
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

SHAPE SENSITIVITY ANALYSIS FOR THREE-DIMENSIONAL MULTI-SCALE 

CRACK PROPAGATION PROBLEMS USING THE BRIDGING SCALE METHOD 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

By 

 

YUNXIANG WANG 

Norman, Oklahoma 

2014 

  



 

 

 

 

 

 

SHAPE SENSITIVITY ANALYSIS FOR THREE-DIMENSIONAL MULTI-SCALE 

CRACK PROPAGATION PROBLEMS USING THE BRIDGING SCALE METHOD  

 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING 

 

 

 

 

 

 

 

 

BY 

 

 

 

 

        

Dr. Kuang-Hua Chang, Chair 

 

 

 

        

Dr. Peter J. Attar 

 

 

 

        

Dr. Kurt C. Gramoll 

 

 

 

        

Dr. Kanthasamy K. Muraleetharan 

 

 

 

        

Dr. Prakash Vedula 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by YUNXIANG WANG 2014 

All Rights Reserved.



iv 

 

ACKNOWLEDGEMENTS 

 

I would like to start by acknowledging my advisor and mentor, Dr. Kuang-Hua Chang, 

for his guidance and support during my graduate research. He has been completely 

selfless in sharing with me the fruits of his wisdom. I have benefited immensely from 

his passion for research and his deep understanding of this challenging and interesting 

field. This dissertation would not have been possible without the time and patience that 

he generously invested in commenting on and revising the manuscript. 

I am also thankful to my dissertation committee members Dr. Peter J. Attar, Dr. 

Kurt C. Gramoll, Dr. Kanthasamy K. Muraleetharan, and Dr. Prakash Vedula for 

spending their valuable time on reviewing my dissertation. 

My appreciation also goes to the AME School and the Graduate College for the 

financial support during my studies at OU. I am grateful to Dr. Peter J. Attar, Dr. 

Kuang-Hua Chang, Dr. Farrokh Mistree, Dr. M. Cengiz Altan, Dr. Mrinal C. Saha, Dr. 

Alfred G. Striz, and Dr. J. David Baldwin for their professional lectures that provided 

me with useful academic knowledge and techniques for both my graduate research and 

my future career. I also want to thank all my friends and colleagues for the generous 

help that they offered in various aspects of my life in Norman.  

 Last but not least, I would like to express the deepest appreciation to my parents 

for raising me with love, and to my wife Lan Ji for her constant encouragement and 

unconditional support over the past four years. 

 

 

 

 



v 

 

TABLE OF CONTENTS 

 

 

ACKNOWLEDGEMENTS .......................................................................................... iv 

TABLE OF CONTENTS ............................................................................................... v 

LIST OF FIGURES ..................................................................................................... viii 

LIST OF TABLES ....................................................................................................... xiii 

LIST OF KEY SYMBOLS ......................................................................................... xiv 

ABSTRACT ................................................................................................................. xvi 

 

CHAPTER 1  Introduction ............................................................................................ 1 

1.1 Background and Motivation .............................................................................. 1 

1.2 Literature Review .............................................................................................. 3 

1.3 Objectives and Scope ...................................................................................... 11 

1.4 Outline of the Thesis ....................................................................................... 13 

 

CHAPTER 2  Shape Design Sensitivity Analysis – A Tutorial Example ................ 15 

2.1 Introduction ..................................................................................................... 15 

2.2 Simple Bar Example – Static Problem ............................................................ 18 

2.2.1 Structural Analysis ................................................................................ 19 

2.2.2 Shape Design Sensitivity Analysis ....................................................... 23 

2.2.2.1 Overall Finite Difference Method ........................................... 25 

2.2.2.2 Discrete Method ...................................................................... 27 

2.2.2.3 Continuum Method .................................................................. 30 

2.2.2.4 Comments on Sensitivity Analysis Approaches ...................... 36 

2.3 Simple Bar Example – Dynamic Problem ....................................................... 37 

2.3.1 Structural Analysis ................................................................................ 38 

2.3.2 Discrete Sensitivity Analysis ................................................................ 40 

2.3.3 Continuum Sensitivity Analysis ........................................................... 42 

 

CHAPTER 3  Multi-scale Simulation of Dynamic Crack Propagation .................. 45 

3.1 Overview ......................................................................................................... 45 

3.2 Basics of Molecular Dynamics ........................................................................ 45 

3.3 Bridging Scale Method – A Tutorial 1-D Problem ......................................... 48 

3.3.1 Bridging Scale Fundamentals ............................................................... 49 

3.3.2 Multi-scale Equations of Motion .......................................................... 51 

3.3.3 Elimination of Fine Scale outside the MD Region ............................... 52 



vi 
 

3.3.4 Coarse Scale Internal Force .................................................................. 58 

3.3.5 Staggered Time Integration Scheme ..................................................... 60 

3.3.6 1-D Numerical Example ....................................................................... 62 

3.4 Bridging Scale Method for Higher Dimensions .............................................. 65 

3.5 Implementation for Crack Propagation Problems ........................................... 70 

3.6 Numerical Example: Part 1 ............................................................................. 72 

3.6.1 Simulation Model .................................................................................. 73 

3.6.2 Simulation Result .................................................................................. 75 

3.6.3 Physical Interpretation .......................................................................... 77 

 

CHAPTER 4  Analytical Shape Sensitivity Analysis for Bridging Scale 

Method ................................................................................................. 81 

4.1 Overview ......................................................................................................... 81 

4.2 Design Parameterization and Calculation of Design Velocity Field ............... 82 

4.3 Variational Formulation for Bridging Scale Method ...................................... 86 

4.4 Discontinuity in Shape DSA of Bridging Scale Problems .............................. 88 

4.5 Continuum Shape Sensitivity Analysis for Bridging Scale Method ............... 91 

4.6 Implementation Aspects for Sensitivity Analysis ........................................... 94 

4.7 Numerical Example: Part 2 ............................................................................. 96 

4.7.1 Design Parameterization ....................................................................... 97 

4.7.2 Sensitivity Accuracy Verification ......................................................... 98 

 

CHAPTER 5  Performance Measure: Crack Propagation Speed ......................... 107 

5.1 Overview ....................................................................................................... 107 

5.2 Performance Measure of Crack Propagation Speed ...................................... 108 

5.3 Differentiability of Crack Propagation Speed ............................................... 111 

5.3.1 Theoretical Discussion ........................................................................ 111 

5.3.2 Differentiability of Crack Speed in Numerical Simulations ............... 116 

5.4 Numerical Example: Part 3 ........................................................................... 121 

 

CHAPTER 6  Hybrid Sensitivity Analysis Method for Crack Propagation 

Problems ............................................................................................ 125 

Nomenclature ...................................................................................................... 125 

6.1 Overview ....................................................................................................... 126 

6.2 Initial Concept – Standard Hybrid Method ................................................... 127 

6.3 Hybrid Method with Regression Analysis .................................................... 132 

6.4 Numerical Example: Part 4 ........................................................................... 138 

6.4.1 Crack Speed Sensitivity Calculation Using Hybrid Method .............. 138 



vii 
 

6.4.2 Discussions and Justifications ............................................................. 142 

6.4.2.1 Accuracy of ‘Slope’ of Predicted Crack Speed ..................... 145 

6.4.2.2 Justification of Hybrid Method with Regression Analysis .... 155 

6.4.3 Accuracy Verification of Crack Speed Sensitivity ............................. 156 

6.4.4 What-if Study ...................................................................................... 157 

 

CHAPTER 7  Conclusions and Future Works ........................................................ 161 

7.1 Conclusions ................................................................................................... 161 

7.2 Future Works ................................................................................................. 162 

 

REFERENCES ........................................................................................................... 164 

 

APPENDIX A  Dynamic Fracture in Brittle Materials – Continuum Theory 

and Atomistic Simulations .............................................................. 169 

A1 Basics of Linear Elastic Fracture Mechanics ................................................ 169 

A2 Atomistic Simulations ................................................................................... 173 

APPENDIX B  Adjoint Variable Method ................................................................ 181 

APPENDIX C  Derivation of Time History Kernel for 1-D Atomic Lattice ......... 187 

APPENDIX D  Derivation of Impedance Boundary Condition for 3-D Atomic 

Lattice ............................................................................................... 193 

APPENDIX E  Discretization of Region 2 Coarse Scale in Three Dimensions .... 202 

APPENDIX F  Variational Formulation for Bridging Scale Method ................... 210 

APPENDIX G  Material Derivative of Region 2 Coarse Scale in Three 

Dimensions ....................................................................................... 219 

APPENDIX H  Regression Analysis in Hybrid Method ......................................... 222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF FIGURES 

 

Figure 1.1  (a) Different length scales associated with dynamic fracture [8]. (b) 

“Mirror-mist-hackle” transition in dynamic crack instability [9] ................ 5 

Figure 1.2  A micro-scale resonator with length 0.2 μm [29] ........................................ 9 

Figure 1.3  Illustration of design variables in different categories, (a) a built-up 

structure in which material properties and cross-sectional areas of the 

truss members can be changed [30], (b) configuration design by 

adjusting the orientations and lengths of truss members, (c) shape 

design for a 2-D engine connecting rod [1], and (d) topology 

optimization of a solid beam [31] .............................................................. 10 

Figure 2.1   Different approaches for design sensitivity analysis ................................. 18 

Figure 2.2  Static one-dimensional bar example .......................................................... 19 

Figure 2.3   Finite element model of the 1-D bar structure. Two truss elements are 

used to discretize the structural domain .................................................... 21 

Figure 2.4   Changing of structural domain .................................................................. 24 

Figure 2.5   Linear design velocity field defined for the simple bar example, (a) 

structure before design change, (b) structure after design change with 

length increment δl, and (c) linear design velocity field ........................... 25 

Figure 2.6   Influence of perturbation size in overall finite difference method ............ 27 

Figure 3.1  Force and potential energy for the LJ 6-12 potential ................................ 47 

Figure 3.2   One-dimensional illustration of bridging scale coarse-fine 

decomposition ............................................................................................ 49 

Figure 3.3  A 1-D bridging scale structure .................................................................. 53 

Figure 3.4  (a) Original 1-D atomic system, (b) Region 2 fine scale eliminated by 

introducing the impedance boundary force  tf imp

0
 .................................. 55 

Figure 3.5  1-D time history kernel .............................................................................. 56 

Figure 3.6  A 1-D element with two nodes .................................................................. 59 

Figure 3.7  A one-dimensional bridging scale problem ............................................... 63 

Figure 3.8  (a) Initial displacement of the 1-D bridging scale problem within        

[-0.3,0.3], and (b) truncated Gaussian pulse .............................................. 63 

Figure 3.9  Initial condition implemented on 1-D bridging scale structure ................. 64 

Figure 3.10  Results of the 1-D bridging scale example problem, (a) with 

impedance boundary condition, and (b) without impedance boundary 

condition .................................................................................................... 64 

Figure 3.11  Scheme of a 2-D or 3-D bridging scale domain ........................................ 66 

Figure 3.12  A unit cell from the FCC atomic lattice to be used in 3-D numerical 

example ...................................................................................................... 67 

Figure 3.13  An atom (l, m, n) with its neighboring (interacting) atoms in the FCC 

lattice ......................................................................................................... 67 

Figure 3.14  The m = 1 layer of a periodic 3D FCC lattice with indices. The dashed 

line represents the boundary between the MD and the FE-only regions ... 68 

Figure 3.15  Diagonal components of the time history kernel matrix θ ........................ 69 



ix 

 

Figure 3.16  (a) An atom α within a FCC lattice, (b) deformed lattice, in which 

atom α becomes a surface atom ................................................................. 71 

Figure 3.17  (a) A specimen with a horizontal edge crack. (b) A typical crack tip 

location history curve ................................................................................ 72 

Figure 3.18  3-D nano scale beam model, (a) schematic illustration, and (b) FE 

mesh in x-z plane ....................................................................................... 74 

Figure 3.19  Displacement boundary condition applied to the top face of the beam .... 74 

Figure 3.20  Bridging scale simulation results at various time steps. Contours of z 

direction displacements shown .................................................................. 75 

Figure 3.21  Bridging scale simulation result within the MD area (a) 3-D snapshot 

at t = 15000Δtm, and (b) zoomed-in view near the crack tip with crack 

surface atoms highlighted .......................................................................... 76 

Figure 3.22  Crack tip location history curve ................................................................ 77 

Figure 3.23  z displacement distribution along z direction at time steps 2400Δtm and 

2800Δtm...................................................................................................... 77 

Figure 3.24  z displacement history of atom XA ............................................................ 79 

Figure 3.25  Instability of brittle crack propagation. (a) Crack surface roughened at 

instability, where atoms near the crack are plotted in blue, except for 

crack surface atoms being highlighted in red. (b) Calculation of crack 

speed before instability .............................................................................. 80 

Figure 4.1  Engine connecting rod [1] ......................................................................... 82 

Figure 4.2  A cubic Bezier curve and its variation due to design change [46] ............ 83 

Figure 4.3  A 2-D model with design boundary parameterized using a Bezier 

curve. Boundary nodes move due to the location change of control 

point p2 [46] ............................................................................................... 85 

Figure 4.4  1-D bridging scale structure with atom α inside element with nodes i 

and j. (a) Before design change, and (b) after design change (length 

changed to l + δl) ....................................................................................... 89 

Figure 4.5  (a) Behavior of performance measure ψ in design space. (b) A 

performance measure ψ that shows high nonlinearity ............................... 95 

Figure 4.6  Design parameterization for the nano-beam. (a) Parametric boundary 

curve, and (b) design velocity fields for individual design variables ........ 97 

Figure 4.7  Atom XA and node XN chosen for sensitivity accuracy verification ......... 98 

Figure 4.8  Accuracy index convergence study for atom XA. Accuracy indices for 

z displacement sensitivity with respect to b2 plotted ................................. 99 

Figure 4.9  z displacement at XA in time and design spaces. (a) z displacement 

surface in 3-D displacement-time-design space, (b) z displacement in 

time domain at perturbed design δb2 = 0.5, and (c) z displacement in 

design domain at t = 11,660Δtm ............................................................... 104 

Figure 4.10   Nonlinearity of atomic displacement in design space. (a) z 

displacement history curves of atom XA at different perturbed designs, 

(b) nonlinearity of z displacement at t = 11,668Δtm, and (c) 

nonlinearity of z displacement at 11,653Δtm ........................................... 105 

Figure 5.1  Averaging crack tip location over time interval D .................................. 109 



x 

 

Figure 5.2 Illustrative crack propagation problem, (a) schematic structure with a 

horizontal crack, and (b) crack tip location curve near the two crack tip 

jumps ....................................................................................................... 112 

Figure 5.3  (a) Crack tip location curve at current design b
0
, (b) P parameters of 

atoms at T1 and T2, and (c) crack tip location curve at perturbed design 

b
0
+δbi_1 .................................................................................................... 113 

Figure 5.4  The Pb surface in Pb -time-design space. (a) Intersection between the 

Pb surface and the b = b
0
 plane, (b) Pb vs. time at b = b

0
, (c) 

intersection between the Pb surface and the t = T1 plane, (d) Pb at t = T1 

vs. design, (e) intersection between the Pb surface and the Pb = Pcrit 

plane, and (f) TJ vs. design ...................................................................... 115 

Figure 5.5  Discrete crack tip location curve within interval D1 in numerical 

simulation with time step size Δtm at (a) current design b
0
, (b) 

perturbed design b
0
+δbi_1, (c) perturbed design b

0
+δbi_crit, and (d) the 

discontinuous averaged crack tip location curve in design space ........... 117 

Figure 5.6  Discrete crack tip location curve in numerical simulation with time 

step size Δtm/2 at (a) current design b
0
 and (b) perturbed design 

b
0
+δbi_1, and (c) the discontinuous averaged crack tip location curve in 

design space ............................................................................................. 119 

Figure 5.7  Reducing time step size refines averaged crack tip location (C) curve 

in design space ......................................................................................... 120 

Figure 5.8  Refining the stepped crack speed curve in design space by reducing 

time step size ........................................................................................... 120 

Figure 5.9  Nonlinearity of crack propagation speeds calculated with different 

average interval sizes. (a) Crack speed vs. time, (b) crack speed at the 

first chosen time step vs. design perturbation, and (c) crack speed at 

the second chosen time step vs. design perturbation ............................... 122 

Figure 5.10  Performance measure defined for numerical example. A straight line 

(red dashed line) is fitted to the crack speed locations within 9000Δtm 

~ 15000Δtm .............................................................................................. 123 

Figure 6.1  Flowchart of standard hybrid method ...................................................... 129 

Figure 6.2  Illustration of standard hybrid method. (a) Crack speed curve in design 

space, and (b) zoomed-in view with predicted crack speed displayed .... 130 

Figure 6.3  Comparison between smooth and stepped crack speed curves in design 

space, (a) theoretically differentiable VT curve whose ‘slope’ 

converges to a constant value (theoretical sensitivity dVT/dbi), and (b) 

stepped V
~

 curve whose ‘slope’ is discontinuous and does not 

converge .................................................................................................. 132 

Figure 6.4  Illustration of hybrid method with regression analysis. (a) Crack speed 

curves, and (b) crack speed ‘slope’ curves .............................................. 133 

Figure 6.5 Choosing design perturbation range for regression analysis ................... 136 

Figure 6.6  ‘Slope’ of predicted crack speed for (a) shape design variable b1, (b) 

shape design variable b2, and (c) shape design variable b3. The curve 

for b2 is zoomed in at [0.145, 0.155] ....................................................... 139 

Figure 6.7  Regression analysis results for (a) shape design variable b1, (b) shape 

design variable b2, and (c) shape design variable b3 ............................... 141 



xi 
 

Figure 6.8  Flowchart of the calculation of 
V
~S  ......................................................... 145 

Figure 6.9  Flowchart of the discussion regarding different ‘accuracies’ involved 

in hybrid method ...................................................................................... 146 

Figure 6.10  Nonlinearity of P parameter of atom XA at t = 11,653Δtm in design 

space ........................................................................................................ 147 

Figure 6.11  Accuracy of crack tip location prediction when the P parameter of 

atom a is (a) away from the critical value and (b) close to the critical 

value ........................................................................................................ 148 

Figure 6.12  Difference between the crack tip location curves obtained from re-

analysis and through sensitivity prediction for perturbed design Δb2 = 

0.1. Time steps within 9000Δtm ~ 15000Δtm are plotted ......................... 149 

Figure 6.13  Predicted crack speeds in design space for individual design variables. 

Blue data points represent crack speed V from re-analysis. Predicted 

crack speed curve for b2 is zoomed in at [0.006, 0.017] ......................... 152 

Figure 6.14  Accuracy verification for ‘slope’ of predicted crack speed (
V
~S ) for 

individual design variables. Blue data points represent S
V
 obtained 

from re-analysis ....................................................................................... 155 

Figure 6.15  Accuracy verification of crack speed sensitivity for (a) shape design 

variable b1, (b) shape design variable b2, and (c) shape design variable 

b3 .............................................................................................................. 156 

Figure 6.16  Sensitivity coefficients of crack propagation speed with respect to 

three design variables .............................................................................. 158 

Figure 6.17  Comparison between crack propagation speeds from what-if studies 

and re-analysis for various design perturbations ..................................... 159 

Figure 6.18  Crack tip location curves for perturbed designs with various scaling 

factors ...................................................................................................... 160 

Figure A1  (a) Three modes of loading [8]. (b) The polar coordinate ahead of a 

crack tip [51] ............................................................................................ 171 

Figure A2  A schematic illustration of the simulation model [8] .............................. 174 

Figure A3  Comparison between σxx measured in MD simulations and the 

prediction of the continuum mechanics theory for different crack 

speeds. The solid curves represent continuum solution, and the red 

dots are measured in MD simulations [8] ................................................ 175 

Figure A4  Principal strain field at various crack speeds (a) v/cR ≈ 0, (b) v/cR ≈ 0.5, 

(c) v/cR ≈ 1 [8].......................................................................................... 176 

Figure A5  Crack speed history for the harmonic material model in simulation [8] . 176 

Figure A6  (a) A biharmonic potential with stiffening effect. (b) Change of 

reduced limiting crack speed (Limiting crack speed/Rayleigh wave 

speed cR) as a function of εon [8] .............................................................. 177 

Figure A7  Interatomic force versus atomic bond length for various choices of 

parameters rbreak and Ξ [8] ....................................................................... 178 

Figure A8  Critical instability speed as a function of rbreak for different choices of 

Ξ [8] ......................................................................................................... 179 

Figure B1  Adjoint structure for the simple bar example .......................................... 183 



xii 
 

Figure C1  (a) Original 1-D atomic system, (b) l < 0 atoms replaced with  tf ext

0 , 

and (c) Region 2 fine scale eliminated by introducing the impedance 

boundary force  tf imp

0
 ............................................................................ 189 

Figure D1  An atom (l, m, n) with its neighboring (interacting) atoms in the FCC 

lattice ....................................................................................................... 193 

Figure D2  The m = 1 layer of a periodic 3D FCC lattice with indices. The dashed 

line represents the boundary between the MD region and the FE-only 

region ....................................................................................................... 194 

Figure D3  The external force that replaces the effect of the removed n < 0 atoms, 

(a) original system, (b) n < 0 atoms replaced with  text

ml 0,,f , and (c) 

Region 2 fine scale eliminated by introducing impedance boundary 

force  timp

ml 0,,f  ............................................................................................. 196 

Figure D4  Diagonal components of the time history kernel matrix θ ...................... 199 

Figure E1  Undeformed FCC lattice centered at atom  ........................................... 203 

Figure E2  A hexahedral isoparametric element with eight nodes (1 ~ 8) ................ 206 

Figure E3  A two-element coarse scale domain ........................................................ 208 

Figure H1  Polynomial curve fitted to the predicted crack speed ‘slope’ data 

(Round 1 curve fitting) ............................................................................ 222 

Figure H2  Removing noisy data, (a) square of error based on the original fitting 

curve, (b) zoomed-in view, and (c) noisy data (red dots) removed ......... 224 

Figure H3  Result of noise elimination based on the original fitting curve. Blue 

dotted part of the curve is removed as noise ........................................... 225 

Figure H4  Polynomial curve fitted to the predicted crack speed ‘slope’ data 

remained from the first round of noise elimination (Round 2 curve 

fitting) ...................................................................................................... 225 

Figure H5  Regression analysis result for design variable b2 .................................... 226 

Figure H6  A flowchart of regression analysis .......................................................... 227 

Figure H7  Regression analysis results with (a) cubic curve, (b) fourth order curve, 

and (c) fifth order curve ........................................................................... 228 
 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

LIST OF TABLES 

 

Table 4.1  Accuracy verification of z direction sensitivity coefficients with respect 

to b1 for atom XA ........................................................................................ 100 

Table 4.2  Accuracy verification of z direction sensitivity coefficients with respect 

to b2 for atom XA ........................................................................................ 101 

Table 4.3  Accuracy verification of z direction sensitivity coefficients with respect 

to b3 for atom XA ........................................................................................ 101 

Table 4.4  Accuracy verification of z direction sensitivity coefficients with respect 

to b2 for node XN ........................................................................................ 101 

Table 6.1  Sensitivity coefficients of crack propagation speed ................................... 142 

Table 6.2  Accuracy verification of P parameter sensitivity coefficients for atom 

XA. Design perturbation used for calculating the accuracy index is 

0.0001 ......................................................................................................... 147 

Table 6.3  Accuracy of predicted crack speed ............................................................. 153 

Table 6.4  Accuracy verification for what-if studies ................................................... 159 

Table H1  Regression analysis results with various Ne ............................................... 228 

 

 

  



xiv 

 

LIST OF KEY SYMBOLS 

 

bi  =  ith design variable  

b  =  vector of design variables 

b
0
  =  current design  

C  =  averaged crack tip location  

d  =  vector of FE modal displacements 

f  =  vector of interatomic forces 

imp

ml 0,,f   =  impedance boundary forces upon atom (l,m,0) 

ha  =  equilibrium atomic distance 

he  =  length of a 1-D finite element 

H
m

(Ω)  =   Sobolev space of order m 

K  =  stiffness matrix 

mA  =  atomic mass 

M  =  consistent FE mass matrix 

MA  =  diagonal mass matrix containing atomic masses 

N  =  matrix of shape functions 

NI(xα) =  shape function of node I evaluated at the initial position xα of atom α 

P  =  centro-symmetry parameter 

P  =  vector of P parameters 

P   =  first Piola–Kirkhoff stress 

q  =  vector of atomic displacements computed in MD simulation 

q   =  atomic virtual displacements 



xv 

 

t  =  time 

Δt, Δtm  =  FE time step size and MD time step size 

tT   =  termination time 

u , u  =  continuous and discrete coarse scale displacement fields 

u , u  =  continuous and discrete coarse scale virtual displacement fields  

U  =  potential energy of the system 

v , v   =  continuous and discrete fine scale displacement fields 

V  =  design velocity field 

V  =  crack propagation speed  

V
~

  =  predicted crack speed 

x  =  spatial coordinate 

xα  =  initial location of atom α 

z, z   =  discrete and continuous displacement fields 

z , z   =  discrete and continuous virtual displacement fields 
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ABSTRACT 

 

During the past two decades, a variety of concurrent multi-scale simulation methods 

have been developed, such as the bridging scale method, in which MD simulation is 

performed only at localized areas of interest, while the response of rest of the domain is 

solved by using finite element method (FEM). This thesis presents a shape sensitivity 

analysis approach for multi-scale crack propagation problems based on the bridging 

scale method. The objective is to reveal the impact of macroscopic shape change on the 

speed of crack growth at microscopic level. Two major challenges exist in shape 

sensitivity analysis of coupled atomistic/continuum crack propagation problems, 

namely the discrete nature of the MD simulation and the non-differentiability of the 

performance measure of crack propagation speed. In this thesis, the shape sensitivity 

expressions are derived using direct differentiation method by taking material derivative 

of a continuum variational formulation of the bridging scale. To get around the 

discontinuity issue in continuum shape design due to the discrete nature of the MD 

simulation, the design velocity fields are defined in a way that the shape of the MD 

region does not change. The derived shape sensitivity formulation can be used to 

analytically compute the sensitivity coefficients of structural responses at the atomistic 

level. In addition, a performance measure that quantifies the speed of crack is 

established to support the sensitivity calculation for crack propagation speed. To 

overcome the non-differentiability of crack speed in design space, a hybrid method that 

combines analytical sensitivity analysis and regression analysis is developed. The 

proposed analytical sensitivity approach and hybrid method are implemented 



xvii 
 

numerically in a nano-beam example, and the accuracy is verified using overall finite 

difference results.  

The analytical sensitivity expressions in this thesis are formulated based on a 

rigorous mathematical foundation, and is generalized for three-dimensional structures 

with arbitrary geometric shape. In calculating the sensitivity of crack speed, the hybrid 

method with regression analysis is much more efficient than overall finite difference. 

The major contributions of this thesis are: first, it demonstrates the feasibility of shape 

design of coupled atomistic/continuum systems for the first time; and second, the 

proposed sensitivity approach accurately predicts the correlation between macroscopic 

shape change and microscopic crack propagation speed, and therefore establishes the 

foundation of multi-scale residual-life-based structural optimization without involving 

traditional fracture mechanics theory.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background and Motivation 

Fatigue of mechanical systems subject to repeated cyclic loading has been one of the 

primary concerns in structural design. When the initial crack propagates and reaches a 

critical size, localized damage occurs, which eventually leads to failure of the structural 

component. However, the mere presence of crack does not condemn a structure to be 

unsafe. In fact, it has been a common practice to periodically inspect critical structural 

components in order to identify presence of cracks, monitor crack growth, and predict 

useful remaining service life – or residual life. On the other hand, it now becomes 

possible in many cases to simulate crack propagation and hence estimate residual life 

using mechanics-based analysis techniques. More importantly, by investigating the 

impact of geometric shape change on crack growth speed, engineers are able to enhance 

the durability and maximize the service life of structural components through shape 

design optimization.  

To understand crack propagation and predict residual life, traditional 

engineering simulation methods have made extensive use of continuum level modeling 

via empirical constitutive relations and numerical methods such as extended finite 

element method (XFEM). However, continuum based theories cannot give a fracture 

criterion from a physical point of view, and therefore are not capable of accounting for 

all experimentally observed characteristics of crack propagation. For example, it is well 

known that a crack grows in different patterns along different orientations within a 



2 

 

crystal lattice, whereas continuum mechanics views material as continuous and 

homogenous. In addition, the resolution of a numerical method is limited to the size of 

the continuum element for which the constitutive relation employed remains valid. This 

may lead to a result of significant variation due to factors such as mesh size and 

prescribed crack growth size. For example, it has been shown in [1] that the predicted 

residual life of a structural component can differ up to 90% between finite element 

models of coarse and fine meshes, which poses difficulties and uncertainties to residual-

life-based structural design.  

In order to alleviate such uncertainties, computational methods that can better 

capture the physical behavior of cracks are desirable. Most often, physical phenomena 

at atomistic level, such as a fracture, can be simulated using atomistic simulation 

methods, such as molecular dynamics (MD). During the past few decades, due to the 

availability of accurate interatomic potentials for a wide range of materials and the rapid 

progression of computational power, MD simulation techniques advanced greatly and 

have become prominent as a tool for describing the dynamics of the material at 

localized and highly nonlinear regions, where the continuum assumption ceases to be 

valid. However, the length and time scales that can be probed using MD are still fairly 

limited. Even with the world’s largest computer to-date, MD simulation is generally 

impractical for structures with length scales larger than a few microns due to the 

enormous number of degrees of freedom required to be solved. Therefore, atomistic 

simulations cannot be used alone for solving macroscopic systems, and it then becomes 

logical to combine atomistic and continuum descriptions of a problem in some manner, 
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while confining the former into localized regions where atomistic level dynamics are 

important. 

It is precisely for bridging the gap between dynamic atomistic and continuum 

simulations that concurrent multi-scale simulation techniques are developed. These 

methods have recently become both popular and necessary due to the development of 

nano-technology. Their ability to examine atomistic-scale material behavior in great 

detail also makes them suitable for simulating dynamic crack propagation. On one hand, 

the nonlinear behavior near the crack tip can be accurately captured by the atomistic 

simulation; on the other hand, the overall computation expense can be significantly 

reduced by performing atomistic simulation only within localized areas of interest. 

Therefore, multi-scale simulations appear to be promising for allowing researchers to 

gain new insight into dynamic crack propagation and fatigue problems. Once these 

methods are extended to practical applications, it is possible to eliminate the need of 

traditional fracture mechanics theory developed decades ago that depends largely on 

assumptions and empirical constants. In the meantime, structural design based on multi-

scale simulations can be carried out to prolong the residual life of structural components 

with better accuracy. 

1.2 Literature Review 

Atomistic Simulations of Dynamic Crack Propagation 

The origin of virtually all fracture phenomena lies at atomistic scale. A macroscopic 

fracture process can only be understood if the mechanisms on smaller length scales are 

properly taken into account. The classical theories of continuum mechanics have been 

the basis of most theoretical and computational tools, forming the foundation for 
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numerical approaches such as the finite element method (FEM). However, at atomistic 

level, while the material inhomogeneity reaches a length scale comparable to the overall 

size of the physical phenomena, the basic assumption of continuum theories – materials 

can be treated without explicitly considering the underlying microstructure – does not 

hold any more, and hence the continuum description of materials becomes questionable. 

In contrast, atomistic modeling provides a general and fundamental description of 

material properties and deformation processes. Atomistic methods are essentially first-

principles-based approaches that do not depend on any phenomenological assumption; 

therefore, they are capable of capturing nano-scale physical mechanisms such as the 

propagation of cracks. 

Atomistic simulation of dynamic crack propagation is a modern development 

since last several decades due to the advances in computational power. Numerous 

studies have been reported that investigate crack growth behavior and related physical 

phenomena (such as dislocation emission, brittle to ductile transition, etc.) at 

microscopic level using atomistic methods. Here we mention only a few representative 

studies. For example, a large-scale molecular dynamics simulation using more than one 

billion atoms was performed by Abraham et al. [2] to reveal the underlying physics of 

ductile material failure and work-hardening in crystal samples. Gordon et al. [3] 

examined near-crack-tip deformation in iron and iron alloy single crystals under pure 

mode-I loading by employing the molecular statics technique; the influence of Ni and 

Cr solutes on the failure mechanisms of micro-cracks in single crystals of pure iron was 

studied. Gao et al. [4] carried out molecular dynamics simulations using a self-adaptive 

time step algorithm in order to understand dynamic crack propagation on different slip 
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planes of BCC iron, and found that the slip plane significantly affects crack propagation 

speed. Simulations of brittle-to-ductile transition in silicon single crystals were 

performed by Sen et al. [5] using a first-principles-based atomistic model. Ersland et al. 

[6] reported a full three-dimensional (3-D) molecular dynamics study of penny-shaped 

embedded cracks, which showed that the original circular crack geometry can change 

shape gradually upon loading. A molecular dynamics simulation of nano-scale fatigue 

damage in nickel and copper single crystals was carried out by Potirniche et al. [7]. 

Among various atomistic methods, molecular dynamics is the most popular and 

widely applicable simulation technique. In a MD simulation, the equations of motion of 

a system of atoms or molecules are solved, resulting in the dynamical trajectories of all 

particles in the system. Though powerful in revealing atomistic level material behavior, 

molecular dynamics is still limited in the time and length scales that can be modeled. 

For example, only systems with a few billion atoms can be simulated even with today’s 

most powerful computers, whereas a cubic centimeter of solid material already contains 

more than 10
23

 atoms. Therefore, as shown in Fig. 1.1a, MD has been exclusively aimed 

at atomistic physics so far, and systems analyzed using MD are mostly at micro or nano 

scale.  

           

 (a)                                                             (b) 

Figure 1.1 (a) Different length scales associated with dynamic fracture [8]. (b) “Mirror-

mist-hackle” transition in dynamic crack instability [9] 
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Compared to other categories of fracture behaviors, brittle fracture is 

particularly attractive in the field of MD simulation. This is because in brittle materials, 

cracks generally propagate at speeds of kilometers per second, corresponding to time 

and length scales of nanometers per picoseconds (10
-12

s), which is readily accessible 

with molecular dynamics. Most MD simulations of dynamic crack propagation in brittle 

materials are focused on understanding the important physical phenomena in brittle 

fracture, such as crack limiting speed (maximum speed that a crack can attain) [10,11] 

and dynamic crack instability (crack face morphology changes from “mirror” to “mist” 

to “hackle” as crack speed increases, as shown in Fig. 1.1b) [9,12,13]. Recent progress 

also include investigations of the correlation between atomistic simulation results and 

continuum theories [13,14]; for example, it is found that atomistic models of brittle 

fracture reproduce the predictions of linear elastic continuum theory only when 

harmonic interaction is assumed. In terms of system size, several large-scale MD 

simulations of brittle crack propagation with more than one billion atoms have been 

reported since the year of 2000 [2,15,16].  

To introduce more about this field, in Appendix A we briefly review the basics 

of continuum fracture mechanics theories and the results of a series of MD simulations 

of brittle fracture from literature. The comparison between MD simulation results and 

existing theories is also discussed in Appendix A. 

Multi-scale Simulation Methods 

During the past two decades, extensive work has been carried out by different research 

groups in developing concurrent multi-scale simulation methods that couples dynamic 

atomistic and continuum simulations. Abraham et al. [17] developed the macroscopic, 



7 

 

atomistic, ab initio dynamics (MAAD) method, in which tight binding (TB), molecular 

dynamics and finite element (FE) simulations run simultaneously in different regions of 

the computational domain and dynamically exchange necessary information among 

each other. A related method named coarse-grained molecular dynamics (CGMD) was 

reported by Rudd and Broughton [18]. The CGMD method removes TB from the 

original MAAD method and couples only FE and MD. Both MADD and CGMD 

require the finite element mesh to be graded down to atomistic scale. In the quasi-

continuum method proposed by Tadmor et al. [19], atomistic degrees of freedom are 

selectively removed from the problem by interpolating from a subset of representative 

atoms, and the atomistic-to-continuum link is achieved by using the Cauchy–Born rule, 

which assumes that the continuum energy density can be computed using an atomistic 

potential. Recently, Wagner and Liu [20] developed the bridging scale method (BSM) 

that decomposes the total displacement into orthogonal coarse and fine scales. Xiao and 

Belytschko [21] developed the bridging domain multi-scale method, in which an 

overlapping subdomain consisting of both the molecules and continuum is used to treat 

the boundary of the atomistic simulation. Shiari et al. [22] proposed a finite temperature 

coupled atomistic/continuum discrete dislocation (CADD) method to study the nano-

indentation process as a function of temperature and rate of indenting. To and Li [23] 

developed the perfectly matched multi-scale simulation (PMMS), which connects MD 

and quasi-continuum simulations with a perfectly matched layer.  

