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ABSTRACT

During the past two decades, a variety of concurrent multi-scale simulation methods
have been developed, such as the bridging scale method, in which MD simulation is
performed only at localized areas of interest, while the response of rest of the domain is
solved by using finite element method (FEM). This thesis presents a shape sensitivity
analysis approach for multi-scale crack propagation problems based on the bridging
scale method. The objective is to reveal the impact of macroscopic shape change on the
speed of crack growth at microscopic level. Two major challenges exist in shape
sensitivity analysis of coupled atomistic/continuum crack propagation problems,
namely the discrete nature of the MD simulation and the non-differentiability of the
performance measure of crack propagation speed. In this thesis, the shape sensitivity
expressions are derived using direct differentiation method by taking material derivative
of a continuum variational formulation of the bridging scale. To get around the
discontinuity issue in continuum shape design due to the discrete nature of the MD
simulation, the design velocity fields are defined in a way that the shape of the MD
region does not change. The derived shape sensitivity formulation can be used to
analytically compute the sensitivity coefficients of structural responses at the atomistic
level. In addition, a performance measure that quantifies the speed of crack is
established to support the sensitivity calculation for crack propagation speed. To
overcome the non-differentiability of crack speed in design space, a hybrid method that
combines analytical sensitivity analysis and regression analysis is developed. The

proposed analytical sensitivity approach and hybrid method are implemented

XVi



numerically in a nano-beam example, and the accuracy is verified using overall finite
difference results.

The analytical sensitivity expressions in this thesis are formulated based on a
rigorous mathematical foundation, and is generalized for three-dimensional structures
with arbitrary geometric shape. In calculating the sensitivity of crack speed, the hybrid
method with regression analysis is much more efficient than overall finite difference.
The major contributions of this thesis are: first, it demonstrates the feasibility of shape
design of coupled atomistic/continuum systems for the first time; and second, the
proposed sensitivity approach accurately predicts the correlation between macroscopic
shape change and microscopic crack propagation speed, and therefore establishes the
foundation of multi-scale residual-life-based structural optimization without involving

traditional fracture mechanics theory.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Fatigue of mechanical systems subject to repeated cyclic loading has been one of the
primary concerns in structural design. When the initial crack propagates and reaches a
critical size, localized damage occurs, which eventually leads to failure of the structural
component. However, the mere presence of crack does not condemn a structure to be
unsafe. In fact, it has been a common practice to periodically inspect critical structural
components in order to identify presence of cracks, monitor crack growth, and predict
useful remaining service life — or residual life. On the other hand, it now becomes
possible in many cases to simulate crack propagation and hence estimate residual life
using mechanics-based analysis techniques. More importantly, by investigating the
impact of geometric shape change on crack growth speed, engineers are able to enhance
the durability and maximize the service life of structural components through shape
design optimization.

To understand crack propagation and predict residual life, traditional
engineering simulation methods have made extensive use of continuum level modeling
via empirical constitutive relations and numerical methods such as extended finite
element method (XFEM). However, continuum based theories cannot give a fracture
criterion from a physical point of view, and therefore are not capable of accounting for
all experimentally observed characteristics of crack propagation. For example, it is well

known that a crack grows in different patterns along different orientations within a



crystal lattice, whereas continuum mechanics views material as continuous and
homogenous. In addition, the resolution of a numerical method is limited to the size of
the continuum element for which the constitutive relation employed remains valid. This
may lead to a result of significant variation due to factors such as mesh size and
prescribed crack growth size. For example, it has been shown in [1] that the predicted
residual life of a structural component can differ up to 90% between finite element
models of coarse and fine meshes, which poses difficulties and uncertainties to residual-
life-based structural design.

In order to alleviate such uncertainties, computational methods that can better
capture the physical behavior of cracks are desirable. Most often, physical phenomena
at atomistic level, such as a fracture, can be simulated using atomistic simulation
methods, such as molecular dynamics (MD). During the past few decades, due to the
availability of accurate interatomic potentials for a wide range of materials and the rapid
progression of computational power, MD simulation techniques advanced greatly and
have become prominent as a tool for describing the dynamics of the material at
localized and highly nonlinear regions, where the continuum assumption ceases to be
valid. However, the length and time scales that can be probed using MD are still fairly
limited. Even with the world’s largest computer to-date, MD simulation is generally
impractical for structures with length scales larger than a few microns due to the
enormous number of degrees of freedom required to be solved. Therefore, atomistic
simulations cannot be used alone for solving macroscopic systems, and it then becomes

logical to combine atomistic and continuum descriptions of a problem in some manner,



while confining the former into localized regions where atomistic level dynamics are
important.

It is precisely for bridging the gap between dynamic atomistic and continuum
simulations that concurrent multi-scale simulation techniques are developed. These
methods have recently become both popular and necessary due to the development of
nano-technology. Their ability to examine atomistic-scale material behavior in great
detail also makes them suitable for simulating dynamic crack propagation. On one hand,
the nonlinear behavior near the crack tip can be accurately captured by the atomistic
simulation; on the other hand, the overall computation expense can be significantly
reduced by performing atomistic simulation only within localized areas of interest.
Therefore, multi-scale simulations appear to be promising for allowing researchers to
gain new insight into dynamic crack propagation and fatigue problems. Once these
methods are extended to practical applications, it is possible to eliminate the need of
traditional fracture mechanics theory developed decades ago that depends largely on
assumptions and empirical constants. In the meantime, structural design based on multi-
scale simulations can be carried out to prolong the residual life of structural components

with better accuracy.

1.2 Literature Review

Atomistic Simulations of Dynamic Crack Propagation

The origin of virtually all fracture phenomena lies at atomistic scale. A macroscopic
fracture process can only be understood if the mechanisms on smaller length scales are
properly taken into account. The classical theories of continuum mechanics have been

the basis of most theoretical and computational tools, forming the foundation for



numerical approaches such as the finite element method (FEM). However, at atomistic
level, while the material inhomogeneity reaches a length scale comparable to the overall
size of the physical phenomena, the basic assumption of continuum theories — materials
can be treated without explicitly considering the underlying microstructure — does not
hold any more, and hence the continuum description of materials becomes questionable.
In contrast, atomistic modeling provides a general and fundamental description of
material properties and deformation processes. Atomistic methods are essentially first-
principles-based approaches that do not depend on any phenomenological assumption;
therefore, they are capable of capturing nano-scale physical mechanisms such as the
propagation of cracks.

Atomistic simulation of dynamic crack propagation is a modern development
since last several decades due to the advances in computational power. Numerous
studies have been reported that investigate crack growth behavior and related physical
phenomena (such as dislocation emission, brittle to ductile transition, etc.) at
microscopic level using atomistic methods. Here we mention only a few representative
studies. For example, a large-scale molecular dynamics simulation using more than one
billion atoms was performed by Abraham et al. [2] to reveal the underlying physics of
ductile material failure and work-hardening in crystal samples. Gordon et al. [3]
examined near-crack-tip deformation in iron and iron alloy single crystals under pure
mode-I loading by employing the molecular statics technique; the influence of Ni and
Cr solutes on the failure mechanisms of micro-cracks in single crystals of pure iron was
studied. Gao et al. [4] carried out molecular dynamics simulations using a self-adaptive

time step algorithm in order to understand dynamic crack propagation on different slip



planes of BCC iron, and found that the slip plane significantly affects crack propagation
speed. Simulations of brittle-to-ductile transition in silicon single crystals were
performed by Sen et al. [5] using a first-principles-based atomistic model. Ersland et al.
[6] reported a full three-dimensional (3-D) molecular dynamics study of penny-shaped
embedded cracks, which showed that the original circular crack geometry can change
shape gradually upon loading. A molecular dynamics simulation of nano-scale fatigue
damage in nickel and copper single crystals was carried out by Potirniche et al. [7].
Among various atomistic methods, molecular dynamics is the most popular and
widely applicable simulation technique. In a MD simulation, the equations of motion of
a system of atoms or molecules are solved, resulting in the dynamical trajectories of all
particles in the system. Though powerful in revealing atomistic level material behavior,
molecular dynamics is still limited in the time and length scales that can be modeled.
For example, only systems with a few billion atoms can be simulated even with today’s
most powerful computers, whereas a cubic centimeter of solid material already contains
more than 10 atoms. Therefore, as shown in Fig. 1.1a, MD has been exclusively aimed

at atomistic physics so far, and systems analyzed using MD are mostly at micro or nano
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Figure 1.1 (a) Different length scales associated with dynamic fracture [8]. (b) “Mirror-

mist-hackle” transition in dynamic crack instability [9]
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Compared to other categories of fracture behaviors, brittle fracture is
particularly attractive in the field of MD simulation. This is because in brittle materials,
cracks generally propagate at speeds of kilometers per second, corresponding to time
and length scales of nanometers per picoseconds (10™*%s), which is readily accessible
with molecular dynamics. Most MD simulations of dynamic crack propagation in brittle
materials are focused on understanding the important physical phenomena in brittle
fracture, such as crack limiting speed (maximum speed that a crack can attain) [10,11]
and dynamic crack instability (crack face morphology changes from “mirror” to “mist”
to “hackle” as crack speed increases, as shown in Fig. 1.1b) [9,12,13]. Recent progress
also include investigations of the correlation between atomistic simulation results and
continuum theories [13,14]; for example, it is found that atomistic models of brittle
fracture reproduce the predictions of linear elastic continuum theory only when
harmonic interaction is assumed. In terms of system size, several large-scale MD
simulations of brittle crack propagation with more than one billion atoms have been
reported since the year of 2000 [2,15,16].

To introduce more about this field, in Appendix A we briefly review the basics
of continuum fracture mechanics theories and the results of a series of MD simulations
of brittle fracture from literature. The comparison between MD simulation results and

existing theories is also discussed in Appendix A.

Multi-scale Simulation Methods
During the past two decades, extensive work has been carried out by different research
groups in developing concurrent multi-scale simulation methods that couples dynamic

atomistic and continuum simulations. Abraham et al. [17] developed the macroscopic,



atomistic, ab initio dynamics (MAAD) method, in which tight binding (TB), molecular
dynamics and finite element (FE) simulations run simultaneously in different regions of
the computational domain and dynamically exchange necessary information among
each other. A related method named coarse-grained molecular dynamics (CGMD) was
reported by Rudd and Broughton [18]. The CGMD method removes TB from the
original MAAD method and couples only FE and MD. Both MADD and CGMD
require the finite element mesh to be graded down to atomistic scale. In the quasi-
continuum method proposed by Tadmor et al. [19], atomistic degrees of freedom are
selectively removed from the problem by interpolating from a subset of representative
atoms, and the atomistic-to-continuum link is achieved by using the Cauchy—Born rule,
which assumes that the continuum energy density can be computed using an atomistic
potential. Recently, Wagner and Liu [20] developed the bridging scale method (BSM)
that decomposes the total displacement into orthogonal coarse and fine scales. Xiao and
Belytschko [21] developed the bridging domain multi-scale method, in which an
overlapping subdomain consisting of both the molecules and continuum is used to treat
the boundary of the atomistic simulation. Shiari et al. [22] proposed a finite temperature
coupled atomistic/continuum discrete dislocation (CADD) method to study the nano-
indentation process as a function of temperature and rate of indenting. To and Li [23]
developed the perfectly matched multi-scale simulation (PMMS), which connects MD
and quasi-continuum simulations with a perfectly matched layer.

Among the recently developed multi-scale methods, the bridging scale method
by Wagner and Liu [20] offers many distinct advantages. In bridging scale method, the

finite element analysis (FEA) is performed everywhere in the domain, while the



molecular dynamics simulation is confined into localized areas. The unwanted atomistic
degrees of freedom outside the MD region can be eliminated and mathematically
accounted for in the form of an impedance boundary condition applied upon the
boundary of the MD simulation. In contrast to many concurrent multi-scale methods,
the finite elements used in the bridging scale method do not need to be meshed down to
atomic scale; therefore, the time step size for FEA is no longer restricted by the smallest,
atomic-sized elements in the mesh. The time history kernel (THK) in the impedance
force formulation is a compact matrix whose size depends only on the minimum
number of degrees of freedom in each unit cell. By utilizing the periodicity of atomic
structures, standard Laplace and Fourier transform techniques can be applied in deriving
the impedance force for various lattice structures and for multi-dimensional structural
problems. The accuracy of the bridging scale method has been demonstrated with one-
dimensional (1-D) and two-dimensional (2-D) wave propagation problems [20,24].
Some of the concurrent multi-scale methods have been employed in simulating
dynamic crack propagation in coupled atomistic/continuum systems. For instance, Xiao
and Belytschko [21] used the bridging domain method to simulate the growth of an
edge crack on a carbon grapheme sheet; Rafii-Tabar et al. [25] investigated the brittle
crack propagation in a 2-D Ag plate using a generic multi-scale modeling approach;
Chen et al. [26] studied different fracture modes of crack propagation in a center-
cracked specimen using a multi-scale field theory. The bridging scale method also has
been applied to 2-D mode-1 and mode-I11, and 3-D mode-I dynamic crack propagation

problems [24,27,28].



It is worth mentioning, however, that due to the limitation of computation power,
even the multi-scale methods are still currently impractical for structures with system
sizes at macroscopic level. In fact, only few MD or multi-scale studies have been
reported on simulating the behavior of existing components, which are exclusively
MEMS (Micro-electro-mechanical systems) or NEMS (Nano-electro-mechanical
systems) devices. For example, using the CGMD method, Rudd [29] simulated the
vibration of a micro-scale resonator (Fig. 1.2) of size 0.008x0.015x0.2 pm? for about 2

million time steps (corresponding to 10™° seconds) with a supercomputer.

(0001)

Figure 1.2 A micro-scale resonator with length 0.2 pm [29]

Design Sensitivity Analysis for Structural Dynamics

Structural design is a procedure to improve the performance of a structure by changing
its parameters (design variables). As an important step in structural design, design
sensitivity analysis (DSA) computes the rate of performance change with respect to the
changes of design variables. It is used to provide sensitivity coefficients to optimization
algorithms for determining direction towards an optimum design. For structural systems
constructed of trusses, beams, membranes, shells and elastic solids, there are five kinds
of design variables — material, sizing, configuration, shape and topology design variable,
as illustrated in Fig. 1.3. For example, for the truss structure shown in Fig 1.3a, material

design variables can be the mass density or Young’s modulus, while sizing design



variables are the cross-sectional areas of individual truss members; configuration design
variables are related to the orientations of components in built-up structures (Fig. 1.3b);
shape design variables describe the length of a 1-D structure or the geometric shape of
2-D and 3-D structures (Fig. 1.3c); and topology design variables determine the layout
of the structure (Fig. 1.3d).

A
i

Al

a!
L

fa B

~

(b)
SO

(© (d)

Figure 1.3 Illustration of design variables in different categories, (a) a built-up structure
in which material properties and cross-sectional areas of the truss members can be
changed [30], (b) configuration design by adjusting the orientations and lengths of truss
members, (c) shape design for a 2-D engine connecting rod [1], and (d) topology
optimization of a solid beam [31]

The formulation of design sensitivity analysis can vary significantly depending
on which kind of design variables are being considered and whether the formulation is
developed based on a discrete or continuum concept. Substantial literature has merged
into the field of design sensitivity analysis and its applications, and a comprehensive

introduction of various sensitivity analysis approaches for static and dynamic responses

of both linear and nonlinear structural systems can be found in [32]. In this thesis, we
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focus on continuum shape sensitivity analysis of structural dynamics, which has
received a smaller amount of attention in the literature compared to most other topics in
this field. Kim et al. [33] reported a continuum shape sensitivity analysis approach for
transient dynamic structural problems, which was implemented in the design
optimization of a vehicle bumper subject to an impact load. A brief introduction to
shape design sensitivity analysis is given in Chapter 2 of this thesis.

Recently, several research results were proposed on design sensitivity analysis
of dynamic multi-scale simulations based on the bridging scale method. Kim et al. [34]
reported a discrete-analytical multi-scale adjoint design sensitivity analysis method for
1-D and 2-D bridging scale problems. Wang and Chang [35] developed a continuum-
based sensitivity analysis method for 2-D multi-scale problems based on a variational
formulation of bridging scale. However, rather than shape design, these works focused
only on material/sizing design variables, such as atomic mass, interatomic potential

function parameters and the thickness of a 2-D sheet.

1.3 Objectives and Scope

In this thesis, we aim at developing a shape sensitivity analysis approach for multi-scale
crack propagation problems based on the bridging scale method, in order to reveal the
impact of macroscopic shape change on the speed of crack growth at microscopic level.
One unique challenge in continuum shape design for coupled atomistic/continuum
systems is the discrete nature of the MD simulation. Starting from a continuum
variational formulation, we will derive the coupled multi-scale sensitivity expressions in
a fully generalized three-dimensional setting, which can be used to analytically compute

the sensitivity coefficients of structural responses, such as the displacements of atoms
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and FE nodes. Particular emphasis will be placed on sensitivity analysis of dynamic
crack propagation, for which we need to define an adequate performance measure that
quantifies the speed of crack based on atomic displacements. To overcome the non-
differentiability of the performance measure of crack speed, a hybrid method that
combines analytical sensitivity analysis and finite difference method will be proposed,
in which the sensitivity of crack speed is calculated through regression analysis based
on analytical sensitivity results. The accuracy of the proposed analytical sensitivity
analysis approach and the hybrid method will be demonstrated in a 3-D nano-beam
example.

As discussed earlier, neither molecular dynamics nor multi-scale simulations are
currently applicable to macroscopic applications. Therefore, this thesis will focus more
on methodology development than designing physical devices. Instead of using a real-
word structure, we will build a simple nano-scale model for our numerical example, and
focus only on brittle crack propagation among various types of fractures. Moreover, as
with many MD simulations reported [2,8,12,13], we will adopt a simple interatomic
potential function with normalized units to model a generic ‘brittle’ material rather than
specific materials. Our objective is to concentrate on theoretical derivation and
discussion, and validate the proposed sensitivity analysis approach using an example
problem that reveals the generic features of fracture common to a large class of real
physical systems.

This thesis attempts for the first time to perform shape sensitivity analysis on
coupled atomistic/continuum structural models. Since first-principles-based calculation

is employed to capture atomistic level dynamics near the crack tips, it becomes possible
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to understand the impact of macroscopic shape change on microscopic crack
propagation without the necessity of incorporating continuum fracture mechanics

theories.

1.4 Outline of the Thesis
The rest of the thesis is organized as follows:

In Chapter 2, we present a brief introduction to shape design sensitivity analysis.
In addition to basic concepts and fundamental elements, a simple one-dimensional
example will be used to explain various sensitivity analysis approaches for both static
and dynamic problems.

In Chapter 3, we review the fundamental theory of the bridging scale method,
including the derivation of the time history kernel and the impedance boundary
condition. Details of the theory will be explained using a simple one-dimensional lattice.
Implementation aspects of bridging scale method for crack propagation problems will
also be discussed. A three-dimensional nano-beam example will be introduced to
demonstrate the method.

In Chapter 4, we develop a continuum shape sensitivity analysis approach for
bridging scale method, based on which the sensitivity of structural responses can be
computed. The discontinuity issue in shape DSA of coupled atomistic/continuum
systems will be discussed. The analytical sensitivity expressions will be derived in a
continuum setting based on the variational formulation of bridging scale. The nano-
beam example will be used to verify the accuracy of the calculated sensitivity

coefficients of structural responses.
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In Chapter 5, we establish a performance measure that quantifies crack
propagation speed for sensitivity analysis. The differentiability of crack speed with
respect to shape design variables will be discussed from both theoretical and numerical
perspectives. The nonlinearity of the performance measure in design space will be
illustrated via the nano-beam example.

In Chapter 6, we propose a hybrid sensitivity analysis method to evaluate the
sensitivity of crack propagation speed. The sensitivity coefficient of crack speed is
computed through polynomial regression analysis based on the analytical sensitivity
coefficients of structural responses. Using the nano-beam example, we will carry out a
what-if study to demonstrate the feasibility and accuracy of the hybrid method.

In Chapter 7, we conclude this thesis and identify the scope for future research.

Detailed discussions on a number of important topics are included in appendices.
Appendix A reviews the basics of classical fracture mechanics theory, as well as a
series of molecular dynamics simulations of brittle fracture. Appendix B introduces the
formulation of the adjoint variable method. Appendix C gives detailed derivation of the
time history kernel for a 1-D atomic lattice. Appendix D demonstrates the derivation of
the impedance boundary condition for generalized 3-D atomic structures. Appendix E
explains the discretization of the coarse scale outside the MD region. Appendix F
introduces the variational formulation for bridging scale method. Appendix G discusses
the material derivative of the coarse scale outside the MD region. Appendix H provides

detailed steps of the regression analysis used in hybrid method.
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CHAPTER 2
SHAPE DESIGN SENSITIVITY ANALYSIS

— A TUTORIAL EXAMPLE

2.1 Introduction
Structural analysis solves the mathematical model of a physical problem. Compared to a
differential equation, an energy-based variational formulation is more natural and
general in governing the deformation of the structure. For example, the variational
equation for a general static structural problem can be formulated based on the principle

of virtual work, as
a(z,2)=40(2), VieZ (2.1a)
Z={ZE[Hm(Q)]3|Z=Zr0nXEFh} (2.1b)
where a(z,z) and ¢(z) are known as the energy bilinear form and load linear forms,

respectively, in which z denotes the displacement field to be solved, and Z stands for
the virtual displacement. In addition, x represents spatial coordinate, I denotes the

essential boundary, and z. is the displacement at the essential boundary. Note that both

the displacement solution z and the virtual displacement z belong to the space of
kinematically admissible displacements Z, in which H™ is the Sobolev space of order m.

For an arbitrary-shaped structure, it is generally impossible to obtain the
analytical solution of the variational equation (Eq. 2.1). Therefore, an approximation
approach is necessary, such as the finite element method. The finite element method

approximates the structural domain as a simple geometry set, and establishes the
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equilibrium conditions for individual elements. The structural problem can then be
modeled with a global system of matrix equations. For example, by discretizing the
variational equation using shape functions, the finite element matrix equation for a
linear elastic structure under static load can be obtained as

Kz=F (2.2)
where z is the nodal displacement vector to be solved, F is the external nodal force
vector, and K is called the stiffness matrix. Note that the displacement solution z (bold
faced + non-italic) in Eq. 2.2 is a column vector that consists of all degrees of freedom
of all finite element nodes to be solved, whereas the continuous displacement field z
(bold faced + italic) in Eq. 2.1 is a vector whose size depends on the dimension of the
problem (e.g., z is a 3x1 vector for three dimensional problems), while each component
in vector z is a function of spatial location x.

The objective of structural design is to enhance the performance of a structure
by changing its parameters. Examples of performance measure in engineering fields
include stress, self-weight, stiffness, vibration level, fatigue life, etc. Parameters that
can be adjusted during the design process are called design variables, which can be
classified based on their characteristics. Various types of design variables have been
introduced in Chapter 1 and illustrated in Fig. 1.3.

It is apparent that Egs. 2.1 and 2.2 are dependent on design variables. For
example, the stiffness matrix K in Eq. 2.2 varies with the shape or material property of
the structure. Consequently, the response of the structure, such as the displacement
solution z, and hence the performance measures that depend on structural response will

change with design variables. When improving or optimizing the performance of the
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structure by adjusting the design variables, one essential step is design sensitivity
analysis, which is used to compute the sensitivity (or design sensitivity, sensitivity
coefficient, gradient) of the performance measures with respect to design variables — in
other words, the rate of performance measure change with respect to design variable
changes. Sensitivity analysis results reveal the relative importance of various design
variables to the overall performance of the system, and thus help engineers decide the
direction and amount of design change needed to improve the performance towards an
optimum design.

As mentioned in the previous chapter, the formulation of design sensitivity
analysis can vary significantly depending on which kind of design variables are being
considered. For example, in continuum sensitivity analysis, the formulations that treat
sizing/material and shape design variables are fundamentally different. This thesis is
aimed at shape design sensitivity analysis. For 1-D problems, the only shape design
variable is length; for 2-D and 3-D structures, shape sensitivity analysis is concerned
with the relation between a variation in geometric shape of a solid domain and the
resulting variation in structural performance.

In general, three approaches can be employed in design sensitivity analysis: the
approximation, discrete, and continuum approaches. In the approximation approach,
design sensitivity is obtained using overall finite difference by rerunning structural
analysis at a perturbed design. On the other hand, the discrete and continuum methods
analytically formulate the sensitivity calculation. In the discrete method, design
sensitivity is obtained by taking design derivatives of the discrete governing equation. If

the design derivative of the stiffness matrix is obtained analytically, it is a discrete-
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analytical method; if the derivative is obtained using finite difference, then the method
is called a semianalytical method — the most employed approach other than overall
finite difference. In the continuum approach, the design derivative of the continuum
variational equation is taken before discretization. If the structural problem and
sensitivity equations are solved in a continuum setting, then it is called a continuum-
continuum method; if the continuum sensitivity equation is solved through
discretization (such as using FEA), this method is called a continuum-discrete method.
The sensitivity analysis methods mentioned above are listed in Fig. 2.1. These
methods will be explained in subsequent sections using a simple one-dimensional
structure for both static and dynamic problems. Note that in this thesis, the continuum-
discrete approach will be applied to carry out shape sensitivity analysis for dynamic

multi-scale problems.

Principle of virtual work

Discrete model (FEA) Continuum variational formulation
| |
| | | |
Analytical Finite difference Analytical Discrete solution
derivative of K derivative of K solution (FEA)
| | | |
Discrete-analytical Semianalytical Continuum-continuum Continuum-discrete

Figure 2.1 Different approaches for design sensitivity analysis

2.2 Simple Bar Example — Static Problem
In this section, a simple static problem is introduced to explain the concept of shape
sensitivity analysis and to demonstrate various approaches that can be used to obtain the

design sensitivity. As illustrated in Fig. 2.2, the physical structure to be studied is a one-
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dimensional bar under uniformly distributed load f (such as self-weight), and with
Young’s modulus E, uniform cross-sectional area A, and length I. Our objective is to
find the sensitivity of displacement z(x) with respect to I, especially the sensitivity of the
displacement at the tip of the bar (x = 1).

V

X

E,A I

< < ~< <

Figure 2.2 Static one-dimensional bar example

2.2.1 Structural Analysis
The governing differential equation of the bar being stretched can be written from the
force equilibrium of an infinitesimal element, yielding
—(EAz,),= f (2.3)
with boundary conditions
2(0)=0; z,(1)=0 (2.4)
where the subscript comma denotes differentiation with respect to the spatial coordinate,
I.e., 21 = 0z/ox. Solving the differential equation gives the solution to the structural

problem; that is
z(x):—ﬁx +—X (2.5)

Thus the value of the performance measure — displacement at the tip of the bar —

can be obtained as
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2(1)= 2fEIA (2.6)

Note that only a handful of structural problems can be formulated and solved
analytically. In general, structural problems are solved by using the finite element
method. The formulation of FEM usually starts from the principle of virtual work, as
will be illustrated next.

According to the principle of virtual work, we derive the variational equation of
the structural problem by multiplying both sides of Eq. 2.3 with an arbitrary virtual

displacement z and then integrate over the domain x = [0, 1], giving

LIEAzYlZ‘ldx ~(EAz,2), = ﬂf Zdlx @.7)

where integration by part is used once. Both z and z belong to the space of
kinematically admissible displacement

Z={zeH*0,1)]2(0)=0 | (2.8)
where H! is the first order Sobolev space. Since the boundary terms in Eq. 2.7 can be
eliminated by considering z(0) =0 and applying the natural boundary condition z ;(l) =

0, the following variational equation is obtained for the bar problem
| |
a(z,7) = jo EAz,Z,dx = jo f zdx = £(2) (2.9)
which holds forall ze Z.

Finite Element Analysis
Consider discretizing the bar using two truss elements, each with length 1/2, as shown in

Fig. 2.3.

20



/L
Node 1 T/

2§

Node 2 $—< E, A
112
Node 3 $—4

Figure 2.3 Finite element model of the 1-D bar structure. Two truss elements are used

to discretize the structural domain

In this example, linear interpolation is used to describe the displacement field
between nodal points. For example, the displacement between Node 1 and Node 2 can

be written as

Z

ZFEA(X) = [Nl Nz]'{z

Z

}:[2x/| 1—2x/|]-{

} 0<x<I1/2 (2.10)
Z2

2
where N; and N are shape functions, while z; and z, represent nodal displacements.
Discretizing the left and right hand sides of the variational equation (Eq. 2.9)

using shape functions gives

T

R 1 -1 01[z
| discretize| 2 EA
J.OEAz,lzyldx = |z,| =51 2 1)z, |=7,K,z,  (211d)
Z, 0 -1 1]||z
[z T[4
| discretize
jofzdx = |z,| -| fli2|=2,F, (2.11b)
Z,| | fl/a

where Kg is called the generalized global stiffness matrix. z4, Z,, and Fq are global

displacement, virtual displacement, and force vectors, respectively. Note that the

distributed load f has been converted into point loads acting upon the nodal points.
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Since the left hand sides of Egs. 2.11a and 2.11b are equal to each other, the global

finite element matrix equation can be obtained by eliminating the arbitrary virtual

displacement Z, as

JEA 1 -1 0][z] [fl/4
ngg:T —1 2 —1 . 22 - f|/2 :Fg (212)
0 -1 1|z |fl/4

which cannot be solved due to the singularity of Ky By applying the boundary

condition z; = 0, we can remove z; from Eq. 2.12, giving

2 -1 fl/2
Kz = 2EA 1722 =F (2.13)
I |-1 1 Z, fl/4
where
2 _
K:&{ } (2.14)
I |-1 1

is called the reduced global stiffness matrix, which is nonsingular. Solving the reduced

global matrix equation (Eq. 2.13) gives nodal displacement solution

3f|?

Z; | _| 8EA

LJ f1? (2.15)
2EA

based on which the displacement at an arbitrary location in the domain x = [0, I] can be

interpolated using shape functions, as

z
[2x/1 1—2x/|]-{ 1] 0<x<1/2

Zeen (X) = % , (2.16)
[2(x=1/2)/1 1—2(x—|/2)/|]-LZ} C12<x<lI

3
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It is of note that the finite element displacement solution zgea(X) matches the
analytical solution (Eq. 2.5) only at nodal points, i.e., z, = z(l/2) and z3 = z(I). This is
because linear shape functions are used for interpolation in Eq. 2.16, whereas the

analytical solution to the problem is a quadratic function of x.

2.2.2 Shape Design Sensitivity Analysis

As discussed earlier, shape sensitivity analysis computes the rate of performance
measure change with respect to the change of shape design variables. In this section, we
demonstrate the sensitivity approaches listed in Fig. 2.1 with the simple bar example.

One important concept in shape design is the design velocity field. When shape
design variables vary, the geometric shape of the structural boundary, and hence the
location of material points inside the structural domain must change accordingly. The
design velocity field governs the movement of material points both on the boundary and
inside the structural domain, providing a systematic scheme that maps the location of
material points from original design to updated design.

Consider a structural domain Q with its boundary I' as a continuous medium at
the initial design z = 0 as shown in Fig. 2.4 (solid line). Suppose only one parameter ¢
defines the transformation T that changes the structural domain from Q to Q, (dashed
line). The transformation mapping T that represents this process can be defined as [32]

T:x>x.(x)xeQ (2.17)

where x denotes a material point.
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Figure 2.4 Changing of structural domain

The design velocity field V that governs material movement due to a design

change is defined as

(2.18)

where 7 plays the role of design time (or design iteration in practice). In the
neighborhood of initial design z = 0, assuming a regularity hypothesis and ignoring
higher-order terms, T can be approximated by

T(x,f):T(x,o)ﬂ%joho(ﬁ)zxw(x) (2.19)

where x =T (x,0) and V(x)=V(x,0). Note that only the linear term is retained in Eq.
2.19, and z is determined by the design change.
For the 1-D bar problem, the only shape design variable is length |. For

simplicity, we define a linear design velocity field for shape sensitivity analysis; that is
V(x)= =0l (2.20)

as illustrated in Fig. 2.5. This linear design velocity field implies that when the bar is
elongated, each material point on the current bar moves downwards proportionally to its
x coordinate. For instance, the midpoint x = 1/2 moves to x = (I + 6/)/2 after the design

change. Note that during implementation, J/ is usually set to 1 for convenience.
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Figure 2.5 Linear design velocity field defined for the simple bar example, (a) structure
before design change, (b) structure after design change with length increment 6/, and (c)
linear design velocity field

In the previous section, the displacement at the tip of the bar has been solved
using both continuum (analytical) and discrete (FEA) structural analysis approaches.
For this simple example, since the solution z(l) is explicitly dependent on design
variable I, the sensitivity of z(l) with respect to | can be obtained directly by taking

derivative of Eq. 2.6, as

dz(l) _ fI
d EA (2.21)

However, in most cases, a structural performance measure does not explicitly
depend on design, and therefore, the sensitivity information needs to be computed using

sensitivity analysis methods, as to be introduced in the following sections.

2.2.2.1 Overall Finite Difference Method

Different values of design variables yield different structural analysis results, and hence
different values of the performance measure. The easiest way of computing the design
sensitivity is by evaluating the performance measure at different stages in the design

process. Let y(b) denote a general performance measure that depends on design
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b=[o, b, - b (2.22)
which is a vector comprised of all k design variables. The sensitivity of w(b) with
respect to the ith design variable b; can be approximated through overall finite

difference, as

dwzwﬂf+Nﬁ—w®ﬁ (2.23)
db Ab,

which is also called the forward difference method. Note that b° represents the current
design, while Ab; stands for a small prescribed perturbation made to design variable b;.
For the simple bar example, if the displacement is solved using FEA, then in
overall finite difference method, we first solve the displacement of a perturbed
structural problem
K(l+Al)z =F(1 +Al) (2.24)
Then, the sensitivity coefficient of the performance measure can be approximated as

fl+al}  f1°

gzc:g§~zg]+A0—zxn__ 2EA 2EA _ 2fl+fAl (2.25)

db  dl Al Al 2EA

where z3(1 + Al) denotes the displacement solution at Node 3 for the perturbed structure
with bar length | + Al solved using FEA. As can be seen, as the design perturbation Al
approaches zero, the overall finite difference result (Eq. 2.25) converges to the exact
sensitivity value calculated in Eq. 2.21.

