
UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

A DETAILED ANALYSIS OF RIFT RELATED STRUCTURES: INSIGHTS FROM 

LASER SCANNED CLAY MODELS AND 3-D SEISMIC INTERPRETATION 

 
 
 
 
 
 

A DISSERTATION 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 
 
 
 

By 
 

DEBAPRIYA PAUL 
 Norman, Oklahoma 

2014 
  



 
 
 
 
 

A DETAILED ANALYSIS OF RIFT RELATED STRUCTURES: INSIGHTS FROM 
LASER SCANNED CLAY MODELS AND 3-D SEISMIC INTERPRETATION 

 
 

A DISSERTATION APPROVED FOR THE 
CONOCOPHILLIPS SCHOOL OF GEOLOGY AND GEOPHYSICS 

 
 
 
 
 
 
 
 

BY 
 
 
 

    ______________________________ 
Dr. Shankar Mitra, Chair 

 
 

______________________________ 
Dr. Ze’ev Reches 

 
 

______________________________ 
Dr. Kurt Marfurt 

 
 

______________________________ 
Dr. May Yuan 

 
 

______________________________ 
Dr. Raymon Brown 

 
 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by DEBAPRIYA PAUL 2014 
All Rights Reserved. 

  



 

 

 

 

 

 

 

 

 

 

This work is dedicated to my family and closest friends



v 

Preface 
 

This dissertation presents the results of the original research work I have done in the 

Structural Geology laboratories at the ConocoPhillips School of Geology and 

Geophysics, University of Oklahoma. The focus of this research is to study the 

structural processes associated with extensional deformation especially rifting. The 

motivation for this research is mostly derived from the successful implementation of 

some novel experimental methodologies in basement-involved compressional and 

strike-slip deformation. The results of these earlier experimental models were published 

in American Association of Petroleum Geologist Bulletin in the years 2011 and 2013. 

The positive feedback from the reviewers and readers of these papers gave me the 

impetus to try similar methodologies for experimental models in extensional setting and 

compare the results with the findings from the studies of natural structures.  

I am greatly indebted to my advisor, Dr. Shankar Mitra for providing the invaluable 

guidance, support and encouragement for this research. I am also thankful to Dr. Ze’ev 

Reches, Dr. Kurt Marfurt, Dr. May Yuan and Dr. Raymon Brown for their help and 

insights in improving the quality of the dissertation. I would like to thank Statoil and 

WesternGeco for the donation of the seismic data and also thank Bradley Wallet who 

made the availability of the data quicker. I am grateful to Landmark for providing the 

licenses of Lithotect, to Paradigm for providing the licenses for GoCAD and to 

Schlumberger for providing the licenses for Petrel. I would like to thank the staff at 

ConocoPhillips School of Geology and Geophysics, especially Donna Mullins, Nancy 

Leonard, Jocelyn Cook, Teresa Hackney and Adrianne Fox for the administrative 

support. A special thanks goes to Jody Bales Foote, librarian of the Youngblood Energy 



vi 

Library for helping me with the references. I am also thankful to my fellow graduate 

students, Shamik Bose, Yuval Boneh, Supratik Sarkar, Jessica Treanton, Nabanita 

Gupta, Atish Roy, Preston Kerr, Roger Leavitt, Felipe Cardona, Roderick Perez, Thang 

Ha and David Tilghman for the numerous technical discussions that were valuable for 

this research.  

My family is my greatest gift. I cannot thank enough my parents and my wife Paramita 

for providing me with the moral strength to go that extra mile for finishing my PhD. 

This dissertation would not have been possible for me to carry out without their 

constant emotional support and sacrifice. 



vii 

Table of Contents 
Topic                                                                                                                           Page 

                                                                                                                 
Preface .............................................................................................................................. v 
List of Figures .................................................................................................................. ix 
 
CHAPTER 1 ..................................................................................................................... 1 
INTRODUCTION ............................................................................................................ 1 
References ........................................................................................................................ 5 
 
CHAPTER 2 ..................................................................................................................... 8 
FAULT PATTERNS ASSOCIATED WITH EXTENSIONAL FAULT 
PROPAGATION (DRAPE) FOLDING ........................................................................... 8 
Abstract ............................................................................................................................. 8 
2.1 Introduction ................................................................................................................ 9 
2.2 Previous Work on Experimental Fault Propagation Folds ....................................... 10 
2.3 Experimental Methodology ...................................................................................... 11 
2.3.1 Experimental Setup ............................................................................................... 11 
2.3.2 Scaling of Experimental Models ........................................................................... 13 
2.3.3 Experimental Configurations ................................................................................. 14 
2.4 Data Analysis ............................................................................................................ 15 
2.4.1 Fault Patterns and Orientations ............................................................................. 15 
2.4.2 Fault Densities and Trishear Width ....................................................................... 15 
2.4.3 3-D Surface Analysis ............................................................................................. 16 
2.5 Experimental Results: Single Faults ......................................................................... 17 
2.5.1 Single Faults Normal to Extension Direction ........................................................ 17 
2.5.2 Single Faults Oblique to Extension Direction ....................................................... 19 
2.5.3 Fault Densities for Single Faults ........................................................................... 20 
2.6 Experimental Results: Trapdoor Fault Geometries .................................................. 21 
2.6.1 120 degree Fault Intersections ............................................................................... 22 
2.6.2 90 degree and 140 degree Fault Intersections ....................................................... 24 
2.7 Discussions and Conclusions ................................................................................... 26 
Figures ............................................................................................................................ 29 
References ...................................................................................................................... 51 
 
