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ABSTRACT 

ABSTRACT 

Since the Support Vector Machines (SVMs) were introduced in 1995, SVMs have been 

recognized as essential tools for pattern classification and function approximation.  

Numerous publications show that SVMs outperform other learning methods in various 

areas.  However, SVMs have a weak performance with large-scale data sets because of 

high computational complexity.  One approach to overcome this limitation is the 

incremental learning approach where a large-scale data set is divided into several subsets 

and trained on those subsets updating the core information extracted from the previous 

subset.  This approach also has a drawback that the core information is accumulated 

during the incremental procedure.  When the large-scale data set has a special structure 

(e.g., in the case of unbalanced data set), the standard SVM might not perform properly.  

In this study, a novel approach based on the reduced convex hull concept is developed 

and applied in various applications.  In addition, the developed concept is applied to the 

Support Vector Regression (SVR) to produce better performance.  From the performed 

experiments, the incremental revised SVM significantly reduces the number of support 

vectors and requires less computing time.  In addition the incremental revised SVR 

produces similar results with the standard SVR by reducing computing time significantly.  

Furthermore, the filter concept developed in this study may be utilized to reduce the 

computing time in other learning approach. 

 
 

 x



 

CHAPTER 1 

 

 

INTRODUCTION 

1.  INTRODUCTION 

Recently modern technology brings numerous changes in various areas.  The 

existing analog process has been digitized so that a vast number of data is produced and 

processed.  Currently many devices have been digitized (e.g., TV), and this trend expands 

to all areas surrounding our lives.  As a typical example of these devices, computers 

contribute to the development of internet that produces and stores huge data.  It is not 

easy to extract necessary information properly from a vast number of data.  Selection of 

an appropriate learning tool for pattern recognition, learning, prediction, and estimation is 

quite important.  One of the recent successful techniques in machine learning community 

is Support Vector Machines (SVMs). 

Since the Support Vector Machines (SVMs) were introduced in 1995 [Vapnik, 

1995], SVMs have been recognized as essential tools for pattern classification and 

function approximation.  Numerous publications show that SVMs outperform other 

learning methods in various areas such as text categorization [Joachims, 1998], object 

recognition (e.g., speech and image) [Cristianini and Shawe-Taylor, 2000], 

bioinformatics [Brown et al., 1999], data-mining [Burges, 1998], financial forecasting 

[Yang, 2002], and meteorology [Trafalis et al., 2004].  However, SVMs have a weak 

performance on large-scale data sets because of the high computational complexity of the 
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existing SVM models.  Diverse approaches have been proposed to overcome this 

limitation, such as decomposition [Osuna, 1997], reduced set SVM [Lee and 

Mangasarian, 2001], online learning approach [Cauwenberghs and Poggio, 2001], etc.   

One of the approaches to overcome this limitation is the incremental learning 

approach where a large-scale data set is divided into several subsets and trained on those 

subsets updating the core information (support vectors) extracted from a previous subset.  

In applying the incremental learning process in SVMs for classification problems, the 

process will face several limitations as follows: 

First, the number of support vectors is relatively small but critical because these 

support vectors create the decision function (separating hyperplane in the feature space) 

in a two-class classification problem.  However, those support vectors are accumulated as 

the incremental learning process is repeated.  

Second, support vectors determine the feasible region (decision space) and its 

dimension in the feature space. Thus, to execute the standard SVM without appropriate 

control of support vectors might expand its dimension in the feature space.  In that sense, 

it’s important to control the number of support vectors in SVM.  Furthermore, to control 

the number of support vectors in SVM is effective for feature space reduction.   

Third, SVM wastes most computing time for computation of kernel function 

values among unimportant data.  If SVM is used for training the large-scale data set with 

a special structure (e.g., unbalanced data set where there are many data in one class 

(unimportant) and few data in the other class (important)), then, consumption of 

computing time for kernel function evaluation among data points that are unimportant 

should be avoided to reduce the training time. 
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In this study, a revised SVM based on the reduced convex hull concept is 

developed to reduce the number of support vectors, and an incremental learning 

procedure incorporating the revised SVM is constructed.  To make the incremental 

learning applicable to on-line settings, a filter which is discarding unimportant data is 

created.   

As SVMs are used for classification problems, these can be also applied to 

nonlinear regression problems by using Support Vector Regression (SVR) [Vapnik, 

1995].  The aim of SVR is to obtain an approximate function that has at most ε deviation 

from the actual outputs of all input data.  Therefore, SVR considers any deviation greater 

than ε ignoring any deviation less than ε.  In literature, SVR has been studied in various 

areas such as weather prediction [Trafalis et al., 2004], financial forecasting [Yang et al., 

2002]. 

In applying SVR, the approximate function is quite different from the originally 

intended approximate function if there exist noisy data (e.g., outliers) and/or input data 

has a special structure such as an unbalanced data set.  To overcome this weak point, the 

revised SVM concept is extended to the Support Vector Regression.  Thus, the revised 

SVR scheme is utilized in the incremental approach to deal with vast number of data.   

 These revised SVM and SVR concepts are executed in applications to show that 

these concepts perform efficiently and effectively to problems with noisy data and/or 

special structures. 

This dissertation is organized as follows:  Chapter 2 describes basic concepts such 

as Support Vector Machines (SVMs), Support Vector Regression (SVR), and incremental 
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learning.  In Chapter 3, the revised SVM is developed and applied to the incremental 

learning procedure.  A filter concept is also developed to drop the most likely 

unimportant data in an incremental learning procedure within the revised SVM 

framework.  Chapter 4 describes the SVR version of the revised SVM concept.  Chapter 

5 contains description of two applications and computational results.  Summary and 

future research are discussed in Chapter 6. 
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CHAPTER 2 

 

 

BASIC CONCEPTS 

2.  BASIC CONCEPTS  

Several basic concepts of learning procedures such as SVMs, SVR and the 

incremental learning procedure, are presented in this chapter.  

 

2.1 Support Vector Machines  

 

SVMs developed by Vapnik [Vapnik, 1995] have been widely used for pattern 

classification and nonlinear regression.  The basic idea of SVM in a binary classification 

problem is to construct a decision hyperplane to separate input data with positive and 

negative classes maximizing the margin of separation.  SVM can be applied both in a 

linearly separable pattern case and a linearly inseparable pattern case.  A brief 

mathematical explanation of SVM for both cases is as follows: 

Consider the training data , where  is the input pattern for 

the ith datum, and  is the corresponding output (

)},(,),,{( 11 mm yxyx L ix

iy ± 1).  It is assumed that the training 

data and corresponding outputs are provided (i.e., supervised learning).   

First, the linearly separable pattern case is considered.  The term, linearly 

separable pattern, means that two or more classes can be separated by decision 

hyperplane(s).  The equation of a decision hyperplane is  
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0=+bxwT        (2.1) 

 

where  is the input vector,  is the weight vector, and  is a bias.  The aim of SVM is 

to obtain the optimal values of and  for a decision hyperplane,  solving 

the following optimization problem. 

x w b

ow ob 0=+ o
T
o bxw

 

   Min 2

2
1 w  

  s.t. 

1][ +≥+bxwy i
T

i  , mi ,,2,1 L=      (2.2) 

 

The data points  that satisfy the constraints shown in (2.2) with equality sign 

are called support vectors.  In other words, the support vectors are critical data points that 

are located in the closest positions to the decision hyperplane.  In a binary classification 

problem, there are two kinds of support vectors, support vectors in the positive class and 

those on the negative class.   

ix

As shown in Figure 1, data points can be separated by a decision function 

.  The two points on the line, , are support vectors in the negative 

class.  The three points on the line, , are also support vectors in the positive 

class. 

0=+bxwT 1−=+bxwT

1=+bxwT

Minimizing the cost function, www T

2
1)( =Φ  with constraints in (2.2) is a 

quadratic convex constrained optimization problem with linear constraints.  This 

constrained optimization problem is transformed by duality theory as follows: 
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0=+ bxwT  

1−=+ bxwT  1=+ bxwT  

 

 

 

 

 

 

 

 

Figure 1.  An example of linearly separable data 
 

Given the training data , the objective is to find the 

Lagrange multipliers, 

)},(,),,{( 11 mm yxyx L

},,,{ 21 mααα L  in the following optimization problem. 

 

Max  ∑∑∑
= ==

−=
m

i

m

j
j

T
ijiji

m

i
i xxyyF

1 11 2
1)( αααα       

s.t.          (2.3) 

0
1

=∑
=

m

i
ii yα  

0≥iα  for  mi ,,2,1 L=

 

Different from the linearly separable pattern case, the linearly inseparable pattern case 

indicates that data points cannot be separable linearly.  A simple example for the linearly 

inseparable pattern case is shown in Figure 2. 
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Some data points in the positive class and some data points in the negative class 

are mixed in the middle of space.  

 

 

 

 

 

 

 

 

 

Figure 2.  An example of linearly inseparable data 

 

In the linearly inseparable patterns case, the cost function contains a penalty term 

referring to the misclassification errors as follows: ∑
=

+=Φ
m

i
i

T Cwww
12

1)( ξ .  Here, C  is 

a user-defined parameter that controls the tradeoff between the number of inseparable 

data points and complexity of the machine.  Thus, the constrained optimization problem 

(2.3) in order to address the problem of misclassification of some training data is slightly 

changed to the optimization problem shown in (2.4). 

The inseparable case differs from the separable case in that the constraints on 

alphas are modified to the box constraints with upper bound, C . 
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Max  ∑∑∑
= ==

−=
m

i

m

j
j

T
ijiji

m

i
i xxyyF

1 11 2
1)( αααα  

s.t.         (2.4) 

0
1

=∑
=

m

i
ii yα  

Ci ≤≤ α0  for mi ,,2,1 L=  

 

SVM has two major operations.  First, an input vector is mapped to a high-

dimensional feature space by a nonlinear transformation.  Second, an optimal hyperplane 

(decision function) is constructed for separating the mapped data points in the feature 

space. 

Let  be a vector in the input space with dimension d.  Let x )(•ϕ  be a nonlinear 

transformation from the input space to the feature space.  It is hard to explicitly obtain 

this transformation.  The separating hyperplane in the feature space takes the compact 

form,  where .  Therefore, in the feature space the 

separating hyperplane is defined as .  Note that  

represents the inner product of two feature vectors corresponding to the i th input data 

point and a general input data point, respectively.   

0)( =xwTϕ ∑
=

=
m

i
iii xyw

1
)(ϕα

0)()(
1

=∑
=

m

i
i

T
ii xxy ϕϕα )()( xxi

T ϕϕ

By , we denote the inner-product kernel.  It is defined by 

.  This inner-product kernel , which is a symmetric 

function, is used to construct the optimal separating hyperplane in the feature space.  

Thus, the final form of the optimal separating hyperplane is defined by 

),( ixxK

)()(),( xxxxK i
T

i ϕϕ= ),( ixxK
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0),(
1

=∑
=

m

i
iii xxKyα  

Possible kernel functions are listed in Table 1. 

 

Table 1.  Possible kernel functions 

Type of Classifier Kernel Function 

Polynomial of degree d d
i

T
i xxxxK )1(),( +=  

Gaussian Radial-basis function (RBF) )
2

1exp(),( 2

2 ii xxxxK −−=
σ

 

Two-layer perceptron 

(for some 0β and 1β ) 
)tanh(),( 10 ββ += i

T
i xxxxK  

 

Using an inner-product kernel that satisfies Mercer’s Theorem [Vapnik, 1995], 

the objective function in (2.4) becomes ∑∑∑
= ==

−=
m

i

m

j
jijiji

m

i
i xxKyyF

1 11

),(
2
1)( αααα .  The 

resulting decision function is shown to take the form, . )),(sgn()(
1

bxxKyxf i

m

i
ii += ∑

=

α

 

2.2 Support Vector Regression (SVR) 

 

The SVM can be successfully applied to nonlinear regression as follows:  Given 

training data where  is a data point in the input space X and  is 

the corresponding target of the model output.  The objective is to find an approximation 

function , which has at most 

)},(,),,{( 11 mm yxyx L ix iy

)(xf ε  deviation from the actual target  for all the iy
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training data.  In the ε -SV regression [Vapnik, 1995], any deviation that is less than ε  is 

allowed.  

Consider a linear function, bxwxf +><= ,)(  where X,  w∈ b ∈ ℜ .  The 

objective of SVR is to minimize the Euclidean norm of  as long as deviation from the 

actual targets  is less than 

w

iy ε .  This convex optimization problem is shown as follows: 

 

Min   2

2
1 w         

s.t.         (2.5) 

   ε≤−><− bxwy ii ,   mi ,,2,1 L=  

   ε≤−+>< ii ybxw,   mi ,,2,1 L=  

 

The implicit assumption in (2.5) is that the problem is feasible as the function  that 

approximates all input data, with 

)(xf

)},(,),,{( 11 mm yxyx L ε  deviation exists.  To construct 

a support vector machine for approximating a target, , the following loss function is 

used: 

d

 

⎩
⎨
⎧ ≥−−−

=
otherwise

ydforyd
ydL

0
,

),(
εε

ε      (2.6) 

where ε  is a predetermined parameter with positive value. 