Although attractive and popular due to its simplicity, the overall finite difference
method suffers major disadvantages. First of all, k + 1 structural analyses need to be
carried out to compute the sensitivity with respect to all k design variables, which

makes this method computationally expensive for large scale problems that involve
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many design variables. Moreover, the determination of the perturbation size Ab; greatly
affects the sensitivity result. As shown in Fig. 2.6, when the behavior of the
performance measure w is nonlinear in design space, the design sensitivity
approximated using overall finite difference method can be inaccurate if the
perturbation size is too large. On the other hand, when a very small perturbation is used,
the impact of numerical truncation errors becomes significant. As a result, it is difficult

to determine a design perturbation size that works for all problems.

Performance y

S~

Exact dy/db;
w(b°) / ; l\
! Approximated
w(0®+ Ab) dydby
* : - Design
Current Perturbed design g
design b° (b° + Ab))

Figure 2.6 Influence of perturbation size in overall finite difference method

2.2.2.2 Discrete Method
When a structural problem is discretized in finite dimensional space, as shown with the
finite element method in Section 2.2.1, discrete sensitivity analysis methods can be used
to compute the sensitivity of performance for the discretized problem. Consider a linear
elastic finite element matrix equation

K(b)z =F(b) (2.26)
where the stiffness matrix K and the force vector F are both functions of design b. The
total derivative of a performance measure y with respect to design variable b; can be

expressed analytically using the chain rule of differentiation, as

d_‘/’:a_'//Jra_‘/’E (2.27)
db ob oz db
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Note that since the expressionfor y with respect to b; and z is known from its definition,
the only unknown in Eq. 2.27 is the dz/db; term, which can be computed using either the
direct differentiation method (DDM) or the adjoint variable method (AVM). In this
thesis, we focus on the former (which is chosen to be implemented in our numerical
example) when demonstrating the sensitivity calculation. The formulation of the adjoint

variable method can be found in Appendix B.

Direct Differentiation Method
The direct differentiation method evaluates the implicit dependence of z on design b by

differentiating the structural equation (Eg. 2.26); that is

N aK(b)Z _F(b)

K 2.28
() db,  ob ob (2.28)

Rearranging Eq. 2.28 by leaving only unknown terms on the left hand side gives
K(b) dz _oF(b) aK(b)Z (2.29)

ob,

“db, "~ ob,
which is sometimes referred to as the sensitivity equation or sensitivity expression. Note
that the displacement solution z on the right hand side has been obtained through

structural analysis (Eq. 2.15). Solving Eq. 2.29 for dz/db; by inverting the nonsingular

reduced stiffness matrix K(b) yields

db, o ob

gz _ Kl(b)FF(b) GK(b)z} (230

Substituting the result into Eq. 2.27 then gives the sensitivity of w with respect to b;, as

dy _ 0y, 0v () OF(b) K (b), (231)
db, b, oz b, o |
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The direct differentiation method has been extensively used in structural
sensitivity analysis due to its straightforward derivations. Consider the simple bar
problem as an example. Using direct differentiation method, we can evaluate the
sensitivity of zz with respect to | by applying Eq. 2.31 to the reduced finite element

matrix equation (Eq. 2.13), as

%:%_}_%Kl{ﬁ_%z}

dl ol oz o al
3f1? (2.32)
11 fl2 2 -1 '
:0+[o 1]L ) +2$ 8E€\ :ﬂ
2EA|1 2 fla (-1 1| fI EA
2EA

which is consistent with the exact solution in Eq. 2.21.

Note that in adjoint variable method, we create an adjoint structure in order to
solve for the (0y/dz)K™(b) term in Eq. 2.31 directly (shown in Appendix B). The
adjoint variable method gives the same sensitivity result as the direct differentiation
method. In practice, we choose between DDM and AVM by considering computation
efficiency. Generally, for static problems, if the number of performance measures is
larger than that of the design variables, then the direct differentiation method is
preferable; otherwise, the adjoint variable method will be more efficient. The
comparison between DDM and AVM will be explained in detail in Appendix B.

It is also worthy of note that in discrete method, the calculation of design
sensitivity (Eqg. 2.31) requires differentiating K(b) and F(b) with respect to design. If
the derivatives 0K(b)/db; and 0F(b)/ob; can be analytically calculated from the explicit
expressions of the K(b) and F(b), then this approach is called a discrete-analytical

method. However, in general, the explicit expression of K in terms of design variables

29



may not be available in FEA, especially when a commercial code, such as ANSYS, is
used. In those cases, instead of solving 0K (b)/ob; explicitly, the design derivative can be

approximated using finite difference method, as

oK(b) _ K(b® +ab)-K(b)
ob, Ab,

(2.33)

and this approach is called a semianalytical method.

2.2.2.3 Continuum Method

In contrast to the discrete methods, a continuum sensitivity analysis approach uses a
continuous displacement field rather than nodal displacements to characterize structural
deformation. The continuum sensitivity equations — written in the form of integrals —
are obtained by taking design derivative of the continuum variational equation before
any discretization takes place.

In continuum shape sensitivity analysis, the physical domain is considered as a
continuous medium that changes with design. Therefore, the concept of design velocity
field (discussed earlier) and material derivative from continuum mechanics are utilized
to obtain a computable expression that relates variations in structural shape to the

performance measures.

Material Derivative
Here we first introduce the concept of material derivative used in continuum shape
sensitivity analysis. Suppose z is the solution to the structural problem in current

domain Q, the material derivative of z is defined as [32]

: Ediz,(x“v(x)) = "m[z,(xm/(x))—z(x)} (2.34)

T =0 =0 T
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where V(x) is the design velocity field introduced in Eqg. 2.18. Note that the material

derivative of z can be separated into two contributions, as

-y B8], 600

7=0 =0 T

(2.35)
=7'(x)+VzV(x)

More specifically, material derivative Z(x) reveals how the displacement at location x
changes with design, while the measuring point x moves with the design velocity field.
On the other hand, partial derivative z'(x) indicates the difference between
displacements before and after design change, measured at the same location. Vz
represents the gradient of displacement at current design.

Taking the simple bar model as an example, the analytical solution z has been

given in Eqg. 2.5, based on which the displacement solution associated with a new

design with bar length | + 6/ can be easily obtained as

f oo, fl+d)
EA EA

2. ()= (2.36)

If we focus on the displacement at the midpoint x = 1/2, then the partial derivative

2'(1/2) can be evaluated as

3f12  fldl 3fl?
112)-2(1/2) 8EA ' 2EA) | 8EA )| I
2(1/2)= Iim[zf( }: lim - (2.37)
a-=0 ol a-0 ol 2EA
where the parameter z in Eq. 2.35 is replaced by d/ in this practical case.
The displacement gradient can be calculated as

fl

vz(1/2)= 2,1(”2):@

(2.38)
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and the design velocity at the midpoint is V(I /2):1/2 according to the linear velocity
field defined in Eq. 2.20. Finally, the material derivative at x = 1/2 is defined as

3f(1+a) 317
z'(l/2):Iim[zf((l+5I)/2)_Z(”2)}:Iim 8EA _ 8EA |_3Tl 5 3g)

4= P a-0 P 4EA

which is equal to the sum of z'(1/2) and Vz(1/2)-V(1/2).

Now we introduce the material derivative of domain functions. Let ¥ be a

functional defined as an integral over the current domain Q
v =] oo (2.40)
then the material derivative of ¥ at Q can be calculated as [32]
@ = [[ [0+ VIV + £ (x)divy i (2.41)

where

Fix)=- 1,

- Iim[—f’(x)_ f(x)} (2.42)

=0 =0 T
and divV is the divergence of V, defined as divV =0oVIox+oVIoy+oVioz for a general

3-D scenario. For the 1-D simple bar example, divV =oV/ox=1/1.

Continuum Shape Sensitivity Analysis

We now use the simple bar example to illustrate the continuum sensitivity analysis
methods. Based on the variation formulation of the problem, we will use the direct
differential method to compute the sensitivity of displacement with respect to length |.

(Note that adjoint variable method also can be used in continuum sensitivity analysis

[32])
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To start with, take material derivative of both sides of the variational equation

(Eg. 2.9) using Eq. 2.41, giving

[ I EAzylzyldx} = [[(Enz 7, ) ok + [ div(EAZ,2,V )i
= [(EAz:2, + EA, 2, o+ [div(EAz 2,V )i

-[ EA(-2v),7, + BAz, (2 -7V ) Jix+ [EAz, 7V +EA2 7,V +ERZV Jix  (2433)

S 5—

[EA2,7, ~BA( V), 2, - BA2, (), i+ (EA2, v +EA2 7,V + EAZ 2V, Jix

U;fzdx}=£(fz)’dx+£div(fzv)dx

= [(#7+ t2)dx [(F,2V + F2V + F2V, Jix (2.43b)
I o _ =

= _Lf zledx+.L(fZ,1V + 2V, Jdx

= [tV x

Note that in derivation of Eq. 2.43a, Z =0 has been applied, which implies that the
virtual displacement does not change with design. In addition, /=0 is used in deriving
Eq. 2.43b, which in general means that the applied load does not change with design.
For the simple bar example, /” =0 implies that the distributed load f (self-weight) is also
applied to the extended portion of the bar, as shown in Fig. 2.5b.

Since the right hand sides of Eqs. 2.43a and 2.43b are equal to each other, we

obtain the continuum sensitivity expression
| |
[[EA2,2, ~EAz 2.V, Jix=[ F2v,dx (2.44)

which can be rearranged as
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| | |
[EAz,Z,0x= | f2v,dx+[EAz 7,V dx (2.45)

so that all terms on the right hand side are known except for Z.

Note that if the continuum sensitivity expression (Eg. 2.45) is solved as a
continuum problem, then it is called the continuum-continuum method. On the other
hand, if it is solved by discretization in the same way that discrete structural problems
are solved, then this method is referred to as the continuum-discrete method. In fact,
only very simple problems — such as the simple bar example — can be solved
analytically using the continuum-continuum method. For the bar example, the design

sensitivity can be obtained by solving Eq. 2.45 for z through integration by part, as
| L Lol (N | _ _ |
jo— EAZ,,2dx+ EAZ,7| = jo fzv dx— jo EAz ,,2V,dx+ EAZ, 2V, | (2.46)
Note that with boundary conditions z(0)=0, 2,(1)=0, and z,(1)=0, the boundary
terms in Eq. 2.46 can be eliminated, yielding
|
[[7-[-EAz, +EAz, v, - TV, Jix=0 (2.47)

which holds for all ZzeZ . Therefore, the sensitivity differential equation can be

obtained as

EAz,,=EAz V, -V, (2.48)
which can be solved with boundary conditions 2(0)=0, 2,(1)=0, giving
I=———X"+—X (2.49)
The sensitivity of the displacement at the tip can then be calculated as

z(l):% (2.50)
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which is identical to the result obtained using discrete methods.

Alternatively, Eq. 2.45 can be solved by discretization using finite element
shape functions. This approach is called the continuum-discrete method since
differentiation is taken at the continuum domain and is then followed by discretization.
To start with, the virtual displacement z , displacement solution z, and material
derivative Z in Eq. 2.45 are discretized using shape functions as in Eg. 2.16, giving a

global matrix equation

T T T

Z, 1 -1 Z, Z, fl/4 Z, —-3fl/4

- 2EA . - 1 | 1

Z, S -1 2 -1|-|z,|=|z,| | fl/2 ~|—+ Z,| | fl/2 |-= (251)
Z, -1 11|z Z, fl/4 Z, fl/4

where the nodal displacements solved in FEA (Eq. 2.15) have been substituted for zy, z,

and z3. Note that the partial derivative terms (Z,,z, and Z,) in Eq. 2.45 are discretized

by taking derivative of the shape functions in Eq. 2.16.

Apparently, both sides of Eq. 2.51 can be divided by [71 Z, 23] to remove the

virtual displacement terms. Moreover, the equation can be reduced by applying the

boundary condition z, =0, yielding

2_EA{2 —}Fz}{ﬂlz}g{ﬂlz}l (252)
I |-1 1|z fl/a| 1 | fl/4]1

which can be solved for the material derivative of nodal displacements, as

[l

rﬂ: 4EA (2.53)
2, |
EA

where 2z, is the sensitivity of the displacement at the tip with respect to the length of the

bar.
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2.2.2.4 Comments on Sensitivity Analysis Approaches
So far the sensitivity analysis approaches listed in Fig. 2.1 have been demonstrated
using the simple bar example. Unlike overall finite difference method, the discrete-
analytical and the continuum methods provide analytical sensitivity information without
recourse to the uncertainty of perturbation size. (Finite difference is necessary for
calculating 0K/db in the semianalytical method.) More importantly, it is clear that either
Eq. 2.29 or Eq. 2.52 is physically the same as the original structural problem Eq. 2.13,
but with a different ‘applied load’ on the right hand side, which is usually referred to as
the fictitious load. Therefore, solving the sensitivity equation is much more efficient
than rerunning structure analysis at a perturbed design (required in overall finite
difference). This is because the decomposition of the stiffness matrix (which involves a
large amount of commutation cost) has been performed in structure analysis, while
solving the sensitivity equation is equivalent to solving an additional loading condition.
Note that when a commercial FEA code is used, the derivative of the stiffness
matrix is generally unavailable, and, as discussed earlier, the 0K/ob term in discrete
method is usually obtained through finite difference. However, in continuum-discrete
method, the fictitious load (right hand side of Eq. 2.45) can be evaluated outside the
FEA code using the result data (such as nodal displacements z), and therefore it is
neither necessary to differentiate the stiffness matrix K, nor to use any matrix
multiplication procedure to calculate (0K /db)-z . Moreover, the continuum method
provides a general and unified structural sensitivity analysis capability, so that it is

possible to develop one design sensitivity analysis system that works with a number of
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well-established analysis methods, such as FEA, the boundary element method, and the
mesh free method.

As can be seen, for the simple bar example, the continuum-discrete method
yields the same sensitivity result as the discrete method. In general, for the discrete and
continuum-discrete methods to be equivalent, several conditions must be satisfied [32].
For example, the same shape functions used in FEA must be used to discretize the
continuum sensitivity equation; an exact integration, instead of a numerical integration,
must be used in generating the FE stiffness matrix and in evaluating the continuum
sensitivity expression. It is worth mentioning that in many cases, some of these
conditions are not easy to satisfy, especially when a commercial FEA code is used.

Finally, for each of the approaches listed in Fig. 2.1, both the. direct
differentiation method and the adjoint variable method can be employed to compute the
design sensitivity information of a general performance measure. For static problems,
we choose between the two methods by comparing the number of performance

measures with that of the design variables.

2.3 Simple Bar Example — Dynamic Problem

This section demonstrates how sensitivity analysis approaches discussed in Section 2.2
can be used for dynamic structural problems. The basic concepts and derivations are
similar to those described in the last section. Both discrete and continuum approaches

will be discussed using the simple bar example.
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2.3.1 Structural Analysis
For a general dynamic structural problem, the variational formulation can be obtained

based on the Hamilton’s principle, as

j; "ld@z,.2)+az )t = jot T o(z,t)dt (2.54)

with initial conditions
2(x,0)=z°(x) and z,(x,0) = z}(x) (2.55)
where the subscript ‘,t” denotes the derivative with respect to time, and tr is the terminal

time of the dynamic problem. Note that the solution of Eq. 2.54 belongs to the function

space Z in Eq. 2.1b. If damping effect is not considered, the kinetic energy bilinear form

d(z,,Z) in Eq. 2.54 can be written as
d(z,.2) =] p7'2,dQ (2.56)

where p is the mass density, and Q represents the structural domain. Moreover, in

dynamic problems, the load applied can be a function of time; that is
j; " o(z,t)dt = j; [ f(zdct (2.57)
Note that Eq. 2.54 holds for all kinematically admissible virtual displacements Z that
belong to the function space in Eq. 2.1b and satisfy the additional conditions
z(x,0)=z(x,t;)=0 (2.58)
Similar to that discussed in Section 2.2.1, the variational formulation for

dynamic problems can be discretized using finite element shape functions to obtain the

dynamic finite element matrix equation; that is

M(b)z, +K(b)z=F(bt) (2.59)
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with initial conditions z(0) =z° and z,(0) =z5. Note that M(b) is the reduced finite

element mass matrix.
Taking the simple bar structure as an example, if a uniformly distributed mass

density p is assumed, the dynamic variational equation for the bar

tr

Al

[\pz 200+ [ EszlZ’ldx}dt - { ['f zdx}dt (2.60)

0

can be discretized as

Z, 2l I 0]z, Z 1 -1 0]z
|| Yo, .| 2EA
.L Z, -EI a1 |z, |+ Z, | —|-1 2 -1|z, |t
Z, 0 I 2|z, z, 0 -1 1]z 1)
2.61
7] [fl/4
tr
=j0 Z,| | fl/2 |\t
Z, fl/4

which must hold for all virtual displacements that satisfies Eq. 2.8 and Eq. 2.58. Thus
the dynamic differential equation can be obtained as

M,z +K,(l)z,

2l I 0|z 1 -1 0 z fl/4
P Ml 2EA ' (2.62)
=1 |4l 1|z, L -1 2 -1}z |=| fli2|=F,)
0 I 2|z, 0 -1 1]z fl/4

which can be reduced by applying z;(t) =0, as

M)z, +K(1)z —ﬁﬁl ! HZZ*tt}@{ 2 ‘1}.

12 21| | Zy4 -1 1

z, fl/2

= =F(I 2.63
[zj {fI/J (1) @63
Equation 2.63 can be solved for nodal displacements with a specific initial

condition. Note that since the load f in Eq. 2.63 is not time-dependent, a non-zero initial

displacement or velocity needs to be defined to excite the motion of the bar.
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In practice, Eq. 2.63 is solved by using numerical time integration. For example,
if an explicit time integration algorithm is employed, then within each time step, the
displacement z at the current time step is known from the last iteration; therefore, the
acceleration z can be computed for the current time step, and then used to update the
velocity z;, and hence displacement z for the next time step, until the solution z is

obtained for all time steps fromt=0tot=tr.

2.3.2 Discrete Sensitivity Analysis

In this section we discuss shape sensitivity analysis for a general dynamic problem
using the discrete method. Direct differentiation method will be demonstrated for
sensitivity calculation.

Consider a general performance measure for a dynamic problem, as

=g(b, z(t,))+ j G(b, )it (2.64)

Differentiating the performance measure with respect to design variable b; gives

dy _dg g dz(t) r{ae G dz}dt (265)

db, 8b 0z oz db,

Note that dz(ty)/db; and dz/db; are implicit dependences to be solved in sensitivity
analysis.

In direct differentiation method, we differentiate Eq. 2.59 with respect to b;,
giving
(dzj oM, dz oK _ oF

gz M, k&R, (2.66)
do, ) ab, " Tdb b ob

Moving all explicit terms to the right to obtain the dynamic sensitivity expression, as
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M E +K£:E_ﬂztt_%z (267)
do, ), db, ob, ob b
Note that the sensitivity expression can be solved with initial conditions
a2l o [92]) o (2.68)
db; | db; ).
- *1t=0

which implies that the initial displacement and velocity do not change with design
variable b;. In practice, the sensitivity expression (Eq. 2.67) can be solved using the
same time integration algorithm as with the analysis of the original structure (Eq. 2.59).
Within each time step, all terms on the right hand side of Eq. 2.67 are known, since z
and z have been solved using Eq. 2.59. Once the solution dz/db; is obtained fromt =0
to t = tr, it can be substituted into Eq. 2.65 to evaluate the design sensitivity of the
performance measure. It is worth mentioning that when explicit time integration is used,
the computation cost of solving the sensitivity equation (Eg. 2.67) may not be less than
that of the analysis of the original structure (Eg. 2.59), which reduces the merit of the
sensitivity computation compared to overall finite difference method.

Adjoint variable method also applies to dynamic problems. The formulation of
adjoint variable method for the dynamic bar example can be found in Appendix B,
which shows that a dynamic adjoint problem needs to be solved to obtain the value of
the adjoint variable through time. Moreover, the adjoint problem is a terminal-value
problem that needs to be solved backwards in time from t = ty to t = 0. Therefore, unlike
DDM, in which the dynamic sensitivity equation (Eq. 2.67) can be solved in parallel
with response analysis (Eq. 2.59), the adjoint problem cannot be solved simultaneously

with the response analysis, which significantly complicates the computation associated

41



with dynamic sensitivity analysis. Therefore, for dynamic problems, the direct
differentiation method is generally preferable to the adjoint variable method in terms of
computation efficiency. Details of the comparison between DDM and AVM for

dynamic problems are discussed in Appendix B.

2.3.3 Continuum Sensitivity Analysis
In this section, we employ the direct differentiation method to demonstrate continuum
shape sensitivity analysis for dynamic problems using the simple bar example.

Taking material derivative of Eq. 2.60 gives
tr | L _ | L _ trol
L {L[pznz +pzyttzvyl}jx+j0[Eszlzyl - EAzylzle’I]dx}dt :.[0 Lf zZV dxdt (2.69)

which is the dynamic sensitivity expression that can be solved using integration by part
(continuum-continuum approach). For the sake of brevity, we show detailed derivation
only for the continuum-discrete approach.

Discretize the continuum sensitivity expression (Eq. 2.69) using shape functions

(EQ. 2.16) yields

KA ; 201 07 [z.] [z ; 21 0 2]
[z L R A L R A
z, 0 1 2|z, |z 0 1 2|z,
7| e b 21 Tz 7T A -1 2,
HE | oL 2 A2 |7 | S|l 2 Sz pdt (270)
z, -1 1|z |z -1 1|z
7| [fi/4
tr 1
:jo z, | | fl/2|-=idt
z,| |fl/4
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where [z: 7, z3]" and [z1y Zo Zag]' are known terms that have been solved in response
analysis.

Rearranging Eq. 2.70 gives

T

t Z, , 2 1 02z, » 2 1 0]z, 1
J;) 32 . E | 4| I * Z.Z,tt +E I 4| I : Zz,tt T
Z, 0 I 2|2, 0 I 21|z
(2.71)
1 -1 2, 1 -1 Z, fl/4
+2|E 12 1l _@ 12 -1l '%_ fl/2 %d =0
-1 1 Z, -1 1 Z, fl/4

which holds for all kinematically admissible virtual displacements Z that satisfies

Z(0)=z(t; )= 0. Therefore, the sensitivity differential equation takes the form

2 1 0|2, 2,
2EA ,
ﬁ LAl 2 [+ - 1l
0 1 2]z -1 11|z
(2.72)
fl/4 . Z 4 L 2EA -1 z, .
=| fl/2 '7_1/; LAz | |——1 2 1)z, |
fl/4 0 I 2]z, -1 11|z
which can be reduced as
ﬁrl | HZM}L 2EA[ 2 —1Hz'2‘
1221 21| |z I |-1 1|z
3t 3] (2.73)

/2l 1 plal 1] |2 1+2EA_2 -1l [z | 1
fl7a] 1 1201 21| |z5, | | I [-1 1 )[z]]
and then solved with initial conditions z(0)=0 and z,(0)=0. As can be seen, for the

simple bar example, Eq. 2.73 is equivalent to the sensitivity expression obtained using
the discrete method (Eq. 2.67). The solution z(t) can be substituted into Eq. 2.65 to

calculate the sensitivity of the performance measure.
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Note that in Chapter 4, we will use an approach similar to that demonstrated in
this section (shape sensitivity analysis + continuum-discrete approach + direct
differentiation method + dynamic scenario) to perform analytical shape sensitivity

analysis for dynamic multi-scale problems.

44



CHAPTER 3
MULTI-SCALE SIMULATION OF

DYNAMIC CRACK PROPAGATION

3.1 Overview

This chapter introduces the multi-scale simulation technique that is used throughout the
thesis. As mentioned in Chapter 1, we choose the bridging scale method, among the
newly developed methods, for our simulation of dynamic crack propagation. In Section
3.2, a brief introduction to molecular dynamics will be given first. Section 3.3 explains
the fundamental theory of the bridging scale method using a one-dimensional atomic
lattice. The result of a simple one-dimensional bridging scale example problem will also
be demonstrated. The formulation of the bridging scale method for higher dimensional
problems will be reviewed in Section 3.4. In Section 3.5, the implementation aspects for
dynamic crack propagation problems will be discussed. A three-dimensional nano-beam

example will be introduced in Section 3.6 for demonstration of the method.

3.2 Basics of Molecular Dynamics

Molecular dynamics has been widely applied to simulate the behavior of material
systems at atomistic level. In an MD simulation, molecules or atoms are treated as a
system of interacting material particles, while the goal is to calculate the motion of each
atom in the material, characterized by atomic displacement, velocity, and acceleration.

Each atom in the system is considered as a classical particle that obeys Newton’s laws
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of mechanics. Denoting the displacement of atom i as q;, the trajectory of the atom can

be determined by numerically solving the Newton's equations of motion

o 4% __du(a) (3.1)

' dt? dq,

where m; is the atomic mass, and U is the sum of the potential energy of all atoms,
which depends on the positions of atom i and all other atoms in the system. The right-
hand side of Eq. 3.1 corresponds to the gradient of the potential energy, which can be
thought of as the interatomic force.

The potential energy in molecular dynamics approximates the electronic effects
in real materials. Other than atomic structural information, the interatomic potential is
the most fundamental input into MD simulations. Numerous potential functions with
different levels of accuracy have been proposed, each having its disadvantages and
strengths. However, so far there is no single potential function that is suitable for all
materials. In this thesis, the potential function chosen to be implemented in our MD
simulation is the Lennard-Jones (LJ) 6-12 potential [36], which is one of the simplest
and most widely used potentials for modeling brittle fracture [2,8-

10,12,14,23,26,27,36,37]. The LJ 6-12 potential takes the form

w0 (] (7))

where r is the distance between two atoms; o is the collision diameter (the distance at
which @(r) = 0); and ¢ denotes the bonding/dislocation energy — the minimum of Eq.
3.2 that occurs for an atomic pair in equilibrium. In our numerical examples, the
parameters for LJ 6-12 will be defined in scaled units as in [2,8-10,12,14,23,26,27], i.e.,
o and ¢ are set to unity while atomic mass is chosen as my = 1 for all atoms. Although
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the choice of normalized units cannot lead to quantitative representations of the
behavior of a particular material, it allows us to draw generic conclusions about the
fundamental and material-independent mechanisms in brittle fracture.

The MD interatomic force can be evaluated by differentiating ®(r) with respect

tor, as

t(r)=— 0 _ g 5y (3.3)

Note that the equilibrium distance (at which f(r) = 0) between two neighboring atoms is
ha = 2%6. The force and potential energy for LJ 6-12 are plotted in Fig. 3.1. The
interaction coefficient £ can be obtained by taking second-order derivative of the

potential function with respect to » and then evaluate at equilibrium distance » = A, as

2 12 6
(_oo(r) e [624&0‘ 1680 Jlr_hf 36(4) 5. (3.4)

r14 r8

2
O

Potential energy

I I I I I I I
h 12 14 16 18 2 22 24
a

Distance between two atoms

Figure 3.1 Force and potential energy for the LJ 6-12 potential
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Note that Eq. 3.1 represents a system of coupled second-order nonlinear
differential equations, which can be solved numerically by discretizing the equations in
time. There exist many time integration schemes that are frequently used in molecular
dynamics implementations. In this thesis, we adopt the Verlet algorithm (also known as
the explicit central difference algorithm) for numerical time integration, in which the

positions of atoms are updated as

V(t+At, )= v(t)+%(a(t)+ alt+At, At (3.53)

q(t + At )= qg(t)+ v(t)At +%a(t)At; (3.5b)

where v and a represent atomic velocities and accelerations, respectively, and Aty, is the
MD time step size. In general, the time step size for MD simulation can be determined
based on atomic vibration frequency. For a harmonic oscillator that approximates the
interatomic interaction in a given atomic lattice at equilibrium, the oscillation frequency

can be estimated as

V*:i L (3.6)
2\ m,

In order to accurately model the rapid vibration of atoms, the MD time step needs to be
chosen much smaller than 1/v" [8]. For the LJ 6-12 potential, based on the normalized
parameters o, ¢ and ma defined above, the value of 1/v" for a one-dimensional atomic

lattice is found to be around 0.831 (in normalized time unit).

3.3 Bridging Scale Method — A Tutorial 1-D Problem
Proposed by Wagner and Liu [20] in 2003, the bridging scale method has been mainly

used for concurrently coupling atomistic and continuum simulations. The theory of
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bridging scale method has been developed in a fully generalized three-dimensional
setting, and the impedance boundary force — the key to achieve multi-scale coupling —
has been numerically calculated in multiple dimensions for different lattice structures.
In this section, the basic formulation of bridging scale method will be briefly reviewed,
and will be illustrated with a simple 1-D example. Detailed derivations and associated

discussions can be found in [20,24,27,28].

3.3.1 Bridging Scale Fundamentals

As depicted in Fig. 3.2, the bridging scale method is based on the fundamental idea of

decomposing the total atomic displacement field z into coarse and fine scales, as
Z=U+V (3.7)

where the coarse scale u can be represented by a set of basis functions (such as finite

element shape functions), and fine scale v is the part of the total solution whose

projection onto the coarse scale basis function is zero.

Displacement Total solution z
X\
\ A
/ /7 \
\ / \ V(X,)
v/ v \
\\ 2(%,) = U(X,) + V(X,)
\/ ~\
u(x,) A [0 Nodes
Finite element ’ O Atoms
| /—/% y

Xq

Figure 3.2 One-dimensional illustration of bridging scale coarse-fine decomposition

The coarse scale in bridging scale method is defined as
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u(x,) ZZN| (x,)d, (3.8)

where N(x,) is the shape function of node | evaluated at the initial position x, of atom «,
and d, represents FE nodal displacements. The fine scale v is the part of the total
displacement that the coarse scale cannot represent. It is defined to be the projection of
the coarse scale subtracted from the total solution z. One of the possible approaches in
selecting the projection operator is to minimize the mass-weighted square of the fine

scale, while noticing that the total solution z is equivalent to the MD solution q, as

2
‘] :Zma(qa_zNI‘ZWIj (39)
a |
where m,, is the mass of atom « and w, are the temporary nodal degrees of freedom.

Solving for w by minimizing the error J yields
w=M"'N"M,q (3.10)
where M=N"M,N denotes the coarse scale consistent mass matrix, and My is a
diagonal matrix with atomic masses on the diagonal. N is a matrix containing the values
of the finite element shape functions evaluated at all atomic positions within the domain.
The fine scale v can then be represented as
v=gq-Nw=q-Pq (3.11)
where P=NM™N"M, is the projection matrix. Finally, the total displacement z can
be written as the sum of coarse and fine scales; that is
z=Nd+q-Pq=Nd+Qq (3.12)

where Q =1 —P. The term Pq in Eq. 3.12 is called the bridging scale.
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3.3.2 Multi-scale Equations of Motion
To obtain the coupled MD and FE equations of motion, a multi-scale Lagrangian £ is

first constructed as
Lz.2)=%K(z)-V () (3.13)

According to Eqg. 3.12, the total solution z can be decomposed into d and q, and the

Kinetic energy ¥ (z,) = %zvtTMAz't can also be written in terms of d , and q , giving

1 1
L(d,d,t,q,q,t) = Ed,tT Md t +eqTMq,t _U(d'q) (3-14)

where U (d,q) is the interatomic potential energy and 9 is the fine scale mass matrix. In

deriving Eq. 3.14, the cross terms d, and ¢, have been removed due to the

orthogonality of the bridging scale [20].
The multi-scale equations of motion can be obtained from the Lagrangian by

following the relations

dfoc | oc_, (3.15a)
dt{ad, ) ad
dfoc) oL _, (3.15h)
dt\ogq, ) oq

which lead to the coupled equations of motion

M,q, =f(q) (3.16a)
Md , =N"f(z) (3.16b)
Note that the fine scale equation of motion (Eg. 3.16a) is simply the MD

equation of motion, which can be solved with a standard MD solver. Equation 3.16b is
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the finite element equation of motion, in which M is defined to be a consistent mass
matrix. When the sizes of the finite elements are large compared to atomic spacing, the

FE mass matrix can be written as an integral over the FE domain Q [20], as
M = [ pN(X)" N(XHQ (3.17)

which is the consistent mass matrix used in standard finite element method, where p
represents an evenly distributed mass density evaluated based on the atomic mass and
the space occupied by each atom. Hence, a standard FE solver can be used to find the
solution to Eq. 3.16b. The coupling between the two equations is through the coarse

scale internal force N'f(z), which is a function of the MD interatomic force f.

3.3.3 Elimination of Fine Scale outside the MD Region

Instead of solving molecular dynamics for the entire domain in structural analysis, in
bridging scale method, we confine the MD simulation into only a small portion of the
domain, while solving the response of the rest of the domain using finite element
analysis. Taking the one-dimensional bridging scale structure shown in Fig. 3.3 as an
example, the molecular dynamics simulation is only performed in the MD region
(Region 1), while the finite element analysis exists everywhere (Region 1 + Region 2).
In Region 2, the coarse scale degrees of freedom are represented by finite element
interpolation, while the fine scale degrees of freedom are eliminated. An impedance
force that mimics the effect of the eliminated fine scale in Region 2 is imposed at the

boundary of the MD area.
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Figure 3.3 A 1-D bridging scale structure

To develop the impedance boundary condition for the MD region, it is assumed
that different interatomic potentials are used for Region 1 and Region 2. Since Region 1
is usually a locally interesting physical domain such as the area near a crack tip, it is
necessary to use an anharmonic (or nonlinear) potential (such as LJ 6-12) to accurately
capture the interaction between atoms. However, in Region 2, where the relative
displacements of atoms and the rotation of the atomic lattice are usually small, a
harmonic potential — linearized from the anharmonic potential function — can be used to
represent the interatomic force as a linear function of the displacements. In other words,
while an anharmonic potential will be used for the MD simulation in Region 1, a
harmonic force will be assumed during the process of eliminating the Region 2
atomistic degrees of freedom.