CHAPTER 3 ................................................................................................................... 55 
EXPERIMENTAL MODELS OF TRANSFER ZONES IN RIFT SYSTEMS ............. 55 
Abstract ........................................................................................................................... 55 
3.1 Introduction .............................................................................................................. 57 
3.2 Previous Experimental Studies ................................................................................. 59 
3.3 Experimental Methodology ...................................................................................... 60 
3.3.1 Experimental Setup ............................................................................................... 60 
3.3.2 Experimental Configurations ................................................................................. 62 
3.4 Analysis of Data ....................................................................................................... 62 
3.4.1 Fault Patterns and Orientations ............................................................................. 63 
3.4.2 3-D Surface Analysis ............................................................................................. 63 



viii 

3.5 Experimental Results: ............................................................................................... 64 
3.5.1 Convergent Transfer Zones ................................................................................... 64 
3.5.2 Divergent Transfer Zone ....................................................................................... 67 
3.5.3 Synthetic Transfer Zones ....................................................................................... 69 
3.6 Discussion and Conclusions ..................................................................................... 72 
Figures ............................................................................................................................ 75 
References ...................................................................................................................... 90 
 
CHAPTER 4 ................................................................................................................... 95 
FAULT EVOLUTION AND ROLE OF SALT IN DECOUPLING EXTENSIONAL 
DEFORMATION IN THE SMØRBUKK AREA OF THE HALTEN TERRACE, 
OFFSHORE MID-NORWAY: INSIGHTS FROM 3-D SEISMIC INTERPRETATION 
AND STRUCTURAL RESTORATION ....................................................................... 95 
Abstract ........................................................................................................................... 95 
4.1 Introduction .............................................................................................................. 97 
4.2 Tectonic Setting of the study area ............................................................................ 99 
4.3 Regional Stratigraphy ............................................................................................. 100 
4.4 Geologic and Tectonic history of the study area .................................................... 103 
4.5 Dataset and Methodology ....................................................................................... 105 
4.5.1 Criteria for interpreting key horizons .................................................................. 105 
4.5.2 Depth conversion of time horizons and selected time sections: .......................... 108 
4.5.3 Isochore Maps ..................................................................................................... 109 
4.5.4 Structural Restoration .......................................................................................... 110 
4.6 Results: Structural geometry and fault evolution ................................................... 111 
4.6.1 Results from seismic interpretation ..................................................................... 112 
4.6.2 Results from structural restoration ...................................................................... 118 
4.7 Discussion ............................................................................................................... 124 
4.7.1 Relative ages of fault development ..................................................................... 124 
4.7.2 Controls of subsalt fault in localizing the shallow basement-detached faults ..... 126 
4.7.3 Role of salt in decoupling the extensional deformation ...................................... 127 
4.8 Conclusions ............................................................................................................ 129 
Figures and tables ......................................................................................................... 131 
Addendums ................................................................................................................... 153 
Dix (1955) Equation: .................................................................................................... 153 
Wells with checkshot data: ........................................................................................... 153 
Summary of Interval Velocities: ................................................................................... 154 
Average Velocity vs. Depth plots for checkshot wells: ................................................. 155 
References .................................................................................................................... 156 
 
CHAPTER 5 ................................................................................................................. 161 
CONCLUSIONS .......................................................................................................... 161 



ix 

List of Figures 
 
Chapter 2: Fault patterns associated with extensional fault propagation (drape)) 
folding…………………………………………………………………………………1 
 
Figure 2.1 Experimental model of the progressive evolution of an extensional fault-
propagation fold (drape fold) related to a basement fault dipping 60 degrees in profile 
view. The basement slip is dissipated within the trishear zone bounded by the anticlinal 
(A) and synclinal (S) axial surfaces. The positions of A and S shown are the final 
positions at the end of the experiment. Modified from Miller and Mitra (2011). .......... 29 
Figure 2.2 Experimental setup showing the configuration of the base plates, the moving 
and fixed backstops, and the stiff and soft clay, which represent the basement and 
overlying sedimentary cover. Pre-existing cuts in the stiff clay represent preexisting 
basement faults which propagate both laterally and upwards through the soft clay with 
extension. a. Single faults. b. Trapdoors consisting of two intersecting faults. ............. 30 
Figure 2.3 Summary of map views of experiments with initial basement fault 
configurations. Single faults modeled included through going and terminating faults, 
and faults orthogonal and oblique to the direction of extension. Trapdoor geometries 
with different intersecting angles, and with connecting or propagating faults were 
modeled. ......................................................................................................................... 31 
Figure 2.4 Method of surface correction to eliminate initial topography of top surface. a. 
Basic method (see text for explanation). b. Initial uncorrected surface. c. Difference 
surface used to flatten final surface. d. Uncorrected deformed surface. e. Corrected 
deformed surface. ........................................................................................................... 32 
Figure 2.5 Parameters used to calculated different density types (Di, Df, and Dm) and 
width of the fault zones. ................................................................................................. 32 
Figure 2.6 Evolution of structural geometries and fault patterns in map view for a 
trishear zone associated with a throughgoing basement fault normal to the extension 
direction. Moving plate is towards the north. The contoured and gridded structure map, 
fault patterns and fault orientations for the top of the soft clay, are shown for each stage 
of deformation.   Extension is 0.2 cm (a), 0.6 cm (b), and 1.0cm (c). Rose diagrams 
show main orientations of faults measured. Bars show percentage of total length of 
faults for each orientation. For this and other similar figures showing experimental 
results, an arbitrary north arrow is assigned as a reference to describe orientations of 
faults. On the contoured structure map, red and yellow indicate high elevations and blue 
and green represent low elevations. Synthetic faults are shown in red, and antithetic 
faults and rotated synthetic faults which dip opposite to the main fault are shown in 
blue. ................................................................................................................................ 33 
Figure 2.7 Oblique photographs showing secondary faults at the top of the soft clay for 
a throughgoing basement fault. a. Basement fault at 90 degrees to the direction of 
extension. Fault zone is made up of approximately parallel, overlapping and 
anastomosing individual faults. b. Basement fault at 60 degrees to the extension 
direction. Faults curve into an orientation normal to the direction of extension and many 
of them curve significantly to dip opposite to the main fault. ........................................ 34 
Figure 2.8 Evolution of structural geometries and fault patterns in map view for a 
basement fault normal to the extension direction, and terminating in the middle. The 