 

The loss function in (2.6) is called the ε -insensitive loss function.  This loss function 

implies that this function has a value only when the deviation of output, , from the 

desired target, , is greater than the deviation parameter, 

y

d ε .  It is graphically presented 

as shown in Figure 3. 
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Figure 3.  ε -insensitive loss function 

 

To deal with the infeasible constraints of the optimization problem in (2.5), slack 

variables,  are introduced to form the following problem: ', ii ξξ

 

Min  ∑
=

++
m

i
iiCw

1

'2 )(
2
1 ξξ       

s.t.          (2.7) 

  iii bxwy ξε +≤−><− ,  mi ,,1L=  

  '  , iii ybxw ξε +≤−+>< mi ,,1L=  

     0, ' ≥ii ξξ mi ,,1L=  

 

To construct the dual form of the optimization problem (2.7), dual variables 

are introduced.  Note that ),( '
ii αα iα  corresponds to the constraint with slack iξ , and  

corresponds to the constraint with slack .  These variables are actually Lagrangian 

multipliers for the primal problem.  By KKT conditions and Mercer’s theorem [Vapnik, 

'
iα

'
iξ

0 

-ε 

+ε 
ξ 

-ε 

ξ 

+ε 
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1995], the resulting dual optimization problem for nonlinear regression using SVMs is as 

follows: 

 

),( 'ααFMax  

∑∑∑∑
== ==

+−−−−−=
m

i
ii

m

i

m

j
jijjii

m

i
iii xxKy

1

'

1 1

''

1

' )(),())((
2
1)( ααεαααααα  

s.t.          (2.8) 

0)(
1

' =−∑
=

m

i
ii αα  

Ci ≤≤ α0  for mi ,,2,1 L=  

Ci ≤≤ '0 α  for mi ,,2,1 L=  

 

From the optimality condition,  is obtained as follows: w

∑
=

−=
m

i
iii xw

1

' )( αα        (2.9) 

Thus, the approximation function, bxwxf +><= ,)( , is expressed as 

∑
=

−=
m

i
iii xxKxf

1

' ),()()( αα       (2.10) 

Note that the two parameters, the deviationε and parameter , which correspond 

to the trade-off between the flatness of  and the tolerance of deviation,

C

f ε  respectively, 

are determined by the user.  The bias,b , is computed as follows: 

iii xwyb ε−><−= , , Ci ≤≤ α0  for mi ,,2,1 L=   

iii xwyb ε+><−= , ,  for Ci ≤≤ '0 α mi ,,2,1 L=   
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2.3 Incremental learning procedure 

 

Learning (training) is an essential procedure for pattern recognition, which is the 

process whereby a received pattern (e.g., data, image, or signal) is assigned to one of a 

finite number of predetermined classes (categories).  By undergoing a training session, 

the class of the particular pattern is identified and decision boundaries (e.g., a decision 

hyperplane) are determined. 

To obtain the best estimate of the class information in the conventional learning 

procedure, it is desirable to consider all available data simultaneously.  However, all data 

cannot be loaded at once due to memory limits, size of data, and intermittent inflows.  To 

overcome these limitations, several approaches have been proposed (e.g., [Osuna et al., 

1997]).  One of them is the incremental learning approach. 

There are two kinds of incremental learning with respect to target concept 

[Ruping, 2001].  One of them is the true incremental learning, and the other is the 

concept drift.  In the true incremental learning, all data contain the same information 

about the target concept.  The information of a data point cannot be judged from its age.  

In other words, if a data point is classified once in a certain class, the class of the data 

point is not changed, even though the data point is quite old.  In contrast, the target 

concept may change between the learning steps in the concept drift.  For example, an 

input data point was classified in one class a long time ago.  At present, the data point 

should be classified as being in the other class.  In order for this drift concept to be 

applied to a learning system, an additional algorithm to the existing learning process must 

be added.  For details, refer to [Klinkenberg and Joachims, 2000].     
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The incremental learning approach can be used in the following situations: First, 

as mentioned above, when the size of the training data set is huge, and it cannot be 

trained simultaneously.  Second, when new data are available at periodic intervals (e.g., 

results, which are obtained at a periodic interval in the performance of scientific 

experiments).  Third, when data are available on a timely basis (on-line).  

The structure of the incremental learning procedure is shown in Figure 4. 

 

 
Phase I Phase II Phase III Phase IV 

info 

Classifier 

info 
info 

Decision function 

Phase N ……….
 

 

 

 

 

 

 

Figure 4.  Structure of the incremental learning procedure 

 

Patterns in phase I are trained to establish a classifier.  Based on results obtained 

from this classifier, the decision function is created.  During this process, the classifier 

retains knowledge learned from previous phases. According to the knowledge-based 

classifier, the decision function is changed and used to predict the classes of incoming 

patterns.  The above procedure is adaptive and can be more effective to real time 

learning. 
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When a SVM is utilized as a classifier, it forms the incremental SVM.  The 

resulting decision function from training a SVM depends on its support vectors.  The 

support vectors have nice properties for summarizing data characteristics.  Training SVM 

on the support vectors alone produces the same decision function as training on the whole 

data set.  Thus, if the last training set (last batch) contains all the examples that are 

support vectors in the non-incremental SVM, the resulting classifier in the incremental 

approach is the same as the one in the non-incremental approach. 

There are two approaches in the incremental SVM.  One of them is the batch 

approach, and the other is the on-line approach.  In the batch approach, the whole data set 

is partitioned into several batches if the whole data set is available at present, and each 

batch is formed in a certain time frame if the data set is provided periodically.  Generally 

speaking, SVM is trained on the new data and support vectors produced from the 

previous learning step.   

In the on-line approach, all data come into a certain algorithm based on SVM and 

are trained on-line.  Most publications in the on-line approach track the value of alpha 

(multipliers in KKT conditions) and its change (e.g., [Cauwenberghs and Poggio, 2001]).  

Hence, based on the changed value of the alphas, a new data point is added in the next 

step.  However, this approach will not work properly if the support vectors are 

accumulated.  After the data set is trained, the support vectors have multipliers with 

positive values.  In order to obtain these multipliers’ value the on-line learning algorithm 

should train a certain amount of data points like in the batch approach.  The on-line 

approach also stores support vectors produced in the previous training step as the batch 

approach does.  Thus, the on-line approach can be considered as a variant of the 
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incremental approach. An incremental SVM learning algorithm with input data that are 

available only on periodical time windows will be called the “on-line algorithm.”   

Advantages of the incremental learning with SVMs can be summarized as 

follows: 

First, it makes the number of support vectors to be as small as possible.  Although 

the number of support vectors varies depending on the distribution of the data set, the 

number of support vectors is relatively smaller than the whole data set.  Also, the number 

of support vectors is reduced because old support vectors identified long time ago might 

be removed in a recent training session. 

Second, it can keep the memory and time complexity of the learning algorithm at 

a manageable level.  As the size of input data is gradually increased, the computing time 

for training SVM with an increased size of input data will become exponential.  In the 

incremental approach, the size of the batch is predetermined both in the case of static data 

and in the case of online injection of data.  Thus, partitioning data into a batch scheme 

makes it possible to train large data sets. 

Third, the incremental learning can predict at a time when the whole data is not 

yet available (on-line setting).  When the data set is only periodically available (e.g., 

weather data or financial data), the traditional learning approach should wait until all data 

are available for training.  In contrast, the incremental approach can be applied to train a 

small portion of whole data set and has the capability to predict the class of an incoming 

data set using the constructed classifier before the next data set arrives.  

 17



 

CHAPTER 3 

 

 

INCREMENTAL REVISED SVM 

 

3.  INCREMENTAL REVISED SVM 

To produce a better performance in a large-scale data set with a special structure, 

the revised SVM concept is proposed in this chapter.  This concept is applied to the 

standard SVM in the incremental scheme.  For this novel approach to be applied in a 

dynamic data-driven application system, the filter concept is also proposed. 

 

3.1 A Reduced Convex Hull SVM (RCH-SVM) 

 

Bennett and Breadensteiner (2000) developed the reduced convex hull SVM 

(RCH-SVM) concept giving a geometric explanation of the standard SVM.  Crisp and 

Burges (1999) also developed the same concept in a geometric interpretation of ν-SVM 

independently. 

A similar term, “reduced support vector machines”, was used by Lee and 

Mangasarian (2001).  However, they proposed a different approach, which pursues the 

same objective of reducing the number of support vectors.  In their work, an m by m 

matrix, where m is the number of the whole training data, is reduced to an n by n matrix, 

where n is the size of subset that consists of randomly selected data from the training data 
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set.  These selected data are considered as candidates of support vectors.  By reducing the 

training data, they intended to speed up the computational time. 

The RCH-SVM is an extension of the standard SVM. Before the RCH-SVM is 

explained, some basic algebraic concepts are reviewed. 

 

Definition 1. (Convex Combination) [Bazaraa, 1990] 

Let V  be some vector space over ℜ .  Let X  be a set of elements of V .  Then, a convex 

combination of elements in the set X is defined as a linear combination of the form 

NN xxxx αααα ++++1 L33221   for some  where each  and 0>N Xxi ∈ 0≥iα , with 

 1
1

=∑
=

N

i
iα

 

Definition 2. (Convex Hull) 

Let V  be some vector space over ℜ .  Let X be a set of elements of V .  Then, a convex 

hull, conv( X ), is defined as the smallest convex set containing X . 

 

Definition 3. (Reduced convex hull) [Bennett, 2000] 

Let V  be some vector space over ℜ .  Let X  be a set of elements of V .  Then a reduced 

convex hull, RCH, of the set X is defined as a set that consists of convex combinations of 

the form, RCH = { . },1,0,1|
11

Xxx ii

N

i
i

N

i
ii ∈<≤≤=∑∑

==

µµααα

 

Geometrically, the reduced convex hull shrinks the convex hulls of two classes so 

that noisy data (e.g., outliers) cannot affect the solution significantly.  Consider the 

following two convex hulls of inseparable data sets. 
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Figure 5.  Convex hulls of inseparable data set 

 

From Figure 5, clearly the data set cannot be classified linearly with a hyperplane.  Thus, 

the reduced SVM shrinks the convex hulls in both sides simultaneously as shown in 

Figure 6. 

Class A Class B

 

 

 

 

 

 

 

 

Figure 6.  Reduced convex hulls of inseparable data sets 
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In the separable case, it is clear that the optimal separating hyperplane bisects the 

shortest vector connecting the convex hulls of the positive and negative examples in the 

feature space.   

 Consider the convex hulls of the sets, U  and V .  Each point of the convex hull of 

 can be expressed through the points uU Ui ∈ , where mi ,,2,1 L= .  Similarly, each 

point in the convex hull of V  can be represented through the points,  where 

.  Then, the two convex combinations can be defined as  and 

, respectively.  In the separable case, the optimization problem finding the closest 

points can be written as follows:   
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 When data are not linearly separable, the convex hulls are reduced because two 

convex hulls cannot be linearly separable.  After the convex hulls shrink, the separating 

hyperplane is constructed by solving the linearly separable problem.  It is possible to 
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obtain the separating hyperplane, because the linearly inseparable problem becomes a 

linearly separable one, if the convex hulls are shrunk.  The optimization problem that 

finds the closest points in the reduced convex hulls is written as follows: 
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3.2 A Revised SVM (RSVM) 

 

The standard SVM produces a huge amount of support vectors, especially when 

the positive and negative training samples are highly overlapped with each other.  It is 

obvious that the big size of support vectors requires more computing time and more 

storage space for training.  Thus, it is natural to say that reducing the computational time 

and cost of the SVM is equivalent to decreasing the number of support vectors. 

One efficient way to decrease the number of support vectors is to simplify the 

shape of the separating hypersurface.  Since the support vectors determine the shape of 

the separation hypersurface, support vectors that do not affect the shape of the separation 

hypersurface effectively, should be removed.   
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Furthermore, noisy data (e.g., outliers) might significantly affect the standard 

SVM producing an incorrect decision function.  As a result, the incorrect decision 

function generates unexpected generalization errors and affects sequentially the next 

steps in the incremental learning process. 

Therefore, the standard SVM must be modified to resolve the above problems 

(e.g., computing time and number of support vectors).  The geometric interpretation of 

the RCH-SVM is quite useful and provides an alternative for modifying the standard 

SVM.  However, it might be inefficient for particular problems such as unbalanced 

problems in which there are huge differences of data sizes in two classes, and asymmetric 

importance problems in which the data in one class are few and have very important 

meanings, and there are a lot of unimportant data in the other class.  For example, 

tornadic data are very few (as little as 2%) relatively to nontornadic data in the weather 

data. If the RCH-SVM is applied to this tornado detection problem, some valuable 

tornadic data will be lost.  Thus, in order to properly solve this problem, the following 

geometric concept is proposed.   

Class A Class B 

 

 

 

 

 

 

 

 

Figure 7.  Geometric interpretation of the revised SVM 
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Consider a two-class classification problem.  It is illustrated graphically in Figure 

7.  One class (say class B) has very few but very important data.  The other class (say, 

class A) has many unimportant data.  Since class B has important data, the important data 

is preserved.  The unimportant data in class A will be reduced.   

The standard SVM in the linearly separable case takes the following form. 

 

Minimize  www T

2
1)( =Φ  
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T
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where   is the number of data points in the positive class PN

NN  is the number of data points in the negative class  

 

Based on the above optimization problem, Lagrange’s function is  
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Applying the Karush-Kuhn-Tucker (KKT) condition, 
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Here, we assume that  
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Set ),(),,,( βαβα QbwL = .  Then, the dual problem becomes 
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Geometrically, the revised SVM takes the following form: 
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The objective function, (3.10), is exactly the same as the final form of the objective 

function in the revised SVM problem (3.8). 

By the kernel trick, mentioned in section 2.1, the dual problem, (3.8), is changed 

to the following form: 
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Geometrically, the revised SVM in the linearly inseparable case takes the following form: 
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By imposing an upper bound on each multiplier, jβ , which is less than 1, the convex hull 

that consists of data points in the unimportant class shrinks.  In contrast, the convex hull 

in the important class is preserved.  The resulting revised SVM for the linearly 

inseparable case forms as follows: 
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3.3 Examples for applying RSVM 

 

3.3.1 Description of Examples  

 

An example for the linearly separable case with two sets of two-dimensional data, 

which are the training and testing sets, is created.  There are 164 training data points and 

404 testing data points in this example.  These training and testing data are illustrated in 

Figures 8 and 9.   

As an example of the inseparable case, a synthetic two-class data set on two 

dimensions is used [Ripley, 1994].  This data set, which was created by Ripley, has been 
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Figure 8.  Geometric interpretation of the revised SVM 
 
 

Separable data (Test)
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Figure 9.  Linearly separable data (Test) 
 

widely used in many publications (e.g., [Osuna and Girosi, 1998; Ripley, 1996]).  This 

set contains linearly inseparable data with 250 data points for the training set and 1000 
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data points for the test set.  These training and testing data points are illustrated in Figures 

10 and 11. 
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Figure 10.  Training data in Ripley’s data set 
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Figure 11.  Testing data in Ripley’s data set 

 

 30



3.3.2 Results for both cases 

 
Several criteria, such as the number of support vectors, ratio of support vectors, 

generalization rate, and CPU time, are considered in these experiments.  The number of 

support vectors is counted for the positive and negative example cases.  The ratio of the 

support vectors (for both cases) against the whole data set is also computed.  The 

generalization rate indicates the rate that the decision function classifies the test data 

correctly.  CPU time is measured for the training speed.   Under these criteria, the 

standard SVM and the revised SVM are compared in the separable and inseparable cases. 