The first step in deriving the impedance boundary condition is to linearize the
MD equation of motion (Eq. 3.16a). For the atoms in Region 2, linearizing the force f(z)

at v = 0 while noticing the equality of g and z yields

MAq,tt = MAu,tt + MAV,tt :f(U)+ Kv (3.18)
where
of
K=—|_ 3.19
GZ |v70 ( )

Note that the complete anharmonic force has been decomposed as
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f(z)=f(u)+Kv (3.20)

The derivation of the impedance boundary condition requires working with the
fine scale equation of motion exclusively. Therefore, to decompose the MD equation of
motion into coarse and fine scale components, Eq. 3.18 is separated by considering the
coarse and fine scales respectively, as

M,u, =f(u) (3.21a)

M,V =Kv (3.21b)
The decomposition above is based on the assumption that the fine scale equation of
motion can be written neglecting the contributions from the coarse scale. This
assumption can be justified by the orthogonality of coarse and fine scales, as well as the
fact that the coarse scale has a larger time scale than the fine scale in bridging scale
simulations [20].

Now we elucidate the derivation of the impedance boundary force using a
simple 1-D atomic lattice. (The extension to higher dimensional cases will be discussed
later in this chapter.) Assume a one-dimensional structure consists of a chain of atoms
with mass ma, as shown in Fig. 3.4a, where atoms are connected by nonlinear springs
with interaction coefficient k (Eq. 3.4). Each atom is labeled with index | that denotes its
spatial position, while the | = 0 atom represents the boundary of the MD area. Our goal
is to develop a boundary force (acting on the | = 0 atom) that mimics the fine scale
dynamic effect of the | > 0 (Region 2) atoms, as shown in Fig. 3.4b. The fine scale
degrees of freedom of the | > 0 atoms will be eliminated by solving or replacing them in
terms of the 1 <0 (Region 1) degrees of freedom. More specifically, the fine scale

displacement of the | = 1 atom will be solved for in terms of that of the | = 0 atom.
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(b)
Figure 3.4 (a) Original 1-D atomic system, (b) Region 2 fine scale eliminated by

introducing the impedance boundary force f,™(t)

The key idea in deriving the impedance force is to utilize the periodicity of the
atomic structure so that standard technique of discrete Fourier transform can be applied.
To start with, we rewrite the fine scale equation of motion (Eq. 3.21b) for any atom

within Region 2 of the 1-D lattice, as

Vi (t)= IilmxglKlfl'Vr (t) (3.22)

where the stiffness matrices K relates the displacements of the neighboring atoms beside

atom | to the atomic forces acting on it. For a 1-D lattice, the stiffnesses are given by

scalars, as
K, =k (3.23a)
K, = —2k (3.23b)
K, =k (3.23¢c)

Note that we assume only nearest neighbor interactions when writing Eq. 3.22.
For the MD boundary atom (I = 0), Eq. 3.22 becomes
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1 0 0 )
Vo (t) = D MK v () = D mtKov )+ mlK v () = ) miK v () + mt f™ () (3.24)
f—1 o1 1

where
f,™ (1) = K v, (t) (3.25)
is the impedance boundary force to be developed (Fig. 3.4b). Note that the effect of the
Region 2 fine scale degrees of freedom on the MD boundary atom (implied by the v;
term) is involved in the impedance force.
To solve for vy in terms of vy, discrete Fourier transform and Laplace transform
need to be performed on the linearized fine scale equation of motion of the Region 2
atoms (Eq. 3.22). Detailed derivation steps can be found in Appendix C. The resulting

impedance boundary force takes the form

fi™(t)= JZ@(t — 7, (z)dz (3.26)

where
0 (t):Ll(@(s))zszJz[Z Ltj (327)

is called the time history kernel (plotted in Fig. 3.5), in which J, stands for the second-
order Bessel function. As can be seen, in contrast to Eq. 3.25, the impedance force in Eq.

3.26 depends only on the fine scale dynamics of the boundary atom at | = 0.

ne

06+

04r

nz

OF

0.2
i]

Figure 3.5 1-D time history kernel
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Note that the coarse scale equation of motion (Eq. 3.21a) can also be rewritten

for the | = 0 atom, as
Ug, =M, fo(u) (3.28)
where fo(u) is the coarse scale component of the interatomic force acting on the
boundary atom, which depends on the coarse scale solution u in both Region 1 and
Region 2.
Substituting the expression of the impedance boundary force (Eq. 3.26) into the

fine scale equation of motion for the boundary atom (Eqg. 3.24) and combining the result

with Eq. 3.28 gives

Mo, ()= To(0,U)+ [0t - o (2)d7 (3.29)

where the fine scale displacement vy(z) can be obtained by
v, (T) =0, (T)— uo(r) (3.30)
Therefore, for a simple 1-D lattice as shown in Fig. 3.3, the final form of the

coupled MD and FE equations of motion can be written as

MAq,tt :f(q) (3.31q)
Mo (t)= o(QU)+ [0t — ) (2)dz (3.31b)
Md , =N"f(z) (3.31¢)

Note that Eq. 3.31a will be solved for all non-boundary atoms, while Eq. 3.31b governs
the dynamics of the two atoms at the MD boundary. The interatomic force f(q) can be

derived from any nonlinear interatomic potential function.
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3.3.4 Coarse Scale Internal Force

In the coarse scale equation of motion (Eq. 3.31c), the coupling force N'f(z) originates
due to the separation of coarse and fine scales. Inside the MD region, since the total
solutions (z = u + v) of the atoms are available, the internal force acting upon the FE
nodes can be directly evaluated. However, in Region 2, the interatomic forces f(z) are
no longer available due to the elimination of the fine scale degrees of freedom, and
hence the Cauchy-Born rule [19] is utilized to approximate the N'f(z) term.

In Cauchy-Born rule, it is assumed that the lattice underlying any continuum
point will deform homogeneously according to the continuum deformation gradient,
while continuum stress and stiffness measures can be obtained directly from interatomic
potentials. Based on this concept, the nodal force acting on a Region 2 FE node | can be

calculated as

N, (x,)
N'f) =—> @' (x a2 AV 3.32
NF), =X (x, )= 5 av, (3:32)
where AV, is the space occupied by atom «, and @ represents the first Piola-Kirchoff
stress defined as

oW,
oF!

@(x,) = (3.33)

where W, is the potential energy density, and F, is the deformation gradient at atom a,

which can be computed as

2 :H%Xa):nlgd,(a'\'—(xa)f (3:34)

|
“ X OX
In practice, the summation in Eq. 3.32 can be replaced by an integral, just as in

Eq. 3.17:
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(N'F), [ &' (x)%x(x)dv (3.35)

which, in numerical implementation, can be approximated by a weighted sum of the
function values at a discrete set of quadrature points at locations Xg, as
(N"F), ~ —; @' (x, )%)(:(q)wq (3.36)
where wq is the weight of the quadrature point X [20].
Now a simple example will be used to illustrate the Cauchy-born rule. Consider
a 1-D element in Region 2 with two nodes i and j. As shown in Fig. 3.6, the element
contains he/h, atoms, where he represents element length. Our goal is to calculate the
internal force acting on node j due to the deformation of the element. Note that the
displacements of the atoms in the element are unknown due to the elimination of the

fine scale outside the MD area.

h,
d; S
S |
Node i he Node j
—

Figure 3.6 A 1-D element with two nodes

According to the Cauchy-born rule, the atomic lattice is assumed to deform
homogeneously with the continuum; therefore, using Eq. 3.34, we first calculate the
deformation gradient at the location of atom a within the element, as

aNj(Xa)

F,=1+d, aN‘(X“)erj

. —1+(d, —d,)/h, (3.37)

with linear shape functions

N;=1-x/h,; N;=x/h, (3.38)
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Note that d; and d; indicate nodal displacements. The potential energy within the space

occupied by atom « can then be calculated under small deformation assumption, as
®=(1/2)-k-(F,h, —h Y (3.39)

which comes from the fact that two atomic bonds are connected to atom a (nearest

neighbor interaction assumed), and meanwhile the potential energy of each bond is

shared by two atoms.

By taking derivative of the energy density at atom «a

W, = 9 — kha(Fa _1)2 (3.40)
h, 2

with respect to the deformation gradient F,, the Piola-Kirchoff stress at x, can be

obtained as

P(X,) =

g"FVa —kh,(F, —1) =kh,(d, —d,)/h, (3.41)

a

which is the same for all atoms in the element due to homogeneous deformation. Thus,
the internal force acting on node j due to the deformation of element ij can be calculated

using Eq. 3.32; that is

a
oX R X

(NTF), = —h;Z/_:Tq»(xa)aNi(X“)Av :—r:-{[kha(dj —d,)/ he]-hl-ha} — —kh,(d, —d,)/n, (3.42)

3.3.5 Staggered Time Integration Scheme

The coupled equations of motion (Egs. 3.31a ~ 3.31c) obtained at the end of Section
3.3.3 indicate a necessity of exchanging information between MD and FE simulations.
In numerical implementation, a staggered time integration method based on the Verlet

algorithm is used to update the MD and FE quantities simultaneously through time. The
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MD simulation is advanced with time step size Aty,, while the time step for finite
element analysis is At, with a relation At = mAt,. Apparently, the time step size for FE
simulation is a multiple of Aty, indicating that a small time step size is only necessary in
solving the MD equation of motion.

Over each FE time step At, the molecular dynamics simulation is advanced first
by Atn for m MD time steps. Note that as implied in Eq. 3.31b, the acceleration
calculation for the boundary atoms in each MD time step requires information from the
FE simulation near the boundary. Since the FE nodal displacements are only solved for
each At, an interpolation method is used to approximate the coarse scale boundary
displacements and velocities at each MD time step by assuming that the FE acceleration
remains constant throughout one single FE time step At.

During each MD time step Aty, the accelerations of all atoms in the MD area are

obtained via a time integration method as follows:

ub ! = ol ulilag, + % ul At2 (3.43a)
uliAl — gl yn At (3.43b)

It It ra=m '
gl =gl 4 vl AL+ %a[w",]DAtf1 (3.43c)
a[J.Bl] _ M;\lf(q““],u[r"*”, h““]) (3.43d)
= v+l el o, 3439

where g, vump and ayp are the displacements, velocities and accelerations of the atoms,
respectively. h represents the time history quantities. ur, ur;, and ur are coarse scale

displacements, velocities and accelerations near the boundary updated at each MD time
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step. Note that those coarse scale quantities include the information of the atom right at
the boundary (I = 0) as well as the atoms within one cutoff radius outside the MD region
(I'=1), which are referred to as ‘ghost atoms’. The displacements of the ghost atoms are
assumed to be equal to the coarse scale displacements and can be obtained by
interpolating corresponding FE nodal displacements. The bracket notation [j] is used to
donate the quantities at each MD time step (e.g., [j] is short for the time step n + j/m),
and the superscript n represents the nth FE time step.

Once the MD simulation of m MD time steps for the nth FE time step is
completed, the MD quantities at the time step n+1 (n+m/m) will be used to compute the
FE accelerations at the time step n+1. A similar integration method is used to update FE

displacements d, velocities vee and accelerations are:

d™ = d" + v At +%a2EAt2 (3.44a)
alt = MIN"f(Nd"™ + Qg™ (3.44b)
Vit = vl + (aFE + ar;El)At (3.44c¢)

Once the FE simulation goes from time step n to n+1, the information of the
ghost atoms are interpolated using shape functions. These coarse scale boundary

quantities will then be used in the next time step for updating the MD quantities.

3.3.6 1-D Numerical Example

In this section, we show dynamic bridging scale simulation for a simple 1-D structure
based on the implementation details discussed above. More information about this
example problem can be found in our earlier work [39]. As illustrated in Fig. 3.7, the

bilaterally symmetric computation domain contains forty linear finite elements;

62



meanwhile, the MD simulation is confined into a small domain in the middle, which is
comprised of 151 atoms. The equilibrium distance between atoms is h, = 0.05, while
each finite element contains ten atoms. Due to the nature of the 1-D problem, all atoms
and FE nodes can move only along the x direction. The MD time step size is chosen to

be 0.0075, and ten MD times steps are run within each FE time step.

151 atoms

Impedance N A/tom
boundary condition 14 N\ | FE node
EOOOOOOO OOOOOOOK:I \/
ob— - +————r - - —T—TF——1F - 0
FE only I MD+FE FE only
\ : J

40 elements X< > X

Figure 3.7 A one-dimensional bridging scale problem

As shown in Fig. 3.8a, the initial displacement for this example problem is
created by superimposing a high frequency wave onto a truncated Gaussian pulse (Fig.
3.8b) [39]. Note that the displacement in x direction is denoted by the vertical axis in
Fig. 3.8 and the following figures in this section. Figure 3.9 illustrates how the initial
displacement is implemented on the 1-D bridging scale structure in Fig. 3.7. Only the

+x plane is plotted due to symmetry.
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Figure 3.8 (a) Initial displacement of the 1-D bridging scale problem within [-0.3,0.3],

and (b) truncated Gaussian pulse
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Figure 3.9 Initial condition implemented on 1-D bridging scale structure

Figure 3.10a gives the result of the bridging scale simulation at t = 150. As can
be seen, the initial wave passes out of the MD region properly, including the high
frequency component. By comparing the simulation result with the result of a full MD
simulation (which in this case can be thought of as the exact solution), we can see
clearly that the dynamic behavior of the wave has been successfully captured by the

bridging scale simulation.
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Figure 3.10 Results of the 1-D bridging scale example problem, (a) with impedance

boundary condition, and (b) without impedance boundary condition
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Figure 3.10 Results of the 1-D bridging scale example problem, (a) with impedance
boundary condition, and (b) without impedance boundary condition (cont’d)

To demonstrate the significance of the impedance boundary condition in
bridging scale method, Fig. 3.10b shows the bridging scale simulation result in which
the MD region is directly coupled to the FE-only region, i.e., the impedance boundary
force is not applied. Apparently, since the wavelength of the high frequency component
of the initial wave is considerably smaller than that can be captured by the continuum
FE region, the wave is thus reflected at the interface, which can result in spurious heat
generation in the MD region and a contamination of the simulation. Therefore, it is clear
that in bridging scale method, the impedance boundary condition plays an important

role in dissipating high frequency wave emitted from the MD region.

3.4 Bridging Scale Method for Higher Dimensions
For 2-D and 3-D structures, the basic concepts of the bridging scale method still apply —
the FEA exists everywhere, the MD simulation is confined into a localized domain, and

an impedance force is imposed to the boundary of the MD area, as shown in Fig. 3.11.
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Figure 3.11 Scheme of a 2-D or 3-D bridging scale domain

In this thesis, we focus on 3-D multi-scale problems. The majority of the
formulation introduced in the 1-D scenario discussed in Sections 3.3.1 ~ 3.3.3 can also
be used for 3-D problems, i.e., the coarse/fine decomposition (Eq. 3.12); multi-scale
equations of motion (Eq. 3.16) and linearization of the MD equation of motion (Eq.
3.21). The major difference between 1-D and 3-D bridging scale formulations lies in the
derivation of the impedance boundary condition (and hence the equation of motion for
MD boundary atoms (Eq. 3.31b)) and the implementation of coarse scale internal force
outside the MD region, both of which will be discussed in this section.

For 3-D bridging scale problems, the impedance boundary condition, including
the time history kernel, is dependent on the atomic lattice structure. As illustrated in Fig.
3.12, the atomic structure to be utilized in our 3-D numerical example represents a
perfect FCC (face centered cubic) crystal (such as Cu, Au, Ag) oriented along the (001)

direction.
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Figure 3.12 A unit cell from the FCC atomic lattice to be used in 3-D numerical

example
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Figure 3.13 An atom (I, m, n) with its neighboring (interacting) atoms in the FCC lattice

To support the derivation of the impedance boundary condition, as shown in Fig.
3.13, each atom in the 3-D FCC lattice is labeled with three indices — I, m, and n —
indicating the positions along the x, y, and z axes, respectively. Note that the unit cell in
Fig. 3.13 is shifted by half of the edge length compared to that in Fig. 3.12, so that all
nearest neighbors of the atom labeled (I,m,n) can be displayed. In Fig. 3.14, we plot the
m =1 layer of the FCC lattice based on the atom numbering convention. Note that each
value of n, for example, describes a layer of atoms bounded in a given x-y plane. In

deriving the impedance force for the 3-D lattice, the n = 0 layer is recognized as the

boundary of the MD area.
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Figure 3.14 The m = 1 layer of a periodic 3D FCC lattice with indices. The dashed line
represents the boundary between the MD and the FE-only regions

The derivation of the impedance boundary condition and the time history kernel

for the 3-D FCC lattice is detailed in Appendix D. The resulting MD equation of motion

for the boundary atoms (n = 0) takes the form

I+l M+Mgj

. t
MaQimo, :fl,m,O(q’u)-'—fll,r:fO :fl,m,O(q’u)+ Z Z J:)al—l’,m—m'(t_T)VI’,m',O(T)dT (3.45)

Py = e
where the time history kernel @ is a 3>3 matrix. Note that for 3-D bridging scale
problems, the equations of motion for non-boundary MD atoms and finite element
analysis are the same as with the 1-D case (Egs. 3.31a and 3.31c).

The diagonal components of the 3-D time history kernel @ in Eq. 3.45 calculated
based on the FCC lattice (Fig. 3.13) and the normalized LJ 6-12 potential are plotted in
Fig. 3.15. As can be seen, 633(t) is the most important component, while 611(t) and 6,(t)

are equal to each other due to symmetry of the lattice in x and y directions.
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Figure 3.15 Diagonal components of the time history kernel matrix

Note that It and meqit in EQ. 3.45 are introduced as maximum numbers of
neighboring atoms along the x and y directions, respectively, that will be considered
during the derivation of the impedance force. It has been shown in [24] that compared
to a direct MD/FE coupling, the biggest improvement occurs when the zeroth-order
component of the time history kernel is utilized (l¢rit = meric = 0). Also, it has been
discussed in [28] that higher order values of (t) corresponding to leit > 0 and merit > 0
are at most 10% of the values shown in Fig. 3.15. Therefore, in this thesis we assume
lerit = Merit = 0 when calculating the time history kernel matrix.

For higher dimensional problems, the finite element internal forces outside the
MD region are also calculated based on the Cauchy-born rule. However, unlike the
analytical derivation shown in the 1-D case (Eq. 3.42), the nodal force calculation for 2-
D and 3-D problems requires numerical integration. For instance, in our 3-D numerical
example, hexahedral eight-node isoparametric elements are used in finite element
analysis. To obtain the nodal forces due to the deformation of a given element, the
defamation gradient is first calculated at eight quadrature points within the element

using Eq. 3.34; then the first Piola-Kirchoff stress at each quadrature point is calculated
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using Eq. 3.33, where the energy density is evaluated based on the deformation of the
12 atomic bonds surrounding a given atom (assuming FCC lattice and nearest neighbor
interaction); finally, the FE nodal forces can be approximated using Eq. 3.36. Details
regarding the derivation of the Piola-Kirchoff stress ®and the Region 2 nodal forces for
the 3-D FCC lattice can be found in Appendix E.

Note that if the normalized LJ potential discussed earlier is assumed, then for the
FCC lattice, the equivalent interaction coefficient k. along the x, y, and z directions is
calculated as 646.4. The corresponding value of 1/v" is found to be around 0.35 using
Eq. 3.6. In our 3-D numerical example, we will use a MD time step size Aty = 0.0075,
which is sufficiently small. The FE time step size At is not limited to the time scale
characterizing atomic vibrations. Due to the larger length and slower time scales

associated with the coarse scale, a relatively larger time step can be chosen for FEA.

3.5 Implementation for Crack Propagation Problems

For crack propagation problems, it is important to track the evolution of crack tip
location during simulation. In this thesis, to identify the atom right at the crack tip for
each time step, we employ the centro-symmetry parameter P defined by Kelchner et al.

[40], given by

P=> R+ Ry (3.46)
where R; and Rj.s are vectors corresponding to the six pairs of opposite bonds
surrounding a given atom in a FCC crystal. Figure 3.16a illustrates two of the six pairs

of bonds around atom « in the FCC lattice used in our numerical example. According to

Eq. 3.46, P = 0 where the lattice is undisturbed or deformed in a symmetric manner, and
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P becomes large near defects or free surfaces. For example, Fig. 3.16b depicts a
scenario in which the four nearest neighbors above atom « have been pulled far away so

that atom o becomes a surface atom.

(b)

Figure 3.16 (a) An atom a within a FCC lattice, (b) deformed lattice, in which atom «
becomes a surface atom

The centro-symmetry parameter is proven to be a useful metric to visualize
nano-scale defects in molecular dynamics studies for 3-D FCC crystals reported by
Potirniche et al. [7]. Moreover, it is found that the P parameters of surface atoms are in
most cases much larger than those of atoms near defects such as dislocations or stacking
faults [40]. Therefore, for a particular interatomic potential model, a critical value of P
can be defined to distinguish all the atoms located on free surfaces of the crack, i.e., an
atom with P parameter greater than the critical value will be identified as a crack
surface atom. When a crack grows, for example, horizontally in a specimen shown in
Fig. 3.17a, the crack tip position can be determined by finding the x location of the
crack interior surface atom with the maximum x coordinate [8,41,42]. Typically, a curve

that depicts the crack tip positions obtained in this way versus time will look similar to
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that given in Fig. 3.17b, i.e., the crack tip location remains constant for a certain period

of time, after which it suddenly jumps to the next atom.

P p 4

=

Crack Tip Location

L.

\l/ \l/ \l/ Time

(a) ()

Figure 3.17 (a) A specimen with a horizontal edge crack. (b) A typical crack tip location
history curve

Note that the centro-symmetry parameter is not the only way available to

identify the crack tip. Alternate approaches have also been widely used in atomistic

studies, such as the local potential energy criterion [41] and the crack tip bond length

criterion [43]. Note that whichever method we choose, the resulting crack tip location

curve is always piecewise constant in time domain as illustrated in Fig. 3.17b.

3.6 Numerical Example: Part 1

In this section, we implement the bridging scale simulation method for a three-
dimensional multi-scale dynamic crack propagation problem. The 3-D FCC lattice
shown in Fig. 3.12 will be used to model the atomic structure. Other implementation
details are similar to those discussed in [20,24,27,28]. For example, the initial
temperature of the system is set to OK; all components of the time history kernel matrix
are set to zero after 800 time steps; LJ 6-12 potential with normalized units is used; and

only nearest neighbors are considered when calculating interatomic interactions. The
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simulation code is developed using Matlab [44] and implemented on a DELL T7500

workstation with Intel® Xeon® processor E5603 (clock speed 1.6 GHz).

3.6.1 Simulation Model
The structure under consideration is a nano scale solid beam depicted schematically in
Fig. 3.18. As can be seen, the beam has a uniform cross section along the thickness (y

direction), and is symmetric in x-z plane with respect to the mid-plane (dashed axis in

Fig. 3.18b). The size of the geometry is 136+/2 hy x 2+/2 h, x 138+/2 h, (inx,y,z
directions, respectively) in normalized units. For bridging scale simulation, the beam is
modeled with finite elements everywhere, while the MD region is confined to a
rectangular area at the bottom. Specifically, the entire domain contains 782 hexahedral

eight-node isoparametric finite elements (two layers along the thickness). The 340
elements within the MD region are of the same regular shape, with width 82 h,, height
6+/2 h,, and thickness +/2 ha. In the FE-only region, the elements are trapezoidal in x-z

plane with the same height of 6 /2 h,, whereas their dimensions in x direction are
subject to the curved shape of the boundary. The MD domain is comprised of 82,583

atoms in total, with 5 layers of atoms in y direction. A pre-defined horizontal edge crack

of length 12+/2 h, is created in the MD area by blocking the interaction between two
adjacent layers of atoms.

During simulation, the structure is fixed at the bottom and pulled at the top face
by a displacement boundary condition shown in Fig. 3.19. This boundary displacement
corresponds to a strain in z direction that grows from zero to approximately 2.5% at t =

6,000Aty, after which it keeps stretching the beam at a lower strain rate to prevent the
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crack faces from contacting each other. To mimic a plane-strain configuration, a
periodic boundary condition is applied in the y direction, i.e., the solution at y = yg is
equal to the solution at y = yo + tn, where ty is the thickness of the beam. Following [28],

ten MD time steps are run for each FE time step.
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Figure 3.18 3-D nano scale beam model, (a) schematic illustration, and (b) FE mesh in -
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Figure 3.19 Displacement boundary condition applied to the top face of the beam
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3.6.2 Simulation Result

Figure 3.20 gives the snapshots of the bridging scale simulation result up to t =
15,000Aty,. As can be seen, the displacement applied at the top of the beam propagated
smoothly into the MD area, causing the initial crack to propagate in a mode | fashion.
The solutions of all atoms and FE nodes were consistent along the thickness (y), and no
displacement was observed in y direction, indicating that the plane strain condition was
applied correctly. The computation time for the bridging scale simulation was about 24

hours.

o

1

0 Aty 5,000 Atp, 7,500 Atp,

(s3]

(i)

10,000 Aty 12,500 Aty 15,000 Aty

Figure 3.20 Bridging scale simulation results at various time steps. Contours of z
direction displacements shown
As discussed in Section 3.5, we take advantage of the centro-symmetry
parameter P to recognize the atoms located on crack surfaces. For the 3-D FCC lattice
and the normalized LJ 6-12 potential used in our simulation, we found empirically that

P > 2 serves as an effective criterion. Figure 3.21a shows a 3-D snhapshot of the
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simulation result within the MD area at t = 15,000At,,, where atoms are plotted with
colors representing their z direction displacements. A zoomed-in view of the atoms near
the crack tip is given in Fig. 3.21b, with P > 2 atoms highlighted in black. Apparently,
the crack surface atoms are successfully identified, and the crack tip atom is simply the
one with maximum x coordinate. The resulting crack tip location history curve is plotted
in Fig. 3.22, indicating that the crack started to grow at around t = 7,000At, and

remained an approximately constant propagation speed until the end of the simulation.
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(b)
Figure 3.21 Bridging scale simulation result within the MD area (a) 3-D snapshot att =

15,000Aty, and (b) zoomed-in view near the crack tip with crack surface atoms
highlighted
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Figure 3.22 Crack tip location history curve

3.6.3 Physical Interpretation
To examine the physics behind the dynamic response of the structure, we first plot in
Fig. 3.23 the z displacements of the nodal points at y = t,/2 within the mid-plane (dotted
line in Fig. 3.18b) at time steps 2,400Aty, and 2,800Aty. As can be seen, within the 400
MD time steps, the macroscopic wave due to the boundary displacement traveled
approximately 35 normalized units along the —z direction. The speed of the macroscopic
wave can be calculated as

¢ =35/(400x 0.0075) =11.7 (3.47)
which is very close to the theoretical longitudinal wave speed ¢, = 12 [8] for the FCC
lattice and LJ potential used in our simulation.
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Figure 3.23 z displacement distribution along z direction at time steps 2,400At, and
2,800Aty,
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To take a closer look at the microscopic level dynamics, we focus on the z
direction displacement history (displacement vs. time) of the atom located at Xa shown
in Fig. 3.18b. As can be seen from Fig. 3.24a, atom Xa remained stationary until the
macroscopic wave arrived at around t = 2,500Aty, after which it moved upward with the
continuum. At around t = 9,000Aty, due to the growth of the crack, the bonds right
above atom Xa broke, and atom Xa became a surface atom. Therefore, regardless of the
majority of the domain still being stretched, atom Xa went downwards with the lower
crack surface right after t = 9,000Aty,, and finally moved according to the macroscopic
vibration of the lower crack surface. If we zoom in the displacement curve, we can see
in Fig. 3.24b that the microscopic wave due to atomic vibration is superimposed on the
macroscopic wave. Because of the coupling of atomic vibrations in three dimensions,
the microscopic vibration frequency observed from the z displacement curve is not
uniform throughout the entire simulation; however, as shown in Fig. 3.24c, the shortest
vibration period is found to be 48Aty,, corresponding to a frequency of 2.78, which is
very close to 2.86 — the vibration frequency calculated in Section 3.4. This also implies
that the time step size used is sufficiently small to capture the high frequency

microscopic wave in our MD simulation.
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Figure 3.24 z displacement history of atom Xa

Now we examine the behavior of the crack. As can be seen from Fig. 3.22, the
initial crack started to propagate at around t = 7,000At,,. Since the LJ potential models a
generic brittle material, during most of the simulation period, the crack propagated in a
straight line and left “mirror” cleaved surfaces. However, it is also noticed that the crack
was roughened at around t = 10,500Aty, as shown in Fig. 3.25a, which is due to the
instability behavior of brittle crack propagation. In order to better understand the
underlying physics, we measure the crack propagation speed right before t = 10,500At,
by averaging the crack tip locations from 9,500At; to 10,500At, using least square
fitting (Fig. 3.25b), and the calculated local crack speed turns out to be 1.76, which
corresponds to about 32% of the Rayleigh wave speed cr = 5.6 [8] for the FCC crystal
modeled in our simulation. This is in good agreement with the experimental and
simulation results reported in literature [8,9], i.e., dynamic instability in brittle crack
propagation occurs when the crack propagation speed approaches one third of the
Rayleigh wave speed cg. This instability behavior roughened the crack surface near t =
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10,500Aty,, meanwhile slowed down crack speed along the x direction. After t =
11,000At, and up to t = 15,000Aty, the crack propagation speed never reached one third
of the Rayleigh speed again due to the reduced strain rate at the top of the beam after t =

8,000At,; as a result, crack surfaces again became flat.
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Figure 3.25 Instability of brittle crack propagation. (a) Crack surface roughened at
instability, where atoms near the crack are plotted in blue, except for crack surface
atoms being highlighted in red. (b) Calculation of crack speed before instability

According to the observations and discussions above, it is clear that the bridging
scale simulation accurately captured the essential physics of brittle crack propagation.
The macroscopic displacement at the boundary propagated smoothly into the MD area
across the MD/FE boundary, while the longitudinal wave speed measured in simulation
matches the theoretical value. At microscopic level, the highest z displacement
oscillation frequency measured in simulation is close to the calculated z direction
natural vibration frequency of the FCC atomic lattice. Furthermore, the crack speed

measured at dynamic instability is consistent with the data published in literature.
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CHAPTER 4
ANALYTICAL SHAPE SENSITIVITY ANALYSIS

FOR BRIDGING SCALE METHOD

4.1 Overview

The basic concepts of shape sensitivity analysis have been introduced in Chapter 2. In
the current chapter, we apply continuum shape sensitivity analysis to dynamic multi-
scale problems based on the bridging scale method introduced in Chapter 3. By taking
material derivative of the bridging scale variational equations (to be presented in
Section 4.3), continuum sensitivity expressions will be derived analytically in a fully
generalized 3-D setting.

For bridging scale problems, the most basic and straightforward performance
measures are the dynamic responses of the structure, i.e., the displacements, velocities
and accelerations of all atoms and FE nodal points in the domain. These performances
measures can be referred to as analytical performance measures, since their sensitivity
coefficients can be obtained analytically by solving the sensitivity expressions.

In this chapter, we first introduce shape design parameterization and the
calculation of design velocity field for general structures. Section 4.3 presents the
variational formulation developed for the bridging scale method, which is the starting
point of continuum shape sensitivity analysis. A discussion on the discontinuity
problem in shape DSA of coupled atomistic/continuum systems will be given in Section
4.4. In Section 4.5, the multi-scale shape sensitivity expressions will be derived in a

continuum setting based on the variational formulation. Implementation aspects of
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sensitivity analysis will be briefly discussed in Section 4.6. Finally, in Section 4.7, the
nano-beam example introduced in the previous chapter will be used to verify the
accuracy of the sensitivity coefficients of structural responses calculated using the

proposed analytical sensitivity analysis approach.

4.2 Design Parameterization and Calculation of Design Velocity Field

Shape design variables govern the geometric shape of the structural boundary, usually
represented by parametric curves and surfaces for 2-D and 3-D applications,
respectively. Consider the shape design for an engine connecting rod [1] shown in Fig.
4.1. The design boundary (red lines) consists of two cubic Bezier curves at each end and
a horizontal line in the middle. Upper and lower design boundaries are symmetric with

respect to the centerline.

Design boundary

Figure 4.1 Engine connecting rod [1]

Note that Bezier curve is one of the common formats of planar parametric
curves. It is represented geometrically by the position of its control points (or control
polygon), which determine the shape of the curve with Bernstein basis polynomial.

Mathematically, a Bezier curve is defined as [45]

C(u) =3 piB,, (U <[04] (4.1)

82



where u is the parametric coordinate of the curve, p; represents the ith control point,
n+1 is the total number of control points, and B;,(u) is the Berstain polynomial, defined

as

.- *

As illustrated in Fig. 4.2, any perturbation of the position of the control points will

result in the change of the geometric shape of the Bezier curve.

Perturbed Bezier |
curve \ p P,

Control NPT | Design
polygon Py \_ — -] perturbation
iy
p:

-
P //1U

u=0

Bezier curve Ciu)

Figure 4.2 A cubic Bezier curve and its variation due to design change [46]

For the connecting rod example, the locations of the control points of the Bezier
curves are selected as design variables (b, ~ bs), as shown in Fig. 4.1. The shaded area
represents the design domain — the structural domain that will be affected by design
variables.

During shape design, the design velocity field is calculated first at the design
boundary. The mapping T is characterized by the parametric equations employed for
representing the design boundary (such as Eq. 4.1). Therefore, the boundary velocity
field can be calculated by varying the parametric equations of the design boundary
through changes of design variables. For example, for a 2-D design boundary, the

boundary velocity field with respect to the ith design variable b; can be written as
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Vi) = &C(uib) = £ b (4.3)

.
where 0b; is usually set to 1 for convenience in practice.

