctuations of

price, index, or foreign exchange rate. Even though an algorithm produces a good

generalization rate, it is useless if it takes a huge amount of time. In this aspect, this

IRSVR approach is very appropriate for a dynamic data driven application. The

algorithmic procedure is shown as follows:

==

Step 1. Determine the optimal batch size based on generalization error rate and

computing time for training.

Step 2. Determine the reducing rates and 1C 2C

Step 3. Train data in the first batch by the revised SVR.

Step 4. Store data points representing support vectors in the next batch.

Step 5. Train the data in the batch by the revised SVR, and obtain support vectors

and corresponding regression function.

Step 6. Store data points in the next batch, and go to step 5.

==

The diagram of the above algorithm is shown in Figure 19.

Train data by RSVR

Obtain regression function & SVs

Put SVs into next batch

Determine reducing rates

Determine the optimal batch size

Figure 19. Diagram for IRSVR

 55

 The second approach is the incremental revised support vector regression with

trends (IRSVRT). The regression problem is to find the tracing function closely fitting

the existing historic data for a better prediction of the future value. As mentioned in

section 4.2, when the regression function shows the uphill or downhill trend, appropriate

adjustments should be added in the incremental learning procedure to reflect the

tendency. In this aspect, the IRSVR might produce worse results. After the predicted

value is obtained, the actual value is also shown later. This difference between the

predicted value and the actual value can be a good indicator showing the current trends.

If the difference is greater than zero, it means that the predicted value is higher than the

actual value. Thus, the regression line will be upward if the upper convex hull is more

reduced. On the other hand, the lower convex hull should be shrunk when the difference

is less than zero. Then, the regression line goes down. This idea can be reflected in the

IRSVR procedure. The algorithmic procedure is shown as follows:

==

Step 1. Determine the optimal batch size based on generalization error rate and

computing time for training.

Step 2. Determine the reducing rates and considering the trends 1C 2C

(initial rates are determined by the user)

Step 3. Train data in the batch by the revised SVR and obtain support vectors,

and corresponding regression function.

Step 4. Store data points representing support vectors in the next batch.

Step5. Compare the predicted and actual values;

 If the difference is greater than 0, decrease the upper reducing rate

 Otherwise, decrease the lower reducing rate, and go to step 2

==

 56

The diagram of the above algorithm is shown in Figure 20.

Determine reducing rates

Train data by RSVR

Obtain regression function & SVs

Put SVs into next batch

no yes
Error > 0?

Determine the optimal batch size

Figure 20. Diagram for IRSVRT

 Next, the incremental revised support vector regression with trends using filters

(IRSVRT) is described. The filter concept developed in section 3.4 is directly applied to

the IRSVR procedure. Different from the filter in the RSVM, two filters are created to

remove potential noisy data. The two filters are the reduced supporting hyperplanes as

shown in Figure 21.

 57

Supporting
hyperplane

Conv2 Conv1

Supporting
hyperplane

Figure 21. Two filters for IRSVRTF

 In the situation with rapid fluctuations, this approach might work properly

because if the newly coming data stands outside of the filters, the filters remove those

data instantly. However, this approach will be effective in order to handle a large-scale

data set in a long-term period. The algorithmic procedure is shown as follows:

==

Step 1. Determine the optimal batch size based on generalization error rate and

computing time for training.

Step 2. Determine the reducing rates and considering the trends 1C 2C

(initial values are determined by the user).

Step 3. Train data in the batch by the revised SVR, and obtain support vectors

and corresponding regression function.

Step 4. Store data points representing support vectors in the next batch.

Step 5. Inject a new point to the filters.

Step 6. If a new data point is located outside of the filters,

 then (1) discard the data point, (2) identify which filter is used

 58

and (3) count the discarded data

 Otherwise, store it in the next batch.

Step 7. If the size of data in a batch is equal to the optimal batch size, go to the next step

 Otherwise, go to step 5.

Step 8. Train the data in the batch and obtain support vectors, and the corresponding

 regression function.

Step 9. Update the filters and the reducing rates and 1C 2C

considering the trends. Go to step 2.

==

The diagram of the above algorithm is shown in Figure 22.

Determine reducing rates

Train data by RSVR

Obtain regression function & SVs

Put SVs into next batch

Batch?

no

yes

Pass filters?

yes

Inject data

no

Determine the optimal batch size

Figure 22. Diagram for IRSVRTF

 59

4.4 A toy problem for IRSVR

For illustration purposes, a toy problem is created. Instead of a simple linear

regression, the sine function is used to produce the artificial data. To reflect the real

situation, a noisy term is added to the sine function. The formulation of the noisy sine

function is shown in (4.28):

))(()*2(sin xsizerandnxy ρπ += (4.28)

In (4.28), the second term creates some noise, which is produced by

multiplication of the random number from the normal distribution and noisy

coefficient ρ . The noisy coefficient ρ is arbitrarily set to 0.5. Figure 23 shows 100

data points that are randomly generated in the range from zero to one by the function in

(4.28).

Figure 23. A data set generated from the noisy sine function

 60

4.4.1 Description of experiments

The input data are the random numbers and their noisy sine function values. The

300 random numbers are generated between zero and one. The corresponding noisy sine

function values are also obtained. Ten training and testing sets are used to produce the

valid results with the input values selected from the interval [0, 1].

Due to the computational complexity, it is practically impossible to train many

data at once. Thus, this toy example is designed to compare different approaches: The

traditional SVR (SVR), the incremental SVR approach (ISVR), and the incremental

revised SVR (IRSVR). As an extension of IRSVR, IRSVR with trends (IRSVRT) and

IRSVR with trends using filters (IRSVRTF) is developed as well.

For comparison criteria, the number of support vectors, the computing time, the

mean square error (MSE), the mean absolute error (MAE) and the number of batches are

used. Here, MSE and MAE are averaged over 10 sets. Resulting values are compared

under those comparison criteria.

Note that all approaches except the IRSVRTF use the same testing set. Since the

IRSVRTF trains the available data removing the potential noisy data and considers the

trends at each batch, the same testing set used in other approaches cannot be used. Thus,

the testing set for the IRSVRTF is created in the following manner. After the first batch

is trained, the IRSVRTF collects the appropriate data using the filters. When a data point

passes the filter, the index of the data point is remembered, and the corresponding index

in the testing set is used to form a testing set. Thus, it makes it possible to compare the

prediction value and the actual value at the same time.

 61

In this experiment, a batch size is arbitrarily determined at 50, and ε value is set

to 0.2. The initial reducing rate is 0.1, and the diminished amount of the reducing rate

when the trends are considered is predetermined at 10%. In the SVR, C is equal to 1.

The above parameters should be tuned before the experiment for accurate results; all

parameters are arbitrarily predetermined because this experiment has an illustration

purpose.

4.4.2 Experimental results

All resulting values under the comparison criteria are the average value of results

after 10 training and testing data sets are executed. The CPU time is the total training

time. The MSE and MAE are computed based on the error, which is the difference

between the predicted value and the actual value. The comparison of different

approaches is shown in Table 3.

Table 3. Comparison of different approaches under comparison criteria

Method
CPU time

(sec)
MSE MAE

Number of

SVs

Number of

batches

SVR 222.96 0.7201 0.7049 253.2 1

ISVR 237.46 0.7161 0.7003 242 6

IRSVR 9.13 0.7223 0.7167 20.1 6

IRSVRT 9.21 0.7223 0.7167 20.1 6

IRSVRTF 5.98 0.209656 0.3823 22.7 4

 62

From the results, IRSVRTF shows the best results in almost all criteria. Although

the number of support vectors is a little higher than the IRSVR and IRSVRT, IRSVRTF

reduces the number of batches as it removes the potential noisy data. The computing

time of the traditional SVR is almost the same as the incremental SVR. It is because the

incremental SVR accumulates the support vectors. The numbers of support vectors in the

SVR and ISVR approaches are almost the same. In contrast, IRSVR and IRSVRT show

the effectiveness with respect to the “time” with the similar MSE and MAE.

Clearly the results show that the revised convex hull concept reduces the number

of support vectors. Accordingly, this revised SVR approach saves a huge amount of

computing time proving the effectiveness of the revised SVR concept.

 63

CHAPTER 5

APPLICATIONS AND COMPUTATIONAL RESULTS

5. APPLICATIONS AND COMPUTATIONAL RESULTS

In the real world, the SVMs and SVR methods have been applied to many areas

such as image classification, bioinformatics, text-categorization, data mining,

meteorology, and financial forecasting. It’s hard to use the standard SVM and SVR due

to many limitations (e.g., memory requirement, timely manner, availability of input data).