Among the recently developed multi-scale methods, the bridging scale method 

by Wagner and Liu [20] offers many distinct advantages. In bridging scale method, the 

finite element analysis (FEA) is performed everywhere in the domain, while the 
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molecular dynamics simulation is confined into localized areas. The unwanted atomistic 

degrees of freedom outside the MD region can be eliminated and mathematically 

accounted for in the form of an impedance boundary condition applied upon the 

boundary of the MD simulation. In contrast to many concurrent multi-scale methods, 

the finite elements used in the bridging scale method do not need to be meshed down to 

atomic scale; therefore, the time step size for FEA is no longer restricted by the smallest, 

atomic-sized elements in the mesh. The time history kernel (THK) in the impedance 

force formulation is a compact matrix whose size depends only on the minimum 

number of degrees of freedom in each unit cell. By utilizing the periodicity of atomic 

structures, standard Laplace and Fourier transform techniques can be applied in deriving 

the impedance force for various lattice structures and for multi-dimensional structural 

problems. The accuracy of the bridging scale method has been demonstrated with one-

dimensional (1-D) and two-dimensional (2-D) wave propagation problems [20,24]. 

Some of the concurrent multi-scale methods have been employed in simulating 

dynamic crack propagation in coupled atomistic/continuum systems. For instance, Xiao 

and Belytschko [21] used the bridging domain method to simulate the growth of an 

edge crack on a carbon grapheme sheet; Rafii-Tabar et al. [25] investigated the brittle 

crack propagation in a 2-D Ag plate using a generic multi-scale modeling approach; 

Chen et al. [26] studied different fracture modes of crack propagation in a center-

cracked specimen using a multi-scale field theory. The bridging scale method also has 

been applied to 2-D mode-I and mode-II, and 3-D mode-I dynamic crack propagation 

problems [24,27,28]. 
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It is worth mentioning, however, that due to the limitation of computation power, 

even the multi-scale methods are still currently impractical for structures with system 

sizes at macroscopic level. In fact, only few MD or multi-scale studies have been 

reported on simulating the behavior of existing components, which are exclusively 

MEMS (Micro-electro-mechanical systems) or NEMS (Nano-electro-mechanical 

systems) devices. For example, using the CGMD method, Rudd [29] simulated the 

vibration of a micro-scale resonator (Fig. 1.2) of size 0.008×0.015×0.2 μm
3
 for about 2 

million time steps (corresponding to 10
-9

 seconds) with a supercomputer. 

 

Figure 1.2 A micro-scale resonator with length 0.2 μm [29] 

Design Sensitivity Analysis for Structural Dynamics  

Structural design is a procedure to improve the performance of a structure by changing 

its parameters (design variables). As an important step in structural design, design 

sensitivity analysis (DSA) computes the rate of performance change with respect to the 

changes of design variables. It is used to provide sensitivity coefficients to optimization 

algorithms for determining direction towards an optimum design. For structural systems 

constructed of trusses, beams, membranes, shells and elastic solids, there are five kinds 

of design variables – material, sizing, configuration, shape and topology design variable, 

as illustrated in Fig. 1.3. For example, for the truss structure shown in Fig 1.3a, material 

design variables can be the mass density or Young’s modulus, while sizing design 
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variables are the cross-sectional areas of individual truss members; configuration design 

variables are related to the orientations of components in built-up structures (Fig. 1.3b); 

shape design variables describe the length of a 1-D structure or the geometric shape of 

2-D and 3-D structures (Fig. 1.3c); and topology design variables determine the layout 

of the structure (Fig. 1.3d). 

 

Figure 1.3 Illustration of design variables in different categories, (a) a built-up structure 

in which material properties and cross-sectional areas of the truss members can be 

changed [30], (b) configuration design by adjusting the orientations and lengths of truss 

members, (c) shape design for a 2-D engine connecting rod [1], and (d) topology 

optimization of a solid beam [31] 

The formulation of design sensitivity analysis can vary significantly depending 

on which kind of design variables are being considered and whether the formulation is 

developed based on a discrete or continuum concept. Substantial literature has merged 

into the field of design sensitivity analysis and its applications, and a comprehensive 

introduction of various sensitivity analysis approaches for static and dynamic responses 

of both linear and nonlinear structural systems can be found in [32]. In this thesis, we 

(c) 

(a) (b) 

x1 

(d) 
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focus on continuum shape sensitivity analysis of structural dynamics, which has 

received a smaller amount of attention in the literature compared to most other topics in 

this field. Kim et al. [33] reported a continuum shape sensitivity analysis approach for 

transient dynamic structural problems, which was implemented in the design 

optimization of a vehicle bumper subject to an impact load. A brief introduction to 

shape design sensitivity analysis is given in Chapter 2 of this thesis. 

Recently, several research results were proposed on design sensitivity analysis 

of dynamic multi-scale simulations based on the bridging scale method. Kim et al. [34] 

reported a discrete-analytical multi-scale adjoint design sensitivity analysis method for 

1-D and 2-D bridging scale problems. Wang and Chang [35] developed a continuum-

based sensitivity analysis method for 2-D multi-scale problems based on a variational 

formulation of bridging scale. However, rather than shape design, these works focused 

only on material/sizing design variables, such as atomic mass, interatomic potential 

function parameters and the thickness of a 2-D sheet. 

1.3 Objectives and Scope 

In this thesis, we aim at developing a shape sensitivity analysis approach for multi-scale 

crack propagation problems based on the bridging scale method, in order to reveal the 

impact of macroscopic shape change on the speed of crack growth at microscopic level. 

One unique challenge in continuum shape design for coupled atomistic/continuum 

systems is the discrete nature of the MD simulation. Starting from a continuum 

variational formulation, we will derive the coupled multi-scale sensitivity expressions in 

a fully generalized three-dimensional setting, which can be used to analytically compute 

the sensitivity coefficients of structural responses, such as the displacements of atoms 
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and FE nodes. Particular emphasis will be placed on sensitivity analysis of dynamic 

crack propagation, for which we need to define an adequate performance measure that 

quantifies the speed of crack based on atomic displacements. To overcome the non-

differentiability of the performance measure of crack speed, a hybrid method that 

combines analytical sensitivity analysis and finite difference method will be proposed, 

in which the sensitivity of crack speed is calculated through regression analysis based 

on analytical sensitivity results. The accuracy of the proposed analytical sensitivity 

analysis approach and the hybrid method will be demonstrated in a 3-D nano-beam 

example. 

As discussed earlier, neither molecular dynamics nor multi-scale simulations are 

currently applicable to macroscopic applications. Therefore, this thesis will focus more 

on methodology development than designing physical devices. Instead of using a real-

word structure, we will build a simple nano-scale model for our numerical example, and 

focus only on brittle crack propagation among various types of fractures. Moreover, as 

with many MD simulations reported [2,8,12,13], we will adopt a simple interatomic 

potential function with normalized units to model a generic ‘brittle’ material rather than 

specific materials. Our objective is to concentrate on theoretical derivation and 

discussion, and validate the proposed sensitivity analysis approach using an example 

problem that reveals the generic features of fracture common to a large class of real 

physical systems.  

This thesis attempts for the first time to perform shape sensitivity analysis on 

coupled atomistic/continuum structural models. Since first-principles-based calculation 

is employed to capture atomistic level dynamics near the crack tips, it becomes possible 
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to understand the impact of macroscopic shape change on microscopic crack 

propagation without the necessity of incorporating continuum fracture mechanics 

theories. 

1.4 Outline of the Thesis 

The rest of the thesis is organized as follows: 

In Chapter 2, we present a brief introduction to shape design sensitivity analysis. 

In addition to basic concepts and fundamental elements, a simple one-dimensional 

example will be used to explain various sensitivity analysis approaches for both static 

and dynamic problems. 

In Chapter 3, we review the fundamental theory of the bridging scale method, 

including the derivation of the time history kernel and the impedance boundary 

condition. Details of the theory will be explained using a simple one-dimensional lattice. 

Implementation aspects of bridging scale method for crack propagation problems will 

also be discussed. A three-dimensional nano-beam example will be introduced to 

demonstrate the method. 

In Chapter 4, we develop a continuum shape sensitivity analysis approach for 

bridging scale method, based on which the sensitivity of structural responses can be 

computed. The discontinuity issue in shape DSA of coupled atomistic/continuum 

systems will be discussed. The analytical sensitivity expressions will be derived in a 

continuum setting based on the variational formulation of bridging scale. The nano-

beam example will be used to verify the accuracy of the calculated sensitivity 

coefficients of structural responses. 
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In Chapter 5, we establish a performance measure that quantifies crack 

propagation speed for sensitivity analysis. The differentiability of crack speed with 

respect to shape design variables will be discussed from both theoretical and numerical 

perspectives. The nonlinearity of the performance measure in design space will be 

illustrated via the nano-beam example. 

In Chapter 6, we propose a hybrid sensitivity analysis method to evaluate the 

sensitivity of crack propagation speed. The sensitivity coefficient of crack speed is 

computed through polynomial regression analysis based on the analytical sensitivity 

coefficients of structural responses. Using the nano-beam example, we will carry out a 

what-if study to demonstrate the feasibility and accuracy of the hybrid method.    

In Chapter 7, we conclude this thesis and identify the scope for future research. 

Detailed discussions on a number of important topics are included in appendices. 

Appendix A reviews the basics of classical fracture mechanics theory, as well as a 

series of molecular dynamics simulations of brittle fracture. Appendix B introduces the 

formulation of the adjoint variable method. Appendix C gives detailed derivation of the 

time history kernel for a 1-D atomic lattice. Appendix D demonstrates the derivation of 

the impedance boundary condition for generalized 3-D atomic structures. Appendix E 

explains the discretization of the coarse scale outside the MD region. Appendix F 

introduces the variational formulation for bridging scale method. Appendix G discusses 

the material derivative of the coarse scale outside the MD region. Appendix H provides 

detailed steps of the regression analysis used in hybrid method. 
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CHAPTER 2 

SHAPE DESIGN SENSITIVITY ANALYSIS 

– A TUTORIAL EXAMPLE 

 

2.1 Introduction 

Structural analysis solves the mathematical model of a physical problem. Compared to a 

differential equation, an energy-based variational formulation is more natural and 

general in governing the deformation of the structure. For example, the variational 

equation for a general static structural problem can be formulated based on the principle 

of virtual work, as 

 )(),( zzz a , Zz            (2.1a) 

    hmHZ   xon|3 zzz            (2.1b) 

where ),( zza  and )(z  are known as the energy bilinear form and load linear forms, 

respectively, in which z denotes the displacement field to be solved, and z  stands for 

the virtual displacement. In addition, x represents spatial coordinate, Γ
h
 denotes the 

essential boundary, and zΓ is the displacement at the essential boundary. Note that both 

the displacement solution z and the virtual displacement z  belong to the space of 

kinematically admissible displacements Z, in which H
m
 is the Sobolev space of order m. 

For an arbitrary-shaped structure, it is generally impossible to obtain the 

analytical solution of the variational equation (Eq. 2.1). Therefore, an approximation 

approach is necessary, such as the finite element method. The finite element method 

approximates the structural domain as a simple geometry set, and establishes the 
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equilibrium conditions for individual elements. The structural problem can then be 

modeled with a global system of matrix equations. For example, by discretizing the 

variational equation using shape functions, the finite element matrix equation for a 

linear elastic structure under static load can be obtained as 

 FKz             (2.2) 

where z is the nodal displacement vector to be solved, F is the external nodal force 

vector, and K is called the stiffness matrix. Note that the displacement solution z (bold 

faced + non-italic) in Eq. 2.2 is a column vector that consists of all degrees of freedom 

of all finite element nodes to be solved, whereas the continuous displacement field z 

(bold faced + italic) in Eq. 2.1 is a vector whose size depends on the dimension of the 

problem (e.g., z is a 3×1 vector for three dimensional problems), while each component 

in vector z is a function of spatial location x.  

The objective of structural design is to enhance the performance of a structure 

by changing its parameters. Examples of performance measure in engineering fields 

include stress, self-weight, stiffness, vibration level, fatigue life, etc. Parameters that 

can be adjusted during the design process are called design variables, which can be 

classified based on their characteristics. Various types of design variables have been 

introduced in Chapter 1 and illustrated in Fig. 1.3.   

It is apparent that Eqs. 2.1 and 2.2 are dependent on design variables. For 

example, the stiffness matrix K in Eq. 2.2 varies with the shape or material property of 

the structure. Consequently, the response of the structure, such as the displacement 

solution z, and hence the performance measures that depend on structural response will 

change with design variables. When improving or optimizing the performance of the 
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structure by adjusting the design variables, one essential step is design sensitivity 

analysis, which is used to compute the sensitivity (or design sensitivity, sensitivity 

coefficient, gradient) of the performance measures with respect to design variables – in 

other words, the rate of performance measure change with respect to design variable 

changes. Sensitivity analysis results reveal the relative importance of various design 

variables to the overall performance of the system, and thus help engineers decide the 

direction and amount of design change needed to improve the performance towards an 

optimum design. 

As mentioned in the previous chapter, the formulation of design sensitivity 

analysis can vary significantly depending on which kind of design variables are being 

considered. For example, in continuum sensitivity analysis, the formulations that treat 

sizing/material and shape design variables are fundamentally different. This thesis is 

aimed at shape design sensitivity analysis. For 1-D problems, the only shape design 

variable is length; for 2-D and 3-D structures, shape sensitivity analysis is concerned 

with the relation between a variation in geometric shape of a solid domain and the 

resulting variation in structural performance. 

In general, three approaches can be employed in design sensitivity analysis: the 

approximation, discrete, and continuum approaches. In the approximation approach, 

design sensitivity is obtained using overall finite difference by rerunning structural 

analysis at a perturbed design. On the other hand, the discrete and continuum methods 

analytically formulate the sensitivity calculation. In the discrete method, design 

sensitivity is obtained by taking design derivatives of the discrete governing equation. If 

the design derivative of the stiffness matrix is obtained analytically, it is a discrete-
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analytical method; if the derivative is obtained using finite difference, then the method 

is called a semianalytical method – the most employed approach other than overall 

finite difference. In the continuum approach, the design derivative of the continuum 

variational equation is taken before discretization. If the structural problem and 

sensitivity equations are solved in a continuum setting, then it is called a continuum-

continuum method; if the continuum sensitivity equation is solved through 

discretization (such as using FEA), this method is called a continuum-discrete method.  

The sensitivity analysis methods mentioned above are listed in Fig. 2.1. These 

methods will be explained in subsequent sections using a simple one-dimensional 

structure for both static and dynamic problems. Note that in this thesis, the continuum-

discrete approach will be applied to carry out shape sensitivity analysis for dynamic 

multi-scale problems. 

 

Figure 2.1  Different approaches for design sensitivity analysis 

2.2 Simple Bar Example – Static Problem 

In this section, a simple static problem is introduced to explain the concept of shape 

sensitivity analysis and to demonstrate various approaches that can be used to obtain the 

design sensitivity. As illustrated in Fig. 2.2, the physical structure to be studied is a one-

Principle of virtual work 

Discrete model (FEA) Continuum variational formulation 

Analytical 

derivative of K 

Analytical 

solution 

Discrete-analytical Semianalytical Continuum-continuum Continuum-discrete 

Finite difference 

derivative of K 

Discrete solution 

(FEA) 
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dimensional bar under uniformly distributed load f (such as self-weight), and with 

Young’s modulus E, uniform cross-sectional area A, and length l. Our objective is to 

find the sensitivity of displacement z(x) with respect to l, especially the sensitivity of the 

displacement at the tip of the bar (x = l). 

 

Figure 2.2 Static one-dimensional bar example 

2.2.1 Structural Analysis 

The governing differential equation of the bar being stretched can be written from the 

force equilibrium of an infinitesimal element, yielding 

    fEAz  1,1,
           (2.3) 

with boundary conditions 

  0)0( z ; 0)(1, lz         (2.4) 

where the subscript comma denotes differentiation with respect to the spatial coordinate, 

i.e., z,1 = ∂z/∂x. Solving the differential equation gives the solution to the structural 

problem; that is 

 x
EA

lf
x

EA

f
xz  2

2
)(         (2.5) 

Thus the value of the performance measure – displacement at the tip of the bar – 

can be obtained as 

E, A, l f 

x 
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lz

2

2

         (2.6) 

Note that only a handful of structural problems can be formulated and solved 

analytically. In general, structural problems are solved by using the finite element 

method. The formulation of FEM usually starts from the principle of virtual work, as 

will be illustrated next. 

According to the principle of virtual work, we derive the variational equation of 

the structural problem by multiplying both sides of Eq. 2.3 with an arbitrary virtual 

displacement z  and then integrate over the domain x = [0, l], giving 

    dxzfzEAzdxzEAz
lll

 
001,

0
1,1,            (2.7) 

where integration by part is used once. Both z and z  belong to the space of 

kinematically admissible displacement 

   0)0(|,01  zlHzZ            (2.8) 

where H
1
 is the first order Sobolev space. Since the boundary terms in Eq. 2.7 can be 

eliminated by considering 0)0( z  and applying the natural boundary condition z,1(l) = 

0, the following variational equation is obtained for the bar problem 

 )(),(
00

1,1, zdxzfdxzEAzzza
ll

             (2.9) 

which holds for all Zz .   

Finite Element Analysis 

Consider discretizing the bar using two truss elements, each with length l/2, as shown in 

Fig. 2.3.  
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Figure 2.3  Finite element model of the 1-D bar structure. Two truss elements are used 

to discretize the structural domain 

In this example, linear interpolation is used to describe the displacement field 

between nodal points. For example, the displacement between Node 1 and Node 2 can 

be written as 
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where N1 and N2 are shape functions, while z1 and z2 represent nodal displacements. 

Discretizing the left and right hand sides of the variational equation (Eq. 2.9) 

using shape functions gives 
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where Kg is called the generalized global stiffness matrix. zg, gz , and Fg are global 

displacement, virtual displacement, and force vectors, respectively. Note that the 

distributed load f has been converted into point loads acting upon the nodal points.   
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Since the left hand sides of Eqs. 2.11a and 2.11b are equal to each other, the global 

finite element matrix equation can be obtained by eliminating the arbitrary virtual 

displacement gz , as 
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which cannot be solved due to the singularity of Kg. By applying the boundary 

condition z1 = 0, we can remove z1 from Eq. 2.12, giving 
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where  
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is called the reduced global stiffness matrix, which is nonsingular. Solving the reduced 

global matrix equation (Eq. 2.13) gives nodal displacement solution 
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based on which the displacement at an arbitrary location in the domain x = [0, l] can be 

interpolated using shape functions, as 
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It is of note that the finite element displacement solution zFEA(x) matches the 

analytical solution (Eq. 2.5) only at nodal points, i.e., z2 = z(l/2) and z3 = z(l). This is 

because linear shape functions are used for interpolation in Eq. 2.16, whereas the 

analytical solution to the problem is a quadratic function of x. 

2.2.2 Shape Design Sensitivity Analysis 

As discussed earlier, shape sensitivity analysis computes the rate of performance 

measure change with respect to the change of shape design variables. In this section, we 

demonstrate the sensitivity approaches listed in Fig. 2.1 with the simple bar example. 

One important concept in shape design is the design velocity field. When shape 

design variables vary, the geometric shape of the structural boundary, and hence the 

location of material points inside the structural domain must change accordingly. The 

design velocity field governs the movement of material points both on the boundary and 

inside the structural domain, providing a systematic scheme that maps the location of 

material points from original design to updated design. 

  Consider a structural domain Ω with its boundary Γ as a continuous medium at 

the initial design τ = 0 as shown in Fig. 2.4 (solid line). Suppose only one parameter τ 

defines the transformation T that changes the structural domain from Ω to Ωτ (dashed 

line). The transformation mapping T that represents this process can be defined as [32] 

    xxxx ,: T          (2.17) 

where x denotes a material point. 
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Figure 2.4  Changing of structural domain 

  The design velocity field V that governs material movement due to a design 

change is defined as 
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d ,
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xx
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T
V           (2.18) 

where τ plays the role of design time (or design iteration in practice). In the 

neighborhood of initial design τ = 0, assuming a regularity hypothesis and ignoring 

higher-order terms, T can be approximated by  

    
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d
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         (2.19) 

where  0,xx T  and    0,xx VV  . Note that only the linear term is retained in Eq. 

2.19, and τ is determined by the design change. 

For the 1-D bar problem, the only shape design variable is length l. For 

simplicity, we define a linear design velocity field for shape sensitivity analysis; that is 

   l
l

x
xV          (2.20) 

as illustrated in Fig. 2.5. This linear design velocity field implies that when the bar is 

elongated, each material point on the current bar moves downwards proportionally to its 

x coordinate. For instance, the midpoint x = l/2 moves to x = (l + δl)/2 after the design 

change. Note that during implementation, δl is usually set to 1 for convenience.   
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Figure 2.5  Linear design velocity field defined for the simple bar example, (a) structure 

before design change, (b) structure after design change with length increment δl, and (c) 

linear design velocity field 

In the previous section, the displacement at the tip of the bar has been solved 

using both continuum (analytical) and discrete (FEA) structural analysis approaches. 

For this simple example, since the solution z(l) is explicitly dependent on design 

variable l, the sensitivity of z(l) with respect to l can be obtained directly by taking 

derivative of Eq. 2.6, as 
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However, in most cases, a structural performance measure does not explicitly 

depend on design, and therefore, the sensitivity information needs to be computed using 

sensitivity analysis methods, as to be introduced in the following sections. 

2.2.2.1 Overall Finite Difference Method 

Different values of design variables yield different structural analysis results, and hence 

different values of the performance measure. The easiest way of computing the design 

sensitivity is by evaluating the performance measure at different stages in the design 

process. Let ψ(b) denote a general performance measure that depends on design 
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  Tkbbb 21b         (2.22) 

which is a vector comprised of all k design variables. The sensitivity of ψ(b) with 

respect to the ith design variable bi can be approximated through overall finite 

difference, as 
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        (2.23) 

which is also called the forward difference method. Note that b
0
 represents the current 

design, while Δbi stands for a small prescribed perturbation made to design variable bi.   

For the simple bar example, if the displacement is solved using FEA, then in 

overall finite difference method, we first solve the displacement of a perturbed 

structural problem 

    llll  FzK            (2.24) 

Then, the sensitivity coefficient of the performance measure can be approximated as 

 
   

 

EA

lflf

l

EA

lf

EA

llf

l

lzllz

dl

dz

db

d

i 2

222

22

333 














        (2.25) 

where z3(l + Δl) denotes the displacement solution at Node 3 for the perturbed structure 

with bar length l + Δl solved using FEA. As can be seen, as the design perturbation Δl 

approaches zero, the overall finite difference result (Eq. 2.25) converges to the exact 

sensitivity value calculated in Eq. 2.21. 

Although attractive and popular due to its simplicity, the overall finite difference 

method suffers major disadvantages. First of all, k + 1 structural analyses need to be 

carried out to compute the sensitivity with respect to all k design variables, which 

makes this method computationally expensive for large scale problems that involve 
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many design variables. Moreover, the determination of the perturbation size Δbi greatly 

affects the sensitivity result. As shown in Fig. 2.6, when the behavior of the 

performance measure ψ is nonlinear in design space, the design sensitivity 

approximated using overall finite difference method can be inaccurate if the 

perturbation size is too large. On the other hand, when a very small perturbation is used, 

the impact of numerical truncation errors becomes significant. As a result, it is difficult 

to determine a design perturbation size that works for all problems. 

 

Figure 2.6  Influence of perturbation size in overall finite difference method 

2.2.2.2 Discrete Method 

When a structural problem is discretized in finite dimensional space, as shown with the 

finite element method in Section 2.2.1, discrete sensitivity analysis methods can be used 

to compute the sensitivity of performance for the discretized problem. Consider a linear 

elastic finite element matrix equation 

    bFzbK          (2.26) 

where the stiffness matrix K and the force vector F are both functions of design b. The 

total derivative of a performance measure ψ with respect to design variable bi can be 

expressed analytically using the chain rule of differentiation, as    
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Note that since the expressionfor ψ with respect to bi and z is known from its definition, 

the only unknown in Eq. 2.27 is the dz/dbi term, which can be computed using either the 

direct differentiation method (DDM) or the adjoint variable method (AVM). In this 

thesis, we focus on the former (which is chosen to be implemented in our numerical 

example) when demonstrating the sensitivity calculation. The formulation of the adjoint 

variable method can be found in Appendix B.  

Direct Differentiation Method 

The direct differentiation method evaluates the implicit dependence of z on design b by 

differentiating the structural equation (Eq. 2.26); that is 
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Rearranging Eq. 2.28 by leaving only unknown terms on the left hand side gives 
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which is sometimes referred to as the sensitivity equation or sensitivity expression. Note 

that the displacement solution z on the right hand side has been obtained through 

structural analysis (Eq. 2.15). Solving Eq. 2.29 for dz/dbi by inverting the nonsingular 

reduced stiffness matrix K(b) yields 
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Substituting the result into Eq. 2.27 then gives the sensitivity of ψ with respect to bi, as 
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The direct differentiation method has been extensively used in structural 

sensitivity analysis due to its straightforward derivations. Consider the simple bar 

problem as an example. Using direct differentiation method, we can evaluate the 

sensitivity of z3 with respect to l by applying Eq. 2.31 to the reduced finite element 

matrix equation (Eq. 2.13), as 
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which is consistent with the exact solution in Eq. 2.21. 

Note that in adjoint variable method, we create an adjoint structure in order to 

solve for the (∂ψ/∂z)K
-1

(b) term in Eq. 2.31 directly (shown in Appendix B). The 

adjoint variable method gives the same sensitivity result as the direct differentiation 

method. In practice, we choose between DDM and AVM by considering computation 

efficiency. Generally, for static problems, if the number of performance measures is 

larger than that of the design variables, then the direct differentiation method is 

preferable; otherwise, the adjoint variable method will be more efficient. The 

comparison between DDM and AVM will be explained in detail in Appendix B. 

It is also worthy of note that in discrete method, the calculation of design 

sensitivity (Eq. 2.31) requires differentiating K(b) and F(b) with respect to design. If 

the derivatives ∂K(b)/∂bi and ∂F(b)/∂bi can be analytically calculated from the explicit 

expressions of the K(b) and F(b), then this approach is called a discrete-analytical 

method. However, in general, the explicit expression of K in terms of design variables 
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may not be available in FEA, especially when a commercial code, such as ANSYS, is 

used. In those cases, instead of solving ∂K(b)/∂bi explicitly, the design derivative can be 

approximated using finite difference method, as 
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and this approach is called a semianalytical method.    

2.2.2.3 Continuum Method 

In contrast to the discrete methods, a continuum sensitivity analysis approach uses a 

continuous displacement field rather than nodal displacements to characterize structural 

deformation. The continuum sensitivity equations – written in the form of integrals – 

are obtained by taking design derivative of the continuum variational equation before 

any discretization takes place. 

In continuum shape sensitivity analysis, the physical domain is considered as a 

continuous medium that changes with design. Therefore, the concept of design velocity 

field (discussed earlier) and material derivative from continuum mechanics are utilized 

to obtain a computable expression that relates variations in structural shape to the 

performance measures. 

Material Derivative 

Here we first introduce the concept of material derivative used in continuum shape 

sensitivity analysis. Suppose z is the solution to the structural problem in current 

domain Ω, the material derivative of z is defined as [32] 
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where V(x) is the design velocity field introduced in Eq. 2.18. Note that the material 

derivative of z can be separated into two contributions, as 
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More specifically, material derivative )(xz  reveals how the displacement at location x 

changes with design, while the measuring point x moves with the design velocity field. 

On the other hand, partial derivative  xz  indicates the difference between 

displacements before and after design change, measured at the same location. z

represents the gradient of displacement at current design. 

Taking the simple bar model as an example, the analytical solution z has been 

given in Eq. 2.5, based on which the displacement solution associated with a new 

design with bar length l + δl can be easily obtained as  
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If we focus on the displacement at the midpoint x = l/2, then the partial derivative 

 2/lz  can be evaluated as 
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where the parameter τ in Eq. 2.35 is replaced by δl in this practical case.  

The displacement gradient can be calculated as  
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and the design velocity at the midpoint is   2/12/ lV  according to the linear velocity 

field defined in Eq. 2.20. Finally, the material derivative at x = l/2 is defined as 
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which is equal to the sum of  2/lz  and    2/2/ lVlz  .  

Now we introduce the material derivative of domain functions. Let Ψ be a 

functional defined as an integral over the current domain Ω 

     dfΨ x         (2.40) 

then the material derivative of Ψ at Ω can be calculated as [32] 
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and divV is the divergence of V, defined as zyxdiv  V/V/V/V  for a general 

3-D scenario. For the 1-D simple bar example, lxVdivV /1 / . 

Continuum Shape Sensitivity Analysis 

We now use the simple bar example to illustrate the continuum sensitivity analysis 

methods. Based on the variation formulation of the problem, we will use the direct 

differential method to compute the sensitivity of displacement with respect to length l. 

(Note that adjoint variable method also can be used in continuum sensitivity analysis 

[32].) 
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To start with, take material derivative of both sides of the variational equation 

(Eq. 2.9) using Eq. 2.41, giving 
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and 
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Note that in derivation of Eq. 2.43a, 0z has been applied, which implies that the 

virtual displacement does not change with design. In addition, f’ =0 is used in deriving 

Eq. 2.43b, which in general means that the applied load does not change with design. 

For the simple bar example, f’ =0 implies that the distributed load f (self-weight) is also 

applied to the extended portion of the bar, as shown in Fig. 2.5b.  

Since the right hand sides of Eqs. 2.43a and 2.43b are equal to each other, we 

obtain the continuum sensitivity expression  
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which can be rearranged as 
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  
lll

dxVzEAzdxVzfdxzzEA
0

1,1,1,
0

1,
0

1,1,
          (2.45) 

so that all terms on the right hand side are known except for z . 

Note that if the continuum sensitivity expression (Eq. 2.45) is solved as a 

continuum problem, then it is called the continuum-continuum method. On the other 

hand, if it is solved by discretization in the same way that discrete structural problems 

are solved, then this method is referred to as the continuum-discrete method. In fact, 

only very simple problems – such as the simple bar example – can be solved 

analytically using the continuum-continuum method. For the bar example, the design 

sensitivity can be obtained by solving Eq. 2.45 for z  through integration by part, as 

   
l llll

VzEAzdxVzEAzdxVzfzzEAdxzzEA
0 01,1,

0
1,11,1,01,

0
11,

           (2.46) 

Note that with boundary conditions   00 z ,   01, lz , and   01, lz , the boundary 

terms in Eq. 2.46 can be eliminated, yielding 

   0
0

1,1,11,11, 
l

dxVfVEAzzEAz             (2.47) 

which holds for all Zz . Therefore, the sensitivity differential equation can be 

obtained as 

 1,1,11,11, VfVEAzzEA             (2.48) 

which can be solved with boundary conditions   00 z ,   01, lz , giving 

 x
EA

f
x

EAl

f
z

22          (2.49) 

The sensitivity of the displacement at the tip can then be calculated as 

  
EA

lf
lz          (2.50) 
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which is identical to the result obtained using discrete methods. 

Alternatively, Eq. 2.45 can be solved by discretization using finite element 

shape functions. This approach is called the continuum-discrete method since 

differentiation is taken at the continuum domain and is then followed by discretization. 

To start with, the virtual displacement z , displacement solution z, and material 

derivative z  in Eq. 2.45 are discretized using shape functions as in Eq. 2.16, giving a 

global matrix equation  
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  (2.51) 

where the nodal displacements solved in FEA (Eq. 2.15) have been substituted for z1, z2 

and z3. Note that the partial derivative terms ( 1,z , 1,z  and 1,z ) in Eq. 2.45 are discretized 

by taking derivative of the shape functions in Eq. 2.16.  

Apparently, both sides of Eq. 2.51 can be divided by  321 zzz  to remove the 

virtual displacement terms. Moreover, the equation can be reduced by applying the 

boundary condition 01 z , yielding 
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which can be solved for the material derivative of nodal displacements, as 

  






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




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z 4
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       (2.53) 

where 3z  is the sensitivity of the displacement at the tip with respect to the length of the 

bar.  



36 

 

2.2.2.4 Comments on Sensitivity Analysis Approaches 

So far the sensitivity analysis approaches listed in Fig. 2.1 have been demonstrated 

using the simple bar example. Unlike overall finite difference method, the discrete-

analytical and the continuum methods provide analytical sensitivity information without 

recourse to the uncertainty of perturbation size. (Finite difference is necessary for 

calculating ∂K/∂b in the semianalytical method.) More importantly, it is clear that either 

Eq. 2.29 or Eq. 2.52 is physically the same as the original structural problem Eq. 2.13, 

but with a different ‘applied load’ on the right hand side, which is usually referred to as 

the fictitious load. Therefore, solving the sensitivity equation is much more efficient 

than rerunning structure analysis at a perturbed design (required in overall finite 

difference). This is because the decomposition of the stiffness matrix (which involves a 

large amount of commutation cost) has been performed in structure analysis, while 

solving the sensitivity equation is equivalent to solving an additional loading condition.  

Note that when a commercial FEA code is used, the derivative of the stiffness 

matrix is generally unavailable, and, as discussed earlier, the ∂K/∂b term in discrete 

method is usually obtained through finite difference. However, in continuum-discrete 

method, the fictitious load (right hand side of Eq. 2.45) can be evaluated outside the 

FEA code using the result data (such as nodal displacements z), and therefore it is 

neither necessary to differentiate the stiffness matrix K, nor to use any matrix 

multiplication procedure to calculate   zbK  / . Moreover, the continuum method 

provides a general and unified structural sensitivity analysis capability, so that it is 

possible to develop one design sensitivity analysis system that works with a number of 
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well-established analysis methods, such as FEA, the boundary element method, and the 

mesh free method. 

As can be seen, for the simple bar example, the continuum-discrete method 

yields the same sensitivity result as the discrete method. In general, for the discrete and 

continuum-discrete methods to be equivalent, several conditions must be satisfied [32]. 

For example, the same shape functions used in FEA must be used to discretize the 

continuum sensitivity equation; an exact integration, instead of a numerical integration, 

must be used in generating the FE stiffness matrix and in evaluating the continuum 

sensitivity expression. It is worth mentioning that in many cases, some of these 

conditions are not easy to satisfy, especially when a commercial FEA code is used.   

Finally, for each of the approaches listed in Fig. 2.1, both the direct 

differentiation method and the adjoint variable method can be employed to compute the 

design sensitivity information of a general performance measure. For static problems, 

we choose between the two methods by comparing the number of performance 

measures with that of the design variables. 

2.3 Simple Bar Example – Dynamic Problem 

This section demonstrates how sensitivity analysis approaches discussed in Section 2.2 

can be used for dynamic structural problems. The basic concepts and derivations are 

similar to those described in the last section. Both discrete and continuum approaches 

will be discussed using the simple bar example.  
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2.3.1 Structural Analysis 

For a general dynamic structural problem, the variational formulation can be obtained 

based on the Hamilton’s principle, as 

   dttdtad
TT tt

tt  
00

, ),(),(),( zzzzz             (2.54) 

with initial conditions 

        xxxx
0

,,

0 0,and0, tt zzzz             (2.55) 

where the subscript ‘,t’ denotes the derivative with respect to time, and tT is the terminal 

time of the dynamic problem. Note that the solution of Eq. 2.54 belongs to the function 

space Z in Eq. 2.1b. If damping effect is not considered, the kinetic energy bilinear form 

),( , zz ttd  in Eq. 2.54 can be written as 

   dd ,tt

T

tt zzzz ),( ,
           (2.56) 

where ρ is the mass density, and Ω represents the structural domain. Moreover, in 

dynamic problems, the load applied can be a function of time; that is 

 dtdtdtt
TT tt

  
00

)(),( zfz           (2.57) 

Note that Eq. 2.54 holds for all kinematically admissible virtual displacements z  that 

belong to the function space in Eq. 2.1b and satisfy the additional conditions 

     0,0,  Ttxx zz            (2.58) 

Similar to that discussed in Section 2.2.1, the variational formulation for 

dynamic problems can be discretized using finite element shape functions to obtain the 

dynamic finite element matrix equation; that is 

    ttt ,)( , bFzbKzbM             (2.59) 
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with initial conditions 0)0( zz   and 
0

,, )0( tt zz  . Note that M(b) is the reduced finite 

element mass matrix. 