If finite element method is employed for structural analysis, the finite element
nodes at the original design boundary will have to move to the new geometric boundary.
The movement, i.e., boundary velocity field, can be calculated by plugging the
parametric coordinate u at the nodes (e.g., u; for node j) along the boundary curve into
Eq. 4.3; that is

Vi"(uj):cSC(uj;b):%doi (4.4)

To illustrate the movement of boundary nodes according to the boundary
velocity field, a 2-D structural domain with design boundary parameterized using a
cubic Bezier curve is depicted in Fig. 4.3. As can be seen, the boundary nodes (n; ~ ng)
move with the boundary curve due to the position change of control point p, (moved

upward by dpay,).
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Figure 4.3 A 2-D model with design boundary parameterized using a Bezier curve.

Boundary nodes move due to the location change of control point p; [46]

The change of structural boundary also causes the movement of material points
in the domain of the structure, which is characterized by so called domain velocity field.
After a shape design change, instead of re-meshing the domain using a mesh generator
(which may result in the change of topology of the finite element mesh), the location of
the finite element nodes needs to be updated according to the domain velocity field.
Several approaches of calculating the domain velocity field are available, such as the
Isoparametric Mapping Method [47] and the Boundary Displacement Method [48],

which have been well documented and will not be repeated in this section.
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Note that when defining design velocity fields for a general structural domain,
several theoretical and practical requirements need to be satisfied. For example, the
design velocity field should depend linearly on the variation of shape design parameters;
also, it must retain the topology of the original finite element mesh without causing any
mesh distortion; moreover, the finite element nodes at the boundary must stay on the

boundary for all shape changes [48].

4.3 Variational Formulation for Bridging Scale Method
As discussed earlier in Chapter 2, continuum shape sensitivity analysis requires taking
material derivative of a continuum variational governing equation in integral form. In
this section, we briefly introduce the continuum variational formulation developed for
the bridging scale method, which has been reported in our previous work [35]. Detailed
derivation of the variational formulation can also be found in Appendix F of this thesis.

In bridging scale method, the total solution z(x, t) is defined as the sum of coarse
scale u(x, t) and fine scale (X, t), as introduced in Eq. 3.1; that is

z(x,t) = u(x,t)+v(x ) (4.5)

where the displacement fields are thought to be continuous functions at first glance. In
order to introduce the bridging scale, the structure domain needs to be describéd using
atoms. Therefore, discrete functions z, u and v, which have values only at atomic
positions, are defined to represent the atomic displacement fields. Note that the coarse
scale can also be thought of as a continuous field », since it can be interpolated at points
in between atoms with FE shape functions; while u is simply a discrete version of
with function values of » at atomic locations. All the continuous and discrete

displacement fields above belong to a function space defined as
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z2=2UZ (4.6a)

< = {z =u+v, uve [H m(Q)]3 |lu=u.,v=v.0n Xel"h} (4.6b)

Z={z=u+v, U,V€R3|U=UF,V=VFOHX€Fh} (4.6¢)

Following the derivations detailed in Appendix F, we achieve the variational
equations for both MD simulation and coarse scale FEA, respectively, as

[[a™,a, dt=["a"[f(a,u)+F™]ot (4.73)
and
tr _ tr | _ _

jo I L p(X)i"u ,dQ dt = jo [qu(z)— I} jQZgT(u)a(u)dQZ}dt (4.7b)
where F™ is a vector that includes the impedance forces acting on all boundary atoms.
¢ and o denote stain and stress, respectively, while Q, represents the FE-only domain.

The virtual displacements @, # and U belong to the function space Z defined as
2=2UZ (4.8a)
Z= {2:17+77, 7,5 e[H"(Q)f |7, =00nxel", &(x0)=a(xt, )=5(x0)=(xt, )=0} (4.8b)
Z={z=u+v, 4,veR*|u,v=00nxel", U(x0)=u(xt )=v(x0)=V(xt )=0} (4.8¢)
Note that the energy equations (Eqgs. 4.7a and 4.7b) are obtained in a continuum
setting, except for the MD simulation, which is discrete in nature. The energy equations
serve as the basis of the continuum shape sensitivity analysis to be introduced later in
this chapter. Also, it has been shown in [35] that starting from the variational

formulation, the complete set of bridging scale differential equations presented in

Chapter 3 can be naturally obtained.
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4.4 Discontinuity in Shape DSA of Bridging Scale Problems
Applying the concept of continuum shape sensitivity analysis to bridging scale
problems involves unique challenges due to the nature of coupling atomistic/continuum
systems. Here we take a 1-D bridging scale structure shown in Fig. 4.4a as an example
for illustration. For 1-D problems, the only shape design variable is length, and the
shape sensitivity coefficients describe the influence of length change to the
displacements of atoms and finite element nodal points in the structure. Note that in
bridging scale, coarse scale solutions are continuous in design; hence, derivatives exist.
However, for the fine scale, when the length is changed, atoms must be either added or
deleted from the system, losing the continuity requirement.

Now we first discuss the derivatives of the coarse scale solutions to reveal the
discontinuity issue, and then introduce the method that we propose to overcome the

problem.
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Figure 4.4 1-D bridging scale structure with atom « inside element with nodes i and j. (a)

Before design change, and (b) after design change (length changed to | + 4l)

As shown in Fig. 4.4a, the coarse solution of the ath atom, which falls inside the
element with end nodes i and j, can be written as

u, =N7d; + Nd, (4.9

where d; and d; are the displacements at respective nodes i and j, obtained from finite

element solutions. N and N¢ are linear shape functions of nodes i and j evaluated at

X,, defined as
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Ne=1-"a N%=la (4.10)

where X, = aha — X;, and he denotes the length of the finite elements.
Assume a linear design velocity field for simplicity; i.e., material point (in this
case, nodes) moves linearly according to length change ¢l. The linear design velocity

field can be written as
X
V(x) = Té] (4.11)

Hence, as shown in Fig. 4.4b, nodes i and j move to their respective new locations at the

perturbed design, as

X () =% +V, =x +?é] = x(l+?} ;X (d) = Xj[“%j (4.12)

where, for example, xi(d/) represents the location of node i at the new design with length
change o/. Therefore, the element length of the perturbed design becomes he(dl) =
he {1+ ol/1). Since the atomic space h, is unchanged, the local location of atom « in the

same element after design change is

X, () =ah, —x [1+T;j (4.13)

The derivative of the coarse scale solution at atom a can be obtained as

“ ~ ON dd ¢
NG e B, Ty S (4.14)
d — al d al di
where
« N
ON/ _ah, ONj oM, (4.15)
a  nhl' ol hl

e e
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Note that Eqgs. 4.14 and 4.15 are true only if atom « stays inside the same

element before and after the design change; i.e.,
ol ol
X <ah, <X; and X 1+T <ah <y 1+T (4.16)

However, it is apparent that any atom that is added or deleted as well as those
fall outside their corresponding elements after the design change do not satisfy the
requirements of Eq. 4.16. Therefore, the derivative of the coarse solutions of these
atoms with respect to the length change does not exist, let alone the fine solutions that
are discrete in nature.

In order to overcome this problem, in our numerical example, we define the
design velocity field in a way such that the shape of the MD region does not change
with design. This is perfectly fine since the domain design velocity can be arbitrarily
chosen as long as the velocity field satisfies the continuity and regularity requirements
[48]. Moreover, in most multi-scale simulations, the MD region is generally much
smaller compared to the entire structural domain; therefore, for 2-D and 3-D multi-scale
structures as illustrated in Fig. 3.11, as long as the MD boundary does not overlap with
the design boundary, assuming the shape of the MD region is unchanged will not result

in any restriction on the modeling of the design problem.

4.5 Continuum Shape Sensitivity Analysis for Bridging Scale Method
In this section, we derive shape sensitivity expressions for the bridging scale method
following the continuum-discrete method introduced in Section 2.3.3. Due to the fact

that the direct differentiation method is in general more efficient for dynamic problems
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than the adjoint variable method, in this thesis the former will be employed in
sensitivity calculation.

Noting that the displacement solutions (g, u and «) of the variational equations
(Eg. 4.7) can be assumed as continuously differentiable functions in design space as in

[33], we start by taking material derivative of Egs. 4.7a and 4.7b, giving

f a'MQ, dt= Lt q’ [1‘qu (qu)g+f ; (@,u)o+FiP(g,ua+FP(a, u)u]dt (4.17a)

and

j” [m pﬁTuttdQ+jII pﬁTundiVVdQ}it
-[ fo (2)g+T™f , ( m &7 ( (4.17b)
+V(§ (@)o(u )) V+g' d|vV}iQ }dt
Note that an evenly distributed mass density is assumed as mentioned in Eq. 3.17, and
thus the function p(x) in Eq. 4.7b is replaced by a constant p in Eq. 4.17b.
According to Eq. 2.35, the first term in the domain integral on the right hand
side of Eq. 4.17b can be evaluated as

" @olw)) =& @)o(w)+ " @)

- ( vuTv)a (w)+&" @)oli-Va'V) (4.18)

=" (Va'V o(u)+ & @)o(i)-&" @e(Va'V)
Note that z =0 is assumed when deriving Eq. 4.18, which implies that the coarse scale

virtual displacement will not change with design.

Substituting Eqg. 4.18 into Eq. 4.17b gives

r [m il undQer pil uttdldeQ}jt— 0 U @a+T't(2)
- j "(Va'V)o(u)+ & (7)ol )—ET(E)J(VETV) (4.19)
+V(E" @)V + & (@)o(u)divv ]d92 }dt
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To solve for the material derivatives of atomic displacements, velocities and

accelerations, rearrange Eq. 4.17a as

[[a M,a, ~f.@ula-f,(@up-Fr@ua-Fr, upat=0 (.20
Since the virtual displacement q is arbitrary, the sensitivity differential equation for the
MD simulation can be obtained as
M,d, =f  (@ula+f (quja+F(gua+Fr(gu (4.21)
As can be seen, the dynamic responses of atoms depend only implicitly on
design. The material derivative terms in Eqg. 4.21 are equivalent to partial derivatives
with respect to shape design variables. This is because the shape of the MD region is
assumed to remain untouched, and therefore the material point (atoms) within the MD
region is not moving with shape design changes.
To solve for the material derivative of the coarse scale degrees of freedom, we
create finite element mesh over the domain and discretizing Eqg. 4.19 using FE shape
functions, as

N (2)a+f - (2)d

i dt (4.22)

[[(@md, +d"Md, bt =" d"

where
discretize ___
[[[ paTu divvdQ =" d"md, (4.23)

In Eqg. 4.22, M stands for the consistent finite element mass matrix (Eq. 3.17),

and F°® represents the material derivative of the coarse scale nodal forces obtained by

discretizing the integral over the domain Q; on the right hand side of Eq. 4.19 using
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finite element shape functions. Details regarding the derivation of Egs. 4.22 and 4.23
are given in appendices. Specifically, the discretization of coarse scale in Region 2 is

explained in detail in Appendix E, while the material derivative of coarse scale (such as

the calculation of F®) can be found in Appendix G.
Similarly, the coarse scale sensitivity equation can be obtained by considering

the arbitrariness of d: that is

NI (2)a+f - (2)d

Md'tt - F::B

-Md,, (4.24)

Note that Egs. 4.21 and 4.24 are the coupled dynamic shape sensitivity

expressions for the MD and FE simulations, respectively.

4.6 Implementation Aspects for Sensitivity Analysis

In our numerical implementation, the coupled sensitivity equations derived above (Egs.
4.21 and 4.24) are solved in parallel with structural analysis (Egs. 3.31a, 3.31c, and
3.45) using the same time integration method introduced in Section 3.3.5. It is assumed
that the initial displacements and velocities for all MD atoms and FE nodes will not
change with design, which is physically meaningful. Hence, the initial conditions for

the sensitivity equations can be defined as

da0) _, da.(0)_, dd()_, dd,(0)
=0 U _ -0 N\ .
dbo " db > dbo " db ° (4.25)

During each MD time step, the solution of bridging scale simulation, such as g
and d, are obtained first and then substituted into the sensitivity expressions. Thus, the

sensitivity equations can be solved in the same time step, and the results, such as ¢ and
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d, will be employed as initial conditions to solve the sensitivity equations in the next
time step. Note that the direct solutions of the sensitivity expressions (e.g., ¢ and d) at

each time step are the sensitivity coefficients of structural responses.

The calculated sensitivity coefficients describe quantitatively the rate of
performance measure change with respect to the change of shape design variables, and
therefore can be used to predict the behavior of the structure at a perturbed design
during design process. Consider a general performance measure y as an example. The
solid curve shown in Fig. 4.5a depicts the change of the performance measure with
respect to the ith design variable b;, which is unknown in practice. In structural design,
we first calculate the sensitivity coefficient dy/db;, which is the slope of the curve at the

current design b°, and then use the 1st-order prediction

7(0° + b )=y °)+3—b‘/_’aoi (4.26)

to estimate w(b® + db;), which is the actual value of the performance measure at the

perturbed design b° + Jb;.

(b + by) \T """""""" :
. P o
) | ?me,ﬂ(bn) x
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> 1
Lo 1
. 1
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v() e 0+ o)

Performance measure y
Performance measure y

! - ! Design ! ! Design
Current Perturbed Current Perturbed
design b° design (b° + 5b;) design b° design (b° + b;)
(a) (b)

Figure 4.5 (a) Behavior of performance measure y in design space. (b) A performance

measure y that shows high nonlinearity

95



In our numerical example, to verify the accuracy of the proposed sensitivity
analysis approach, we compare the sensitivity coefficients with overall finite difference
result. The accuracy of the 1st-order prediction of performance measure y can be

quantified using an accuracy index defined as

(b° + o0 ) -y (b°) it
o g+ )-wlb®) do,
Accuracy index = y/(bo N 5Di)—l//(b°) = z//(b" N 8oi)—z//(b°) (4.27)

where y(b° + 5b;) can be obtained through re-analysis, i.e., rerunning the simulation at b
= b + 5b;. If the accuracy index is close to 100%, or, more rigorously, if the accuracy
index converges to 100% as ob; approaches zero, then the sensitivity coefficient dy/db;
is considered to be correct.

As can be seen from Fig. 4.5, the accuracy of the 1st-order prediction depends
on not only the accuracy of the calculated sensitivity coefficient, but also the
nonlinearity of the performance measure in design space. Therefore, we often use a very
small design perturbation ¢b; for accuracy verification (Eq. 4.27) in order to avoid the
nonlinear effect. On the other hand, during design process, a large perturbation size (or
step size) is preferred. However, if, near the current design, the performance measure
exhibits high nonlinearity in design space, as shown in Fig. 4.5b, then the perturbation
size must be kept very small to ensure an accurate 1st-order prediction; in other words,

only very small step sizes can be used in design process.

4.7 Numerical Example: Part 2
In this section, we verify the accuracy of the proposed analytical shape sensitivity

analysis method using the nano-beam example introduced in Chapter 3.
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4.7.1 Design Parameterization

For the purpose of sensitivity analysis, we model the geometric shape of the curved
boundary faces above the MD region on both sides of the nano-beam using parametric
Bezier curves with three control points. As illustrated in Fig. 4.6a, the shape of the left
boundary face, for example, can be morphed by adjusting the locations of control points
P1, P2 and P3. In our study, we define three shape design variables by, by, and bs that

correspond respectively to P2y (y direction coordinate of point P2), P3, and P3,. At the

current design, the locations of the three control points are (0, 66/2 ha), (O, 102+/2 ha)
and (13.6h,, 138h,) for P1, P2 and P3, respectively. The shape of the right boundary
face will vary accordingly during a design change to maintain the symmetry of the
beam. The design velocity fields associated with individual design variables are
illustrated in Fig. 4.6b. Note that shape changes only take place in the FE-only region,
whereas the shape of the MD region will remain untouched as discussed earlier in

Section 4.4.

(@)

Figure 4.6 Design parameterization for the nano-beam. (a) Parametric boundary curve,

and (b) design velocity fields for individual design variables
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(b)

Figure 4.6 Design parameterization for the nano-beam. (a) Parametric boundary curve,
and (b) design velocity fields for individual design variables (cont’d)

4.7.2 Sensitivity Accuracy Verification

We carried out analytical shape sensitivity analysis for the nano-beam example. For
bridging scale problems, the simplest analytical performance measures are the
responses of the structure, including the displacements, velocities and accelerations of
all atoms and FE nodes. For accuracy verification, we arbitrarily pick one atom (Xa in
Fig. 4.7) and one FE node (Xy) from the MD and FE-only regions, respectively, and

then examine their accuracy indices (Eq. 4.27) by comparing the sensitivity coefficients

with overall finite difference results.
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Figure 4.7 Atom X and node Xy chosen for sensitivity accuracy verification
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An accuracy index convergence study is first carried out as shown in Fig. 4.8, in
which the accuracy indices of the z direction displacement sensitivity coefficients for
atom Xa with respect to b, are plotted versus simulation time for different design
perturbations (Jb; in Eq. 4.27) ranging from db, = 0.0001 to db, = 0.1, where 6b, = 0.1
corresponds to an 0.05% increment of beam length. Note that z direction sensitivity
coefficients are chosen due to the fact that the deformation of the beam is mainly along
the z direction. As can be seen from Fig. 4.8, for all time steps plotted, the accuracy
index converges to 100% as the perturbation size approaches zero, which implies that

the proposed analytical sensitivity analysis method is accurate.
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Figure 4.8 Accuracy index convergence study for atom Xa. Accuracy indices for z
displacement sensitivity with respect to b, plotted

Then we take a closer look at the accuracy of the sensitivity coefficients by
listing in Tables 4.1 ~ 4.3 the z direction sensitivity coefficients of atom X, with respect
to all three design variables. The perturbation size for overall finite difference used in
Tables 4.1 ~ 4.3 is 0b; = 0.0001 — the smallest one plotted in Fig. 4.8. In each table,
Column A lists the selected FE time steps. Columns B to D show the structural
responses at current design (y/(bo)), including displacement ¢, velocity vyp and

acceleration ayp, at each chosen time step. Columns E to G list the same information at
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the perturbed design (w(b° + d5;)) obtained through re-analysis. Columns H to J show
differences of the structural responses due to the design change, obtained using overall
finite difference (denominator in Eq. 4.27); i.e., Column H = Column E — Column B,
etc. The analytically calculated sensitivity coefficients (dy/db;) are listed in Columns K
to M, and are then compared with the overall finite difference results in Columns H to J,
after multiplied by the design perturbation o6b;. The accuracy comparison results
(accuracy index) are shown in Columns N to P. As we can see, the sensitivity
coefficients are very accurate compared to overall finite difference results. Also, the
sensitivity coefficients with respect to design variable b; (Columns K to M in Table 4.1)
are in general much smaller than those with respect to b, and bs, which means the
response of the structure is less sensitive to b; than to b, and bs. The sensitivity
accuracy verification for node Xy with respect to design variable b, is given in Table
4.4. In fact, many other atoms and nodes have been tested, and it is found that the
sensitivity results for all atoms and FE nodes with respect to all three design variables

are generally of the same level of accuracy.

Table 4.1 Accuracy verification of z direction sensitivity coefficients with respect to by

for atom Xa
A B | ¢ [ b E | F | ¢ H [ 1 [ K L M N 0 P
Time Step Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
(Atn) q(t) Vo ®)  awo (@) | qe*+8b;) Vi (B™+5by) ayp (°+3bs) Aq Avwo Aayp DSAq DSAvwp DSAay %q % Vi % ayo

3,000 332E-02  154E-02  3.14E-03 | 3.32E-02 1.54E-02 3.14E-03 -299E-09 547E-10  -386E-10 | -299E-05 547E-06  -3.86E-06 | 100.000%  100.001%  100.035%
5,000 755E-01  7.78E-02  225E-03 | 7.55E-01 7.78E-02 225603 138E-08 229E-09 292E-10 | 138E-04 229E-05 292E-06 | 100.000%  100.001%  100.094%
7,000 198E+00  8.19E-02  397E-04 | 1.98E+00 8.19E-02 3.97E-04 404E-08  454E-10  6.01E-10 | 4.04E-04  454E-06  6.01E-06 | 100.000%  100.023%  100.044%
9,000 281E+00 -592E-03 -7.61E-04 | 281E+00  -5.92E-03 -7.61E-04 6.96E-08  285E-08  261E-09 | 696E-04  285E-04  2.62E-05 | 100.000%  100.001%  100.240%
11,000 213E01 -138E01 511E01 | 213E-01 -1.38E-01 5.11E-01 -308E-07 164E-06  7.198-06 | -308E-03 164E-02  7.19-02 | 100.001%  100.000%  100.015%
13,000 277E-02  133E-01 305601 | 277E-02 1.33E-01 3.05E-01 279E-07  166E-06 -308E-05 | 279E-03  166E-02 -308E-01 | 99.999%  100.000%  100.000%
15,000 135E-01  112E-01  -549E-01 | 1.35E-01 1.12E-01 -5.49E-01 183E-07  -346E-06 -6.86E-05 | 183E-03 -346E-02 -6.86E-01 | 100.006%  99.995%  100.004%
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Table 4.2 Accuracy verification of z direction sensitivity coefficients with respect to b,

for atom Xa
A B [ c [ b E | F [ & H [ [ K L M N 0 P
Time Step Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
(Atm) qb")  vio®)  aw () | aE+8b2) vio (b+3b2) awo (0+3b2)|  Ag Avwo dayo | DSAQ  DSAvw, DSAaw | %g %Vo  %awo

3,000 332E-02  154E-02  3.14E03 | 3.32E-02 1.54E-02 3.14E-03 -1.81E-07 -383E-08  4.30E-09 | -181E-03 -3.83E-04 4.30E-05 | 100.000%  100.000%  99.997%
5,000 755E-01  7.78E-02  2.25E-03 | 7.55E-01 7.78E-02 2.25E-03 -100E-06 -3.76E-08 -7.89E-11 | -1.00E-02 -3.76E-04 -7.86E-07 | 100.000%  100.000%  99.619%
7,000 198E+00  8.19E-02  397E-04 | 198E+00 8.19E-02 3.97E-04 -119E-06  -7.50E-09  9.95E-09 | -119E-02 -7.50E-05 9.95E-05 | 100.000%  99.999%  99.993%
9,000 281E+00 -592E03 -7.61E-04 | 281E+00  -5.92E-03 -761E-04 | -1.05E-08 541E-08 -6.82E-07 | -L05E-04 541E-04 -6.82E-03 | 99.993%  99.992%  99.982%
11,000 213E-01 -138E-01 5.11E01 | 213E-01 -1.38E-01 5.11E-01 144E-06  -4.54E-06 -287E-05 | 144E-02 -454E-02 -287E-01 [ 99.998%  100.002%  99.973%
13,000 277E-02 13301  3.05E01 | 277E-02 1.336-01 3.05E-01 -126E-06 -216E-06 227E-04 | -126E-02 -216E-02 227E+00 | 100.017%  100.034%  100.007%
15,000 135E-01  112E-01  -549E-01 | 135601 112E-01 -5.49E-01 221E-07 -263E-07 114E-04 | 221E-03 -261E-03 114E+00 | 100.096%  99.370%  99.926%

Table 4.3 Accuracy verification of z direction sensitivity coefficients with respect to bz

for atom Xa
A B | c [ b E | F | & H [ 1 [ 3 K L M N 0 P
Time Step Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
(Atp) q’) Vio ) aup(®”) | q(e™+8bs) Vyp (B+3bs) ayp (B*+5bs) Aq Avwp Aayp DSAq DSAvyp DSAawo %q % Vo % awp

3,000 332E-02  154E-02  3.14E03 | 3.32E-02 1.54E-02 3.14E-03 -2.30E-08 -897E-09 -215E-09 | -2.30E-04 -897E-05 -215E-05 | 100.000%  100.000%  100.003%
5,000 755E-01  7.78E-02  225E-03 | 7.55E-01 7.78E-02 2.25E-03 -4.64E-07  -372E-08  147E-09 | -4.64E-03 -372E-04 147E-05 | 100.000%  100.000%  100.010%
7,000 198E+00  8.19E-02  397E-04 | 198E+00 8.19E-02 3.97E-04 -7.986-07 -1456-08  4.28E-10 | -7.98E-03 -145E-04  4.27E-06 | 100.000%  100.000%  99.936%
9,000 28l1E+00 -592E-03 -7.61E-04 | 281E+00  -5.92E-03 -7.61E-04 | -554E-07 -135E-07 -248E-07 | -554E-03 -135E-03 -248E-03 | 100.000%  99.996%  99.829%
11,000 213E-01  -138E-01 511E-01 | 213E-01 -1.38E-01 5.11E-01 230E-06 -109E-05 -494E-05 | 230E-02 -109E-01 -494E-01 | 99.994%  100.002%  99.902%
13,000 277E-02  133E-01  3.05E01 | 276E-02 1.33E-01 3.05E-01 -1.88E-06 -1.15E-05 232E-04 | -188E-02 -114E-01 232E+00 | 100.007%  99.992%  99.996%
15,000 135E-01  112E-01  -549E-01 | 1.35E-01 112E-01 -549E-01 | -854E-07 220E-05  4.26E-04 | -854E-03 220E-01  426E+00 | 99.947%  100.035%  99.976%

Table 4.4 Accuracy verification of z direction sensitivity coefficients with respect to b,

for node Xy
A B [ c [ b E [ F [ @ H [ 1 [ K L M N 0 P
Time Step Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
(Atm) d’) Ve () are(0) | d(B'+6b;) Ve (B7+3b2) are (b™+3b2) Ad Avee Aage DSAd  DSAvee  DSAag %d % Vee % are

3,000 113E+00  112E-01  554E-03 | 1.13E+00 112E-01 5.54E-03 -4.46E-07  -227E-08  7.66E-10 | -4.46E-03 -227E-04  7.66E-06 | 100.000%  100.000%  100.005%
5,000 3.44E+00  196E-01  4.87E-03 | 3.44E+00 1.96E-01 4.87E-03 -832E-07 -269E-08  146E-08 | -8.32E-03 -269E-04  146E-04 | 100.000%  100.000%  99.998%
7,000 6.05E+00  125E-01  -6.78E-03 | 6.05E+00 1.25E-01 -6.78E-03 | -4.15E-07 274E-08  9.86E-09 | -415E-03 274E-04  9.86E-05 | 100.000%  100.001%  100.002%
9,000 719E+00  267E-02  -4.84E-03 | 7.19E+00 2.67E-02 -4.84E-03 | -154E-07 -249E-08 -231E-08 | -154E-03 -249E-04 -2.31E-04 | 100.001%  100.000%  99.985%
11,000 732E+00  104E-02  227E-03 | 7.32E+00 1.04E-02 2.27E-03 -6.59E-07 -817E-08  5.32E-08 | -6.59E-03 -8.17E-04 5.32E-04 | 100.000%  99.999%  100.002%
13,000 759E+00  2.23E-02  9.30E-03 | 7.59E+00 2.23E-02 9.30E-03 -133E-06 -216E-07 -3.89E-07 | -1.33E-02 -216E-03 -3.89E-03 | 100.000%  100.004%  100.002%
15,000 823E+00  573E-02  -4.13E-03 | 8.23E+00 5.73E-02 -413E-03 | -1.81E-06 103E-07  2.94E-07 | -181E-02 103E-03  2.94E-03 | 100.001%  99.959%  99.937%

Note that Fig. 4.8 can also be considered as a design perturbation study, which
shows how accurate the 1st-order predictions of atomic displacements are, compared to
the actual displacements at perturbed designs. As can be seen, the 1st-order predictions
are in general less accurate in predicting the responses of atoms at large design
perturbations. For example, as shown in Fig. 4.8, when a design perturbation 65, = 0.05
is applied, at some time steps, the error of 1st-order prediction can be as large as 110%

(accuracy index is about 210%). Also can be observed from Fig. 4.8 is that the accuracy
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of the 1st-order predictions starts to deteriorate when crack propagation initiates at
around t = 7,000Aty,.

To explain this deterioration of accuracy, in Fig. 4.9a we zoom in the z
displacement history curve of atom Xa, and then, in the z displacement-time-design
space, we plot the z displacements at Xa from t = 11,640At, to t = 11,680At, at several
perturbed designs up to ob, = 1. It is illustrated clearly in Fig. 4.9a how the z
displacement of atom Xa changes with both time and design, while Fig. 4.9b and 4.9c
show respectively the z displacement history at perturbed design 6b, = 0.5 and the
change of z displacement with design at t = 11,660At,.

By looking at the 3-D surface in Fig. 4.9a along the design direction, the
zoomed-in z displacement history curves of atom Xa at different perturbed designs are
plotted in Fig. 4.10a. It is apparent in Fig. 4.10a that the displacement curve is further
and further delayed in time space as the perturbation size grows, resulting in staggered
crests of individual curves. In Figs. 4.10b and 4.10c, we compare the 1st-order
predictions of z displacements (red dashed line) with the z displacements at perturbed
designs obtained through re-analysis (blue dashed line with markers) at two different
time steps. As we can see, at t = 11,668Aty,, when the slopes of individual displacement
curves in Fig. 4.10a are relatively uniform, the 1st-order predictions are generally in
agreement with the displacements from re-analysis even at large perturbations (Fig.
4.10b). However, at t = 11,653 Aty, when the slopes of the displacement curves are close
to zero, the accuracy of the 1st-order prediction deteriorates quickly as the perturbation
size increases (Fig. 4.10c). This is because in dynamic problems, analytical

performances such as atomic displacements are measured at individual time steps, and
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each analytical sensitivity coefficient only predicts the change of performance measure
at a fixed time step. For example, the sensitivity coefficient of the z displacement of
atom Xp at t = 100At, predicts how the z displacement of X, at that exact time step
changes with design. Therefore, if the performance measure history curve is delayed (or
advanced) due to a design change, then at the time steps where the curve slope changes
drastically (e.g., near the crest and trough of each microscopic oscillation), the
performance measure will exhibit highly nonlinear behavior in design space (blue curve
in Fig. 4.10c), and hence the 1st-order prediction will lose accuracy at relatively large

design perturbations.
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Therefore, it becomes clear that although the sensitivity coefficients of structure
responses are accurately calculated, the accuracy of the 1st-order predictions can be
affected by the nonlinearity of the performance measures (such as atomic
displacements) in design space. As discussed above, the severe nonlinearity observed in
Fig. 4.10c is resulted from two factors — high frequency oscillation of the performance
measure history curve and delay of the performance measure in time space due to
design change. One can readily infer that the less accurate predictions in Fig. 4.8 must
be measured near the crests or troughs of the oscillating atomic displacement history
curve. Moreover, since the initial temperature of the MD area was set to OK in our
simulation, atoms did not vibrate until microscopic waves were generated by bond
breaking due to crack propagation. Consequently, the deterioration of accuracy in Fig.

4.8 is observed only after the initiation of crack growth.
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In summary, it has been demonstrated with the nano-beam example that the
accuracy indices of the sensitivity coefficients of structural responses converge to 100%
as perturbation size approaches zero, indicating the accuracy of the proposed analytical
shape sensitivity analysis approach. In the meantime, it is observed that atomic
responses show severe nonlinearity in design space, and thus their sensitivity

coefficients can only be used to predict very small design perturbations.
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CHAPTER 5

PERFORMANCE MEASURE: CRACK PROPAGATION SPEED

5.1 Overview

The analytical sensitivity formulation derived in the previous chapter can be used to
compute sensitivity coefficients of analytical performance measures in bridging scale
problems, such as atomic and nodal displacements. In fact, most of the common
performance measures in practical structural design problems (such as stress, strain,
local temperature, etc.) are analytical, and can be expressed explicitly or implicitly in
terms of the response of the structure; as a result, the design sensitivity of those
performance measures can also be written as analytical functions of the sensitivity
coefficients of structural responses. In addition, most performance measures for
dynamic problems are usually defined either at a given time instant or as an average
over a fixed time period. For example, in a multi-scale problem, we can define the
performance measure to be the average stress from 0 sec to 5 sec at the location of a
given atom in the domain.

To study how crack propagation will be affected by shape design changes, we
must first establish the relation between crack propagation speed and the responses of
atoms. Although crack propagation speed has always been a quantity of interest in
atomistic simulations, defining a performance measure of crack speed based on atomic
responses for sensitivity analysis and structural design can be challenging. This is
because after a design change, the crack may propagate to the same location at a

different time step, which means we can no longer define the performance measure
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based on the responses of a few fixed atoms at fixed time steps. Moreover, crack
propagation speed inherently involves derivative of crack length increment with respect
to time, while the length increment cannot be written explicitly in terms of atomic
responses due to the crack tip identification procedure discusses in Section 3.5.

In this chapter, we first establish our sensitivity performance measure of crack
propagation speed based on the P parameter criterion introduced in Chapter 3. The
differentiability of the performance measure in design space will then be discussed from
both theoretical and numerical perspectives. In addition, as has been demonstrated in
Numerical Example Part 2 (Section 4.7), atomic responses in bridging scale simulations
show high nonlinearity in design space; therefore, at the end of this chapter, we will use
the same example problem to demonstrate and discuss the nonlinearity of the

performance measure of crack propagation speed.

5.2 Performance Measure of Crack Propagation Speed

In Section 3.5, we proposed to use the centro-symmetry parameter P as a criterion to
identify crack surface atoms and determine crack tip location at each time step.
However, it is also found that the crack tip location obtained in this way is
discontinuous, or more specifically, piecewise constant in time domain, as shown in Fig.
3.17. This implies that the time derivative of the crack tip location curve is meaningless,
and, as a result, the crack tip location itself cannot be considered as a physically
meaningful measure of crack propagation speed. Therefore, to quantify the speed of
crack propagation, we must take average of the crack tip locations in some ways. One
commonly used approach is to first average the crack tip locations over small time

intervals, as illustrated in Fig. 5.1, and then evaluate the crack propagation speed by
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dividing the change in averaged crack tip position (AC) by the length of the time
interval (D) [8,41,42]. For example, for the crack tip location curve depicted in Fig. 5.1,
the crack speed at tp can be calculated as

_£_CZ_C1
D D

(5.1)
where C; and C; are averaged crack tip locations of intervals [to - D, to] and [to, to +D],
respectively. In this way, a physically meaningful crack propagation speed can be
determined for each short interval. Note that other averaging techniques, such as least

square fitting, can also be employed to obtain the average slope of the discontinuous

crack tip location curve within a given time interval.