Thus, the incremental learning approach developed in this study is quite suitable to

overcome the above limitations. In this chapter, a tornado detection problem is

considered as an application of IRSVM. In addition, a financial forecasting problem is

considered as an application of IRSVR.

5.1 Tornado detection Problem

A tornado is a rarely occurring critical event in the real world as well as in the

meteorology community. Based on the weather data produced from the Weather

Surveillance Radar 1988 Doppler (WSR-88D), the Mesocyclone Detection Algorithm

(MDA) is currently used to detect tornados.

 64

The tornado detection problem is a good application to apply the new algorithm

that was developed in this study. The tornado detection problem is characterized as

follows: First, it is a two-class (tornado and non-tornado) classification problem. Second,

it is an unbalanced problem. The tornado class consists of few data in the entire tornadic

and non-tornadic data set. Third, it is an asymmetric importance problem. That is, the

tornado class is relatively more important than the non-tornado class. Fourth, weather

data related to tornados are periodically provided by weather radar.

The standard SVM or other variants cannot properly train the weather data due to

the size of weather data, limited capacity of computation for training, and periodic inflow

of weather data. The incremental learning procedure can overcome these restrictions

 Typically, a tornado confusion matrix is utilized in order to measure the

performance for tornado detection as shown in Table 4.

Table 4. Tornado confusion matrix

 Tornado Observed

 Yes No

Yes Hit (a) False Alarm (b)
“Yes”

Forecasts

No Miss (c) Correct (d)
“No”

Forecasts

Fo
re

ca
st

 T
or

na
do

 “Yes” Observation “No” Observation
Total number of

observations

There are several meteorological indices in the literature. The most important

measurement among them is the probability of detection (POD). Based on a tornado

confusion matrix, the POD can be obtained as follows:

 65

Probability of detection (POD) =
ca

a
+

Since a tornado without a warning may bring serious disasters, to increase the

detection rate that can be measured by the POD, is a critical issue in the meteorology

community. The POD formula consists of “hit” rate and “miss” rate. To increase the

POD, “hit” rate should be increased and “miss” rate must be decreased. In this study, all

tornado data are used whereas non-tornado data are partially used to train the data sets

using the reduced convex hull concept. Thus, the ‘false alarm’ rate might be increased

because the size of the convex hull containing non-tornado data is reduced. However, the

number of “miss” events will be substantially reduced because the convex hull containing

tornado data is not shrunk. Measurements of False Alarm Rate (FAR) and Critical

Success Index (CSI) are also obtained for a full picture. Formula of FAR and CSI are

shown as follows:

False Alarm Rate (FAR) =
ba

b
+

Critical Success Index (CSI) =
cba

a
++

5.1.1 Description of Experiments for Tornado Detection

In this study, we use the MDA data provided by the National Severe Storms

Laboratory (NSSL). These tornadic and nontornadic data, generated from 1994 to 1999,

are randomly selected to produce ten training and testing sets. Each datum has 23

attributes that are related to information such as velocity and shear. These attributes have

been successfully used for tornado detection in the literature [Marzban and Stumpf,

 66

1996]. The list of attributes is shown in Table 5. To reflect the real situation, 10% of the

each training and testing set (1500 data) is tornadic data. We assume that randomly

selected data form sequential time frames because the MDA data provide only dates.

Table 5. List of attributes

No. Attributes No. Attributes

1 Base (m) 13
Lowe-level gate-to-gate velocity

difference (m/s)

2 Depth (m) 14
Maximum gate-to-gate velocity

difference (m/s)

3 Strength rank 15
Height of maximum gate-to-gate

velocity difference (m)

4 Low-level diameter (m) 16 Core base (m)

5 Maximum diameter (m) 17 Core depth (m)

6 Height of maximum diameter (m) 18 Age (min)

7
Low-level rotational velocity

(m/s)
19

Strength index (MSI) weighted by

average density of integrated layer

8
Maximum rotational velocity

(m/s)
20 Strength index (MSIr) “rank”

9
Height of maximum rotational

velocity (m/s)
21 Relative depth (%)

10 Lowe-level shear (m/s/km) 22 Low-level convergence (m/s)

11 Maximum shear (m/s/km) 23 Mid-level convergence (m/s)

12 Height of maximum shear (m)

Three approaches are performed and compared: the incremental approach with

standard SVM (ISSVM), the incremental approach with revised SVM (IRSVM), and the

incremental approach with revised SVM and filter (IRSVMF). These approaches are

compared in terms of POD, total CPU time, number of batches, and “miss” portion over

 67

all other data. Each approach executes training and testing ten times, respectively, and

their average values are computed in terms of the above criteria.

In the incremental approaches with standard SVM and with revised SVM, each

batch size is set to 300 (for specific details, refer to [Son et al., 2005]). The incremental

approach with filters uses a batch with a size of 300 data, which consists of data passing

the filter. MATLAB codes originally provided by [Gunn, 1997] are entirely revised to

run the incremental step. A Pentium IV 2.8GHz with 1 GB Ram of memory was used to

perform all experiments.

5.1.2 Experimental Results

After performing each approach with ten training and testing data sets, the

averaged results are shown in Table 6.

Table 6. Comparison of incremental learning methods

Methods POD
Total CPU

time (Sec)

Number of

SVs

“Miss”/all

(%)

Incremental approach with

standard SVM
0.62 754.62 57 3.83

Incremental approach with

revised SVM
0.69 406.26 11 3.14

Incremental approach with

revised SVM & filter
0.60 314.46 11 3.97

 68

Even if the total CPU time and the number of support vectors are reduced, IRSVM

outperforms ISSVM in terms of POD and “miss” over all rate. The CPU time and the

number of support vectors for each batch are shown in Figures 24 and 25, respectively.

0

50

100

150

200

250

300

350

1 2 3 4 5
Batch

C
PU

 ti
m

e
(s

ec
)

ISSVM
IRSVM

Figure 24. Comparison between ISVM and IRSVM with respect to computing time

0

20

40

60

80

100

120

140

1 2 3 4 5Batch

N
um

be
r o

f S
V

ISSVM
IRSVM

Figure 25. Comparison between ISVM and IRSVM with respect to the number of
support vectors

 69

Since the number of support vectors is increased as each batch is sequentially

trained, the computing time is also dramatically increased, whereas IRSVM keeps the

same number of support vectors and requires a smaller computing time. When IRSVMF

is applied, computing time is also significantly reduced although POD is slightly

dropped.

Table 7. Comparison of methods with respect to FAR and CSI

Methods FAR CSI

Incremental approach with

standard SVM
0.81 0.17

Incremental approach with

revised SVM
0.90 0.10

Incremental approach with

revised SVM & filter
0.90 0.08

Though filter discards potential non-tornado data, IRSVM and IRSVMF have similar

FAR rates. CSI slightly drops when revised SVM concept is applied to the incremental

learning procedure.

5.2 Financial Forecasting Problem

 It is very critical to predict the accurate future value of an index in the financial

market. There exist various indices such as interest rate, foreign exchange rate, Dow

Jones Index, etc. Since these indices are determined by a huge number of factors, it is

hard to identify and to model in a simple form entire factors in which hard-to-quantify

factors (e.g., personal intuition) might exist. In addition, these indices are dynamically

 70

fluctuating all the time. Thus, it is a good example of a dynamic data-driven application.

Since factors that affect the indices cannot be easily identified and data for these kinds of

factors are not available currently, only time is considered as the input in this experiment.

The output value will be the expected S&P 500 index. Thus, the aim of this experiment

is to compare different incremental approaches using various criteria.

5.2.1 Description of experiments for financial forecasting

For input data the S&P 500 data are obtained from the Yahoo’s finance web site.

Daily close indices from 1950 to the present are available. It is practically impossible to

train all data simultaneously due to the computational complexity. Thus, only

incremental approaches will be applied and compared.

Daily close indices are partitioned into 5 sets (5 decades). Training and testing

data sets are formed in each decade. The size of available data in 5 decades is shown in

Table 8.

Table 8. Size of available data in 5 decades

Decade Size of data

1951-1960 2411

1961-1970 2492

1971-1980 2526

1981-1990 2527

1991-2000 2528

From each decade, a 400 training data set and a 400 testing data set are made. In

this experiment, the traditional SVR (SVR), the incremental SVR (ISVR), the

 71

incremental revised SVR (IRSVR), and the incremental revised SVR with trends

(ISVRT) are compared. The incremental revised SVR with trends using filters

(IRSVRTF) is not used because the preliminary experiments show that it runs only one

time and stops. I believe it is because the reducing rates are appropriately tuned, and the

size of data set considered is quite small. Basically the aim of this experiment is to show

the difference of the critical factor, “time”, between different approaches. As comparison

criteria, the number of support vectors, the computing time, the mean square error

(MSE), and the mean absolute error (MAE) are used. Other conditions, such as the

reducing rates and ε , are the same as conditions in the toy problem.