Taking the simple bar structure as an example, if a uniformly distributed mass 

density ρ is assumed, the dynamic variational equation for the bar 

  dtdxzfdtdxzEAzdxzz
TT t lt ll

tt    










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0 00 0

1,1,
0

,            (2.60) 

can be discretized as 
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  (2.61) 

which must hold for all virtual displacements that satisfies Eq. 2.8 and Eq. 2.58. Thus 

the dynamic differential equation can be obtained as 
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which can be reduced by applying z1(t) = 0, as 

         l
lf

lf

z

z

l

EA

z

z

ll

ll
ll

tt

tt

tt FzKzM 















































4/

2/

11

122

2

4

12
)(

3

2

,3

,2

,


  (2.63) 

Equation 2.63 can be solved for nodal displacements with a specific initial 

condition. Note that since the load f in Eq. 2.63 is not time-dependent, a non-zero initial 

displacement or velocity needs to be defined to excite the motion of the bar. 
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In practice, Eq. 2.63 is solved by using numerical time integration. For example, 

if an explicit time integration algorithm is employed, then within each time step, the 

displacement z at the current time step is known from the last iteration; therefore, the 

acceleration z,tt can be computed for the current time step, and then used to update the 

velocity z,t, and hence displacement z for the next time step, until the solution z is 

obtained for all time steps from t = 0 to t = tT. 

2.3.2 Discrete Sensitivity Analysis 

In this section we discuss shape sensitivity analysis for a general dynamic problem 

using the discrete method. Direct differentiation method will be demonstrated for 

sensitivity calculation. 

Consider a general performance measure for a dynamic problem, as 

    dtGtg
Tt

T 
0

,)(, zz bb         (2.64) 

Differentiating the performance measure with respect to design variable bi gives 
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Note that dz(tT)/dbi and dz/dbi are implicit dependences to be solved in sensitivity 

analysis. 

In direct differentiation method, we differentiate Eq. 2.59 with respect to bi, 

giving  
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        (2.66) 

Moving all explicit terms to the right to obtain the dynamic sensitivity expression, as 
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Note that the sensitivity expression can be solved with initial conditions 

 0

0



tidb

dz
;  0
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
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



ttidb

dz
        (2.68) 

which implies that the initial displacement and velocity do not change with design 

variable bi. In practice, the sensitivity expression (Eq. 2.67) can be solved using the 

same time integration algorithm as with the analysis of the original structure (Eq. 2.59). 

Within each time step, all terms on the right hand side of Eq. 2.67 are known, since z,tt 

and z have been solved using Eq. 2.59. Once the solution dz/dbi is obtained from t = 0 

to t = tT, it can be substituted into Eq. 2.65 to evaluate the design sensitivity of the 

performance measure. It is worth mentioning that when explicit time integration is used, 

the computation cost of solving the sensitivity equation (Eq. 2.67) may not be less than 

that of the analysis of the original structure (Eq. 2.59), which reduces the merit of the 

sensitivity computation compared to overall finite difference method.  

Adjoint variable method also applies to dynamic problems. The formulation of 

adjoint variable method for the dynamic bar example can be found in Appendix B, 

which shows that a dynamic adjoint problem needs to be solved to obtain the value of 

the adjoint variable through time. Moreover, the adjoint problem is a terminal-value 

problem that needs to be solved backwards in time from t = tT to t = 0. Therefore, unlike 

DDM, in which the dynamic sensitivity equation (Eq. 2.67) can be solved in parallel 

with response analysis (Eq. 2.59), the adjoint problem cannot be solved simultaneously 

with the response analysis, which significantly complicates the computation associated 
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with dynamic sensitivity analysis. Therefore, for dynamic problems, the direct 

differentiation method is generally preferable to the adjoint variable method in terms of 

computation efficiency. Details of the comparison between DDM and AVM for 

dynamic problems are discussed in Appendix B.   

2.3.3 Continuum Sensitivity Analysis 

In this section, we employ the direct differentiation method to demonstrate continuum 

shape sensitivity analysis for dynamic problems using the simple bar example.  

Taking material derivative of Eq. 2.60 gives 
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which is the dynamic sensitivity expression that can be solved using integration by part 

(continuum-continuum approach). For the sake of brevity, we show detailed derivation 

only for the continuum-discrete approach.  

Discretize the continuum sensitivity expression (Eq. 2.69) using shape functions 

(Eq. 2.16) yields 
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   (2.70) 
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where [z1  z2  z3]
T
 and [z1,tt  z2,tt  z3,tt]

T
 are known terms that have been solved in response 

analysis. 

Rearranging Eq. 2.70 gives 
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which holds for all kinematically admissible virtual displacements z  that satisfies 

    00  Ttzz . Therefore, the sensitivity differential equation takes the form 
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which can be reduced as 
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           (2.73) 

and then solved with initial conditions   00 z  and   00, tz . As can be seen, for the 

simple bar example, Eq. 2.73 is equivalent to the sensitivity expression obtained using 

the discrete method (Eq. 2.67). The solution  tz  can be substituted into Eq. 2.65 to 

calculate the sensitivity of the performance measure. 
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Note that in Chapter 4, we will use an approach similar to that demonstrated in 

this section (shape sensitivity analysis + continuum-discrete approach + direct 

differentiation method + dynamic scenario) to perform analytical shape sensitivity 

analysis for dynamic multi-scale problems. 
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CHAPTER 3  

MULTI-SCALE SIMULATION OF  

DYNAMIC CRACK PROPAGATION 

 

3.1 Overview 

This chapter introduces the multi-scale simulation technique that is used throughout the 

thesis. As mentioned in Chapter 1, we choose the bridging scale method, among the 

newly developed methods, for our simulation of dynamic crack propagation. In Section 

3.2, a brief introduction to molecular dynamics will be given first. Section 3.3 explains 

the fundamental theory of the bridging scale method using a one-dimensional atomic 

lattice. The result of a simple one-dimensional bridging scale example problem will also 

be demonstrated. The formulation of the bridging scale method for higher dimensional 

problems will be reviewed in Section 3.4. In Section 3.5, the implementation aspects for 

dynamic crack propagation problems will be discussed. A three-dimensional nano-beam 

example will be introduced in Section 3.6 for demonstration of the method.   

3.2 Basics of Molecular Dynamics 

Molecular dynamics has been widely applied to simulate the behavior of material 

systems at atomistic level. In an MD simulation, molecules or atoms are treated as a 

system of interacting material particles, while the goal is to calculate the motion of each 

atom in the material, characterized by atomic displacement, velocity, and acceleration. 

Each atom in the system is considered as a classical particle that obeys Newton’s laws 
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of mechanics. Denoting the displacement of atom i as qi, the trajectory of the atom can 

be determined by numerically solving the Newton's equations of motion 

 
 

i

i
i

d

dU

dt

d
m

q

qq


2

2

          (3.1) 

where mi is the atomic mass, and U is the sum of the potential energy of all atoms, 

which depends on the positions of atom i and all other atoms in the system. The right-

hand side of Eq. 3.1 corresponds to the gradient of the potential energy, which can be 

thought of as the interatomic force. 

The potential energy in molecular dynamics approximates the electronic effects 

in real materials. Other than atomic structural information, the interatomic potential is 

the most fundamental input into MD simulations. Numerous potential functions with 

different levels of accuracy have been proposed, each having its disadvantages and 

strengths. However, so far there is no single potential function that is suitable for all 

materials. In this thesis, the potential function chosen to be implemented in our MD 

simulation is the Lennard-Jones (LJ) 6-12 potential [36], which is one of the simplest 

and most widely used potentials for modeling brittle fracture [2,8-

10,12,14,23,26,27,36,37]. The LJ 6-12 potential takes the form 
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           (3.2) 

where r is the distance between two atoms; σ is the collision diameter (the distance at 

which Ф(r) = 0); and ε denotes the bonding/dislocation energy – the minimum of Eq. 

3.2 that occurs for an atomic pair in equilibrium. In our numerical examples, the 

parameters for LJ 6-12 will be defined in scaled units as in [2,8-10,12,14,23,26,27], i.e., 

σ and ε are set to unity while atomic mass is chosen as mA = 1 for all atoms. Although 
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the choice of normalized units cannot lead to quantitative representations of the 

behavior of a particular material, it allows us to draw generic conclusions about the 

fundamental and material-independent mechanisms in brittle fracture. 

The MD interatomic force can be evaluated by differentiating Ф(r) with respect 

to r, as 

  
 
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2448
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r
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
           (3.3) 

Note that the equilibrium distance (at which f(r) = 0) between two neighboring atoms is 

ha = 2
1/6

σ. The force and potential energy for LJ 6-12 are plotted in Fig. 3.1. The 

interaction coefficient k can be obtained by taking second-order derivative of the 

potential function with respect to r and then evaluate at equilibrium distance r = ha, as  
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Figure 3.1 Force and potential energy for the LJ 6-12 potential 
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Note that Eq. 3.1 represents a system of coupled second-order nonlinear 

differential equations, which can be solved numerically by discretizing the equations in 

time. There exist many time integration schemes that are frequently used in molecular 

dynamics implementations. In this thesis, we adopt the Verlet algorithm (also known as 

the explicit central difference algorithm) for numerical time integration, in which the 

positions of atoms are updated as 

          mmm ttttttt  aa
2

1
vv           (3.5a) 

         2

2

1
mm ttttttt  aqq v           (3.5b) 

where v and a represent atomic velocities and accelerations, respectively, and Δtm is the 

MD time step size. In general, the time step size for MD simulation can be determined 

based on atomic vibration frequency. For a harmonic oscillator that approximates the 

interatomic interaction in a given atomic lattice at equilibrium, the oscillation frequency 

can be estimated as 

 
Am

k
v

2

1
           (3.6) 

In order to accurately model the rapid vibration of atoms, the MD time step needs to be 

chosen much smaller than 1/v
*
 [8]. For the LJ 6-12 potential, based on the normalized 

parameters σ, ε and mA defined above, the value of 1/v
*
 for a one-dimensional atomic 

lattice is found to be around 0.831 (in normalized time unit). 

3.3 Bridging Scale Method – A Tutorial 1-D Problem 

Proposed by Wagner and Liu [20] in 2003, the bridging scale method has been mainly 

used for concurrently coupling atomistic and continuum simulations. The theory of 
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bridging scale method has been developed in a fully generalized three-dimensional 

setting, and the impedance boundary force – the key to achieve multi-scale coupling – 

has been numerically calculated in multiple dimensions for different lattice structures. 

In this section, the basic formulation of bridging scale method will be briefly reviewed, 

and will be illustrated with a simple 1-D example. Detailed derivations and associated 

discussions can be found in [20,24,27,28]. 

3.3.1 Bridging Scale Fundamentals 

As depicted in Fig. 3.2, the bridging scale method is based on the fundamental idea of 

decomposing the total atomic displacement field z into coarse and fine scales, as 

 vuz             (3.7) 

where the coarse scale u can be represented by a set of basis functions (such as finite 

element shape functions), and fine scale v is the part of the total solution whose 

projection onto the coarse scale basis function is zero.  

 

Figure 3.2  One-dimensional illustration of bridging scale coarse-fine decomposition 

The coarse scale in bridging scale method is defined as 

x 
xα 
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 
I

IIα xN dxu )()( 
          (3.8) 

where NI(xα) is the shape function of node I evaluated at the initial position xα of atom α, 

and dI represents FE nodal displacements. The fine scale v is the part of the total 

displacement that the coarse scale cannot represent. It is defined to be the projection of 

the coarse scale subtracted from the total solution z. One of the possible approaches in 

selecting the projection operator is to minimize the mass-weighted square of the fine 

scale, while noticing that the total solution z is equivalent to the MD solution q, as 

   














2

I

IINmJ wq            (3.9) 

where mα is the mass of atom α and wI are the temporary nodal degrees of freedom. 

Solving for w by minimizing the error J yields 

 qMNMw A

T1           (3.10)  

where NMNM A

T  denotes the coarse scale consistent mass matrix, and MA is a 

diagonal matrix with atomic masses on the diagonal. N is a matrix containing the values 

of the finite element shape functions evaluated at all atomic positions within the domain. 

The fine scale v can then be represented as  

 PqqNwqv             (3.11) 

where A

T
MNNMP

1  is the projection matrix. Finally, the total displacement z can 

be written as the sum of coarse and fine scales; that is 

 QqNdPqqNdz            (3.12) 

where Q = I – P. The term Pq in Eq. 3.12 is called the bridging scale. 



51 

 

3.3.2 Multi-scale Equations of Motion 

To obtain the coupled MD and FE equations of motion, a multi-scale Lagrangian L is 

first constructed as  

 )()()( zzzz, V,t,t KL           (3.13)  

According to Eq. 3.12, the total solution z can be decomposed into d and q, and the 

kinetic energy 
,tA

T

,t,t zMzz
2

1
)( K  can also be written in terms of ,td  and ,tq , giving 

 q)(dqqMddqqdd ,U,,, ,t

T

,t,t

T

,t,t,t  ML
2

1

2

1
)(           (3.14)   

where )( qd,U  is the interatomic potential energy and M is the fine scale mass matrix. In 

deriving Eq. 3.14, the cross terms ,td  and ,tq  have been removed due to the 

orthogonality of the bridging scale [20]. 

The multi-scale equations of motion can be obtained from the Lagrangian by 

following the relations 
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which lead to the coupled equations of motion 

  qfqM ,ttA           (3.16a)  

  zfNMd
T

,tt            (3.16b)  

Note that the fine scale equation of motion (Eq. 3.16a) is simply the MD 

equation of motion, which can be solved with a standard MD solver. Equation 3.16b is 
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the finite element equation of motion, in which M is defined to be a consistent mass 

matrix. When the sizes of the finite elements are large compared to atomic spacing, the 

FE mass matrix can be written as an integral over the FE domain Ω [20], as 

       dρ
T

XNXNM            (3.17) 

which is the consistent mass matrix used in standard finite element method, where ρ 

represents an evenly distributed mass density evaluated based on the atomic mass and 

the space occupied by each atom. Hence, a standard FE solver can be used to find the 

solution to Eq. 3.16b. The coupling between the two equations is through the coarse 

scale internal force N
T
f(z), which is a function of the MD interatomic force f. 

3.3.3 Elimination of Fine Scale outside the MD Region 

Instead of solving molecular dynamics for the entire domain in structural analysis, in 

bridging scale method, we confine the MD simulation into only a small portion of the 

domain, while solving the response of the rest of the domain using finite element 

analysis. Taking the one-dimensional bridging scale structure shown in Fig. 3.3 as an 

example, the molecular dynamics simulation is only performed in the MD region 

(Region 1), while the finite element analysis exists everywhere (Region 1 + Region 2). 

In Region 2, the coarse scale degrees of freedom are represented by finite element 

interpolation, while the fine scale degrees of freedom are eliminated. An impedance 

force that mimics the effect of the eliminated fine scale in Region 2 is imposed at the 

boundary of the MD area. 
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Figure 3.3 A 1-D bridging scale structure 

To develop the impedance boundary condition for the MD region, it is assumed 

that different interatomic potentials are used for Region 1 and Region 2. Since Region 1 

is usually a locally interesting physical domain such as the area near a crack tip, it is 

necessary to use an anharmonic (or nonlinear) potential (such as LJ 6-12) to accurately 

capture the interaction between atoms. However, in Region 2, where the relative 

displacements of atoms and the rotation of the atomic lattice are usually small, a 

harmonic potential – linearized from the anharmonic potential function – can be used to 

represent the interatomic force as a linear function of the displacements. In other words, 

while an anharmonic potential will be used for the MD simulation in Region 1, a 

harmonic force will be assumed during the process of eliminating the Region 2 

atomistic degrees of freedom. 

The first step in deriving the impedance boundary condition is to linearize the 

MD equation of motion (Eq. 3.16a). For the atoms in Region 2, linearizing the force f(z) 

at v = 0 while noticing the equality of q and z yields 

   KvufvMuMqM  ,ttA,ttA,ttA            (3.18) 

where 

 0



 v|

z

f
K            (3.19) 

Note that the complete anharmonic force has been decomposed as 
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     Kvufzf            (3.20) 

The derivation of the impedance boundary condition requires working with the 

fine scale equation of motion exclusively. Therefore, to decompose the MD equation of 

motion into coarse and fine scale components, Eq. 3.18 is separated by considering the 

coarse and fine scales respectively, as 

  ufuM ,ttA
          (3.21a) 

 KvvM ,ttA
           (3.21b) 

The decomposition above is based on the assumption that the fine scale equation of 

motion can be written neglecting the contributions from the coarse scale. This 

assumption can be justified by the orthogonality of coarse and fine scales, as well as the 

fact that the coarse scale has a larger time scale than the fine scale in bridging scale 

simulations [20]. 

Now we elucidate the derivation of the impedance boundary force using a 

simple 1-D atomic lattice. (The extension to higher dimensional cases will be discussed 

later in this chapter.) Assume a one-dimensional structure consists of a chain of atoms 

with mass mA, as shown in Fig. 3.4a, where atoms are connected by nonlinear springs 

with interaction coefficient k (Eq. 3.4). Each atom is labeled with index l that denotes its 

spatial position, while the l = 0 atom represents the boundary of the MD area. Our goal 

is to develop a boundary force (acting on the l = 0 atom) that mimics the fine scale 

dynamic effect of the l > 0 (Region 2) atoms, as shown in Fig. 3.4b. The fine scale 

degrees of freedom of the l > 0 atoms will be eliminated by solving or replacing them in 

terms of the 0l  (Region 1) degrees of freedom. More specifically, the fine scale 

displacement of the l = 1 atom will be solved for in terms of that of the l = 0 atom.  
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Figure 3.4 (a) Original 1-D atomic system, (b) Region 2 fine scale eliminated by 

introducing the impedance boundary force  tf imp

0
 

The key idea in deriving the impedance force is to utilize the periodicity of the 

atomic structure so that standard technique of discrete Fourier transform can be applied. 

To start with, we rewrite the fine scale equation of motion (Eq. 3.21b) for any atom 

within Region 2 of the 1-D lattice, as 

    
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1

1

,

l

ll'

l'l'lAl tvKmtv
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          (3.22) 

where the stiffness matrices K relates the displacements of the neighboring atoms beside 

atom l to the atomic forces acting on it. For a 1-D lattice, the stiffnesses are given by 

scalars, as 

 kK 1            (3.23a) 

 kK 20             (3.23b) 

 kK 1            (3.23c) 

Note that we assume only nearest neighbor interactions when writing Eq. 3.22.  

For the MD boundary atom (l = 0), Eq. 3.22 becomes 
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where  

    tvKtf imp

110            (3.25)  

is the impedance boundary force to be developed (Fig. 3.4b). Note that the effect of the 

Region 2 fine scale degrees of freedom on the MD boundary atom (implied by the v1 

term) is involved in the impedance force.  

To solve for v1 in terms of v0, discrete Fourier transform and Laplace transform 

need to be performed on the linearized fine scale equation of motion of the Region 2 

atoms (Eq. 3.22). Detailed derivation steps can be found in Appendix C. The resulting 

impedance boundary force takes the form 

       
t

imp dvtθtf
0

00             (3.26) 

where 
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is called the time history kernel (plotted in Fig. 3.5), in which J2 stands for the second-

order Bessel function. As can be seen, in contrast to Eq. 3.25, the impedance force in Eq. 

3.26 depends only on the fine scale dynamics of the boundary atom at l = 0. 

 

Figure 3.5 1-D time history kernel 
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Note that the coarse scale equation of motion (Eq. 3.21a) can also be rewritten 

for the l = 0 atom, as 

  u0

1

,0 fmu Att

           (3.28) 

where f0(u) is the coarse scale component of the interatomic force acting on the 

boundary atom, which  depends on the coarse scale solution u in both Region 1 and 

Region 2. 

Substituting the expression of the impedance boundary force (Eq. 3.26) into the 

fine scale equation of motion for the boundary atom (Eq. 3.24) and combining the result 

with Eq. 3.28 gives 

         
t

ttA dvtθftqm
0

00,0 , uq           (3.29) 

where the fine scale displacement v0(τ) can be obtained by 

       000 uqv            (3.30) 

Therefore, for a simple 1-D lattice as shown in Fig. 3.3, the final form of the 

coupled MD and FE equations of motion can be written as 

  qfqM ,ttA           (3.31a) 

         
t

ttA dvtθftqm
0

00,0 , uq           (3.31b) 

  zfNMd
T

,tt            (3.31c) 

Note that Eq. 3.31a will be solved for all non-boundary atoms, while Eq. 3.31b governs 

the dynamics of the two atoms at the MD boundary. The interatomic force f(q) can be 

derived from any nonlinear interatomic potential function.  
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3.3.4 Coarse Scale Internal Force 

In the coarse scale equation of motion (Eq. 3.31c), the coupling force N
T
f(z) originates 

due to the separation of coarse and fine scales. Inside the MD region, since the total 

solutions (z = u + v) of the atoms are available, the internal force acting upon the FE 

nodes can be directly evaluated. However, in Region 2, the interatomic forces f(z) are 

no longer available due to the elimination of the fine scale degrees of freedom, and 

hence the Cauchy-Born rule [19] is utilized to approximate the N
T
f(z) term.  

In Cauchy-Born rule, it is assumed that the lattice underlying any continuum 

point will deform homogeneously according to the continuum deformation gradient, 

while continuum stress and stiffness measures can be obtained directly from interatomic 

potentials. Based on this concept, the nodal force acting on a Region 2 FE node I can be 

calculated as 

    
 

 










 V
N IT

I

T

x

x
xfN P           (3.32) 

where ΔVα is the space occupied by atom α, and P represents the first Piola-Kirchoff 

stress defined as 

 
T

W






F
x




)(P           (3.33) 

where Wα is the potential energy density, and Fα is the deformation gradient at atom α, 

which can be computed as  

 
   
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
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





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I

T

I
I

N

x

x
dI

x

xu
IF 

           (3.34) 

In practice, the summation in Eq. 3.32 can be replaced by an integral, just as in 

Eq. 3.17: 
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    
 

dV
N

V

IT

I

T

 


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x

x
xfN P           (3.35)   

which, in numerical implementation, can be approximated by a weighted sum of the 

function values at a discrete set of quadrature points at locations xq, as 

    
 

q

q

qI

q

T

I

T w
N







x

x
xfN P           (3.36)   

where wq is the weight of the quadrature point xq [20].  

Now a simple example will be used to illustrate the Cauchy-born rule. Consider 

a 1-D element in Region 2 with two nodes i and j. As shown in Fig. 3.6, the element 

contains he/ha atoms, where he represents element length. Our goal is to calculate the 

internal force acting on node j due to the deformation of the element. Note that the 

displacements of the atoms in the element are unknown due to the elimination of the 

fine scale outside the MD area.      

 

Figure 3.6 A 1-D element with two nodes 

According to the Cauchy-born rule, the atomic lattice is assumed to deform 

homogeneously with the continuum; therefore, using Eq. 3.34, we first calculate the 

deformation gradient at the location of atom α within the element, as  
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
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with linear shape functions 

 
ei hxN /1 ;   

ej hxN /           (3.38) 
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Note that di and dj indicate nodal displacements. The potential energy within the space 

occupied by atom α can then be calculated under small deformation assumption, as 

    22/1 aa hhFk             (3.39) 

which comes from the fact that two atomic bonds are connected to atom α (nearest 

neighbor interaction assumed), and meanwhile the potential energy of each bond is 

shared by two atoms.  

By taking derivative of the energy density at atom α 
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            (3.40) 

with respect to the deformation gradient Fα, the Piola-Kirchoff stress at xα can be 

obtained as        

   eijaa hddkhFkh
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x /)1()( 
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
P           (3.41) 

which is the same for all atoms in the element due to homogeneous deformation. Thus, 

the internal force acting on node j due to the deformation of element ij can be calculated 

using Eq. 3.32; that is 
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3.3.5 Staggered Time Integration Scheme 

The coupled equations of motion (Eqs. 3.31a ~ 3.31c) obtained at the end of Section 

3.3.3 indicate a necessity of exchanging information between MD and FE simulations. 

In numerical implementation, a staggered time integration method based on the Verlet 

algorithm is used to update the MD and FE quantities simultaneously through time. The 
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MD simulation is advanced with time step size Δtm, while the time step for finite 

element analysis is Δt, with a relation Δt = mΔtm. Apparently, the time step size for FE 

simulation is a multiple of Δtm, indicating that a small time step size is only necessary in 

solving the MD equation of motion.  

Over each FE time step Δt, the molecular dynamics simulation is advanced first 

by Δtm for m MD time steps. Note that as implied in Eq. 3.31b, the acceleration 

calculation for the boundary atoms in each MD time step requires information from the 

FE simulation near the boundary. Since the FE nodal displacements are only solved for 

each Δt, an interpolation method is used to approximate the coarse scale boundary 

displacements and velocities at each MD time step by assuming that the FE acceleration 

remains constant throughout one single FE time step Δt.  

During each MD time step Δtm, the accelerations of all atoms in the MD area are 

obtained via a time integration method as follows: 
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where q, vMD and aMD are the displacements, velocities and accelerations of the atoms, 

respectively. h represents the time history quantities. uΓ, uΓ,t , and uΓ,tt are coarse scale 

displacements, velocities and accelerations near the boundary updated at each MD time 
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step. Note that those coarse scale quantities include the information of the atom right at 

the boundary (l = 0) as well as the atoms within one cutoff radius outside the MD region 

(l = 1), which are referred to as ‘ghost atoms’. The displacements of the ghost atoms are 

assumed to be equal to the coarse scale displacements and can be obtained by 

interpolating corresponding FE nodal displacements. The bracket notation [j] is used to 

donate the quantities at each MD time step (e.g., [j] is short for the time step n + j/m), 

and the superscript n represents the nth FE time step. 

Once the MD simulation of m MD time steps for the nth FE time step is 

completed, the MD quantities at the time step n+1 (n+m/m) will be used to compute the 

FE accelerations at the time step n+1. A similar integration method is used to update FE 

displacements d, velocities vFE and accelerations aFE: 
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Once the FE simulation goes from time step n to n+1, the information of the 

ghost atoms are interpolated using shape functions. These coarse scale boundary 

quantities will then be used in the next time step for updating the MD quantities. 

3.3.6 1-D Numerical Example 

In this section, we show dynamic bridging scale simulation for a simple 1-D structure 

based on the implementation details discussed above. More information about this 

example problem can be found in our earlier work [39]. As illustrated in Fig. 3.7, the 

bilaterally symmetric computation domain contains forty linear finite elements; 
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meanwhile, the MD simulation is confined into a small domain in the middle, which is 

comprised of 151 atoms. The equilibrium distance between atoms is ha = 0.05, while 

each finite element contains ten atoms. Due to the nature of the 1-D problem, all atoms 

and FE nodes can move only along the x direction. The MD time step size is chosen to 

be 0.0075, and ten MD times steps are run within each FE time step. 

 

Figure 3.7 A one-dimensional bridging scale problem 

As shown in Fig. 3.8a, the initial displacement for this example problem is 

created by superimposing a high frequency wave onto a truncated Gaussian pulse (Fig. 

3.8b) [39]. Note that the displacement in x direction is denoted by the vertical axis in 

Fig. 3.8 and the following figures in this section. Figure 3.9 illustrates how the initial 

displacement is implemented on the 1-D bridging scale structure in Fig. 3.7. Only the 

+x plane is plotted due to symmetry.  

 

Figure 3.8 (a) Initial displacement of the 1-D bridging scale problem within [-0.3,0.3], 

and (b) truncated Gaussian pulse 
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Figure 3.9 Initial condition implemented on 1-D bridging scale structure 

Figure 3.10a gives the result of the bridging scale simulation at t = 150. As can 

be seen, the initial wave passes out of the MD region properly, including the high 

frequency component. By comparing the simulation result with the result of a full MD 

simulation (which in this case can be thought of as the exact solution), we can see 

clearly that the dynamic behavior of the wave has been successfully captured by the 

bridging scale simulation.   

 

Figure 3.10 Results of the 1-D bridging scale example problem, (a) with impedance 

boundary condition, and (b) without impedance boundary condition 
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Figure 3.10 Results of the 1-D bridging scale example problem, (a) with impedance 

boundary condition, and (b) without impedance boundary condition (cont’d) 

To demonstrate the significance of the impedance boundary condition in 

bridging scale method, Fig. 3.10b shows the bridging scale simulation result in which 

the MD region is directly coupled to the FE-only region, i.e., the impedance boundary 

force is not applied. Apparently, since the wavelength of the high frequency component 

of the initial wave is considerably smaller than that can be captured by the continuum 

FE region, the wave is thus reflected at the interface, which can result in spurious heat 

generation in the MD region and a contamination of the simulation. Therefore, it is clear 

that in bridging scale method, the impedance boundary condition plays an important 

role in dissipating high frequency wave emitted from the MD region. 

3.4 Bridging Scale Method for Higher Dimensions 

For 2-D and 3-D structures, the basic concepts of the bridging scale method still apply – 

the FEA exists everywhere, the MD simulation is confined into a localized domain, and 

an impedance force is imposed to the boundary of the MD area, as shown in Fig. 3.11. 
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Figure 3.11 Scheme of a 2-D or 3-D bridging scale domain 

In this thesis, we focus on 3-D multi-scale problems. The majority of the 

formulation introduced in the 1-D scenario discussed in Sections 3.3.1 ~ 3.3.3 can also 

be used for 3-D problems, i.e., the coarse/fine decomposition (Eq. 3.12); multi-scale 

equations of motion (Eq. 3.16) and linearization of the MD equation of motion (Eq. 

3.21). The major difference between 1-D and 3-D bridging scale formulations lies in the 

derivation of the impedance boundary condition (and hence the equation of motion for 

MD boundary atoms (Eq. 3.31b)) and the implementation of coarse scale internal force 

outside the MD region, both of which will be discussed in this section.   

For 3-D bridging scale problems, the impedance boundary condition, including 

the time history kernel, is dependent on the atomic lattice structure. As illustrated in Fig. 

3.12, the atomic structure to be utilized in our 3-D numerical example represents a 

perfect FCC (face centered cubic) crystal (such as Cu, Au, Ag) oriented along the (001) 

direction.  
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Figure 3.12 A unit cell from the FCC atomic lattice to be used in 3-D numerical 

example 

 

Figure 3.13 An atom (l, m, n) with its neighboring (interacting) atoms in the FCC lattice 

To support the derivation of the impedance boundary condition, as shown in Fig. 

3.13, each atom in the 3-D FCC lattice is labeled with three indices – l, m, and n – 

indicating the positions along the x, y, and z axes, respectively. Note that the unit cell in 

Fig. 3.13 is shifted by half of the edge length compared to that in Fig. 3.12, so that all 

nearest neighbors of the atom labeled (l,m,n) can be displayed. In Fig. 3.14, we plot the 

m = 1 layer of the FCC lattice based on the atom numbering convention. Note that each 

value of n, for example, describes a layer of atoms bounded in a given x-y plane. In 

deriving the impedance force for the 3-D lattice, the n = 0 layer is recognized as the 

boundary of the MD area. 
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Figure 3.14 The m = 1 layer of a periodic 3D FCC lattice with indices. The dashed line 

represents the boundary between the MD and the FE-only regions 

The derivation of the impedance boundary condition and the time history kernel 

for the 3-D FCC lattice is detailed in Appendix D. The resulting MD equation of motion 

for the boundary atoms (n = 0) takes the form  
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where the time history kernel θ is a 3×3 matrix. Note that for 3-D bridging scale 

problems, the equations of motion for non-boundary MD atoms and finite element 

analysis are the same as with the 1-D case (Eqs. 3.31a and 3.31c). 

The diagonal components of the 3-D time history kernel θ in Eq. 3.45 calculated 

based on the FCC lattice (Fig. 3.13) and the normalized LJ 6-12 potential are plotted in 

Fig. 3.15. As can be seen, θ33(t) is the most important component, while θ11(t) and θ22(t) 

are equal to each other due to symmetry of the lattice in x and y directions.   
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Figure 3.15 Diagonal components of the time history kernel matrix θ 

Note that lcrit and mcrit in Eq. 3.45 are introduced as maximum numbers of 

neighboring atoms along the x and y directions, respectively, that will be considered 

during the derivation of the impedance force. It has been shown in [24] that compared 

to a direct MD/FE coupling, the biggest improvement occurs when the zeroth-order 

component of the time history kernel is utilized (lcrit = mcrit = 0). Also, it has been 

discussed in [28] that higher order values of θ(t) corresponding to lcrit > 0 and mcrit > 0 

are at most 10% of the values shown in Fig. 3.15. Therefore, in this thesis we assume 

lcrit = mcrit = 0 when calculating the time history kernel matrix.  

For higher dimensional problems, the finite element internal forces outside the 

MD region are also calculated based on the Cauchy-born rule. However, unlike the 

analytical derivation shown in the 1-D case (Eq. 3.42), the nodal force calculation for 2-

D and 3-D problems requires numerical integration. For instance, in our 3-D numerical 

example, hexahedral eight-node isoparametric elements are used in finite element 

analysis. To obtain the nodal forces due to the deformation of a given element, the 

defamation gradient is first calculated at eight quadrature points within the element 

using Eq. 3.34; then the first Piola-Kirchoff stress at each quadrature point is calculated 

θ 

t 
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using Eq. 3.33, where the energy density is evaluated based on the deformation of the 

12 atomic bonds surrounding a given atom (assuming FCC lattice and nearest neighbor 

interaction); finally, the FE nodal forces can be approximated using Eq. 3.36. Details 

regarding the derivation of the Piola-Kirchoff stress P and the Region 2 nodal forces for 

the 3-D FCC lattice can be found in Appendix E. 

Note that if the normalized LJ potential discussed earlier is assumed, then for the 

FCC lattice, the equivalent interaction coefficient ke along the x, y, and z directions is 

calculated as 646.4. The corresponding value of 1/v
*
 is found to be around 0.35 using 

Eq. 3.6. In our 3-D numerical example, we will use a MD time step size Δtm = 0.0075, 

which is sufficiently small. The FE time step size Δt is not limited to the time scale 

characterizing atomic vibrations. Due to the larger length and slower time scales 

associated with the coarse scale, a relatively larger time step can be chosen for FEA. 

3.5 Implementation for Crack Propagation Problems 

For crack propagation problems, it is important to track the evolution of crack tip 

location during simulation. In this thesis, to identify the atom right at the crack tip for 

each time step, we employ the centro-symmetry parameter P defined by Kelchner et al. 

[40], given by 

  
i

iiP
2

6RR           (3.46)   

where Ri and Ri+6 are vectors corresponding to the six pairs of opposite bonds 

surrounding a given atom in a FCC crystal. Figure 3.16a illustrates two of the six pairs 

of bonds around atom α in the FCC lattice used in our numerical example. According to 

Eq. 3.46, P = 0 where the lattice is undisturbed or deformed in a symmetric manner, and 
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P becomes large near defects or free surfaces. For example, Fig. 3.16b depicts a 

scenario in which the four nearest neighbors above atom α have been pulled far away so 

that atom α becomes a surface atom. 

 

Figure 3.16 (a) An atom α within a FCC lattice, (b) deformed lattice, in which atom α 

becomes a surface atom  

The centro-symmetry parameter is proven to be a useful metric to visualize 

nano-scale defects in molecular dynamics studies for 3-D FCC crystals reported by 

Potirniche et al. [7]. Moreover, it is found that the P parameters of surface atoms are in 

most cases much larger than those of atoms near defects such as dislocations or stacking 

faults [40]. Therefore, for a particular interatomic potential model, a critical value of P 

can be defined to distinguish all the atoms located on free surfaces of the crack, i.e., an 

atom with P parameter greater than the critical value will be identified as a crack 

surface atom. When a crack grows, for example, horizontally in a specimen shown in 

Fig. 3.17a, the crack tip position can be determined by finding the x location of the 

crack interior surface atom with the maximum x coordinate [8,41,42]. Typically, a curve 

that depicts the crack tip positions obtained in this way versus time will look similar to 
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that given in Fig. 3.17b, i.e., the crack tip location remains constant for a certain period 

of time, after which it suddenly jumps to the next atom. 

               

Figure 3.17 (a) A specimen with a horizontal edge crack. (b) A typical crack tip location 

history curve 

Note that the centro-symmetry parameter is not the only way available to 

identify the crack tip. Alternate approaches have also been widely used in atomistic 

studies, such as the local potential energy criterion [41] and the crack tip bond length 

criterion [43]. Note that whichever method we choose, the resulting crack tip location 

curve is always piecewise constant in time domain as illustrated in Fig. 3.17b. 

3.6 Numerical Example: Part 1 

In this section, we implement the bridging scale simulation method for a three-

dimensional multi-scale dynamic crack propagation problem. The 3-D FCC lattice 

shown in Fig. 3.12 will be used to model the atomic structure. Other implementation 

details are similar to those discussed in [20,24,27,28]. For example, the initial 

temperature of the system is set to 0K; all components of the time history kernel matrix 

are set to zero after 800 time steps; LJ 6-12 potential with normalized units is used; and 

only nearest neighbors are considered when calculating interatomic interactions. The 
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simulation code is developed using Matlab [44] and implemented on a DELL T7500 

workstation with Intel® Xeon® processor E5603 (clock speed 1.6 GHz). 