Crack Tip Location

Figure 5.1 Averaging crack tip location over time interval D

The concept described above — taking average of crack tip locations obtained
based on the P parameter criterion — can be considered as a logical approach to measure
crack propagation speed for atomistic simulations. However, before it can be accepted
as a performance measure for structural design, additional requirements need to be
taken into account.

For example, a desirable performance measure should be able to provide a clear
indication of the change in crack speed due to a design variation, i.e., whether crack

propagation is accelerated or slowed down by the design change. Apparently, when the
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average interval D is small compared to the entire simulation period, the crack speed
obtained for a small prescribed interval can be thought of as the speed of crack
propagation at the ‘instant’. If the sensitivity of crack speed is positive at some instants,
but negative at others, then it becomes difficult to conclude from a grand perspective
how we should make design changes in order to slow down crack propagation. In this
sense, it is more reasonable to take average of crack tip locations over only one large
interval to obtain one single performance measure that quantifies the speed of crack
propagation, as long as the crack tip location increases monotonically with roughly a
constant slope, i.e., the crack speed does not vary dramatically during simulation. In fact,
in most macroscopic scenarios, such as Stage Il fatigue crack propagation, the crack
speed is close to a constant. Therefore, for our numerical example, we define the
performance measure of crack speed as the average of crack tip locations over the entire
time period during crack propagation. Certainly, this idea of using only one average
interval may not be appropriate when crack speed varies significantly within different
simulation periods, in which case it might be necessary to define crack speed separately
for individual periods.

Another important criterion for an adequate performance measure is that its
sensitivity must be calculable, which, in our case, implies that the design derivative of
the performance measure of crack speed must exist. This requirement presents a key
challenge in selecting an adequate performance measure for crack propagation speed
and its subsequent sensitivity calculation. These important issues will be discussed in

the following sections.
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In addition, the sensitivity of crack speed should be able to predict the crack
propagation speed in a perturbed structure with acceptable accuracy. This means the
nonlinearity of crack speed in design space should at least not be as severe as that of
atomic responses in our bridging scale example (Section 4.7). The nonlinearity of crack
propagation speed and its dependence on the average interval D will be demonstrated

using the nano-beam problem at the end of this chapter.

5.3 Differentiability of Crack Propagation Speed

The objective of sensitivity analysis is to find the sensitivity coefficient d"V/db, which
is the derivative of the performance measure of crack propagation speed with respect to
shape design variables. Therefore, it is important to first investigate the differentiability

of crack propagation speed in design space.

5.3.1 Theoretical Discussion

Consider a simple illustrative crack propagation problem as shown in Fig. 5.2a. Assume
that at current design b°, based on the P parameter criterion, the crack tip at time T is
identified to be atom a with x coordinate x = x,, meanwhile atom b at x = x, and atom ¢
at X = X turn into crack tip atoms later at T, and T, respectively. Figure 5.2b gives the
crack tip location curve near the two crack tip jumps at T, and T3, which is theoretically
a piecewise constant function in time domain, i.e., the crack tip location remains

constant for a period of time and suddenly jumps to the next value (next atom).
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Figure 5.2 Illustrative crack propagation problem, (a) schematic structure with a
horizontal crack, and (b) crack tip location curve near the two crack tip jumps
To demonstrate the differentiability of crack propagation speed, we take the
crack tip location curve within the two average intervals D; and D, shown in Fig. 5.2b
for consideration, and, for simplicity, we assume that the lengths of D; and D, are
identical, i.e., D; = D, = D. As discussed in the previous section, the first step of

calculating crack speed is to average the crack tip locations within each average interval.

According to Eq. 5.1, it is clear that crack propagation speed "V will be differentiable in

design space as long as the averaged crack tip locations are differentiable functions of
design variables.

Therefore, we first discuss the differentiability of Cp; — the averaged crack tip
location of interval D;. Figure 5.3a shows the zoomed in crack tip location curve at
current design b® within interval Dy, where t; + t, = Dy = D. To take a closer look at the
crack tip jump at time instant T,, we schematically plot the P parameters of all atoms in
the system at T, and T, for illustration. In Fig. 5.3b, the vertical coordinate of each dot
inside the boxes represents the value of P parameter of a particular atom in the MD
domain at the corresponding instant, and the atoms whose P parameters are greater than

the critical value Pt (in other words, crack surface atoms) are highlighted in red.
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Apparently, the crack tip jump at T, is due to the change of the P parameter of atom b,

I.e., Py is lower than the critical value P at Ty, but becomes equal to Pt at T.

. Crack tip : 0, ¢
Crack tip . P ) Perturbed design b°+db;
location Current design b° . . location t 9 it
. . i 2
e By ‘ oa . <
Xb ¢ _ Poi f--2%- F--op - ’ t 1
<L *b oc Xa
Xa ®c . Time
Time : :
—_-— 0
i — 0 . ° | To A Ty0%+b; 1)
Ty T, T2 = Ty(b%
(a (b) ()

Figure 5.3 (a) Crack tip location curve at current design b°, (b) P parameters of atoms at
T, and T,, and (c) crack tip location curve at perturbed design b°+5bi_1
According to Fig. 5.3a, the averaged crack tip location for interval D; at current
design can be calculated as

X, X + X, xt
cm(b‘)):lTb2 (5.2)

Now assume a small perturbation 0b; 1 made to design variable b;, because of
which the crack tip jump delays as shown in Fig. 5.3c. If we define T; — the moment at
which the crack tip jump occurs due to Py, — as a function of shape design variables, then
the averaged crack tip location for Dy can also be written as a function of design. For

instance, at perturbed design b = b°+5bi_1 (Fig. 5.3c), we have

Cm(bo +ébi_1)= X, X (tl +T, (b° + ébi_l)—TJ (bo));Xb X (t2 -T, (b0 Jrébi_l)JrTJ (bo)) (5.3)

Note that at current design, T, (b°) = T,. Also, Eq. 5.3 is equivalent to Eq. 5.2 at b = b°
(5bi_1 = 0)
Since X, Xp, t1 and t; are all constants, the derivative of Eq. 5.3 at current design

b° with respect to design variable b; can be written as
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0Co _ i Cou (0 + o, )~ Cpy (b°)
db, oo &
[Xa X (tl +T, (b° + ﬂoi)—TJ (b“))+ X, X (t2 -T, (bo + 8c>i)+TJ (bO))] X Xt X, xt,
. o o (64
o, —0 ébi
X=X o T(0°+0)-T,(0°)

which exists only if T; is a differentiable function of b;, i.e.,

im Ta0°+ 0 )T, (6°) _ T,
2,0 o, ~db

(5.5)

Now, in order to demonstrate the differentiability of T;, we plot Py in the three

dimensional Py, -time-design space, as shown in Fig. 5.4. Note that the P parameter

surface of any atom must be a smooth surface that is at least C* continuous along both

time and design directions, because:

1.

The displacement of each atom at any given time instant can be assumed to be
differentiable with respect to shape design variables, as argued in [33].

The displacement of each atom is a second order differentiable function of time,
and therefore is at least C* continuous in time domain.

The P parameters are continuous and smooth functions of atomic displacements
(Eq. 3.46).

In addition, when plotting Fig. 5.4, we assume P, to be a monotonically

increasing function versus time, and a monotonically decreasing function versus design

within the plotted time and design domain. This assumption is solely intended for a

better illustration and does not cause any loss of generality of our discussion.
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Figure 5.4 The Py, surface in Py -time-design space. (a) Intersection between the Py
surface and the b = b° plane, (b) P, vs. time at b = b°, (c) intersection between the Py,
surface and the t = T, plane, (d) P, att = Ty vs. design, (e) intersection between the Py

surface and the Py, = Pt plane, and (f) T, vs. design
In Figs. 5.4a, 5.4c and 5.4e, the red curves are intersections between the P,

surface and three planes — the current design plane, the ¢t = 7; plane and the P, = P,

plane, respectively. Therefore, Figure 5.4b shows the P, curve in time space at the
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current design b’, while Fig. 5.4d shows the P, curve in design space at time instant 7).
The black dots in Figs. 5.4b and 5.4d denote the same point in the P, -time-design space
— it represents the P parameter of atom b at time 7 in current design b’.

Note that the red curve in Fig. 5.4f depicts the relation between the crack tip
jump instant 7 (at which P, = P,,;;) and shape design variable b;. Since the P}, surface is
smooth, the intersection of the P, surface and the P, = P, plane must be a continuous
and smooth curve in time-design space as shown in Fig. 5.4f. In other words, 7 is
continuously differentiable with respect to b;. Therefore, according to Egs. 5.4 and 5.5,
Cp; 1s also a continuously differentiable function in design space.

Note that the differentiability of Cp, can be proven in the same way. As a result,

the crack propagation speed V = (Cp; — Cp;)/D must be continuously differentiable

with respect to shape design variables. The design derivative of 'V at current design b’

is exactly the sensitivity of crack propagation speed being sought.

5.3.2 Differentiability of Crack Speed in Numerical Simulations

Although theoretically the performance measure of crack speed is a differentiable
function of design, it may not be the case in numerical simulations, where differential
equations are solved through time integration and the solution in time domain is
available only at a finite number of time instants (time steps). As illustrated in Figs. 5.5a
and 5.5b, for the same illustrative problem discussed above, if time step size Aty is used
in solving the MD equation of motion, the crack tip location curve (crack tip location vs.
time) is no longer piecewise constant, but becomes a discrete function in time domain
that has values only at individual time steps (black dots). Moreover, the moment of

crack tip jump will be determined as TJ_N(bO) and TJ_N(b°+5bi_1) respectively at current
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design b® and perturbed design b°+5bi_1. As can be seen, due to the discrete nature of
solution in time domain, TJ_N(bO) and TJ_N(b°+5bi) are inconsistent with analytical crack

tip jump instants T(b°%) and T(b*+0b; 4).
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Figure 5.5 Discrete crack tip location curve within interval D; in numerical simulation
with time step size Aty at (a) current design b°, (b) perturbed design b%+db; 1, (c)
perturbed design b°+5bi_cm, and (d) the discontinuous averaged crack tip location curve
in design space

For a better elaboration, as shown in Fig. 5.5c, we assume that at design
perturbation b; crit (0 < 0b;_crit < Obi 1), we have Ty n(b°+0bi_crir) = Ty(b*+0bi_criv), i, the
crack tip jump happens to occur exactly at the time step indicated by the red dot. One
can readily imagine that when a very small design perturbation within [0, b; crit) iS
applied, the slight delay of the crack tip jump will not be captured by the relatively
larger time step size Aty, and therefore T; n will remain unchanged after the design
perturbation. When the design perturbation increases to the critical value db;i crit, Ty N

jumps to the next time step (indicated by the green dot in Fig. 5.5b). Therefore, it is
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apparent that in numerical simulations, T, is discontinuous and hence non-
differentiable in design space.

Then we take a look at the differentiability of averaged crack tip location in
numerical simulations. According to Figs. 5.5a and 5.5b, with time step size Aty, the

averaged crack tip location for interval D, can be calculated as

Xy X 2x At +Xb><4><Atm B

Con_sem0°)="55 S

L (5.6a)

at the current design b’ (Fig. 5.5a) and

X, X 3x At X x3x At
CDl_Atm(b0+&)i_l): . D 4D D =

L, (5.6b)

at the perturbed design b0+5b,-_1 (Fig. 5.5b). Similar to T y, Cp; am Will not change at
very small design perturbations within [0, 6b; (i), while at b0+5bl-_c,‘,-, (Fig. 5.5¢), the
crack tip location at the corresponding time step (red dot) changes from x, to x,,
resulting in a jump of Cp; am. Therefore, as illustrated in Fig. 5.5d, when time step size
At,, is employed, one jump of averaged crack tip location occurs in between the current
design b’ and the perturbed design b0+5b,-_ 1. Apparently, the averaged crack tip location
curve becomes a discontinuous (piecewise constant) curve in design space.

Now we reduce the time step size to half, as shown in Fig. 5.6. In this case, T; n
is still discontinuous in design space since the time step size is still finite. On the other
hand, as the design perturbation size increases from zero to db; 1, the averaged crack tip
location jumps from

Xa><4><Atm/2+Xb><8><Atm/2_
D D

CDl_Atm/z (b )= L (5.7a)

at current design b° to
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X, XOxAt, 12 X, xTxAt, [2
CDl_Atm/z (bo +ébi_a): + 2 =L, (5.7b)
D D
C,, Atm/z(bo L b): X, x6xAt /2 X x6x At /2 _L (5.70)
- - D D
CDl_Atm/z(bO N 5bi_1)= X, X TxAt, /2 N X, x5x At /2 _L, (5.7d)

D D
at perturbations obi a, obi b, and finally db; 1, respectively. As illustrated Fig. 5.6c, this
time the averaged crack tip location jumps three times between the current design b°

and the perturbed design b°+5bi_1.
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Figure 5.6 Discrete crack tip location curve in numerical simulation with time step size
Atw/2 at (a) current design b and (b) perturbed design b°+5bi_l, and (c) the
discontinuous averaged crack tip location curve in design space

Thus it is clear that when the time domain is discretized in numerical
simulations, the averaged crack tip locations Cp; and Cp, will turn into ‘stepped’
piecewise constant curves in design space. Moreover, the steps on the curves will be
refined as we reduce the time step size. As illustrated in Fig. 5.7, as the time step size
approaches zero, the averaged crack tip location Cp; converges to the analytical solution,
which, as discussed earlier (Eq. 5.3), is a continuously differentiable function of shape

design variables.
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Figure 5.7 Reducing time step size refines averaged crack tip location (C) curve in

design space
As a result, as illustrated in Fig. 5.8, in numerical simulations, the crack
propagation speed V = (Cpz — Cp1)/D will also become a ‘stepped’ curve in design

space, which will eventually converge to a continuously differentiable function as the

time step size becomes infinitely small.

Crack speed V Crack speed V Crack speed V

2

i)o }I;)U l::)o

— ' Design = Design Design

Figure 5.8 Refining the stepped crack speed curve in design space by reducing time step
size

In summary, the performance measure that we defined for crack propagation

speed is theoretically a differentiable function of shape design variables, but

numerically a stepped curve in design space. The calculation of the sensitivity of crack

speed will be discussed in the next chapter.
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5.4 Numerical Example: Part 3

This section is aimed at investigating the nonlinearity of crack propagation speed in
design space using the nano-beam example. More specifically, we are interested in
finding the correlation between the average interval size D and the nonlinearity of crack
speed.

In Fig. 5.9, we compare the nonlinearity of crack speeds calculated based on
different average interval sizes ranging from 200At, to 3,200At,. For example, the
subgraph at the top of Fig. 5.9a depicts the crack speed history curve obtained by
averaging crack tip locations using an average interval D = 200Aty,. The two subgraphs
in the first row of Figs. 5.9b and 5.9c reveal how the crack speeds calculated at two
selected instants (8,000At, and 13,600Aty, circled out) change with shape design
variable by, respectively, where the data points are obtained by reruning the simulation
at several design perturbations (b, = 0.01, 0.02, 0.05, 0.1, 0,2, 0.5, 1). Note that on some
of the crack speed vs. design curves (such as the third subgraph in Fig. 5.9b), slight
oscillations are observed at small perturbations, which is a numerical issue — the time
step size used in our simulation is not small enough to capture the changes of crack tip
jumps when the design perturbation is too small. In addition, it can be seen that the last
data point of each crack speed history curve (red curves in Fig. 5.9a) is not available.
This is because the calculation of the crack speed at t = t; requires crack tip location
data within the interval [t, — D, t; + D]. Thus, for example, the crack propagation speed
at t = 12,800Aty in the subgraph at the bottom of Fig. 5.9a cannot be computed unless
we include the data within [15,000Aty,, 16,000At,], which exceeds the duration of our

simulation.
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Figure 5.9 Nonlinearity of crack propagation speeds calculated with different average

interval sizes. (a) Crack speed vs. time, (b) crack speed at the first chosen time step vs.

design space is in general less severe than that of atomic responses (compared to Fig.
4.10c, for example). More importantly, it is found that the nonlinearity of crack speed

can be further reduced by increasing the size of the average interval D. In fact, when a

performance measure (crak speed) exibits an almost linear behavior in design space

design perturbation, and (c) crack speed at the second chosen time step vs. design

As can be seen from Figs. 5.9b and 5.9c, the nonlinearity of crack speed in
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large average interval (such as 1,600At, or 3,200At,) is used, the calculated



regardless of the high nonlinearity of atomic responses, which is desirable. This is
mainly because that at small perturbations in the vicinity of the current design, the delay
(or advance) of atomic displacements due to a shape design change is approximately
proportional to the size of the design perturebation; therefore, the delay of P parameters
and hence the delay of the crack tip location curve is also proportional to design
perturebation, which eventually leads to the linear-like behavior of crack speed in
design space.

Based on the observations above, for the nano-beam example, we will define the
performance measure of crack propagation speed by taking average of all crack tip
locations between t = 9,000At, and t = 15,000At, (where crack grows with a roughly
constant rate), as shown in Fig. 5.10. Since only one interval is considered, we use least
square fitting to identify a straight line whose slope can be taken as the crack

propagation speed. At current design, the crack speed is calculated to be 1.466.
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Figure 5.10 Performance measure defined for numerical example. A straight line (red
dashed line) is fitted to the crack speed locations within 9,000At,, ~ 15,000At,
Note that this performance measure will be used in the next chapter to carry out
sensitivity analysis of crack propagation speed for the nano-beam example. Due to the
fact that the nonlinearity of crack speed in design space is much less severe than that of

atomic responses, the 1st-order prediction of crack speed is expected to be accurate for
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much larger design perturbations than that of atomic responses, as long as the sensitivity

of crack speed can be computed accurately.
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CHAPTER 6

HYBRID SENSITIVITY ANALYSIS METHOD

FOR CRACK PROPAGATION PROBLEMS

Nomenclature

Vr

<

<

VT

= theoretical crack propagation speed. It is a function of deign variables

(explicit expression unavailable), and is differentiable in design space.
crack propagation speed calculated in numerical simulation. It is
piecewise constant (stepped) in design space. The value of "V with

different values of the design variable can be obtained by re-running the

simulation (re-analysis) for different perturbed designs.

predicted crack speed. It is a prediction of "V calculated based on

analytical sensitivity results. The value of "V with different values of the
design variable can be obtained efficiently using analytical sensitivity

coefficients (without the necessity of re-analysis).

1st-order prediction of crack propagation speed. It is obtained using the
crack speed sensitivity calculated through hybrid method.

‘slope’ of theoretical crack propagation speed Vi. As a function of

design perturbation size 0b;, it represents the slope of the straight line in

design space that connects two points — Vi at current design b° and at

perturbed design b° + Ab.
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dVi/do; =

d"Vidb; =

[0, Abi_reg] =

[0, Abi_noise] =

Sy, (Ab) =[V; (6° + Ab) ~ V; (0%) )/ ab,

‘slope’ of crack propagation speed V. It is similar to S_-, but calculated

%k
using crack propagation speed V.

S, (Ab) =V (b° + Ab,) — V(b°)]/ Ab,

‘slope’ of predicted crack speed V. It is similar to S,, but calculated

using predicted crack speed 'V at b° + Ab; instead of V(b° + Aby).
S.(Ab) = Vo° + ab) — V(*)]r ab,
theoretical sensitivity of crack propagation speed with respect to design

variable b;.

sensitivity of crack propagation speed with respect to design variable b;
calculated numerically using hybrid method. It is obtained by performing
regression analysis based on the ‘slope’ of predicted crack speed Sf/
(since calculating S, is computationally prohibitive).

the design perturbation range for regression analysis in hybrid method

the design perturbation range of numerical noise on the Sﬁ curve

6.1 Overview

As has been demonstrated in the previous chapter, the performance measure that we

defined for crack propagation speed is theoretically a continuously differentiable

function in design space. In this chapter, we denote this theoretical crack propagation

speed as Vi. However, due to the discrete nature of MD simulation and the way we
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identify the location of the crack tip, the formulation of crack speed Vi cannot be

expressed in design in any form, explicitly or implicitly. More importantly, in numerical

simulation, since it is impossible to use an infinitely small time step size, the

numerically obtained crack speed "V will not be differentiable in design space, and

hence the design derivative of crack speed cannot be evaluated directly.

To avoid the non-differentiability issue, in this section, we investigate the
feasibility of hybrid sensitivity analysis method in calculating the sensitivity of crack
speed based on the discontinuous crack speed curve in design space. In Section 6.2, we
first look into the ‘standard’ hybrid method that directly combines analytical sensitivity
analysis and finite difference. After identifying the fundamental drawback of the
standard hybrid method, in Section 6.3 we propose an enhanced hybrid method that
employs regression analysis to evaluate crack speed sensitivity. In Section 6.4, the
accuracy of the hybrid method with regression analysis is verified using the nano-beam

example, and its applicability to design will be demonstrated through a what-if study.

6.2 Initial Concept — Standard Hybrid Method

The key idea of the standard hybrid method is to take advantage of both analytical
sensitivity analysis and finite difference method as proposed in [49]. First, for each time
step, the sensitivity coefficients of the P parameters with respect to the ith shape design
variable bj can be calculated as

dP _oP dq 6.1)
do, &g db, '

where P is a vector that contains the P parameter information of all atoms at all time

steps, and dg/db; represents the sensitivity coefficients of atomic displacements
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obtained by solving the analytical sensitivity equations. Note that 0P/0q can be
evaluated directly since P parameters are continuous functions of atomic displacements
g (Eq. 3.46).

Next, the increment of P due to a small prescribed design perturbation Ab; can
be calculated using the P parameter sensitivity coefficient; that is

ap =9 Ap 6.2)
db,

The P parameters at perturbed design b° + Ab; can then be approximated by
P(b® +Ab) = P(b°) + AP (6.3)
Using the P parameter criterion, the position of the crack tip at each time step
for the perturbed structure b® + Ab; can be predicted based on the predictions of the P

parameters I5(b0 + Ab;) of associated atoms near the crack tip. Then, the prediction of

crack speed at the perturbed design f/(b0 +Ab,) can be evaluated by averaging the

predicted crack tip locations. Finally, the theoretical sensitivity of crack propagation

speed with respect to design variable b; can be approximated as

dV, V(b +ab)- V(b
db. Ab,

(6.4)

The procedure above is illustrated in the flowchart shown in Fig. 6.1. As can be
seen, the standard hybrid sensitivity analysis method is a combination of analytical
sensitivity analysis and finite difference method, while finite difference is only required

for computing the sensitivity of crack propagation speed.
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Compute the sensitivity of P parameters (dP/db;) using analytical sensitivity results

v

Compute predicted P parameters P(b" +Ab,) for perturbed structure b° + Ab,

J

Predict crack tip location at each time step using IN’(b0 +Ab)

J

Compute predicted crack speed W’}(b0 + Ab,) based on predicted

crack tip locations

\’

Calculate sensitivity of crack speed:

dV, V' +ab)- V)
b, Ab

Figure 6.1 Flowchart of standard hybrid method

The scheme of the standard hybrid method is further elaborated in Fig. 6.2. In

Fig. 6.2a, the solid curve depicts schematically how the numerically obtained crack

speed "V changes with design variable b;, while the slope of the blue dash-dotted line,

assuming exists, represents the sensitivity of crack speed at the current design b°. If we

zoom in near the current design, as discussed in the previous chapter, we should see that
the "V curve is piecewise constant (stepped) in design space, as shown in Fig. 6.2b
(black solid curve). It is worth mentioning that this black solid curve (crack speed "V vs.

design) can only be obtained by rerunning the bridging scale simulation for numerous
times at different perturbed designs. In standard hybrid method, to evaluate the
sensitivity of crack speed, we first predict the crack propagation speed at a perturbed
design (W~/(b°+Abi), point A on green dashed curve in Fig 6.2b) using analytical

sensitivity results, and then calculate the approximation of crack speed sensitivity (red

dash-dotted line in Fig. 6.2b) using finite difference (Eq. 6.4).
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Crack speed

Crack speed V V(b +Ab)
% Crack speed 'V obtained Z
x through re-analysis -
Loz
L= A \

e V(b° - - >
s ®9 - f V(b° +Ab,)

’ . 1 . : -
\ _r__i:j Crack speed V' predicted
— S using analytical

- Design sensitivity result Design

b? b b%+Ab;

@) (b)
Figure 6.2 Illustration of standard hybrid method. (a) Crack speed curve in design space,
and (b) zoomed-in view with predicted crack speed displayed

The major drawback of this initial concept, or the standard hybrid method, is
that the crack speed sensitivity obtained using Eq. 6.4 is strongly dependent on the
prescribed design perturbation size Ab;. Due to the inherent limitation of the finite
difference method (discussed in Chapter 2), Ab; is difficult to determine when the
behavior of crack speed in design space is unknown.

One can argue that a convergence study for Eq. 6.4 can be carried out by
continuously reducing Ab; near the current design (Ab; = 0) to find out an accurate crack

speed sensitivity. To explain the feasibility of this idea, in Fig. 6.3a, we first plot
schematically the theoretical crack speed curve — denoted by Vi — in design space
(upper plot), which is continuously differentiable with respect to design variables. The
lower plot in Fig. 6.3a depicts the ‘slope’ of theoretical crack speed; that is

Vi (b° +Ab) -V, (b°)
Ab

S, (Ab) = (6.5)

which does not indicate the actual local gradient of V; at b°, but is a function of design
perturbation Ab; that represents the slope of the straight line in design space that
connects two points — Vi at current design b® and at perturbed design b® + Ab; (as
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shown in the upper plot of Fig. 6.3a). As can be seen, S ; converges to the analytical
slope of the theoretical crack speed curve at current design b° as the perturbation size
Ab; approaches zero, and this analytical slope is the theoretical crack speed sensitivity

dVy/db;. However, in numerical simulations, the crack speed "V is a stepped curve in

design space, and so is the crack speed f/ predicted using analytical sensitivity result,
as shown in the upper plot of Fig. 6.3b. Thus, as we reduce perturbation size Ab;, the
‘slope’

V(b® + Ab) - V(b°)
Ab,

S (Ab) = (6.6)

(equivalent to Eq. 6.4, except that Ab; is varying) obtained based on the stepped W7
curve oscillates in design space (lower plot of Fig. 6.3b), and will not converge to a

constant value. In fact, as shown in the lower plot of Fig. 6.3b, Sf/ reduces to zero at

very small perturbations near the current design.
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Theoretical crack
speed Vi

Differentiable

Curve

Predicted
crack speed V

Stepped
Curve

i Design ; i Design
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@

Current design

Abi=0

(b)

Figure 6.3 Comparison between smooth and stepped crack speed curves in design space,

(a) theoretically differentiable V; curve whose ‘slope’ converges to a constant value
(theoretical sensitivity d Vs/db;), and (b) stepped V' curve whose ‘slope’ is
discontinuous and does not converge

Therefore, it is clear that in our case, the sensitivity of crack propagation speed
cannot be evaluated numerically by carrying out convergence study for the ‘slope’ of

predicted crack speed (SV~ ). Hence, an alternative approach is required to approximate

the sensitivity of crack propagation speed based on the discontinuous and oscillating

S -

5 curve in design space.

6.3 Hybrid Method with Regression Analysis
Due to the difficulty of determining perturbation size Ab; in standard hybrid method and

the infeasibility of convergence study based on SV~, we propose an enhanced hybrid

method that employs polynomial regression analysis to approximate crack speed
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sensitivity using the discontinuous S; curve. As illustrated in Fig. 6.4, the basic idea is
to select a small perturbation range [0, Ab; reg] Near the current design b°, and fit the S5

(green curve in Fig, 6.4b) within the chosen range with a polynomial curve, while the
slope of the polynomial curve at the current design (Ab; = 0) is set to zero as illustrated

in Fig. 6.4b in order to capture the convergence behavior of S . Then the vertical

intercept of the polynomial curve can be considered as a reasonable approximation of

the sensitivity of crack speed, denoted as d V/db; in Fig. 6.4b. Note that the S, curve in
Fig. 6.4b is defined in a way similar to Eq. 6.5, but with V7 replaced by V. Detailed

algorithm and procedure of the regression analysis will be introduced later in this
chapter using the nano-beam example. The remainder of the current section discusses
technical essentials associated with the proposed hybrid method with regression
analysis.

Crack speed Crack speed

V (stepped curve)
7/

V (stepped curve)

A'v,—'_r'_'_’_'_uzi(stepped curve) : .
T i Design

(5b|7reg

b? b’ b"+0b1 g
(a)
‘Slope” of S, (discontinuous)y T ‘Slope’ of )
crack speed ,’ __________ crack speed Polynomial
7 S+ (discontinuous) curve
e G
27
_____________ $; (discontinuous) dVidb; el
Design Design
"""""""""""""""""""""""""""""""""" _Fjg_r_t_g_r»t_)_qt_[t_)_r_]“_»__m"“m“w S 5 (discontinuous) Perturbation
0 Ab; reg 0 Abj reg
(b)

Figure 6.4 Illustration of hybrid method with regression analysis. (a) Crack speed

curves, and (b) crack speed ‘slope’ curves
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To start, it is important to reiterate that, theoretically, crack propagation speed is
differentiable with respect to design variables as demonstrated in Chapter 5, and thus

the sensitivity of crack speed exists from theoretical perspective (the ‘theoretical
sensitivity d"V¢/dby’ in the lower plot of Fig. 6.3a.). In numerical simulations, the
differentiable crack speed curve Vi in design space is unattainable, and hence the
continuous crack speed ‘slope’ curve S ; does not exist. Therefore, the sensitivity of
crack speed has to be evaluated numerically based on the discontinuous crack speed
‘slope’ curve S, However, calculating either the Vor S, curve (black dashed curves in

Fig. 6.4) through re-analysis is computationally prohibitive. As a result, we propose to

perform regression analysis for the SV curve instead of S| to obtain the approximated

sensitivity d V/db;, as described at the beginning of this section.

Apparently, compared to the standard hybrid method, the proposed hybrid

method with regression analysis requires a large quantity of SV- data within [0, ADj reg].

As discussed in the previous section, the predicted crack speed f/ is obtained based on
analytical sensitivity coefficients of atomic responses; therefore, the computation of all
S5 data needed for regression analysis (green curve within [0, Ab; 1] in Fig. 6.4b) is
very fast compared to rerunning the bridging scale simulation for overall finite
difference (actual CPU time will be given in numerical example).

Moreover, it is clear that the crack speed sensitivity d V/db; calculated using the
hybrid method is dependent on the range [0, Ab; reg] chosen for regression analysis. In

numerical simulation, at very small design perturbations, the S{/ curve will be
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contaminated by numerical noise caused by the discretization of the time domain (will
be demonstrated in our numerical example); therefore, we need to choose [0, Abj ] tO
be larger than the noise range [0, Ab; noise] t0 €nsure incorporating adequate useful data
for curve fitting. More specifically, in our implementation, we first calculate the S5
data starting from Ab; = 0 with a certain interval in design domain until the end of the
noise range can be identified through visual inspection, after which we continue
computing S{/ with increasing Abj, until the total range of the calculated S5 data is
several times larger than the noise range [0, Abj noise]. The perturbation range for
regression analysis can then be chosen as ADj g = Nr X ADj noise, Where Ng is a

prescribed multiple. As will be shown in our numerical example, the perturbation range

chosen in this manner is able to yield accurate sensitivity of crack propagation speed.

Furthermore, the accuracy of the crack speed sensitivity dVidb; is also
associated with the accuracy of the ‘slope’ of predicted crack speed S5 (i.e., whether
the green curves in Fig. 6.4b match the black ones) within the chosen range [0, ADj reg].
Apparently, although SV is not expected to always match S, (obtained from re-

analysis), it should be accurate (i.e., close enough to S ) within a small perturbation

range near the current design. This is because SV~ is computed using V', while V is

predicted based on the 1st-order predictions of atomic displacements, which have been
shown in Section 4.7 to be accurate in the vicinity of the current design. In fact, as will
be demonstrated and discussed later in this chapter, the ‘slope’ of predicted crack speed

SV~ will remain highly accurate for much larger design perturbations than the 1st-order
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predictions of atomic responses, and this highly accurate range can be large enough to

support regression analysis. On the other hand, even when S5 is less accurate at

relatively large perturbations within [0, Abj re], the crack speed sensitivity can still be
accurately approximated using the proposed hybrid method, as long as the polynomial

curve captures the convergence of the S, curve based on the accurate S5 data near the

current design, as illustrated in Fig. 6.5.

‘Slope’ of
S, (discontinuous -
crack speed v ( ) Polynomial
P curve
\ e
Numerical -
-
nois ,*’
-
_-‘-4‘("‘ \
S (discontinuous)
Sy is accurate S 7 is less accurate i
Design
0 Aby; reg i
A Perturbation

Figure 6.5 Choosing design perturbation range for regression analysis

Now we summarize the complete procedure of the hybrid method with
regression analysis as follows:

1. Using analytical sensitivity coefficients of atomic displacements, compute the
analytical sensitivity coefficients of P parameters.

2. Compute the 1st-order predictions of P parameters for a perturbed design at b°+
Ab;.

3. Predict the crack propagation speed V for the perturbed design based on the P
parameter criterion.

4. Calculate the ‘slope’ of predicted crack propagation speed Sf/ using Eq. 6.6.

5. Repeat steps 2 to 4 for increasing Ab; from Ab; = 0.

6. Visually determine the noise range [0, Ab; noise], and then define the perturbation
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range for regression analysis [0, ADj reg] as a multiple of [0, AD; noise], i.€., ADj reg
= Ng % Abi_noise-
7. Approximate the sensitivity of crack speed though regression analysis based on

the S,{/ curve Wlthll’l [O, Abi_noise].

Note that the analytical shape sensitivity analysis approach developed in Chapter
4 can be used to compute sensitivity coefficients of analytical performance measures,
such as structural responses, while the hybrid method proposed in the current chapter is
intended for calculating the sensitivity of crack propagation speed. Once the sensitivity
of crack speed is obtained, it can be used to predict the crack propagation speed at large
design perturbations during design process. The applicability of the hybrid method with
regression analysis will be demonstrated in the following section using the nano-beam
example.