5.2.2 Experimental results

The average values of results after 5 training and testing data sets are shown in

Table 9.

Table 9. Comparison of different approaches under the comparison criteria

Method
CPU time

(sec)
MSE MAE

Number of

SVs

SVR 1735.52 1994.44 21.3 382.80

ISVR 2195.98 1718.39 19.1 344.8

IRSVR 33.52 29609.78 128.11 21

IRSVRT 33.57 29603.78 128.11 21

From the results, SVR and ISVR require a huge amount of computing time. Since

the support vectors are accumulated, it requires more time to train. In addition, the

 72

revised SVR concept clearly reduces the number of support vectors. To decrease the

MSE and MAE of the incremental approach with the revised SVR concept, the related

parameters (e.g., reduce rates, epsilon, and kernel) must be tuned properly. Though MSE

and MAE of the incremental approach with the revised SVR concept are quite high, there

is no statistically significant difference between the methods in Table 9. The

corresponding single ANOVA tables with respect to MSE and MAE are shown in Tables

10 and 11, respectively. Therefore, IRSVR and IRSVRT can reduce the computing time

performing similarly like in the case of SVR and ISVR.

Table 10. ANOVA Table for MSE

Source of variation SS df MS F P-value F_crit

Between Groups 3851438895 3 1283812965 0.965 0.433 3.239

Within Groups 21284683876 16 1330292742

Total 25136122772 19

Table 11. ANOVA Table for MAE

Source of variation SS df MS F P-value F_crit

Between Groups 57075 3 19025 2.219 0.128 3.239

Within Groups 138603 16 8663

Total 195678 19

 73

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

6. SUMMARY AND FUTURE RESEARCH

Modern technology produces a massive amount of data nowadays. However, it is

not simple to extract the necessary information from massive data. Furthermore, the span

of data is getting shorter so that the existing static systems tend to be transformed to the

dynamic data-driven application systems. To deal with the dynamic data, the current

learning procedure should be reconsidered and revised properly. In this dissertation,

several approaches are proposed to overcome the limitations of the existing kernel

learning approaches for SVMs. First, the revised SVM is proposed to improve the

detection rate of data in the important class in a binary classification problem. It reduces

the number of support vectors as well as the computing time for training the data.

Second, the revised SVM concept is applied to the incremental learning approach for

dealing with large amount of data. A filter concept is also proposed to remove the

potential noisy data making the speedy training process possible. Third, for the

regression problem, the revised SVM concept is applied and revised to fit the slightly

different situations. In addition, an incremental revised SVR approach considering the

trends is also proposed. This filter concept can be adapted to other learning algorithms to

 74

improve the performance with respect to computing time. In the application chapter, the

revised SVM concept clearly improves the detection rate of tornados, and the filter

concept makes the training more effective. Furthermore, several parameters (e.g., the

optimal batch size for the revised SVM, the upper bound of multipliers, µ, for the

unimportant class) need to be tuned. These parameters definitely affect the performance

of the proposed algorithm in terms of the number of support vectors, computing time,

generalization error, and detection rate for the important class. More effective selection

of those parameters should be investigated (e.g., improved tornado detection rate).

The proposed algorithms are applied to real data in two applications, such as the

tornado detection problem and the financial forecasting problem. From the results, the

revised convex hull concept definitely works better especially with respect to

computational time. Hence, this revised convex hull concept should be seriously

considered in the dynamic data driven application systems

 In future research, the revised convex hull concept can be extended to the multi-

class SVM problem. For the revised convex hull concept to be successfully performed in

various applications, the appropriate reducing rates should be tuned. Since those rates

depend on the structure of data sets, the investigation for the appropriate reducing rates

will be a future research topic. For the regression problem, when the factors that affect

the financial indices are identified, the incremental revised SVR can be performed and

investigated considering those factors. Future research will investigate those issues.

 75

BIBLIOGRAPHY

BIBLIOGRAPHY

Bazaraa, M. Z., J. J. Jarvis, and H. D. Sherali, 1990. Linear Programming and Network
Flows. 2nd edit., New York, NY: John Wiley & Sons, Inc.

Bennett, K. P, and E. J. Bredensteiner, 2000. “Duality and Geometry in SVM
Classifiers,” Proceedings of the Seventeenth International Conference on Machine
Learning, pp. 57-64.

Bern, Marshall, and D. Eppstein, 2001. “Optimization Over Zonotopes and Training
Support Vector Machines,” Proceedings of 7th Workshop, Algorithms and Data
Structures (WADS 2001), Lecture Notes in Computer Science 2125, Frank K. H. A.
Dehne, Jorg-Rudiger Sack, and Roberto Tamassia, ed., Springer-Verlag, pp. 111-121.

Bi, J. and K. P. Bennett, “Duality, geometry, and support vector regression,” Advances in
Neural Information Processing Systems 14, NIPS 2001, pp. 593-600, MIT Press.

Brown, M. P., W. N. Grundy, D. Lin, N. Cristianini, C. Sugnet, 1999, “Support vector
machine classification of microarray gene expression data,” UCSC-CRL 99-09,
Department of computer science, University of California at Santa Cruz.

Burges, C. J. C., “A tutorial on support vector machines for pattern recognition,” Data
mining and Knowledge Discovery, vol. 2, pp. 121-167.

Cao, L. J. and F. E. H. Tay, 2003, “Support vector machine with adaptive parameters in
financial time series forecasting,” IEEE Transactions on Neural Networks, vol. 14, no. 6,
pp. 1506-1518.

Cauwenberghs, G. and T. Poggio, 2001. “Incremental and Decremental Support Vector
Machine Learning,” Advances in Neural Information Processing Systems, vol. 13, pp.
409-415. Cambridge, MA: MIT Press.

Crisp, Daivd J. and C. J. C. Burges, 1999. A Geometric Interpretation of ν-SVM
Classifiers. In Advances in Neural Information Processing Systems (NIPS) vol. 12.
Cambridge, MA: MIT Press.

Cristianini, N. and J. Shawe-Taylor, 2000. An Introduction to support vector machines.
Cambridge University Press, Cambridge, UK.

Demeniconi, C. and D. Gunopulos, 2001. “Incremental support vector machine
construction,” Proceedings of the IEEE International Conference on Data Mining, San
Jose, CA.

 76

Gunn, S. R., 1997. Support Vector Machines for Classification and Regression.
Technical Report, Image Speech and Intelligent Systems Research Group, University of
Southhampton.

Hashemi, S. and T. P Trappenberg, 2002. “Using SVM for Classification in Dataset with
Ambiguous Data,” International Conference on Information Systems, Analysis and
Synthesis SCI.

Haykin, S., 1998. Neural Networks: A Comprehensive Foundation, 2nd edit., Upper
Saddle River, NJ: Prentice-Hall.

Joachims, T, “Text categorization with support vector machines: learning with many
relevant features,” Proceedings of ECML-98, 10th European Conference on Machine
Learning, no. 1398, pp. 137-142.

Klinkenberg, R. and T. Joachims, 2000. “Detecting concept drift with support vector
machines,” Proceedings of ICML-00, 17th International Conference Machine Learning,
pp. 487-494.

Lee, Y. J. and O. L. Mangasarian, 2001. “RSVM: Reduced support vector machines,”
Proceedings of the First SIAM International Conference on Data Mining, 2001.

Liu, Y. and Q. He, 2005, “Concept updating with support vector machines,” WAIM,
LNCS 3739, pp. 492-501, Springer-Verlag, Berlin Heidelberg.

Ma, J., J. Theiler, S. Perkins, 2003. “Accurate on-line support vector regression,” Neural
Computation, vol. 15, pp 2683-2703.

Marzban, C. and G. J. Stumpf, “A Neural Network for Tornado Prediction Based on
Doppler Radar Derived Attributes,” Journal of Applied Meteorology, 1996, vol. 35, pp.
617-626.

Osuna, E, R. Freund, and F. Girosi, 1997. “An Improved Training Algorithm for Support
Vector Machines,” Proceedings of the 1997 IEEE Workshop on Neural Networks for
Signal Processing,” Eds. J. Principe, L. Giles, N. Morgan, E. Wilson, pp. 276-285,
Amelia Island, FL.

Osuna, Edgar and F. Girosi, 1998. Reducing the run-time complexity of Support Vector
Machines. ICPR, Brisbane, Australia.

Ripley, B. D., 1996. Pattern Recognition and Neural Network, Cambridge University
Press.

 77

Ripley, B. D., 1994. “Neural networks and related methods for classification,” Journal of
the Royal Statistical Society B, vol. 56, no. 3, pp. 409-456. Available from the Internet:
www.stats.ox.ac.uk/pub/PRNN/

Ruping, S. 2001. “Incremental learning with Support Vector Machines,” Proceedings of
the IEEE international conference on data mining, San Jose, CA.