Results produced from the revised SVM and the standard SVM are shown in 

Table 2.  Their comparisons are illustrated in Figures 12 and 13. 

 

Table 2.  Comparison between revised SVM and standard SVM in both cases 

 Separable case Inseparable case 

 Revised SVM Standard 
SVM Revised SVM Standard 

SVM 
number of SVs 
in positive side  1 64 1 53 

number of SVs 
in negative 
side  

2 64 2 53 

Ratio of SVs 
(%) 1.8 78 1.2 42.4 

Gen. Rate (%) 46.8 71.53 71.6 55.7 
CPU time 
(sec) 7.4 16.7 30.9 13.2 
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Figure 12.  Comparisons in categories with linearly separable data 
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Figure 13.  Comparisons in categories with linearly inseparable data 

 
The number of support vectors is significantly diminished so that the portion of 

the support vectors in the whole data set is lowered in both cases.  The standard SVM has 

a better generalization rate in the separable case, whereas the revised SVM has a better 

rate in the inseparable case.  The revised SVM might have a worse generalization error 

because the supporting hyperplane on the negative side is pulled into the negative class 
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region.  In terms of computing time, the revised SVM and standard SVM have an 

advantage over the separable case and inseparable case, respectively. 

 

3.4 Incremental learning with revised SVM with filters (IRSVMF) 

 
The standard SVM can be applied to the incremental learning with the format as 

shown in section 2.3.  When a SVM is utilized as a classifier, it forms the incremental 

SVM.  The resulting decision function from training a SVM depends on its support 

vectors.  The support vectors have nice properties for summarizing data characteristics.  

Training SVM on the support vectors alone produces the same decision function as 

training on the whole data set.  Thus, if the last training set (last batch) contains all the 

examples that are support vectors in the non-incremental SVM, the result in the 

incremental approach is the same as the one in the non-incremental approach. 

There are two approaches in the incremental SVM with respect to a data-driven 

format.  One of them is the batch approach, and the other is the on-line approach.  In the 

batch approach, the whole data set is partitioned into several batches, if the whole data set 

is available at present.  Each batch is formed in a certain time frame if the data set is 

provided periodically.  Generally speaking, SVM is trained on the new data and the 

support vectors produced from the previous learning step.  In the on-line approach, all 

data come into a certain algorithm based on SVM and are trained on-line.   

In existing literature, several approaches have been explored in the incremental 

SVM learning framework.  Syed et al. (1999) shows performance of the true incremental 

SVM approach with the standard SVM in several data sets.  They report that there is no 

drop in the prediction accuracy of the SVM even when it is used in the incremental 

 33



framework.  Ruping (2001) tried to remove old support vectors by adding another penalty 

function in the objective function.   

Most publications in the on-line approach track the value of alpha (multipliers in 

KKT conditions) and its change.  Hence, based on the changed value of the alphas, a new 

data point is added in the next step.   

Cauwenberghs and Poggio (2001) propose an on-line formulation for the SVM. If 

the solutions are computed whenever a new data point is added, the algorithm wastes 

computing time and memory.  Thus, their algorithm keeps the KKT optimality condition 

at every step.  They store support vectors and update their multipliers’ values (variables 

in the feature space), producing a new solution.  This means that the algorithm should test 

and potentially train on all the data.  It is quite fast and useful if the number of support 

vectors is relatively small compared to the size of whole data.  Since the resulting storage 

requirement is determined by the number of support vectors, if the number of support 

vectors are relatively high, this formulation is limited.   

As a variant of Cauwenberghs and Poggio’s approach, Simple SVM is proposed 

by Vishwanathan, Smola, and Murty (2003).  Their algorithm decomposes the kernel 

matrix by LDL decomposition, and it relaxes the box constraints imposed on the 

multipliers temporarily ignoring the KKT optimality conditions.  Solving the problem 

without the box constraints, a new solution is checked by the box constraints to identify 

support vectors or error vectors, which are located in between supporting hyperplanes.  In 

short, as this algorithm reduces constraints (i.e., the box constraints), it tries to improve 

computing time.  However, the number of variables is increased if the number of support 

vectors is relatively large compared to the whole data set.  Then, there is no significant 
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reduction of computing time, though the algorithm reduces the box constraints. Thus, this 

algorithm performs especially well only when the number of support vectors is quite 

small. 

However, these approaches will not work properly if the support vectors are 

accumulated.  After the data set is trained, the support vectors have multipliers with a 

positive value.  In order to obtain these multipliers’ value, the on-line learning algorithm 

should train a certain amount of data points like in the batch approach.  The on-line 

approach also stores support vectors produced in the previous training step similar to the 

batch approach.  Thus, the on-line approach can be considered as a variant of the 

incremental approach.  An incremental SVM learning algorithm with input data that are 

available only on periodical time windows will be called the “on-line algorithm.”   

The structure of the incremental approach with SVM is shown in Figure 14.   
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Figure 14.  Incremental SVM learning 
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If the whole data set is available, the set is partitioned into several subsets, which 

are called “batches”.  If the input data are available at a specific interval, each batch 

contains input data of each time interval.  If input data are injected into the system on-

line, input data are filled up to a certain level of size.  In the literature (e.g., [Demeniconi 

and Gunopulos, 2001]), the size of the batch has been used to be arbitrarily determined.   

The appropriate batch size can be obtained in terms of a trade-off between generalization 

error rate and computing time.  For details, refer to [Son et al., 2005]. 

SVM trains the input data in the first batch.  The support vectors extracted from 

SVM are added to the next batch (i.e., batch 2) in order to obtain a decision function.  

Then, data in the second batch are trained to adapt the decision function.  This iterative 

procedure is repeated until all batches are trained.  After all data are trained, the final 

decision function is made for classification. 

In this study, we utilize the revised SVM instead of the standard SVM for training 

data in the incremental learning process. A filter is created to remove most likely 

unimportant data prior to training process.  The structure of the proposed incremental 

learning process is shown in Figure 15. 

If the whole data set is available, it is divided into several batches.  In on-line 

setting, only the first batch is created.  As described in section 2.3, the optimal batch size 

will be determined in terms of trade-off between generalization error and computing 

time.  Data in the first batch is trained by the revised SVM identifying the support 

vectors.  These support vectors are included in the second batch.  The supporting 

hyperplane based on the support vectors of the unimportant class plays a role as a filter.   
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Because most of the unimportant data are located in the halfspace of the 

supporting hyperplane of the unimportant class in the feature space, this supporting 

hyperplane in Fig. 16 is a good yardstick for removing the possible unimportant data 

before training. 
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Figure 15.  Incremental learning with revised SVM and a filter 
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Figure 16.  Supporting hyperplane as a filter 

 

In Figure 16, the supporting hyperplane is a line passing through the two support 

vectors of the reduced convex hull.  If the supporting hyperplane is used as a filter, three 

points on the right side of the supporting hyperplane are passed in the filter.  These points 

will be used to construct the decision function in SVM because the optimal separating 

hyperplane is computed by support vectors on both classes.  Data points passing this filter 

are put in the next batch until the size of the batch is filled up to the optimal batch size.  

This filter is updated in every batch as the optimal separating hyperplane is modified in 

every batch.  Thus, this approach requires fewer batches than the traditional batch method 

in the incremental learning procedure.  Hence, a new algorithm for incremental learning 

with revised SVM and a filter is proposed as follows: 
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============================================================== 

Step 1.  Determine the optimal batch size based on generalization error rate and 

computing time. 

Step 2.  Train data in the first batch by revised SVM. 

Step 3.  Store data points representing support vectors in the next batch. 

Step 4.  Inject a new point to the filter. 

Step 5.  If a new data point is located outside of the filter, then discard the data point 

  Otherwise, store it in the next batch.  

Step 6.  If the size of data in a batch is equal to the optimal batch size, go to the next step 

  Otherwise, go to step 4. 

Step 7.  Train the data in the batch and obtain support vectors, and corresponding 

 decision function. 

Step 8.  Update the filter. Go to step 3. 

==============================================================  
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CHAPTER 4 

 

 

INCREMENTAL REVISED SVR 

4.  INCREMENTAL REVISED SVR 

The Support Vector Regression (SVR) discussed in section 2.2, has been utilized 

in time series prediction [Cao, 2003], financial forecasting problem [Yang, 2002], and 

other scientific applications [Song et al., 2002].  The standard SVR may produce 

distorted performance if noisy data (e.g., outliers) exist.  Furthermore, the standard SVR 

doesn’t perform properly if a large-scale data set is used as input.  This is because the 

standard SVR requires more memory space and computing time as the standard SVM 

does.  Therefore, the standard SVR should be also revised to produce better performance 

in large-scale data sets.  In SVR, it is critical to reduce the support vectors because it is 

practically impossible to train all data points simultaneously when a huge data set is 

provided and because support vectors are accumulated when the incremental learning 

approach is applied.  In this chapter, the standard SVR is revised to overcome limitations 

that are mentioned above, extending previous work by Bi and Bennett (2003).  Then the 

revised SVR concept is applied to the incremental approach.  For dynamic data driven 

applications (DDDAS), the filter concept which is developed in chapter 3 is also used in 

the incremental SVR approach. 
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4.1 A Reduced Convex Hull SVR (RCH-SVR) 

 
Consider the training data set where  and 

.  A hard 

)},(,),,(),,{( 2211 mm yxyxyx L n
ix ℜ∈

ℜ∈iy ε -tube for a fixed 0>ε  is defined as the hyperplane 

satisfying bxwy T += ε≤−><− bxwy ii ,  and ε≤−+>< ii ybxw,  where 

.  As shown in Figure 3 in chapter 2, the smallest tube, mi ,,2,1 L= 0ε -tube, can be 

obtained from the following optimization problem [Bi and Bennett, 2003]. 

 

ε
ε,,bw

Min  

s.t. 

ε≤−><− bxwy ii ,   mi ,,2,1 L=  

  ε≤−+>< ii ybxw,   mi ,,2,1 L=  

 

Based on the determination of ε  which is user-defined and 0ε which is obtained from the 

above optimization problem, there are three possible cases for 0>ε  in the dual space as 

shown in Figure 17. 

 

(c) (b)(a) 

 

 

 

 

 

 

Figure 17.  Three cases of support vector regression 
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 Based on the relationship between ε  and 0ε , Bi and Bennett (2003) investigated 

when a hard ε -tube or a soft ε -tube exists.  First, a hard ε -tube exist, when 0εε > .  In 

this case, the convex hulls of both classes are linearly separable as shown in Figure 17 

(a).  This indicates that there exists a ( , ) that satisfies the constraints of (4.1). w b

 

ε≤−><− bxwy ii ,   mi ,,2,1 L=  
         (4.1) 

  ε≤−+>< ii ybxw,   mi ,,2,1 L=  

 

Next theorem can be used to give conditions for the existence of a hard ε -tube. 

Theorem 1 (Gale’s Theorem of the alternative) 

Exactly one of the following two systems has a solution. 

(System 1)  bAx ≤

(System 2) , ,  0=AyT 0<byT 0≥y

Proof. 

Refer to [Bazaraa, 1990] 

 

Consider the two sets of the augmented vectors,  and as follows: +S −S

       },,2,1,{ mi
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x
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By Gale’s Theorem, a hard ε -tube exists for 0>ε  if and only if the following system in 

( , v ) has no solution, given the two sets as shown in (4.2). u

0)()( <−−+ ∑∑
i

ii
i

ii yvyu εε ;      (4.3) 

∑∑ =
i

ii
i

ii xvxu ; ; ; ;  1=∑
i

iu 1=∑
i

iv 0≥iu 0≥iv

It means that a hard ε -tube exists for 0>ε  if and only if the convex hulls of the 

two sets given in (4.2) are linearly separable. 

 Since a regression problem in the primal formulation becomes a classification 

problem in the dual formulation, the reduced convex hull concept can be directly applied 

to the standard SVR.   

Thus, the reduced convex hull SVR seeks the closest points in the reduced convex 

hulls of the two augmented data sets.  Consider the convex hulls of the two sets given in 

(4.2) as follows: 

  }

}
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The closest points of the two convex hulls in (4.4) can be obtained by solving the 

following optimization problem in ( , ). u v
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Second, a hard ε -tube exists, which is the same as the smallest hard tube when 

0εε = .  In this case, the convex hulls of the two sets are not strictly separable as shown 

in Figure 17(b) with a hard 0ε -tube separating the two convex hulls.  However, it is 

practically impossible that user selects the smallest 0ε -tube, and that there is no outlier in 

input data. 

Third, the convex hulls of two sets are overlapped when 0εε <  as shown in 

Figure 17 (c).  This is called soft ε -tube.  In applications, this case is very common and 

easily found.  To resolve the soft ε -tube case, the reduced convex hull concept is very 

useful.  Consider the reduced convex hulls of sets  and  as follows: +S −S
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Since these convex hulls are not separable, the convex hulls are reduced based on .  

Thus, the mathematical programming problem of RCH-SVR is presented as follows: 

C
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Cui ≤≤0  for mi ,,2,1 L=  

Cvi ≤≤0  for mi ,,2,1 L=  

 

Thus, solutions from the optimization problem in (4.8) separate two reduced convex hulls 

by bisecting the connection of the closest points in each class. 

 

4.2 A Revised SVR (RSVR) 

 

 In section 4.1, three cases based on the relationship between ε  and 0ε  are 

considered.  It is nearly impossible to construct the hard ε -tube in real-world 

applications because the size of data to be considered is huge.  Thus, only the soft ε -tube 

case will be investigated.  The resulting formulation can be easily applied to the soft ε -

tube case. 

 Although it is quite effective to reduce the number of support vectors when the 

reduced convex hull SVR approach is utilized, the drawbacks of this approach still exist.  
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First, the upper bound of variables C  is fixed by the user.  This means that the convex 

hulls shrink at the same rate on both sides (lower and upper parts of the regression line).  

Thus, this approach might not reflect recent trends.  Second, when the reduced convex 

hull SVR is applied to the incremental approach, strict application of the reduced convex 

hull SVR (e.g., at the high shrink rate) might lose essential information (i.e., some 

support vectors) extracted from the previous step.  Hence the upper bound of variables  

must be flexible in order to cope with the above situations. 