It is also worth mentioning that in Step 2 of the hybrid method, the calculation
of the 1st-order predictions of P parameters requires the sensitivity coefficients of the
displacements of a considerable amount of atoms near the crack surfaces. Since crack
speed cannot be expressed explicitly in terms of atomic displacements, the
displacements of individual atoms near the crack should be treated as separate
performance measures. As a result, the number of performance measures need to be
considered in analytical shape sensitivity analysis is much greater than the number of
shape design variables, which further justifies our use of the direct differentiation
method in deriving the analytical sensitivity expressions in Chapter 4.

Finally, it needs to be pointed out that in this chapter, the notation ‘A’ before

design variable (for example Ab;) is used to represent design perturbations related to
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finite difference or the hybrid method, while the notation ‘6’ denotes design

perturbations associated with 1st-order predictions.

6.4 Numerical Example: Part 4

Based on the performance measure of crack speed defined in Chapter 5, in this section
we use the nano-beam example to demonstrate the feasibility and accuracy of the
proposed hybrid sensitivity analysis method. The calculation of crack speed sensitivity
through regression analysis will be illustrated with details. The justification of the
hybrid method will be discussed, and the accuracy of the ‘slope’ of predicted crack
speed will be evaluated and compared to that of atomic responses. The accuracy of the
crack speed sensitivity calculated using hybrid method will be verified by comparing
the 1st-order predictions of crack speed with re-analysis results. Finally, a what-if study
will be carried out to demonstrate the applicability of the proposed hybrid method to

design.

6.4.1 Crack Speed Sensitivity Calculation Using Hybrid Method
In this section, we use the proposed hybrid method that incorporates polynomial
regression curve fitting to approximate the sensitivity of crack propagation speed for the

nano-beam example. First, we plot the S curves with respect to all three design

variables individually, as shown in Figs. 6.6a, 6.6b and 6.6¢. Note that each curve in Fig.
6.6 is plotted with a 0.0002 interval, i.e., for example, the curve for b, is comprised of
1250 data points. Figure 6.6b is also zoomed in at [0.145, 0.155], which shows clearly

that the Sy~ curve is discontinues in design space.
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Figure 6.6 ‘Slope’ of predicted crack speed for (a) shape design variable by, (b) shape
design variable by, and (c) shape design variable bs. The curve for b, is zoomed in at
[0.145, 0.155]

As can be seen from Fig. 6.6, numerical noise due to time discretization exists at
small perturbations on each curve. Note that the noise range for each curve can be easily
identified through visual inspection. For this example, we determine the design
perturbation range for regression analysis to be five times larger than the noise range,
i.e., Ng = 5. One can argue that there seems to be no distinct noise/non-noise boundary

on each curve; however, a precise determination of Ab; .. is not necessary, since the
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convergence of the S curves can be captured by the fitting curve as long as enough

‘non-noise’ data are included in [0, Ab; ,eg].

Once the S, curves are obtained, regression analysis can be performed for

individual design variables following in the procedure below, with more detailed
algorithm and steps documented in Appendix H.

1. Using the method of least-squares, fit a polynomial curve to the SV~ data within

the chosen range, while setting the slope of the fitting curve at Ab; = 0 to zero in
order to capture the convergence behavior. It is found empirically that a fourth
order polynomial curve will generally be adequate in fitting the data within [0,
AD; reg].

2. Calculate the square of error for each data point using the fitting curve as a
reference, and then remove the data points with large error exceeding a
deviation threshold. This is to minimize the impact of the noisy data near the
current design.

3. Repeat Steps 2 and 3 for the remaining data, until the difference between the
vertical intercepts of the fitting curves in the current and the previous iteration is
smaller than 1%.

4. The vertical intercept of the current fitting curve can be considered as a
reasonable approximation of the sensitivity of crack propagation speed.

The curve fitting results for the three design variables are shown in Fig. 6.7. In
each plot, the red curve represents the polynomial estimated in the last iteration. Note
that most of the noise (blue dots) has been successfully eliminated from the original

data, and the fitting curves accurately capture the trend of convergence of the SV~
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curves. It turns out that the sensitivity of crack speed can be determined after two to
four curve fitting iterations for the three shape design variables in our example. Note

that the curve fitting results can always be visually verified.
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Figure 6.7 Regression analysis results for (a) shape design variable by, (b) shape design

variable by, and (c) shape design variable b3

The sensitivity coefficients of crack propagation speed obtained for individual

design variables are listed in Table 6.1, where the signs of the sensitivity values provide
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a clear indication that within the simulation period 9,000At, ~ 15,000Aty, crack

propagation will slow down due to an increment of either b, or bs, or a decrement of b;.

Table 6.1 Sensitivity coefficients of crack propagation speed

Design variable b, b, bs
Crack speed sensitivity 9.7097E-04 -4.3939E-02 -2.6893E-02

It is noteworthy that during regression analysis, the ‘slope’ of predicted crack

speed Sf/ needs to be calculated at thousands of perturbations within [0, Ab; ;).

However, since the P parameters are predicted with existing analytical sensitivity results

of structural responses, the Sf/ data can be computed very fast. For example, the

calculation of the 1,250 data points plotted in Fig. 6.6 for b, only takes about 9 minutes

(CPU time with the DELL workstation). Hence, the computation time for the S v data

for all three design variables is merely a fraction of the time needed for rerunning the
bridging scale simulation for even one perturbed design (about 24 hours). Moreover, the
computation for regression analysis can be further reduced by using larger intervals

when plotting the Sf/ curves. Therefore, the proposed hybrid method is much more

efficient than the overall finite difference method, in which the regression analysis for

S, requires rerunning simulation for a large set of perturbed designs.

6.4.2 Discussions and Justifications
The sensitivity coefficients of crack propagation speed calculated above can be used to
predict the crack speed at larger perturbations during design. The desired scenario is

that the 1st-order prediction of crack propagation speed
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V(b° + &b,) :V(b°)+%-ébi (6.7)

i
can be accurate compared to the crack speed "V obtained from re-analysis at perturbed

designs. In general, from design perspective, if the accuracy (accuracy index, Eq. 4.27)

of the 1st-order prediction V ata given design perturbation oJb; is between 85% and

115%, then the prediction at Jb; is considered to be acceptable. We hope that the

‘accurate range’ for % (the design perturbation range in which the accuracy of Vs
within 85% ~ 115%) to be as large as possible, so that large step sizes can be used

during the design process.

Certainly, the accuracy of the 1st-order prediction V ois dependent on the
nonlinearity of crack propagation speed in design space. In general, when a
performance measure is highly nonlinear, its 1st-order prediction can deteriorate
quickly as design perturbation size increases. However, it has been shown at the end of
Chapter 5 that since crack propagation speed is defined by averaging crack tip locations

over a large time interval, the nonlinearity of crack speed is much less severe than that

of atomic responses. Therefore, the 1st-order prediction "V is expected to remain
highly accurate for a much larger design perturbation range compared to the 1st-order
predictions of atomic responses, as long as the sensitivity of crack propagation speed is
calculated accurately.

Now we discuss whether the hybrid method with regression analysis is a
desirable approach that produces accurate sensitivity of crack propagation speed. As can
be seen from Fig. 6.7, the polynomial curves obtained through regression analysis are

capable of accurately capturing the behavior of the SV- curves near the current design.
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Each fitting curve converges quickly within a few iterations. In the meantime, the noisy
data are eliminated during regression analysis and thus have only minimum impact on
the result of curve fitting. Therefore, this concept of improving standard hybrid method
by incorporating regression analysis turns out to be an adequate and efficient way of
computing crack speed sensitivity.

The only concern left regarding the hybrid method is the accuracy of the S5

data, i.e., whether the green curves illustrated in Fig. 6.4b are close to the blank ones.

Apparently, since the regression analysis performed in Section 6.4.1 is based on S5
rather than S.,, the hybrid method cannot be justified unless SV- is accurate compared
to S, . For example, if the SV curve in Fig. 6.6a is accurate only within [0, 0.05]

(smaller than the noise range), then the sensitivity calculated using hybrid method will

be useless since the regression analysis is performed completely on inaccurate S; data.
Therefore, in order to yield accurate crack speed sensitivity, the S5 data for each

design variable must maintain reasonable accuracy (for example, 85% ~ 115%

compared to S.,) at least for a range of design perturbation that is a few times larger

than the noise range [0, ADj noise]-

To justify the hybrid method with regression analysis, the remainder of this

section discusses in detail the accuracy of Sﬁ, with support of numerical evidences

from the nano-beam example.
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6.4.2.1 Accuracy of ‘Slope’ of Predicted Crack Speed

As introduced in Section 6.2 and also illustrated in Fig. 6.8, the ‘slope’ of predicted
crack speed Sﬁ is calculated using predicted crack speed f/ while 'V is evaluated

based on the predicted crack tip locations. The predicted crack tip locations are
computed using the 1st-order predictions of P parameters (P in Eqg. 6.3), which are
calculated based on the sensitivity coefficients of atomic responses obtained in
analytical sensitivity analysis. Since it has been shown in Section 4.7 that the 1st-order
predictions of atomic responses can generally remain accurate for only very small
design perturbations due to nonlinearity in design space, it becomes important to

investigate whether the ‘slope’ of predicted crack speed S, is able to remain highly

accurate for an adequately large design perturbation range to support regression analysis.

Analytical Predicted ‘Slope”’ of
Py 1st-order ; p
Sil;_SIFIVIty predictions Predlct_ed crack predicted
coefficients of of P crack tip speed crack speed
atomic location ! -
responses parameters Y S v
A A
e N
1st-order prediction is Must maintain high accuracy at least for a design
accurate only for very perturbation range that is a few times larger than
small perturbations the noise range to justify the hybrid method

Figure 6.8 Flowchart of the calculation of S

In this section, we sort out the relations among the following: the accuracy of
1st-order predictions of atomic responses, the accuracy of 1st-order predictions of P
parameters, the accuracy of predicted crack tip locations, the accuracy of predicted
crack speed, and the accuracy of the ‘slope’ of predicted crack speed, through five steps
as illustrated in Fig. 6.9. The discussion will be supported by numerical results from the

nano-beam example.
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responses P parameters locations crack speed
Step 4

Figure 6.9 Flowchart of the discussion regarding different ‘accuracies’ involved in
hybrid method

Step 1: Atomic Response vs. P Parameter
Provided that the sensitivity coefficients for atomic responses are calculated accurately
through analytical shape sensitivity analysis, the accuracy of their 1st-order predictions
then depends only on the nonlinearity of atomic responses in design space. According to
Eq. 3.46, the P parameters are calculated analytically from atomic responses. More
specifically, the P parameter of each atom is a continuous function of the displacements
of itself and all 12 nearest neighbors (assuming an FCC lattice). Therefore, it is
reasonable to expect that the accuracy of the 1st-order predictions of P parameters
should be at the same level as that of the 1st-order predictions of atomic responses.

Now we use the nano-beam example to demonstrate the accuracy of the Ist-
order predictions of P parameters. In Table 6.2, we list the sensitivity results of the P
parameter of atom Xa (Fig. 4.7) with respect to three shape design variables at various
time steps. Apparently, as with atomic responses, the sensitivity coefficients of P
parameters are calculated accurately, since the Ist-order predictions are of excellent

accuracy (Columns L ~ N in Table 6.2) at small design perturbation 0.0001.
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Table 6.2 Accuracy verification of P parameter sensitivity coefficients for atom Xa.

Design perturbation used for calculating the accuracy index is 0.0001

A B c | o | E F | o | H [ ] K L [ M [ wN
Time Step | Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
(Atm) P(°) P(P+8h;)  P(*+5by)  P(’+3bs) [ AP (by) AP (b3) AP (bs) |DSAP(b;) DSAP(b;) DSAP(bs)| %P (b)) %P(b) %P (bs)
3,000 3.09E-09 309E-09 309E-09 309E-09 | -6.92E-16 -457E-15 -507E-15 | -692E-12 -457E-11  -507E-11 | 100.020%  100.006%  100.002%
5,000 2.78E-07 278607 278E-07 27807 | 593E-14  527E-13  -128E-13 | 593E-10 527E-09 -128E-09 | 99.998%  100.001%  99.997%
7,000 9.11E-07 91107  911E-07  9.11E-07 | 7.34E-14 537613 -590E-13 | 7.34E-10 -537E-09 -590E-09 | 100.033%  99.996%  99.999%
9,000 1.25E-04 125E-04  125E-04 125E-04 | 123E-09 -347E-09 -851E-09 | 123E-05 -347E-05 -851E-05 | 100.001%  99.996%  99.994%
11,000 5.71E-03 571E-03  571E-03 571E-03 | 320E-07 -871E-07 -215E-06 | 320E-03 -871E-03 -215E-02 | 100.003%  99.993%  99.981%
13,000 4.99E-04 499E-04  499E-04  499E-04 | 7.77E09  141E-07  -7.68E-09 | 7.77E-05  141E-03 -7.74E-05 | 99.984%  99.954%  100.794%
15,000 145E-04 145E-04  145E-04 144E-04 | 161E-08  145E-08 -9.25E-08 | 161E-04 144E-04 -926E-04 | 99.989%  99.811%  100.081%

In the meantime, it is also found in the nano-beam example that the nonlinearity
of P parameters in design space is in general comparable to that of atomic responses,
which is expected. For example, in Fig. 6.10 the P parameter of atom X, at ¢t =
11,653A¢,, is plotted in design space (versus design perturbation db,). Note that severe
nonlinearity is observed, similar to the nonlinearity of the displacement of the same
atom at the same time step (Fig. 4.10c). This implies that the 1st-order predictions of P

parameters can remain accurate only for very small design perturbations as with atomic

responses.
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Figure 6.10 Nonlinearity of P parameter of atom Xa at t = 11,653 Aty in design space

Step 2: P Parameter vs. Predicted Crack Tip Location
To explain the relation between the accuracy of the 1st-order predictions of P
parameters and that of the predicted crack tip locations, in Fig. 6.11 we plot

schematically the P parameters at time T, for perturbed design b° + Ab; (obtained from
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re-analysis), where the 1st-order predictions of the P parameters at the same instant are
represented by the hollow dots. As can be seen from Fig. 6.11a, even if the predicted P
parameters are not 100% consistent with those obtained from re-analysis, as long as all
hollow dots are on the same side of the red line (Pcit) as the corresponding solid ones,
the crack tip location at this time step can still be predicted exactly (100% accuracy).
On the other hand, if, for example, the P parameter of atom a at T; is extremely close to
or right on the red line (Fig. 6.11b), then even a P parameter prediction of high accuracy
(such as 99.99%) may still result in an inaccurate prediction of crack tip location for
that time step. This implies an uncertainty imposed on the relation between the accuracy
of the 1st-order predictions of P parameters and that of the predictions of crack tip
locations; that is:
1. At each time step, even a highly accurate 1st-order prediction of P parameters
cannot guarantee the accurate prediction of crack tip location.
2. It is also possible that P parameter predictions with low accuracy can result in
exact predictions of crack tip locations for some time steps, especially in
between two adjacent crack tip jumps when the P parameters of all atoms are

relatively away from the critical value.

P . P
o Predicted: < . Predicted: < O
®. :

o a
-------- ) i iy )
@] Re-analysis: ® ® o Re-analysis: ® @
O O
@ o
A D T

(@) (b)

Figure 6.11 Accuracy of crack tip location prediction when the P parameter of atom a is

(a) away from the critical value and (b) close to the critical value
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Step 3: Predicted Crack Tip Location vs. Predicted Crack Speed

As can be easily conceived, when the performance measure of crack speed is defined as
an average of crack tip locations over a long time interval that consists a great number
of time steps, the impact of inaccurate predictions of crack tip locations caused by either
the uncertainty discussed above or the nonlinearity of atomic responses will be
minimized.

Taking the nano-beam as an example, we show in Fig. 6.12 the difference
between the crack tip location curves for perturbed design Ab, = 0.1 obtained from re-
analysis and through prediction using analytical sensitivity results. Note that Ab, = 0.1
can be considered as a relatively large design perturbation for atomic responses due to
nonlinearity (discusses in Section 4.7). The point at each time step in Fig. 6.12 is

calculated as

Diff . (t) = C (t) — C™ (t) (6.8)
where C™(t) is the crack tip location at time t (a multiple of time step size Aty)
calculated by re-running simulation for perturbed design Ab, = 0.1, while ébz(t)

represents the crack tip location at t predicted using the predicted P parameters in Eq.

6.3, which are computed based on analytical sensitivity results.

Rike]

| | | | |
9,000 10,000 11,000 12,000 13,000 14 000 15,000
Time (Aty)

Figure 6.12 Difference between the crack tip location curves obtained from re-analysis
and through sensitivity prediction for perturbed design Ab, = 0.1. Time steps within
9,000Aty ~ 15,000At,, are plotted
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Apparently, in Fig. 6.12, Diffc(t) = 0 at most time steps, which means c®

matches C™ (t). The isolated dots with Diffc(t) = 1 (or -1) imply that at each of those
time steps, the predicted crack tip location is one atom ahead of (or behind) the crack tip
location obtained through re-analysis. For the specific case show in Fig. 6.12, the
predicted crack tip location C" is inaccurate ( Diff. (t) = 0) at about 40 time steps out

of 6,000 within 9,000Aty, ~ 15,000At,.

Denoting the crack tip locations at the current design as c” (t), the accuracy

index of predicted crack tip location

C™(t)-C" (1)

Accuracy index of C* = 5
C™(t)-C" (1)

(6.9)

for those inaccurate time steps can be, for example, zero or infinity (among many other
possible values) when C%(t)=C" (t)&C™(t) =C" (t) or C*(t)=C" (t)&C™(t)=C" (1),

respectively, which is clearly not usable in design. However, after crack propagation
speed is calculated based on crack tip locations, the accuracy index of predicted crack

speed

’{}bz eV

Accuracy index of V= VA

(6.10)

is found to be around 112% for this case, which is acceptable. Note that in Eq. 6.10,
VY and V* are crack propagation speeds obtained by running simulation at the
current design and the perturbed deign Ab, = 0.1, respectively, while V* stands for the

predicted crack speed calculated based on c® (t) within the simulation period 9,000Aty,
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~ 15,000At,. Therefore, it becomes clear that the impact of inaccurate predictions of

crack tip locations can be minimized during crack speed calculation.

Step 4: Atomic Response vs. Predicted Crack Speed

Based on the three steps discussed above, the predicted crack speed Vs expected to
be generally more accurate than atomic responses. In other words, it will remain highly
accurate for larger design perturbations than the 1st-order predictions of atomic
responses. Now we use the nano-beam example to demonstrate the accuracy of
predicted crack speed V and compare it to the accuracy of the 1st-order predictions of
atomic responses.

Figure 6.13 plots the predicted crack speed curves for all three shape design
variables in the nano-beam example. In each of the sub-graphs, the green curve is
comprised of 5,000 data points of predicted crack speeds V with interval 0.0002,
whereas the blue dots represent crack speeds V obtained through re-analysis at
corresponding perturbed designs. It is apparent that each predicted crack speed curve

exhibits ‘stepped’ behavior in design space (zoomed in view for b, in Fig. 6.13).

Moreover, in general, the predicted crack speed "V data match well with "V (blue dots).
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Figure 6.13 Predicted crack speeds in design space for individual design variables. Blue
data points represent crack speed "V from re-analysis. Predicted crack speed curve for b

is zoomed in at [0.006, 0.017]

The accuracy of the predicted crack speeds is listed in Table 6.3, where the
accuracy indices are calculated using Eq. 4.27. As can be seen, up to at least Ab; = 1,
Ab, = 0.2 and Abs = 0.5, the accuracy indices of the predicted crack speeds are between
85% and 115%; within these accurate ranges, the predicted crack speed curves are
considerably close to the re-analysis results, especially when compared to the 1st-order
predictions of atomic responses. Recall that as shown in Fig. 4.8, the error of the 1st-
order predictions of atomic displacements can be as large as 110% (corresponding to

accuracy index 210%) for a design perturbation as small as 6b, = 0.05 at some time

steps. Therefore, it is clear that the predicted crack speed 'V can remain highly
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accurate for much larger design perturbations than the Ist-order predictions of atomic

responses.
Table 6.3 Accuracy of predicted crack speed
Design Perturbation (Ab ) 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1
Crack speed fromre-analysis (V)| 146588 146588 146581 146590 146605 146611 146627 146636 146687
Predicted crack speed (V) 146588 146588 146581 146590 146604 146615 146633 146635 146694
Accuracy index 100.00% 100.00% 100.00% 100.00%  98.78%  113.45% 11349%%  98.76%  106.33%

Design variable b,

Design Perturbation (Ab ») 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1

Crack speed fromre-analysis (V)| 146544 146509 146405 146275 146069 145851 145530 145090  1.43658
Predicted crack speed 07 ) 146543 146501 146384 146236 145996 145709 145258  1.44884  1.44121
Accuracy index 103.24% 11047% 111.09% 112.41% 114.05% 119.24% 125.75% 113.74% 84.19%

Design variable b,

Design Perturbation (Ab 3) 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1

Crack speed fromre-analysis (V)| 146558 146532 146464 146358 146203 146071 145895 145724  1.44023
Predicted crack speed 07) 146558 146532 146456 146350 146219 146075 145886 145644 144741
Accuracy index 100.00%  99.72%  106.23% 103.33%  95.87%  99.22%  101.22% 109.26%  71.98%

Design variable b

Also can be observed from Fig. 6.13 and Table 6.3 is that the accurate range of
predicted crack speed can vary between individual shape design variables. In fact, the
length of the accurate range is related to how sensitive the structural response is with
respect to the design variable. More specifically, if the dynamic response of the
structure (including crack propagation speed) is less sensitive to a design variable (such
as by in the nano-beam example), then for a given design perturbation size, the delay or
advance of atomic displacements due to design change will be smaller; consequently,
the 1st-order predictions of structural responses (such as atomic displacements), and

hence the predicted crack speed for the design variable will be more accurate.

Step 5: Predicted Crack Speed vs. ‘Slope’ of Predicted Crack Speed

The accuracy of the ‘slope’ of predicted crack speed is defined as
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Vi{b° +ab,)- V(o)

S; Ab, V(0° +Ab, )~ V(0°)
= _V — ! — i ]
aceuracy of Sy = = Vo + a0 )= VP®) - Vo xan)-Vpe) O
Ab,

which indicates the ratio between the ‘slope’s obtained based on 'V and "V, i.e., the

discrepancy between the blank and green curves in Fig. 6.4b. Note that the expression

after the last equal sign in Eq. 6.11 is the same as the definition of the accuracy
(accuracy index) of predicted crack speed "V, which means the accuracy of the ‘slope’

of predicted crack speed SV~ is equivalent to the accuracy of predicted crack speed V',

and hence the accurate range of S5 is identical to that of "V . This implies that S, can

also remain highly accurate for much larger design perturbations than the 1st-order

predictions of atomic responses. Similar to Fig. 6.13, the comparison between the Sf/

curves and the S data for all three shape design variables in the nano-beam example is

shown in Fig. 6.14. As can be seen, the S, curves match well with S
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Figure 6.14 Accuracy verification for ‘slope’ of predicted crack speed (Sf/) for

individual design variables. Blue data points represent S, obtained from re-analysis

6.4.2.2 Justification of Hybrid Method with Regression Analysis

Now recall the regression analysis carried out in Section 6.4.1. It is important to note

that for the nano-beam example, the accurate ranges for Sf/ (1, 0.2 and 0.5 for by, by,

and bz, respectively, Table 6.3) are in general much larger than the noise ranges of
individual design variables (A1 noise = 0.2, AD2 noise = 0.04, Ab3 noise = 0.08, Fig. 6.6),
indicating the feasibility of the hybrid method with regression analysis. In addition, the
curve fitting ranges chosen for the three design variables (Ab; reg = 0.8, Aby g = 0.2,

Abs reg = 0.4, Fig. 6.7) are all equal or smaller than the accurate ranges, which,
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according to the discussion in Section 6.3, implies that the crack speed sensitivity

calculated using the proposed hybrid method should be accurate.

6.4.3 Accuracy Verification of Crack Speed Sensitivity
In order to verify the accuracy of the crack speed sensitivity coefficients calculated in

Section 6.4.1, we compare the Ist-order predictions of crack propagation speeds with

re-analysis results. In Fig. 6.15, the blue data points are crack speeds "V obtained

through re-analysis, while the red dashed lines represent the 1st-order predictions of

crack speeds calculated using Eq. 6.7. Note that the W_/(&)i) data show in Fig 6.15 and

the W_/(b0 +db.) in Eq. 6.7 represent the same quantity.
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Figure 6.15 Accuracy verification of crack speed sensitivity for (a) shape design
variable b, (b) shape design variable by, and (c) shape design variable b
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Figure 6.15 Accuracy verification of crack speed sensitivity for (a) shape design
variable b, (b) shape design variable by, and (c) shape design variable bs (cont’d)

As we can see, using the proposed hybrid method with polynomial regression,
the sensitivity coefficients of crack speed with respect to all three design variables are
accurately computed. In addition, due to the relatively linear behavior of crack speed in
design space, the 1st-order predictions of crack speed are accurate for much larger
design perturbations than those of atomic responses, which is desirable.

It is worth mentioning that the hybrid method with regression analysis is
certainly not the only way to evaluate the sensitivity of crack propagation speed.
Alternative approaches can always be employed or developed as long as they are
capable of calculating crack speed sensitivity based on the discontinuous crack speed
‘slope’ curve in design space. However, in this chapter, the hybrid method with
regression analysis has been demonstrated to be both efficient and accurate for the

nano-beam example.

6.4.4 What-if Study
Based on the crack speed sensitivity calculated using the hybrid method, we carry out a
what-if study for the nano-beam example. Our objective is to slow down crack

propagation by varying db = [0b1, db,, 5bs]', i.e., simultaneously perturbing all three
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shape design variables. To start with, we plot the sensitivity of crack propagation speed
with respect to three design variables in Fig. 6.16. As can be seen, crack speed slows
down when b, and bz are increased, whereas an increment of b; accelerates crack
propagation.
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Figure 6.16 Sensitivity coefficients of crack propagation speed with respect to three
design variables
With the crack speed sensitivity coefficients, it is possible to find a direction for
vector ¢b, along which the crack propagation slows down with a maximum rate, i.e., the
crack speed decreases most with a given length of vector 6b. The normal vector

associated with this direction is determined by

{cﬂ/ dV dVT
db, db, db
n= a L 2 . 3 . (6.12)
dVv dVv dVv
+ +
db, db, db,
Thus any design change along this direction can be written as
ob=a-n (6.13)

where « is a scaling factor.
Based on the discussion above, what-if studies are carried out for a series of

perturbations along n with scaling factors ranging from « = 0.1 to o =1.5. For

158



comparison, the crack speeds "V in perturbed designs are also obtained for individual

cases through re-analysis. The results of the what-if studies are shown in Table 6.4. In
this table, Columns 3 to 5 list the changes in individual design variables corresponding
to the length of ob in each case. For example, the Jb, for Case 7 (1.279) represents
approximately a 0.6% increment of beam length. Column 6 lists the crack propagation

speeds predicted in the what-if studies; that is

V(0° +&):V(b°)+%8ol +%5o2 +%803 (6.14)

while Column 7 shows the crack propagation speeds V(b0 +5o) obtained through re-

analysis. The accuracy indices are listed in Column 8.

Table 6.4 Accuracy verification for what-if studies

Case No. | Length of 3b ob 1 b, ob3 What-if Study  Re-analysis | Accuracy Index

1 0.1 -1.884E-03 8528E-02  5.219E-02 1.46072 1.46134 113.67%
2 0.2 -3.769E-03 1.706E-01  1.044E-01 1.45557 1.45782 128.06%
3 04 -7.538E-03 3.411E-01 2.088E-01 1.44526 145183 146.83%
4 0.6 -1.131E-02 5117E-01  3.132E-01 1.43496 1.44446 144.37%
5 0.8 -1.508E-02 6.822E-01  4.176E-01 1.42465 1.43282 124.71%
6 1 -1.884E-02 8528E-01 5.219E-01 141435 142343 121.40%
7 15 -2.827E-02 1.279E+00  7.829E-01 1.38858 1.41560 153.75%
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Figure 6.17 Comparison between crack propagation speeds from what-if studies and re-
analysis for various design perturbations
The crack propagation speeds listed in Column 6 and Column 7 of Table 6.4 are

also plotted in Fig. 6.17. As can be seen, the design direction determined based on
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sensitivity analysis leads to an intended change in performance measure, i.e., crack
propagation slows down when design changes are made along the direction determined
by Eq. 6.13. To better illustrate the impact of shape design changes on crack
propagation, in Fig. 6.18 we plot the crack tip location curves for the current design and
the perturbed designs (obtained through re-analysis) with perturbation scaling factors
ranging from 0.1 to 1.5. Note that at around t = 7,700At,, (Area A) — right after the crack
started to grow — crack propagation is delayed in perturbed designs. Moreover, as we
can see from the zoomed-in view of area B, at later time steps during the simulation, the
delay of crack propagation becomes larger, indicating that crack speed is indeed

reduced in perturbed designs.

1DD T T T T T T T T
- Current
QS 8l | o1 e
= ——n2 e B
(8]
o4 .
o -
- B0F | — =
o 06 -
E=] 08 -
5 —10
[} - e i
© 40 15
O A e
oF | | . E- . | | | | | | ]
5000 6,000 7.000 8,000 9,000 10000 11000 12000 13000 14000 15000
Time (Aty,)
up ‘ ‘ ‘ o
S c . [ c ]
S nl| ™|  Zoomed-in area A S T e | r §
15 n2 T 02 7
S = o4 ”” 2 g M ,_ B
o 4 — 08 m'”' o 06
= 08 S owml 08 1
x 10 il x 10
o 0 [} -
i 15 S mpl 15 Zoomed-in area B+
O : (8) . ‘ ‘ , ‘ ‘
7400 7500 7600 7700 7800 73900 8000 13,700 13,800 13900 14,000 14,100 14200
Time (Aty,) Time (Aty,)

Figure 6.18 Crack tip location curves for perturbed designs with various scaling factors
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this thesis, a shape sensitivity analysis of multi-scale crack propagation problems,
including analytical and hybrid methods, has been presented. The analytical sensitivity
expressions were derived from the continuum variational formulation of the bridging
scale method. Direct differentiation method was employed due to its efficiency for
crack propagation problems that depend highly on the atomistic dynamic responses of
the structure. Accuracy of the analytical sensitivity coefficients of structural responses
has been verified via a nano-beam example. For crack propagation problems, an
adequate performance measure of crack speed was established, and a hybrid sensitivity
analysis method that combines analytical sensitivity analysis and finite difference
method was developed for calculating the sensitivity of crack speed. The feasibility and
accuracy of the hybrid method has been demonstrated through a what-if study using the
nano-beam example, which shows that the sensitivity result is effective in support of
design decision making.

Two major challenges have been overcome in this thesis: first, since atomic
displacement solution is discontinuous due to the discrete nature of MD simulation, we
defined design velocity fields in a way that the shape of the MD area does not change.
Second, the performance measure of crack speed is theoretically differentiable but
numerically discontinuous in design space, and we address this issue by proposing a

hybrid method, in which the sensitivity of crack speed is approximated through
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regression analysis. It has been shown that for crack propagation problems, the hybrid
method is much more efficient compared to overall finite difference.

This thesis is the first study that investigates the feasibility of shape sensitivity
analysis for coupled atomistic/continuum problems. The derived sensitivity formulation
is capable of handling general 3-D geometry. The proposed approach establishes a basis
for multi-scale shape optimization of structural components for maximum service life.
By employing molecular dynamics simulation near the crack tip, fatigue crack growth
can be examined at atomistic level, and residual life can be predicted without using

traditional fracture mechanics theory.

7.2 Future Works

Improvements must be made to extend the scope of the current research for practical
applications. For example, future works may be focused on relaxing the assumptions
and restrictions of both the MD simulation and the bridging scale method. The usage of
simple interatomic potential function in this thesis is due to our interest in investigating
the generic features of brittle crack propagation. It is certainly possible, however, to
study a particular material by defining an LJ potential with parameters that match the
material properties, or by replacing the LJ potential with more realistic models, such as
an EAM potential [50], to support a broad range of materials and applications. In terms
of the bridging scale method, a finite temperature coupling can be accomplished by
taking into account the random terms when deriving the time history kernel; higher
order time history kernel terms and longer-ranged interatomic interaction can be

incorporated to improve accuracy of the simulation; impedance boundary condition for
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the vertical MD boundaries can be developed, so that the size of the MD simulation can
be further reduced to a rectangular area instead of a strip.

The largest concern for the proposed approach to be applied to practical
applications lies in the intensive computation required for molecular dynamics
simulation. Although the MD domain has been reduced significantly in size by using
multi-scale methods, the time scale in practical fatigue problems is much longer than
that studied in this work. Nevertheless, the most powerful supercomputer today is about
one million times faster than the workstation used for the current research (in terms of
floating-point operations per second); therefore, by taking advantage of parallel
computing, the proposed sensitivity analysis approach is computationally feasible in
supporting the design of micro-scale devices in the near future. With revolutionary
advance in computer technology, macroscopic application might be possible within the

next decade.
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APPENDIX A
DYNAMIC FRACTURE IN BRITTLE MATERIALS

— CONTINUUM THEORY AND ATOMISTIC SIMULATIONS

In this appendix, theoretical concepts of dynamic brittle fracture at the continuum scale
will be reviewed first, followed by the demonstration of a series of MD simulations of
dynamic crack propagation with simple potential functions. A systematic comparison
between continuum mechanics theories and MD simulation results will be given. For
more information, many reviews of continuum fracture mechanics theory are available
such as [51,52], and detailed explanations of the MD examples discussed in this

appendix can be found in [8].