Shawe-Taylor, J. and N. Cristianini, 2004. Kernel Methods for Pattern Analysis,
Cambridge University Press, Cambridge, UK.

Shilton, A., M. Palaniswami, D. Ralph, and A. C. Tsoi, 2005. “Incremental training of
support vector machines,” IEEE Transactions on neural networks, vol. 16, no. 1, pp 114-
131.

Son, H, T. B. Trafalis, and M. Richman, 2005. “Determination of the Optimal Batch Size
in Incremental Approaches: An Application to Tornado Detection,” Proceedings of the
International Joint Conference of Neural Network, Montreal, Canada. (accepted).

Song, M., C. M. Breneman, J. Bi, N. Sukumar, K. P. Bennett, S. Cramer, N. J. Tugcu,
2002. “Prediction of protein retention times in anion-exchange chromatography systems
using support vector regression,” Journal of Chemical Information and Computer
Science, vol. 42, no. 6, pp. 1347-1357.

Syed, N. A., H. Liu, and K. K. Sung, 1999. “Incremental Learning with Support Vector
Machines,” Workshop on Support Vector Machines, International Joint Conference on
Artificial Intelligence, Stockholm, Sweden.

Syed, N. A., H. Liu, and K. K. Sung, 1999. “Handling concept drifts in incremental
learning with support vector machines,” Proceedings of first international conference on
knowledge discovery and data mining, pp. 317-321, San Diego.

Trafalis, T. B. and H. Ince, 2000. “Support vector machine for regression and
applications to financial forecasting,” Proceedings of the IEEE-INNS-ENNS International
Joint Conference (IJCNN 2000), vol. 6, pp 348-353.

Trafalis, T. B., B. Santosa, and M. Richman, 2004. “Prediction of rainfall from WSR-
88D Radar using kernel-based methods,” International Journal of Smart Engineering
System Design, vol. 4, no. 4, pp. 429-438.

Vapnik, V. N., 1995. The Nature of Statistical Learning Theory. New York, NY:
Springer Verlag.

Vishwanathan, S. V. N., A. J. Smola, and M. N. Murty, 2003. “Simple SVM,”
Proceedings of the Twentieth International Conference on Machine Learning (ICML –
2003), Washington DC.

 78

Wang, W., 2005. “An incremental learning strategy for support vector regression,”
Neural Processing Letters, vol. 21, no. 3, pp. 175-188.

Yang, H. Y., L. Cahn, and I. King, 2002, “Support vector regression for volatile stock
market prediction,” LNCS 2412, pp. 391-396, Springer-Verlag, Berlin Heidelberg.

Yang, H., K. Huang, L. Chan, I. King, M. R. Lyu, 2004. “Outlier treatment in support
vector machine for financial time series prediction,” ICONIP 2004, LNCS 3316, pp.
1260-1265, Springer-Verlag, Berlin Heidelberg.

Yahoo website: http://finance.yahoo.com.

 79

APPENDICES
APPENDICES

In these appendices, MATLAB codes (version 6.5), which are used in experiments, are
presented.

IRSVM
==

clear all
global P1 % P1 is degree of polynomial
global P2 % P2 is width of rbfs (sigma)
global KERTYPE %1: linear; 2: polynomial; 3: rbf
global C1 % C value on the positive side
global C2 % C value on the negative side

%inputs
P1= 2;
P2= 1;
KERTYPE = 2;
C1= 1;
C2= 0.1;
batch=300; % size of batch
method = 4; % 1: traditional SVM; 2: incremental SVM; 3: revised SVM; 4: revised
SVM with filter
p=3; %staring column
q=25; %ending column

% declarations
Tinfo=[];
TTinfo_svm=[];
TTinfo_incre=[];
TTinfo_rev=[];
TTinfo_revfilter=[];
X=[];
Y=[];
svX=[];
svY=[];
batchcount=0;
trnX=[];
trnY=[];

 80

tcand=[];

%load data
load tr2_TandNT.txt
load ts2_TandNT.txt

[row col]=size(tr2_TandNT);
[row2 col2]=size(ts2_TandNT);

rawtrn=tr2_TandNT(1:row,:);
rawtst=ts2_TandNT(1:row2,:);

%measure the cputime
t0=cputime;

switch lower(method)
 case 1 % traditional SVM

 trnX=rawtrn(:,p:q);
 trnY=rawtrn(:,q+1);

 [nsv, alpha, sv, b0]=mysvc1(trnX,trnY);

 Tcpu=cputime-t0;

 svX=sv(:,1:23);
 svY=sv(:,24);
 [svrow, svcol]=size(sv);

 tstX=rawtst(:,p:q);
 tstY=rawtst(:,q+1);
 bias=b0;

 [Terror,a,b,c,d] = mysvcerror1(trnX,trnY,tstX,tstY,alpha,bias);

 batchcount=batchcount+1;

 Tinfo=[svrow, Tcpu, Terror, a, b, d, d, batchcount];
 TTinfo_svm=[TTinfo_svm; Tinfo];

 save TTinfo_svm.txt TTinfo_svm -ASCII

 case 2 % incremental SVM

 i=1;
 j=i+batch-1;

 81

 while i > 0
 trnX=[rawtrn(i:j,p:q); svX];
 trnY=[rawtrn(i:j,q+1); svY];

 [nsv, possize, negsize, alpha, sv, b0]=mysvc2(trnX,trnY);

 batchcount=batchcount+1;
 Tcpu=cputime-t0;

 svX=sv(:,1:23);
 svY=sv(:,24);
 [svrow, svcol]=size(sv);

 tstX=rawtst(i:j,p:q);
 tstY=rawtst(i:j,q+1);
 bias=b0;

 [Terror, a,b,c,d] = mysvcerror1(trnX,trnY,tstX,tstY,alpha,bias);

 Tinfo=[svrow, Tcpu, Terror, a,b,c,d, possize, negsize, batchcount];
 TTinfo_incre=[TTinfo_incre; Tinfo];

 %update i and j values
 i=j+1;
 %j=300-svrow;
 j=i+batch-1;

 if j > row2
 break
 end
 end %while end

 save TTinfo_incre.txt TTinfo_incre -ASCII

 case 3 % incremental revised SVM
 i=1;
 j=i+batch-1;

 while i > 0
 trnX=[rawtrn(i:j,p:q); svX];
 trnY=[rawtrn(i:j,q+1); svY];

 [nsv, possize, negsize, trnXX, trnYY, alpha, sv, b0]=mysvc3(trnX,trnY);

 batchcount=batchcount+1;

 82

 Tcpu=cputime-t0;

 svX=sv(:,1:23);
 svY=sv(:,24);
 [svrow, svcol]=size(sv);

 tstX=rawtst(i:j,p:q);
 tstY=rawtst(i:j,q+1);
 bias=b0;

 [Terror, a,b,c,d] = mysvcerror1(trnXX,trnYY,tstX,tstY,alpha,bias);

 Tinfo=[svrow, Tcpu, Terror, a,b,c,d, possize, negsize, batchcount];
 TTinfo_rev=[TTinfo_rev; Tinfo];

 %update i and j values
 i=j+1;
 j=i+batch-1;

 if j > row2
 break
 end
 end %while end

 save TTinfo_rev.txt TTinfo_rev -ASCII

 case 4 % revised SVM with filter ============

 i=1;
 j=i+batch-1;
 m=1;
 n=m+batch-1;

 trnX=[rawtrn(i:j,p:q)];
 trnY=[rawtrn(i:j,q+1)];

 [nsv, possize, negsize, trnXX, trnYY, alpha, svalpha, sv, b0, H]=mysvc4(trnX,trnY);

 batchcount=batchcount+1;
 Tcpu=cputime-t0;

 svrow=nsv;

 tstX=rawtst(m:n,p:q);
 tstY=rawtst(m:n,q+1);
 bias=b0;

 83

 [Terror,a,b,c,d] = mysvcerror1(trnXX,trnYY,tstX,tstY,alpha,bias);

 Tinfo=[svrow, Tcpu, Terror,a,b,c,d, possize, negsize, batchcount];
 TTinfo_revfilter=[TTinfo_revfilter; Tinfo];

 i=j+1;
 m=n+1;

 while i > 0

 while i > 0 %to form the batch using a filter
 newX=rawtrn(i,p:q+1);
 [cand]=filter8(sv, svalpha, newX, b0);
 tcand=[tcand; cand];
 [ptrow, ptcol]=size(tcand);

 if ptrow==300 | i == row
 break
 end
 i=i+1
 end % second while

 svX=sv(:,1:23);
 svY=sv(:,24);
 trnX=[tcand(:,1:23); svX];
 trnY=[tcand(:,24); svY];
 k=i;