C

Consider the following optimization problem mentioned in (2.7) of chapter 2.   
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In (4.9), the objective function and constraints can be reformulated as follows: 
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By introducing Lagrangian multipliers , , , and , the Lagrangian function of 

(4.10) can be constructed as follows: 

iα '
iα iη
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Differentiating the Lagrangian function with respect to , b , , and , the optimality 

conditions can be obtained as follows: 

w iξ
'
iξ

 

∑ =−−=
∂
∂

i
iii xw

w
L 0)( 'αα      (4.12) ∑ −=

i
iii xw )( 'αα

∑ =−=
∂
∂

i
iib

L 0)( 'αα        (4.13) 

0=−−=
∂
∂

ii
i

CL ηα
ξ

       (4.14) ii C αη −=

0''
' =−−=

∂
∂

ii
i

CL ηα
ξ

       (4.15) ''
ii C αη −=

 

By substituting , , and  which are obtained from (4.12), (4.14), and (4.15) 

into(4.11), the resulting function  becomes 
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Then equation (4.17) is kernelized with respect to , and with the constraints from the 

optimality conditions the following dual optimization problem is constructed as follows: 
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In chapter 3, the revised SVM concept is effectively applied to the classification 

problem while the shrink rates on two classes are different.  Since the regression problem 

in the primal space becomes a classification problem in the dual space, the revised SVM 
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concept is naturally applied to this regression problem.  There exists a difference between 

the revised SVM and the revised SVR.  In the revised SVM, the target value indicates the 

class label such as and 1+ 1−  in a binary classification problem.  In contrast, in the 

revised SVR the target value is a real value instead of the class label.  Thus, the 

appropriate expressions should be modified to accommodate the revised SVR case. 

Consider two sets of the augmented vectors,  and .  +S −S
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Then their revised convex hulls are as follows: 
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Since these convex hulls generally are not separable, the convex hulls are reduced based 

on  and .  Thus, the mathematical expression of the revised SVR in the dual space 

is presented as follows: 

1C 2C
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The objective of this problem is to obtain the closest points between the different 

reduced convex hulls of the two sets.  Then the separating hyperplane can be obtained as 

the bisector of the segment defined by the two closest points of the reduced convex hulls.  

This separating hyperplane becomes the regression function in the primal space.  

 Different from the classification problem, the regression problem uses the 

augmented vectors  &  which form the convex combinations 

in both sides.  Since the regression problem seeks to predict the target based on the input 

data, only the input data are kernelized in the revised convex hull concept.  Thus, the 

augmented vectors  &  are transformed to the augmented 
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the weights are obtained with the input , and those are applied to the target .  Thus, 

the objective function in (4.8) is reformulated as follows: 

ix iy
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The formulation (4.22) can be expanded as follows: 
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In (4.23), the term  is transformed by a transformation function, j
T
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By making the change of variables,  and  in the above expression, (4.24) 
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Since the objective function is minimized in (4.21), when we change from the 

minimization problem to the maximization problem with the function in (4.25), (4.25) 

becomes 

Max ∑∑
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The objective function in (4.26) is exactly the same as the objective function in (4.18).  

Thus, the revised convex hull concept can be directly applied without any problem.  

Accordingly, the optimization problem in (4.21) becomes 
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Thus, solutions from the optimization problem in (4.27) separate two differently 

reduced convex hulls by bisecting the segment that connects the closest points in each 

class.  The appropriate choices of  and  depend on the user.  The general criterion 

to determine two upper bounds can be described in the following manner. 

1C 2C
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If a convex hull shrinks too much, the separating hyperplane leans to the reduced 

convex hull in dual space.  In contrast, if the other convex hull shrinks much more than 

the previous convex hull, the separating hyperplane is inclined more to the other convex 

hull.  There are three possible cases as shown in Figure 18. 

 

 

(a) (b) (c) 

 

 

 

 

 

 

 

 

Figure 18.  Inclination of the separating hyperplane 
 

Thus, if the trend of data points goes upward as shown in Figure 18(a), the upper 

convex hull should be shrunk much more than the lower convex hull.  If data points show 

the horizontal trend as shown in Figure 18(b), the reduced convex hull approach which is 

mentioned in the previous section is directly applied.  If the trend of data points goes 

downward as shown in Figure 18(c), the lower convex hull should be reduced much more 

than the upper convex hull.   
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4.3 Incremental learning with Revised SVR with Filters (IRSVRF) 

 

In the literature, few publications regarding the incremental SVR are reported so 

far [Liu and He, 2005; Ma, 2003; Wang, 2005].  Most of them concentrate on the updates 

of multipliers in SVR.  These works are extensions of the on-line learning approach by 

Cauwenberghs and Poggio (2001).  As mentioned before, these works are a variant of the 

incremental approach, and on-line updating of variables also requires dramatically 

increasing computing time if the support vectors are accumulated. 

The Revised SVR concept with flexible upper bounds, mentioned in the previous 

section, is suitable for the incremental approach.  The general format of the incremental 

revised SVR is similar to the incremental revised SVM.  However, there are some 

differences between them. 

First, the upper bounds of multipliers are flexible.  If the pattern of recent data 

seems to be upward, the corresponding reduced convex hull should be shrunk more.  This 

kind of pattern can be detected by the discarded data.  Second, the running batch is 

possible.  In this situation, old support vectors can be removed.  Third, two filters are 

used on both sides. Thus, if a new data point is outside of the reduced supporting 

hyperplane, the data point will be removed from training. 

 Therefore, three approaches in the framework of the incremental learning process 

are proposed in this study.   

 The first is the incremental revised support vector regression (IRSVR).  The 

revised convex hull concept is applied to the incremental learning procedure.  Since the 

revised convex hull concept is used, the number of support vectors is dramatically 
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decreased.  Accordingly the computing time is also reduced.  In a dynamic data driven 

application, such as the financial market, “time” is a critical factor in fluctuations of 

price, index, or foreign exchange rate.  Even though an algorithm produces a good 

generalization rate, it is useless if it takes a huge amount of time.  In this aspect, this 

IRSVR approach is very appropriate for a dynamic data driven application.  The 

algorithmic procedure is shown as follows: 

============================================================== 

Step 1.  Determine the optimal batch size based on generalization error rate and 

computing time for training. 

Step 2.  Determine the reducing rates  and  1C 2C

Step 3.  Train data in the first batch by the revised SVR. 

Step 4.  Store data points representing support vectors in the next batch. 

Step 5.  Train the data in the batch by the revised SVR, and obtain support vectors  

and corresponding regression function. 

Step 6.  Store data points in the next batch, and go to step 5. 

============================================================== 

The diagram of the above algorithm is shown in Figure 19. 

 

Train data by RSVR

Obtain regression function & SVs

Put SVs into next batch

Determine reducing rates

Determine the optimal batch size

 

 

 

 

 

 

Figure 19.  Diagram for IRSVR 
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 The second approach is the incremental revised support vector regression with 

trends (IRSVRT).  The regression problem is to find the tracing function closely fitting 

the existing historic data for a better prediction of the future value.  As mentioned in 

section 4.2, when the regression function shows the uphill or downhill trend, appropriate 

adjustments should be added in the incremental learning procedure to reflect the 

tendency.  In this aspect, the IRSVR might produce worse results.  After the predicted 

value is obtained, the actual value is also shown later.  This difference between the 

predicted value and the actual value can be a good indicator showing the current trends.  

If the difference is greater than zero, it means that the predicted value is higher than the 

actual value.  Thus, the regression line will be upward if the upper convex hull is more 

reduced.  On the other hand, the lower convex hull should be shrunk when the difference 

is less than zero.  Then, the regression line goes down.  This idea can be reflected in the 

IRSVR procedure.  The algorithmic procedure is shown as follows: 

============================================================== 

Step 1.  Determine the optimal batch size based on generalization error rate and 

computing time for training. 

Step 2.  Determine the reducing rates  and  considering the trends 1C 2C

(initial rates are determined by the user) 

Step 3.  Train data in the batch by the revised SVR and obtain support vectors, 

and corresponding regression function. 

Step 4.  Store data points representing support vectors in the next batch. 

Step5.  Compare the predicted and actual values; 

 If the difference is greater than 0, decrease the upper reducing rate 

 Otherwise, decrease the lower reducing rate, and go to step 2 

==============================================================  
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The diagram of the above algorithm is shown in Figure 20. 
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Figure 20.  Diagram for  IRSVRT 

 

 Next, the incremental revised support vector regression with trends using filters 

(IRSVRT) is described.  The filter concept developed in section 3.4 is directly applied to 

the IRSVR procedure.  Different from the filter in the RSVM, two filters are created to 

remove potential noisy data.  The two filters are the reduced supporting hyperplanes as 

shown in Figure 21.   
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Figure 21.  Two filters for IRSVRTF 

 

 In the situation with rapid fluctuations, this approach might work properly 

because if the newly coming data stands outside of the filters, the filters remove those 

data instantly.  However, this approach will be effective in order to handle a large-scale 

data set in a long-term period.  The algorithmic procedure is shown as follows: 

============================================================== 

Step 1.  Determine the optimal batch size based on generalization error rate and 

computing time for training. 

Step 2.  Determine the reducing rates  and  considering the trends 1C 2C

(initial values are determined by the user). 

Step 3.  Train data in the batch by the revised SVR, and obtain support vectors 

and corresponding regression function. 

Step 4.  Store data points representing support vectors in the next batch. 

Step 5.  Inject a new point to the filters. 

Step 6.  If a new data point is located outside of the filters,  

    then (1) discard the data point, (2) identify which filter is used  
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and (3) count the discarded data 

  Otherwise, store it in the next batch.  

Step 7.  If the size of data in a batch is equal to the optimal batch size, go to the next step 

  Otherwise, go to step 5. 

Step 8.  Train the data in the batch and obtain support vectors, and the corresponding 

 regression function.  

Step 9.  Update the filters and the reducing rates  and   1C 2C

considering the trends.  Go to step 2. 

==============================================================  

The diagram of the above algorithm is shown in Figure 22. 
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Figure 22.  Diagram for IRSVRTF 
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4.4 A toy problem for IRSVR 

 

For illustration purposes, a toy problem is created.  Instead of a simple linear 

regression, the sine function is used to produce the artificial data.  To reflect the real 

situation, a noisy term is added to the sine function.  The formulation of the noisy sine 

function is shown in (4.28): 

 

))(()*2(sin xsizerandnxy ρπ +=     (4.28) 

 

In (4.28), the second term creates some noise, which is produced by 

multiplication of the random number from the normal distribution and noisy 

coefficient ρ .  The noisy coefficient ρ  is arbitrarily set to 0.5.  Figure 23 shows 100 

data points that are randomly generated in the range from zero to one by the function in 

(4.28). 

 

Figure 23.  A data set generated from the noisy sine function 
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4.4.1 Description of experiments 

 

The input data are the random numbers and their noisy sine function values.  The 

300 random numbers are generated between zero and one.  The corresponding noisy sine 

function values are also obtained.  Ten training and testing sets are used to produce the 

valid results with the input values selected from the interval [0, 1]. 

Due to the computational complexity, it is practically impossible to train many 

data at once.  Thus, this toy example is designed to compare different approaches: The 

traditional SVR (SVR), the incremental SVR approach (ISVR), and the incremental 

revised SVR (IRSVR).  As an extension of IRSVR, IRSVR with trends (IRSVRT) and 

IRSVR with trends using filters (IRSVRTF) is developed as well. 

For comparison criteria, the number of support vectors, the computing time, the 

mean square error (MSE), the mean absolute error (MAE) and the number of batches are 

used.  Here, MSE and MAE are averaged over 10 sets.  Resulting values are compared 

under those comparison criteria.   

Note that all approaches except the IRSVRTF use the same testing set.  Since the 

IRSVRTF trains the available data removing the potential noisy data and considers the 

trends at each batch, the same testing set used in other approaches cannot be used.  Thus, 

the testing set for the IRSVRTF is created in the following manner.  After the first batch 

is trained, the IRSVRTF collects the appropriate data using the filters.  When a data point 

passes the filter, the index of the data point is remembered, and the corresponding index 

in the testing set is used to form a testing set.  Thus, it makes it possible to compare the 

prediction value and the actual value at the same time. 
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In this experiment, a batch size is arbitrarily determined at 50, and ε  value is set 

to 0.2.  The initial reducing rate is 0.1, and the diminished amount of the reducing rate 

when the trends are considered is predetermined at 10%.  In the SVR, C  is equal to 1.  

The above parameters should be tuned before the experiment for accurate results; all 

parameters are arbitrarily predetermined because this experiment has an illustration 

purpose. 

 

4.4.2 Experimental results  

 

All resulting values under the comparison criteria are the average value of results 

after 10 training and testing data sets are executed.  The CPU time is the total training 

time.  The MSE and MAE are computed based on the error, which is the difference 

between the predicted value and the actual value.  The comparison of different 

approaches is shown in Table 3. 

 

Table 3.  Comparison of different approaches under comparison criteria 

Method 
CPU time 

(sec) 
MSE MAE 

Number of 

SVs 

Number of 

batches 

SVR 222.96 0.7201 0.7049 253.2 1 

ISVR 237.46 0.7161 0.7003 242 6 

IRSVR 9.13 0.7223 0.7167 20.1 6 

IRSVRT 9.21 0.7223 0.7167 20.1 6 

IRSVRTF 5.98 0.209656 0.3823 22.7 4 
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From the results, IRSVRTF shows the best results in almost all criteria.  Although 

the number of support vectors is a little higher than the IRSVR and IRSVRT, IRSVRTF 

reduces the number of batches as it removes the potential noisy data.  The computing 

time of the traditional SVR is almost the same as the incremental SVR.  It is because the 

incremental SVR accumulates the support vectors.  The numbers of support vectors in the 

SVR and ISVR approaches are almost the same.  In contrast, IRSVR and IRSVRT show 

the effectiveness with respect to the “time” with the similar MSE and MAE. 

Clearly the results show that the revised convex hull concept reduces the number 

of support vectors.  Accordingly, this revised SVR approach saves a huge amount of 

computing time proving the effectiveness of the revised SVR concept. 
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CHAPTER 5 

 

 

APPLICATIONS AND COMPUTATIONAL RESULTS 

 

5.  APPLICATIONS AND COMPUTATIONAL RESULTS 

In the real world, the SVMs and SVR methods have been applied to many areas 

such as image classification, bioinformatics, text-categorization, data mining, 

meteorology, and financial forecasting.  It’s hard to use the standard SVM and SVR due 

to many limitations (e.g., memory requirement, timely manner, availability of input data).  