x 

contoured and gridded structure map, fault patterns and fault orientations for the top of 
the soft clay, are shown for each stage of deformation.   Extension is 0.2 cm (a), 0.37 
cm (b), and 0. 61 cm (c). Rose diagrams show main orientations of faults measured. 
Bars show percentage of total length of faults for each orientation. Initial basement fault 
geometry is shown in a and b, and the final curved final geometry is shown in c. ........ 35 
Figure 2.9 Oblique photograph showing secondary faults at the top of the soft clay for a 
terminating basement fault. Faults show an echelon pattern with trends that are oblique 
to the main fault. ............................................................................................................. 36 
Figure 2.10 Comparison of final structural geometries and fault patterns in map view for 
a basement fault terminating in both directions. The contoured and gridded structure 
map, fault patterns and fault orientations for the top of the soft clay, are shown. a, b, and 
c, show patterns of basement faults that are at angles of 90, 75 and 60 degrees to the 
direction of extension, respectively. Basement fault geometries are shown for the final 
deformed state. ............................................................................................................... 37 
Figure 2.11 Evolution of structural geometries and fault patterns in map view for a 
throughgoing basement fault at 60 degrees to the extension direction. The contoured 
and gridded structure map, fault patterns and fault orientations for the top of the soft 
clay, are shown for each stage of deformation.   . Rose diagrams show main orientations 
of faults measured. Bars show percentage of total length of faults for each orientation.
 ........................................................................................................................................ 38 
Figure 2.12 Comparison of final structural geometries and fault patterns in map view for 
a throughgoing basement fault at different angles to the extension direction. The 
contoured and gridded structure map, fault patterns and fault orientations for the top of 
the soft clay, are shown. a, b, and c show patterns of basement faults that are at angles 
of 90, 75 and 60 degrees to the direction of extension, respectively. Note the increased 
curvature of secondary faults from the boundaries to the center of the fault zone, and the 
larger number of rotated and antithetic faults (blue) for the 75 and 60 degree cases. .... 39 
Figure 2.13 Evolution of structural geometries and fault patterns in map view for a 
terminating basement fault at 75 degrees to the extension direction. The contoured and 
gridded structure map, fault patterns and fault orientations for the top of the soft clay, 
are shown for each stage of deformation. Rose diagrams show main orientations of 
faults measured. Bars show percentage of total length of faults for each orientation. 
Initial basement fault geometry is shown in a and b, and the final curved final geometry 
is shown in c. .................................................................................................................. 40 
Figure 2.14 Plots of density (Di, Dm, and Df) and the width of the fault zone for 
different stages of deformation for basement faults with different configurations. a and 
b. Through going fault at 90 degrees to direction of extension. c and d. Through going 
fault at 60 degrees to direction of extension. e and f. Terminating fault at 90 degrees to 
direction of extension. .................................................................................................... 41 
Figure 2.15 Continuous density plots for the deformation zone for different fault 
configurations. a. Through going fault at 90 degrees to direction of extension. b. 
Through going fault at 60 degrees to direction of extension. c. Terminating fault at 90 
degrees to direction of extension. ................................................................................... 42 
Figure 2.16 Maps for the (a) top Brent sandstone in the Heather structure and (b) the 
base Cretaceous unconformity in the Ninian structure in the Viking graben, North Sea. 
The trapdoor geometry of the structures is evident from the change in the trends of the 



xi 

faults and the structure along trend. For the Ninian structure the updip edge of the 
footwall block is eroded by the base Cretaceous unconformity. Modified from Gray and 
Barnes (1981) and Harding (1984). ................................................................................ 43 
Figure 2.17 Evolution of structural geometries and fault patterns in map view for a 
trapdoor structure related to two faults dipping 60 degrees and intersecting at an angle 
of 120 degrees. The contoured and gridded structure map, fault patterns and fault 
orientations for the top of the soft clay, are shown for each stage of deformation. Rose 
diagrams show main orientations of faults measured. Bars show percentage of total 
length of faults for each orientation. Initial basement fault geometry is shown with 
dashed lines. ................................................................................................................... 44 
Figure 2.18 Plots of density (Di, Dm, and Df) and the width of the fault zone for 
different stages of deformation for basement faults associated with trapdoor structures 
with 120 degree intersections between faults. a. Variation in density for the different 
parts of the structure. b. Density variations for the entire structure. c. Width of the fault 
zone for different parts of the structure. ......................................................................... 45 
Figure 2.19 Evolution of structural geometries and fault patterns in map view for a 
trapdoor structure related to two terminating faults dipping 60 degrees with the 
projected trends intersecting at an angle of 120 degrees. The trapdoor structure results 
from the propagation of the two faults to the apical area. The contoured and gridded 
structure map, fault patterns and fault orientations for the top of the soft clay are shown 
for each stage of deformation. Rose diagrams show main orientations of faults 
measured. Bars show percentage of total length of faults for each orientation. Initial 
basement fault geometry is shown with dashed lines. .................................................... 46 
Figure 2.20 Plots of density (Di, Dm, and Df) and the width of the fault zone for 
different stages of deformation for basement faults associated with trapdoor structures 
with propagating faults.  The projections of the two faults intersect at 120 degree 
intersections. a. Variation in density for the different parts of the structure. b. Density 
variations for the entire structure. c. Width of the fault zone for different parts of the 
structure. ......................................................................................................................... 47 
Figure 2.21 Comparison of final structural geometries and fault patterns in map view for 
trapdoor structures with different interesting angles. a. 90 degree intersection. b. 120 
degree intersection. c. Terminating basement faults with a 120 degree intersection. d. 
140 degree intersection. The contoured and gridded structure map, fault patterns and 
fault orientations for the top of the soft clay, are shown. See text for major differences.
 ........................................................................................................................................ 48 
Figure 2.22 Photograph of the frontal limb of a drape fold formed on a trapdoor 
structure formed by two faults intersecting at 90 degrees. Note the progressive transfer 
of slip towards the apex from the back to the front along en echelon faults connected by 
relay ramps. Strike-slip faults transfer slip between some of the normal faults (inset 
shows details). ................................................................................................................ 49 
Figure 2.23 Plots of density (Di, Dm, and Df) and the width of the fault zone for 
different stages of deformation for basement faults associated with trapdoor structures 
formed by intersecting faults with a 90 degree angle. a. Variation in density for the 
different parts of the structure. b. Density variations for the entire structure. c. Width of 
the fault zone for different parts of the structure. ........................................................... 50 
 