 [nsv, possize, negsize, trnXX, trnYY, alpha, svalpha, sv, b0, H]=mysvc4(trnX,trnY);

 batchcount=batchcount+1;
 Tcpu=cputime-t0;

 tstX=rawtst(m:n,p:q);
 tstY=rawtst(m:n,q+1);
 bias=b0;

 [Terror,a,b,c,d] = mysvcerror1(trnXX,trnYY,tstX,tstY,alpha,bias);

 Tinfo=[svrow, Tcpu, Terror,a,b,c,d, possize, negsize, batchcount];
 TTinfo_revfilter=[TTinfo_revfilter; Tinfo];

 if i == row
 break
 end

 84

 i=i+1;
 m=n+1;
 n=m+batch-1;
 tcand=[];

 end %while end
 save TTinfo_revfilter.txt TTinfo_revfilter -ASCII

 otherwise %traditional SVM
 error('specify the method that you want to use')
end
===

Kernel
===
function k = mykernel(u,v)

global P1 P2 KERTYPE

if KERTYPE == 1 % linear
 k = u*v';
elseif KERTYPE == 2 % polynomial
 k = (u*v' + 1).^P1;
elseif KERTYPE == 3 % rbf
 k = exp(-(u-v)*(u-v)'/(2*P2^2));
else
 k = u*v';
end
==

SVC1
==
function [nsv, alpha,sv,b0] = mysvc1(X,Y)

global KERTYPE C1

if (nargin <2 | nargin>3) % check correct number of arguments
 help svc
 else
 fprintf('Support Vector Classification\n');
 fprintf('_____________________________\n');

 n = size(X,1);
 [n n1] = size(X);

 85

 % tolerance for Support Vector Detection
 epsilon = mytol(C1);

 % Construct the Kernel matrix
 H = zeros(n,n);
 for i=1:n
 for j=1:n
 H(i,j) = Y(i)*Y(j)*mykernel(X(i,:),X(j,:));
 end
 end
 c = -ones(n,1);

 fprintf('Support Vector Kernel \n');
 fprintf('_____________________________\n');
 H = H+1e-10*eye(size(H));

 % Set up the parameters for the Optimisation problem
 vlb = zeros(n,1); % Set the bounds: alphas >= 0
 vub = C1*ones(n,1); % alphas <= C
 x0 = zeros(n,1); % The starting point is [0 0 0 0]

 Ae = Y'; be = 0; % Set the constraint Ax = b

 % Solve the Optimisation Problem
 fprintf('Optimising ...\n');
 st = cputime;

 %options setting
 options=optimset('MaxIter', 1000);

 [alpha] = quadprog(H, c, [], [], Ae, be, vlb, vub, x0, options);

 fprintf('Execution time: %4.1f seconds\n',cputime - st);
 w2 = alpha'*H*alpha;
 fprintf('|w0|^2 : %f\n',w2);
 fprintf('Margin : %f\n',2/sqrt(w2));
 fprintf('Sum alpha : %f\n',sum(alpha));

 % Compute the number of Support Vectors
 svi = find(alpha > epsilon);
 nsv = length(svi);
 fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n);

 % Obtain support vectors
 sv=[X(svi,:), Y(svi,:)];

 86

 % Implicit bias, b0
 b0 = 0;

 % Explicit bias, b0
 if nobias(KERTYPE) ~= 0
 % find b0 from average of support vectors on margin
 % SVs on margin have alphas: 0 < alpha < C1
 svii = find(alpha > epsilon & alpha < (C1 - epsilon));
 if length(svii) > 0
 b0 = (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii));
 else
 fprintf('No support vectors on margin - cannot compute bias.\n');
 end
 end
 end
===

SVC3
===
function [nsv, possize, negsize, trnXX, trnYY, alpha, sv, b0] = mysvc3(X, Y)

global KERTYPE C1 C2

origdata =[];
posdata=[];
negdata=[];
trnXX=[];
trnYY=[];
vub=[];
be=[];
H=[];
Ae=[];
c=[];

if (nargin <2 | nargin>4) % check correct number of arguments
 help svc
 else
 origdata=[X, Y];
 [n n1] = size(X);
 posind=find(origdata(:,n1+1)>0);
 posdata=[origdata(posind,:)];
 [posrow poscol]=size(posdata);
 posX=posdata(:,1:(poscol-1));
 negind=find(origdata(:,n1+1)< 0);

 87

 negdata=[origdata(negind,:)];
 [negrow negcol]=size(negdata);
 negX=negdata(:,1:(negcol-1));
 trnXX=[posX; negX];
 XX=[posdata; negdata];
 trnYY=[posdata(:, poscol); negdata(:,negcol)];

 % tolerance for Support Vector Detection
 epsilon = mytol(C2);

 % Construct the Kernel matrix for positive side
 if 'rbf'
 posH = ones(posrow, posrow);
 else
 posH = zeros(posrow,posrow);
 for i=1:posrow
 for j=1:posrow
 posH(i,j) = mykernel(posX(i,:),posX(j,:));
 end
 end
 end

 % Construct the Kernel matrix for negative side
 if 'rbf'
 negH = ones(negrow, negrow);
 else
 negH = zeros(negrow,negrow);
 for i=1:negrow
 for j=1:negrow
 negH(i,j) = mykernel(negX(i,:),negX(j,:));
 end
 end
 end

 % Construct the Kernel matrix for both sides
 bothH = zeros(negrow,posrow);
 for i=1:negrow
 for j=1:posrow
 bothH(i,j) = (-1)*mykernel(negX(i,:),posX(j,:));
 end
 end

 H=[posH bothH';bothH negH];
 f = zeros(n,1);

 fprintf('Support Vector Kernel \n')

 88

 fprintf('_____________________________\n')
 H = H+1e-10*eye(size(H));

 % Set up the parameters for the Optimisation problem
 vlb = zeros(n,1); % Set the bounds: alphas, beta >= 0
 vub1 = C1*ones(posrow,1); % alphas <= 1
 vub2 = C2*ones(negrow,1); % betas <= C
 vub = [vub1; vub2];
 x0 = zeros(n,1); % The starting point is [0 0 0 0]
 posA=ones(1,posrow);
 negA=ones(1,negrow);
 posAzero=[posA, zeros(1,(n-posrow))];
 negAzero=[zeros(1,(n-negrow)), negA];
 Ae=[posAzero; negAzero]; be =[1; 1];

 % Solve the Optimisation Problem
 fprintf('Optimising ...\n');
 st = cputime;

 %options setting
 options=optimset('MaxIter', 1000);

 [alpha] = quadprog(H, f, [], [], Ae, be, vlb, vub, x0, options);

 fprintf('Execution time: %4.1f seconds\n',cputime - st);
 w2 = alpha'*H*alpha;
 fprintf('|w0|^2 : %f\n',w2);
 fprintf('Margin : %f\n',2/sqrt(w2));
 fprintf('Sum alpha : %f\n',sum(alpha));

 % Compute the number of Support Vectors
 svi = find(alpha > epsilon);
 nsv = length(svi);
 fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n);

 % Obtain support vectors
 sv=XX(svi,:);
 possvind = find(sv(:,poscol)>0);
 possize=length(possvind);
 negsvind = find(sv(:,negcol)<0);
 negsize=length(negsvind);
 possvs=sv(possvind,:);
 negsvs=sv(negsvind,:);

 % Implicit bias, b0
 b0 = 0;

 89

 % Explicit bias, b0
 if nobias(KERTYPE) ~= 0
 % find b0 from average of support vectors on margin
 % SVs on margin have alphas: 0 < alpha < C
 svii = find(alpha > epsilon & alpha < (C2 - epsilon));
 if length(svii) > 0
 b0 = (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii));
 else
 fprintf('No support vectors on margin - cannot compute bias.\n');
 end
 end
end
===

*** SVC4 ***
===
function [nsv, possize, negsize, trnXX, trnYY, alpha, svalpha, sv, b0, H] = mysvc4(X, Y)

global KERTYPE C1 C2

origdata =[];
posdata=[];
negdata=[];
trnXX=[];
trnYY=[];
vub=[];
be=[];
H=[];
Ae=[];
c=[];

if (nargin <2 | nargin>4) % check correct number of arguments
 help svc
 else
 origdata=[X, Y];
 [n n1] = size(X);
 posind=find(origdata(:,n1+1)>0);
 posdata=[origdata(posind,:)];
 [posrow poscol]=size(posdata);
 posX=posdata(:,1:(poscol-1));
 negind=find(origdata(:,n1+1)< 0);
 negdata=[origdata(negind,:)];
 [negrow negcol]=size(negdata);
 negX=negdata(:,1:(negcol-1));