Thus, the incremental learning approach developed in this study is quite suitable to 

overcome the above limitations.  In this chapter, a tornado detection problem is 

considered as an application of IRSVM.  In addition, a financial forecasting problem is 

considered as an application of IRSVR.  

 

5.1 Tornado detection Problem 

 

A tornado is a rarely occurring critical event in the real world as well as in the 

meteorology community.  Based on the weather data produced from the Weather 

Surveillance Radar 1988 Doppler (WSR-88D), the Mesocyclone Detection Algorithm 

(MDA) is currently used to detect tornados.   
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The tornado detection problem is a good application to apply the new algorithm 

that was developed in this study.  The tornado detection problem is characterized as 

follows: First, it is a two-class (tornado and non-tornado) classification problem.  Second, 

it is an unbalanced problem.  The tornado class consists of few data in the entire tornadic 

and non-tornadic data set.  Third, it is an asymmetric importance problem.  That is, the 

tornado class is relatively more important than the non-tornado class.  Fourth, weather 

data related to tornados are periodically provided by weather radar.   

The standard SVM or other variants cannot properly train the weather data due to 

the size of weather data, limited capacity of computation for training, and periodic inflow 

of weather data.  The incremental learning procedure can overcome these restrictions     

 Typically, a tornado confusion matrix is utilized in order to measure the 

performance for tornado detection as shown in Table 4. 

 

Table 4.  Tornado confusion matrix 

 Tornado Observed 

 Yes No  

Yes Hit (a) False Alarm (b) 
“Yes” 

Forecasts 

No Miss (c) Correct (d) 
“No” 

Forecasts 

Fo
re

ca
st

 T
or

na
do

 

 “Yes” Observation “No” Observation 
Total number of 

observations 

 
 

There are several meteorological indices in the literature.  The most important 

measurement among them is the probability of detection (POD).  Based on a tornado 

confusion matrix, the POD can be obtained as follows: 
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Probability of detection (POD) = 
ca

a
+

 

Since a tornado without a warning may bring serious disasters, to increase the 

detection rate that can be measured by the POD, is a critical issue in the meteorology 

community.  The POD formula consists of “hit” rate and “miss” rate.  To increase the 

POD, “hit” rate should be increased and “miss” rate must be decreased.  In this study, all 

tornado data are used whereas non-tornado data are partially used to train the data sets 

using the reduced convex hull concept.  Thus, the ‘false alarm’ rate might be increased 

because the size of the convex hull containing non-tornado data is reduced.  However, the 

number of “miss” events will be substantially reduced because the convex hull containing 

tornado data is not shrunk.  Measurements of False Alarm Rate (FAR) and Critical 

Success Index (CSI) are also obtained for a full picture.  Formula of FAR and CSI are 

shown as follows: 

False Alarm Rate (FAR) = 
ba

b
+

 

Critical Success Index (CSI) = 
cba

a
++

 

 

5.1.1 Description of Experiments for Tornado Detection 

 
In this study, we use the MDA data provided by the National Severe Storms 

Laboratory (NSSL).  These tornadic and nontornadic data, generated from 1994 to 1999, 

are randomly selected to produce ten training and testing sets.  Each datum has 23 

attributes that are related to information such as velocity and shear. These attributes have 

been successfully used for tornado detection in the literature [Marzban and Stumpf, 
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1996].  The list of attributes is shown in Table 5.  To reflect the real situation, 10% of the 

each training and testing set (1500 data) is tornadic data.  We assume that randomly 

selected data form sequential time frames because the MDA data provide only dates. 

 

Table 5.  List of attributes 

No. Attributes No. Attributes 

1 Base (m) 13 
Lowe-level gate-to-gate velocity 

difference (m/s) 

2 Depth (m) 14 
Maximum gate-to-gate velocity 

difference (m/s) 

3 Strength rank 15 
Height of maximum gate-to-gate 

velocity difference (m) 

4 Low-level diameter (m) 16 Core base (m) 

5 Maximum diameter (m) 17 Core depth (m) 

6 Height of maximum diameter (m) 18 Age (min) 

7 
Low-level rotational velocity 

(m/s) 
19 

Strength index (MSI) weighted by 

average density of integrated layer 

8 
Maximum rotational velocity 

(m/s) 
20 Strength index (MSIr) “rank” 

9 
Height of maximum rotational 

velocity (m/s) 
21 Relative depth (%) 

10 Lowe-level shear (m/s/km) 22 Low-level convergence (m/s) 

11 Maximum shear (m/s/km) 23 Mid-level convergence (m/s) 

12 Height of maximum shear (m)   

 

Three approaches are performed and compared: the incremental approach with 

standard SVM (ISSVM), the incremental approach with revised SVM (IRSVM), and the 

incremental approach with revised SVM and filter (IRSVMF). These approaches are 

compared in terms of POD, total CPU time, number of batches, and “miss” portion over 

 67



all other data.  Each approach executes training and testing ten times, respectively, and 

their average values are computed in terms of the above criteria. 

In the incremental approaches with standard SVM and with revised SVM, each 

batch size is set to 300 (for specific details, refer to [Son et al., 2005]).  The incremental 

approach with filters uses a batch with a size of 300 data, which consists of data passing 

the filter.  MATLAB codes originally provided by [Gunn, 1997] are entirely revised to 

run the incremental step.  A Pentium IV 2.8GHz with 1 GB Ram of memory was used to 

perform all experiments. 

 

5.1.2 Experimental Results 

 

After performing each approach with ten training and testing data sets, the 

averaged results are shown in Table 6. 

 

Table 6.  Comparison of incremental learning methods  

Methods POD 
Total CPU 

time (Sec) 

Number of 

SVs 

“Miss”/all 

(%) 

Incremental approach with 

standard SVM 
0.62 754.62 57 3.83 

Incremental approach with 

revised SVM 
0.69 406.26 11 3.14 

Incremental approach with 

revised SVM & filter 
0.60 314.46 11 3.97 
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Even if the total CPU time and the number of support vectors are reduced, IRSVM 

outperforms ISSVM in terms of POD and “miss” over all rate.  The CPU time and the 

number of support vectors for each batch are shown in Figures 24 and 25, respectively.  
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Figure 24.  Comparison between ISVM and IRSVM with respect to computing time 
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Figure 25.  Comparison between ISVM and IRSVM with respect to the number of 
support vectors 

 

 69



Since the number of support vectors is increased as each batch is sequentially 

trained, the computing time is also dramatically increased, whereas IRSVM keeps the 

same number of support vectors and requires a smaller computing time.  When IRSVMF 

is applied, computing time is also significantly reduced although POD is slightly 

dropped.  

 

Table 7.  Comparison of methods with respect to FAR and CSI 

Methods FAR CSI 

Incremental approach with 

standard SVM 
0.81 0.17 

Incremental approach with 

revised SVM 
0.90 0.10 

Incremental approach with 

revised SVM & filter 
0.90 0.08 

 

Though filter discards potential non-tornado data, IRSVM and IRSVMF have similar 

FAR rates.  CSI slightly drops when revised SVM concept is applied to the incremental 

learning procedure. 

 

5.2 Financial Forecasting Problem 

 

 It is very critical to predict the accurate future value of an index in the financial 

market.  There exist various indices such as interest rate, foreign exchange rate, Dow 

Jones Index, etc.  Since these indices are determined by a huge number of factors, it is 

hard to identify and to model in a simple form entire factors in which hard-to-quantify 

factors (e.g., personal intuition) might exist.  In addition, these indices are dynamically 
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fluctuating all the time.  Thus, it is a good example of a dynamic data-driven application.  

Since factors that affect the indices cannot be easily identified and data for these kinds of 

factors are not available currently, only time is considered as the input in this experiment.  

The output value will be the expected S&P 500 index.  Thus, the aim of this experiment 

is to compare different incremental approaches using various criteria. 

 

5.2.1 Description of experiments for financial forecasting 

 

For input data the S&P 500 data are obtained from the Yahoo’s finance web site.   

Daily close indices from 1950 to the present are available. It is practically impossible to 

train all data simultaneously due to the computational complexity.  Thus, only 

incremental approaches will be applied and compared. 

Daily close indices are partitioned into 5 sets (5 decades).  Training and testing 

data sets are formed in each decade.  The size of available data in 5 decades is shown in 

Table 8. 

Table 8.  Size of available data in 5 decades 

Decade Size of data 

1951-1960 2411 

1961-1970 2492 

1971-1980 2526 

1981-1990 2527 

1991-2000 2528 

 

From each decade, a 400 training data set and a 400 testing data set are made.  In 

this experiment, the traditional SVR (SVR), the incremental SVR (ISVR), the 
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incremental revised SVR (IRSVR), and the incremental revised SVR with trends 

(ISVRT) are compared.  The incremental revised SVR with trends using filters 

(IRSVRTF) is not used because the preliminary experiments show that it runs only one 

time and stops.  I believe it is because the reducing rates are appropriately tuned, and the 

size of data set considered is quite small.  Basically the aim of this experiment is to show 

the difference of the critical factor, “time”, between different approaches.  As comparison 

criteria, the number of support vectors, the computing time, the mean square error 

(MSE), and the mean absolute error (MAE) are used.  Other conditions, such as the 

reducing rates and ε , are the same as conditions in the toy problem. 

 

5.2.2 Experimental results 

 

The average values of results after 5 training and testing data sets are shown in 

Table 9. 

 

Table 9.  Comparison of different approaches under the comparison criteria 

Method 
CPU time 

(sec) 
MSE MAE 

Number of 

SVs 

SVR 1735.52 1994.44 21.3 382.80 

ISVR 2195.98 1718.39 19.1 344.8 

IRSVR 33.52 29609.78 128.11 21 

IRSVRT 33.57 29603.78 128.11 21 

 

From the results, SVR and ISVR require a huge amount of computing time.  Since 

the support vectors are accumulated, it requires more time to train.  In addition, the 
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revised SVR concept clearly reduces the number of support vectors.  To decrease the 

MSE and MAE of the incremental approach with the revised SVR concept, the related 

parameters (e.g., reduce rates, epsilon, and kernel) must be tuned properly.  Though MSE 

and MAE of the incremental approach with the revised SVR concept are quite high, there 

is no statistically significant difference between the methods in Table 9.  The 

corresponding single ANOVA tables with respect to MSE and MAE are shown in Tables 

10 and 11, respectively.  Therefore, IRSVR and IRSVRT can reduce the computing time 

performing similarly like in the case of SVR and ISVR. 

 

Table 10.  ANOVA Table for MSE 

Source of variation SS df MS F P-value F_crit 

Between Groups 3851438895 3 1283812965 0.965 0.433 3.239 

Within Groups 21284683876 16 1330292742    

Total 25136122772 19     

 

Table 11.  ANOVA Table for MAE 

Source of variation SS df MS F P-value F_crit 

Between Groups 57075 3 19025 2.219 0.128 3.239 

Within Groups 138603 16 8663    

Total 195678 19     
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CHAPTER 6 

 

 

SUMMARY AND FUTURE RESEARCH 

 

6.  SUMMARY AND FUTURE RESEARCH 

Modern technology produces a massive amount of data nowadays.  However, it is 

not simple to extract the necessary information from massive data.  Furthermore, the span 

of data is getting shorter so that the existing static systems tend to be transformed to the 

dynamic data-driven application systems.  To deal with the dynamic data, the current 

learning procedure should be reconsidered and revised properly.  In this dissertation, 

several approaches are proposed to overcome the limitations of the existing kernel 

learning approaches for SVMs.  First, the revised SVM is proposed to improve the 

detection rate of data in the important class in a binary classification problem.  It reduces 

the number of support vectors as well as the computing time for training the data.  

Second, the revised SVM concept is applied to the incremental learning approach for 

dealing with large amount of data.  A filter concept is also proposed to remove the 

potential noisy data making the speedy training process possible.  Third, for the 

regression problem, the revised SVM concept is applied and revised to fit the slightly 

different situations.  In addition, an incremental revised SVR approach considering the 

trends is also proposed.  This filter concept can be adapted to other learning algorithms to 
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improve the performance with respect to computing time.  In the application chapter, the 

revised SVM concept clearly improves the detection rate of tornados, and the filter 

concept makes the training more effective.  Furthermore, several parameters (e.g., the 

optimal batch size for the revised SVM, the upper bound of multipliers, µ, for the 

unimportant class) need to be tuned.  These parameters definitely affect the performance 

of the proposed algorithm in terms of the number of support vectors, computing time, 

generalization error, and detection rate for the important class.  More effective selection 

of those parameters should be investigated (e.g., improved tornado detection rate). 

The proposed algorithms are applied to real data in two applications, such as the 

tornado detection problem and the financial forecasting problem.  From the results, the 

revised convex hull concept definitely works better especially with respect to 

computational time.  Hence, this revised convex hull concept should be seriously 

considered in the dynamic data driven application systems 

 In future research, the revised convex hull concept can be extended to the multi-

class SVM problem.  For the revised convex hull concept to be successfully performed in 

various applications, the appropriate reducing rates should be tuned.  Since those rates 

depend on the structure of data sets, the investigation for the appropriate reducing rates 

will be a future research topic.  For the regression problem, when the factors that affect 

the financial indices are identified, the incremental revised SVR can be performed and 

investigated considering those factors.  Future research will investigate those issues. 
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APPENDICES 
APPENDICES 
 

In these appendices, MATLAB codes (version 6.5), which are used in experiments, are 
presented. 
 