3.6.1 Simulation Model  

The structure under consideration is a nano scale solid beam depicted schematically in 

Fig. 3.18. As can be seen, the beam has a uniform cross section along the thickness (y 

direction), and is symmetric in x-z plane with respect to the mid-plane (dashed axis in 

Fig. 3.18b). The size of the geometry is 136 2 ha × 2 2 ha × 138 2 ha (in x, y, z 

directions, respectively) in normalized units. For bridging scale simulation, the beam is 

modeled with finite elements everywhere, while the MD region is confined to a 

rectangular area at the bottom. Specifically, the entire domain contains 782 hexahedral 

eight-node isoparametric finite elements (two layers along the thickness). The 340 

elements within the MD region are of the same regular shape, with width 8 2 ha, height 

6 2 ha, and thickness 2 ha. In the FE-only region, the elements are trapezoidal in x-z 

plane with the same height of 6 2 ha, whereas their dimensions in x direction are 

subject to the curved shape of the boundary. The MD domain is comprised of 82,583 

atoms in total, with 5 layers of atoms in y direction. A pre-defined horizontal edge crack 

of length 12 2 ha is created in the MD area by blocking the interaction between two 

adjacent layers of atoms.  

During simulation, the structure is fixed at the bottom and pulled at the top face 

by a displacement boundary condition shown in Fig. 3.19. This boundary displacement 

corresponds to a strain in z direction that grows from zero to approximately 2.5% at t = 

6,000Δtm, after which it keeps stretching the beam at a lower strain rate to prevent the 
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crack faces from contacting each other. To mimic a plane-strain configuration, a 

periodic boundary condition is applied in the y direction, i.e., the solution at y = y0 is 

equal to the solution at y = y0 + th, where th is the thickness of the beam. Following [28], 

ten MD time steps are run for each FE time step.  

          

 (a)   (b) 

Figure 3.18 3-D nano scale beam model, (a) schematic illustration, and (b) FE mesh in -

x-z plane 

 

Figure 3.19 Displacement boundary condition applied to the top face of the beam 
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3.6.2 Simulation Result 

Figure 3.20 gives the snapshots of the bridging scale simulation result up to t = 

15,000Δtm. As can be seen, the displacement applied at the top of the beam propagated 

smoothly into the MD area, causing the initial crack to propagate in a mode I fashion. 

The solutions of all atoms and FE nodes were consistent along the thickness (y), and no 

displacement was observed in y direction, indicating that the plane strain condition was 

applied correctly. The computation time for the bridging scale simulation was about 24 

hours. 

 

Figure 3.20 Bridging scale simulation results at various time steps. Contours of z 

direction displacements shown 

As discussed in Section 3.5, we take advantage of the centro-symmetry 

parameter P to recognize the atoms located on crack surfaces. For the 3-D FCC lattice 

and the normalized LJ 6-12 potential used in our simulation, we found empirically that 

P > 2 serves as an effective criterion. Figure 3.21a shows a 3-D snapshot of the 

0 Δtm 7,500 Δtm 5,000 Δtm 

15,000 Δtm 12,500 Δtm 10,000 Δtm 
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simulation result within the MD area at t = 15,000Δtm, where atoms are plotted with 

colors representing their z direction displacements. A zoomed-in view of the atoms near 

the crack tip is given in Fig. 3.21b, with P > 2 atoms highlighted in black. Apparently, 

the crack surface atoms are successfully identified, and the crack tip atom is simply the 

one with maximum x coordinate. The resulting crack tip location history curve is plotted 

in Fig. 3.22, indicating that the crack started to grow at around t = 7,000Δtm and 

remained an approximately constant propagation speed until the end of the simulation. 

 

Figure 3.21 Bridging scale simulation result within the MD area (a) 3-D snapshot at t = 

15,000Δtm, and (b) zoomed-in view near the crack tip with crack surface atoms 

highlighted  
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Figure 3.22 Crack tip location history curve 

3.6.3 Physical Interpretation 

To examine the physics behind the dynamic response of the structure, we first plot in 

Fig. 3.23 the z displacements of the nodal points at y = th/2 within the mid-plane (dotted 

line in Fig. 3.18b) at time steps 2,400Δtm and 2,800Δtm. As can be seen, within the 400 

MD time steps, the macroscopic wave due to the boundary displacement traveled 

approximately 35 normalized units along the –z direction. The speed of the macroscopic 

wave can be calculated as 

 7.11)0075.0400/(35 c           (3.47) 

which is very close to the theoretical longitudinal wave speed cl = 12 [8] for the FCC 

lattice and LJ potential used in our simulation.  

 

Figure 3.23 z displacement distribution along z direction at time steps 2,400Δtm and 

2,800Δtm 
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To take a closer look at the microscopic level dynamics, we focus on the z 

direction displacement history (displacement vs. time) of the atom located at XA shown 

in Fig. 3.18b. As can be seen from Fig. 3.24a, atom XA remained stationary until the 

macroscopic wave arrived at around t = 2,500Δtm, after which it moved upward with the 

continuum. At around t = 9,000Δtm, due to the growth of the crack, the bonds right 

above atom XA broke, and atom XA became a surface atom. Therefore, regardless of the 

majority of the domain still being stretched, atom XA went downwards with the lower 

crack surface right after t = 9,000Δtm, and finally moved according to the macroscopic 

vibration of the lower crack surface. If we zoom in the displacement curve, we can see 

in Fig. 3.24b that the microscopic wave due to atomic vibration is superimposed on the 

macroscopic wave. Because of the coupling of atomic vibrations in three dimensions, 

the microscopic vibration frequency observed from the z displacement curve is not 

uniform throughout the entire simulation; however, as shown in Fig. 3.24c, the shortest 

vibration period is found to be 48Δtm, corresponding to a frequency of 2.78, which is 

very close to 2.86 – the vibration frequency calculated in Section 3.4. This also implies 

that the time step size used is sufficiently small to capture the high frequency 

microscopic wave in our MD simulation. 
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Figure 3.24 z displacement history of atom XA 

Now we examine the behavior of the crack. As can be seen from Fig. 3.22, the 

initial crack started to propagate at around t = 7,000Δtm. Since the LJ potential models a 

generic brittle material, during most of the simulation period, the crack propagated in a 

straight line and left “mirror” cleaved surfaces. However, it is also noticed that the crack 

was roughened at around t = 10,500Δtm, as shown in Fig. 3.25a, which is due to the 

instability behavior of brittle crack propagation. In order to better understand the 

underlying physics, we measure the crack propagation speed right before t = 10,500Δtm 

by averaging the crack tip locations from 9,500Δtm to 10,500Δtm using least square 

fitting (Fig. 3.25b), and the calculated local crack speed turns out to be 1.76, which 

corresponds to about 32% of the Rayleigh wave speed cR = 5.6 [8] for the FCC crystal 

modeled in our simulation. This is in good agreement with the experimental and 

simulation results reported in literature [8,9], i.e., dynamic instability in brittle crack 

propagation occurs when the crack propagation speed approaches one third of the 

Rayleigh wave speed cR. This instability behavior roughened the crack surface near t = 

Time (Δtm) 

Time (Δtm) Time (Δtm) 

z 
d
is

p
la

ce
m

en
t 

z 
d
is

p
la

ce
m

en
t 

z 
d
is

p
la

ce
m

en
t 

48Δtm 

(b) (c) 

(a) 



80 

 

10,500Δtm, meanwhile slowed down crack speed along the x direction. After t = 

11,000Δtm and up to t = 15,000Δtm, the crack propagation speed never reached one third 

of the Rayleigh speed again due to the reduced strain rate at the top of the beam after t = 

8,000Δtm; as a result, crack surfaces again became flat.  

 

Figure 3.25 Instability of brittle crack propagation. (a) Crack surface roughened at 

instability, where atoms near the crack are plotted in blue, except for crack surface 

atoms being highlighted in red. (b) Calculation of crack speed before instability  

According to the observations and discussions above, it is clear that the bridging 

scale simulation accurately captured the essential physics of brittle crack propagation. 

The macroscopic displacement at the boundary propagated smoothly into the MD area 

across the MD/FE boundary, while the longitudinal wave speed measured in simulation 

matches the theoretical value. At microscopic level, the highest z displacement 

oscillation frequency measured in simulation is close to the calculated z direction 

natural vibration frequency of the FCC atomic lattice. Furthermore, the crack speed 

measured at dynamic instability is consistent with the data published in literature. 
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CHAPTER 4  

ANALYTICAL SHAPE SENSITIVITY ANALYSIS  

FOR BRIDGING SCALE METHOD 

 

4.1 Overview 

The basic concepts of shape sensitivity analysis have been introduced in Chapter 2. In 

the current chapter, we apply continuum shape sensitivity analysis to dynamic multi-

scale problems based on the bridging scale method introduced in Chapter 3. By taking 

material derivative of the bridging scale variational equations (to be presented in 

Section 4.3), continuum sensitivity expressions will be derived analytically in a fully 

generalized 3-D setting.  

For bridging scale problems, the most basic and straightforward performance 

measures are the dynamic responses of the structure, i.e., the displacements, velocities 

and accelerations of all atoms and FE nodal points in the domain. These performances 

measures can be referred to as analytical performance measures, since their sensitivity 

coefficients can be obtained analytically by solving the sensitivity expressions.  

In this chapter, we first introduce shape design parameterization and the 

calculation of design velocity field for general structures. Section 4.3 presents the 

variational formulation developed for the bridging scale method, which is the starting 

point of continuum shape sensitivity analysis. A discussion on the discontinuity 

problem in shape DSA of coupled atomistic/continuum systems will be given in Section 

4.4. In Section 4.5, the multi-scale shape sensitivity expressions will be derived in a 

continuum setting based on the variational formulation. Implementation aspects of 
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sensitivity analysis will be briefly discussed in Section 4.6. Finally, in Section 4.7, the 

nano-beam example introduced in the previous chapter will be used to verify the 

accuracy of the sensitivity coefficients of structural responses calculated using the 

proposed analytical sensitivity analysis approach. 

4.2 Design Parameterization and Calculation of Design Velocity Field 

Shape design variables govern the geometric shape of the structural boundary, usually 

represented by parametric curves and surfaces for 2-D and 3-D applications, 

respectively. Consider the shape design for an engine connecting rod [1] shown in Fig. 

4.1. The design boundary (red lines) consists of two cubic Bezier curves at each end and 

a horizontal line in the middle. Upper and lower design boundaries are symmetric with 

respect to the centerline.  

 

Figure 4.1 Engine connecting rod [1] 

Note that Bezier curve is one of the common formats of planar parametric 

curves. It is represented geometrically by the position of its control points (or control 

polygon), which determine the shape of the curve with Bernstein basis polynomial. 

Mathematically, a Bezier curve is defined as [45] 

 



n

i

nii uuBu
0

, ]1,0[),()( pC            (4.1) 

Design boundary 
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where u is the parametric coordinate of the curve, pi represents the ith control point, 

n+1 is the total number of control points, and Bi,n(u) is the Berstain polynomial, defined 

as 

   ini

ni uu
i

n
uB











 1)(,            (4.2) 

As illustrated in Fig. 4.2, any perturbation of the position of the control points will 

result in the change of the geometric shape of the Bezier curve.  

 

Figure 4.2 A cubic Bezier curve and its variation due to design change [46] 

For the connecting rod example, the locations of the control points of the Bezier 

curves are selected as design variables (b1 ~ b5), as shown in Fig. 4.1. The shaded area 

represents the design domain – the structural domain that will be affected by design 

variables.  

During shape design, the design velocity field is calculated first at the design 

boundary. The mapping T is characterized by the parametric equations employed for 

representing the design boundary (such as Eq. 4.1). Therefore, the boundary velocity 

field can be calculated by varying the parametric equations of the design boundary 

through changes of design variables. For example, for a 2-D design boundary, the 

boundary velocity field with respect to the ith design variable bi can be written as 
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bC );()(V            (4.3) 

where δbi is usually set to 1 for convenience in practice. 

If finite element method is employed for structural analysis, the finite element 

nodes at the original design boundary will have to move to the new geometric boundary. 

The movement, i.e., boundary velocity field, can be calculated by plugging the 

parametric coordinate u at the nodes (e.g., uj for node j) along the boundary curve into 

Eq. 4.3; that is 

 i

i

jj
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i b
b

uu 



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C
bC );()(V            (4.4) 

To illustrate the movement of boundary nodes according to the boundary 

velocity field, a 2-D structural domain with design boundary parameterized using a 

cubic Bezier curve is depicted in Fig. 4.3. As can be seen, the boundary nodes (n1 ~ n6) 

move with the boundary curve due to the position change of control point p2 (moved 

upward by δp2x2
). 
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Figure 4.3 A 2-D model with design boundary parameterized using a Bezier curve. 

Boundary nodes move due to the location change of control point p2 [46] 

The change of structural boundary also causes the movement of material points 

in the domain of the structure, which is characterized by so called domain velocity field. 

After a shape design change, instead of re-meshing the domain using a mesh generator 

(which may result in the change of topology of the finite element mesh), the location of 

the finite element nodes needs to be updated according to the domain velocity field. 

Several approaches of calculating the domain velocity field are available, such as the 

Isoparametric Mapping Method [47] and the Boundary Displacement Method [48], 

which have been well documented and will not be repeated in this section.  
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Note that when defining design velocity fields for a general structural domain, 

several theoretical and practical requirements need to be satisfied. For example, the 

design velocity field should depend linearly on the variation of shape design parameters; 

also, it must retain the topology of the original finite element mesh without causing any 

mesh distortion; moreover, the finite element nodes at the boundary must stay on the 

boundary for all shape changes [48].  

4.3 Variational Formulation for Bridging Scale Method 

As discussed earlier in Chapter 2, continuum shape sensitivity analysis requires taking 

material derivative of a continuum variational governing equation in integral form. In 

this section, we briefly introduce the continuum variational formulation developed for 

the bridging scale method, which has been reported in our previous work [35]. Detailed 

derivation of the variational formulation can also be found in Appendix F of this thesis. 

In bridging scale method, the total solution z(x, t) is defined as the sum of coarse 

scale u(x, t) and fine scale v(x, t), as introduced in Eq. 3.1; that is 

      t,t,t, xxx vu z             (4.5) 

where the displacement fields are thought to be continuous functions at first glance. In 

order to introduce the bridging scale, the structure domain needs to be described using 

atoms. Therefore, discrete functions z, u and v, which have values only at atomic 

positions, are defined to represent the atomic displacement fields. Note that the coarse 

scale can also be thought of as a continuous field u, since it can be interpolated at points 

in between atoms with FE shape functions; while u is simply a discrete version of u, 

with function values of u at atomic locations. All the continuous and discrete 

displacement fields above belong to a function space defined as 
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 ZZZ  (4.6a) 

    hmH,   xon,|,
3

vvuuvuvuzZ  (4.6b) 

  h  xvvuuRvuvuz on,|,, 3Z  (4.6c) 

Following the derivations detailed in Appendix F, we achieve the variational 

equations for both MD simulation and coarse scale FEA, respectively, as 
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where F
imp

 is a vector that includes the impedance forces acting on all boundary atoms. 

ε and σ denote stain and stress, respectively, while Ω2 represents the FE-only domain. 

The virtual displacements q , u  and u  belong to the function space Ẑ  defined as 

 Ẑˆˆ ZZ  (4.8a)  

              000,on0,|,ˆ 3
 TT

hm ,t,,t,H, xxxxx vvuuvuvuvuzZ  (4.8b)  

          000,on0,|,,ˆ 3  TT

h ,t,,t, xvxvxuxuxvuRvuvuzZ  (4.8c) 

Note that the energy equations (Eqs. 4.7a and 4.7b) are obtained in a continuum 

setting, except for the MD simulation, which is discrete in nature. The energy equations 

serve as the basis of the continuum shape sensitivity analysis to be introduced later in 

this chapter. Also, it has been shown in [35] that starting from the variational 

formulation, the complete set of bridging scale differential equations presented in 

Chapter 3 can be naturally obtained. 
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4.4 Discontinuity in Shape DSA of Bridging Scale Problems 

Applying the concept of continuum shape sensitivity analysis to bridging scale 

problems involves unique challenges due to the nature of coupling atomistic/continuum 

systems. Here we take a 1-D bridging scale structure shown in Fig. 4.4a as an example 

for illustration. For 1-D problems, the only shape design variable is length, and the 

shape sensitivity coefficients describe the influence of length change to the 

displacements of atoms and finite element nodal points in the structure. Note that in 

bridging scale, coarse scale solutions are continuous in design; hence, derivatives exist. 

However, for the fine scale, when the length is changed, atoms must be either added or 

deleted from the system, losing the continuity requirement.  

Now we first discuss the derivatives of the coarse scale solutions to reveal the 

discontinuity issue, and then introduce the method that we propose to overcome the 

problem. 
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Figure 4.4 1-D bridging scale structure with atom α inside element with nodes i and j. (a) 

Before design change, and (b) after design change (length changed to l + δl) 

As shown in Fig. 4.4a, the coarse solution of the αth atom, which falls inside the 

element with end nodes i and j, can be written as 

 jjii dNdNu 
              (4.9) 

where di and dj are the displacements at respective nodes i and j, obtained from finite 

element solutions. 
iN  and 

jN  are linear shape functions of nodes i and j evaluated at 

xα, defined as 
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where xα  = αha – xi, and he denotes the length of the finite elements. 

Assume a linear design velocity field for simplicity; i.e., material point (in this 

case, nodes) moves linearly according to length change δl. The linear design velocity 

field can be written as 

 l
l

x
xV )(             (4.11) 

Hence, as shown in Fig. 4.4b, nodes i and j move to their respective new locations at the 

perturbed design, as 
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where, for example, xi(δl) represents the location of node i at the new design with length 

change δl. Therefore, the element length of the perturbed design becomes he(δl) = 

he·(1+ δl/l). Since the atomic space ha is unchanged, the local location of atom α in the 

same element after design change is 
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The derivative of the coarse scale solution at atom α can be obtained as 

 
dl

dd
Nd

l

N

dl

dd
Nd

l

N

dl

du j

jj

ji
ii

i






 








             (4.14) 
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Note that Eqs. 4.14 and 4.15 are true only if atom α stays inside the same 

element before and after the design change; i.e.,  

 jai xhx    and  
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11             (4.16) 

However, it is apparent that any atom that is added or deleted as well as those 

fall outside their corresponding elements after the design change do not satisfy the 

requirements of Eq. 4.16. Therefore, the derivative of the coarse solutions of these 

atoms with respect to the length change does not exist, let alone the fine solutions that 

are discrete in nature.  

In order to overcome this problem, in our numerical example, we define the 

design velocity field in a way such that the shape of the MD region does not change 

with design. This is perfectly fine since the domain design velocity can be arbitrarily 

chosen as long as the velocity field satisfies the continuity and regularity requirements 

[48]. Moreover, in most multi-scale simulations, the MD region is generally much 

smaller compared to the entire structural domain; therefore, for 2-D and 3-D multi-scale 

structures as illustrated in Fig. 3.11, as long as the MD boundary does not overlap with 

the design boundary, assuming the shape of the MD region is unchanged will not result 

in any restriction on the modeling of the design problem. 

4.5 Continuum Shape Sensitivity Analysis for Bridging Scale Method 

In this section, we derive shape sensitivity expressions for the bridging scale method 

following the continuum-discrete method introduced in Section 2.3.3. Due to the fact 

that the direct differentiation method is in general more efficient for dynamic problems 
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than the adjoint variable method, in this thesis the former will be employed in 

sensitivity calculation. 

Noting that the displacement solutions (q, u and u) of the variational equations 

(Eq. 4.7) can be assumed as continuously differentiable functions in design space as in 

[33], we start by taking material derivative of Eqs. 4.7a and 4.7b, giving 
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 

        

          dtddiv

dtddivρdρ

TTT

T
t

,

T

,

T

t

,tt

T

,tt

T

T

TT

T

2

0

0

2










 





VσεVσε

σε

V

uuuu

uu

uuuu

uzfuqzfu
uq





            (4.17b) 

Note that an evenly distributed mass density is assumed as mentioned in Eq. 3.17, and 

thus the function ρ(x) in Eq. 4.7b is replaced by a constant ρ in Eq. 4.17b.  

According to Eq. 2.35, the first term in the domain integral on the right hand 

side of Eq. 4.17b can be evaluated as 
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Note that 0u  is assumed when deriving Eq. 4.18, which implies that the coarse scale 

virtual displacement will not change with design.  

Substituting Eq. 4.18 into Eq. 4.17b gives 
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To solve for the material derivatives of atomic displacements, velocities and 

accelerations, rearrange Eq. 4.17a as 

           0,,,,
0

 dt
T

TTTT

t
imp

,

imp

,,,,ttA

T
uuqFquqFuuqfquqfqMq

uquq
    (4.20) 

Since the virtual displacement q  is arbitrary, the sensitivity differential equation for the 

MD simulation can be obtained as 

        uuqFquqFuuqfquqfqM
uquq

 ,,,, imp

,

imp

,,,,ttA TTTT              (4.21) 

As can be seen, the dynamic responses of atoms depend only implicitly on 

design. The material derivative terms in Eq. 4.21 are equivalent to partial derivatives 

with respect to shape design variables. This is because the shape of the MD region is 

assumed to remain untouched, and therefore the material point (atoms) within the MD 

region is not moving with shape design changes. 

To solve for the material derivative of the coarse scale degrees of freedom, we 

create finite element mesh over the domain and discretizing Eq. 4.19 using FE shape 

functions, as 

  
    

 



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
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T
t
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T

tt

T dtdt
00

,,

F

dzfqzfN
ddMddMd

dq


             (4.22) 

where 

 tt

T
discretize

,tt

T ddivρ ,dMd  Vuu             (4.23) 

In Eq. 4.22, M stands for the consistent finite element mass matrix (Eq. 3.17), 

and 

CB

F  represents the material derivative of the coarse scale nodal forces obtained by 

discretizing the integral over the domain Ω2 on the right hand side of Eq. 4.19 using 
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finite element shape functions. Details regarding the derivation of Eqs. 4.22 and 4.23 

are given in appendices. Specifically, the discretization of coarse scale in Region 2 is 

explained in detail in Appendix E, while the material derivative of coarse scale (such as 

the calculation of 

CB

F ) can be found in Appendix G. 

Similarly, the coarse scale sensitivity equation can be obtained by considering 

the arbitrariness of d ; that is 

 
    

tt
CB

,,

T

tt

TT

,, dM
F

dzfqzfN
dM

dq 


 












 
              (4.24) 

Note that Eqs. 4.21 and 4.24 are the coupled dynamic shape sensitivity 

expressions for the MD and FE simulations, respectively. 

4.6 Implementation Aspects for Sensitivity Analysis 

In our numerical implementation, the coupled sensitivity equations derived above (Eqs. 

4.21 and 4.24) are solved in parallel with structural analysis (Eqs. 3.31a, 3.31c, and 

3.45) using the same time integration method introduced in Section 3.3.5. It is assumed 

that the initial displacements and velocities for all MD atoms and FE nodes will not 

change with design, which is physically meaningful. Hence, the initial conditions for 

the sensitivity equations can be defined as 
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
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d
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
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d

d

d ,t
            (4.25) 

During each MD time step, the solution of bridging scale simulation, such as q 

and d, are obtained first and then substituted into the sensitivity expressions. Thus, the 

sensitivity equations can be solved in the same time step, and the results, such as q  and 
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d , will be employed as initial conditions to solve the sensitivity equations in the next 

time step. Note that the direct solutions of the sensitivity expressions (e.g., q  and d ) at 

each time step are the sensitivity coefficients of structural responses. 

The calculated sensitivity coefficients describe quantitatively the rate of 

performance measure change with respect to the change of shape design variables, and 

therefore can be used to predict the behavior of the structure at a perturbed design 

during design process. Consider a general performance measure ψ as an example. The 

solid curve shown in Fig. 4.5a depicts the change of the performance measure with 

respect to the ith design variable bi, which is unknown in practice. In structural design, 

we first calculate the sensitivity coefficient dψ/dbi, which is the slope of the curve at the 

current design b
0
, and then use the 1st-order prediction 

     i

i

i b
bd

d
b 


  00

bb             (4.26) 

to estimate ψ(b
0
 + δbi), which is the actual value of the performance measure at the 

perturbed design b
0
 + δbi.  

 

Figure 4.5 (a) Behavior of performance measure ψ in design space. (b) A performance 

measure ψ that shows high nonlinearity 
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In our numerical example, to verify the accuracy of the proposed sensitivity 

analysis approach, we compare the sensitivity coefficients with overall finite difference 

result. The accuracy of the 1st-order prediction of performance measure ψ can be 

quantified using an accuracy index defined as 
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indexAccuracy             (4.27) 

where ψ(b
0
 + δbi) can be obtained through re-analysis, i.e., rerunning the simulation at b 

= b
0
 + δbi. If the accuracy index is close to 100%, or, more rigorously, if the accuracy 

index converges to 100% as δbi approaches zero, then the sensitivity coefficient dψ/dbi 

is considered to be correct. 

As can be seen from Fig. 4.5, the accuracy of the 1st-order prediction depends 

on not only the accuracy of the calculated sensitivity coefficient, but also the 

nonlinearity of the performance measure in design space. Therefore, we often use a very 

small design perturbation δbi for accuracy verification (Eq. 4.27) in order to avoid the 

nonlinear effect. On the other hand, during design process, a large perturbation size (or 

step size) is preferred. However, if, near the current design, the performance measure 

exhibits high nonlinearity in design space, as shown in Fig. 4.5b, then the perturbation 

size must be kept very small to ensure an accurate 1st-order prediction; in other words, 

only very small step sizes can be used in design process. 

4.7 Numerical Example: Part 2 

In this section, we verify the accuracy of the proposed analytical shape sensitivity 

analysis method using the nano-beam example introduced in Chapter 3.  
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4.7.1 Design Parameterization 

For the purpose of sensitivity analysis, we model the geometric shape of the curved 

boundary faces above the MD region on both sides of the nano-beam using parametric 

Bezier curves with three control points. As illustrated in Fig. 4.6a, the shape of the left 

boundary face, for example, can be morphed by adjusting the locations of control points 

P1, P2 and P3. In our study, we define three shape design variables b1, b2, and b3 that 

correspond respectively to P2y (y direction coordinate of point P2), P3y and P3x. At the 

current design, the locations of the three control points are (0, 66 2 ha), (0, 102 2 ha) 

and (13.6ha, 138ha) for P1, P2 and P3, respectively. The shape of the right boundary 

face will vary accordingly during a design change to maintain the symmetry of the 

beam. The design velocity fields associated with individual design variables are 

illustrated in Fig. 4.6b. Note that shape changes only take place in the FE-only region, 

whereas the shape of the MD region will remain untouched as discussed earlier in 

Section 4.4. 

 

(a) 

Figure 4.6 Design parameterization for the nano-beam. (a) Parametric boundary curve, 

and (b) design velocity fields for individual design variables 

P1 

P2 

P3 b3 = δP3x 

b2 = δP3y 

b1 = δP2y 

b3  

b1  

b2  



98 

 

 

(b) 

Figure 4.6 Design parameterization for the nano-beam. (a) Parametric boundary curve, 

and (b) design velocity fields for individual design variables (cont’d) 

4.7.2 Sensitivity Accuracy Verification 

We carried out analytical shape sensitivity analysis for the nano-beam example. For 

bridging scale problems, the simplest analytical performance measures are the 

responses of the structure, including the displacements, velocities and accelerations of 

all atoms and FE nodes. For accuracy verification, we arbitrarily pick one atom (XA in 

Fig. 4.7) and one FE node (XN) from the MD and FE-only regions, respectively, and 

then examine their accuracy indices (Eq. 4.27) by comparing the sensitivity coefficients 

with overall finite difference results. 

 

Figure 4.7 Atom XA and node XN chosen for sensitivity accuracy verification 
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 An accuracy index convergence study is first carried out as shown in Fig. 4.8, in 

which the accuracy indices of the z direction displacement sensitivity coefficients for 

atom XA with respect to b2 are plotted versus simulation time for different design 

perturbations (δbi in Eq. 4.27) ranging from δb2 = 0.0001 to δb2 = 0.1, where δb2 = 0.1 

corresponds to an 0.05% increment of beam length. Note that z direction sensitivity 

coefficients are chosen due to the fact that the deformation of the beam is mainly along 

the z direction. As can be seen from Fig. 4.8, for all time steps plotted, the accuracy 

index converges to 100% as the perturbation size approaches zero, which implies that 

the proposed analytical sensitivity analysis method is accurate.  

 

Figure 4.8 Accuracy index convergence study for atom XA. Accuracy indices for z 

displacement sensitivity with respect to b2 plotted 

 Then we take a closer look at the accuracy of the sensitivity coefficients by 

listing in Tables 4.1 ~ 4.3 the z direction sensitivity coefficients of atom XA with respect 

to all three design variables. The perturbation size for overall finite difference used in 

Tables 4.1 ~ 4.3 is δbi = 0.0001 – the smallest one plotted in Fig. 4.8. In each table, 

Column A lists the selected FE time steps. Columns B to D show the structural 

responses at current design (ψ(b
0
)), including displacement q, velocity vMD and 

acceleration aMD, at each chosen time step. Columns E to G list the same information at 
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the perturbed design (ψ(b
0
 + δbi)) obtained through re-analysis. Columns H to J show 

differences of the structural responses due to the design change, obtained using overall 

finite difference (denominator in Eq. 4.27); i.e., Column H = Column E – Column B, 

etc. The analytically calculated sensitivity coefficients (dψ/dbi) are listed in Columns K 

to M, and are then compared with the overall finite difference results in Columns H to J, 

after multiplied by the design perturbation δbi. The accuracy comparison results 

(accuracy index) are shown in Columns N to P. As we can see, the sensitivity 

coefficients are very accurate compared to overall finite difference results. Also, the 

sensitivity coefficients with respect to design variable b1 (Columns K to M in Table 4.1) 

are in general much smaller than those with respect to b2 and b3, which means the 

response of the structure is less sensitive to b1 than to b2 and b3. The sensitivity 

accuracy verification for node XN with respect to design variable b2 is given in Table 

4.4. In fact, many other atoms and nodes have been tested, and it is found that the 

sensitivity results for all atoms and FE nodes with respect to all three design variables 

are generally of the same level of accuracy. 

Table 4.1 Accuracy verification of z direction sensitivity coefficients with respect to b1 

for atom XA 

 

 

 

A B C D E F G H I J K L M N O P

Time Step

(Δt m ) q(b
0
) vMD (b

0
) aMD (b

0
) q(b

0
+δb1) vMD (b

0
+δb1) aMD (b

0
+δb1) Δq ΔvMD ΔaMD DSA q DSA vMD DSA aMD % q % vMD % aMD

3,000 3.32E-02 1.54E-02 3.14E-03 3.32E-02 1.54E-02 3.14E-03 -2.99E-09 5.47E-10 -3.86E-10 -2.99E-05 5.47E-06 -3.86E-06 100.000% 100.001% 100.035%

5,000 7.55E-01 7.78E-02 2.25E-03 7.55E-01 7.78E-02 2.25E-03 1.38E-08 2.29E-09 2.92E-10 1.38E-04 2.29E-05 2.92E-06 100.000% 100.001% 100.094%

7,000 1.98E+00 8.19E-02 3.97E-04 1.98E+00 8.19E-02 3.97E-04 4.04E-08 4.54E-10 6.01E-10 4.04E-04 4.54E-06 6.01E-06 100.000% 100.023% 100.044%

9,000 2.81E+00 -5.92E-03 -7.61E-04 2.81E+00 -5.92E-03 -7.61E-04 6.96E-08 2.85E-08 2.61E-09 6.96E-04 2.85E-04 2.62E-05 100.000% 100.001% 100.240%

11,000 2.13E-01 -1.38E-01 5.11E-01 2.13E-01 -1.38E-01 5.11E-01 -3.08E-07 1.64E-06 7.19E-06 -3.08E-03 1.64E-02 7.19E-02 100.001% 100.000% 100.015%

13,000 2.77E-02 1.33E-01 3.05E-01 2.77E-02 1.33E-01 3.05E-01 2.79E-07 1.66E-06 -3.08E-05 2.79E-03 1.66E-02 -3.08E-01 99.999% 100.000% 100.000%

15,000 1.35E-01 1.12E-01 -5.49E-01 1.35E-01 1.12E-01 -5.49E-01 1.83E-07 -3.46E-06 -6.86E-05 1.83E-03 -3.46E-02 -6.86E-01 100.006% 99.995% 100.004%

Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
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Table 4.2 Accuracy verification of z direction sensitivity coefficients with respect to b2 

for atom XA 

 

Table 4.3 Accuracy verification of z direction sensitivity coefficients with respect to b3 

for atom XA 

 

Table 4.4 Accuracy verification of z direction sensitivity coefficients with respect to b2 

for node XN 

 

 Note that Fig. 4.8 can also be considered as a design perturbation study, which 

shows how accurate the 1st-order predictions of atomic displacements are, compared to 

the actual displacements at perturbed designs. As can be seen, the 1st-order predictions 

are in general less accurate in predicting the responses of atoms at large design 

perturbations. For example, as shown in Fig. 4.8, when a design perturbation δb2 = 0.05 

is applied, at some time steps, the error of 1st-order prediction can be as large as 110% 

(accuracy index is about 210%). Also can be observed from Fig. 4.8 is that the accuracy 

A B C D E F G H I J K L M N O P

Time Step

(Δt m ) q(b
0
) vMD (b

0
) aMD (b

0
) q(b

0
+δb2) vMD (b

0
+δb2) aMD (b

0
+δb2) Δq ΔvMD ΔaMD DSA q DSA vMD DSA aMD % q % vMD % aMD

3,000 3.32E-02 1.54E-02 3.14E-03 3.32E-02 1.54E-02 3.14E-03 -1.81E-07 -3.83E-08 4.30E-09 -1.81E-03 -3.83E-04 4.30E-05 100.000% 100.000% 99.997%

5,000 7.55E-01 7.78E-02 2.25E-03 7.55E-01 7.78E-02 2.25E-03 -1.00E-06 -3.76E-08 -7.89E-11 -1.00E-02 -3.76E-04 -7.86E-07 100.000% 100.000% 99.619%

7,000 1.98E+00 8.19E-02 3.97E-04 1.98E+00 8.19E-02 3.97E-04 -1.19E-06 -7.50E-09 9.95E-09 -1.19E-02 -7.50E-05 9.95E-05 100.000% 99.999% 99.993%

9,000 2.81E+00 -5.92E-03 -7.61E-04 2.81E+00 -5.92E-03 -7.61E-04 -1.05E-08 5.41E-08 -6.82E-07 -1.05E-04 5.41E-04 -6.82E-03 99.993% 99.992% 99.982%

11,000 2.13E-01 -1.38E-01 5.11E-01 2.13E-01 -1.38E-01 5.11E-01 1.44E-06 -4.54E-06 -2.87E-05 1.44E-02 -4.54E-02 -2.87E-01 99.998% 100.002% 99.973%

13,000 2.77E-02 1.33E-01 3.05E-01 2.77E-02 1.33E-01 3.05E-01 -1.26E-06 -2.16E-06 2.27E-04 -1.26E-02 -2.16E-02 2.27E+00 100.017% 100.034% 100.007%

15,000 1.35E-01 1.12E-01 -5.49E-01 1.35E-01 1.12E-01 -5.49E-01 2.21E-07 -2.63E-07 1.14E-04 2.21E-03 -2.61E-03 1.14E+00 100.096% 99.370% 99.926%

Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy IndexCurrent Design

A B C D E F G H I J K L M N O P

Time Step

(Δt m ) q(b
0
) vMD (b

0
) aMD (b

0
) q(b

0
+δb3) vMD (b

0
+δb3) aMD (b

0
+δb3) Δq ΔvMD ΔaMD DSA q DSA vMD DSA aMD % q % vMD % aMD

3,000 3.32E-02 1.54E-02 3.14E-03 3.32E-02 1.54E-02 3.14E-03 -2.30E-08 -8.97E-09 -2.15E-09 -2.30E-04 -8.97E-05 -2.15E-05 100.000% 100.000% 100.003%

5,000 7.55E-01 7.78E-02 2.25E-03 7.55E-01 7.78E-02 2.25E-03 -4.64E-07 -3.72E-08 1.47E-09 -4.64E-03 -3.72E-04 1.47E-05 100.000% 100.000% 100.010%

7,000 1.98E+00 8.19E-02 3.97E-04 1.98E+00 8.19E-02 3.97E-04 -7.98E-07 -1.45E-08 4.28E-10 -7.98E-03 -1.45E-04 4.27E-06 100.000% 100.000% 99.936%

9,000 2.81E+00 -5.92E-03 -7.61E-04 2.81E+00 -5.92E-03 -7.61E-04 -5.54E-07 -1.35E-07 -2.48E-07 -5.54E-03 -1.35E-03 -2.48E-03 100.000% 99.996% 99.829%

11,000 2.13E-01 -1.38E-01 5.11E-01 2.13E-01 -1.38E-01 5.11E-01 2.30E-06 -1.09E-05 -4.94E-05 2.30E-02 -1.09E-01 -4.94E-01 99.994% 100.002% 99.902%

13,000 2.77E-02 1.33E-01 3.05E-01 2.76E-02 1.33E-01 3.05E-01 -1.88E-06 -1.15E-05 2.32E-04 -1.88E-02 -1.14E-01 2.32E+00 100.007% 99.992% 99.996%

15,000 1.35E-01 1.12E-01 -5.49E-01 1.35E-01 1.12E-01 -5.49E-01 -8.54E-07 2.20E-05 4.26E-04 -8.54E-03 2.20E-01 4.26E+00 99.947% 100.035% 99.976%

Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index

A B C D E F G H I J K L M N O P

Time Step

(Δt m ) d(b
0
) vFE (b

0
) aFE (b

0
) d(b

0
+δb2) vFE (b

0
+δb2) aFE (b

0
+δb2) Δd ΔvFE ΔaFE DSA d DSA vFE DSA aFE % d % vFE % aFE

3,000 1.13E+00 1.12E-01 5.54E-03 1.13E+00 1.12E-01 5.54E-03 -4.46E-07 -2.27E-08 7.66E-10 -4.46E-03 -2.27E-04 7.66E-06 100.000% 100.000% 100.005%

5,000 3.44E+00 1.96E-01 4.87E-03 3.44E+00 1.96E-01 4.87E-03 -8.32E-07 -2.69E-08 1.46E-08 -8.32E-03 -2.69E-04 1.46E-04 100.000% 100.000% 99.998%

7,000 6.05E+00 1.25E-01 -6.78E-03 6.05E+00 1.25E-01 -6.78E-03 -4.15E-07 2.74E-08 9.86E-09 -4.15E-03 2.74E-04 9.86E-05 100.000% 100.001% 100.002%

9,000 7.19E+00 2.67E-02 -4.84E-03 7.19E+00 2.67E-02 -4.84E-03 -1.54E-07 -2.49E-08 -2.31E-08 -1.54E-03 -2.49E-04 -2.31E-04 100.001% 100.000% 99.985%

11,000 7.32E+00 1.04E-02 2.27E-03 7.32E+00 1.04E-02 2.27E-03 -6.59E-07 -8.17E-08 5.32E-08 -6.59E-03 -8.17E-04 5.32E-04 100.000% 99.999% 100.002%

13,000 7.59E+00 2.23E-02 9.30E-03 7.59E+00 2.23E-02 9.30E-03 -1.33E-06 -2.16E-07 -3.89E-07 -1.33E-02 -2.16E-03 -3.89E-03 100.000% 100.004% 100.002%

15,000 8.23E+00 5.73E-02 -4.13E-03 8.23E+00 5.73E-02 -4.13E-03 -1.81E-06 1.03E-07 2.94E-07 -1.81E-02 1.03E-03 2.94E-03 100.001% 99.959% 99.937%

Current Design Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index



102 

 

of the 1st-order predictions starts to deteriorate when crack propagation initiates at 

around t = 7,000Δtm. 