 90

 trnXX=[posX; negX];
 XX=[posdata; negdata];
 trnYY=[posdata(:, poscol); negdata(:,negcol)];

 % tolerance for Support Vector Detection
 epsilon = mytol(C2);

 % Construct the Kernel matrix for positive side
 if 'rbf'
 posH = ones(posrow, posrow);
 else
 posH = zeros(posrow,posrow);
 for i=1:posrow
 for j=1:posrow
 posH(i,j) = mykernel(posX(i,:),posX(j,:));
 end
 end
 end

 % Construct the Kernel matrix for negative side
 if 'rbf'
 negH = ones(negrow, negrow);
 else
 negH = zeros(negrow,negrow);
 for i=1:negrow
 for j=1:negrow
 negH(i,j) = mykernel(negX(i,:),negX(j,:));
 end
 end
 end

 % Construct the Kernel matrix for both sides
 bothH = zeros(negrow,posrow);
 for i=1:negrow
 for j=1:posrow
 bothH(i,j) = (-1)*mykernel(negX(i,:),posX(j,:));
 end
 end

 H=[posH bothH';bothH negH];
 f = zeros(n,1);

 fprintf('Support Vector Kernel \n');
 fprintf('_____________________________\n');
 H = H+1e-10*eye(size(H));

 91

 % Set up the parameters for the Optimisation problem
 vlb = zeros(n,1); % Set the bounds: alphas, beta >= 0
 vub1 = C1*ones(posrow,1); % alphas <= 1
 vub2 = C2*ones(negrow,1); % betas <= C
 vub = [vub1; vub2];
 x0 = zeros(n,1); % The starting point is [0 0 0 0]
 posA=ones(1,posrow);
 negA=ones(1,negrow);
 posAzero=[posA, zeros(1,(n-posrow))];
 negAzero=[zeros(1,(n-negrow)), negA];
 Ae=[posAzero; negAzero]; be =[1; 1];

 % Solve the Optimisation Problem
 fprintf('Optimising ...\n');
 st = cputime;

 %options setting
 options=optimset('MaxIter', 1000);

 [alpha] = quadprog(H, f, [], [], Ae, be, vlb, vub, x0, options);

 fprintf('Execution time: %4.1f seconds\n',cputime - st);
 w2 = alpha'*H*alpha;
 fprintf('|w0|^2 : %f\n',w2);
 fprintf('Margin : %f\n',2/sqrt(w2));
 fprintf('Sum alpha : %f\n',sum(alpha));

 % Compute the number of Support Vectors
 svi = find(alpha > epsilon);
 nsv = length(svi);
 fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n);

 % Obtain support vectors
 svalpha=alpha(svi,:);
 sv=XX(svi,:);

 possvind = find(sv(:,poscol)>0);
 possize=length(possvind);

 negsvind = find(sv(:,negcol)<0);
 negsize=length(negsvind);

 possvs=sv(possvind,:);
 negsvs=sv(negsvind,:);

 % Implicit bias, b0

 92

 b0 = 0;

 % Explicit bias, b0
 if nobias(KERTYPE) ~= 0
 % find b0 from average of support vectors on margin
 % SVs on margin have alphas: 0 < alpha < C
 svii = find(alpha > epsilon & alpha < (C2 - epsilon));
 if length(svii) > 0
 b0 = (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii));
 else
 fprintf('No support vectors on margin - cannot compute bias.\n');
 end
 end
end
===

*** SVCerror ***
===
function [err,a,b,c,d] = mysvcerror1(trnX,trnY,tstX,tstY,alpha,bias)

global KERTYPE
together=[];

 if (nargin ~= 6) % check correct number of arguments
 help svcerror
 else
 n = size(trnX,1);
 m = length(tstY);
 H = zeros(m,n);
 for i=1:m
 for j=1:n
 H(i,j) = trnY(j)*mykernel(tstX(i,:),trnX(j,:));
 end
 end
 predictedY = sign(H*alpha + bias);
 err = sum(predictedY ~= tstY);
 together=[predictedY, tstY];
 a_indice=find((together(:,1)+together(:,2))==2);
 a=length(a_indice);
 b_indice=find(together(:,1) > together(:,2));
 b=length(b_indice);
 c_indice=find(together(:,1) < together(:,2));
 c=length(c_indice);
 d_indice=find((together(:,1)+together(:,2))== -2);
 d=length(d_indice);

 93

 end
===

*** Tolerance ***
===
function tol = mytol(C)

 % tolerance for Support Vector Detection
 if C==Inf
 tol = 1e-5;
 else
 tol = C*1e-6;
 end
==

*** Filter ***
function [cand]=filter8(sv, svalpha, newX, b0)

%global C2
negsvX=[];
negsvalpha=[];
totnegvalue=[];
negvals=[];
 svX=sv(:,1:23);
 svY=sv(:,24);
 [svrow, svcol]=size(svX);
 [newrow, newcol]=size(newX);
 %filter parts
 negsvYind=find(svY<0);
 negsvX=[sv(negsvYind,1:svcol)];
 [negsvrow, negsvcol]=size(negsvX);
 negsvalpha=[svalpha(negsvYind,:)];

 for i = 1:negsvrow
 for j = 1:svrow
 H(1,j) = svY(j,:)*mykernel(negsvX(i,:),svX(j,:));
 end
 negvalue=H(1,:)*svalpha+b0;
 totnegvalue=[totnegvalue; negvalue];
 end

 negind=find(totnegvalue < 0);
 negvals=[totnegvalue(negind,:)];
 maxnegvalue=max(negvals);

 94

 for j = 1:svrow
 G(1,j) = svY(j,:)*mykernel(newX(:,1:(newcol-1)),svX(j,:));
 end
 newvalue=G*svalpha+b0 ;

 if newvalue < maxnegvalue
 cand=[];
 else
 cand=newX;
 end % if end
===

*** IRSVR ***
==
clear all

global P1 % P1 is degree of polynomial
global P2 % P2 is width of rbfs (sigma)
global KERTYPE %1: linear; 2: polynomial; 3: rbf
%Declaration
X=[];
Y=[];
svX=[];
svY=[];
batchcount=0;
totaltime=0;
trnX=[];
trnY=[];
tcand=[];
cummse=[];
cummae=[];
meanerror=[];

%inputs
P1= 2;
P2= 1;
KERTYPE = 1;
C1= 0.1;
C2= 0.1;
batch=50; % size of batch
method = 5; % 1: traditional SVR 2: ISVR; 3: IRSVR 4: IRSVR wtih trends 5: IRSVRF
with trends
p=1; %staring column for training
q=1; %ending column for training
pq=p-q+1; % number of columns

 95

r=q+1; % target value

%parameter
ker='poly';
C=1;
loss='einsensitive';
e=0.2;
origC1=C1;
origC2=C2;

%load training and testing data
load toy3_tr10.txt
load toy3_ts10.txt

[row col]=size(toy3_tr10);
[row2 col2]=size(toy3_ts10);
rawtrn=toy3_tr10(1:row,:);
rawtst=toy3_ts10(1:row2,:);

result1=[];
result2=[];
cresult=[];

switch lower(method)
 case 1 %
trnX=rawtrn(1:row, p:q);
trnY=rawtrn(1:row, r);

tstX=rawtst(1:row2, p:q);
tsY=rawtst(1:row2, r);

%measure time
t0=cputime;

[nsv, beta, bias]=mysvr1(trnX,trnY, ker, C, loss, e);
totaltime=cputime-t0;
tstY = svroutput(trnX,tstX,ker,beta,bias);

for i = 1:row
 differ(i)=tstY(i)-tsY(i);
end

errorvector=differ';
meansq=mse(errorvector);
abserr=mae(errorvector);
result1=[nsv, meansq, abserr, totaltime]

 96

save result1.txt result1 -ASCII

 case 2 %

 incre_result1=[];
 incre_result2=[];
 cincreresult1=[];
 cincreresult2=[];
 i=1;
 j=i+batch-1;

 while i > 0
 trnX=[rawtrn(i:j,p:q); svX];
 trnY=[rawtrn(i:j,r); svY];
 t0=cputime;

 [nsv, sv, possv, negsv, beta, bias]=mysvr2(trnX,trnY, ker, C, loss, e);

 t1=cputime-t0;
 totaltime=totaltime+t1;
 batchcount=batchcount+1;
 [svrow svcol]=size(sv);
 svX=sv(:,1:(svcol-1));
 svY=sv(:,svcol);

 tstX=rawtst(i:j,p:q);
 tsY=rawtst(i:j,r);

 tstY = svroutput(trnX,tstX,ker,beta,bias);