xii 

Chapter 3: Experimental models of transfer zones in rift systems 

Figure 3.1 Common transfer zone geometries in rift systems. a. Convergent transfer 
zone. b. Divergent transfer zone. c. Synthetic transfer zone (based on Morley et al., 
1990 and Bose and Mitra, 2010). ................................................................................... 75 
Figure 3.2 Oblique view of the experimental setup showing the configuration of the 
base plates, the moving and fixed backstops, and the stiff and soft clay, which represent 
the basement and overlying sedimentary cover. Pre-existing cuts in the stiff clay 
represent preexisting basement faults which propagate both laterally and upwards 
through the soft clay with extension. .............................................................................. 75 
Figure 3.3 Oblique view of the experimental configurations used to model (a) 
convergent, (b) divergent, and (c) synthetic transfer zones. For each type of transfer 
zone, cuts in the stiff clay representing initially approaching, laterally offset, and 
overlapping geometries were modeled.  The overlying soft clay, representing the 
sedimentary cover, did not have any pre-existing faults. ............................................... 76 
Figure 3.4 Method of incorporating faults in mapped 3-D surfaces. a. Unsmoothed 
surface modeled from point cloud obtained by laser scanning showing fault escarpment. 
b. Fault cuts based on sharp changes in relief on the modeled surface and comparison 
with digitized faults on photographs. c. Final smoothed faults and contoured surface 
incorporating fault cuts. Contour interval for this display is 0.4 mm. ............................ 77 
Figure 3.5 Progressive evolution of structural geometries and fault patterns in map view 
for a convergent transfer zone, with two pre-existing laterally offset faults dipping 
towards each other. Moving plate is towards the north. a. Initial fault geometry in stiff 
clay. b-f. Contoured structure map, fault patterns and fault orientations for the top of the 
soft clay, with progressive evolution.  On the contoured structure map, red and yellow 
indicate high elevations and blue and green represent low elevations.  North dipping 
faults are shown in blue and south dipping faults are shown in red on the fault map. 
Displacements of moving plate are 0.13 cm (b), 0.23 cm (c), 0.33 cm (d), 0.44 cm (e), 
and 0.53 cm (f). Rose diagrams show main orientations of faults measured. Bars show 
percentage of total length of faults for each orientation. An arbitrary North arrow is 
assigned as a reference to describe orientations of faults. .............................................. 78 
Figure 3.6 Oblique view of top of stiff clay with two major faults dipping towards each 
other, forming a convergent transfer zone, and connected by a lateral transfer fault. 
Photograph taken at end of experiment after removal of soft clay. b. Oblique 
photograph of the top of soft clay for the same stage as (a ) showing a through-going 
graben without any expression of the lateral fault at the surface. c. Oblique view of the 
modeled surface of the top of the soft clay showing the opposite polarity of the half 
graben on either side of the lateral transfer fault. Vertical exaggeration is 2:1. ............. 79 
Figure 3.7 Comparison of final structural geometries, fault patterns and fault 
orientations for the top of the soft clay for convergent transfer zones with initially (a) 
approaching, (b) laterally offset, and (c) overlapping fault geometries in the stiff clay. 
The stages of deformation compared all have approximately the same total 
displacement. On the contoured structure map, red and yellow indicate high elevations 
and blue and green represent low elevations. North-dipping faults are shown in blue and 
south dipping faults are shown in red on the fault map. Rose diagrams show main 
orientations of faults measured. Bars show percentage of total length of faults for each 