 To explain this deterioration of accuracy, in Fig. 4.9a we zoom in the z 

displacement history curve of atom XA, and then, in the z displacement-time-design 

space, we plot the z displacements at XA from t = 11,640Δtm to t = 11,680Δtm at several 

perturbed designs up to δb2 = 1. It is illustrated clearly in Fig. 4.9a how the z 

displacement of atom XA changes with both time and design, while Fig. 4.9b and 4.9c 

show respectively the z displacement history at perturbed design δb2 = 0.5 and the 

change of z displacement with design at t = 11,660Δtm. 

By looking at the 3-D surface in Fig. 4.9a along the design direction, the 

zoomed-in z displacement history curves of atom XA at different perturbed designs are 

plotted in Fig. 4.10a. It is apparent in Fig. 4.10a that the displacement curve is further 

and further delayed in time space as the perturbation size grows, resulting in staggered 

crests of individual curves. In Figs. 4.10b and 4.10c, we compare the 1st-order 

predictions of z displacements (red dashed line) with the z displacements at perturbed 

designs obtained through re-analysis (blue dashed line with markers) at two different 

time steps. As we can see, at t = 11,668Δtm, when the slopes of individual displacement 

curves in Fig. 4.10a are relatively uniform, the 1st-order predictions are generally in 

agreement with the displacements from re-analysis even at large perturbations (Fig. 

4.10b). However, at t = 11,653Δtm, when the slopes of the displacement curves are close 

to zero, the accuracy of the 1st-order prediction deteriorates quickly as the perturbation 

size increases (Fig. 4.10c). This is because in dynamic problems, analytical 

performances such as atomic displacements are measured at individual time steps, and 
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each analytical sensitivity coefficient only predicts the change of performance measure 

at a fixed time step. For example, the sensitivity coefficient of the z displacement of 

atom XA at t = 100Δtm predicts how the z displacement of XA at that exact time step 

changes with design. Therefore, if the performance measure history curve is delayed (or 

advanced) due to a design change, then at the time steps where the curve slope changes 

drastically (e.g., near the crest and trough of each microscopic oscillation), the 

performance measure will exhibit highly nonlinear behavior in design space (blue curve 

in Fig. 4.10c), and hence the 1st-order prediction will lose accuracy at relatively large 

design perturbations. 
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Figure 4.9 z displacement at XA in time and design spaces. (a) z displacement surface in 

3-D displacement-time-design space, (b) z displacement in time domain at perturbed 

design δb2 = 0.5, and (c) z displacement in design domain at t = 11,660Δtm 
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Figure 4.10  Nonlinearity of atomic displacement in design space. (a) z displacement 

history curves of atom XA at different perturbed designs, (b) nonlinearity of z 

displacement at t = 11,668Δtm, and (c) nonlinearity of z displacement at 11,653Δtm 

 Therefore, it becomes clear that although the sensitivity coefficients of structure 

responses are accurately calculated, the accuracy of the 1st-order predictions can be 

affected by the nonlinearity of the performance measures (such as atomic 

displacements) in design space. As discussed above, the severe nonlinearity observed in 

Fig. 4.10c is resulted from two factors – high frequency oscillation of the performance 

measure history curve and delay of the performance measure in time space due to 

design change. One can readily infer that the less accurate predictions in Fig. 4.8 must 

be measured near the crests or troughs of the oscillating atomic displacement history 

curve. Moreover, since the initial temperature of the MD area was set to 0K in our 

simulation, atoms did not vibrate until microscopic waves were generated by bond 

breaking due to crack propagation. Consequently, the deterioration of accuracy in Fig. 
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In summary, it has been demonstrated with the nano-beam example that the 

accuracy indices of the sensitivity coefficients of structural responses converge to 100% 

as perturbation size approaches zero, indicating the accuracy of the proposed analytical 

shape sensitivity analysis approach. In the meantime, it is observed that atomic 

responses show severe nonlinearity in design space, and thus their sensitivity 

coefficients can only be used to predict very small design perturbations. 
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CHAPTER 5  

PERFORMANCE MEASURE: CRACK PROPAGATION SPEED 

 

5.1 Overview 

The analytical sensitivity formulation derived in the previous chapter can be used to 

compute sensitivity coefficients of analytical performance measures in bridging scale 

problems, such as atomic and nodal displacements. In fact, most of the common 

performance measures in practical structural design problems (such as stress, strain, 

local temperature, etc.) are analytical, and can be expressed explicitly or implicitly in 

terms of the response of the structure; as a result, the design sensitivity of those 

performance measures can also be written as analytical functions of the sensitivity 

coefficients of structural responses. In addition, most performance measures for 

dynamic problems are usually defined either at a given time instant or as an average 

over a fixed time period. For example, in a multi-scale problem, we can define the 

performance measure to be the average stress from 0 sec to 5 sec at the location of a 

given atom in the domain.   

To study how crack propagation will be affected by shape design changes, we 

must first establish the relation between crack propagation speed and the responses of 

atoms. Although crack propagation speed has always been a quantity of interest in 

atomistic simulations, defining a performance measure of crack speed based on atomic 

responses for sensitivity analysis and structural design can be challenging. This is 

because after a design change, the crack may propagate to the same location at a 

different time step, which means we can no longer define the performance measure 
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based on the responses of a few fixed atoms at fixed time steps. Moreover, crack 

propagation speed inherently involves derivative of crack length increment with respect 

to time, while the length increment cannot be written explicitly in terms of atomic 

responses due to the crack tip identification procedure discusses in Section 3.5. 

In this chapter, we first establish our sensitivity performance measure of crack 

propagation speed based on the P parameter criterion introduced in Chapter 3. The 

differentiability of the performance measure in design space will then be discussed from 

both theoretical and numerical perspectives. In addition, as has been demonstrated in 

Numerical Example Part 2 (Section 4.7), atomic responses in bridging scale simulations 

show high nonlinearity in design space; therefore, at the end of this chapter, we will use 

the same example problem to demonstrate and discuss the nonlinearity of the 

performance measure of crack propagation speed. 

5.2 Performance Measure of Crack Propagation Speed 

In Section 3.5, we proposed to use the centro-symmetry parameter P as a criterion to 

identify crack surface atoms and determine crack tip location at each time step. 

However, it is also found that the crack tip location obtained in this way is 

discontinuous, or more specifically, piecewise constant in time domain, as shown in Fig. 

3.17. This implies that the time derivative of the crack tip location curve is meaningless, 

and, as a result, the crack tip location itself cannot be considered as a physically 

meaningful measure of crack propagation speed. Therefore, to quantify the speed of 

crack propagation, we must take average of the crack tip locations in some ways. One 

commonly used approach is to first average the crack tip locations over small time 

intervals, as illustrated in Fig. 5.1, and then evaluate the crack propagation speed by 
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dividing the change in averaged crack tip position (ΔC) by the length of the time 

interval (D) [8,41,42]. For example, for the crack tip location curve depicted in Fig. 5.1, 

the crack speed at t0 can be calculated as 
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V            (5.1) 

where C1 and C2 are averaged crack tip locations of intervals [t0 - D, t0] and [t0, t0 +D], 

respectively. In this way, a physically meaningful crack propagation speed can be 

determined for each short interval. Note that other averaging techniques, such as least 

square fitting, can also be employed to obtain the average slope of the discontinuous 

crack tip location curve within a given time interval. 

 

Figure 5.1 Averaging crack tip location over time interval D 

The concept described above – taking average of crack tip locations obtained 

based on the P parameter criterion – can be considered as a logical approach to measure 

crack propagation speed for atomistic simulations. However, before it can be accepted 

as a performance measure for structural design, additional requirements need to be 

taken into account.  

For example, a desirable performance measure should be able to provide a clear 

indication of the change in crack speed due to a design variation, i.e., whether crack 

propagation is accelerated or slowed down by the design change. Apparently, when the 

Time 

C
ra

ck
 T

ip
 L

o
ca

ti
o

n
 

D 

D 

ΔC 

D 

C2 

C1 

t0 



110 

 

average interval D is small compared to the entire simulation period, the crack speed 

obtained for a small prescribed interval can be thought of as the speed of crack 

propagation at the ‘instant’. If the sensitivity of crack speed is positive at some instants, 

but negative at others, then it becomes difficult to conclude from a grand perspective 

how we should make design changes in order to slow down crack propagation. In this 

sense, it is more reasonable to take average of crack tip locations over only one large 

interval to obtain one single performance measure that quantifies the speed of crack 

propagation, as long as the crack tip location increases monotonically with roughly a 

constant slope, i.e., the crack speed does not vary dramatically during simulation. In fact, 

in most macroscopic scenarios, such as Stage II fatigue crack propagation, the crack 

speed is close to a constant. Therefore, for our numerical example, we define the 

performance measure of crack speed as the average of crack tip locations over the entire 

time period during crack propagation. Certainly, this idea of using only one average 

interval may not be appropriate when crack speed varies significantly within different 

simulation periods, in which case it might be necessary to define crack speed separately 

for individual periods. 

Another important criterion for an adequate performance measure is that its 

sensitivity must be calculable, which, in our case, implies that the design derivative of 

the performance measure of crack speed must exist. This requirement presents a key 

challenge in selecting an adequate performance measure for crack propagation speed 

and its subsequent sensitivity calculation. These important issues will be discussed in 

the following sections. 
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In addition, the sensitivity of crack speed should be able to predict the crack 

propagation speed in a perturbed structure with acceptable accuracy. This means the 

nonlinearity of crack speed in design space should at least not be as severe as that of 

atomic responses in our bridging scale example (Section 4.7). The nonlinearity of crack 

propagation speed and its dependence on the average interval D will be demonstrated 

using the nano-beam problem at the end of this chapter. 

5.3 Differentiability of Crack Propagation Speed 

The objective of sensitivity analysis is to find the sensitivity coefficient bddV/ , which 

is the derivative of the performance measure of crack propagation speed with respect to 

shape design variables. Therefore, it is important to first investigate the differentiability 

of crack propagation speed in design space.  

5.3.1 Theoretical Discussion 

Consider a simple illustrative crack propagation problem as shown in Fig. 5.2a. Assume 

that at current design b
0
, based on the P parameter criterion, the crack tip at time T1 is 

identified to be atom a with x coordinate x = xa, meanwhile atom b at x = xb and atom c 

at x = xc turn into crack tip atoms later at T2 and T3, respectively. Figure 5.2b gives the 

crack tip location curve near the two crack tip jumps at T2 and T3, which is theoretically 

a piecewise constant function in time domain, i.e., the crack tip location remains 

constant for a period of time and suddenly jumps to the next value (next atom). 
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Figure 5.2 Illustrative crack propagation problem, (a) schematic structure with a 

horizontal crack, and (b) crack tip location curve near the two crack tip jumps 

To demonstrate the differentiability of crack propagation speed, we take the 

crack tip location curve within the two average intervals D1 and D2 shown in Fig. 5.2b 

for consideration, and, for simplicity, we assume that the lengths of D1 and D2 are 

identical, i.e., D1 = D2 = D. As discussed in the previous section, the first step of 

calculating crack speed is to average the crack tip locations within each average interval. 

According to Eq. 5.1, it is clear that crack propagation speed V will be differentiable in 

design space as long as the averaged crack tip locations are differentiable functions of 

design variables. 

Therefore, we first discuss the differentiability of CD1 – the averaged crack tip 

location of interval D1. Figure 5.3a shows the zoomed in crack tip location curve at 

current design b
0
 within interval D1, where t1 + t2 = D1 = D. To take a closer look at the 

crack tip jump at time instant T2, we schematically plot the P parameters of all atoms in 

the system at T1 and T2 for illustration. In Fig. 5.3b, the vertical coordinate of each dot 

inside the boxes represents the value of P parameter of a particular atom in the MD 

domain at the corresponding instant, and the atoms whose P parameters are greater than 

the critical value Pcrit (in other words, crack surface atoms) are highlighted in red. 
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Apparently, the crack tip jump at T2 is due to the change of the P parameter of atom b, 

i.e., Pb is lower than the critical value Pcrit at T1, but becomes equal to Pcrit at T2. 

     

Figure 5.3 (a) Crack tip location curve at current design b
0
, (b) P parameters of atoms at 

T1 and T2, and (c) crack tip location curve at perturbed design b
0
+δbi_1 

According to Fig. 5.3a, the averaged crack tip location for interval D1 at current 

design can be calculated as  
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Now assume a small perturbation δbi_1 made to design variable bi, because of 

which the crack tip jump delays as shown in Fig. 5.3c. If we define TJ – the moment at 

which the crack tip jump occurs due to Pb – as a function of shape design variables, then 

the averaged crack tip location for D1 can also be written as a function of design. For 

instance, at perturbed design b = b
0
+δbi_1 (Fig. 5.3c), we have  
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Note that at current design, TJ (b
0
) = T2. Also, Eq. 5.3 is equivalent to Eq. 5.2 at b = b

0
 

(δbi_1 = 0). 

Since xa, xb, t1 and t2 are all constants, the derivative of Eq. 5.3 at current design 

b
0
 with respect to design variable bi can be written as 
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which exists only if TJ is a differentiable function of bi, i.e., 
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Now, in order to demonstrate the differentiability of TJ, we plot Pb in the three 

dimensional Pb -time-design space, as shown in Fig. 5.4. Note that the P parameter 

surface of any atom must be a smooth surface that is at least C
1
 continuous along both 

time and design directions, because: 

1. The displacement of each atom at any given time instant can be assumed to be 

differentiable with respect to shape design variables, as argued in [33]. 

2. The displacement of each atom is a second order differentiable function of time, 

and therefore is at least C
1
 continuous in time domain. 

3. The P parameters are continuous and smooth functions of atomic displacements 

(Eq. 3.46). 

In addition, when plotting Fig. 5.4, we assume Pb to be a monotonically 

increasing function versus time, and a monotonically decreasing function versus design 

within the plotted time and design domain. This assumption is solely intended for a 

better illustration and does not cause any loss of generality of our discussion. 
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Figure 5.4 The Pb surface in Pb -time-design space. (a) Intersection between the Pb 

surface and the b = b
0
 plane, (b) Pb vs. time at b = b

0
, (c) intersection between the Pb 

surface and the t = T1 plane, (d) Pb at t = T1 vs. design, (e) intersection between the Pb 

surface and the Pb = Pcrit plane, and (f) TJ vs. design 

In Figs. 5.4a, 5.4c and 5.4e, the red curves are intersections between the Pb 

surface and three planes – the current design plane, the t = T1 plane and the Pb = Pcrit 

plane, respectively. Therefore, Figure 5.4b shows the Pb curve in time space at the 
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current design b
0
, while Fig. 5.4d shows the Pb curve in design space at time instant T1. 

The black dots in Figs. 5.4b and 5.4d denote the same point in the Pb -time-design space 

– it represents the P parameter of atom b at time T1 in current design b
0
. 

Note that the red curve in Fig. 5.4f depicts the relation between the crack tip 

jump instant TJ (at which Pb = Pcrit) and shape design variable bi. Since the Pb surface is 

smooth, the intersection of the Pb surface and the Pb = Pcrit plane must be a continuous 

and smooth curve in time-design space as shown in Fig. 5.4f. In other words, TJ is 

continuously differentiable with respect to bi. Therefore, according to Eqs. 5.4 and 5.5, 

CD1 is also a continuously differentiable function in design space. 

Note that the differentiability of CD2 can be proven in the same way. As a result, 

the crack propagation speed V = (CD2 – CD1)/D must be continuously differentiable 

with respect to shape design variables. The design derivative of V at current design b
0
 

is exactly the sensitivity of crack propagation speed being sought. 

5.3.2 Differentiability of Crack Speed in Numerical Simulations 

Although theoretically the performance measure of crack speed is a differentiable 

function of design, it may not be the case in numerical simulations, where differential 

equations are solved through time integration and the solution in time domain is 

available only at a finite number of time instants (time steps). As illustrated in Figs. 5.5a 

and 5.5b, for the same illustrative problem discussed above, if time step size Δtm is used 

in solving the MD equation of motion, the crack tip location curve (crack tip location vs. 

time) is no longer piecewise constant, but becomes a discrete function in time domain 

that has values only at individual time steps (black dots). Moreover, the moment of 

crack tip jump will be determined as TJ_N(b
0
) and TJ_N(b

0
+δbi_1) respectively at current 
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design b
0
 and perturbed design b

0
+δbi_1. As can be seen, due to the discrete nature of 

solution in time domain, TJ_N(b
0
) and TJ_N(b

0
+δbi) are inconsistent with analytical crack 

tip jump instants TJ(b
0
) and TJ(b

0
+δbi_1).  

 

Figure 5.5 Discrete crack tip location curve within interval D1 in numerical simulation 

with time step size Δtm at (a) current design b
0
, (b) perturbed design b

0
+δbi_1, (c) 

perturbed design b
0
+δbi_crit, and (d) the discontinuous averaged crack tip location curve 

in design space 

For a better elaboration, as shown in Fig. 5.5c, we assume that at design 

perturbation δbi_crit (0 < δbi_crit < δbi_1), we have TJ_N(b
0
+δbi_crit) = TJ(b

0
+δbi_crit), i.e., the 

crack tip jump happens to occur exactly at the time step indicated by the red dot. One 

can readily imagine that when a very small design perturbation within [0, δbi_crit) is 

applied, the slight delay of the crack tip jump will not be captured by the relatively 

larger time step size Δtm, and therefore TJ_N will remain unchanged after the design 

perturbation. When the design perturbation increases to the critical value δbi_crit, TJ_N 

jumps to the next time step (indicated by the green dot in Fig. 5.5b). Therefore, it is 
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apparent that in numerical simulations, TJ_N is discontinuous and hence non-

differentiable in design space. 

Then we take a look at the differentiability of averaged crack tip location in 

numerical simulations. According to Figs. 5.5a and 5.5b, with time step size Δtm, the 

averaged crack tip location for interval D1 can be calculated as 
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at the current design b
0
 (Fig. 5.5a) and 
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at the perturbed design b
0
+δbi_1 (Fig. 5.5b). Similar to TJ_N, CD1_Δtm will not change at 

very small design perturbations within [0, δbi_crit), while at b
0
+δbi_crit (Fig. 5.5c), the 

crack tip location at the corresponding time step (red dot) changes from xb to xa, 

resulting in a jump of CD1_Δtm. Therefore, as illustrated in Fig. 5.5d, when time step size 

Δtm is employed, one jump of averaged crack tip location occurs in between the current 

design b
0
 and the perturbed design b

0
+δbi_1. Apparently, the averaged crack tip location 

curve becomes a discontinuous (piecewise constant) curve in design space. 

Now we reduce the time step size to half, as shown in Fig. 5.6. In this case, TJ_N 

is still discontinuous in design space since the time step size is still finite. On the other 

hand, as the design perturbation size increases from zero to δbi_1, the averaged crack tip 

location jumps from   
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at perturbations δbi_a, δbi_b, and finally δbi_1, respectively. As illustrated Fig. 5.6c, this 

time the averaged crack tip location jumps three times between the current design b
0 

and the perturbed design b
0
+δbi_1. 

 

Figure 5.6 Discrete crack tip location curve in numerical simulation with time step size 

Δtm/2 at (a) current design b
0
 and (b) perturbed design b

0
+δbi_1, and (c) the 

discontinuous averaged crack tip location curve in design space 

Thus it is clear that when the time domain is discretized in numerical 

simulations, the averaged crack tip locations CD1 and CD2 will turn into ‘stepped’ 

piecewise constant curves in design space. Moreover, the steps on the curves will be 

refined as we reduce the time step size. As illustrated in Fig. 5.7, as the time step size 

approaches zero, the averaged crack tip location CD1 converges to the analytical solution, 

which, as discussed earlier (Eq. 5.3), is a continuously differentiable function of shape 

design variables. 

CD1_Δtm/2 

Time  Time  Design  

xb 

xa 

xb 

xa 

Δtm/2 
b0+δbi_1 b0 

(a) (b) (c) 

L1 
L3 
L2 
L4 

b0+δbi_a b0+δbi_b 

Crack tip 

location 
Crack tip 

location 
Current design b0 Perturbed design b0+δbi_1 

TJ(b
0+δbi_1) TJ(b

0
) 

TJ_N(b0
) 

TJ_N(b0+δbi_1) 



120 

 

 

Figure 5.7 Reducing time step size refines averaged crack tip location (C) curve in 

design space 

As a result, as illustrated in Fig. 5.8, in numerical simulations, the crack 

propagation speed V = (CD2 – CD1)/D will also become a ‘stepped’ curve in design 

space, which will eventually converge to a continuously differentiable function as the 

time step size becomes infinitely small.  

 

Figure 5.8 Refining the stepped crack speed curve in design space by reducing time step 

size 

In summary, the performance measure that we defined for crack propagation 

speed is theoretically a differentiable function of shape design variables, but 

numerically a stepped curve in design space. The calculation of the sensitivity of crack 

speed will be discussed in the next chapter. 

CD1 

Design  
b0+δbi_1 b0 

L1 

L3 

L2 

L4 

CD1_Δtm (red, stepped) 

CD1 (green, continuous and smooth) 

CD1_Δtm/2 (black, stepped) 

Crack speed V 

Design Design 

Crack speed V 

Design 

Crack speed V 

b0 b0 b0 



121 

 

5.4 Numerical Example: Part 3 

This section is aimed at investigating the nonlinearity of crack propagation speed in 

design space using the nano-beam example. More specifically, we are interested in 

finding the correlation between the average interval size D and the nonlinearity of crack 

speed.  

In Fig. 5.9, we compare the nonlinearity of crack speeds calculated based on 

different average interval sizes ranging from 200Δtm to 3,200Δtm. For example, the 

subgraph at the top of Fig. 5.9a depicts the crack speed history curve obtained by 

averaging crack tip locations using an average interval D = 200Δtm. The two subgraphs 

in the first row of Figs. 5.9b and 5.9c reveal how the crack speeds calculated at two 

selected instants (8,000Δtm and 13,600Δtm, circled out) change with shape design 

variable b2, respectively, where the data points are obtained by reruning the simulation 

at several design perturbations (b2 = 0.01, 0.02, 0.05, 0.1, 0,2, 0.5, 1). Note that on some 

of the crack speed vs. design curves (such as the third subgraph in Fig. 5.9b), slight 

oscillations are observed at small perturbations, which is a numerical issue – the time 

step size used in our simulation is not small enough to capture the changes of crack tip 

jumps when the design perturbation is too small. In addition, it can be seen that the last 

data point of each crack speed history curve (red curves in Fig. 5.9a) is not available. 

This is because the calculation of the crack speed at t = ta requires crack tip location 

data within the interval [ta – D, ta + D]. Thus, for example, the crack propagation speed 

at t = 12,800Δtm in the subgraph at the bottom of Fig. 5.9a cannot be computed unless 

we include the data within [15,000Δtm, 16,000Δtm], which exceeds the duration of our 

simulation. 
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Figure 5.9 Nonlinearity of crack propagation speeds calculated with different average 

interval sizes. (a) Crack speed vs. time, (b) crack speed at the first chosen time step vs. 

design perturbation, and (c) crack speed at the second chosen time step vs. design 

perturbation  

As can be seen from Figs. 5.9b and 5.9c, the nonlinearity of crack speed in 

design space is in general less severe than that of atomic responses (compared to Fig. 

4.10c, for example). More importantly, it is found that the nonlinearity of crack speed 

can be further reduced by increasing the size of the average interval D. In fact, when a 

large average interval (such as 1,600Δtm or 3,200Δtm) is used, the calculated 

performance measure (crak speed) exibits an almost linear behavior in design space 
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regardless of the high nonlinearity of atomic responses, which is desirable. This is 

mainly because that at small perturbations in the vicinity of the current design, the delay 

(or advance) of atomic displacements due to a shape design change is approximately 

proportional to the size of the design perturebation; therefore, the delay of P parameters 

and hence the delay of the crack tip location curve is also proportional to design 

perturebation, which eventually leads to the linear-like behavior of crack speed in 

design space. 

  Based on the observations above, for the nano-beam example, we will define the 

performance measure of crack propagation speed by taking average of all crack tip 

locations between t = 9,000Δtm and t = 15,000Δtm (where crack grows with a roughly 

constant rate), as shown in Fig. 5.10. Since only one interval is considered, we use least 

square fitting to identify a straight line whose slope can be taken as the crack 

propagation speed. At current design, the crack speed is calculated to be 1.466.  

 

Figure 5.10 Performance measure defined for numerical example. A straight line (red 

dashed line) is fitted to the crack speed locations within 9,000Δtm ~ 15,000Δtm 

Note that this performance measure will be used in the next chapter to carry out 

sensitivity analysis of crack propagation speed for the nano-beam example. Due to the 

fact that the nonlinearity of crack speed in design space is much less severe than that of 

atomic responses, the 1st-order prediction of crack speed is expected to be accurate for 
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much larger design perturbations than that of atomic responses, as long as the sensitivity 

of crack speed can be computed accurately. 
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CHAPTER 6 

HYBRID SENSITIVITY ANALYSIS METHOD  

FOR CRACK PROPAGATION PROBLEMS 

 

Nomenclature 

VT  = theoretical crack propagation speed. It is a function of deign variables 

(explicit expression unavailable), and is differentiable in design space. 

V  =  crack propagation speed calculated in numerical simulation. It is 

piecewise constant (stepped) in design space. The value of V with 

different values of the design variable can be obtained by re-running the 

simulation (re-analysis) for different perturbed designs. 

V
~

 =  predicted crack speed. It is a prediction of V calculated based on 

analytical sensitivity results. The value of V
~

 with different values of the 

design variable can be obtained efficiently using analytical sensitivity 

coefficients (without the necessity of re-analysis). 

V  =  1st-order prediction of crack propagation speed. It is obtained using the 

crack speed sensitivity calculated through hybrid method. 

S
VT  =  ‘slope’ of theoretical crack propagation speed VT. As a function of 

design perturbation size δbi, it represents the slope of the straight line in 

design space that connects two points – VT at current design b
0
 and at 

perturbed design b
0
 + Δbi. 



126 

 

    iTiTi bbbS
T

 /)()()( 00
bb VVV  

S
V
  =  ‘slope’ of crack propagation speed V. It is similar to S

VT, but calculated 

using crack propagation speed V. 
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V
~S   =  ‘slope’ of predicted crack speed V

~
. It is similar to S

V
, but calculated 

using predicted crack speed V
~

 at b
0
 + Δbi instead of V(b

0
 + Δbi). 
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V
 

dVT/dbi =  theoretical sensitivity of crack propagation speed with respect to design 

variable bi.  

dV/dbi =  sensitivity of crack propagation speed with respect to design variable bi 

calculated numerically using hybrid method. It is obtained by performing 

regression analysis based on the ‘slope’ of predicted crack speed 
V
~S  

(since calculating S
V
 is computationally prohibitive).  

[0, Δbi_reg]  =  the design perturbation range for regression analysis in hybrid method 

[0, Δbi_noise] =  the design perturbation range of numerical noise on the 
V
~S  curve 

6.1 Overview 

As has been demonstrated in the previous chapter, the performance measure that we 

defined for crack propagation speed is theoretically a continuously differentiable 

function in design space. In this chapter, we denote this theoretical crack propagation 

speed as VT. However, due to the discrete nature of MD simulation and the way we 
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identify the location of the crack tip, the formulation of crack speed VT cannot be 

expressed in design in any form, explicitly or implicitly. More importantly, in numerical 

simulation, since it is impossible to use an infinitely small time step size, the 

numerically obtained crack speed V will not be differentiable in design space, and 

hence the design derivative of crack speed cannot be evaluated directly.  

To avoid the non-differentiability issue, in this section, we investigate the 

feasibility of hybrid sensitivity analysis method in calculating the sensitivity of crack 

speed based on the discontinuous crack speed curve in design space. In Section 6.2, we 

first look into the ‘standard’ hybrid method that directly combines analytical sensitivity 

analysis and finite difference. After identifying the fundamental drawback of the 

standard hybrid method, in Section 6.3 we propose an enhanced hybrid method that 

employs regression analysis to evaluate crack speed sensitivity. In Section 6.4, the 

accuracy of the hybrid method with regression analysis is verified using the nano-beam 

example, and its applicability to design will be demonstrated through a what-if study. 

6.2 Initial Concept – Standard Hybrid Method 

The key idea of the standard hybrid method is to take advantage of both analytical 

sensitivity analysis and finite difference method as proposed in [49]. First, for each time 

step, the sensitivity coefficients of the P parameters with respect to the ith shape design 

variable bi can be calculated as  

 
ii db

d

db

d q

q







PP
           (6.1) 

where P is a vector that contains the P parameter information of all atoms at all time 

steps, and dq/dbi represents the sensitivity coefficients of atomic displacements 
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obtained by solving the analytical sensitivity equations. Note that ∂P/∂q can be 

evaluated directly since P parameters are continuous functions of atomic displacements 

q (Eq. 3.46).  

Next, the increment of P due to a small prescribed design perturbation Δbi can 

be calculated using the P parameter sensitivity coefficient; that is 

 
i

i

b
db

d


P
P             (6.2)  

The P parameters at perturbed design b
0
 + Δbi can then be approximated by  

 PPP  )()(
~ 00

bb ib            (6.3) 

Using the P parameter criterion, the position of the crack tip at each time step 

for the perturbed structure b
0
 + Δbi can be predicted based on the predictions of the P 

parameters )(
~ 0

ibbP  of associated atoms near the crack tip. Then, the prediction of 

crack speed at the perturbed design )(
~

0

ibbV  can be evaluated by averaging the 

predicted crack tip locations. Finally, the theoretical sensitivity of crack propagation 

speed with respect to design variable bi can be approximated as  
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
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~

00
bb VVV

            (6.4) 

The procedure above is illustrated in the flowchart shown in Fig. 6.1. As can be 

seen, the standard hybrid sensitivity analysis method is a combination of analytical 

sensitivity analysis and finite difference method, while finite difference is only required 

for computing the sensitivity of crack propagation speed. 
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Figure 6.1 Flowchart of standard hybrid method 

The scheme of the standard hybrid method is further elaborated in Fig. 6.2. In 

Fig. 6.2a, the solid curve depicts schematically how the numerically obtained crack 

speed V changes with design variable bi, while the slope of the blue dash-dotted line, 

assuming exists, represents the sensitivity of crack speed at the current design b
0
. If we 

zoom in near the current design, as discussed in the previous chapter, we should see that 

the V curve is piecewise constant (stepped) in design space, as shown in Fig. 6.2b 

(black solid curve). It is worth mentioning that this black solid curve (crack speed V vs. 

design) can only be obtained by rerunning the bridging scale simulation for numerous 

times at different perturbed designs. In standard hybrid method, to evaluate the 

sensitivity of crack speed, we first predict the crack propagation speed at a perturbed 

design ( )(
~

0

ibbV , point A on green dashed curve in Fig 6.2b) using analytical 

sensitivity results, and then calculate the approximation of crack speed sensitivity (red 

dash-dotted line in Fig. 6.2b) using finite difference (Eq. 6.4).  

Compute the sensitivity of P parameters (dP/dbi) using analytical sensitivity results 

Compute predicted P parameters  for perturbed structure  

Compute predicted crack speed  based on predicted 

crack tip locations 

Calculate sensitivity of crack speed:  

Predict crack tip location at each time step using  
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Figure 6.2 Illustration of standard hybrid method. (a) Crack speed curve in design space, 

and (b) zoomed-in view with predicted crack speed displayed 

The major drawback of this initial concept, or the standard hybrid method, is 

that the crack speed sensitivity obtained using Eq. 6.4 is strongly dependent on the 

prescribed design perturbation size Δbi. Due to the inherent limitation of the finite 

difference method (discussed in Chapter 2), Δbi is difficult to determine when the 

behavior of crack speed in design space is unknown.  

One can argue that a convergence study for Eq. 6.4 can be carried out by 

continuously reducing Δbi near the current design (Δbi = 0) to find out an accurate crack 

speed sensitivity. To explain the feasibility of this idea, in Fig. 6.3a, we first plot 

schematically the theoretical crack speed curve – denoted by VT – in design space 

(upper plot), which is continuously differentiable with respect to design variables. The 

lower plot in Fig. 6.3a depicts the ‘slope’ of theoretical crack speed; that is 
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which does not indicate the actual local gradient of VT at b
0
, but is a function of design 

perturbation Δbi that represents the slope of the straight line in design space that 

connects two points – VT at current design b
0
 and at perturbed design b

0
 + Δbi (as 

b0 b0 
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Crack speed V 
Crack speed 

Design Design 
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using analytical 
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shown in the upper plot of Fig. 6.3a). As can be seen, S
VT converges to the analytical 

slope of the theoretical crack speed curve at current design b
0
 as the perturbation size 

Δbi approaches zero, and this analytical slope is the theoretical crack speed sensitivity 

dVT/dbi. However, in numerical simulations, the crack speed V is a stepped curve in 

design space, and so is the crack speed V
~

 predicted using analytical sensitivity result, 

as shown in the upper plot of Fig. 6.3b. Thus, as we reduce perturbation size Δbi, the 

‘slope’  
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bb VV
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           (6.6) 

(equivalent to Eq. 6.4, except that Δbi is varying) obtained based on the stepped V
~

 

curve oscillates in design space (lower plot of Fig. 6.3b), and will not converge to a 

constant value. In fact, as shown in the lower plot of Fig. 6.3b, 
V
~S  reduces to zero at 

very small perturbations near the current design.  
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Figure 6.3 Comparison between smooth and stepped crack speed curves in design space, 

(a) theoretically differentiable VT curve whose ‘slope’ converges to a constant value 

(theoretical sensitivity dVT/dbi), and (b) stepped V
~

 curve whose ‘slope’ is 

discontinuous and does not converge 

Therefore, it is clear that in our case, the sensitivity of crack propagation speed 

cannot be evaluated numerically by carrying out convergence study for the ‘slope’ of 

predicted crack speed (
V
~S ). Hence, an alternative approach is required to approximate 

the sensitivity of crack propagation speed based on the discontinuous and oscillating 

V
~S  curve in design space. 