 [tstYrow, tstYcol]=size(tsY);

 for i = 1:tstYrow
 differ(i)=tstY(i)-tsY(i);
 end %for end

 errorvector=differ';

 meansq=mse(errorvector);
 bserr=mae(errorvector);
 cummse=[cummse; meansq];
 cummae=[cummae; bserr];
 avgmse=mean(cummse);
 avgmae=mean(cummae);

 97

 incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount];
 cincreresult1=[cincreresult1; incre_result1];

 %update i and j values
 i=j+1;
 j=i+batch-1;

 if j > row2
 break
 end %if end
 end %while end

 save increresult1.txt cincreresult1 -ASCII

 case 3 %
 incre_result1=[];
 incre_result2=[];
 cincreresult1=[];
 cincreresult2=[];

 i=1;
 j=i+batch-1;

 while i > 0

 trnX=[rawtrn(i:j,p:q); svX];
 trnY=[rawtrn(i:j,r); svY];
 t0=cputime;
 [nsv, sv, possv, negsv, beta, bias]=mysvr3(trnX,trnY, ker, C1, C2, loss, e);
 t1=cputime-t0;
 totaltime=totaltime+t1;
 batchcount=batchcount+1;
 [svrow svcol]=size(sv);

 svX=sv(:,1:(svcol-1));
 svY=sv(:,svcol);
 tstX=rawtst(i:j,p:q);
 tsY=rawtst(i:j,r);

 tstY = svroutput(trnX,tstX,ker,beta,bias);
 [tstYrow, tstYcol]=size(tsY);

 for i = 1:tstYrow
 differ(i)=tstY(i)-tsY(i);
 end %for end

 98

 errorvector=differ';
 meansq=mse(errorvector);
 bserr=mae(errorvector);
 cummse=[cummse; meansq];
 cummae=[cummae; bserr];
 avgmse=mean(cummse);
 avgmae=mean(cummae);

 incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount];
 cincreresult1=[cincreresult1; incre_result1]

 %update i and j values
 i=j+1;
 j=i+batch-1;

 if j > row2
 break
 end %if end

 end %while end

 save revincreresult1.txt cincreresult1 -ASCII

case 4 %

 incre_result1=[]
 incre_result2=[]
 cincreresult1=[]
 cincreresult2=[]
 i=1
 j=i+batch-1

 while i > 0

 trnX=[rawtrn(i:j,p:q); svX];
 trnY=[rawtrn(i:j,r); svY];
 t0=cputime;
 [nsv, sv, possv, negsv, beta, bias]=mysvr4(trnX,trnY, ker, C1, C2, loss, e);

 t1=cputime-t0;
 totaltime=totaltime+t1
 batchcount=batchcount+1;
 [svrow svcol]=size(sv);

 svX=sv(:,1:(svcol-1));
 svY=sv(:,svcol);

 99

 tstX=rawtst(i:j,p:q);
 tsY=rawtst(i:j,r);
 tstY = svroutput(trnX,tstX,ker,beta,bias);
 [tstYrow, tstYcol]=size(tsY);

 for i = 1:tstYrow
 differ(i)=tstY(i)-tsY(i);
 end %for end

 errorvector=differ';
 meanerr=mean(errorvector);
 meansq=mse(errorvector);
 bserr=mae(errorvector);
 cummse=[cummse; meansq];
 cummae=[cummae; bserr];
 avgmse=mean(cummse);
 avgmae=mean(cummae);

 incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount];
 cincreresult1=[cincreresult1; incre_result1]

 % original C1 & C2
 C1=origC1;
 C2=origC2;

 % to reflect the trends
 if meanerror > 0
 C1 = C1-(0.5*C1);
 C2 = C2;
 elseif meanerror < 0
 C1 = C1;
 C2 = C2-(0.5*C2);
 else
 C1=C1;
 C2=C2;
 end %if end

 %update i and j values
 i=j+1;
 %j=300-svrow;
 j=i+batch-1;

 if j > row2
 break
 end %if end
 end %while end

 100

 save trendrevincreresult1.txt cincreresult1 -ASCII

case 5
 incre_result1=[];
 incre_result2=[];
 cincreresult1=[];
 cincreresult2=[];
 tnp=0;
 tnn=0;
 newXY=[];
 i=1;
 j=i+batch-1;
 trnX=[rawtrn(i:j,p:q)];
 trnY=[rawtrn(i:j,r)];
 t0=cputime;

 [nsv, sv, possv, negsv, beta, bias]=mysvr5(trnX,trnY, ker, C1, C2, loss, e);
 t1=cputime-t0;
 totaltime=totaltime+t1;

 batchcount=batchcount+1;
 [svrow, svcol]=size(sv);
 tstX=rawtst(i:j,p:q);
 tsY=rawtst(i:j,r);

 tstY = svroutput(trnX,tstX,ker,beta,bias);
 [tstYrow, tstYcol]=size(tsY);

 for i = 1:tstYrow
 differ(i)=tstY(i)-tsY(i);
 end %for end

 errorvector=differ';
 meansq=mse(errorvector);
 bserr=mae(errorvector);
 avgmse=meansq;
 avgmae=bserr;
 incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount];
 cincreresult1=[cincreresult1; incre_result1];
 i=j+1;

 while i > 0
 t2=cputime;
 ctstX=[];
 ctsY=[];

 101

 tcand=[];

 while i > 0

 newXY=[rawtrn(i,p:q), rawtrn(i,r)];
 [cand, np, nn, m]=svrfilter2(possv,negsv,newXY,i,bias);
 tcand=[tcand; cand];
 [ptrow, ptcol]=size(tcand);
 tnp=tnp+np;
 tnn=tnn+nn;
 tstind=rawtst(m,p:q);
 ctstX=[ctstX;tstind];
 tsind=rawtst(m,r);
 ctsY=[ctsY; tsind];

 if ptrow == batch | i == row
 memi=i
 break
 end
 i=i+1;
 end % second while

 svX=sv(:,1:(svcol-1));
 svY=sv(:,svcol);
 trnX=[tcand(:,1:(ptcol-1)); svX];
 trnY=[tcand(:,ptcol); svY];
 k=i;

 % to reflect the trends
 if tnp > tnn
 C1 = C1-(0.1*C1);
 C2 = C2;
 elseif tnp < tnn
 C1 = C1;
 C2 = C2-(0.1*C2);
 else
 C1=C1;
 C2=C2;
 end %if end

 [nsv, sv, possv, negsv, beta, bias]=mysvr5(trnX,trnY, ker, C1, C2, loss, e);
 t3=cputime-t2;
 totaltime=totaltime+t3;
 batchcount=batchcount+1;
 tstX=ctstX;
 tsY=ctsY;

 102

 tstY = svroutput(trnX,tstX,ker,beta,bias);
 [tstYrow, tstYcol]=size(tsY);

 for i = 1:tstYrow
 differ(i)=tstY(i)-tsY(i);
 end %for end

 errorvector=differ';
 meansq=mse(errorvector);
 bserr=mae(errorvector);
 cummse=[cummse; meansq];
 cummae=[cummae; bserr];
 avgmse=mean(cummse);
 avgmae=mean(cummae);
 incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount];
 cincreresult1=[cincreresult1; incre_result1]

 %update i and j values
 i=memi+1;
 %j=300-svrow;
 countj=i+batch-1;
 C1=origC1;
 C2=origC2;

 if countj > row2
 break
 end %if end
 end %while end

 save filtertrendrevincreresult1.txt cincreresult1 -ASCII
end % switch end
==

SVRoutput
==
function tstY = svroutput(trnX,tstX,ker,beta,bias)
 if (nargin ~= 5) % check correct number of arguments
 help svroutput
 else
 n = size(trnX,1);
 m = size(tstX,1);
 H = zeros(m,n);
 for i=1:m
 for j=1:n

 103

 H(i,j) = svkernel(ker,tstX(i,:),trnX(j,:));
 end
 end
 tstY = (H*beta +bias);
end

==

*** SVR1 ***
==
function [nsv,beta,bias] = mysvr1(X,Y,ker,C,loss,e)

if (nargin < 3 | nargin > 6) % check correct number of arguments
 help svr
 else

 fprintf('Support Vector Regressing\n')
 fprintf('______________________________\n')
 n = size(X,1);
 if (nargin<6) e=0.0;, end
 if (nargin<5) loss='einsensitive';, end
 if (nargin<4) C=Inf;, end
 if (nargin<3) ker='linear';, end

 % tolerance for Support Vector Detection
 epsilon = svtol(C);

 % Construct the Kernel matrix

 fprintf('Constructing ...\n');
 H = zeros(n,n);
 for i=1:n
 for j=1:n
 H(i,j) = svkernel(ker,X(i,:),X(j,:));
 end
 end