xiii 

orientation. An arbitrary North arrow is assigned as a reference to describe orientations 
of faults. .......................................................................................................................... 80 
Figure 3.8 Schematic diagram showing extensional fault-propagation (drape) folding 
along a major fault zone in the east central part of the Gulf of Suez rift. The Sinai 
massif fault branches into two splays, the Wadi Sidri and Hadahid faults, near its 
termination, delineating the boundaries of the drape folding (modified from Moustafa, 
2002). .............................................................................................................................. 81 
Figure 3.9 a. Map of part of the East African rift system showing a number of transfer 
zones between mapped faults (modified from Morley et al, 1990). Boxed areas show 
locations of detailed figures in b and c. b. Schematic diagram (not to scale) showing the 
formation of synthetic and antithetic faults in a convergent transfer zone in the Rusizi 
basin (modified from Ebinger, 1989). Note the narrow divergent transfer zone 
immediately south of the broader convergent transfer zone. c. Complex divergent 
transfer zone showing the curvature of faults away from each other as they approach 
(modified from Morley et al, 1990). ............................................................................... 82 
Figure 3.10 Oblique photograph showing the top of the stiff clay for a divergent transfer 
zone with an initial laterally offset geometry. Photograph taken at end of experiment 
after removal of soft clay. b. Oblique photograph showing the top of the soft clay for the 
same experiment showing a narrow transfer zone with a number of en echelon curved 
faults along the major fault terminations. ....................................................................... 83 
Figure 3.11 Progressive evolution of structural geometries and fault patterns in map 
view for a divergent transfer zone, with two pre-existing laterally offset faults dipping 
away from each other. Moving plate is towards the north. a. Initial fault geometry in 
stiff clay. b-f. Contoured structure map, fault patterns and fault orientations for the top 
of the soft clay, with progressive evolution. Displacements of moving plate are, 0.31 cm 
(b), 0.39 cm (c), 0.47 cm (d), and 0.56 cm (e), and 0.65 cm (f). Note the narrow 
divergent transfer zone at the top of the soft clay compared to the width of the transfer 
zone at the top of the stiff clay. On the contoured structure map, red and yellow indicate 
high elevations and blue and green represent low elevations. North dipping faults are 
shown in blue and south dipping faults are shown in red on the fault map. Rose 
diagrams show main orientations of faults measured. Bars show percentage of total 
length of faults for each orientation. An arbitrary North arrow is assigned as a reference 
to describe orientations of faults. .................................................................................... 84 
Figure 3.12 Comparison of final structural geometries, fault patterns and fault 
orientations for the top of the soft clay for divergent transfer zones with initially (a) 
approaching, (b) laterally offset, and (c) overlapping fault geometries in the stiff clay. 
The stages of deformation compared all have approximately the same total 
displacement. On the contoured structure map, red and yellow indicate high elevations 
and blue and green represent low elevations. North dipping faults are shown in blue and 
south dipping faults are shown in red on the fault map. Rose diagrams show main 
orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. An arbitrary North arrow is assigned as a reference to describe orientations 
of faults. .......................................................................................................................... 85 
Figure 3.13 Oblique photograph of the top of the soft clay for a divergent transfer zone 
with initially overlapping faults in the stiff clay. In this case a well-defined ramp 



xiv 

separated by linear faults on either side marks the transfer zone (compare with Figure 
10b). ................................................................................................................................ 86 
Figure 3.14 Progressive evolution of structural geometries and fault patterns in map 
view for a synthetic transfer zone, with two pre-existing laterally offset faults dipping in 
the same direction. Moving plate is towards the north. a. Initial fault geometry in stiff 
clay. b-f. Contoured structure map, fault patterns and fault orientations for the top of the 
soft clay, with progressive evolution.  Displacements of moving plate are 0.14 cm (b), 
0.29 cm (c), 0.42 cm (d), 0.53 cm (e), and 0.67 cm (f). On the contoured structure map, 
red and yellow indicate high elevations and blue and green represent low elevations. 
North dipping faults are shown in blue and south dipping faults are shown in red on the 
fault map. Rose diagrams show main orientations of faults measured. ......................... 87 
Figure 3.15 Comparison of final structural geometries, fault patterns and fault 
orientations for the top of the soft clay for synthetic transfer zones, with initially (a) 
approaching, (b) laterally offset, and (c) overlapping  fault geometries in the stiff clay. 
The stages of deformation compared all have approximately the same total 
displacement. On the contoured structure map, red and yellow indicate high elevations 
and blue and green represent low elevations. North dipping faults are shown in blue and 
south dipping faults are shown in red on the fault map. Rose diagrams show main 
orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. An arbitrary North arrow is assigned as a reference to describe orientations 
of faults. .......................................................................................................................... 88 
Figure 3.16 Oblique photographs of clay models of synthetic transfer zones for laterally 
offset pre-existing basement faults. a. Top of stiff clay after removal of soft clay at the 
end of the experiment, showing two major faults separated by an oblique ramp. View 
looking west. b. Top of soft clay showing a more subtle oblique ramp separating two 
fault zones, with associated drape folding. View looking east. ...................................... 89 

 
Chapter 4: Fault evolution and role of salt in decoupling extensional deformation 
in the Smørbukk area of the Halten Terrace, offshore Mid-Norway: Insights from 
3-D seismic interpretation and structural restoration.  
 
Figure 4.1 Summary of results from extensional analog modeling using rigid basement 
and ductile cover with an intermediate viscous layer (from Withjack and Callaway, 
2000). The top three panels show the variation of the sectional geometry of the structure 
resulting from difference in thickness and cohesive strength of the cover and the 
thickness of the viscous layer under a uniform rate of displacement. The two bottom 
panels show the effect of change of viscosity of the weak layer and of the amount and 
rate of displacement. ..................................................................................................... 131 
Figure 4.2 a. Regional structural map of the offshore Mid-Norway region showing the 
location of the Halten Terrace with respect to the major structural zones and basins. Red 
dotted box outlines the area shown in (b). b. Enlarged structural map of the Halten 
Terrace with the key bounding regional fault zones and in the study area. The red dotted 
box outlines the 3-D seismic survey area.  Redrawn and modified from Blystad et al. 
(1995). .......................................................................................................................... 132 
Figure 4.3 Sub-regional index map of the study area showing the location of the wells 
and major normal faults. Fault polygons and color and line contours are drawn on the 