 
*IRSVM* 
============================================================== 
 
clear all 
global P1   % P1 is degree of polynomial 
global P2   % P2 is width of rbfs (sigma) 
global KERTYPE %1: linear; 2: polynomial; 3: rbf 
global C1   % C value on the positive side 
global C2   % C value on the negative side 
 
%inputs 
P1= 2; 
P2= 1; 
KERTYPE = 2; 
C1= 1;  
C2= 0.1; 
batch=300; % size of batch 
method = 4; % 1: traditional SVM; 2: incremental SVM; 3: revised SVM; 4: revised 
SVM with filter  
p=3;        %staring column 
q=25;       %ending column 
 
% declarations 
Tinfo=[]; 
TTinfo_svm=[]; 
TTinfo_incre=[]; 
TTinfo_rev=[]; 
TTinfo_revfilter=[]; 
X=[]; 
Y=[]; 
svX=[]; 
svY=[]; 
batchcount=0; 
trnX=[]; 
trnY=[]; 
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tcand=[]; 
 
%load data 
load tr2_TandNT.txt  
load ts2_TandNT.txt 
 
[row col]=size(tr2_TandNT); 
[row2 col2]=size(ts2_TandNT); 
 
rawtrn=tr2_TandNT(1:row,:); 
rawtst=ts2_TandNT(1:row2,:);  
 
%measure the cputime 
t0=cputime; 
 
switch lower(method) 
    case 1 % traditional SVM 
     
    trnX=rawtrn(:,p:q); 
    trnY=rawtrn(:,q+1); 
           
    [nsv, alpha, sv, b0]=mysvc1(trnX,trnY); 
     
    Tcpu=cputime-t0; 
     
    svX=sv(:,1:23); 
    svY=sv(:,24); 
    [svrow, svcol]=size(sv); 
     
    tstX=rawtst(:,p:q); 
    tstY=rawtst(:,q+1); 
    bias=b0; 
     
    [Terror,a,b,c,d] = mysvcerror1(trnX,trnY,tstX,tstY,alpha,bias); 
     
    batchcount=batchcount+1; 
     
    Tinfo=[svrow, Tcpu, Terror, a, b, d, d, batchcount]; 
    TTinfo_svm=[TTinfo_svm; Tinfo]; 
     
    save  TTinfo_svm.txt TTinfo_svm -ASCII 
     
    case 2 % incremental SVM  
         
    i=1; 
    j=i+batch-1; 
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    while i > 0 
    trnX=[rawtrn(i:j,p:q); svX]; 
    trnY=[rawtrn(i:j,q+1); svY]; 
 
    [nsv, possize, negsize, alpha, sv, b0]=mysvc2(trnX,trnY); 
     
    batchcount=batchcount+1; 
    Tcpu=cputime-t0; 
     
    svX=sv(:,1:23); 
    svY=sv(:,24); 
    [svrow, svcol]=size(sv); 
 
    tstX=rawtst(i:j,p:q); 
    tstY=rawtst(i:j,q+1); 
    bias=b0; 
  
    [Terror, a,b,c,d] = mysvcerror1(trnX,trnY,tstX,tstY,alpha,bias); 
 
    Tinfo=[svrow, Tcpu, Terror, a,b,c,d, possize, negsize, batchcount]; 
    TTinfo_incre=[TTinfo_incre; Tinfo]; 
 
    %update i and j values 
    i=j+1; 
    %j=300-svrow; 
    j=i+batch-1; 
 
    if j > row2  
        break 
    end 
    end %while end 
 
    save  TTinfo_incre.txt TTinfo_incre -ASCII 
      
    case 3 % incremental revised SVM          
    i=1; 
    j=i+batch-1; 
 
    while i > 0 
    trnX=[rawtrn(i:j,p:q); svX]; 
    trnY=[rawtrn(i:j,q+1); svY]; 
 
    [nsv, possize, negsize, trnXX, trnYY, alpha, sv, b0]=mysvc3(trnX,trnY); 
         
    batchcount=batchcount+1; 
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    Tcpu=cputime-t0; 
     
    svX=sv(:,1:23); 
    svY=sv(:,24); 
    [svrow, svcol]=size(sv); 
 
    tstX=rawtst(i:j,p:q); 
    tstY=rawtst(i:j,q+1); 
    bias=b0; 
  
    [Terror, a,b,c,d] = mysvcerror1(trnXX,trnYY,tstX,tstY,alpha,bias); 
 
    Tinfo=[svrow, Tcpu, Terror, a,b,c,d, possize, negsize, batchcount]; 
    TTinfo_rev=[TTinfo_rev; Tinfo]; 
 
    %update i and j values 
    i=j+1; 
    j=i+batch-1; 
 
    if j > row2 
        break 
    end 
    end %while end 
 
    save  TTinfo_rev.txt TTinfo_rev -ASCII 
      
    case 4 % revised SVM with filter ============ 
      
    i=1; 
    j=i+batch-1; 
    m=1; 
    n=m+batch-1; 
     
    trnX=[rawtrn(i:j,p:q)]; 
    trnY=[rawtrn(i:j,q+1)]; 
     
    [nsv, possize, negsize, trnXX, trnYY, alpha, svalpha, sv, b0, H]=mysvc4(trnX,trnY); 
     
    batchcount=batchcount+1; 
    Tcpu=cputime-t0; 
     
    svrow=nsv; 
     
    tstX=rawtst(m:n,p:q); 
    tstY=rawtst(m:n,q+1); 
    bias=b0; 
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    [Terror,a,b,c,d] = mysvcerror1(trnXX,trnYY,tstX,tstY,alpha,bias); 
        
    Tinfo=[svrow, Tcpu, Terror,a,b,c,d, possize, negsize, batchcount]; 
    TTinfo_revfilter=[TTinfo_revfilter; Tinfo]; 
     
    i=j+1; 
    m=n+1; 
     
    while i > 0 
      
    while i > 0  %to form the batch using a filter        
    newX=rawtrn(i,p:q+1); 
    [cand]=filter8(sv, svalpha,  newX, b0); 
    tcand=[tcand; cand]; 
    [ptrow, ptcol]=size(tcand); 
     
    if ptrow==300 | i == row 
        break 
    end 
    i=i+1 
    end % second while 
     
    svX=sv(:,1:23); 
    svY=sv(:,24); 
    trnX=[tcand(:,1:23); svX]; 
    trnY=[tcand(:,24); svY]; 
    k=i; 
     
    [nsv, possize, negsize, trnXX, trnYY, alpha, svalpha, sv, b0, H]=mysvc4(trnX,trnY); 
     
    batchcount=batchcount+1;     
    Tcpu=cputime-t0; 
      
    tstX=rawtst(m:n,p:q); 
    tstY=rawtst(m:n,q+1); 
    bias=b0; 
  
    [Terror,a,b,c,d] = mysvcerror1(trnXX,trnYY,tstX,tstY,alpha,bias); 
     
    Tinfo=[svrow, Tcpu, Terror,a,b,c,d, possize, negsize, batchcount]; 
    TTinfo_revfilter=[TTinfo_revfilter; Tinfo]; 
     
    if i == row 
        break 
    end 
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    i=i+1; 
    m=n+1; 
    n=m+batch-1; 
    tcand=[]; 
     
    end %while end 
    save  TTinfo_revfilter.txt TTinfo_revfilter -ASCII     
         
    otherwise %traditional SVM         
        error('specify the method that you want to use')       
end 
============================================================= 
 
*Kernel* 
============================================================= 
function k = mykernel(u,v) 
 
global P1 P2 KERTYPE 
 
if KERTYPE == 1    % linear 
    k = u*v'; 
elseif KERTYPE == 2   % polynomial 
    k = (u*v' + 1).^P1; 
elseif KERTYPE == 3   % rbf 
    k = exp(-(u-v)*(u-v)'/(2*P2^2)); 
else 
    k = u*v';  
end 
============================================================== 
 
 
*SVC1* 
============================================================== 
function [nsv, alpha,sv,b0] = mysvc1(X,Y) 
 
global KERTYPE C1 
 
if (nargin <2 | nargin>3) % check correct number of arguments 
    help svc 
  else 
    fprintf('Support Vector Classification\n'); 
    fprintf('_____________________________\n'); 
     
    n = size(X,1); 
    [n n1] = size(X); 

 85



 
    % tolerance for Support Vector Detection 
    epsilon = mytol(C1); 
     
    % Construct the Kernel matrix  
    H = zeros(n,n);   
    for i=1:n 
       for j=1:n 
          H(i,j) = Y(i)*Y(j)*mykernel(X(i,:),X(j,:)); 
       end 
    end 
    c = -ones(n,1);   
  
 fprintf('Support Vector Kernel  \n'); 
 fprintf('_____________________________\n'); 
    H = H+1e-10*eye(size(H)); 
   
    % Set up the parameters for the Optimisation problem 
    vlb = zeros(n,1);      % Set the bounds: alphas >= 0 
    vub = C1*ones(n,1);     %                 alphas <= C 
    x0 = zeros(n,1);       % The starting point is [0 0 0   0] 
  
    Ae = Y'; be = 0;     % Set the constraint Ax = b 
    
    % Solve the Optimisation Problem 
    fprintf('Optimising ...\n'); 
    st = cputime; 
     
    %options setting 
    options=optimset('MaxIter', 1000); 
     
    [alpha] = quadprog(H, c, [], [], Ae, be, vlb, vub, x0, options); 
       
    fprintf('Execution time: %4.1f seconds\n',cputime - st); 
    w2 = alpha'*H*alpha; 
    fprintf('|w0|^2    : %f\n',w2); 
    fprintf('Margin    : %f\n',2/sqrt(w2)); 
    fprintf('Sum alpha : %f\n',sum(alpha)); 
     
    % Compute the number of Support Vectors 
    svi = find( alpha > epsilon); 
    nsv = length(svi); 
    fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n); 
     
    % Obtain support vectors 
     sv=[X(svi,:), Y(svi,:)]; 
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     % Implicit bias, b0 
    b0 = 0; 
     
    % Explicit bias, b0  
    if nobias(KERTYPE) ~= 0 
      % find b0 from average of support vectors on margin 
      % SVs on margin have alphas: 0 < alpha < C1 
      svii = find( alpha > epsilon & alpha < (C1 - epsilon)); 
      if length(svii) > 0 
        b0 =  (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii)); 
      else  
        fprintf('No support vectors on margin - cannot compute bias.\n'); 
      end 
  end 
  end 
============================================================= 
 
 
*SVC3* 
============================================================= 
function [nsv, possize, negsize, trnXX, trnYY, alpha, sv, b0] = mysvc3(X, Y) 
 
global KERTYPE C1 C2 
 
origdata =[]; 
posdata=[]; 
negdata=[]; 
trnXX=[]; 
trnYY=[]; 
vub=[]; 
be=[]; 
H=[]; 
Ae=[]; 
c=[]; 
 
if (nargin <2 | nargin>4) % check correct number of arguments 
    help svc 
  else 
    origdata=[X, Y]; 
    [n n1] = size(X); 
    posind=find(origdata(:,n1+1)>0); 
    posdata=[origdata(posind,:)]; 
    [posrow poscol]=size(posdata); 
    posX=posdata(:,1:(poscol-1)); 
    negind=find(origdata(:,n1+1)< 0); 
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    negdata=[origdata(negind,:)]; 
    [negrow negcol]=size(negdata); 
    negX=negdata(:,1:(negcol-1)); 
    trnXX=[posX; negX]; 
    XX=[posdata; negdata]; 
    trnYY=[posdata(:, poscol); negdata(:,negcol)]; 
     
    % tolerance for Support Vector Detection 
    epsilon = mytol(C2); 
     
    % Construct the Kernel matrix for positive side 
    if 'rbf'  
        posH = ones(posrow, posrow); 
    else 
        posH = zeros(posrow,posrow);   
        for i=1:posrow 
            for j=1:posrow 
            posH(i,j) = mykernel(posX(i,:),posX(j,:)); 
            end 
        end 
    end 
 
    % Construct the Kernel matrix for negative side 
    if 'rbf'   
        negH = ones(negrow, negrow); 
    else 
        negH = zeros(negrow,negrow);   
        for i=1:negrow 
            for j=1:negrow 
            negH(i,j) = mykernel(negX(i,:),negX(j,:)); 
            end 
        end 
    end 
     
    % Construct the Kernel matrix for both sides 
    bothH = zeros(negrow,posrow);   
    for i=1:negrow 
       for j=1:posrow 
          bothH(i,j) = (-1)*mykernel(negX(i,:),posX(j,:)); 
       end 
    end 
     
    H=[posH bothH';bothH negH];  
     f = zeros(n,1);    
 
 fprintf('Support Vector Kernel  \n') 
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 fprintf('_____________________________\n') 
    H = H+1e-10*eye(size(H)); 
   
    % Set up the parameters for the Optimisation problem 
    vlb = zeros(n,1);      % Set the bounds: alphas, beta >= 0 
    vub1 = C1*ones(posrow,1);     %                   alphas <= 1 
    vub2 = C2*ones(negrow,1);     %                 betas <= C 
    vub = [vub1; vub2]; 
    x0 = zeros(n,1);       % The starting point is [0 0 0   0] 
       posA=ones(1,posrow); 
       negA=ones(1,negrow); 
       posAzero=[posA, zeros(1,(n-posrow))]; 
       negAzero=[zeros(1,(n-negrow)), negA]; 
       Ae=[posAzero; negAzero]; be =[1; 1]; 
        
    % Solve the Optimisation Problem 
    fprintf('Optimising ...\n'); 
    st = cputime; 
     
    %options setting 
    options=optimset('MaxIter', 1000); 
     
    [alpha] = quadprog(H, f, [], [], Ae, be, vlb, vub, x0, options); 
      
    fprintf('Execution time: %4.1f seconds\n',cputime - st); 
    w2 = alpha'*H*alpha; 
    fprintf('|w0|^2    : %f\n',w2); 
    fprintf('Margin    : %f\n',2/sqrt(w2)); 
    fprintf('Sum alpha : %f\n',sum(alpha)); 
     
    % Compute the number of Support Vectors 
    svi = find( alpha > epsilon); 
    nsv = length(svi); 
    fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n); 
 
    % Obtain support vectors 
     sv=XX(svi,:); 
    possvind = find(sv(:,poscol)>0); 
    possize=length(possvind); 
    negsvind = find(sv(:,negcol)<0); 
    negsize=length(negsvind);  
    possvs=sv(possvind,:); 
    negsvs=sv(negsvind,:); 
         
    % Implicit bias, b0 
    b0 = 0; 
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    % Explicit bias, b0  
    if nobias(KERTYPE) ~= 0 
      % find b0 from average of support vectors on margin 
      % SVs on margin have alphas: 0 < alpha < C 
      svii = find( alpha > epsilon & alpha < (C2 - epsilon)); 
      if length(svii) > 0 
        b0 =  (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii)); 
      else  
        fprintf('No support vectors on margin - cannot compute bias.\n'); 
      end 
    end 
end 
============================================================= 
 