6.3 Hybrid Method with Regression Analysis 

Due to the difficulty of determining perturbation size Δbi in standard hybrid method and 

the infeasibility of convergence study based on 
V
~S , we propose an enhanced hybrid 

method that employs polynomial regression analysis to approximate crack speed 
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sensitivity using the discontinuous 
V
~S  curve. As illustrated in Fig. 6.4, the basic idea is 

to select a small perturbation range [0, Δbi_reg] near the current design b
0
, and fit the 

V
~S  

(green curve in Fig, 6.4b) within the chosen range with a polynomial curve, while the 

slope of the polynomial curve at the current design (Δbi = 0) is set to zero as illustrated 

in Fig. 6.4b in order to capture the convergence behavior of 
V
~S . Then the vertical 

intercept of the polynomial curve can be considered as a reasonable approximation of 

the sensitivity of crack speed, denoted as dV/dbi in Fig. 6.4b. Note that the S
V
 curve in 

Fig. 6.4b is defined in a way similar to Eq. 6.5, but with VT replaced by V. Detailed 

algorithm and procedure of the regression analysis will be introduced later in this 

chapter using the nano-beam example. The remainder of the current section discusses 

technical essentials associated with the proposed hybrid method with regression 

analysis. 

 

Figure 6.4 Illustration of hybrid method with regression analysis. (a) Crack speed 

curves, and (b) crack speed ‘slope’ curves 
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To start, it is important to reiterate that, theoretically, crack propagation speed is 

differentiable with respect to design variables as demonstrated in Chapter 5, and thus 

the sensitivity of crack speed exists from theoretical perspective (the ‘theoretical 

sensitivity dVT/dbi’ in the lower plot of Fig. 6.3a.). In numerical simulations, the 

differentiable crack speed curve VT in design space is unattainable, and hence the 

continuous crack speed ‘slope’ curve S
VT does not exist. Therefore, the sensitivity of 

crack speed has to be evaluated numerically based on the discontinuous crack speed 

‘slope’ curve S
V
. However, calculating either the V or S

V
 curve (black dashed curves in 

Fig. 6.4) through re-analysis is computationally prohibitive. As a result, we propose to 

perform regression analysis for the 
V
~S  curve instead of S

V
 to obtain the approximated 

sensitivity dV/dbi, as described at the beginning of this section.  

Apparently, compared to the standard hybrid method, the proposed hybrid 

method with regression analysis requires a large quantity of 
V
~S  data within [0, Δbi_reg]. 

As discussed in the previous section, the predicted crack speed V
~

 is obtained based on 

analytical sensitivity coefficients of atomic responses; therefore, the computation of all 

V
~S  data needed for regression analysis (green curve within [0, Δbi_reg] in Fig. 6.4b) is 

very fast compared to rerunning the bridging scale simulation for overall finite 

difference (actual CPU time will be given in numerical example). 

Moreover, it is clear that the crack speed sensitivity dV/dbi calculated using the 

hybrid method is dependent on the range [0, Δbi_reg] chosen for regression analysis. In 

numerical simulation, at very small design perturbations, the 
V
~S  curve will be 
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contaminated by numerical noise caused by the discretization of the time domain (will 

be demonstrated in our numerical example); therefore, we need to choose [0, Δbi_reg] to 

be larger than the noise range [0, Δbi_noise] to ensure incorporating adequate useful data 

for curve fitting. More specifically, in our implementation, we first calculate the 
V
~S  

data starting from Δbi = 0 with a certain interval in design domain until the end of the 

noise range can be identified through visual inspection, after which we continue 

computing 
V
~S  with increasing Δbi, until the total range of the calculated 

V
~S  data is 

several times larger than the noise range [0, Δbi_noise]. The perturbation range for 

regression analysis can then be chosen as Δbi_reg = NR × Δbi_noise, where NR is a 

prescribed multiple. As will be shown in our numerical example, the perturbation range 

chosen in this manner is able to yield accurate sensitivity of crack propagation speed. 

Furthermore, the accuracy of the crack speed sensitivity dV/dbi is also 

associated with the accuracy of the ‘slope’ of predicted crack speed 
V
~S  (i.e., whether 

the green curves in Fig. 6.4b match the black ones) within the chosen range [0, Δbi_reg]. 

Apparently, although 
V
~S  is not expected to always match S

V
 (obtained from re-

analysis), it should be accurate (i.e., close enough to S
V
) within a small perturbation 

range near the current design. This is because 
V
~S  is computed using V

~
, while V

~
 is 

predicted based on the 1st-order predictions of atomic displacements, which have been 

shown in Section 4.7 to be accurate in the vicinity of the current design. In fact, as will 

be demonstrated and discussed later in this chapter, the ‘slope’ of predicted crack speed 

V
~S  will remain highly accurate for much larger design perturbations than the 1st-order 
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predictions of atomic responses, and this highly accurate range can be large enough to 

support regression analysis. On the other hand, even when 
V
~S  is less accurate at 

relatively large perturbations within [0, Δbi_reg], the crack speed sensitivity can still be 

accurately approximated using the proposed hybrid method, as long as the polynomial 

curve captures the convergence of the 
V
~S  curve based on the accurate 

V
~S  data near the 

current design, as illustrated in Fig. 6.5.  

 

Figure 6.5 Choosing design perturbation range for regression analysis 

Now we summarize the complete procedure of the hybrid method with 

regression analysis as follows: 

1. Using analytical sensitivity coefficients of atomic displacements, compute the 

analytical sensitivity coefficients of P parameters. 

2. Compute the 1st-order predictions of P parameters for a perturbed design at b
0 
+ 

Δbi. 

3. Predict the crack propagation speed V
~

 for the perturbed design based on the P 

parameter criterion. 

4. Calculate the ‘slope’ of predicted crack propagation speed 
V
~S  using Eq. 6.6. 

5. Repeat steps 2 to 4 for increasing Δbi from Δbi = 0.  

6. Visually determine the noise range [0, Δbi_noise], and then define the perturbation 

Design 

Perturbation  

‘Slope’ of 

crack speed 

0 Δbi_reg 

Polynomial 

curve 

(discontinuous) 

S
V
 (discontinuous) 

 Numerical 

noise 

is accurate is less accurate 

dV/dbi 

V
~S

V
~S

V
~S



137 

 

range for regression analysis [0, Δbi_reg] as a multiple of [0, Δbi_noise], i.e., Δbi_reg 

= NR × Δbi_noise. 

7. Approximate the sensitivity of crack speed though regression analysis based on 

the 
V
~S  curve within [0, Δbi_noise]. 

Note that the analytical shape sensitivity analysis approach developed in Chapter 

4 can be used to compute sensitivity coefficients of analytical performance measures, 

such as structural responses, while the hybrid method proposed in the current chapter is 

intended for calculating the sensitivity of crack propagation speed. Once the sensitivity 

of crack speed is obtained, it can be used to predict the crack propagation speed at large 

design perturbations during design process. The applicability of the hybrid method with 

regression analysis will be demonstrated in the following section using the nano-beam 

example. 

It is also worth mentioning that in Step 2 of the hybrid method, the calculation 

of the 1st-order predictions of P parameters requires the sensitivity coefficients of the 

displacements of a considerable amount of atoms near the crack surfaces. Since crack 

speed cannot be expressed explicitly in terms of atomic displacements, the 

displacements of individual atoms near the crack should be treated as separate 

performance measures. As a result, the number of performance measures need to be 

considered in analytical shape sensitivity analysis is much greater than the number of 

shape design variables, which further justifies our use of the direct differentiation 

method in deriving the analytical sensitivity expressions in Chapter 4.    

Finally, it needs to be pointed out that in this chapter, the notation ‘Δ’ before 

design variable (for example Δbi) is used to represent design perturbations related to 
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finite difference or the hybrid method, while the notation ‘δ’ denotes design 

perturbations associated with 1st-order predictions. 

6.4 Numerical Example: Part 4 

Based on the performance measure of crack speed defined in Chapter 5, in this section 

we use the nano-beam example to demonstrate the feasibility and accuracy of the 

proposed hybrid sensitivity analysis method. The calculation of crack speed sensitivity 

through regression analysis will be illustrated with details. The justification of the 

hybrid method will be discussed, and the accuracy of the ‘slope’ of predicted crack 

speed will be evaluated and compared to that of atomic responses. The accuracy of the 

crack speed sensitivity calculated using hybrid method will be verified by comparing 

the 1st-order predictions of crack speed with re-analysis results. Finally, a what-if study 

will be carried out to demonstrate the applicability of the proposed hybrid method to 

design. 

6.4.1 Crack Speed Sensitivity Calculation Using Hybrid Method 

In this section, we use the proposed hybrid method that incorporates polynomial 

regression curve fitting to approximate the sensitivity of crack propagation speed for the 

nano-beam example. First, we plot the 
V
~S  curves with respect to all three design 

variables individually, as shown in Figs. 6.6a, 6.6b and 6.6c. Note that each curve in Fig. 

6.6 is plotted with a 0.0002 interval, i.e., for example, the curve for b2 is comprised of 

1250 data points. Figure 6.6b is also zoomed in at [0.145, 0.155], which shows clearly 

that the 
V
~S  curve is discontinues in design space.  
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Figure 6.6 ‘Slope’ of predicted crack speed for (a) shape design variable b1, (b) shape 

design variable b2, and (c) shape design variable b3. The curve for b2 is zoomed in at 

[0.145, 0.155] 

As can be seen from Fig. 6.6, numerical noise due to time discretization exists at 

small perturbations on each curve. Note that the noise range for each curve can be easily 

identified through visual inspection. For this example, we determine the design 

perturbation range for regression analysis to be five times larger than the noise range, 

i.e., NR = 5. One can argue that there seems to be no distinct noise/non-noise boundary 

on each curve; however, a precise determination of Δbi_noise is not necessary, since the 
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convergence of the 
V
~S  curves can be captured by the fitting curve as long as enough 

‘non-noise’ data are included in [0, Δbi_reg].  

Once the 
V
~S  curves are obtained, regression analysis can be performed for 

individual design variables following in the procedure below, with more detailed 

algorithm and steps documented in Appendix H. 

1. Using the method of least-squares, fit a polynomial curve to the 
V
~S  data within 

the chosen range, while setting the slope of the fitting curve at Δbi = 0 to zero in 

order to capture the convergence behavior. It is found empirically that a fourth 

order polynomial curve will generally be adequate in fitting the data within [0, 

Δbi_reg]. 

2. Calculate the square of error for each data point using the fitting curve as a 

reference, and then remove the data points with large error exceeding a 

deviation threshold. This is to minimize the impact of the noisy data near the 

current design. 

3. Repeat Steps 2 and 3 for the remaining data, until the difference between the 

vertical intercepts of the fitting curves in the current and the previous iteration is 

smaller than 1%. 

4. The vertical intercept of the current fitting curve can be considered as a 

reasonable approximation of the sensitivity of crack propagation speed. 

The curve fitting results for the three design variables are shown in Fig. 6.7. In 

each plot, the red curve represents the polynomial estimated in the last iteration. Note 

that most of the noise (blue dots) has been successfully eliminated from the original 

data, and the fitting curves accurately capture the trend of convergence of the 
V
~S  
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curves. It turns out that the sensitivity of crack speed can be determined after two to 

four curve fitting iterations for the three shape design variables in our example. Note 

that the curve fitting results can always be visually verified. 

 

 

 

Figure 6.7 Regression analysis results for (a) shape design variable b1, (b) shape design 

variable b2, and (c) shape design variable b3 

The sensitivity coefficients of crack propagation speed obtained for individual 

design variables are listed in Table 6.1, where the signs of the sensitivity values provide 
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a clear indication that within the simulation period 9,000Δtm ~ 15,000Δtm, crack 

propagation will slow down due to an increment of either b2 or b3, or a decrement of b1.  

Table 6.1 Sensitivity coefficients of crack propagation speed  

 

It is noteworthy that during regression analysis, the ‘slope’ of predicted crack 

speed 
V
~S  needs to be calculated at thousands of perturbations within [0, Δbi_reg]. 

However, since the P parameters are predicted with existing analytical sensitivity results 

of structural responses, the 
V
~S  data can be computed very fast. For example, the 

calculation of the 1,250 data points plotted in Fig. 6.6 for b2 only takes about 9 minutes 

(CPU time with the DELL workstation). Hence, the computation time for the 
V
~S  data 

for all three design variables is merely a fraction of the time needed for rerunning the 

bridging scale simulation for even one perturbed design (about 24 hours). Moreover, the 

computation for regression analysis can be further reduced by using larger intervals 

when plotting the 
V
~S  curves. Therefore, the proposed hybrid method is much more 

efficient than the overall finite difference method, in which the regression analysis for 

S
V
 requires rerunning simulation for a large set of perturbed designs.  

6.4.2 Discussions and Justifications 

The sensitivity coefficients of crack propagation speed calculated above can be used to 

predict the crack speed at larger perturbations during design. The desired scenario is 

that the 1st-order prediction of crack propagation speed 

Design variable b 1 b 2 b 3

Crack speed sensitivity 9.7097E-04 -4.3939E-02 -2.6893E-02
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can be accurate compared to the crack speed V obtained from re-analysis at perturbed 

designs. In general, from design perspective, if the accuracy (accuracy index, Eq. 4.27) 

of the 1st-order prediction V  at a given design perturbation δbi is between 85% and 

115%, then the prediction at δbi is considered to be acceptable. We hope that the 

‘accurate range’ for V  (the design perturbation range in which the accuracy of V  is 

within 85% ~ 115%) to be as large as possible, so that large step sizes can be used 

during the design process. 

Certainly, the accuracy of the 1st-order prediction V  is dependent on the 

nonlinearity of crack propagation speed in design space. In general, when a 

performance measure is highly nonlinear, its 1st-order prediction can deteriorate 

quickly as design perturbation size increases. However, it has been shown at the end of 

Chapter 5 that since crack propagation speed is defined by averaging crack tip locations 

over a large time interval, the nonlinearity of crack speed is much less severe than that 

of atomic responses. Therefore, the 1st-order prediction V  is expected to remain 

highly accurate for a much larger design perturbation range compared to the 1st-order 

predictions of atomic responses, as long as the sensitivity of crack propagation speed is 

calculated accurately. 

Now we discuss whether the hybrid method with regression analysis is a 

desirable approach that produces accurate sensitivity of crack propagation speed. As can 

be seen from Fig. 6.7, the polynomial curves obtained through regression analysis are 

capable of accurately capturing the behavior of the 
V
~S  curves near the current design. 
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Each fitting curve converges quickly within a few iterations. In the meantime, the noisy 

data are eliminated during regression analysis and thus have only minimum impact on 

the result of curve fitting. Therefore, this concept of improving standard hybrid method 

by incorporating regression analysis turns out to be an adequate and efficient way of 

computing crack speed sensitivity. 

The only concern left regarding the hybrid method is the accuracy of the 
V
~S  

data, i.e., whether the green curves illustrated in Fig. 6.4b are close to the blank ones. 

Apparently, since the regression analysis performed in Section 6.4.1 is based on 
V
~S  

rather than VS , the hybrid method cannot be justified unless 
V
~S  is accurate compared 

to VS . For example, if the 
V
~S  curve in Fig. 6.6a is accurate only within [0, 0.05] 

(smaller than the noise range), then the sensitivity calculated using hybrid method will 

be useless since the regression analysis is performed completely on inaccurate 
V
~S  data. 

Therefore, in order to yield accurate crack speed sensitivity, the 
V
~S  data for each 

design variable must maintain reasonable accuracy (for example, 85% ~ 115% 

compared to VS ) at least for a range of design perturbation that is a few times larger 

than the noise range [0, Δbi_noise].  

To justify the hybrid method with regression analysis, the remainder of this 

section discusses in detail the accuracy of 
V
~S , with support of numerical evidences 

from the nano-beam example. 
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6.4.2.1 Accuracy of ‘Slope’ of Predicted Crack Speed 

As introduced in Section 6.2 and also illustrated in Fig. 6.8, the ‘slope’ of predicted 

crack speed 
V
~S  is calculated using predicted crack speed V

~
, while V

~
 is evaluated 

based on the predicted crack tip locations. The predicted crack tip locations are 

computed using the 1st-order predictions of P parameters ( P
~

 in Eq. 6.3), which are 

calculated based on the sensitivity coefficients of atomic responses obtained in 

analytical sensitivity analysis. Since it has been shown in Section 4.7 that the 1st-order 

predictions of atomic responses can generally remain accurate for only very small 

design perturbations due to nonlinearity in design space, it becomes important to 

investigate whether the ‘slope’ of predicted crack speed 
V
~S  is able to remain highly 

accurate for an adequately large design perturbation range to support regression analysis.  

 

Figure 6.8 Flowchart of the calculation of 
V
~S  

In this section, we sort out the relations among the following: the accuracy of 

1st-order predictions of atomic responses, the accuracy of 1st-order predictions of P 

parameters, the accuracy of predicted crack tip locations, the accuracy of predicted 

crack speed, and the accuracy of the ‘slope’ of predicted crack speed, through five steps 

as illustrated in Fig. 6.9. The discussion will be supported by numerical results from the 

nano-beam example. 
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Figure 6.9 Flowchart of the discussion regarding different ‘accuracies’ involved in 

hybrid method 

Step 1: Atomic Response vs. P Parameter 

Provided that the sensitivity coefficients for atomic responses are calculated accurately 

through analytical shape sensitivity analysis, the accuracy of their 1st-order predictions 

then depends only on the nonlinearity of atomic responses in design space. According to 

Eq. 3.46, the P parameters are calculated analytically from atomic responses. More 

specifically, the P parameter of each atom is a continuous function of the displacements 

of itself and all 12 nearest neighbors (assuming an FCC lattice). Therefore, it is 

reasonable to expect that the accuracy of the 1st-order predictions of P parameters 

should be at the same level as that of the 1st-order predictions of atomic responses.  

Now we use the nano-beam example to demonstrate the accuracy of the 1st-

order predictions of P parameters. In Table 6.2, we list the sensitivity results of the P 

parameter of atom XA (Fig. 4.7) with respect to three shape design variables at various 

time steps. Apparently, as with atomic responses, the sensitivity coefficients of P 

parameters are calculated accurately, since the 1st-order predictions are of excellent 

accuracy (Columns L ~ N in Table 6.2) at small design perturbation 0.0001. 
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Table 6.2 Accuracy verification of P parameter sensitivity coefficients for atom XA. 

Design perturbation used for calculating the accuracy index is 0.0001 

 

In the meantime, it is also found in the nano-beam example that the nonlinearity 

of P parameters in design space is in general comparable to that of atomic responses, 

which is expected. For example, in Fig. 6.10 the P parameter of atom XA at t = 

11,653Δtm is plotted in design space (versus design perturbation δb2). Note that severe 

nonlinearity is observed, similar to the nonlinearity of the displacement of the same 

atom at the same time step (Fig. 4.10c). This implies that the 1st-order predictions of P 

parameters can remain accurate only for very small design perturbations as with atomic 

responses. 

 

Figure 6.10 Nonlinearity of P parameter of atom XA at t = 11,653Δtm in design space 

Step 2: P Parameter vs. Predicted Crack Tip Location 

To explain the relation between the accuracy of the 1st-order predictions of P 

parameters and that of the predicted crack tip locations, in Fig. 6.11 we plot 

schematically the P parameters at time T1 for perturbed design b
0
 + Δbi (obtained from 

A B C D E F G H I J K L M N

Time Step Current Design

(Δt m ) P(b
0
) P(b

0
+δb1) P(b

0
+δb2) P(b

0
+δb3) ΔP (b1) ΔP (b2) ΔP (b3) DSA P (b1) DSA P (b2) DSA P (b3) % P (b1) % P (b2) % P (b3) 

3,000 3.09E-09 3.09E-09 3.09E-09 3.09E-09 -6.92E-16 -4.57E-15 -5.07E-15 -6.92E-12 -4.57E-11 -5.07E-11 100.020% 100.006% 100.002%

5,000 2.78E-07 2.78E-07 2.78E-07 2.78E-07 5.93E-14 5.27E-13 -1.28E-13 5.93E-10 5.27E-09 -1.28E-09 99.998% 100.001% 99.997%

7,000 9.11E-07 9.11E-07 9.11E-07 9.11E-07 7.34E-14 -5.37E-13 -5.90E-13 7.34E-10 -5.37E-09 -5.90E-09 100.033% 99.996% 99.999%

9,000 1.25E-04 1.25E-04 1.25E-04 1.25E-04 1.23E-09 -3.47E-09 -8.51E-09 1.23E-05 -3.47E-05 -8.51E-05 100.001% 99.996% 99.994%

11,000 5.71E-03 5.71E-03 5.71E-03 5.71E-03 3.20E-07 -8.71E-07 -2.15E-06 3.20E-03 -8.71E-03 -2.15E-02 100.003% 99.993% 99.981%

13,000 4.99E-04 4.99E-04 4.99E-04 4.99E-04 7.77E-09 1.41E-07 -7.68E-09 7.77E-05 1.41E-03 -7.74E-05 99.984% 99.954% 100.794%

15,000 1.45E-04 1.45E-04 1.45E-04 1.44E-04 1.61E-08 1.45E-08 -9.25E-08 1.61E-04 1.44E-04 -9.26E-04 99.989% 99.811% 100.081%

Perturbed Design Overall Finite Difference Sensitivity Prediction Accuracy Index
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Design perturbation (δb2) 

t = 11,653Δtm 
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re-analysis), where the 1st-order predictions of the P parameters at the same instant are 

represented by the hollow dots. As can be seen from Fig. 6.11a, even if the predicted P 

parameters are not 100% consistent with those obtained from re-analysis, as long as all 

hollow dots are on the same side of the red line (Pcrit) as the corresponding solid ones, 

the crack tip location at this time step can still be predicted exactly (100% accuracy). 

On the other hand, if, for example, the P parameter of atom a at T1 is extremely close to 

or right on the red line (Fig. 6.11b), then even a P parameter prediction of high accuracy 

(such as 99.99%) may still result in an inaccurate prediction of crack tip location for 

that time step. This implies an uncertainty imposed on the relation between the accuracy 

of the 1st-order predictions of P parameters and that of the predictions of crack tip 

locations; that is: 

1. At each time step, even a highly accurate 1st-order prediction of P parameters 

cannot guarantee the accurate prediction of crack tip location.  

2. It is also possible that P parameter predictions with low accuracy can result in 

exact predictions of crack tip locations for some time steps, especially in 

between two adjacent crack tip jumps when the P parameters of all atoms are 

relatively away from the critical value. 

 

Figure 6.11 Accuracy of crack tip location prediction when the P parameter of atom a is 

(a) away from the critical value and (b) close to the critical value 
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Step 3: Predicted Crack Tip Location vs. Predicted Crack Speed 

As can be easily conceived, when the performance measure of crack speed is defined as 

an average of crack tip locations over a long time interval that consists a great number 

of time steps, the impact of inaccurate predictions of crack tip locations caused by either 

the uncertainty discussed above or the nonlinearity of atomic responses will be 

minimized.  

Taking the nano-beam as an example, we show in Fig. 6.12 the difference 

between the crack tip location curves for perturbed design Δb2 = 0.1 obtained from re-

analysis and through prediction using analytical sensitivity results. Note that Δb2 = 0.1 

can be considered as a relatively large design perturbation for atomic responses due to 

nonlinearity (discusses in Section 4.7). The point at each time step in Fig. 6.12 is 

calculated as 

 )()(
~

)( 22 tCtCtDiff
bb

C             (6.8) 

where )(2 tC
b

 is the crack tip location at time t (a multiple of time step size Δtm) 

calculated by re-running simulation for perturbed design Δb2 = 0.1, while )(
~

2 tC
b

 

represents the crack tip location at t predicted using the predicted P parameters in Eq. 

6.3, which are computed based on analytical sensitivity results. 

 

Figure 6.12 Difference between the crack tip location curves obtained from re-analysis 

and through sensitivity prediction for perturbed design Δb2 = 0.1. Time steps within 

9,000Δtm ~ 15,000Δtm are plotted 

Time (Δtm) 
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Apparently, in Fig. 6.12, DiffC(t) = 0 at most time steps, which means 2
~b
C  

matches )(2 tC
b

. The isolated dots with DiffC(t) = 1 (or -1) imply that at each of those 

time steps, the predicted crack tip location is one atom ahead of (or behind) the crack tip 

location obtained through re-analysis. For the specific case show in Fig. 6.12, the 

predicted crack tip location 2
~b
C  is inaccurate ( 0)( tDiffC ) at about 40 time steps out 

of 6,000 within 9,000Δtm ~ 15,000Δtm.  

Denoting the crack tip locations at the current design as )(
0

tCb
, the accuracy 

index of predicted crack tip location  

 
)()(

)()(
~

~
0

2

0
2

2

tCtC

tCtC
CofindexAccuracy

b

b

b

b

b




            (6.9) 

for those inaccurate time steps can be, for example, zero or infinity (among many other 

possible values) when )()(&)()(
~ 0

2
0

2 tCtCtCtC
bb bb   or )()(&)()(

~ 0
2

0
2 tCtCtCtC

bb bb  , 

respectively, which is clearly not usable in design. However, after crack propagation 

speed is calculated based on crack tip locations, the accuracy index of predicted crack 

speed 
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ofindexAccuracy              (6.10) 

is found to be around 112% for this case, which is acceptable. Note that in Eq. 6.10, 

0
bV  and 2bV are crack propagation speeds obtained by running simulation at the 

current design and the perturbed deign Δb2 = 0.1, respectively, while 2

~
bV  stands for the 

predicted crack speed calculated based on )(
~

2 tC
b

 within the simulation period 9,000Δtm 
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~ 15,000Δtm. Therefore, it becomes clear that the impact of inaccurate predictions of 

crack tip locations can be minimized during crack speed calculation. 

Step 4: Atomic Response vs. Predicted Crack Speed 

Based on the three steps discussed above, the predicted crack speed V
~

 is expected to 

be generally more accurate than atomic responses. In other words, it will remain highly 

accurate for larger design perturbations than the 1st-order predictions of atomic 

responses. Now we use the nano-beam example to demonstrate the accuracy of 

predicted crack speed V
~

 and compare it to the accuracy of the 1st-order predictions of 

atomic responses.  

Figure 6.13 plots the predicted crack speed curves for all three shape design 

variables in the nano-beam example. In each of the sub-graphs, the green curve is 

comprised of 5,000 data points of predicted crack speeds V
~

 with interval 0.0002, 

whereas the blue dots represent crack speeds V obtained through re-analysis at 

corresponding perturbed designs. It is apparent that each predicted crack speed curve 

exhibits ‘stepped’ behavior in design space (zoomed in view for b2 in Fig. 6.13). 

Moreover, in general, the predicted crack speed V
~

 data match well with V (blue dots). 
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Figure 6.13 Predicted crack speeds in design space for individual design variables. Blue 

data points represent crack speed V from re-analysis. Predicted crack speed curve for b2 

is zoomed in at [0.006, 0.017] 

The accuracy of the predicted crack speeds is listed in Table 6.3, where the 

accuracy indices are calculated using Eq. 4.27. As can be seen, up to at least Δb1 = 1, 

Δb2 = 0.2 and Δb3 = 0.5, the accuracy indices of the predicted crack speeds are between 

85% and 115%; within these accurate ranges, the predicted crack speed curves are 

considerably close to the re-analysis results, especially when compared to the 1st-order 

predictions of atomic responses. Recall that as shown in Fig. 4.8, the error of the 1st-

order predictions of atomic displacements can be as large as 110% (corresponding to 

accuracy index 210%) for a design perturbation as small as δb2 = 0.05 at some time 

steps. Therefore, it is clear that the predicted crack speed V
~

 can remain highly 
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accurate for much larger design perturbations than the 1st-order predictions of atomic 

responses. 

Table 6.3 Accuracy of predicted crack speed 

 
Design variable b1 

 
Design variable b2 

 
Design variable b3 

Also can be observed from Fig. 6.13 and Table 6.3 is that the accurate range of 

predicted crack speed can vary between individual shape design variables. In fact, the 

length of the accurate range is related to how sensitive the structural response is with 

respect to the design variable. More specifically, if the dynamic response of the 

structure (including crack propagation speed) is less sensitive to a design variable (such 

as b1 in the nano-beam example), then for a given design perturbation size, the delay or 

advance of atomic displacements due to design change will be smaller; consequently, 

the 1st-order predictions of structural responses (such as atomic displacements), and 

hence the predicted crack speed for the design variable will be more accurate. 

Step 5: Predicted Crack Speed vs. ‘Slope’ of Predicted Crack Speed 

The accuracy of the ‘slope’ of predicted crack speed is defined as 

Design Perturbation (Δb 1) 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1

Crack speed from re-analysis (V ) 1.46588 1.46588 1.46581 1.46590 1.46605 1.46611 1.46627 1.46636 1.46687

Predicted crack speed (    ) 1.46588 1.46588 1.46581 1.46590 1.46604 1.46615 1.46633 1.46635 1.46694

Accuracy index 100.00% 100.00% 100.00% 100.00% 98.78% 113.45% 113.49% 98.76% 106.33%

Design Perturbation (Δb 2) 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1

Crack speed from re-analysis (V ) 1.46544 1.46509 1.46405 1.46275 1.46069 1.45851 1.45530 1.45090 1.43658

Predicted crack speed (    ) 1.46543 1.46501 1.46384 1.46236 1.45996 1.45709 1.45258 1.44884 1.44121

Accuracy index 103.24% 110.47% 111.09% 112.41% 114.05% 119.24% 125.75% 113.74% 84.19%

Design Perturbation (Δb 3) 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1

Crack speed from re-analysis (V ) 1.46558 1.46532 1.46464 1.46358 1.46203 1.46071 1.45895 1.45724 1.44023

Predicted crack speed (    ) 1.46558 1.46532 1.46456 1.46350 1.46219 1.46075 1.45886 1.45644 1.44741

Accuracy index 100.00% 99.72% 106.23% 103.33% 95.87% 99.22% 101.22% 109.26% 71.98%

V
~

V
~

V
~
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which indicates the ratio between the ‘slope’s obtained based on V
~

 and V, i.e., the 

discrepancy between the blank and green curves in Fig. 6.4b. Note that the expression 

after the last equal sign in Eq. 6.11 is the same as the definition of the accuracy 

(accuracy index) of predicted crack speed V
~

, which means the accuracy of the ‘slope’ 

of predicted crack speed 
V
~S  is equivalent to the accuracy of predicted crack speed V

~
, 

and hence the accurate range of 
V
~S  is identical to that of V

~
. This implies that 

V
~S  can 

also remain highly accurate for much larger design perturbations than the 1st-order 

predictions of atomic responses. Similar to Fig. 6.13, the comparison between the 
V
~S  

curves and the S
V
 data for all three shape design variables in the nano-beam example is 

shown in Fig. 6.14. As can be seen, the 
V
~S  curves match well with S

V
. 
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Figure 6.14 Accuracy verification for ‘slope’ of predicted crack speed (
V
~S ) for 

individual design variables. Blue data points represent S
V
 obtained from re-analysis  

6.4.2.2 Justification of Hybrid Method with Regression Analysis 

Now recall the regression analysis carried out in Section 6.4.1. It is important to note 

that for the nano-beam example, the accurate ranges for 
V
~S  (1, 0.2 and 0.5 for b1, b2, 

and b3, respectively, Table 6.3) are in general much larger than the noise ranges of 

individual design variables (Δb1_noise = 0.2, Δb2_noise = 0.04, Δb3_noise = 0.08, Fig. 6.6), 

indicating the feasibility of the hybrid method with regression analysis. In addition, the 

curve fitting ranges chosen for the three design variables (Δb1_reg = 0.8, Δb2_reg = 0.2, 

Δb3_reg = 0.4, Fig. 6.7) are all equal or smaller than the accurate ranges, which, 
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according to the discussion in Section 6.3, implies that the crack speed sensitivity 

calculated using the proposed hybrid method should be accurate. 

6.4.3 Accuracy Verification of Crack Speed Sensitivity 

In order to verify the accuracy of the crack speed sensitivity coefficients calculated in 

Section 6.4.1, we compare the 1st-order predictions of crack propagation speeds with 

re-analysis results. In Fig. 6.15, the blue data points are crack speeds V obtained 

through re-analysis, while the red dashed lines represent the 1st-order predictions of 

crack speeds calculated using Eq. 6.7. Note that the )( ibV  data show in Fig 6.15 and 

the )( 0

ibbV  in Eq. 6.7 represent the same quantity. 

 

 

Figure 6.15 Accuracy verification of crack speed sensitivity for (a) shape design 

variable b1, (b) shape design variable b2, and (c) shape design variable b3 
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Figure 6.15 Accuracy verification of crack speed sensitivity for (a) shape design 

variable b1, (b) shape design variable b2, and (c) shape design variable b3 (cont’d) 

As we can see, using the proposed hybrid method with polynomial regression, 

the sensitivity coefficients of crack speed with respect to all three design variables are 

accurately computed. In addition, due to the relatively linear behavior of crack speed in 

design space, the 1st-order predictions of crack speed are accurate for much larger 

design perturbations than those of atomic responses, which is desirable. 

It is worth mentioning that the hybrid method with regression analysis is 

certainly not the only way to evaluate the sensitivity of crack propagation speed. 

Alternative approaches can always be employed or developed as long as they are 

capable of calculating crack speed sensitivity based on the discontinuous crack speed 

‘slope’ curve in design space. However, in this chapter, the hybrid method with 

regression analysis has been demonstrated to be both efficient and accurate for the 

nano-beam example.     

6.4.4 What-if Study 

Based on the crack speed sensitivity calculated using the hybrid method, we carry out a 

what-if study for the nano-beam example. Our objective is to slow down crack 

propagation by varying δb = [δb1, δb2, δb3]
T
, i.e., simultaneously perturbing all three 
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shape design variables. To start with, we plot the sensitivity of crack propagation speed 

with respect to three design variables in Fig. 6.16. As can be seen, crack speed slows 

down when b2 and b3 are increased, whereas an increment of b1 accelerates crack 

propagation.  

 

Figure 6.16 Sensitivity coefficients of crack propagation speed with respect to three 

design variables 

  With the crack speed sensitivity coefficients, it is possible to find a direction for 

vector δb, along which the crack propagation slows down with a maximum rate, i.e., the 

crack speed decreases most with a given length of vector δb. The normal vector 

associated with this direction is determined by 
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Thus any design change along this direction can be written as  

 nb             (6.13) 

where α is a scaling factor.  

  Based on the discussion above, what-if studies are carried out for a series of 

perturbations along n with scaling factors ranging from α = 0.1 to α =1.5. For 
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comparison, the crack speeds V in perturbed designs are also obtained for individual 

cases through re-analysis. The results of the what-if studies are shown in Table 6.4. In 

this table, Columns 3 to 5 list the changes in individual design variables corresponding 

to the length of δb in each case. For example, the δb2 for Case 7 (1.279) represents 

approximately a 0.6% increment of beam length. Column 6 lists the crack propagation 

speeds predicted in the what-if studies; that is 

     3

3

2

2

1

1

b
bd

d
b

bd

d
b

bd

d

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bbb            (6.14)  

while Column 7 shows the crack propagation speeds  bb 0V  obtained through re-

analysis. The accuracy indices are listed in Column 8. 

Table 6.4 Accuracy verification for what-if studies 

 

 

Figure 6.17 Comparison between crack propagation speeds from what-if studies and re-

analysis for various design perturbations 

  The crack propagation speeds listed in Column 6 and Column 7 of Table 6.4 are 

also plotted in Fig. 6.17. As can be seen, the design direction determined based on 

Case No. Length of δb δb 1 δb 2 δb 3 What-if Study Re-analysis Accuracy Index

1 0.1 -1.884E-03 8.528E-02 5.219E-02 1.46072 1.46134 113.67%

2 0.2 -3.769E-03 1.706E-01 1.044E-01 1.45557 1.45782 128.06%

3 0.4 -7.538E-03 3.411E-01 2.088E-01 1.44526 1.45183 146.83%

4 0.6 -1.131E-02 5.117E-01 3.132E-01 1.43496 1.44446 144.37%

5 0.8 -1.508E-02 6.822E-01 4.176E-01 1.42465 1.43282 124.71%

6 1 -1.884E-02 8.528E-01 5.219E-01 1.41435 1.42343 121.40%

7 1.5 -2.827E-02 1.279E+00 7.829E-01 1.38858 1.41560 153.75%

Design perturbation (length of δb) 
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sensitivity analysis leads to an intended change in performance measure, i.e., crack 

propagation slows down when design changes are made along the direction determined 

by Eq. 6.13. To better illustrate the impact of shape design changes on crack 

propagation, in Fig. 6.18 we plot the crack tip location curves for the current design and 

the perturbed designs (obtained through re-analysis) with perturbation scaling factors 

ranging from 0.1 to 1.5. Note that at around t = 7,700Δtm (Area A) – right after the crack 

started to grow – crack propagation is delayed in perturbed designs. Moreover, as we 

can see from the zoomed-in view of area B, at later time steps during the simulation, the 

delay of crack propagation becomes larger, indicating that crack speed is indeed 

reduced in perturbed designs.  