xv 

depth-top of the Early Jurassic Åre Formation. The positions of the cross sections 
shown in subsequent figures are marked by thick black lines. For the locations of the 
other major basement-involved faults, refer to Figure 4.11. ........................................ 133 
Figure 4.4 Regional stratigraphic framework showing the representative lithologies and 
the ages of the formations in the Halten Terrace area (Modified from Marsh et al., 
2010). Interpretation of the main tectonostratigraphic units in the area is shown in the 
right column. Colored and highlighted lines represent the seismic marker horizons 
interpreted in the present study. .................................................................................... 134 
Figure 4.5 a. Schematic cross section of units adjacent to a fault showing the limitation 
of determining vertical thickness on a fault. Note the zone of anomalously low vertical 
thickness on the fault. Also note that for most dipping horizons vertical thickness is 
always higher than true thickness (Tvert>Ttrue). b. Schematic cross section showing the 
offset relation of the basement fault and the hanging wall depo-center associated with it.
 ...................................................................................................................................... 135 
Figure 4.6 Uninterpreted (a) and interpreted (b and c) time section showing the 
structural geometry of the faults and key marker horizons along Inline 1820 towards the 
southern part of the study area (Refer to Figure 4.3 for location). Note (in the blown out 
interpreted section in c) that growth related thickness variation is more prominent to the 
post- Åre units for most of the faults. Growth geometry within syn- Åre units is 
observed only along the Trestakk Shallow fault. Axial thickening of the Lower 
Cretaceous units on the hanging wall synclines of the major faults is related to the late 
movement of the faults during the post-rift (HT3) phase. ............................................ 136 
Figure 4.7 Uninterpreted (a) and interpreted (b and c) time section showing the 
structural geometry of the faults and key marker horizons along Inline 3180 towards the 
south-central part of the study area (Refer to Figure 4.3 for location). In the blown out 
interpreted section in c. note the truncation of the Top of Salt horizon against the Base 
of Salt horizon probably due to salt withdrawal and flow into the Smørbukk hanging 
wall. The Trestakk Shallow is the single fault in this section that shows majority of 
growth within Åre to immediate post-BCU interval. ................................................... 137 
Figure 4.8 Uninterpreted (a) and interpreted (b) time section showing the structural 
geometry of the faults and key marker horizons along Inline 4100 towards the north-
central part of the study area (Refer to Figure 4.3 for location). In b. note the absence of 
any basement-detached faults in this section. The thickness difference in the salt unit 
towards the western side of the section is attributed to the flow of salt probably in 
response to the movement on the hard linked Smørbukk fault. Towards the central and 
eastern part of the section synclinal depocenters within the post- Åre units are related to 
the late movement on the buried Trestakk and E1 faults. ............................................ 138 
Figure 4.9 Uninterpreted (a) and interpreted (b and c) time section showing the 
structural geometry of the faults and key marker horizons along Inline 5820 towards the 
northern part of the study area (Refer to Figure 4.3 for location). In the blown out 
interpreted section in c note the change in polarity of the basement-detached faults in 
this section. Growth related thickness change within the Jurassic interval is more for the 
post- Åre units. Axial thickening of the lower Cretaceous units on the hanging wall 
syncline of the central listric fault and the onlap of the reflectors against the BCU 
horizon suggest episodic movement on this fault. ........................................................ 139 



xvi 

Figure 4.10 Uninterpreted (a.) and interpreted (b and c) time section showing the 
structural geometry of the faults and key marker horizons along the strike line EE’ 
towards the western part of the study area (Refer to Figure 4.3 for location). In the 
blown out interpreted section in c the conjugate faults that detach within the salt unit are 
interpreted to have originated from gravity driven flow of salt triggered by the tilting of 
basement (Marsh et al., 2010). Growth geometries associated with these faults are 
restricted to the post-Top of Not units. ......................................................................... 140 
Figure 4.11 Depth structure map of the Middle Triassic Base of Salt horizon showing 
the major basement-involved faults and the structures associated to them. The presence 
of the hanging wall synclines related to these faults attests to the sedimentary nature of 
the basement. Note in this figure and in the three subsequent figures the oblique 
geometry of the Smørbukk-Revfallet transfer system. ................................................. 141 
Figure 4.12 Depth structure map of the Late Triassic Top of Salt horizon showing the 
major faults that displace it and the structures associated with them. Fault polygons for 
the basement-involved faults are marked with dashed lines and those for the basement-
detached faults are marked with solid lines. The strike variation of the faults ranges 
from NNE-SSW to NNW-SSE. Note the presence of a separate Trestakk hanging wall 
syncline in the north central part of the study area where the Trestakk Shallow fault is 
absent. ........................................................................................................................... 142 
Figure 4.13 Depth structure map of the Early Jurassic Top of Åre horizon showing the 
major faults that displace it and the structures associated with them. Fault polygons for 
the basement-involved faults are marked with dashed lines and those for the basement-
detached faults are marked with solid lines. Note the difference in trend between the 
Trestakk Shallow hanging wall syncline in the central part and the Trestakk hanging 
wall syncline in the north-central part of the study area. But for the addition of the two 
oblique salt related faults towards the west the overall strike variation of the faults still 
varies from NNE-SSW to NNW-SSE. ......................................................................... 143 
Figure 4.14 Depth structure map of the BCU (Base of Cretaceous Unconformity) 
horizon showing the major faults that displace it and the structures associated with 
them. Fault polygons for the basement-involved faults are marked with dashed lines and 
those for the basement-detached faults are marked with solid lines. The structural 
orientation of the faults and related folds remain similar to those mapped on the Top of 
Åre horizon in Figure 4.13. The overall lack in the number of faults displacing this 
horizon and the discontinuous geometry of the faults that actually displaces it points to 
the decrease in extensional activity during the lower Cretaceous time. ....................... 144 
Figure 4.15 Depth structure map of the Lower Cretaceous Top of Lange horizon. Note 
that this this horizon is not displaced by any faults and represents a late post-rift (HT3) 
stage. The approximate positions of the anticlines and synclines related to the blind 
faults partially active below this horizon are shown by red dashed lines. The overall 
trend of these structures is similar to those mapped on the horizons below it (Figures 
4.12, 4.13 and 4.14). ..................................................................................................... 145 
Figure 4.16 Isochore maps between different intervals. Increase in vertical thickness is 
interpreted to be related to growth along faults. The curvilinear zones of anomalously 
low vertical thickness correspond to the position of the faults (refer to Figure 4.5 for the 
origin of the low vertical thickness zones). The approximate positions of the faults are 
shown in black dashed lines. a. Isochore map between Base of Salt and Top of Salt 