Al Basics of Linear Elastic Fracture Mechanics

In linear elastic fracture mechanics (LEFM), it is assumed that the material is
continuous, isotropic and linear elastic. The linear elastic fracture mechanics theory
serves as the basis of various later developed continuum fracture mechanics theories
that are capable of dealing with nonlinear material behavior or dynamic effects. In fact,
the continuum theories have made powerful predictions of the material behavior near
cracks, and have been proven to be successful and applicable to a wide range of
applications. In this section, we review some of the important concepts of linear elastic
fracture mechanics, such as the Griffith’s criterion, crack tip stress field, crack limiting

speed, and dynamic crack instability.

The Griffith Energy Balance
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In 1920, Griffith [53] first postulated that a crack starts to grow when the decrease in
potential energy due to crack growth equals the energy necessary to create new material
surfaces. The Griffith energy balance for an increment of the crack area dA can be

expressed under equilibrium conditions, as

dU:dWPerWS:O (A1)
dA dA dA

where U, Wp and Ws denote total energy in the system, potential energy supplied by the

internal strain energy and external load, and energy required to create new surfaces,

respectively. In 1948, Irwin [54] defined an energy release rate

_dw,
dA

G= (A2)

as a measure of the rate of change in potential energy with the crack area. Crack
propagation occurs when the energy release rate reaches a critical value

G =2y, (A3)

where y, is the surface energy per unit area.

Stress Field near Crack Tip

There are three types of loading that a crack can experience. As illustrated in Fig. Ala,
in mode | loading, the principal load is applied normal to the crack plane; mode Il
corresponds to in-plane shear loading; mode 111 refers to out-of-plane shear. A cracked

body can be loaded in any one of these modes, or a combination of two or three modes.
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ode Crack ; -
(@) (b)
Figure Al (a) Three modes of loading [8]. (b) The polar coordinate ahead of a crack tip
[51]
Assuming isotropic linear elastic material behavior, it is possible to express the
stress field in the vicinity of the crack tip. If we define a polar coordinate system with
the origin at the crack tip (Fig. Alb), the stress field near the crack tip for a mode |

loading condition can be written as

o, (r,0)= \/%r cos(%} : :1—sin(§jsin(3§j: (Ada)
o, (r.6)= % cos[gj : :1+ sin(%)sin[%j: (A4b)

7, (r.0)= \/% cos(%)sin(gj cos(%} (Adc)

where K; is called the mode | stress intensity factor. Note that in addition to the static
solution, more general solutions that also include the case of moving cracks can be

found in [52].

Crack Limiting Speed

Brittle crack grows rapidly in material. In general, a larger applied load leads to faster
crack propagation. However, the maximum speed that a crack can attain is limited by an
upper bound related to the speed of waves in the elastic media in which the crack
propagates. According to the continuum theory, mode I, mode Il and mode Il cracks
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are limited by the Rayleigh wave speed cg, longitudinal wave speed c;, and shear wave
speed cs, respectively [8]. The physical reason for the limiting speed is the dependence
of the energy release rate G on the crack speed. For example, for mode | crack

propagation,

G~1-~ (A5)
CR

which implies that the energy release rate approaches zero when crack speed v

approaches the Rayleigh wave speed.

Dynamic Crack Instability
It has been observed in many experimental and computational studies on rapidly
moving cracks in brittle materials that the crack face morphology changes as the crack
speed increases — a phenomenon usually referred to as the dynamic instability of cracks.
As shown in Fig. 1.1b, up to a critical speed, newly created crack surfaces are mirror
flat, whereas at higher speeds, the crack surfaces start to roughen (mist regime) and
eventually become very rough (hackle regime). This behavior is found to be universal
for a variety of brittle materials including ceramics, glasses and polymers.

During the past few decades, several theoretical explanations of crack instability
have been proposed. For example, the linear elastic analyses carried out by Yoffe [55]
predicted that the instability speed of cracks is about 73% of the Rayleigh wave speed.
However, experiments and numerical simulations have suggested that the actual critical
instability speed can be much lower in many materials. Gao [56,57] proposed a model

to explain the reduced instability speed based on the concept of hyperelasticity within
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the framework of nonlinear continuum mechanics, with the central argument that
atomic bonding in real materials tends to soften with increasing strain.

Despite important progresses in the past, so far there is still no clear picture of
the mechanisms underlying dynamical crack instability. None of the existing theoretical
models are able to explain all experimental and numerical results with a universal

understanding applicable to a wide range of materials.

A2 Atomistic Simulations

Molecular dynamics simulation of dynamic fracture is becoming increasingly popular
due to the rapid advance in computation technology. In contrast to continuum theories,
an MD simulation model does not require a priori knowledge about the failure, and
therefore is more useful in investigating the most fundamental aspects of dynamic crack
propagation. Numerous MD simulations have been carried out to study dynamic
fracture in brittle materials, some of which are mentioned in Chapter 1 of this thesis.
Many of the reported works are focused on understanding the atomistic physics of crack
propagation and its relation to continuum theories. In this section, we present several
MD simulations of dynamic fracture that are well documented in [8]. These simulations
are performed on two dimensional atomic lattices, where interatomic interactions are
modeled with simple potential functions. Our goal is to illustrate the correlation
between atomistic simulations and continuum theories in several aspects including
crack tip stress field, crack limiting speed, and dynamic instability. It will be

demonstrated that nonlinearity plays a governing role in dynamic fracture.

Crack Tip Stress Field and Crack Limiting Speed
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In the MD studies to be presented in this section, the LJ 6-12 potential with reduced
units (discussed in Section 3.2) will be adopted as the basis to model the interatomic
interactions. For example, to study a harmonic system, we define a harmonic potential
by expanding the LJ potential function around its equilibrium position and consider

only first order terms; that is
1 2
o(r)=a, +§k(r—ha) (AB)

where h, is the equilibrium distance, k is the interaction coefficient defined in Eq. 3.4,
and ay is a constant parameter set to -1 in harmonic approximation.

The 2-D simulation model is illustrated in Fig. A2. As can be seen, the crack
propagates in a triangular hexagonal atomic lattice. To avoid crack branching, the
harmonic potential (Eg. A6) is used to model the interactions between atoms (so that
atomic bonds will never break), except that a weak fracture layer is introduced by
modelling the atomic bonds across the layer using the nonlinear LJ 6-12 potential (Eq.
3.2). During simulation, the model is slowly loaded with a constant strain rate, which
induces the propagation of the initial crack along the y direction.
:’—W {} {} {} o © : °© _° o

Q.0
X

! o O
o/\%r?& o) o)
i 3 ] Q Q
a G—0 0 0

r 3t2r,

/7 ©i
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Figure A2 A schematic illustration of the simulation model [8]
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The simulation results are shown in Fig. A3, in which the measured angular
variation of oy is plotted for different crack speeds ranging from 0 to 87% of the
Rayleigh speed, and compared with the continuum solution of dynamic crack tip stress
field given in [52]. Atomic quantities are evaluated in a small region around a constant
radius of r = 11 (Fig. A2, normalized unit) centered at the crack tip. The continuum
theory solution and the simulation results are both normalized with respect to the

dynamic stress intensity factor [52].
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Figure A3 Comparison between gy measured in MD simulations and the prediction of
the continuum mechanics theory for different crack speeds. The solid curves represent

continuum solution, and the red dots are measured in MD simulations [8]

As can be seen, the stress field o, measured in MD simulation is generally in
agreement with the LEFM solution (same for other quantities such as gy, and zy). It is
also found that acceleration effects can severely change the resulting stress fields. If the
measurements are taken while the crack accelerates too rapidly, the agreement of
measured field and continuum theory prediction can be poor.

The comparison of principal strain field is shown in Fig. A4 for different

velocities of v/icg = 0, v/icg = 0.5, and v/cg = 1. Note that the MD result is in good
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agreement with the continuum theory. It can be seen clearly that the typical trimodal
structure of the asymptotic principal strain field develops close to the Rayleigh velocity,

in contrast to the bimodal structure at low crack speeds.

v/c=0 v/c=0.5 v/ic=1
MD MD MD
a4 Ak
LEFM LEFM LEFM

o TS —o

(@) (b) (c)
Figure A4 Principal strain field at various crack speeds (a) v/cg = 0, (b) v/cr = 0.5, (C)
vicg =~ 18]

To study the limiting speed of cracks, the same model in Fig. A2 with a fracture
layer is used. A harmonic system is simulated first, in which the atomic bonds across
the fracture layer is modeled by the harmonic potential (Eq. A6), but with a snapping
distance ryeac at which the bond breaks. The simulation result demonstrates that,
independent of model size, the harmonic system behaves as predicted by linear elastic
continuum theories of fracture, i.e., a mode | crack cannot move faster than the

Rayleigh wave speed (cg = 4.8 for the 2-D lattice studied), as shown in Fig. A5.

© L &l @

Tip Speed v,

| | I I |
0 100 200 300 400 500 600
Nondimensional time t

Figure A5 Crack speed history for the harmonic material model in simulation [8]
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To reveal the impact of nonlinearity on the speed of crack propagation, the
harmonic potential is then replaced by a biharmonic potential in order to model the
nonlinear effect. As shown in Fig. A6a, the value of k; refers to the large-strain
interaction coefficient, and the parameter ro, (Or &o,) allows us to tune the size of the
nonlinear region near the crack tip. The potential function illustrated in Fig. A6a models

an elastic ‘stiffening” material.

d) k | 1105 J'

1.089

'_ii‘ijf________

1.075

: > 7 1.060 |- - I I : :
;:)n rbreak e ¥ ---------
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€on Epreak 046 00121 0.0138 00156 0.0174 0.0192 0.0209
(a) (b)

Figure A6 (a) A biharmonic potential with stiffening effect. (b) Change of reduced

Reduced crack speedv/c

limiting crack speed (Limiting crack speed/Rayleigh wave speed cg) as a function of &g,
[8]

The simulation results show crack propagation at super-Rayleigh velocities with
a local stiffening zone around the crack tip. Figure A6b plots the limiting crack speed as
a function of ¢,,. As can be seen, the earlier the nonlinear effect is turned on, the larger
the limiting speed. For example, when the large-strain interaction coefficient is chosen
to be k; = 4k, with ro, = 1.1375 and rpeark = 1.1483, the mode | crack can propagate
about 20 percent faster than the Rayleigh wave speed of the material, in clear contrast to
the linear continuum theory. It is also found that the limiting crack speed is lower than

in the harmonic case if a local ‘softening’ effect is modeled. Therefore, it is clear that

177



local nonlinearity around the crack tip can significantly influence the limiting speed of

cracks.

Dynamic Crack Instability

To study dynamic crack instability, atomistic models with different potential functions

are investigated. An interatomic force function is defined as

(0= 420~k o[ r 2 “H o~

dr break

so that a series of MD simulations can be performed by varying systematically the
parameters rpreak and Z. Figure A7 depicts interatomic force versus atomic bond length
with different ryreax and E. As can be seen, the parameter = controls the shape of the
interatomic force curve (Fig. A7b). Note that the curve becomes smoother with a
smaller E, whereas an infinitely large Z leads to a harmonic potential. By performing
MD simulations using potential models with different parameters, the impact of the
transition from linear elastic to strongly nonlinear material behavior on the instability

dynamics of cracks can be understood.

(b

~

—
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Figure A7 Interatomic force versus atomic bond length for various choices of

parameters ryreak and = [8]

178



First of all, it is found that for materials with linear elastic properties (harmonic
potential, achieved by setting Z in Eq. A7 to infinity), a critical instability speed of
about 73% of the Rayleigh wave speed can be observed independent of the choice of
Ioreak- Apparently, this is in quantitative agreement with the prediction of Yoffe’s model
[55], in which the nonlinearity of atomic bonds is completely neglected.

Next, the parameters in Eq. A7 are adjusted systematically to model different
levels of nonlinearity near the crack tip. In Fig. A8, the prediction by Yoffe’s model [55]
is shown as the red line, while the predictions by Gao’s model [56,57] are plotted as the
blue points. As can be seen, for any choice of ryreax and E, the critical instability speed
lies in between the prediction by Gao’s model and that by Yoffe’s model. Whether it is
closer to the former or the latter depends on the choice of rpreak and E. These results
indicate that the critical instability speed depends strongly on the nonlinearity

introduced at the crack tip.
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Figure A8 Critical instability speed as a function of ryreax for different choices of = [8]

Summary

Based on the observations above, it is clear that the predictions by linear elastic fracture
mechanics theories can be recaptured in MD simulations when a harmonic potential is
used to model the interaction between atoms; in the meantime, the nonlinearity near the

crack tip significantly influences the fracture mechanism, and is crucial in producing
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simulation results that are closer to the behavior of real materials. In this thesis, we use
the bridging scale method to simulate crack propagation. Although the majority of the
structural domain is modeled using finite elements based on linear elasticity, a fully
nonlinear (instead of biharmonic) potential function is used for MD simulation
(discussed in Section 3.2) near the crack tip, so that the essential physics of brittle

fracture can be capture in our numerical example.
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APPENDIX B

ADJOINT VARIABLE METHOD

In this appendix, we explain the adjoint variable method for design sensitivity analysis
using the simple bar example introduced in Chapter 2. Both static and dynamic
scenarios will be discussed. More information about the adjoint method can be found in

[32].

Static Problem

In Section 2.2.2.2, sensitivity analysis is carried out using the discrete method, while the
direct differentiation method is employed to calculate the sensitivity coefficient of a
general performance measure. It is noteworthy that all terms in Eqg. 2.31 can be easily
calculated from their definitions, except for the term (8y/6z)K™(b), which apparently
does not vary during the sensitivity analysis with respect to different design variables.
Therefore, the adjoint variable method is developed to compute this term directly by
defining it as the adjoint variable A:

VST STl
k={az K (b)} —k(0) %Y (B1)

where the symmetric property of K(b) has been used. By multiplying both sides of Eq.

B1 by K(b), we obtain the adjoint equation

T

_ov
K(b)= (B2)

which represents the same structural problem as with Eq. 2.26, except that the load

vector is replaced by (dy/0z)" — sometimes referred to as the adjoint load. Solving the
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adjoint problem in Eq. B2 and substituting the result into Eq. 2.31 gives the sensitivity

of the performance measure, as

.TZ:§K+xTrWQ0 6K®%} (83)

db, b, b b

For the simple bar example, the adjoint problem becomes

)
Ki, = % = m (B4)
z

Note that as shown in Fig. B1, the load vector in Eq. B4 represents a unit point load
acting on Node 3 — the location where we measure the performance zz. The adjoint

structure in Eq. B4 can be solved for 2, as

;
W L (B5)

2EA EA
which can then be substituted into Eq. 2.31 to obtain the design derivative of the

performance measure z3, as

3fl?
fl2 2 -1
%:%+}\’T|:§_%Z:|:O+|:L L:| +2E2A . 8E'§‘ :ﬂ (BG)
d o la a 2BA EA | f/4) 17 |-1 1] 17 |[ EA
2EA

which is the same as the result obtained by using the direct differentiation method (Eqg.

2.32).
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Node 2 @

Node 3
1

Figure B1 Adjoint structure for the simple bar example

E A

To determine which approach — the direct differentiation method or the adjoint
variable method — will be employed, we compare the number of equations to be solved
during sensitivity calculation. The direct differentiation method computes sensitivity
using the chain rule of differentiation. To calculate the design derivative of each
performance i, EQ. 2.29 must be solved for each design variable b;. Therefore, k (the
number of design variables) matrix equations need to be solved. With all dz/db;, the
sensitivity of each performance can be calculated directly from Eq. 2.31. On the other
hand, the adjoint variable method computes sensitivity by constructing and solving the
adjoint problem. The adjoint structure in Eq. B2 must be solved for each performance
measure i, while the adjoint solution A; can be used for all design variables, i.e., the
sensitivity of performance y; with respect to each design variable b; can be calculated
directly from Eq. B3. As a result, the number of equations to be solved equals to Np —
the number of performance measures.

Therefore, from computation perspective, in general, if the number of
performance measures is larger than that of the design variables (Np > k), then the direct
differentiation method is preferable; otherwise, the adjoint variable method will be more

efficient.
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Dynamic Problem

For dynamic problems, the sensitivity calculation using the direct differentiation
method has been demonstrated in Section 2.3.2 (Egs. 2.64 ~ 2.68). In adjoint variable
method, the essence is to replace the unknown terms in Eq. 2.65 with adjoint variables.
In case of a general dynamic problem, we start by multiplying both sides of the dynamic
finite element matrix equation (Eq. 2.59) by A" and then integrating over time interval

[0, t7], yielding
[ M®)z, +K(b)z-Fb)lt =0 (B7)

Given that A is defined to be independent of design, we take design derivative of

Eq. B7 with respect to b;, as

r)f ME +ﬂzn+K£+%z—E dt=0 (B8)
0 db, ), b " db, ab "~ oh

Next, the time derivative of dz/db; within the integral in Eq. B8 can be

eliminated using integration by parts to obtain the following relation

tr
dz tr
MM — +
[dbl ],t J.O

0
where the initial terms can be removed by accounting for the initial conditions in Eq.

tr

LLMS—;MT(?}—EAZ’n +Z—sz+K:—;—%ﬂdt =0 (B9)

0

2.68, giving

T dz(tT) T dz(tT) &
Aty M[d—bij,t MM T [

(oM aTK)Z r| M, K F a0 (B10)
' db, bt an " b

which must hold for all A.
Now we define the dynamic adjoint problem as follows

M- A(t,) =0 (B11a)
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a9’

M-at,), =23 B11b
(t), p (B11b)
T
M-wa-x:%—G (BL1c)
’ Z

Note that the adjoint problem above is defined in such a way that by substituting

the adjoint solution A that satisfies Eq. B11 into Eq. B10, we obtain

ag dz(t,) LT oG dz j )\’T(GM oK ﬁjdt (B12)

— ——dt= fF—Z-
oz db, oz db, ob, 7 b ob,
where all implicit terms in Eq. 2.65 are expressed by explicit terms and the adjoint
variable. Therefore, once the adjoint solution A is obtained by solving the adjoint

problem, the sensitivity of the performance measure can be calculated as

d‘/’ 89 jTaG [ Mz, X (B13)
0 0 ob, & ob b,

.

Note that in dynamic scenarios, the direct differentiation method always allows
the sensitivity equation (Eq. 2.67) to be solved in parallel with response analysis (EQ.
2.59). On the contrary, the adjoint problem in Eq. B11 can be thought of as a terminal-
value problem that needs to be solved backwards in time from t =ty to t = 0. Thus, in
cases when the performance measure is not a linear function of displacement solution z,
i.e., when 0g/0z and 0G/oz in Eq. B11 are not constants but depend on z, the adjoint
problem cannot be solved simultaneously with the response analysis. This complicates
significantly the calculations associated with dynamic sensitivity analysis. In fact, even
if the adjoint problem can be solved simultaneously with the response analysis, the

calculation of the time integral term in design sensitivity (Eq. B13) requires either the
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solution of structural response or the adjoint equation throughout the entire simulation
period [0, tr] to be stored, which places heavy burden to the I/O system.

Therefore, for dynamic problems, as long as the number of design variables is
not much greater than that of performance measures, the direct differentiation method is

generally preferable to the adjoint variable method.
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APPENDIX C
DERIVATION OF TIME HISTORY KERNEL

FOR 1-D ATOMIC LATTICE

This appendix demonstrates detailed derivation of the time history kernel for the one-
dimensional atomic lattice discussed in Chapter 3. Discrete Fourier Transform and

Laplace Transform will be introduced first to support the derivation.

Discrete Fourier Transform and Laplace Transform
The discrete Fourier transform (DFT) is used to transform one function into its
frequency domain representation. If a function f can be defined at all atomic positions /,

the DFT of f'is defined as

L/2

Z flefiZﬂpI/L (Cl)

I=—L/2+1

f(p):ﬁ—m{fl}

where L indicates the size of the atomic lattice and p can take any integer value between
—L/2 +1 and L/2. For 1-D problems, L gives the length of the domain. For multi-
dimensional problems, more indices are needed to represent the additional dimensions.

The inverse Fourier transform (IFT) is defined as

1 0 1 & i27pl/L
=t =t > f(pe (C2)
L p=—L/2+1
Note that when analytically calculating the time history kernel for a 1-D lattice,
it is usually assumed that the discrete Fourier transform is carried out over an infinitely

long chain, i.e., —o<L <o . Therefore, instead of taking integer values, the

wavenumber p is mapped to the real numbers between -m and m, as discussed in [58].
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The DFT and IFT for this limiting case take the form

f(p)=c, ()= fe™ (C3)
f| = Tp_l—>l {f(p)}f %_[; fA(p)eipldp (C4)

The Laplace transform (LT) is interpreted as a transformation from the time
domain, in which inputs and outputs are functions of time, to the frequency domain. The

LT of a function f(¢) is defined as

F(s)=£{f (1)} = [ 1 (0pat (C5)

while the inverse Laplace transform is defined to be

f(t)= cF@)=—= [ Flsktds (Cé)

C—ioo

Because of the complex expressions involved in bridging scale problems, for 2-
D and 3-D problems, the inverse Laplace transform has to be conducted numerically.
The method employed is introduced by Weeks et al. [59]. This method utilizes an
expansion of the inverse in terms of orthonormal Laguerre functions, yielding excellent
accuracy.

The Laplace transform of the time derivative of a function is written as

d"F ()| _ cnpre) anig() ez df (n  d™f
L{T}_S F(s)-s"f(0)-s " (0) o (0) (C7)

Finally, both the DFT and the LT have convolution properties as follows

af[ $° fgj f(p)é(p) (c8)

I'=—L/2+1

£ [1t-0g(eie} - Fle)o(6) (c9)
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Derivation of Time History Kernel

Following the discussion in Section 3.3.3, the linearized fine scale equation of motion

for the boundary atom is obtained in Eq. 3.24, where the f,™(t) term is the impedance

boundary force to be developed. Note that the effect of the Region 2 fine scale degrees
of freedom (implied by the v; term) is included in the impedance force, and our
objective is to solve for v; in terms of vy by using discrete Fourier transform and
Laplace transform, so that the fine scale degrees of freedom outside the MD area can be

eliminated.

(b) (c)
Figure C1 () Original 1-D atomic system, (b) | < 0 atoms replaced with 2 (t), and (c)

Region 2 fine scale eliminated by introducing the impedance boundary force ;™ (t)

As shown in Fig. Cla, the motion of the | = 0 atom depends on the displacement
of itself and its nearest neighbors (I = -1 and | = 1). Since the Fourier transforms can be
employed only for the atoms within the harmonic region (1 >0), the | < 0 atoms are

temporarily removed from the system, and are replaced by an undetermined external
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force f2(t) that acts only upon the | = 0 atom, as shown in Fig. C1b. Therefore, for the

| >0 atoms, Eq. 3.22 can be rewritten as

1+1

Vit (t): Zm;lKI—I'VI' (t) +my (t) (C10)

I'=I-1

Note that f(t) is introduced merely to support the derivation of the impedance
boundary condition, and it is NOT the MD boundary force f,™(t) (Fig Clc) to be

developed.

Taking discrete Fourier transform of Eq. C10 gives
Ve(p.t)= A(pN (p,t)+m £ t) (C11)
where p corresponds to the spatial index I, and A(p) is the discrete Fourier transform of

m,'K,; that is

~ 0 . 1 .
Alp)= D miKe™ =3 miKe™ =i—k(cos p-1) (C12)
=1 A

|=—x

Taking Laplace transform of Eq. C11 yields
sV(p,s)—sv(p,0)-v,(p,0)= A(pN (p,s)+m,F*(s) (C13)
where s denotes the Laplace transform variables. Rearranging Eq. C13 gives
V(p,s)=G(p, sYmiF* (s)+sv(p.0)+v,(p.0)) (C14)

where

A P -1 1
G(p.s)= (S - A(p)) 52— 2k(cos p—1)/m, (C13)

Taking inverse Fourier transform of Eq. C14 gives

Vi(s)=G;(s)m, 'K (s)+ R'(s) (C16)
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where G, (s) is the inverse Fourier transform of G(p, s). For example

1 ¢7 »
Gy(s)=-_| ,G(p.sk’dp
T Y-z
1 en 1 1 (C17)
=—j 5 dp=
27 ns? —2k(cos p-1)/m, s [’ +ak/m,
and
1 ¢7 & —ip
6(5)= = [ Glpsk o
_ 1 g P Olp:mAsz+2k—mAs,/sz+4k/mA (C18)
27 -7 s% —2k(cos p—1)/m, 2ks\/s? + 4k /m,

Note that the R"(s) term in Eq. C16 is related to the initial conditions in the

continuum region, and is considered to be a random displacement that represents the
thermally dependent excitations exerted on the MD region by the surrounding coarse
scale. In our numerical examples, by assuming the temperature of the surrounding
continuum to be OK, this term can be set to zero.

By writing Eq. C16 for the | = 0 and | = 1 atoms while neglecting the random
term R’(s), the external force F(s) can be cancelled out, and V,(s) can then be
solved for in terms of V,(s), as

Vy(s)=Q(sV,(s) (C19)

where

Q(s)=G,(s)G,*(s)= £l (mAs2 +2K —m,sy/s? + 4k / mA) (C20)

2k
To obtain the expression of the impedance force, we take Laplace transform of
Eq. 3.25, yielding
Fi™(s)=K_V,(s) (C21)
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Substituting Eq. C19 into Eq. C21 gives
R (s) = KLQ(sVo(s) = (s Vo (s) (C22)

where

O(s)=K_Q(s)=kQ(s)= % (mAs2 +2K —m,s/s® + 4k / mA) (C23)

Hence, the impedance boundary force can be obtained by taking inverse Laplace

transform of Eq. C22, giving

£ (t)= [0t - Vo (e)dr (C24)

where
0 (t)=rc'(6(s))= sz Jz[z Ltj (C25)

is called the time history kernel, in which J, stands for the second-order Bessel function.
It is important to note that an analytical expression of the time history kernel is possible
only for a 1-D lattice. For multiple dimensional problems, analytically deriving the
impedance boundary condition can be intractable. Therefore, numerical procedures are

inevitably involved, as presented in Appendix D.
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APPENDIX D
DERIVATION OF IMPEDANCE BOUNDARY CONDITION

FOR 3-D ATOMIC LATTICE

This appendix presents the derivation of bridging scale impedance boundary condition,
including the time history kernel, in a generalized three dimension scenario. More
details and discussions on this subject can be found in [28].

As with the derivation for the 1-D lattice discussed in Chapter 3, the key idea in
deriving the impedance force for a 3-D lattice is to utilize the periodicity of the atomic
structure so that standard technique of discrete Fourier transform (Appendix C) can be
applied. For a better illustration, the 3-D FCC lattice used in our numerical example is
depicted in Fig. D1, while Fig. D2 shows the m = 1 layer of the periodic 3-D lattice
labeled with indices /, m, and n. It is of note, however, that the derivation to be

presented below is general for a variety of lattice structures.

(,m+1,n+l1)
O)
(I-1,m,n+1) i ~ n
1
raY '0,m—],n+] (I+1,mn+1)

V"\ (I+1,m+1,n) m
(/-1,m+l,n)“|" - C) ~ E ]
(

e
(l—l,m—],n)) :(l,m,n)( (I+1,m-1,n) z

' (m+1,n-1)

! (
(-lmn-1), === T2
I

Yy
19
-7 e - 4 X
- aY (I+1,m,n-1)
\,

(l.m-1.n-1)

Figure D1 An atom (I, m, n) with its neighboring (interacting) atoms in the FCC lattice

193



(o] o (o] n
(1,1,2) (3,1,2) (5,1,2) FE only
o (o] (Region 2)
@Ll) @10
MD/FE boundary P P o me > 1
ﬂl,l,O) (3.1,00 (5,10 -
Boundary layer o o
(n=0) @11 @10 MD+FE
o o fo) (Region 1)
L2 (L2 (512 e > X

Figure D2 The m = 1 layer of a periodic 3D FCC lattice with indices. The dashed line
represents the boundary between the MD region and the FE-only region

Note that in Fig. D2, each value of n, for example, describes a layer of atoms
bounded in a given x-y plane. Assume that n = 0 denotes the boundary layer of the MD
region (as shown in Fig. D2). Our goal is to develop an impedance boundary force that
mimics the fine scale dynamic effect of the n > 0 (Region 2) atoms on the remaining
system. The fine scale degrees of freedom of the n > 0 atoms will be eliminated by
solving or replacing them in terms of the N<0 (Region 1) degrees of freedom. More
specifically, the displacements of the n = 1 atoms will be solved for in terms of the
displacements of the atoms within the » = 0 layer.

To start with, the fine scale equation of motion (Eq. 3.21b) for any atom within

the harmonic region (n>0) can be rewritten, based on the atomic lattice structure, as

I+u  m+v n+l
Vl,m,n,n(t): Z Z ZM;\lKI—I‘,m—m',n—n‘Vl',m',n’(t) (Dl)
I'=sl—-g m'=m-v n'=n-1
where the constant stiffness matrices K relate the displacements of the neighboring

atoms around the atom labeled (/, m, n) to the atomic forces acting on it. Writing Eq. D1

for the n = 0 atoms yields
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I+ m+v

Vlmott z Z ZM_lKllme nVImn(t)

I'=sl—-g m'=m—v n'=-1

(D2)
o mtv I+ m+v
- Z Z ZM_lKI I',m-m'0-n" VI ,m',n’ (t + Z Z Ivl_A1l<I—I',m—m',—lvl',m',l(t)
I'=l- =m-v n'=-1 I'=l—y m'=m-v

where the v, ., (t) term indicates that determining the motion of the boundary atoms

requires the fine scale displacements in Region 2, which are to be eliminated. Therefore,

we rewrite Eq. D2 as

I+ m+v

VI,m,O Tt z Z ZM_lKI I'm-m'0-n' VI ,m',n’ ( )+ M;Lrllmmpo(t) (D3)

I'sl—-gm'=m-v n'=-1

where

. I+ m+v
f|l,nr:1‘?o (t) = Z Z KI—I',m—m',—lvl',m',l (t) (D4)
I'=l—g m'=m-v

is the impedance boundary force to be derived, which mimics the effect of the Region 2

fine scale degrees of freedom on the MD boundary atoms. The objective is to evaluate
the impedance force f,i]':q’?o (t) by solving for Vi.m.(t) in terms of the displacements of the
n = 0 atoms using mathematical transformation techniques introduced in Appendix C.
Note that we assume the motion of the » = 0 layer of atoms only depends on the
displacements of those within layer » = 0 and their immediately neighboring layers (n =
-1 and n = 1), as shown in Fig. D3a. Since the Fourier transforms can be employed only

for the atoms within the harmonic region, the » < 0 atoms are temporarily removed from

the system, and are replaced by an undetermined external force f') o(t) that acts only

upon the n = 0 atoms, as shown in Fig. D3b. Therefore, for the n>0 atoms, equation

D1 can be rewritten as
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+u m+v n+1

Vl,m,ntt Z Z ZM_IKI I'm-m',n-n’ VI m,n’ ( )+ M;lfle)r(;o(t) (D5)

I'sl—-g m'=m-v n'=n-1

Region 2 Region 2 fl"r:;po( )

11

n<0 ffi:’o (t) Region 1 n<0

Region 1

(a) (b) (c)

Figure D3 The external force that replaces the effect of the removed n < 0 atoms, (a)

ext

original system, (b) n < 0 atoms replaced with f7, O( ), and (c) Region 2 fine scale

eliminated by introducing impedance boundary force 7, (t)

Note that f,ev),;tvo(t) is introduced merely to support the derivation of the

impedance boundary condition, and it is NOT the impedance boundary force fI m, 0()

(illustrated in Fig D3c¢) to be developed.

Taking discrete Fourier transform and Laplace transform of Eq. D5 gives
V(p.q.r.s)-s(p.q.r.0)-,(p.a,r.0)= Alp.a.r)V(p,q.r.5)+ MF*(p.c.s) ~ (D6)
where p, g and r correspond to the spatial indices /, m and n respectively. The variable s
is introduced to indicate the Laplace transform variables. The hatted notation represents
the discrete Fourier transform with respect to indices /, m and n. A(p, g, r) 1s the

discrete Fourier transform of M 'K Rearranging Eq. D6 yields

I,m,n *

V(p,a,1,5)=G6(p, a1, s M (p,q,5)+5%(p,q,1,0)+ ¥ (p,g,1,0)) (D7)

where é(p,q, r,s)= (52I —A(p,q, F)Tl. Taking inverse Fourier transform of Eq. D7 in z

direction gives
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V,(p.a,5)=G,(p.a,s)MF*(p,a,5)+R2(p.q,5) (D8)

where

N/2 N/2

RI(p.a.s)=s X .G, (p.as\,(p.a0)+ > G, .(p.as, (p.q0) (D9)

n'=—N/2+1 n'=—N/2+1
The tilde notation in Egs. D8 and D9 denotes the mixed space-wavenumber
functions in which the z direction is represented by spatial index n, and the x and y

directions are expressed by wavenumber variables p and g. By writing Eq. D8 for both

n=0and n = 1, the external force IE()EXt(p, 0,s) can be canceled out and the displacement
V,(p,g,s) can be obtained in term of V,(p,,5), as

V,(p,q,5) = Q(p, a )V (p.,5) - RE(p, 0, 8))+ RE (p. 0, 5) (D10)
where é(p,q,s)=él(p,q,s)égl(p,q,s). Note that Eig(p,q,s) is related to the initial

conditions in the continuum region, and is considered to be a random displacement that
represents the thermally dependent excitations exerted on the MD region by the
surrounding coarse scale; in our numerical example, by assuming the temperature of the
surrounding continuum to be 0K, these terms can be set to zero.