 

Figure 6.18 Crack tip location curves for perturbed designs with various scaling factors 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORKS 

 

7.1 Conclusions 

In this thesis, a shape sensitivity analysis of multi-scale crack propagation problems, 

including analytical and hybrid methods, has been presented. The analytical sensitivity 

expressions were derived from the continuum variational formulation of the bridging 

scale method. Direct differentiation method was employed due to its efficiency for 

crack propagation problems that depend highly on the atomistic dynamic responses of 

the structure. Accuracy of the analytical sensitivity coefficients of structural responses 

has been verified via a nano-beam example. For crack propagation problems, an 

adequate performance measure of crack speed was established, and a hybrid sensitivity 

analysis method that combines analytical sensitivity analysis and finite difference 

method was developed for calculating the sensitivity of crack speed. The feasibility and 

accuracy of the hybrid method has been demonstrated through a what-if study using the 

nano-beam example, which shows that the sensitivity result is effective in support of 

design decision making. 

Two major challenges have been overcome in this thesis: first, since atomic 

displacement solution is discontinuous due to the discrete nature of MD simulation, we 

defined design velocity fields in a way that the shape of the MD area does not change. 

Second, the performance measure of crack speed is theoretically differentiable but 

numerically discontinuous in design space, and we address this issue by proposing a 

hybrid method, in which the sensitivity of crack speed is approximated through 
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regression analysis. It has been shown that for crack propagation problems, the hybrid 

method is much more efficient compared to overall finite difference. 

This thesis is the first study that investigates the feasibility of shape sensitivity 

analysis for coupled atomistic/continuum problems. The derived sensitivity formulation 

is capable of handling general 3-D geometry. The proposed approach establishes a basis 

for multi-scale shape optimization of structural components for maximum service life. 

By employing molecular dynamics simulation near the crack tip, fatigue crack growth 

can be examined at atomistic level, and residual life can be predicted without using 

traditional fracture mechanics theory. 

7.2 Future Works 

Improvements must be made to extend the scope of the current research for practical 

applications. For example, future works may be focused on relaxing the assumptions 

and restrictions of both the MD simulation and the bridging scale method. The usage of 

simple interatomic potential function in this thesis is due to our interest in investigating 

the generic features of brittle crack propagation. It is certainly possible, however, to 

study a particular material by defining an LJ potential with parameters that match the 

material properties, or by replacing the LJ potential with more realistic models, such as 

an EAM potential [50], to support a broad range of materials and applications. In terms 

of the bridging scale method, a finite temperature coupling can be accomplished by 

taking into account the random terms when deriving the time history kernel; higher 

order time history kernel terms and longer-ranged interatomic interaction can be 

incorporated to improve accuracy of the simulation; impedance boundary condition for 
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the vertical MD boundaries can be developed, so that the size of the MD simulation can 

be further reduced to a rectangular area instead of a strip.  

The largest concern for the proposed approach to be applied to practical 

applications lies in the intensive computation required for molecular dynamics 

simulation. Although the MD domain has been reduced significantly in size by using 

multi-scale methods, the time scale in practical fatigue problems is much longer than 

that studied in this work. Nevertheless, the most powerful supercomputer today is about 

one million times faster than the workstation used for the current research (in terms of 

floating-point operations per second); therefore, by taking advantage of parallel 

computing, the proposed sensitivity analysis approach is computationally feasible in  

supporting the design of micro-scale devices in the near future. With revolutionary 

advance in computer technology, macroscopic application might be possible within the 

next decade. 

  



164 

 

REFERENCES 

 

[1]  Edke, M., “Shape Design Sensitivity Analysis and Optimization For 2-D 

Structural Components under Mixed-mode Fracture Using Extended Finite 

Element Method and Level Set Method,” Ph.D. Thesis, University of Oklahoma, 

Norman, OK, 2009. 

 

[2]  Abraham, F.F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T. and Seager, M., 

“Simulating Materials Failure by Using up to One Billion Atoms and the World's 

Fastest Computer: Work-hardening,” Proceedings of the National Academy of 

Sciences, 99(9), 5783-5787, 2002. 

 

[3]  Gordon, P.A., Neeraj, T., Luton, M.J. and Farkas, D., “Crack-Tip Deformation 

Mechanisms in α-Fe and Binary Fe Alloys: An Atomistic Study on Single 

Crystals,” Metallurgical and Materials Transactions A, 38(A), 2191-2302, 2007. 

 

[4]  Gao, Y., Lu, C., Tieu, A.K. and Zhu, H.T., “Molecular Dynamics Simulation of 

Crack Propagation on Different Slip Planes of BCC Iron,” International 

Conference on Nanoscience and Nanotechnology, 226-229, IEEE, 2008. 

 

[5]  Sen, D, Cohen, A., Thompson, A.P., Duin, A.V., Goddard, W.A. and Buehler, 

M.J., “Direct Atomistic Simulation of Brittle-to-ductile Transition in Silicon 

Single Crystals,” MRS Proceedings, 1272(PP04-13), Materials Research Society, 

2010. 

 

[6]  Ersland, C.H., Vatne, I.R. and Thaulow C., “Atomistic Modeling of Penny-shaped 

and Through-thickness Cracks in BCC Iron,” Modelling and Simulation in 

Materials Science and Engineering, 20, 075004, 2012. 

 

[7]  Potirniche, G.P., Horstemeyer, M.F., Jelinek, B. and Wagner, G.J., “Fatigue 

Damage in Nickel and Copper Single Crystals at Nanoscale,” International Journal 

of Fatigue, 27, 1179-1185, 2005. 

 

[8]  Buehler, M. J., Atomistic Modeling of Materials Failure, Springer, NY 2008. 

 

[9]  Abraham, F.F., Brodbeck, D., Rudge, W.E. and Xu, X., “A Molecular Dynamics 

Investigation of Rapid Fracture Mechanics,” Journal of the Mechanics and Physics 

of Solids, 45(9), 1595-1619, 1997. 

 

[10]  Abraham, F.F., “How Fast Can Cracks Move? A Research Adventure in Materials 

Failure Using Millions of Atoms and Big Computers,” Advances in Physics, 52(8), 

727-790, 2003. 

 



165 

 

[11]  Buehler, M.J., Abraham, F.F. and Gao, H., “Stress and Energy Flow Field Near a 

Rapidly Propagating Mode I Crack,” Springer Lecture Notes in Computational 

Science and Engineering, 143-156, ISBN 3-540-21180-2, 2004. 

 

[12]  Abraham, F.F., Brodbeck, D., Rafey, R.A. and Rudge, W.E., “Instability 

Dynamics of Fracture: A Computer Simulation Investigation,” Physical Review 

Letter, 73(2), 272-275, 1994. 

 

[13]  Buehler, M.J. and Gao, H., “Dynamical Fracture Instabilities due to Local 

Hyperelasticity at Crack Tips,” Nature, 439, 307-310, 2006. 

 

[14]  Buehler, M.J., Abraham, F.F. and Gao, H., “Hyperelasticity Governs Dynamic 

Fracture at a Critical Length Scale,” Nature, 426, 141-146, 2003. 

 

[15]  Abraham, F.F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T. and Seager, M., 

“Simulating Materials Failure by Using up to One Billion Atoms and the World's 

Fastest Computer: Brittle Fracture,” Proceedings of the National Academy of 

Sciences, 99(9), 5788-5792, 2002. 

 

[16]  Rountree, C.L., Kalia, R.K., Lidorikis, E., Nakano, A., Brutzel, L.V. and 

Vashishta, P., “Atomistic Aspects of Crack Propagation in Brittle Materials: 

Multimillion Atom Molecular Dynamics Simulations,” Annual Review of 

Materials Research, 32, 377-400, 2002. 

 

[17]  Abraham, F. F., Broughton, J., Bernstein, N. and Kaxiras, E., “Spanning the 

Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle 

Fracture,” Europhysics Letters, 44(6), 783-787, 1998.  

 

[18]  Rudd, R. E. and Broughton, J. Q., “Coarse-grained Molecular Dynamics and the 

Atomic Limit of Finite Elements,” Physical Review B, 58(10), 5893-5896, 1998.  

 

[19]  Tadmor, E., Ortiz, M., and Phillips, R., “Quasicontinuum Analysis of Defects in 

Solids,” Philosophical Magazine A, 73(6), 1529-1563, 1996.  

 

[20]  Wagner, G. J. and Liu, W. K., “Coupling of Atomistic and Continuum 

Simulations Using a Bridging Scale Decomposition,” Journal of Computational 

Physics, 190, 249–274, 2003.  

 

[21]  Xiao, S. P. and Belytschko, T., “A Bridging Domain Method for Coupling 

Continua with Molecular Dynamics,” Computer Methods in Applied Mechanics 

and Engineering, 193, 1645–1669, 2004. 

 

[22]  Shiari, B., Miller, R. E. and Curtin, W. A., “Coupled Atomistic/Discrete 

Dislocation Simulations of Nanoindentation at Finite Temperature,” Journal of 

Engineering Materials and Technology, 127, 358-368, 2005. 

 



166 

 

[23]  To, A. C. and Li, S., “Perfectly Matched Multiscale Simulations,” Physical 

Review B, 72, 035414, 2005. 

 

[24]  Park, H. S., Karpov, E. G., Klein, P. A. and Liu, W. K., “The Bridging Scale for 

Two-dimensional Atomistic/Continuum Coupling,” Philosophical Magazine, 

85(1), 79-113, 2005. 

 

[25]  Rafii-Tabar, H., Hua, L. and Cross, M., “A Multi-scale Atomistic-continuum 

Modelling of Crack Propagation in a Two-dimensional Macroscopic Plate,” 

Journal of Physics: Condensed Matter, 10, 2375-2387, 1998. 

 

[26]  Chen, J., Wang, X., Wang, H. and Lee, J.D., “Multiscale Modeling of Dynamic 

Crack Propagation,” Engineering Fracture Mechanics, 77, 736-743, 2010. 

 

[27]  Farrell, D.E., Park, H.S. and Liu, W.K., “Implementation Aspects of the Bridging 

Scale Method and Application to Intersonic Crack Propagation,” International 

Journal for Numerical Methods in Engineering, 71, 583-605, 2007. 

 

[28]  Park, H. S., Karpov, E. G., Klein, P. A. and Liu, W. K., “Three-dimensional 

Bridging Scale Analysis of Dynamic Fracture,” Journal of Computational Physics, 

207, 588-609, 2005. 

 

[29]  Rudd, R.E., “Coarse-Grained Molecular Dynamics for Computer Modeling of 

Nanomechanical Systems,” International Journal for Multiscale Computational 

Engineering, 2(2), 203-220, 2004. 

 

[30]  Twu, S. and Choi, K.K., “Configuration Design Sensitivity Analysis of Built-up 

Structures Part II: Numerical Method,” International Journal for Numerical 

Methods in Engineering, 36, 4201-4222, 1993. 

 

[31]  http://paulino.cee.illinois.edu/educational.html 

 

[32]  Choi, K. K., Kim, N., Structural Sensitivity Analysis and Optimization 1, Springer, 

NY 2004. 

 

[33]  Kim, N.H. and Choi, K.K., “Design sensitivity analysis and optimization of 

nonlinear transient dynamics,” Mechanics of Structures and Machines, 29(3), 351-

371, 2001. 

 

[34]  Kim, M.G., Jang, H. and Cho, S., “Adjoint Design Sensitivity Analysis of 

Reduced Atomic Systems using Generalized Langevin Equation for Lattice 

Structures,” Journal of Computational Physics, 240, 1-19, 2013. 

 

[35]  Wang, Y. and Chang, K.H., “Continuum-based Sensitivity Analysis for Coupled 

Atomistic and Continuum Simulations for 2-D Applications using Bridging Scale 

Decomposition,” Structural Multidisciplinary Optimization, 47(6), 867-892, 2013. 



167 

 

 

[36]  Jones, J.E., “On the Determination of Molecular Fields. II. From the Equation of 

State of a Gas,” Proceedings of the Royal Society of London A, 106(738), 463-

477, 1924. 

 

[37]  Falk, M.L., “Molecular-dynamics Study of Ductile and Brittle Fracture in Model 

Noncrystalline Solids,” Physical Review B, 60(10), 1999. 

 

[38]  Chang, W.J. and Fang, T.H., “Influence of Temperature on Tensile and Fatigue 

Behavior of Nanoscale Copper Using Molecular Dynamics Simulation,” Journal 

of Physics and Chemistry of Solids, 64, 1279-1283, 2003. 

 

[39]  Chang, K.H. and Wang,Y., “Sensitivity Analysis for Coupled Atomistic and 

Continuum Simulations using Bridging Scale Decomposition,” Mechanics Based 

Design of Structures and Machines, 40, 292-333, 2012. 

 

[40]  Kelchner, C.L., Plimton, S.J. and Hamilton, J.C., “Dislocation Nucleation and 

Defect Structure during Surface Indentation,” Physical Review B, 58(17), 1998. 

 

[41]  Gumbsch, P., Zhou, S J. and Holian, B.L., “Molecular Dynamics Investigation of 

Dynamic Crack Stability,” Physical Review B, 55(6), 1997. 

 

[42]  Qin, Z. and Buehler, M.J., “Dynamic Failure of a Lamina Meshwork in Cell 

Nuclei under Extreme Mechanical Deformation,” BioNanoScience, 1, 14-23, 2011. 

 

[43]  Karimi, M., Roarty, T. and Kaplan, T., “Molecular Dynamics Simulations of 

Crack Propagation in Ni with Defects,” Modelling and Simulation in Materials 

Science and Engineering, 14, 1409-1420, 2006. 

 

[44]  MATLAB, computer software, Ver. 7.12, The MathWorks Inc., Natick, MA, 2011. 

 

[45]  Mortenson, M.E., Geometric Modeling, John Wiley and Sons, Inc., NY 1997. 

 

[46]  Chang, K.H. and Edke, M., “Manufacturing in Shape Optimization of Structural 

Components,” Computational Optimization: New Research Developments, edited 

by Linton, R.F. and Carroll, T.B., Nova Science Publishers, Inc., 2009.  

 

[47]  Chang, K.H. and Choi, K.K., "A Geometry-Based Parameterization Method for 

Shape Design of Elastic Solids," Mechanics Based Design of Structures and 

Machines, 20(2), 215-252, 1992. 

 

[48]  Choi, K.K and Chang, K.H., "A Study of Design Velocity Field Computation for 

Shape Optimal Design," Finite Elements in Analysis and Design, 15(4), 317-342, 

1994. 

 



168 

 

[49]  Chang, K.H., Yu, X. and Choi, K.K., “Shape Design Sensitivity Analysis and 

Optimization for Structural Durability,” International Journal of Numerical 

Methods in Engineering, 40, 1719-1743, 1997. 

 

[50]  Daw, M.S. and Baskes, M.I., “Semiempirical Quantum Mechanical Calculation of 

Hydrogen Embrittlement in Metals,” Physical Review Letters, 50(17), 1285-1288, 

1983. 

 

[51]  Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, Third 

Edition, CRC Press, FL 2005. 

 

[52]  Freund, L.B., Dynamic Fracture Mechanics, Cambridge University Press, 1990. 

 

[53]  Griffith, A.A., “The Phenomenon of Rupture and Flow in Solids,” Philosophical 

Transactions of the Royal Society A, 221, 163-198, 1920. 

 

[54]  Irwin, G.R., “Fracture dynamics,” Fracturing of Metals, American Society for 

Metals, 147-166, OH 1948. 

 

[55]  Yoffe, E.H., “The Moving Griffith Crack,” Philosophical Magazine, 42, 739-750, 

1951. 

 

[56]  Gao, H., “A Theory of Local Limiting Speed in Dynamic Fracture,” Journal of the 

Mechanics and Physics of Solids, 44(9), 1453-1474, 1996. 

 

[57]  Gao, H., “Elastic Waves in a Hyperelastic Solid Near its Plane-strain Equibiaxial 

Cohesive Limit,” Philosophical Magazine Letters, 76(5), 307-314, 1997. 

 

[58]  Wagner, G.J., Karpov, E.G. and Liu, W.K., “Molecular Dynamics Boundary 

Conditions for Regular Crystal Lattices,” Computer Methods in Applied 

Mechanics and Engineering, 193, 1579-1601, 2004. 

 

[59]  Weeks, W. T., “Numerical Inversion of Laplace Transforms Using Laguerre 

Functions,” Journal of the Association for Computing Machinery, 13(3), 419-426, 

1966. 

 

[60]  Wang, Y., “Energy Based Sensitivity Analysis for Coupled Atomistic and 

Continuum Simulations for 2-D Applications using Bridging Scale 

Decomposition,” M.S. Thesis, University of Oklahoma, Norman, OK, 2012. 

  



169 

 

APPENDIX A  

DYNAMIC FRACTURE IN BRITTLE MATERIALS 

– CONTINUUM THEORY AND ATOMISTIC SIMULATIONS 

 

In this appendix, theoretical concepts of dynamic brittle fracture at the continuum scale 

will be reviewed first, followed by the demonstration of a series of MD simulations of 

dynamic crack propagation with simple potential functions. A systematic comparison 

between continuum mechanics theories and MD simulation results will be given. For 

more information, many reviews of continuum fracture mechanics theory are available 

such as [51,52], and detailed explanations of the MD examples discussed in this 

appendix can be found in [8].   

A1 Basics of Linear Elastic Fracture Mechanics 

In linear elastic fracture mechanics (LEFM), it is assumed that the material is 

continuous, isotropic and linear elastic. The linear elastic fracture mechanics theory 

serves as the basis of various later developed continuum fracture mechanics theories 

that are capable of dealing with nonlinear material behavior or dynamic effects. In fact, 

the continuum theories have made powerful predictions of the material behavior near 

cracks, and have been proven to be successful and applicable to a wide range of 

applications. In this section, we review some of the important concepts of linear elastic 

fracture mechanics, such as the Griffith’s criterion, crack tip stress field, crack limiting 

speed, and dynamic crack instability. 

The Griffith Energy Balance 
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In 1920, Griffith [53] first postulated that a crack starts to grow when the decrease in 

potential energy due to crack growth equals the energy necessary to create new material 

surfaces. The Griffith energy balance for an increment of the crack area dA can be 

expressed under equilibrium conditions, as 

 0
dA

dW

dA

dW

dA

dU SP            (A1) 

where U, WP and WS denote total energy in the system, potential energy supplied by the 

internal strain energy and external load, and energy required to create new surfaces, 

respectively. In 1948, Irwin [54] defined an energy release rate 

  
dA

dW
G P            (A2) 

as a measure of the rate of change in potential energy with the crack area. Crack 

propagation occurs when the energy release rate reaches a critical value 

 SG 2            (A3) 

where S  is the surface energy per unit area. 

Stress Field near Crack Tip 

There are three types of loading that a crack can experience. As illustrated in Fig. A1a, 

in mode I loading, the principal load is applied normal to the crack plane; mode II 

corresponds to in-plane shear loading; mode III refers to out-of-plane shear. A cracked 

body can be loaded in any one of these modes, or a combination of two or three modes.  
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 (a)  (b) 

Figure A1 (a) Three modes of loading [8]. (b) The polar coordinate ahead of a crack tip 

[51] 

Assuming isotropic linear elastic material behavior, it is possible to express the 

stress field in the vicinity of the crack tip. If we define a polar coordinate system with 

the origin at the crack tip (Fig. A1b), the stress field near the crack tip for a mode I 

loading condition can be written as 
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where KI is called the mode I stress intensity factor. Note that in addition to the static 

solution, more general solutions that also include the case of moving cracks can be 

found in [52].  

Crack Limiting Speed 

Brittle crack grows rapidly in material. In general, a larger applied load leads to faster 

crack propagation. However, the maximum speed that a crack can attain is limited by an 

upper bound related to the speed of waves in the elastic media in which the crack 

propagates. According to the continuum theory, mode I, mode II and mode III cracks 
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are limited by the Rayleigh wave speed cR, longitudinal wave speed cl, and shear wave 

speed cs, respectively [8]. The physical reason for the limiting speed is the dependence 

of the energy release rate G on the crack speed. For example, for mode I crack 

propagation, 

 
Rc

v
G 1~            (A5) 

which implies that the energy release rate approaches zero when crack speed v 

approaches the Rayleigh wave speed. 

Dynamic Crack Instability 

It has been observed in many experimental and computational studies on rapidly 

moving cracks in brittle materials that the crack face morphology changes as the crack 

speed increases – a phenomenon usually referred to as the dynamic instability of cracks. 

As shown in Fig. 1.1b, up to a critical speed, newly created crack surfaces are mirror 

flat, whereas at higher speeds, the crack surfaces start to roughen (mist regime) and 

eventually become very rough (hackle regime). This behavior is found to be universal 

for a variety of brittle materials including ceramics, glasses and polymers.  

During the past few decades, several theoretical explanations of crack instability 

have been proposed. For example, the linear elastic analyses carried out by Yoffe [55] 

predicted that the instability speed of cracks is about 73% of the Rayleigh wave speed. 

However, experiments and numerical simulations have suggested that the actual critical 

instability speed can be much lower in many materials. Gao [56,57] proposed a model 

to explain the reduced instability speed based on the concept of hyperelasticity within 
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the framework of nonlinear continuum mechanics, with the central argument that 

atomic bonding in real materials tends to soften with increasing strain.  

Despite important progresses in the past, so far there is still no clear picture of 

the mechanisms underlying dynamical crack instability. None of the existing theoretical 

models are able to explain all experimental and numerical results with a universal 

understanding applicable to a wide range of materials. 

A2 Atomistic Simulations 

Molecular dynamics simulation of dynamic fracture is becoming increasingly popular 

due to the rapid advance in computation technology. In contrast to continuum theories, 

an MD simulation model does not require a priori knowledge about the failure, and 

therefore is more useful in investigating the most fundamental aspects of dynamic crack 

propagation. Numerous MD simulations have been carried out to study dynamic 

fracture in brittle materials, some of which are mentioned in Chapter 1 of this thesis. 

Many of the reported works are focused on understanding the atomistic physics of crack 

propagation and its relation to continuum theories. In this section, we present several 

MD simulations of dynamic fracture that are well documented in [8]. These simulations 

are performed on two dimensional atomic lattices, where interatomic interactions are 

modeled with simple potential functions. Our goal is to illustrate the correlation 

between atomistic simulations and continuum theories in several aspects including 

crack tip stress field, crack limiting speed, and dynamic instability. It will be 

demonstrated that nonlinearity plays a governing role in dynamic fracture. 

Crack Tip Stress Field and Crack Limiting Speed 
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In the MD studies to be presented in this section, the LJ 6-12 potential with reduced 

units (discussed in Section 3.2) will be adopted as the basis to model the interatomic 

interactions. For example, to study a harmonic system, we define a harmonic potential 

by expanding the LJ potential function around its equilibrium position and consider 

only first order terms; that is 

    20
2

1
Φ ahrkar             (A6) 

where ha is the equilibrium distance, k is the interaction coefficient defined in Eq. 3.4, 

and a0 is a constant parameter set to -1 in harmonic approximation.  

The 2-D simulation model is illustrated in Fig. A2. As can be seen, the crack 

propagates in a triangular hexagonal atomic lattice. To avoid crack branching, the 

harmonic potential (Eq. A6) is used to model the interactions between atoms (so that 

atomic bonds will never break), except that a weak fracture layer is introduced by 

modelling the atomic bonds across the layer using the nonlinear LJ 6-12 potential (Eq. 

3.2). During simulation, the model is slowly loaded with a constant strain rate, which 

induces the propagation of the initial crack along the y direction. 

 

Figure A2 A schematic illustration of the simulation model [8] 
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The simulation results are shown in Fig. A3, in which the measured angular 

variation of σxx is plotted for different crack speeds ranging from 0 to 87% of the 

Rayleigh speed, and compared with the continuum solution of dynamic crack tip stress 

field given in [52]. Atomic quantities are evaluated in a small region around a constant 

radius of r ≈ 11 (Fig. A2, normalized unit) centered at the crack tip. The continuum 

theory solution and the simulation results are both normalized with respect to the 

dynamic stress intensity factor [52]. 

 

Figure A3 Comparison between σxx measured in MD simulations and the prediction of 

the continuum mechanics theory for different crack speeds. The solid curves represent 

continuum solution, and the red dots are measured in MD simulations [8] 

As can be seen, the stress field σxx measured in MD simulation is generally in 

agreement with the LEFM solution (same for other quantities such as σyy and τxy). It is 

also found that acceleration effects can severely change the resulting stress fields. If the 

measurements are taken while the crack accelerates too rapidly, the agreement of 

measured field and continuum theory prediction can be poor. 

The comparison of principal strain field is shown in Fig. A4 for different 

velocities of v/cR ≈ 0, v/cR ≈ 0.5, and v/cR ≈ 1. Note that the MD result is in good 

MD 

Theory 
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agreement with the continuum theory. It can be seen clearly that the typical trimodal 

structure of the asymptotic principal strain field develops close to the Rayleigh velocity, 

in contrast to the bimodal structure at low crack speeds. 

 

Figure A4 Principal strain field at various crack speeds (a) v/cR ≈ 0, (b) v/cR ≈ 0.5, (c) 

v/cR ≈ 1 [8] 

To study the limiting speed of cracks, the same model in Fig. A2 with a fracture 

layer is used. A harmonic system is simulated first, in which the atomic bonds across 

the fracture layer is modeled by the harmonic potential (Eq. A6), but with a snapping 

distance rbreak at which the bond breaks. The simulation result demonstrates that, 

independent of model size, the harmonic system behaves as predicted by linear elastic 

continuum theories of fracture, i.e., a mode I crack cannot move faster than the 

Rayleigh wave speed (cR = 4.8 for the 2-D lattice studied), as shown in Fig. A5.  

 

Figure A5 Crack speed history for the harmonic material model in simulation [8] 
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To reveal the impact of nonlinearity on the speed of crack propagation, the 

harmonic potential is then replaced by a biharmonic potential in order to model the 

nonlinear effect. As shown in Fig. A6a, the value of k1 refers to the large-strain 

interaction coefficient, and the parameter ron (or εon) allows us to tune the size of the 

nonlinear region near the crack tip. The potential function illustrated in Fig. A6a models 

an elastic ‘stiffening’ material.  

            

 (a)  (b) 

Figure A6 (a) A biharmonic potential with stiffening effect. (b) Change of reduced 

limiting crack speed (Limiting crack speed/Rayleigh wave speed cR) as a function of εon 

[8] 

The simulation results show crack propagation at super-Rayleigh velocities with 

a local stiffening zone around the crack tip. Figure A6b plots the limiting crack speed as 

a function of εon. As can be seen, the earlier the nonlinear effect is turned on, the larger 

the limiting speed. For example, when the large-strain interaction coefficient is chosen 

to be k1 = 4k, with ron = 1.1375 and rbeark = 1.1483, the mode I crack can propagate 

about 20 percent faster than the Rayleigh wave speed of the material, in clear contrast to 

the linear continuum theory. It is also found that the limiting crack speed is lower than 

in the harmonic case if a local ‘softening’ effect is modeled. Therefore, it is clear that 
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local nonlinearity around the crack tip can significantly influence the limiting speed of 

cracks. 

Dynamic Crack Instability 

To study dynamic crack instability, atomistic models with different potential functions 

are investigated. An interatomic force function is defined as 
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so that a series of MD simulations can be performed by varying systematically the 

parameters rbreak and Ξ. Figure A7 depicts interatomic force versus atomic bond length 

with different rbreak and Ξ. As can be seen, the parameter Ξ controls the shape of the 

interatomic force curve (Fig. A7b). Note that the curve becomes smoother with a 

smaller Ξ, whereas an infinitely large Ξ leads to a harmonic potential. By performing 

MD simulations using potential models with different parameters, the impact of the 

transition from linear elastic to strongly nonlinear material behavior on the instability 

dynamics of cracks can be understood.  

 

Figure A7 Interatomic force versus atomic bond length for various choices of 

parameters rbreak and Ξ [8] 
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First of all, it is found that for materials with linear elastic properties (harmonic 

potential, achieved by setting Ξ in Eq. A7 to infinity), a critical instability speed of 

about 73% of the Rayleigh wave speed can be observed independent of the choice of 

rbreak. Apparently, this is in quantitative agreement with the prediction of Yoffe’s model 

[55], in which the nonlinearity of atomic bonds is completely neglected. 

Next, the parameters in Eq. A7 are adjusted systematically to model different 

levels of nonlinearity near the crack tip. In Fig. A8, the prediction by Yoffe’s model [55] 

is shown as the red line, while the predictions by Gao’s model [56,57] are plotted as the 

blue points. As can be seen, for any choice of rbreak and Ξ, the critical instability speed 

lies in between the prediction by Gao’s model and that by Yoffe’s model. Whether it is 

closer to the former or the latter depends on the choice of rbreak and Ξ. These results 

indicate that the critical instability speed depends strongly on the nonlinearity 

introduced at the crack tip. 

 

Figure A8 Critical instability speed as a function of rbreak for different choices of Ξ [8] 

Summary 

Based on the observations above, it is clear that the predictions by linear elastic fracture 

mechanics theories can be recaptured in MD simulations when a harmonic potential is 

used to model the interaction between atoms; in the meantime, the nonlinearity near the 

crack tip significantly influences the fracture mechanism, and is crucial in producing 
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simulation results that are closer to the behavior of real materials. In this thesis, we use 

the bridging scale method to simulate crack propagation. Although the majority of the 

structural domain is modeled using finite elements based on linear elasticity, a fully 

nonlinear (instead of biharmonic) potential function is used for MD simulation 

(discussed in Section 3.2) near the crack tip, so that the essential physics of brittle 

fracture can be capture in our numerical example. 
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APPENDIX B  

ADJOINT VARIABLE METHOD 

 

In this appendix, we explain the adjoint variable method for design sensitivity analysis 

using the simple bar example introduced in Chapter 2. Both static and dynamic 

scenarios will be discussed. More information about the adjoint method can be found in 

[32]. 

Static Problem  

In Section 2.2.2.2, sensitivity analysis is carried out using the discrete method, while the 

direct differentiation method is employed to calculate the sensitivity coefficient of a 

general performance measure. It is noteworthy that all terms in Eq. 2.31 can be easily 

calculated from their definitions, except for the term (∂ψ/∂z)K
-1

(b), which apparently 

does not vary during the sensitivity analysis with respect to different design variables. 

Therefore, the adjoint variable method is developed to compute this term directly by 

defining it as the adjoint variable λ: 
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where the symmetric property of K(b) has been used. By multiplying both sides of Eq. 

B1 by K(b), we obtain the adjoint equation 
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        (B2) 

which represents the same structural problem as with Eq. 2.26, except that the load 

vector is replaced by (∂ψ/∂z)
T
 – sometimes referred to as the adjoint load. Solving the 
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adjoint problem in Eq. B2 and substituting the result into Eq. 2.31 gives the sensitivity 

of the performance measure, as 
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For the simple bar example, the adjoint problem becomes 
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Note that as shown in Fig. B1, the load vector in Eq. B4 represents a unit point load 

acting on Node 3 – the location where we measure the performance z3. The adjoint 

structure in Eq. B4 can be solved for λ, as 
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which can then be substituted into Eq. 2.31 to obtain the design derivative of the 

performance measure z3, as 
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which is the same as the result obtained by using the direct differentiation method (Eq. 

2.32). 
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Figure B1 Adjoint structure for the simple bar example 

To determine which approach – the direct differentiation method or the adjoint 

variable method – will be employed, we compare the number of equations to be solved 

during sensitivity calculation. The direct differentiation method computes sensitivity 

using the chain rule of differentiation. To calculate the design derivative of each 

performance ψi, Eq. 2.29 must be solved for each design variable bi. Therefore, k (the 

number of design variables) matrix equations need to be solved. With all dz/dbi, the 

sensitivity of each performance can be calculated directly from Eq. 2.31. On the other 

hand, the adjoint variable method computes sensitivity by constructing and solving the 

adjoint problem. The adjoint structure in Eq. B2 must be solved for each performance 

measure ψi, while the adjoint solution λi can be used for all design variables, i.e., the 

sensitivity of performance ψi with respect to each design variable bi can be calculated 

directly from Eq. B3. As a result, the number of equations to be solved equals to NP – 

the number of performance measures.  

Therefore, from computation perspective, in general, if the number of 

performance measures is larger than that of the design variables (NP > k), then the direct 

differentiation method is preferable; otherwise, the adjoint variable method will be more 

efficient. 

E, A, l 

x 

Node 1 

Node 2 

Node 3 

1 
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Dynamic Problem 

For dynamic problems, the sensitivity calculation using the direct differentiation 

method has been demonstrated in Section 2.3.2 (Eqs. 2.64 ~ 2.68). In adjoint variable 

method, the essence is to replace the unknown terms in Eq. 2.65 with adjoint variables. 

In case of a general dynamic problem, we start by multiplying both sides of the dynamic 

finite element matrix equation (Eq. 2.59) by λ
T
 and then integrating over time interval 

[0, tT], yielding 
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Given that λ is defined to be independent of design, we take design derivative of 

Eq. B7 with respect to bi, as 
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Next, the time derivative of dz/dbi within the integral in Eq. B8 can be 

eliminated using integration by parts to obtain the following relation 
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where the initial terms can be removed by accounting for the initial conditions in Eq. 

2.68, giving 
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which must hold for all λ. 

Now we define the dynamic adjoint problem as follows 

 0)(  TtλM         (B11a) 
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Note that the adjoint problem above is defined in such a way that by substituting 

the adjoint solution λ that satisfies Eq. B11 into Eq. B10, we obtain 
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where all implicit terms in Eq. 2.65 are expressed by explicit terms and the adjoint 

variable. Therefore, once the adjoint solution λ is obtained by solving the adjoint 

problem, the sensitivity of the performance measure can be calculated as 
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Note that in dynamic scenarios, the direct differentiation method always allows 

the sensitivity equation (Eq. 2.67) to be solved in parallel with response analysis (Eq. 

2.59). On the contrary, the adjoint problem in Eq. B11 can be thought of as a terminal-

value problem that needs to be solved backwards in time from t = tT to t = 0. Thus, in 

cases when the performance measure is not a linear function of displacement solution z, 

i.e., when ∂g/∂z and ∂G/∂z in Eq. B11 are not constants but depend on z, the adjoint 

problem cannot be solved simultaneously with the response analysis. This complicates 

significantly the calculations associated with dynamic sensitivity analysis. In fact, even 

if the adjoint problem can be solved simultaneously with the response analysis, the 

calculation of the time integral term in design sensitivity (Eq. B13) requires either the 
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solution of structural response or the adjoint equation throughout the entire simulation 

period [0, tT] to be stored, which places heavy burden to the I/O system.  

Therefore, for dynamic problems, as long as the number of design variables is 

not much greater than that of performance measures, the direct differentiation method is 

generally preferable to the adjoint variable method. 
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APPENDIX C  

DERIVATION OF TIME HISTORY KERNEL  

FOR 1-D ATOMIC LATTICE 

 

This appendix demonstrates detailed derivation of the time history kernel for the one-

dimensional atomic lattice discussed in Chapter 3. Discrete Fourier Transform and 

Laplace Transform will be introduced first to support the derivation. 

Discrete Fourier Transform and Laplace Transform 

The discrete Fourier transform (DFT) is used to transform one function into its 

frequency domain representation. If a function f can be defined at all atomic positions l, 

the DFT of f is defined as    
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where L indicates the size of the atomic lattice and p can take any integer value between 

–L/2 +1 and L/2. For 1-D problems, L gives the length of the domain. For multi-

dimensional problems, more indices are needed to represent the additional dimensions. 

The inverse Fourier transform (IFT) is defined as 
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Note that when analytically calculating the time history kernel for a 1-D lattice, 

it is usually assumed that the discrete Fourier transform is carried out over an infinitely 

long chain, i.e.,  L . Therefore, instead of taking integer values, the 

wavenumber p is mapped to the real numbers between -π and π, as discussed in [58]. 
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The DFT and IFT for this limiting case take the form 
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The Laplace transform (LT) is interpreted as a transformation from the time 

domain, in which inputs and outputs are functions of time, to the frequency domain. The 

LT of a function f (t) is defined as 
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while the inverse Laplace transform is defined to be 
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Because of the complex expressions involved in bridging scale problems, for 2-

D and 3-D problems, the inverse Laplace transform has to be conducted numerically. 

The method employed is introduced by Weeks et al. [59]. This method utilizes an 

expansion of the inverse in terms of orthonormal Laguerre functions, yielding excellent 

accuracy. 