xvii 

horizons. Zones of high vertical thickness right adjacent to the major faults are 
attributed to the flow of salt. b. Isochore map between the Top of Salt and the Top of 
Åre horizons. Note the curvilinear zone of growth related high vertical thickness right 
adjacent to the Trestakk Shallow fault. c. Isochore map between the Top of Åre and 
BCU horizons. Highest vertical thickness is still in the hanging wall depo-centers 
related to the Trestakk Shallow fault. However increase in vertical thickness along the 
hanging walls of the other faults is more prominent in this map than in b. Note the 
separate depo-centers for the Trestakk Shallow and the Trestakk faults. d. Isochore 
between BCU and the Top of Lange horizons. Fault related depo-centers are still 
prominent in this Lower Cretaceous interval. .............................................................. 146 
Figure 4.17 Depth section along AA’ (Inline 1820; see Figure 4.3 for location) and 
stepwise iteration of decompaction and structural restoration. The amount of extension 
yielded from each step is measured on the Top of Salt and on the Bottom of Salt 
horizons and is shown at the bottom of each step.   The stratigraphic column used for 
the restoration is shown on the right. See text for detailed explanation of each step. .. 147 
Figure 4.18 Depth section along BB’ (Inline 3180; see Figure 4.3 for location) and 
stepwise iteration of decompaction and structural restoration. The amount of extension 
yielded from each step is measured on the Top of Salt and on the Bottom of Salt 
horizons and is shown at the bottom of each step.   The stratigraphic column used for 
the restoration is shown on the right. See text for detailed explanation of each step. .. 148 
Figure 4.19 Depth section along CC’ (Inline 4100; see Figure 4.3 for location) and 
stepwise iteration of decompaction and structural restoration. The amount of extension 
yielded from each step is measured only on the Bottom of Salt horizon and is shown at 
the bottom of each step.   The stratigraphic column used for the restoration is shown on 
the right. See text for detailed explanation of each step. .............................................. 149 
Figure 4.20 Depth section along DD’ (Inline 5820; see Figure 4.3 for location) and 
stepwise iteration of decompaction and structural restoration. The amount of extension 
yielded from each step is measured on the Top of Salt and on the Bottom of Salt 
horizons and is shown at the bottom of each step.   The stratigraphic column used for 
the restoration is shown on the right. See text for detailed explanation of each step. .. 150 
Figure 4.21 Schematic block diagrams showing the progressive evolution of the 
basement-involved and the basement-detached faults over time in the study area. a. 
Initial layer parallel geometry during the pre-rift (HT3) stage. b. Earliest rift initiation 
stage during late Triassic time resulting in the first phase of activity of the basement 
faults. c. Development of basement-detached faults during the later major part of the rift 
initiation stage. The position of the basement-detached fault with higher displacement is 
somewhat constrained by the blind basement faults below it. The position of the smaller 
basement fault is unconstrained by any basement fault below it. d. Further growth of 
existing faults, hard linking of basement fault and development of new basement-
detached faults during the rift climax stage. Note the difference in the trends of the 
hanging wall synclines for the basement-detached faults and the blind basement fault 
active in this stage. ....................................................................................................... 151 
Table 4.1 Table showing the summary of activity of the basement-involved and the 
basement-detached faults in the study area…………………………………………...152



1 

CHAPTER 1 
 INTRODUCTION 

Rifting describes the process of crustal stretching through which the brittle 

upper crust is subjected to extensional deformation (Falvey, 1974; Bally and Snelson, 

1980; Wernicke and Burchfiel, 1982; Steckler, 1985; McKenzie, 1987). It results in the 

development of basins associated with symmetric or asymmetric grabens or half 

grabens, bounded by listric or planar normal faults. Well known rift settings have been 

documented from the North Sea area, Gulf of Suez, East Africa, Basin and Range area 

etc. In a number of rift settings the normal faults are reactivated pre-existing weakness 

zones (ancient rifts or orogenic suture zones) within the crust. The crustal scale normal 

faults usually detach in a shear zone within the igneous/metamorphic basement or at the 

level of the brittle-ductile shear zone. The structural geometry and the shape of the 

extensional basins associated with these normal faults are influenced by mechanical 

stratigraphy, the spatial orientation of the faults with respect to the direction of 

extension and the interaction between two laterally propagating faults close to each 

other (Youssef, 1968; Stewart, 1971; Chapman et. al., 1978; Gibbs, 1984; Harding, 

1984; Jackson and White, 1989; Bosworth, 1995). This study attempts to understand 

some of the structural features related to rift settings using analog clay experimental 

models and structural interpretation of a 3-D seismic dataset from the offshore Mid 

Norway area.  

The analog experimental models focused on the geometries of faults and related fault-

propagation (drape) folds, and their interference at different types of transfer zones. 

Detailed mapping and analysis of the orientations of secondary faults was conducted to 

investigate the structural controls of the resultant fault geometries and orientations. The 
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map geometries derived from the experimental models were compared with examples 

of natural structures from East Africa, the Gulf of Suez and the North Sea. The 

interpretation and detailed analysis of the 3-D seismic dataset from the offshore Mid 

Norway area helped in understanding the kinematic evolution of a rift related structure 

where a thick layer of mechanically weak salt is present between the basement and the 

cover sequence.  