Taking inverse Fourier transform of Eq. D10 in x and y directions using the

convolution property while neglecting the random terms gives

L/2 M/2
Vl,m,l(s): Z Z QI—I',m—m'(S)VI’,m',O(S) (D11)

I'=——L/2+1m'=—M /2+1
Thus, the displacements of the n = 1 atoms have been solved for in terms of the

displacements of the » = 0 atoms. To obtain the expression of the impedance force, we

take Laplace transform of Eq. D4, yielding
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I+ m+v

Fllr;po Z ZKI I'm-m',—1 %I ml( ) (D12)

I'=l—g m'=m-v

Substituting Eq. D11 into Eq. D12 gives

l+u  m+v L/2 M /2
imp
I:ImO Z z I‘<I I'm-m',-1 z z QI’—I”,m'—m"(S)VI”,m",O(S)
I'=l—g m'=m—v I"=—L/241 m"=—M /2+1
L/2 M /2 I+ m+v
= > > 3 KimmaQrrn (Vi o(s)  (D13)

I"=—L/241m"==M /2+1 I'=l-px m'=m—-v

L/2 M/2

= Z ZG)I—I”,m—m" (S)VI",m”,O(S)

I"=——L/2+1 m"=—M /2+1

where
I+ m+v
O ()= Z Z Ko 1Qrcre e ()
I'=l—g m'=m—v
(1")+u (m=m")+v (D14)

= Z Z K 1=1"—(1'=1"),m—m"—(m’'—m"), —lQI'—I”,m'—m" (5)

=1 =(1=1") 4 m'=m"=(m-m") -
For simplicity, rewriting Eq. D13 by replacing all I” and m” after the last equal
sign with I and m’, giving
_ L/2 M/2
o (S) = Z Z®|—r,m-m' (S)Vr,m',o(s) (D15)
I'=—L/2+1 m'=—M/2+1

Hence, the impedance boundary force acting upon the n = 0 atoms can be

obtained by taking inverse Laplace transform of Eq. D15, as

L/2 M /2

f|”:1po( )_ Z I I-1",m— m Z')Vl',m',o(z')df (D16)

I'=—L/2+41 m'=—M /2+1

where Hllm(t)zfl(@,’m (S)) is named the time history kernel matrix. The diagonal

components of the time history kernel calculated based on the 3-D FCC lattice (Fig. D1)
and the normalized LJ 6-12 potential are plotted in Fig. D4. As can be seen, #s3() is the

most important component, while #,;(f) and #,,(¢) are equal to each other due to
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symmetry of the lattice in x and y directions.
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Figure D4 Diagonal components of the time history kernel matrix

Note that for a generalized 3-D case, the coarse scale equation of motion (Eq.

3.21a) can be rewritten for the atoms at n =0, as
-1
Uimo , =Mafino(U) (D17)

Substituting the expression of the impedance boundary force (Eq. D16) into the
fine scale equation of motion for the boundary atoms (Eq. D3) and combining the result

with Eq. D17 gives

JrIcr'rl M+Merie

t
M A1 im0, (t) = fl,m,O(q’ u)"‘ z Lal—r,m—m' (t - Z')Vr,m',o (T)d 4 (D18)

I'=l=leie m'=m-meg;
where the f, . (q,u) term implies that the motion of the MD boundary atoms depends

also on the coarse scale solution u outside the MD area. The fine scale displacement

V, o 1IN Eq. D18 can be calculated by

VI',m',O(T) = ql’,m',O(T)_ ul',m',o(T) (D19)
Note that in Eq. D18, /., and m,,. are introduced as maximum numbers of

neighboring atoms that will be considered in the calculation of the boundary force. It
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has been proved in [23] that the biggest improvement occurs when the zeroth-order
component of the time history kernel is utilized (/.,; = mc,;; = 0). Also, it has been shown
in [28] that higher order values of é(¢) corresponding to /..;; > 0 and m,,;; > 0 are at most
10% of the values shown in Fig. D4. Therefore, in this thesis, we assume that /.,;; = m;
= 0 when calculating the time history kernel matrix.

Finally, we show calculation of the stiffness matrices K used in deriving the
impedance boundary condition for the 3-D FCC atomic lattice (Fig. D1) implemented in
our 3-D numerical example.

According to [27], the stiffness matrices K can be defined in general as

I,m,n

I-I''m-m’,n—n" ™

K —
arl',m',n'

(D20)

e,

where r is a vector of current atomic locations and r,, denotes the corresponding vector
at equilibrium. For the atomic structure depicted in Fig. DI, the K matrices are

calculated as

‘ 110
Ko =K 10 ZE 110 (D21a)
0 0O
‘ 1 -1 0
Ki1o =Ko = > -1 1 0 (D21b)
0O 0 O
! 0 0O
Ko =Koy = 2 011 (D21c)
011
‘ 0 0 O
Kopa=Ko=5]0 1 -1 (D21d)
0 -1 1
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c 1 0 1
Kl,o,l = Kfl’oﬁ1 = E 0 0O (D21e)
1 0 1
‘ -1
Kl,o,—l = K—l,o,l = E 0 0 O (D21f)
-1 0 1
-1 0 O
Ko,o,o =4kl 0 -1 O (D21g)
0O 0 -1

Note that only nearest neighbor interactions are considered. All K matrices not
listed above are zero simply because there is no atom located at positions denoted by
certain pairs of indices, such as (/-1, m-1, n-1) and (/, m, n-1). The interaction

coefficient k for the LJ 6-12 potential has been given in Eq. 3.4.
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APPENDIX E
DISCRETIZATION OF REGION 2 COARSE SCALE

IN THREE DIMENSIONS

This appendix presents the calculation of first Piola-Kirchoff stress and the
discretization of coarse scale strain energy outside the MD region for the 3-D FCC
lattice used in our numerical example.

In Region 2, due to the absence of atomistic information, the coarse scale forces
acting on the finite element nodes are calculated by evaluating the first Piola-Kirchoff
stress tensor @at individual quadrature points using the Cauchy-Born rule. To start with,
the strain energy density and deformation gradient F at a given location will be
determined based on nodal displacements. The stress tensor @ can then be obtained by
taking derivative of the energy density with respect to F'. Detailed derivations for a 2-D
hexagonal lattice can be found in reference [60]. In this appendix, we focus on 3-D FCC
lattice.

According to the Cauchy-Born rule, the strain energy density is related to the
interatomic potential and the atomic lattice structure defined in the MD simulation. For
illustration, a single atom « with its nearest neighbors within a 3-D FCC lattice is
depicted in Fig. E1. The equilibrium distance between two neighboring atoms is h,. The
equilibrium atomic bonds connected with atom « can be represented by vectors; for

example, the undeformed (1,1,0) bond in Fig. E1 can be written as
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Figure E1 Undeformed FCC lattice centered at atom «

(ED)

When the continuum is deformed, the (1,1,0) bond vector needs to be

transformed according to the deformation gradient at the location x,, as

1 ox h, V212
M0 =|Nyoy [ Fa "N10eq = Fa ha "/5/2
M102 0

The length change of the bond (1,1,0):

Al o= \/r1,21,0x + r1,21,0y + rl,21,Oz _\/<\/§ha / 2)2 + (\/Eha /2)2 +0°

can be approximated under small deformation assumption, as

- OAY, 1,
A"1,1,0 = P T |r1,1,0:r1_1,an (rl,l,o - rl,l,Oeq)
M0

where

OAr,
G

1,1,0=11,1,0eq

V2 42
2 2

(E2)

(E3)

(E4)

(ES)

The linearized strain energy of bond (1,1,0) due to deformation can be written as
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1, -
CI)1,1,0 = E kArl,i,O (EG)

where k is the interaction coefficient (Eq. 3.4) for the interatomic force at equilibrium

distance. Taking derivative of ®,,, with respect to F; gives

1 1 0
oD, _ OATL,, kh |2 2
al:lfo - kArl'l’O 5;50:7[7 7 0 (Fa “T11.0eq ~ V11,0eq 2‘) g') 8 (E7)

Note that the calculation from Eqs. E1 to E7 can be carried out similarly for the
other eleven bonds surrounding atom «.

The strain energy density centered at x,, can be written in the form

1
W, = > [CD:L,l,O F D o+ D0+ Dy o+ D+ Dy, (ES)

+ q)O,—l,—l + CI)O,l,—l + (D—l,O,l + q31,0,1 + CI)0,—1,1 + (DO,l,l]/Va

J2

where V,, = 7hj is the volume occupied by each atom in an undeformed FCC lattice.

The first Piola-Kirchoff stress tensor at x, can be obtained, according to the Cauchy-

Born rule, by taking derivative of Eq. E8 with respect to F', as
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P(X,)= = + + + +
() oF 2V, | oF] oF] oF] oF] oF] oF]

+ 6(I)O,—l,—l acI)0,1,—1 a(D—l,O,l a(I)ZL,O,l acI)0,—1,1 a(I)O,l,l:|

+ - + + -
oF] oF] oF! oF] oF] oF]

1
2| 2 2 o "111,0eq ~ '1,1,0eq .

1

1

0

1 -1 0
kh,[v2 2
+7ha{7 _7 O}(Fa'rlloeq_rl,l,Oeq{_l 8

1
0 0
) 1 0 -1
kh [ V2 J2
+Tha 2 0 _7}(&4'rl,o,—leq_rlvov—leq 0 0
L -1 0 1
) _ [0 0 0]
Kk J2 2
+7ha 0 7 7 (Fa'ro,l,leq_rovlvleq 011
L _ 0 1 1]
) _ 1 0 1]
kh, | v2 V2
+Tha 2 0 2 (Fa'rl,o,leq_rl,oyleq 000
L i 1 0 1]
) 0 0 O
K J2o 2
+7ha 0 2 2 (Fa'ro,l,—leq_roylfleq 0 1 -1
L 0 -1 1

As can be observed from Eq. E9, the Piola-Kirchoff stress tensor

chle ?alZ anlS
q)a = q)(xa) = Q)a21 QaZZ q)a23
q)a3l q)a32 q)a33

aWa 1 |:8(D1,l,0 +aq)—1,—1,0 aq)—l,l,O aq)l,—l,O a(I)—l,O,—l aq)l,O,—l

11,0

(E9)

(E10)

is symmetric, i.e., 2,, =®,,,, due to the small deformation assumption employed in the

derivations above.

To find the deformation gradient F, assume an eight-node hexahedral tri-linear

isoparametric finite element as illustrated in Fig. E2.
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Figure E2 A hexahedral isoparametric element with eight nodes (1 ~ 8)

The deformation gradient at location x,, within the element can be determined as

Elzl—k2:dl(aNéS%)JT:|

8 dlx

+z d,

1] g

ON,(x,) ON,(x,) oN,(x,)

Iz

OX

} (E11)

where N, (x, ) is the finite element shape function of node I at location x,. Note that for

isoparametric elements, the shape functions are usually written in terms of natural

coordinates &, & and &. The relation between the natural and global (orthogonal x-y-z)

reference systems is given by

| =3(x,)"

(o))
P

~—

(%,
o0&
N, (x,,
o0&,
oN, (x,

05;

N—"

~~—

aN | (Xa )
0,
N, (x,)

0¢,
aN | (Xa )

where J(X,) is known as the Jacobian matrix and can be evaluated from

oax(x,) ay(x,) az(x,)] [oN,(x,)

o5 o8& o o5
s )| 20 ) )| | an(x,)
T Tes,  eg 04, 0%,
ox(x,) oylx,) az(x,)| |aN(x,)

| os, o5 og | | 0s
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0N, (X, ) |

0%,
aNB (Xa )

0%;

le Xlz
X2y XZZ
X8y X8z

(E12)



Substituting Eq. E11 into Eq. E9, the stress at location x, can be obtained, as

@.(x,)] 21100 0][o, 0O O
®,,(X,) 12100004 O
o(x, )= ®5(x,)|_2k|1 1 2 0 0 0|0 0 o
““7|@y(x,)| 2n,]0 0 0 1 0 0|0 4, g
@(X,) 0000T10[[6, O 0
| ®o(X,) ] 00000 1][3, & O]
N,(x,) O 0 ceeen Ny(x,) 0 0
0 Nx,) 0 - 0  Ngx,) 0 |-d(EL4)
0 0 Nl(xa) ...... NB(Xa)

= E6><6D6><3N3><24d24><1 = E6><686><24d24><l

where

g V2

o (E15)

a

o O B O O O
o B O O O O
. O O O O O

o O O kP PN
o O O N B
O O O N - -

indicates the stress-strain relation; D is the operator matrix; N is the shape function
matrix; and B is obtained by applying the derivatives in D to the shape functions in N.
Now assume a simple two-element coarse scale domain with twelve FE nodes (1
~ 12) and two quadrature points (A and B), as depicted in Fig. E3. The coarse scale
strain energy of this domain can be approximated by summing over the two quadrature

points, as

207



] ofeo - 55" bl

Prin [Py
Proz Pa22
:[5;\1 €ny €a3 Tas Vms 77A12]' Zlm WA+[§B1 sy €ss Ve Ve ?7512]' 2833 Wg
A23 B23
Puis Po1s
| Paa | Perz
e T [Pt |
Ep [w, 1|8z
_ Vma ] Wa | Pz
) Wg Po11
€s) Fe22
Wg :
[ V612 ] [ P12 | (E16)
:gTWIZX].ZQIle

where, for example, &, denotes the x direction component of the virtual strain at
quadrature point A. The weight of each quadrature point is related to the determinant of

the its Jacobian, as

W, =——[J(x,)] (E17)

Figure E3 A two-element coarse scale domain

Further discretizing the right hand side of Egq. E16 using finite element

interpolation while considering Eq. E14 yields
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discretize__

IIL ‘(_:T (ﬁ)a(u)jg = dT BT W12><12E12><12812x36d36><1 (E18)
where

E. .= Eoo E19
1212 — E ( )
6x6

Note that the size of the matrices in Eq. E18 varies with the number of nodes

and quadrature points in the domain. In Eq. E18,

D6><3
BlZ><36 = D12><6N6><36 = D N6><36 (EZO)
6x3
where
0, 0 07 [30, +30, +3.02 0 0 |
0 6y 0 0 J;18§1+J;28§2+J;3853 0
D, - 0 0 o, _ 0 * *0 * J€16§1+J;;26§2+J;;3653 (E21)
0 0, 5y 0 J318§1 +J328§2 +JS38§3 \]21851 "'Jzzagz +J238§3
az 0 ax ‘];1651 + ‘];2652 + ‘];3853 0 ‘]l*laél + ‘]1*264’2 + ‘]1*3653
_8y o, 0 | _\];1051 + \];2652 + J;3853 Jfﬁé + ‘]1*2862 + Jf38§3 0 |

and the size of the shape function matrix N can be written as (3>Ng)>(3>N,), with Ng
and N, being respectively the number of quadrature points and the number of FE nodes
in the domain.
Equation E18 gives the discretization of the coarse scale strain energy in Region
2. The coarse scale internal force acting on FE nodes in Region 2 therefore takes the
form
F°® = -B"WEBd =-K“%d (E22)

where KB is the equivalent stiffness matrix for the finite element analysis in Region 2.
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APPENDIX F
VARIATIONAL FORMULATION

FOR BRIDGING SCALE METHOD

This appendix demonstrates the derivation of the energy based variational formulation
for the bridging scale method. More detailed discusses regarding this topic can be found
in our earlier work [35].
We start by briefly reviewing the variational method of structural systems. The
total potential energy of a structural system can be defined as
112)=U(z)-W(z) (F1)
where U(z) is the strain energy of the structure and W(z) is the work done by the

applied conservative loads. If 7 (Z) is differentiable at a certain displacement g, the first

variation of I7 (Z) at z can be written as

§11(z2,2) = lim 2 [17(z + 72)- 11(2)] = & 11(z + )|

=0 7 d'[

(F2)

7=0

where Z is a small, arbitrarily chosen virtual displacement indicating the direction of
the perturbation, 7 is a small scalar, and z +7Z represents the perturbed state.
To obtain a stationary condition of the structure, the total potential energy needs
to be minimized, giving
1(z,2)=U(z,27)-W(z,2)=0 (F3)
which is called the variational equation of the static structural problem. Note that both
the solution z and the virtual displacement Z belong to the space of kinematically

admissible displacements, defined as
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z={ze|H"(@)[fz=00nxeT"} (F4)
in which H™ is the Sobolev space of order m. Note that Eq. F3 can be written in another
form as

a(z,2)=0(z), VieZ (F5)

where a(z,z) =3UJ(z,z) and /(z) = SW(z,z) are known as the energy bilinear form and

load linear forms, respectively. The displacement field z € Z that satisfies Eq. F5 is the
solution to the static structural problem.

In order to describe dynamic problems, Hamilton’s principle needs to be

introduced. If a time-dependent load is applied to the structure, the velocities of all

particles within the structure generate a kinetic energy, defined as

T(2,)= f[[ p2iz.d0 (F6)

where p(x) is the mass density. Assuming that the time derivative is independent of the

variation, the first variation of T(Z’t) can be obtained for a virtual velocity Z , as

bT(Z,t’ z,t)E _UL PZI z, dQ (F7)
Note that a variational formulation is given in terms of virtual displacements,
and therefore Eq. F7 is inappropriate since it involves the virtual velocity term Z,. To

convert Eq. F7 into its virtual displacement form, a virtual displacement Z needs to be
defined to satisfy the following additional conditions:

z(x0)=2z(x,t;)=0 (F8)
where t7 is the terminal time of the dynamic problem. Integrating Eq. F7 over the time

interval and using integration by part in time yields
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E 5T(z,,z, )dt = —f (“.J.QpZTZ'tt dQ)dt = —f d(z,,z)dt (F9)

where d(z,,Z) is called the kinetic energy bilinear form. The initial and terminal

condition terms involved during the integration by part have been eliminated due to Eq.
F8. Note that Eq. F9 is a general form of Hamilton’s principle that is suitable for both
structural analysis and design sensitivity analysis. For an elastic system subject to

conservative dynamic loading, the Hamilton’s principle states that the integral

" I1(z)—T(z,)|dt becomes stationary; that is,
[ l1(2)-7(z, )

5[ [(2)-T(z )] ot =0 (F10)

for all times from 0 to 77 and all virtual displacements Z € Z that also satisfy the
additional condition in Eq. F8.
Equation F10 can be rewritten in terms of strain energy bilinear form, load linear

form and kinetic bilinear form, as

[ [z 2)-(z)+d(z,, )] dt =0 (F11)
This general formulation provides the variational equation for structural dynamic
problems.

Now we derive the variational equations for the bridging scale method. As
discussed in Chapter 3, in bridging scale method, the total displacement is defined as
the sum of the coarse and fine scales, as

2(x,t) = u(x, t)+ v(x 1) (F12)
where the displacement fields are thought to be continuous functions at first glance. In

order to introduce the bridging scale, the structure domain needs to be described using
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atoms. Therefore, discrete functions z, u and v, which have values only at atomic
positions, are defined to represent the atomic displacement fields. Note that the coarse
scale can also be thought of as a continuous field », since it can be interpolated at points
in between atoms with FE shape functions; while u is simply a discrete version of ,
with function values of » at atomic locations. All the continuous and discrete

displacement fields above belong to a function space defined as

z=2UZ (F13a)
Z={z=u+v, u,ve[Hm(Q)hu,v:Oon Xth} (F13b)
Z={z=u+v, U,V€R3|U,V=OOI’]X€Fh} (F13c)

In bridging scale method, the strain energy U(z) of the domain can be evaluated

as the sum of the strain energy of all atomic bonds within the structure, which is a

function of atomic total displacement z. Taking first variation of U(z) at z in the

direction of Z € Z gives
(F14)

where z and Z denote vectors that consist of the displacements and virtual
displacements of all atoms in the domain, respectively. Since the derivative of the strain

energy U gives interatomic force, F14 can be rewritten as
a(z,z2)=(z,2)=-7"1(2) (F15)
where f(z) represents the MD interatomic force. Due to the coarse/fine decomposition

of the total displacement z, the strain energy U can be written as function of coarse scale

u and fine scale v. Taking variation of U (U, V) at u in the direction of U gives
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g7 ou (uv) gV (z) 6z

ou 0z a

SJ(U,T) = (F16)

where UeZ , and the partial derivative of U with respect to the coarse scale

displacement u is evaluated using a chain rule. The right hand side of Eq. F16 contains

auU (u,v)

ou

Z since is a function of not only u but also u + v, which is equal to the total

solution z. Substituting oU (Z)/ 0z =—f(z) into Eq. F16 while noting that oz/ou =1
yields

a(u,u)=aU(u,u) =-u'f(z) (F17)

By repeating the derivation of Eq. F16 for the fine scale, the variation of U at v

can also be obtained as
a(v,v) = J(v,v) =-v'f(z) (F18)
where Ve Z is a small virtual displacement of the fine scale.

The kinetic energy of the structure can be written as
T(z,)=22'M,z, (F19)

where M, is the atomic mass matrix. Taking variation of T (Z’t) at z , gives
5T(202,)=2Mz, (F20)
where Z represents an arbitrary virtual velocity. Similarly, based on the coarse/fine

decomposition, the kinetic energy can be rewritten as a function of U, and v, as
1 \T 1 T 1 T
T(u,t’v,t): E(u,t + V,t) MA(u,t + V,t): Eu,tMAu,t +EV,tMAV,t (F21)

where the cross terms of U, and v have been eliminated due to orthogonality. For
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example, UyM,v , =d;N"M,Qq, is eliminated since

N'M,Q =N"M,(I-NM'N"M,)
=N"M, —-N"M,NMN"M,
=N"M,-MMN'M,
=0

(F22)

For the purpose of developing a general energy formulation for the bridging
scale method, Eq. F21 is rewritten by considering the coarse scale as a continuous

function, giving
T =1m pulu, dQ+ EVIM, v, (F23)
2% 2
where u is the continuous coarse scale velocity and p is the mass density. The first
variation of 7 can be obtained for virtual velocities #, and V ,, respectively, as
oT(u, ,z,)=[[[ palu, do (F24a)
ST(v, v, )=VIM,v, (F24b)

Following steps described in Eqs. F7 to F9, Eqs. F24a, F24b and F20 can be

respectively converted into their virtual displacement forms, as

[ oT(u, &)t =] dlu,@)at (F25a)
tr . tr _

[Fot(v, v it =—["d(v,,v)dt (F25b)
fcsr(z,t,z,t)dt=—£Td(z,tt,z)dt (F25¢)

where the kinetic energy bilinear forms are defined as

d(u,.z)=[[[ pa"u,d0 (F26a)
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(v, ¥)=V"M,v, (F26b)
d(z2)=2"M,z, (F26c)

The virtual displacements # , V and Z belong to the function space defined as
Z2=2U2 (F27a)
Z= {z —i+9, 5,9 e[H"(Qf [z.5=00nxel", 7(x0)=a(xt, )=#(x0)=w(xt, )=0} (F27h)
Z={z=u+v, u,veR®*|u,v=00nxel", u(x0)=t(xt,)=v(x0)=v(xt;)=0}  (F27c)
By substituting Eqgs. F17, F18, F15 and Eqgs. F26a, F26b, F26¢ into Eq. F11, the
variational equations for the coarse and fine scales, as well as the total solution, can be

obtained respectively, as

[ JIT pu"pdet = [ 07 et (F28a)
J.OtT v'M AVt = J.: \_/Tf(Z)jt (F28h)
I: Z'M,z,dt = f; Z'f(z )t (F28c)

for all #,V,Z € Z . It is important to mention that the variational equations (Egs. F28a ~
F28c) are derived using the energy principles instead of taking derivatives of the
Lagrangian, as discussed in Chapter 3. Equations F28a and F28b, which are coupled
through the interatomic force f(Z), describe the energy of coarse and fine scales,
respectively. Equation F28c describes the energy of the total solution. Since the MD
simulation is confined into only a small area of the entire domain, Eq. F28c can be
rewritten exclusively for the atoms in Region I to obtain the variational equation for

MD simulation; that is
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L. R im
[[aM,a, dt=| q" [f(a,u)+ F™ ] dt (F29)
for all g e 7 , where q represents the total displacements of the atoms within the MD

region. The effect of the Region 2 fine scale displacements is accounted for by F™,
which is a column vector containing the impedance forces of all Region I boundary
atoms.

Outside the MD region, since the Region 2 fine scale is eliminated, the MD

force f(Z) in Eq. F28a is no longer available. Therefore, the strain energy of the

continuum is defined using a general expression

U () = % j j LZ ¢ (u)o(u)dQ, (F30)

where & and & are respectively strain and stress, which are continuous functions of the
coarse scale displacement field », while Q, represents the domain of Region 2. Taking

first variation of Eq. F30 gives the energy bilinear form, as
alu,z)=U(u.a)=[[[ & @ehe, (F31)

A general expression describing the kinetic energy of a continuum domain can

be found in Eq. F6. Replacing z+ in Eq. F6 with the coarse scale velocity field u, gives

T(s,)= %ﬂ [ pulud0 (F32)

which is identical with the first term on the right hand side of Eq. F23. The kinetic
energy bilinear form has been obtained in Eq. F26a. Substituting Eq. F26a and F31 into
Eq. F11, the variational equation for Region 2, without considering the external forces,

can be written as
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7 (1], purusdd=—{ [[[ & @e()o,n (F33)

forall zeZ. By combining Eqs. F28a and F33, we obtain the variational equation for

the coarse scale; that is

[ [[[ pX)a"u 0 dt= [ [UTf(z)— I, (ﬁ)a(u)jQz} dt (F34)
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APPENDIX G
MATERIAL DERIVATIVE OF REGION 2 COARSE SCALE IN

THREE DIMENSIONS

This appendix explains the material derivative of coarse scale strain energy in Region 2.

More specifically, we demonstrate how the F® term in Eq. 4.22 is evaluated.
Starting from the coarse scale energy equation (Eg. 4.7b), we taking material

derivative of the strain energy in Region 2, giving

NI, 7 @elati. = [[[, B @etlac, « [[, vl @pe] voo, « [[] & @oluivas,
S INE VuTV)O' )+&" (2)o(i)-2" (@ )a(VuTV) (G1)
VE @)V 47 (u)o-(u)dlvv]sz
where all five terms within the integral on the right hand side need to be discretized for
implementation using finite element method.
The discretization process will be similar as that performed in Appendix E. The
same two element domain (Fig. E3) with two quadrature points will be used for

demonstration.

The first term can be discretized as:
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Il o (varv e, " [EX(WAV ;] WEBC

H(valv

_ _ T
_ vV Vv \Y
=—d"{D,, | ™ N, +| % N,+ * N, |t WEBd
VBl 6x6 VBZ 6x6 Y VB3 6x6 '
_ v | Vv V \Y
=—d' D12><6 " Nﬁ{ " ] B,1+ D12><6[ " ] N,z+[ " ] B,z
VBl_ﬁxe VBl 1242 VBZ 6x6 VBZ 1242
T
\" Vv
+|Dpy| N+ * B,; WEBd
VBS 6x6 ’ VBS 1242 '

where
v, -
VAl
|:VA1 :| — VAl
VBl 6x6 VBl
VBl
L VBl
The discretization of the remaining four terms is as follows:
discretize .
[[[ " @e@ho, = d'B'EWBd
and

fIL o @elsanv e,

discretize __ V V V
= —d'B"WE Dm{ - } N, + Dm{ h } N, + Dw{ e } N,
VBl 66 VBZ 66 VBS 6x6

\ \Y \
J{ A v } BlJ{ A2 v } B,zJ{ A3 v } BB}d
Bl 1242 B2 1242 B3 1242

and
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JI[, V&' @e(w) va - Jﬁ 6" @), ol + 5 @)V,
( ),2 ( )‘/2+8 (ﬁ)o(u)y2V2+5 (17),30'(“)‘/3+§T(’7)‘7(”),3V3]d9

discretize __ V - \V/ . \V/ (GG)

= dTBLWE{ - } Bd+dTBTWE{ - } B'ld+dTB,T2WE{ h } Bd

VBl 1212 VBl 1212 VBZ 122
TITRT VA2 TITRT VA3 TITRT VA3
+d ' B'WE B.,d+d B,WE Bd+d' B'WE B .d
VBZ 12412 VB3 12412 VB3 12412

and
mﬂzy(g w)divVdQ = m " @), +&" @o(uV,, +& @)V, jo -

discretize

_ v _ v _ V
= d'B"WE| ™ Bd+d B"WE| "*? Bd+d"B"WE| "** Bd
VBll VBZ 2 VB3 3
= 11212 ' 1212 "9 _112x12

Substituting Eqgs. G2 ~ G7 into Eqg. G1 gives the discretized form of the material

derivative of the coarse scale strain energy of the Region 2 domain, as

[[ & @olpe, T BTPWEB + d"OWEBd + d'B"WEQ d + d'B"WEB -

- F.CB
where

~ |Vu,+V,,+V
P:|: All A2,2 A3,3 (Gg)

Ve Ve, +VA3,3:|12X12

and

- vV V \%
=-D A N,-|D A2 N,—-|D A3 N. (G10
Q { 12x6|: VBl:|6><6] g ( 12><6|: V52:|6er ? { 1ZX{ VB3 6x6 13( )

Hence, the material derivative of the coarse scale nodal force can be written in

the form

F® = K“®d-Kd (G11)

where

K =B"PEWB + QEWB +B'EWQ’ (G12)
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APPENDIX H

REGRESSION ANALYSIS IN HYBRID METHOD

This appendix provides detailed steps of the regression analysis used in the hybrid
method for approximating the sensitivity of crack propagation speed. We will focus on
shape design variable b, in the nano-beam example for demonstration.

First of all, a perturbation range for regression analysis needs to be selected. As
discussed in Chapter 6, we choose the perturbation range for b, to be Ab, € [0, 0.2], as

shown in Fig. 6.6b. Note that the S data within this range are of high accuracy

compared to re-analysis results (Fig. 6.14).
Next, as shown in Fig. H1, we fit a fourth order polynomial curve to the

predicted crack speed ‘slope’ (S;;) data within Ab; € [0, 0.2] using least squares method.

Note that we purposely set the slope of the curve at Ab, = 0 to zero, so that the

convergence behavior of the S curve can be captured and the impact of noise near Ab,

=0 can be minimized.

003

-0.035

004

-0.045

Predicted crack speed ‘slope’

005

| | | | |
0 0.0z 0.04 0.06 0.0 0.1 012 014 016 013 02

Ab,

Figure H1 Polynomial curve fitted to the predicted crack speed ‘slope’ data (Round 1
curve fitting)
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Apparently, the initial fitting curve (black dashed line in Fig. H1) is influenced

by noise. Therefore, we will remove the noisy data points from the original S data

using the initial fitting curve as a reference. As shown in Figs. H2a and H2b, we first

calculate the square of error for each S data point, where the error is simply the
difference between the S curve and the fitting curve at each perturbation. Then we

calculate the standard deviation of the squared error of all data from Ab, = 0 to Ab, =
0.2, and delete the data points with squared error larger than a certain multiple N of the

standard deviation; that is

error(i)’ > Ne\/’\l—lvJzzvl:(error(j)2 —y)z (H1)

where error(i) denotes the error of the ith data point, Ny is the number of predicted

crack speed data within the range being considered, and

NV
1= iZerror(j)2 (H2)
NV j=1

is the mean value of squared error. In this example, we choose N, = 6 as the threshold

for eliminating the noisy data.
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Figure H2 Removing noisy data, (a) square of error based on the original fitting curve,
(b) zoomed-in view, and (c) noisy data (red dots) removed

The step above — calculating standard deviation of squared error and removing
data points with large error — needs to be repeated for the remaining data points until the
result converges, i.e., the deviation calculated in the current iteration is identical to that
in the previous one. In Fig. H2c, the red data points are those with large error exceeding
the deviation threshold and have been removed as noise. Note that this result is obtained
after 5 iterations. The noise elimination result based on the original fitting curve for

design variable b, is shown in Fig. H3. As can be seen, all S data far away from the

initial fitting curve have been removed.
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02

Ab,

Figure H3 Result of noise elimination based

on the original fitting curve. Blue dotted

part of the curve is removed as noise

The next step is to repeat the curve fitting process; that is, fitting a curve to the

remaining S, data shown in Fig. H3. As can

be seen from Fig. H4, since some of the

data points have been removed, the new fitting curve (green curve) is slightly different

from the original one.

Predicted crack speed ‘slope’

Figure H4 Polynomial curve fitted to the pre

from the first round of noise elimi

Now the noise elimination process ca

o1

Ab,

02

dicted crack speed ‘slope’ data remained

nation (Round 2 curve fitting)

n be performed again to remove the data

that are too far away from the new fitting curve. This curve fitting and noise elimination

process needs to be repeated until the differe

nce between the vertical intercepts of the

fitting curves in the current round and the previous round is smaller than 1%. Then the

vertical intercept of the current fitting curve can be considered as a reasonable
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approximation of the sensitivity of crack speed. For design variable by, the crack speed

sensitivity is obtained after four rounds of curve fitting, as shown in Fig. H5.

below:
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Figure H5 Regression analysis result for design variable b,

The complete procedure of regression analysis is illustrated in the flowchart
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[ ‘Slope” of predicted crack speed ]
[
Choose perturbation range for curve fitting
[

Fit a polynomial curve to the crack speed ‘slope’ data

Calculate square of error

Calculate standard deviation of squared error
[

Remove data with large error

Yes

Fit a polynomial curve to remaining crack speed ‘slope’ data

Difference < 1%?

Yes

Figure H6 A flowchart of regression analysis

In our numerical example, it is found empirically that a fourth order polynomial
curve will generally be adequate in fitting the data within a small perturbation range
near the current design. In fact, the regression analysis result is not very sensitive to the
order of the polynomial. Based on our experience, the polynomial order must be at least

three to capture the trend of the S curve, meanwhile, it should not be too large (such

as eight), otherwise the vertical intercept of the fitting curve will be significantly
affected by noise. Figure H7 gives the regression analysis results using polynomial
curves of orders from three to five. It turns out that the difference between the crack

speed sensitivities obtained is within 2%.
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Crack speed sensitivity: -4.429E-02

amE
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Predicted crack speed ‘slope’

Figure H7 Regression analysis results with (a) cubic curve, (b) fourth order curve, and
(c) fifth order curve
Another adjustable parameter is the multiple N in Eq. H1, which serves as a
criterion for noise elimination. Again, the regression analysis result is not very sensitive
to Ne as long as Ne is neither too large nor too small. The regression analysis results
with different N ranging from 4 to 12 are shown in Table H1. As can be seen, the

difference between calculated sensitivity coefficients is negligible (less than 2%).

Table H1 Regression analysis results with various Ne

Ne 4 6 8 10 12
Crack speed sensitivity | -4.351E-02  -4.402E-02  -4.394E-02  -4391E-02  -4.378E-02
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