 
*** SVC4 *** 
============================================================= 
function [nsv, possize, negsize, trnXX, trnYY, alpha, svalpha, sv, b0, H] = mysvc4(X, Y) 
 
global KERTYPE C1 C2 
 
origdata =[]; 
posdata=[]; 
negdata=[]; 
trnXX=[]; 
trnYY=[]; 
vub=[]; 
be=[]; 
H=[]; 
Ae=[]; 
c=[]; 
 
if (nargin <2 | nargin>4) % check correct number of arguments 
    help svc 
  else 
    origdata=[X, Y]; 
    [n n1] = size(X); 
    posind=find(origdata(:,n1+1)>0); 
    posdata=[origdata(posind,:)]; 
    [posrow poscol]=size(posdata); 
    posX=posdata(:,1:(poscol-1)); 
    negind=find(origdata(:,n1+1)< 0); 
    negdata=[origdata(negind,:)]; 
    [negrow negcol]=size(negdata); 
    negX=negdata(:,1:(negcol-1)); 
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    trnXX=[posX; negX]; 
    XX=[posdata; negdata]; 
    trnYY=[posdata(:, poscol); negdata(:,negcol)]; 
     
    % tolerance for Support Vector Detection 
    epsilon = mytol(C2); 
     
    % Construct the Kernel matrix for positive side 
    if 'rbf'  
        posH = ones(posrow, posrow); 
    else 
        posH = zeros(posrow,posrow);   
        for i=1:posrow 
            for j=1:posrow 
            posH(i,j) = mykernel(posX(i,:),posX(j,:)); 
            end 
        end 
    end 
 
    % Construct the Kernel matrix for negative side 
    if 'rbf'   
        negH = ones(negrow, negrow); 
    else 
        negH = zeros(negrow,negrow);   
        for i=1:negrow 
            for j=1:negrow 
            negH(i,j) = mykernel(negX(i,:),negX(j,:)); 
            end 
        end 
    end 
     
    % Construct the Kernel matrix for both sides 
    bothH = zeros(negrow,posrow);   
    for i=1:negrow 
       for j=1:posrow 
          bothH(i,j) = (-1)*mykernel(negX(i,:),posX(j,:)); 
       end 
    end 
     
    H=[posH bothH';bothH negH];  
     f = zeros(n,1);    
 
 fprintf('Support Vector Kernel  \n'); 
 fprintf('_____________________________\n'); 
    H = H+1e-10*eye(size(H)); 
   

 91



    % Set up the parameters for the Optimisation problem 
    vlb = zeros(n,1);      % Set the bounds: alphas, beta >= 0 
    vub1 = C1*ones(posrow,1);     %                   alphas <= 1 
    vub2 = C2*ones(negrow,1);     %                 betas <= C 
    vub = [vub1; vub2]; 
    x0 = zeros(n,1);       % The starting point is [0 0 0   0] 
       posA=ones(1,posrow); 
       negA=ones(1,negrow); 
       posAzero=[posA, zeros(1,(n-posrow))]; 
       negAzero=[zeros(1,(n-negrow)), negA]; 
       Ae=[posAzero; negAzero]; be =[1; 1]; 
       
    % Solve the Optimisation Problem 
    fprintf('Optimising ...\n'); 
    st = cputime; 
     
    %options setting 
    options=optimset('MaxIter', 1000); 
     
    [alpha] = quadprog(H, f, [], [], Ae, be, vlb, vub, x0, options); 
  
    fprintf('Execution time: %4.1f seconds\n',cputime - st); 
    w2 = alpha'*H*alpha; 
    fprintf('|w0|^2    : %f\n',w2); 
    fprintf('Margin    : %f\n',2/sqrt(w2)); 
    fprintf('Sum alpha : %f\n',sum(alpha)); 
     
    % Compute the number of Support Vectors 
    svi = find( alpha > epsilon); 
    nsv = length(svi); 
    fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n); 
 
    % Obtain support vectors 
    svalpha=alpha(svi,:); 
    sv=XX(svi,:); 
     
    possvind = find(sv(:,poscol)>0); 
    possize=length(possvind); 
     
    negsvind = find(sv(:,negcol)<0); 
    negsize=length(negsvind); 
     
    possvs=sv(possvind,:); 
    negsvs=sv(negsvind,:); 
         
    % Implicit bias, b0 
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    b0 = 0; 
        
    % Explicit bias, b0  
    if nobias(KERTYPE) ~= 0 
      % find b0 from average of support vectors on margin 
      % SVs on margin have alphas: 0 < alpha < C 
      svii = find( alpha > epsilon & alpha < (C2 - epsilon)); 
      if length(svii) > 0 
        b0 =  (1/length(svii))*sum(Y(svii) - H(svii,svi)*alpha(svi).*Y(svii)); 
      else  
        fprintf('No support vectors on margin - cannot compute bias.\n'); 
      end 
    end 
end 
============================================================= 
 
 
*** SVCerror *** 
============================================================= 
function [err,a,b,c,d] = mysvcerror1(trnX,trnY,tstX,tstY,alpha,bias) 
 
global KERTYPE 
together=[]; 
 
  if (nargin ~= 6) % check correct number of arguments 
    help svcerror 
  else 
    n = size(trnX,1); 
    m = length(tstY); 
    H = zeros(m,n);   
    for i=1:m 
      for j=1:n 
        H(i,j) = trnY(j)*mykernel(tstX(i,:),trnX(j,:)); 
      end 
    end 
    predictedY = sign(H*alpha + bias); 
    err = sum(predictedY ~= tstY); 
    together=[predictedY, tstY]; 
    a_indice=find((together(:,1)+together(:,2))==2); 
    a=length(a_indice); 
    b_indice=find(together(:,1) > together(:,2)); 
    b=length(b_indice); 
    c_indice=find(together(:,1) < together(:,2)); 
    c=length(c_indice); 
    d_indice=find((together(:,1)+together(:,2))== -2); 
    d=length(d_indice);              
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  end 
============================================================= 
 
 
*** Tolerance *** 
============================================================= 
function tol = mytol(C) 
 
    % tolerance for Support Vector Detection 
    if C==Inf  
      tol = 1e-5; 
    else 
      tol = C*1e-6; 
    end 
============================================================ 
 
*** Filter *** 
function [cand]=filter8(sv, svalpha, newX, b0) 
 
%global C2 
negsvX=[]; 
negsvalpha=[]; 
totnegvalue=[]; 
negvals=[]; 
    svX=sv(:,1:23); 
    svY=sv(:,24); 
    [svrow, svcol]=size(svX); 
    [newrow, newcol]=size(newX); 
    %filter parts 
    negsvYind=find(svY<0); 
    negsvX=[sv(negsvYind,1:svcol)]; 
    [negsvrow, negsvcol]=size(negsvX); 
    negsvalpha=[svalpha(negsvYind,:)]; 
        
        for i = 1:negsvrow 
        for j = 1:svrow 
        H(1,j) = svY(j,:)*mykernel(negsvX(i,:),svX(j,:)); 
        end 
        negvalue=H(1,:)*svalpha+b0;  
        totnegvalue=[totnegvalue; negvalue]; 
        end 
         
        negind=find(totnegvalue < 0); 
        negvals=[totnegvalue(negind,:)]; 
        maxnegvalue=max(negvals); 
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     for j = 1:svrow 
    G(1,j) = svY(j,:)*mykernel(newX(:,1:(newcol-1)),svX(j,:)); 
    end  
    newvalue=G*svalpha+b0 ; 
   
     if newvalue < maxnegvalue 
        cand=[];       
    else 
    cand=newX; 
    end   % if end 
============================================================= 
 
 
*** IRSVR *** 
============================================================ 
clear all 
 
global P1   % P1 is degree of polynomial 
global P2   % P2 is width of rbfs (sigma) 
global KERTYPE %1: linear; 2: polynomial; 3: rbf 
%Declaration 
X=[]; 
Y=[]; 
svX=[]; 
svY=[]; 
batchcount=0; 
totaltime=0; 
trnX=[]; 
trnY=[]; 
tcand=[]; 
cummse=[]; 
cummae=[]; 
meanerror=[]; 
 
%inputs 
P1= 2; 
P2= 1; 
KERTYPE = 1; 
C1= 0.1;  
C2= 0.1; 
batch=50; % size of batch 
method = 5; % 1: traditional SVR 2: ISVR; 3: IRSVR 4: IRSVR wtih trends 5: IRSVRF 
with trends 
p=1;        %staring column for training 
q=1;       %ending column for training 
pq=p-q+1;   % number of columns 
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r=q+1;        % target value 
 
%parameter 
ker='poly'; 
C=1; 
loss='einsensitive'; 
e=0.2;         
origC1=C1; 
origC2=C2; 
 
%load training and testing data 
load toy3_tr10.txt  
load toy3_ts10.txt 
 
[row col]=size(toy3_tr10); 
[row2 col2]=size(toy3_ts10); 
rawtrn=toy3_tr10(1:row,:); 
rawtst=toy3_ts10(1:row2,:);  
 
result1=[]; 
result2=[]; 
cresult=[]; 
 
switch lower(method)  
    case 1 %        
trnX=rawtrn(1:row, p:q); 
trnY=rawtrn(1:row, r); 
 
tstX=rawtst(1:row2, p:q); 
tsY=rawtst(1:row2, r); 
 
%measure time 
t0=cputime; 
 
[nsv, beta, bias]=mysvr1(trnX,trnY, ker, C, loss, e); 
totaltime=cputime-t0; 
tstY = svroutput(trnX,tstX,ker,beta,bias); 
 
for i = 1:row 
    differ(i)=tstY(i)-tsY(i); 
end 
 
errorvector=differ'; 
meansq=mse(errorvector); 
abserr=mae(errorvector); 
result1=[nsv, meansq, abserr, totaltime] 
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save result1.txt result1 -ASCII 
 
    case 2 % 
         
    incre_result1=[]; 
    incre_result2=[];  
    cincreresult1=[]; 
    cincreresult2=[];     
    i=1; 
    j=i+batch-1; 
 
    while i > 0  
    trnX=[rawtrn(i:j,p:q); svX]; 
    trnY=[rawtrn(i:j,r); svY]; 
    t0=cputime;     
     
    [nsv, sv, possv, negsv, beta, bias]=mysvr2(trnX,trnY, ker, C, loss, e); 
     
    t1=cputime-t0; 
    totaltime=totaltime+t1; 
    batchcount=batchcount+1; 
    [svrow svcol]=size(sv); 
    svX=sv(:,1:(svcol-1)); 
    svY=sv(:,svcol); 
 
    tstX=rawtst(i:j,p:q); 
    tsY=rawtst(i:j,r); 
     
    tstY = svroutput(trnX,tstX,ker,beta,bias); 
     
    [tstYrow, tstYcol]=size(tsY); 
     
    for i = 1:tstYrow 
    differ(i)=tstY(i)-tsY(i); 
    end %for end 
    
    errorvector=differ'; 
     
    meansq=mse(errorvector); 
    bserr=mae(errorvector); 
    cummse=[cummse; meansq]; 
    cummae=[cummae; bserr]; 
    avgmse=mean(cummse); 
    avgmae=mean(cummae); 
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    incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount]; 
    cincreresult1=[cincreresult1; incre_result1]; 
 
    %update i and j values 
    i=j+1; 
    j=i+batch-1; 
 
    if j > row2  
        break 
    end  %if end  
    end %while end 
 
    save  increresult1.txt cincreresult1 -ASCII 
         
    case 3  % 
    incre_result1=[]; 
    incre_result2=[];  
    cincreresult1=[]; 
    cincreresult2=[]; 
     
    i=1; 
    j=i+batch-1; 
 
    while i > 0 
     
    trnX=[rawtrn(i:j,p:q); svX]; 
    trnY=[rawtrn(i:j,r); svY];  
    t0=cputime;     
    [nsv, sv, possv, negsv, beta, bias]=mysvr3(trnX,trnY, ker, C1, C2, loss, e); 
    t1=cputime-t0; 
    totaltime=totaltime+t1; 
    batchcount=batchcount+1; 
    [svrow svcol]=size(sv); 
     
    svX=sv(:,1:(svcol-1)); 
    svY=sv(:,svcol); 
    tstX=rawtst(i:j,p:q); 
    tsY=rawtst(i:j,r); 
     
    tstY = svroutput(trnX,tstX,ker,beta,bias);   
    [tstYrow, tstYcol]=size(tsY); 
     
    for i = 1:tstYrow 
    differ(i)=tstY(i)-tsY(i); 
    end %for end 
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    errorvector=differ'; 
    meansq=mse(errorvector); 
    bserr=mae(errorvector); 
    cummse=[cummse; meansq]; 
    cummae=[cummae; bserr];  
    avgmse=mean(cummse); 
    avgmae=mean(cummae); 
     
    incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount]; 
    cincreresult1=[cincreresult1; incre_result1] 
 
    %update i and j values 
    i=j+1; 
    j=i+batch-1; 
 
    if j > row2  
        break 
    end  %if end 
     
    end %while end 
 
    save  revincreresult1.txt cincreresult1 -ASCII 
     
case 4  % 
         
    incre_result1=[] 
    incre_result2=[]  
    cincreresult1=[] 
    cincreresult2=[]  
    i=1 
    j=i+batch-1 
 
    while i > 0 
     
    trnX=[rawtrn(i:j,p:q); svX]; 
    trnY=[rawtrn(i:j,r); svY];  
    t0=cputime;   
    [nsv, sv, possv, negsv, beta, bias]=mysvr4(trnX,trnY, ker, C1, C2, loss, e); 
     
    t1=cputime-t0; 
    totaltime=totaltime+t1 
    batchcount=batchcount+1; 
    [svrow svcol]=size(sv); 
     
    svX=sv(:,1:(svcol-1)); 
    svY=sv(:,svcol); 
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    tstX=rawtst(i:j,p:q); 
    tsY=rawtst(i:j,r); 
    tstY = svroutput(trnX,tstX,ker,beta,bias); 
    [tstYrow, tstYcol]=size(tsY); 
     
    for i = 1:tstYrow 
    differ(i)=tstY(i)-tsY(i); 
    end %for end 
     
    errorvector=differ'; 
    meanerr=mean(errorvector); 
    meansq=mse(errorvector); 
    bserr=mae(errorvector); 
    cummse=[cummse; meansq]; 
    cummae=[cummae; bserr];    
    avgmse=mean(cummse); 
    avgmae=mean(cummae); 
     
    incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount]; 
    cincreresult1=[cincreresult1; incre_result1] 
     