 % Set up the parameters for the Optimisation problem
 switch lower(loss)
 case 'einsensitive',
 Hb = [H -H; -H H];
 c = [(e*ones(n,1) - Y); (e*ones(n,1) + Y)];
 vlb = zeros(2*n,1); % Set the bounds: alphas >= 0
 vub = C*ones(2*n,1); % alphas <= C
 x0 = zeros(2*n,1); % The starting point is [0 0 0 0]
 neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)

 104

 if neqcstr
 A = [ones(1,n) -ones(1,n)];, b = 0; % Set the constraint Ax = b
 else
 A = [];, b = [];
 end
 case 'quadratic',
 Hb = H + eye(n)/(2*C);
 c = -Y;
 vlb = -1e30*ones(n,1);
 vub = 1e30*ones(n,1);
 x0 = zeros(n,1); % The starting point is [0 0 0 0]
 neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)
 if neqcstr
 A = ones(1,n);, b = 0; % Set the constraint Ax = b
 else
 A = [];, b = [];
 end
 otherwise, disp('Error: Unknown Loss Function\n');
 end

 Hb = Hb+1e-10*eye(size(Hb));

 % Solve the Optimisation Problem

 fprintf('Optimising ...\n');
 st = cputime;

 [alpha lambda how] = qp(Hb, c, A, b, vlb, vub, x0, neqcstr);

 fprintf('Execution time : %4.1f seconds\n',cputime - st);
 fprintf('Status : %s\n',how);

 switch lower(loss)
 case 'einsensitive',
 beta = alpha(1:n) - alpha(n+1:2*n);
 case 'quadratic',
 beta = alpha;
 end
 fprintf('|w0|^2 : %f\n',beta'*H*beta);
 fprintf('Sum beta : %f\n',sum(beta));

 % Compute the number of Support Vectors
 svi = find(abs(beta) > epsilon);
 nsv = length(svi);
 fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n);

 105

 % Implicit bias, b0
 bias = 0;

 % Explicit bias, b0
 if nobias(ker) ~= 0
 switch lower(loss)
 case 'einsensitive',
 % find bias from average of support vectors with interpolation error e
 % SVs with interpolation error e have alphas: 0 < alpha < C
 svii = find(abs(beta) > epsilon & abs(beta) < (C - epsilon));
 if length(svii) > 0
 bias = (1/length(svii))*sum(Y(svii) - e*sign(beta(svii)) - H(svii,svi)*beta(svi));
 else
 fprintf('No support vectors with interpolation error e - cannot compute bias.\n');
 bias = (max(Y)+min(Y))/2;
 end
 case 'quadratic',
 bias = mean(Y - H*beta);

 end
 end
 end
==

*** SVR4 ***
==
function [nsv,sv, possv, negsv, beta,bias] = mysvr4(X,Y,ker,C1,C2,loss,e)
% definition of variables
 Hb=[];
 c=[];
 vlb=[];
 vub=[];
 A1=[];
 A2=[];
 A=[];
 b=[];
 x0=[];
 beta=[];

 fprintf('Support Vector Regressing\n');
 fprintf('______________________________\n');
 n = size(X,1);

 % tolerance for Support Vector Detection
 epsilon = svtol(C1);

 106

 % Construct the Kernel matrix

 fprintf('Constructing ...\n');
 H = zeros(n,n);
 for i=1:n
 for j=1:n
 H(i,j) = svkernel(ker,X(i,:),X(j,:));
 end
 end

 % Set up the parameters for the Optimisation problem
 switch lower(loss)
 case 'einsensitive',
 Hb = [H -H; -H H];
 c = [(e*ones(n,1) - Y); (e*ones(n,1) + Y)];
 vlb = zeros(2*n,1); % Set the bounds: alphas >= 0
 vub1 = C1*ones(1*n,1); % alphas <= C1
 vub2 = C2*ones(1*n,1); % alphas <= C2
 vub = [vub1; vub2];
 x0 = zeros(2*n,1); % The starting point is [0 0 0 0]
 A1=[ones(1,n), zeros(1,n)];
 A2=[zeros(1,n), ones(1,n)];
 A=[A1;A2];
 b=[1; 1]; % Set the constraint Ax = b

 case 'quadratic',
 Hb = H + eye(n)/(2*C1);
 c = -Y;
 vlb = -1e30*ones(n,1);
 vub = 1e30*ones(n,1);
 x0 = zeros(n,1); % The starting point is [0 0 0 0]
 A = ones(1,n);, b = 0; % Set the constraint Ax = b
 otherwise, disp('Error: Unknown Loss Function\n');
 end

 Hb = Hb+1e-10*eye(size(Hb));
 % Solve the Optimisation Problem
 fprintf('Optimising ...\n');
 st = cputime;

 neq=2;
 [alpha lambda how] = qp(Hb, c, A, b, vlb, vub, x0, neq);

 fprintf('Execution time : %4.1f seconds\n',cputime - st);
 fprintf('Status : %s\n',how);

 107

 switch lower(loss)
 case 'einsensitive',
 beta = alpha(1:n) - alpha(n+1:2*n);
 case 'quadratic',
 beta = alpha;
 end
 fprintf('|w0|^2 : %f\n',beta'*H*beta);
 fprintf('Sum beta : %f\n',sum(beta));

 % Compute the number of Support Vectors
 svi = find(abs(beta) > epsilon);
 nsv = length(svi);
 fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n);

 % Obtain support vectors
 sv=[X(svi,:), Y(svi,:)];
 possvind = find(beta > epsilon);
 possv=[X(possvind,:)];
 possize=length(possvind);
 negsvind = find(beta < -epsilon);
 negsv=[X(negsvind,:)];
 negsize=length(negsvind);

 % Implicit bias, b0
 bias = 0;

 % Explicit bias, b0
 if nobias(ker) ~= 0
 switch lower(loss)
 case 'einsensitive',
 % find bias from average of support vectors with interpolation error e
 % SVs with interpolation error e have alphas: 0 < alpha < C
 svii = find(abs(beta) > epsilon & abs(beta) < (C - epsilon));
 if length(svii) > 0
 bias = (1/length(svii))*sum(Y(svii) - e*sign(beta(svii)) - H(svii,svi)*beta(svi));
 else
 fprintf('No support vectors with interpolation error e - cannot compute bias.\n');
 bias = (max(Y)+min(Y))/2;
 end
 case 'quadratic',
 bias = mean(Y - H*beta);
 end
 end
==

 108

** filter ***
==
function [cand, np, nn]=svrfilter2(possv, negsv, newXY, bias)

 [possvrow, possvcol]=size(possv);
 [negsvrow, negsvcol]=size(negsv);
 [newXYrow, newXYcol]=size(newXY);

 %filter parts
 possvX=possv(:, 1:(possvcol-2));
 possvY=possv(:, (possvcol-1));
 negsvX=negsv(:, 1:(negsvcol-2));
 negsvY=negsv(:, (negsvcol-1));
 newX=newXY(:, 1:(newXYcol-1));
 newY=newXY(:, newXYcol);
 minposvalue=min(possvY);
 maxnegvalue=max(negsvY);
 newvalue=newY;

 if newvalue >= minposvalue
 np=1;
 nn=0;
 cand=[];
 else if newvalue <= maxnegvalue
 np=0;
 nn=1;
 cand=[];
 else
 np=0;
 nn=0;
 cand=newXY;
 end % if end
end %function end
==

 109

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	1. INTRODUCTION
	2. BASIC CONCEPTS
	2.1 Support Vector Machines
	2.2 Support Vector Regression (SVR)
	2.3 Incremental learning procedure

	3. INCREMENTAL REVISED SVM
	3.1 A Reduced Convex Hull SVM (RCH-SVM)
	3.2 A Revised SVM (RSVM)
	3.3 Examples for applying RSVM
	3.3.1 Description of Examples
	3.3.2 Results for both cases

	3.4 Incremental learning with revised SVM with filters (IRSV

	4. INCREMENTAL REVISED SVR
	4.1 A Reduced Convex Hull SVR (RCH-SVR)
	4.2 A Revised SVR (RSVR)
	4.3 Incremental learning with Revised SVR with Filters (IRSV
	4.4 A toy problem for IRSVR
	4.4.1 Description of experiments
	4.4.2 Experimental results

	5. APPLICATIONS AND COMPUTATIONAL RESULTS
	5.1 Tornado detection Problem
	5.1.1 Description of Experiments for Tornado Detection
	5.1.2 Experimental Results

	5.2 Financial Forecasting Problem
	5.2.1 Description of experiments for financial forecasting
	5.2.2 Experimental results

	6. SUMMARY AND FUTURE RESEARCH
	BIBLIOGRAPHY
	APPENDICES