The Laplace transform of the time derivative of a function is written as 
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Finally, both the DFT and the LT have convolution properties as follows 
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Derivation of Time History Kernel 

Following the discussion in Section 3.3.3, the linearized fine scale equation of motion 

for the boundary atom is obtained in Eq. 3.24, where the  tf imp

0
 term is the impedance 

boundary force to be developed. Note that the effect of the Region 2 fine scale degrees 

of freedom (implied by the v1 term) is included in the impedance force, and our 

objective is to solve for v1 in terms of v0 by using discrete Fourier transform and 

Laplace transform, so that the fine scale degrees of freedom outside the MD area can be 

eliminated.  

 

Figure C1 (a) Original 1-D atomic system, (b) l < 0 atoms replaced with  tf ext

0 , and (c) 

Region 2 fine scale eliminated by introducing the impedance boundary force  tf imp

0
 

As shown in Fig. C1a, the motion of the l = 0 atom depends on the displacement 

of itself and its nearest neighbors (l = -1 and l = 1). Since the Fourier transforms can be 

employed only for the atoms within the harmonic region ( 0l ), the l < 0 atoms are 

temporarily removed from the system, and are replaced by an undetermined external 
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l = 1 l > 1 
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. . . 

l < -1 

(a) 

(b) 

Region 2 

. . . 

l = 0 

l = 1 l > 1 

(c) 

Region 1 
l = 0 

l = -1 l < -1 

. . .  tf ext

0  tf imp

0
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force  tf ext

0
 that acts only upon the l = 0 atom, as shown in Fig. C1b. Therefore, for the 

0l  atoms, Eq. 3.22 can be rewritten as 

      tfmtvKmtv ext

A

l

ll'

l'l'lAttl 0

1
1

1

1

,








              (C10) 

Note that  tf ext

0
 is introduced merely to support the derivation of the impedance 

boundary condition, and it is NOT the MD boundary force  tf imp

0
 (Fig C1c) to be 

developed.  

Taking discrete Fourier transform of Eq. C10 gives 

        tfmtpVpAtpV ext

Att 0

1

, ,ˆˆ,ˆ            (C11)  

where p corresponds to the spatial index l, and  pÂ  is the discrete Fourier transform of 

lA Km 1 ; that is 

    







 
1

1

11 1cos
2ˆ

l A

ipl

lA

l

ipl

lA p
m

k
eKmeKmpA           (C12)  

Taking Laplace transform of Eq. C11 yields 

            sFmspVpApvpsvspVs ext

At 0

1

,

2 ,ˆˆ0,0,,ˆ            (C13)  

where s denotes the Laplace transform variables. Rearranging Eq. C13 gives 

           0,0,,ˆ,ˆ
,0

1 pvpsvsFmspGspV t

ext

A              (C14) 

where  

     
  Ampks

pAsspG
/1cos2

1ˆ,ˆ
2

1
2






          (C15)  

Taking inverse Fourier transform of Eq. C14 gives  

        sRsFmsGsV d

l

ext

All  

0

1
           (C16) 
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where  sGl
 is the inverse Fourier transform of  spG ,ˆ . For example 

 

   

 
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and 
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       (C18) 

Note that the  sRd

l  term in Eq. C16 is related to the initial conditions in the 

continuum region, and is considered to be a random displacement that represents the 

thermally dependent excitations exerted on the MD region by the surrounding coarse 

scale. In our numerical examples, by assuming the temperature of the surrounding 

continuum to be 0K, this term can be set to zero.  

By writing Eq. C16 for the l = 0 and l = 1 atoms while neglecting the random 

term  sRd

l , the external force  sF ext

0  can be cancelled out, and  sV1  can then be 

solved for in terms of  sV0
, as 

      sVsQsV 01             (C19) 

where 

        AAA mkssmksm
k

sGsGsQ /42
2

1 221

01  
           (C20) 

To obtain the expression of the impedance force, we take Laplace transform of 

Eq. 3.25, yielding 

    sVKsF imp

110             (C21) 
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Substituting Eq. C19 into Eq. C21 gives 

          sVsΘsVsQKsF imp

0010  
           (C22) 

where 

        AAA mkssmksmskQsQKsΘ /42
2

1 22

1              (C23) 

Hence, the impedance boundary force can be obtained by taking inverse Laplace 

transform of Eq. C22, giving 

       
t

imp dvtθtf
0

00             (C24) 

where 

     













  t

m

k
J

t

k
sΘtθ

A

2
2

2

1L           (C25) 

is called the time history kernel, in which J2 stands for the second-order Bessel function. 

It is important to note that an analytical expression of the time history kernel is possible 

only for a 1-D lattice. For multiple dimensional problems, analytically deriving the 

impedance boundary condition can be intractable. Therefore, numerical procedures are 

inevitably involved, as presented in Appendix D. 
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APPENDIX D  

DERIVATION OF IMPEDANCE BOUNDARY CONDITION  

FOR 3-D ATOMIC LATTICE 

 

This appendix presents the derivation of bridging scale impedance boundary condition, 

including the time history kernel, in a generalized three dimension scenario. More 

details and discussions on this subject can be found in [28].  

As with the derivation for the 1-D lattice discussed in Chapter 3, the key idea in 

deriving the impedance force for a 3-D lattice is to utilize the periodicity of the atomic 

structure so that standard technique of discrete Fourier transform (Appendix C) can be 

applied. For a better illustration, the 3-D FCC lattice used in our numerical example is 

depicted in Fig. D1, while Fig. D2 shows the m = 1 layer of the periodic 3-D lattice 

labeled with indices l, m, and n. It is of note, however, that the derivation to be 

presented below is general for a variety of lattice structures. 

 

Figure D1 An atom (l, m, n) with its neighboring (interacting) atoms in the FCC lattice 

x 
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Figure D2 The m = 1 layer of a periodic 3D FCC lattice with indices. The dashed line 

represents the boundary between the MD region and the FE-only region 

Note that in Fig. D2, each value of n, for example, describes a layer of atoms 

bounded in a given x-y plane. Assume that n = 0 denotes the boundary layer of the MD 

region (as shown in Fig. D2). Our goal is to develop an impedance boundary force that 

mimics the fine scale dynamic effect of the n > 0 (Region 2) atoms on the remaining 

system. The fine scale degrees of freedom of the n > 0 atoms will be eliminated by 

solving or replacing them in terms of the 0n  (Region 1) degrees of freedom. More 

specifically, the displacements of the n = 1 atoms will be solved for in terms of the 

displacements of the atoms within the n = 0 layer. 

To start with, the fine scale equation of motion (Eq. 3.21b) for any atom within 

the harmonic region ( 0n ) can be rewritten, based on the atomic lattice structure, as 

      















μl

μll'

nl',m'n'm',nl',ml

m

mm'

n

nn'

Anl,m tt
tt ,

1

1

1

, ,
vKMv





          (D1) 

where the constant stiffness matrices K relate the displacements of the neighboring 

atoms around the atom labeled (l, m, n) to the atomic forces acting on it. Writing Eq. D1 

for the n = 0 atoms yields 

(1,1,0) (3,1,0) (5,1,0) 

(5,1,-2) (1,1,-2) (3,1,-2) 

(2,1,-1) (4,1,-1) 

(4,1,1) (2,1,1) 

(1,1,2) (3,1,2) (5,1,2) 

x 

z 

l 

n 

MD/FE boundary m 

y 

MD+FE 

(Region 1) 

FE only 

(Region 2) 

Boundary layer 

(n = 0) 
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    (D2) 

where the  t,m'l 1,v  term indicates that determining the motion of the boundary atoms 

requires the fine scale displacements in Region 2, which are to be eliminated. Therefore, 

we rewrite Eq. D2 as  

      ttt imp

mlA

μl

μll'

nl',m'n'm',l',ml

m

mm' n'

Attl,m 0,,

1

,0

0

1

1

,0, fMvKMv



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
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    
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

          (D3) 

where 

     









μl

μll'

m

mm'

l',m'm',l',ml

imp

ml tt




1,10,, vKf           (D4) 

is the impedance boundary force to be derived, which mimics the effect of the Region 2 

fine scale degrees of freedom on the MD boundary atoms. The objective is to evaluate 

the impedance force  timp

ml 0,,f  by solving for  t,m'l 1,v  in terms of the displacements of the 

n = 0 atoms using mathematical transformation techniques introduced in Appendix C. 

Note that we assume the motion of the n = 0 layer of atoms only depends on the 

displacements of those within layer n = 0 and their immediately neighboring layers (n = 

-1 and n = 1), as shown in Fig. D3a. Since the Fourier transforms can be employed only 

for the atoms within the harmonic region, the n < 0 atoms are temporarily removed from 

the system, and are replaced by an undetermined external force  text

ml 0,,f  that acts only 

upon the n = 0 atoms, as shown in Fig. D3b. Therefore, for the 0n  atoms, equation 

D1 can be rewritten as 
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Figure D3 The external force that replaces the effect of the removed n < 0 atoms, (a) 

original system, (b) n < 0 atoms replaced with  text

ml 0,,f , and (c) Region 2 fine scale 

eliminated by introducing impedance boundary force  timp

ml 0,,f  

Note that  text

ml 0,,f  is introduced merely to support the derivation of the 

impedance boundary condition, and it is NOT the impedance boundary force  timp

ml 0,,f  

(illustrated in Fig D3c) to be developed.  

Taking discrete Fourier transform and Laplace transform of Eq. D5 gives 

                 sqpsrqprqprqprqpssrqps ext

A,t ,,ˆ,,,ˆ,,ˆ0,,,ˆ0,,,ˆ,,,ˆ
0

12
FMVAvvV

     (D6) 

where p, q and r correspond to the spatial indices l, m and n respectively. The variable s 

is introduced to indicate the Laplace transform variables. The hatted notation represents 

the discrete Fourier transform with respect to indices l, m and n.  rqp ,,Â  is the 

discrete Fourier transform of nl,mA ,

1
KM


. Rearranging Eq. D6 yields 

           0,,,ˆ0,,,ˆ,,ˆ,,,ˆ,,,ˆ
0

1 rqprqpssqpsrqpsrqp ,t

ext

A vvFMGV  
     (D7) 

where      1
2 ,,ˆ,,,ˆ



 rqpssrqp AIG . Taking inverse Fourier transform of Eq. D7 in z 

direction gives  
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          (D8) 

where  
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The tilde notation in Eqs. D8 and D9 denotes the mixed space-wavenumber 

functions in which the z direction is represented by spatial index n, and the x and y 

directions are expressed by wavenumber variables p and q. By writing Eq. D8 for both 

n = 0 and n = 1, the external force  sqpext ,,ˆ
0F  can be canceled out and the displacement 

 sqp ,,
~

1V   can be obtained in term of  sqp ,,
~

0V , as 

           sqpsqpsqpsqpsqp dd ,,
~

,,
~

,,
~

,,
~

,,
~

1001 RRVQV            (D10) 

where      sqpsqpsqp ,,
~

,,
~

,,
~ 1

01

 GGQ . Note that  sqpd

n ,,
~
R  is related to the initial 

conditions in the continuum region, and is considered to be a random displacement that 

represents the thermally dependent excitations exerted on the MD region by the 

surrounding coarse scale; in our numerical example, by assuming the temperature of the 

surrounding continuum to be 0K, these terms can be set to zero.  

Taking inverse Fourier transform of Eq. D10 in x and y directions using the 

convolution property while neglecting the random terms gives 

       
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Thus, the displacements of the n = 1 atoms have been solved for in terms of the 

displacements of the n = 0 atoms. To obtain the expression of the impedance force, we 

take Laplace transform of Eq. D4, yielding 
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Substituting Eq. D11 into Eq. D12 gives 
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        (D13) 

where 
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For simplicity, rewriting Eq. D13 by replacing all l   and m   after the last equal 

sign with l   and m , giving 

       
 


2/

12/

2/

12/

0,,,0,,

L

Ll

M

Mm

mlmmll

imp

ml sss VΘF           (D15) 

Hence, the impedance boundary force acting upon the n = 0 atoms can be 

obtained by taking inverse Laplace transform of Eq. D15, as 

        
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where     st mlml ,

1

, Θ
 Lθ  is named the time history kernel matrix. The diagonal 

components of the time history kernel calculated based on the 3-D FCC lattice (Fig. D1) 

and the normalized LJ 6-12 potential are plotted in Fig. D4. As can be seen, θ33(t) is the 

most important component, while θ11(t) and θ22(t) are equal to each other due to 
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symmetry of the lattice in x and y directions.  

 

Figure D4 Diagonal components of the time history kernel matrix θ 

Note that for a generalized 3-D case, the coarse scale equation of motion (Eq. 

3.21a) can be rewritten for the atoms at n = 0, as 

  ufMu 0,

1

0, , l,mAl,m tt

           (D17) 

Substituting the expression of the impedance boundary force (Eq. D16) into the 

fine scale equation of motion for the boundary atoms (Eq. D3) and combining the result 

with Eq. D17 gives 

          
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where the  uqf ,0,,ml
 term implies that the motion of the MD boundary atoms depends 

also on the coarse scale solution u outside the MD area. The fine scale displacement 

0,,ml v  in Eq. D18 can be calculated by 

       0,',0,',0,', mlmlml   uqv           (D19) 

Note that in Eq. D18, lcrit and mcrict are introduced as maximum numbers of 

neighboring atoms that will be considered in the calculation of the boundary force. It 

θ 

t 
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has been proved in [23] that the biggest improvement occurs when the zeroth-order 

component of the time history kernel is utilized (lcrit = mcrit = 0). Also, it has been shown 

in [28] that higher order values of θ(t) corresponding to lcrit > 0 and mcrit > 0 are at most 

10% of the values shown in Fig. D4. Therefore, in this thesis, we assume that lcrit = mcrit 

= 0 when calculating the time history kernel matrix.  

Finally, we show calculation of the stiffness matrices K used in deriving the 

impedance boundary condition for the 3-D FCC atomic lattice (Fig. D1) implemented in 

our 3-D numerical example. 

According to [27], the stiffness matrices K can be defined in general as 
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where r is a vector of current atomic locations and req denotes the corresponding vector 

at equilibrium. For the atomic structure depicted in Fig. D1, the K matrices are 

calculated as 
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Note that only nearest neighbor interactions are considered. All K matrices not 

listed above are zero simply because there is no atom located at positions denoted by 

certain pairs of indices, such as (l-1, m-1, n-1) and (l, m, n-1). The interaction 

coefficient k for the LJ 6-12 potential has been given in Eq. 3.4. 
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APPENDIX E  

DISCRETIZATION OF REGION 2 COARSE SCALE  

IN THREE DIMENSIONS 

 

This appendix presents the calculation of first Piola-Kirchoff stress and the 

discretization of coarse scale strain energy outside the MD region for the 3-D FCC 

lattice used in our numerical example.  

In Region 2, due to the absence of atomistic information, the coarse scale forces 

acting on the finite element nodes are calculated by evaluating the first Piola-Kirchoff 

stress tensor P at individual quadrature points using the Cauchy-Born rule. To start with, 

the strain energy density and deformation gradient F at a given location will be 

determined based on nodal displacements. The stress tensor P can then be obtained by 

taking derivative of the energy density with respect to F
T
. Detailed derivations for a 2-D 

hexagonal lattice can be found in reference [60]. In this appendix, we focus on 3-D FCC 

lattice. 

According to the Cauchy-Born rule, the strain energy density is related to the 

interatomic potential and the atomic lattice structure defined in the MD simulation. For 

illustration, a single atom  with its nearest neighbors within a 3-D FCC lattice is 

depicted in Fig. E1. The equilibrium distance between two neighboring atoms is ha. The 

equilibrium atomic bonds connected with atom  can be represented by vectors; for 

example, the undeformed (1,1,0) bond in Fig. E1 can be written as 
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Figure E1 Undeformed FCC lattice centered at atom   

When the continuum is deformed, the (1,1,0) bond vector needs to be 

transformed according to the deformation gradient at the location xα, as 
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The length change of the bond (1,1,0): 
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can be approximated under small deformation assumption, as 
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The linearized strain energy of bond (1,1,0) due to deformation can be written as 
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where k is the interaction coefficient (Eq. 3.4) for the interatomic force at equilibrium 

distance. Taking derivative of 0,1,1  with respect to 
T

F  gives 
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Note that the calculation from Eqs. E1 to E7 can be carried out similarly for the 

other eleven bonds surrounding atom .  

The strain energy density centered at xα can be written in the form 
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where 3

2

2
ahV 

 is the volume occupied by each atom in an undeformed FCC lattice. 

The first Piola-Kirchoff stress tensor at xα can be obtained, according to the Cauchy-

Born rule, by taking derivative of Eq. E8 with respect to F
T
, as 
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As can be observed from Eq. E9, the Piola-Kirchoff stress tensor 
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is symmetric, i.e., 2112  PP  , due to the small deformation assumption employed in the 

derivations above. 

To find the deformation gradient F, assume an eight-node hexahedral tri-linear 

isoparametric finite element as illustrated in Fig. E2. 
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Figure E2 A hexahedral isoparametric element with eight nodes (1 ~ 8) 

The deformation gradient at location xα within the element can be determined as 
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where  xIN  is the finite element shape function of node I at location xα. Note that for 

isoparametric elements, the shape functions are usually written in terms of natural 

coordinates ξ1, ξ2 and ξ3. The relation between the natural and global (orthogonal x-y-z) 

reference systems is given by 
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where J(xα) is known as the Jacobian matrix and can be evaluated from 
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Substituting Eq. E11 into Eq. E9, the stress at location xα can be obtained, as 
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where 
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indicates the stress-strain relation; D is the operator matrix; N is the shape function 

matrix; and B is obtained by applying the derivatives in D to the shape functions in N. 

Now assume a simple two-element coarse scale domain with twelve FE nodes (1 

~ 12) and two quadrature points (A and B), as depicted in Fig. E3. The coarse scale 

strain energy of this domain can be approximated by summing over the two quadrature 

points, as 
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  (E16) 

where, for example, 1Aε  denotes the x direction component of the virtual strain at 

quadrature point A. The weight of each quadrature point is related to the determinant of 

the its Jacobian, as 

  A

qe

A
N

w xJ
8

            (E17) 

where Nqe is the number of quadrature points per element. 

 

Figure E3 A two-element coarse scale domain 

Further discretizing the right hand side of Eq. E16 using finite element 

interpolation while considering Eq. E14 yields 
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     136361212121212 


 dBEWBd
TT

discretize
T duu σε            (E18) 

where 
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









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66

1212
E

E
E              (E19) 

Note that the size of the matrices in Eq. E18 varies with the number of nodes 

and quadrature points in the domain. In Eq. E18, 
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and the size of the shape function matrix N can be written as (3×Nq)×(3×Nn), with Nq 

and Nn being respectively the number of quadrature points and the number of FE nodes 

in the domain. 

Equation E18 gives the discretization of the coarse scale strain energy in Region 

2. The coarse scale internal force acting on FE nodes in Region 2 therefore takes the 

form 

 dKWEBdBF
CBTCB             (E22) 

where K
CB

 is the equivalent stiffness matrix for the finite element analysis in Region 2. 
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APPENDIX F  

VARIATIONAL FORMULATION 

FOR BRIDGING SCALE METHOD 

 

This appendix demonstrates the derivation of the energy based variational formulation 

for the bridging scale method. More detailed discusses regarding this topic can be found 

in our earlier work [35].  

We start by briefly reviewing the variational method of structural systems. The 

total potential energy of a structural system can be defined as  

      zzz WUΠ   (F1) 

where  zU  is the strain energy of the structure and  zW  is the work done by the 

applied conservative loads. If  zΠ  is differentiable at a certain displacement z, the first 

variation of  zΠ  at z can be written as  

         
00

1
lim,





 zzzzzzz τΠ

dτ

d
ΠτΠ

τ
Π         (F2) 

where z  is a small, arbitrarily chosen virtual displacement indicating the direction of 

the perturbation, τ is a small scalar, and zz τ  represents the perturbed state. 

To obtain a stationary condition of the structure, the total potential energy needs 

to be minimized, giving 

       0,,,  zzzzzz WUΠ   (F3) 

which is called the variational equation of the static structural problem. Note that both 

the solution z and the virtual displacement z  belong to the space of kinematically 

admissible displacements, defined as  
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    hmHZ  xon0|3 zz  (F4) 

in which H
m

 is the Sobolev space of order m. Note that Eq. F3 can be written in another 

form as 

     Za  zzzz ,,   (F5) 

where  zzzz ,),( Ua   and  zzz ,)( W  are known as the energy bilinear form and 

load linear forms, respectively. The displacement field Zz  that satisfies Eq. F5 is the 

solution to the static structural problem. 

In order to describe dynamic problems, Hamilton’s principle needs to be 

introduced. If a time-dependent load is applied to the structure, the velocities of all 

particles within the structure generate a kinetic energy, defined as 

     dρT ,t

T

,t,t zzz
2

1

 
(F6) 

where ρ(x) is the mass density. Assuming that the time derivative is independent of the 

variation, the first variation of  ,tT z  can be obtained for a virtual velocity ,tz , as 

     dρT ,t

T

,t,t,t zzzz ,
 

(F7) 

Note that a variational formulation is given in terms of virtual displacements, 

and therefore Eq. F7 is inappropriate since it involves the virtual velocity term ,tz . To 

convert Eq. F7 into its virtual displacement form, a virtual displacement z  needs to be 

defined to satisfy the following additional conditions: 

     00  T,t, xx zz  (F8) 

where tT is the terminal time of the dynamic problem. Integrating Eq. F7 over the time 

interval and using integration by part in time yields 
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      dtddtdρdtT
TTT t

,tt

t

,tt

T
t

,t,t   
 000

,, zzzzzz               (F9) 

where  zz ,,ttd  is called the kinetic energy bilinear form. The initial and terminal 

condition terms involved during the integration by part have been eliminated due to Eq. 

F8. Note that Eq. F9 is a general form of Hamilton’s principle that is suitable for both 

structural analysis and design sensitivity analysis. For an elastic system subject to 

conservative dynamic loading, the Hamilton’s principle states that the integral 

     
Tt

,t dtTΠ
0

zz  becomes stationary; that is, 

      0
0

 dtTΠ
Tt

,tzz  (F10) 

for all times from 0 to tT and all virtual displacements Zz  that also satisfy the 

additional condition in Eq. F8.  

Equation F10 can be rewritten in terms of strain energy bilinear form, load linear 

form and kinetic bilinear form, as 

        0,,
0

 dtda
Tt

,tt zzzzz   (F11) 

This general formulation provides the variational equation for structural dynamic 

problems. 

Now we derive the variational equations for the bridging scale method. As 

discussed in Chapter 3, in bridging scale method, the total displacement is defined as 

the sum of the coarse and fine scales, as 

      t,t,t, xxx vu z  (F12) 

where the displacement fields are thought to be continuous functions at first glance. In 

order to introduce the bridging scale, the structure domain needs to be described using 
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atoms. Therefore, discrete functions z, u and v, which have values only at atomic 

positions, are defined to represent the atomic displacement fields. Note that the coarse 

scale can also be thought of as a continuous field u, since it can be interpolated at points 

in between atoms with FE shape functions; while u is simply a discrete version of u, 

with function values of u at atomic locations. All the continuous and discrete 

displacement fields above belong to a function space defined as 

 ZZZ  (F13a) 

    hmH,  Xon0,|,
3

vuvuvuzZ  (F13b) 

  h XvuRvuvuz on0,|,, 3Z  (F13c) 

In bridging scale method, the strain energy )(zU  of the domain can be evaluated 

as the sum of the strain energy of all atomic bonds within the structure, which is a 

function of atomic total displacement z. Taking first variation of )(zU  at z in the 

direction of Zz  gives 

 
 
z

z
zzz






U
U T),(  (F14) 

where z and z  denote vectors that consist of the displacements and virtual 

displacements of all atoms in the domain, respectively. Since the derivative of the strain 

energy U gives interatomic force, F14 can be rewritten as 

    zfzzzzz
TUa  ),(,   (F15) 

where  zf  represents the MD interatomic force. Due to the coarse/fine decomposition 

of the total displacement z, the strain energy U can be written as function of coarse scale 

u and fine scale v. Taking variation of )( vu,U  at u in the direction of u  gives 
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   

u

z

z

z
u

u

vu
uuu















U,U
U TT),(

 
(F16) 

where Zu , and the partial derivative of U with respect to the coarse scale 

displacement u is evaluated using a chain rule. The right hand side of Eq. F16 contains 

z since 
 
u

vu



 ,U
 is a function of not only u but also u + v, which is equal to the total 

solution z. Substituting   )(/ zfzz U  into Eq. F16 while noting that Iuz/   

yields 

    zfuuuuu
TUa  ),(,   (F17) 

By repeating the derivation of Eq. F16 for the fine scale, the variation of U at v 

can also be obtained as 

  zfvvvvv
TUa  ),(),(   (F18) 

where Zv  is a small virtual displacement of the fine scale.  

The kinetic energy of the structure can be written as 

   ,tA

T

,t,tT zMzz
2

1


 
(F19) 

where MA is the atomic mass matrix. Taking variation of  ,tT z  at ,tz  gives 

   ,tA

T

,t,t,tT zMzzz ,
 

(F20) 

where ,tz  represents an arbitrary virtual velocity. Similarly, based on the coarse/fine 

decomposition, the kinetic energy can be rewritten as a function of ,tu  and ,tv , as 

       ,tA

T

t,tA

T

t,t,tA

T

,t,t,t,t,T vMvuMuvuMvuvu ,,
2

1

2

1

2

1


           
(F21) 

where the cross terms of ,tu  and ,tv  have been eliminated due to orthogonality. For 
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example, tA

TT

t,tA

T

t ,,, QqMNdvMu   is eliminated since 
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0
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A
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A
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A
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MNMMMN

MNNMMNMN

MNNMIMNQMN

              (F22) 

For the purpose of developing a general energy formulation for the bridging 

scale method, Eq. F21 is rewritten by considering the coarse scale as a continuous 

function, giving 

 ,tA

T

t,t

T

,t dρT vMv,
2

1

2

1
  uu

 
(F23) 

where ,tu  is the continuous coarse scale velocity and ρ is the mass density. The first 

variation of T can be obtained for virtual velocities t,u  and ,tv , respectively, as 

     dρT t

T

ttt ,,,, , uuuu
 

(F24a) 

   ,tA

T

tt,tT vMvvv ,,,   (F24b) 

Following steps described in Eqs. F7 to F9, Eqs. F24a, F24b and F20 can be 

respectively converted into their virtual displacement forms, as 

    dtddtT
TT t

tt

t

tt  
0

,
0

,, ,, uuuu  (F25a) 

    dtddtT
TT t

tt

t

t,t  
0

,
0

, ,, vvvv  (F25b) 

    dtddtT
TT t

,tt

t

,t,t  
00

,, zzzz  (F25c) 

where the kinetic energy bilinear forms are defined as 

     dρd tt

T

tt ,, , uuuu  (F26a) 
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   ttA

T

ttd ,, , vMvvv 
 

(F26b) 

   ,ttA

T

,ttd zMzzz ,  (F26c) 

The virtual displacements u , v  and z  belong to the function space defined as 

 Ẑˆˆ ZZ  (F27a)  

           000,on0,|,ˆ 3
 TT

hm ,t,,t,H, xxxxx vvuuvuvuvuzZ  (F27b)  

            000,on0,|,,ˆ 3  TT

h ,t,,t, xvxvxuxuxvuRvuvuzZ  (F27c) 

By substituting Eqs. F17, F18, F15 and Eqs. F26a, F26b, F26c into Eq. F11, the 

variational equations for the coarse and fine scales, as well as the total solution, can be 

obtained respectively, as 

  dtdtdρ
TT t

T
t

tt

T

  
 00

, zfuuu  (F28a) 

  dtdt
TT t

T
t

ttA

T

 
00

, zfvvMv  (F28b) 

  dtdt
TT t

T
t

,ttA

T

 
00

zfzzMz  (F28c) 

for all Z,, ˆzvu . It is important to mention that the variational equations (Eqs. F28a ~ 

F28c) are derived using the energy principles instead of taking derivatives of the 

Lagrangian, as discussed in Chapter 3. Equations F28a and F28b, which are coupled 

through the interatomic force  zf , describe the energy of coarse and fine scales, 

respectively. Equation F28c describes the energy of the total solution. Since the MD 

simulation is confined into only a small area of the entire domain, Eq. F28c can be 

rewritten exclusively for the atoms in Region 1 to obtain the variational equation for 

MD simulation; that is 
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   dtdt
TT t

impT
t

,ttA

T

 
00

, FuqfqqMq  (F29) 

for all Ẑq , where q represents the total displacements of the atoms within the MD 

region. The effect of the Region 2 fine scale displacements is accounted for by 
imp

F , 

which is a column vector containing the impedance forces of all Region 1 boundary 

atoms.  

Outside the MD region, since the Region 2 fine scale is eliminated, the MD 

force  zf  in Eq. F28a is no longer available. Therefore, the strain energy of the 

continuum is defined using a general expression 

     
2

2
2

1
)( dU T uuu σε  (F30) 

where ε and σ are respectively strain and stress, which are continuous functions of the 

coarse scale displacement field u , while Ω2 represents the domain of Region 2. Taking 

first variation of Eq. F30 gives the energy bilinear form, as 

         
2

2,, dUa T uuuuuu σε  (F31) 

A general expression describing the kinetic energy of a continuum domain can 

be found in Eq. F6. Replacing z,t in Eq. F6 with the coarse scale velocity field t,u  gives 

     dρT t

T

tt ,,,
2

1
uuu  (F32) 

which is identical with the first term on the right hand side of Eq. F23. The kinetic 

energy bilinear form has been obtained in Eq. F26a. Substituting Eq. F26a and F31 into 

Eq. F11, the variational equation for Region 2, without considering the external forces, 

can be written as 
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       


TT t
T

t

tt

T dtddtdρ
0

2
0

2,
22

uuuu σε                     (F33) 

for all Ẑu . By combining Eqs. F28a and F33, we obtain the variational equation for 

the coarse scale; that is 

         dtddtdρ
TT t

TT
t

,tt

T

   




 
 0

2
0 2

uuuu σεzfux             (F34) 
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APPENDIX G  

MATERIAL DERIVATIVE OF REGION 2 COARSE SCALE IN 

THREE DIMENSIONS 

 

This appendix explains the material derivative of coarse scale strain energy in Region 2. 

More specifically, we demonstrate how the 

CB

F  term in Eq. 4.22 is evaluated.  

Starting from the coarse scale energy equation (Eq. 4.7b), we taking material 

derivative of the strain energy in Region 2, giving 

                 

            

          2

2222

2

2222






















ddiv

ddivddd

TTT

TTTTT

TTTTT

VσεVσε

VσεσεσVε

VσεVσεσεσε

uuuu

uuuuuu

uuuuuuuu

  (G1) 

where all five terms within the integral on the right hand side need to be discretized for 

implementation using finite element method. 

The discretization process will be similar as that performed in Appendix E. The 

same two element domain (Fig. E3) with two quadrature points will be used for 

demonstration.  

The first term can be discretized as:   
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The discretization of the remaining four terms is as follows: 
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and 
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Substituting Eqs. G2 ~ G7 into Eq. G1 gives the discretized form of the material 

derivative of the coarse scale strain energy of the Region 2 domain, as 
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Hence, the material derivative of the coarse scale nodal force can be written in 

the form 

 dKdKF CBCBCB 


           (G11) 

where 

 TTTCB
QEWBEWBQEWBPBK
~~~




           (G12)  



222 

 

APPENDIX H  

REGRESSION ANALYSIS IN HYBRID METHOD 

 

This appendix provides detailed steps of the regression analysis used in the hybrid 

method for approximating the sensitivity of crack propagation speed. We will focus on 

shape design variable b2 in the nano-beam example for demonstration. 

First of all, a perturbation range for regression analysis needs to be selected. As 

discussed in Chapter 6, we choose the perturbation range for b2 to be Δb2 ϵ [0, 0.2], as 

shown in Fig. 6.6b. Note that the 
V
~S  data within this range are of high accuracy 

compared to re-analysis results (Fig. 6.14).  

Next, as shown in Fig. H1, we fit a fourth order polynomial curve to the 

predicted crack speed ‘slope’ (
V
~S ) data within Δb2 ϵ [0, 0.2] using least squares method. 

Note that we purposely set the slope of the curve at Δb2 = 0 to zero, so that the 

convergence behavior of the 
V
~S  curve can be captured and the impact of noise near Δb2 

= 0 can be minimized. 

 

Figure H1 Polynomial curve fitted to the predicted crack speed ‘slope’ data (Round 1 

curve fitting) 

Δb2 

P
re

d
ic

te
d
 c

ra
ck

 s
p

ee
d

 ‘
sl

o
p

e’
 



223 

 

Apparently, the initial fitting curve (black dashed line in Fig. H1) is influenced 

by noise. Therefore, we will remove the noisy data points from the original 
V
~S  data 

using the initial fitting curve as a reference. As shown in Figs. H2a and H2b, we first 

calculate the square of error for each 
V
~S  data point, where the error is simply the 

difference between the 
V
~S  curve and the fitting curve at each perturbation. Then we 

calculate the standard deviation of the squared error of all data from Δb2 = 0 to Δb2 = 

0.2, and delete the data points with squared error larger than a certain multiple Ne of the 

standard deviation; that is 

    



VN

jV

e jerror
N

Nierror
1

222
)(

1
           (H1) 

where error(i) denotes the error of the ith data point, NV is the number of predicted 

crack speed data within the range being considered, and 

 



VN

jV

jerror
N 1

2)(
1

             (H2) 

is the mean value of squared error. In this example, we choose Ne = 6 as the threshold 

for eliminating the noisy data.  
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Figure H2 Removing noisy data, (a) square of error based on the original fitting curve, 

(b) zoomed-in view, and (c) noisy data (red dots) removed 

The step above – calculating standard deviation of squared error and removing 

data points with large error – needs to be repeated for the remaining data points until the 

result converges, i.e., the deviation calculated in the current iteration is identical to that 

in the previous one. In Fig. H2c, the red data points are those with large error exceeding 

the deviation threshold and have been removed as noise. Note that this result is obtained 

after 5 iterations. The noise elimination result based on the original fitting curve for 

design variable b2 is shown in Fig. H3. As can be seen, all 
V
~S  data far away from the 

initial fitting curve have been removed. 
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Figure H3 Result of noise elimination based on the original fitting curve. Blue dotted 

part of the curve is removed as noise  

The next step is to repeat the curve fitting process; that is, fitting a curve to the 

remaining 
V
~S  data shown in Fig. H3. As can be seen from Fig. H4, since some of the 

data points have been removed, the new fitting curve (green curve) is slightly different 

from the original one. 

 

Figure H4 Polynomial curve fitted to the predicted crack speed ‘slope’ data remained 

from the first round of noise elimination (Round 2 curve fitting) 

Now the noise elimination process can be performed again to remove the data 

that are too far away from the new fitting curve. This curve fitting and noise elimination 

process needs to be repeated until the difference between the vertical intercepts of the 

fitting curves in the current round and the previous round is smaller than 1%. Then the 

vertical intercept of the current fitting curve can be considered as a reasonable 
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approximation of the sensitivity of crack speed. For design variable b2, the crack speed 

sensitivity is obtained after four rounds of curve fitting, as shown in Fig. H5. 

 

Figure H5 Regression analysis result for design variable b2 

The complete procedure of regression analysis is illustrated in the flowchart 

below: 
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Figure H6 A flowchart of regression analysis 

In our numerical example, it is found empirically that a fourth order polynomial 

curve will generally be adequate in fitting the data within a small perturbation range 

near the current design. In fact, the regression analysis result is not very sensitive to the 

order of the polynomial. Based on our experience, the polynomial order must be at least 

three to capture the trend of the 
V
~S  curve, meanwhile, it should not be too large (such 

as eight), otherwise the vertical intercept of the fitting curve will be significantly 

affected by noise. Figure H7 gives the regression analysis results using polynomial 

curves of orders from three to five. It turns out that the difference between the crack 

speed sensitivities obtained is within 2%. 

Choose perturbation range for curve fitting 

Fit a polynomial curve to the crack speed ‘slope’ data 
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Figure H7 Regression analysis results with (a) cubic curve, (b) fourth order curve, and 

(c) fifth order curve 

Another adjustable parameter is the multiple Ne in Eq. H1, which serves as a 

criterion for noise elimination. Again, the regression analysis result is not very sensitive 

to Ne as long as Ne is neither too large nor too small. The regression analysis results 

with different Ne ranging from 4 to 12 are shown in Table H1. As can be seen, the 

difference between calculated sensitivity coefficients is negligible (less than 2%).   

Table H1 Regression analysis results with various Ne 

 

N e 4 6 8 10 12

Crack speed sensitivity -4.351E-02 -4.402E-02 -4.394E-02 -4.391E-02 -4.378E-02
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Crack speed sensitivity: -4.429E-02 
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Cubic curve 

Δb2 

Crack speed sensitivity: -4.402E-02 
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Fourth order curve 

Δb2 

Crack speed sensitivity: -4.358E-02 
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Fifth order curve 