  % original C1 & C2 
    C1=origC1; 
    C2=origC2; 
   
  % to reflect the trends 
    if meanerror > 0 
        C1 = C1-(0.5*C1); 
        C2 = C2; 
    elseif meanerror < 0 
        C1 = C1; 
        C2 = C2-(0.5*C2);  
    else 
        C1=C1; 
        C2=C2; 
    end  %if end   
   
    %update i and j values 
    i=j+1; 
    %j=300-svrow; 
    j=i+batch-1; 
 
    if j > row2  
        break 
    end  %if end  
    end %while end 
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    save  trendrevincreresult1.txt cincreresult1 -ASCII 
         
case 5 
    incre_result1=[]; 
    incre_result2=[];  
    cincreresult1=[]; 
    cincreresult2=[]; 
     tnp=0; 
    tnn=0; 
    newXY=[]; 
    i=1; 
    j=i+batch-1; 
    trnX=[rawtrn(i:j,p:q)]; 
    trnY=[rawtrn(i:j,r)];   
    t0=cputime; 
     
    [nsv, sv, possv, negsv, beta, bias]=mysvr5(trnX,trnY, ker, C1, C2, loss, e); 
    t1=cputime-t0; 
    totaltime=totaltime+t1; 
     
    batchcount=batchcount+1; 
    [svrow, svcol]=size(sv); 
     tstX=rawtst(i:j,p:q); 
     tsY=rawtst(i:j,r); 
  
    tstY = svroutput(trnX,tstX,ker,beta,bias); 
    [tstYrow, tstYcol]=size(tsY); 
     
    for i = 1:tstYrow 
    differ(i)=tstY(i)-tsY(i); 
    end %for end 
 
    errorvector=differ'; 
    meansq=mse(errorvector); 
    bserr=mae(errorvector); 
    avgmse=meansq; 
    avgmae=bserr; 
    incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount]; 
    cincreresult1=[cincreresult1; incre_result1]; 
     i=j+1; 
     
    while i > 0  
    t2=cputime; 
    ctstX=[]; 
    ctsY=[]; 
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    tcand=[]; 
     
    while i > 0 
     
    newXY=[rawtrn(i,p:q), rawtrn(i,r)];    
    [cand, np, nn, m]=svrfilter2(possv,negsv,newXY,i,bias); 
    tcand=[tcand; cand]; 
    [ptrow, ptcol]=size(tcand); 
    tnp=tnp+np; 
    tnn=tnn+nn; 
    tstind=rawtst(m,p:q); 
    ctstX=[ctstX;tstind]; 
    tsind=rawtst(m,r); 
    ctsY=[ctsY; tsind]; 
 
    if ptrow == batch | i == row 
        memi=i 
        break 
    end     
    i=i+1; 
    end % second while 
   
    svX=sv(:,1:(svcol-1)); 
    svY=sv(:,svcol); 
    trnX=[tcand(:,1:(ptcol-1)); svX]; 
    trnY=[tcand(:,ptcol); svY]; 
    k=i; 
     
    % to reflect the trends 
    if tnp > tnn 
        C1 = C1-(0.1*C1); 
        C2 = C2; 
    elseif tnp < tnn 
        C1 = C1; 
        C2 = C2-(0.1*C2);  
    else 
        C1=C1; 
        C2=C2; 
    end  %if end 
     
    [nsv, sv, possv, negsv, beta, bias]=mysvr5(trnX,trnY, ker, C1, C2, loss, e); 
    t3=cputime-t2; 
    totaltime=totaltime+t3; 
    batchcount=batchcount+1; 
    tstX=ctstX; 
    tsY=ctsY; 
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    tstY = svroutput(trnX,tstX,ker,beta,bias); 
    [tstYrow, tstYcol]=size(tsY); 
     
    for i = 1:tstYrow 
    differ(i)=tstY(i)-tsY(i); 
    end %for end 
 
    errorvector=differ'; 
    meansq=mse(errorvector); 
    bserr=mae(errorvector); 
    cummse=[cummse; meansq]; 
    cummae=[cummae; bserr]; 
    avgmse=mean(cummse); 
    avgmae=mean(cummae); 
    incre_result1=[nsv, meansq, bserr, totaltime, avgmse, avgmae, batchcount]; 
    cincreresult1=[cincreresult1; incre_result1] 
     
    %update i and j values 
    i=memi+1; 
    %j=300-svrow; 
    countj=i+batch-1; 
    C1=origC1; 
    C2=origC2; 
     
    if countj > row2  
        break 
    end  %if end 
    end %while end 
 
    save  filtertrendrevincreresult1.txt cincreresult1 -ASCII 
end % switch end 
============================================================ 
 
 
SVRoutput 
============================================================ 
function tstY = svroutput(trnX,tstX,ker,beta,bias) 
  if (nargin ~= 5) % check correct number of arguments 
    help svroutput 
  else 
    n = size(trnX,1); 
    m = size(tstX,1); 
    H = zeros(m,n);   
    for i=1:m 
      for j=1:n 
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        H(i,j) = svkernel(ker,tstX(i,:),trnX(j,:)); 
      end 
    end 
    tstY = (H*beta +bias); 
end 

============================================================ 
 
 
*** SVR1 *** 
============================================================ 
function [nsv,beta,bias] = mysvr1(X,Y,ker,C,loss,e) 
 
if (nargin < 3 | nargin > 6) % check correct number of arguments 
    help svr 
  else 
 
    fprintf('Support Vector Regressing ....\n') 
    fprintf('______________________________\n') 
    n = size(X,1); 
    if (nargin<6) e=0.0;, end 
    if (nargin<5) loss='einsensitive';, end 
    if (nargin<4) C=Inf;, end 
    if (nargin<3) ker='linear';, end   
 
    % tolerance for Support Vector Detection 
    epsilon = svtol(C); 
 
    % Construct the Kernel matrix 
     
    fprintf('Constructing ...\n'); 
    H = zeros(n,n);   
    for i=1:n 
       for j=1:n 
          H(i,j) = svkernel(ker,X(i,:),X(j,:)); 
       end 
    end 
 
    % Set up the parameters for the Optimisation problem 
    switch lower(loss) 
      case 'einsensitive', 
        Hb = [H -H; -H H]; 
        c = [(e*ones(n,1) - Y); (e*ones(n,1) + Y)];   
        vlb = zeros(2*n,1);    % Set the bounds: alphas >= 0 
        vub = C*ones(2*n,1);   %                 alphas <= C 
        x0 = zeros(2*n,1);     % The starting point is [0 0 0   0] 
        neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)   
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        if neqcstr 
          A = [ones(1,n) -ones(1,n)];, b = 0;     % Set the constraint Ax = b 
        else 
          A = [];, b = [];  
        end 
      case 'quadratic', 
        Hb = H + eye(n)/(2*C); 
        c = -Y; 
        vlb = -1e30*ones(n,1);    
        vub = 1e30*ones(n,1);     
        x0 = zeros(n,1);              % The starting point is [0 0 0   0] 
        neqcstr = nobias(ker);        % Set the number of equality constraints (1 or 0)   
        if neqcstr 
          A = ones(1,n);, b = 0;      % Set the constraint Ax = b 
        else 
          A = [];, b = [];  
        end 
      otherwise, disp('Error: Unknown Loss Function\n'); 
    end 
 
    Hb = Hb+1e-10*eye(size(Hb)); 
  
    % Solve the Optimisation Problem 
     
    fprintf('Optimising ...\n'); 
    st = cputime; 
     
    [alpha lambda how] = qp(Hb, c, A, b, vlb, vub, x0, neqcstr); 
 
    fprintf('Execution time : %4.1f seconds\n',cputime - st); 
    fprintf('Status : %s\n',how); 
 
    switch lower(loss) 
      case 'einsensitive', 
        beta =  alpha(1:n) - alpha(n+1:2*n); 
      case 'quadratic', 
        beta = alpha; 
    end 
    fprintf('|w0|^2    : %f\n',beta'*H*beta);   
    fprintf('Sum beta : %f\n',sum(beta)); 
     
    % Compute the number of Support Vectors 
    svi = find( abs(beta) > epsilon ); 
    nsv = length( svi ); 
    fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n); 
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    % Implicit bias, b0 
    bias = 0; 
 
    % Explicit bias, b0  
    if nobias(ker) ~= 0 
      switch lower(loss) 
        case 'einsensitive', 
          % find bias from average of support vectors with interpolation error e 
          % SVs with interpolation error e have alphas: 0 < alpha < C 
          svii = find( abs(beta) > epsilon & abs(beta) < (C - epsilon)); 
          if length(svii) > 0 
            bias = (1/length(svii))*sum(Y(svii) - e*sign(beta(svii)) - H(svii,svi)*beta(svi)); 
          else  
            fprintf('No support vectors with interpolation error e - cannot compute bias.\n'); 
            bias = (max(Y)+min(Y))/2; 
          end 
        case 'quadratic', 
          bias = mean(Y - H*beta); 
         
      end  
    end 
  end 
============================================================== 
 
 
*** SVR4 *** 
============================================================ 
function [nsv,sv, possv, negsv, beta,bias] = mysvr4(X,Y,ker,C1,C2,loss,e) 
% definition of variables 
    Hb=[]; 
    c=[]; 
    vlb=[]; 
    vub=[]; 
    A1=[]; 
    A2=[]; 
    A=[]; 
    b=[]; 
    x0=[]; 
    beta=[]; 
     
    fprintf('Support Vector Regressing ....\n'); 
    fprintf('______________________________\n'); 
    n = size(X,1); 
 
    % tolerance for Support Vector Detection 
    epsilon = svtol(C1); 

 106



 
    % Construct the Kernel matrix 
     
    fprintf('Constructing ...\n'); 
    H = zeros(n,n);   
    for i=1:n 
       for j=1:n 
          H(i,j) = svkernel(ker,X(i,:),X(j,:)); 
       end 
    end 
 
    % Set up the parameters for the Optimisation problem 
    switch lower(loss) 
      case 'einsensitive', 
        Hb = [H -H; -H H]; 
        c = [(e*ones(n,1) - Y); (e*ones(n,1) + Y)];   
        vlb = zeros(2*n,1);    % Set the bounds: alphas >= 0 
        vub1 = C1*ones(1*n,1);   %                 alphas <= C1 
        vub2 = C2*ones(1*n,1);   %                 alphas <= C2 
        vub = [vub1; vub2]; 
        x0 = zeros(2*n,1);     % The starting point is [0 0 0   0] 
             A1=[ones(1,n), zeros(1,n)];  
            A2=[zeros(1,n), ones(1,n)]; 
            A=[A1;A2]; 
            b=[1; 1];  % Set the constraint Ax = b 
 
      case 'quadratic', 
        Hb = H + eye(n)/(2*C1); 
        c = -Y; 
        vlb = -1e30*ones(n,1);    
        vub = 1e30*ones(n,1);     
        x0 = zeros(n,1);              % The starting point is [0 0 0   0] 
          A = ones(1,n);, b = 0;      % Set the constraint Ax = b  
      otherwise, disp('Error: Unknown Loss Function\n'); 
    end 
 
    Hb = Hb+1e-10*eye(size(Hb)); 
    % Solve the Optimisation Problem 
    fprintf('Optimising ...\n'); 
    st = cputime;  
     
    neq=2; 
    [alpha lambda how] = qp(Hb, c, A, b, vlb, vub, x0, neq); 
     
    fprintf('Execution time : %4.1f seconds\n',cputime - st); 
    fprintf('Status : %s\n',how); 
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    switch lower(loss) 
      case 'einsensitive', 
        beta =  alpha(1:n) - alpha(n+1:2*n); 
      case 'quadratic', 
        beta = alpha; 
    end 
    fprintf('|w0|^2    : %f\n',beta'*H*beta);   
    fprintf('Sum beta : %f\n',sum(beta)); 
     
    % Compute the number of Support Vectors 
    svi = find( abs(beta) > epsilon ); 
    nsv = length( svi ); 
    fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n); 
     
    % Obtain support vectors 
    sv=[X(svi,:), Y(svi,:)]; 
    possvind = find(beta > epsilon); 
    possv=[X(possvind,:)]; 
    possize=length(possvind); 
    negsvind = find(beta < -epsilon); 
    negsv=[X(negsvind,:)]; 
    negsize=length(negsvind);    
     
    % Implicit bias, b0 
    bias = 0; 
 
    % Explicit bias, b0  
    if nobias(ker) ~= 0 
      switch lower(loss) 
        case 'einsensitive', 
          % find bias from average of support vectors with interpolation error e 
          % SVs with interpolation error e have alphas: 0 < alpha < C 
          svii = find( abs(beta) > epsilon & abs(beta) < (C - epsilon)); 
          if length(svii) > 0 
            bias = (1/length(svii))*sum(Y(svii) - e*sign(beta(svii)) - H(svii,svi)*beta(svi)); 
          else  
            fprintf('No support vectors with interpolation error e - cannot compute bias.\n'); 
            bias = (max(Y)+min(Y))/2; 
          end 
        case 'quadratic', 
          bias = mean(Y - H*beta); 
      end  
    end 
============================================================== 
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** filter *** 
============================================================== 
function [cand, np, nn]=svrfilter2(possv, negsv, newXY, bias) 
 
    [possvrow, possvcol]=size(possv); 
    [negsvrow, negsvcol]=size(negsv); 
    [newXYrow, newXYcol]=size(newXY); 
   
    %filter parts   
    possvX=possv(:, 1:(possvcol-2)); 
    possvY=possv(:, (possvcol-1));   
    negsvX=negsv(:, 1:(negsvcol-2)); 
    negsvY=negsv(:, (negsvcol-1));    
    newX=newXY(:, 1:(newXYcol-1)); 
    newY=newXY(:, newXYcol);   
    minposvalue=min(possvY); 
    maxnegvalue=max(negsvY); 
    newvalue=newY; 
     
    if newvalue >= minposvalue 
        np=1;  
        nn=0; 
        cand=[]; 
    else if newvalue <= maxnegvalue 
        np=0; 
        nn=1; 
       cand=[];   
    else 
        np=0; 
        nn=0; 
        cand=newXY; 
    end   % if end 
end  %function end 
============================================================== 
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