This dissertation is divided into three chapters, the first two of which focus on 

experimental models, whereas the third focuses on a seismic data set. The first chapter 

discusses experimental clay models to understand the evolution and nature of 

extensional fault propagation (drape) folds and secondary fault patterns associated with 

the movement on pre-existing basement faults. A suite of these basements faults (single 

fault and trapdoor structures) initially oriented at different angles with respect to the 

direction of extension was considered. A two layered model with stiff clay representing 

basement and soft clay representing cover sequence was used to take the rheological 

difference of basement and sedimentary units into consideration. In some setups, the 

basement fault initially terminated within the stiff clay to study the effect of lateral fault 

propagation. Relation between the fault density and width of the deformation zone 

within the drape folds and progressive evolution of the structural geometry was studied 

in detail. Natural examples from North Sea were considered to compare the results of 

the study. 

The second chapter investigates the geometry, evolution and fault patterns associated 

with various kinds of basement fault interaction at transfer zones (convergent, divergent 

and synthetic). Basement faults with initial approaching, laterally offset and overlapping 
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geometries were also modeled. A similar two layered model with stiff clay and wet clay 

representing basement and cover sequence was used. The interference of fault-

propagation folds associated with the faults was also studied. Analysis of fault 

orientation and 3-D surface modeling of clay was done in detail to study the progressive 

evolution of the secondary fault pattern and the structural geometry. The results of the 

study were compared with natural examples from East Africa and Gulf of Suez.  

The third chapter involves a 3-D structural analysis of the Smørbukk area of the Halten 

Terrace, offshore Mid Norway using a 3-D seismic dataset and associated well tops 

donated by Statoil. The area has a thick sequence of Middle-Late Triassic evaporite 

interbedded with dolomite and anhydrite rich shale (collectively referred to as ‘salt’) 

that is stratigraphically located between the Permo-Triassic sedimentary basement and 

the Jurassic cover. The study includes 3-D seismic interpretation, displayed in both time 

and depth surfaces and time and depth sections. Restoration of units incorporating 

sequential restoration and decompaction on a series of depth sections was conducted to 

understand the evolution of the structures. 

The present research involved several innovative approaches and techniques to produce 

original results that helped to improve the understanding of the broad field of basement 

involved extensional deformation. Some of these approaches and their advantages are 

discussed below.  

a. Extensional structures involving drape folding on multiple basement-involved 

normal faults and complex fault transfer zones have been reported from several 

active rift settings. However experimental modeling of such structures in order 

to better understand their geometry and evolution was not attempted before. In 
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the present study a novel approach of choosing stiff clay over conventionally 

used steel ramps to model the basement helped to eliminate some of the 

mechanical limitations of the existing experimental models. The advantage of 

this setup was multifold. It helped to study the nature of extensional deformation 

both in the basement and cover units for single and multiple faults including the 

trapdoor structures.  It also helped to understand the nature of extensional fault 

propagation folding and its effects on the lateral propagation of the basement 

faults and their mutual interactions.  

b. Insights from previous experimental models were mostly restricted to the 

understanding of the sectional geometry of the extensional structures (Cloos, 

1968; McClay and Ellis, 1987; Withjack et. al., 1990; Miller and Mitra, 2011). 

A relatively new 3-D laser scanning technology and surface modeling used in 

the present study helped to study the map geometry of the experimental 

structures and compare them easily with natural structures.  

c. The case study from offshore Mid Norway involved faults detaching at 

different stratigraphic levels due to the presence of a weak salt layer. Similar 

structures were reported by previous workers in this area (Withjack et al, 1989; 

Pascoe et al., 1999; Richardson et al, 2005; Marsh et al., 2010). However 

decompaction and restoration of these structures were not attempted before. 

Such structural analyses used in the present study helped to provide insight 

about the fault evolution, the role of salt in partitioning the extensional 

deformation, and the conditions for the development of hard-linked or soft 

linked structures across the salt layer. 
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CHAPTER 2  
FAULT PATTERNS ASSOCIATED WITH EXTENSIONAL FAULT 

PROPAGATION (DRAPE) FOLDING 
 

 Abstract 

Experimental models of extensional fault-propagation (drape) folds were used to 

study the evolution of the deformation zones and secondary fault patterns for single 

faults and trapdoor structures associated with two intersecting faults. Two-layer clay 

models, consisting of stiff and soft clay were used to model the deformation zones in 

the basement and sedimentary cover, respectively. Extension on single basement faults 

normal to the direction of extension results in the development of a deformation zone 

with expanding width, in which the fault density initially increases and then remains 

approximately constant. Extension on terminating faults results in conical drape folds 

with faults oblique to the fold axis along the propagating tip. Basement faults oblique to 

the direction of extension are characterized by oblique secondary faults along the 

boundaries of the deformation zone, which curve into a direction normal to the 

extension direction in the center.  

Trapdoor fault geometries result in a triangular uplift with maximum relief at the apex. 

The difference in relief between the flanks and the apex is greatest in the case of 

propagating basement faults. En echelon secondary faults initiate on the flanks and 

extend into the apex area, curving into orientations that are closer to normal to the 

regional direction of extension. The width of the fault zone and the total fault length 

increase with increasing extension. The fault density initially increases and then remains 

approximately constant with increasing extension. 
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2.1 Introduction 

Extensional fault–propagation folds, also known as drape folds, are recognized 

as a common type of structure in rift basins. The structures involve folding and 

secondary faulting within the sedimentary cover above basement-involved normal faults 

(Figure 2.1). The fault slip on the basement fault is dissipated within a triangular 

deformation zone, also referred to as a trishear zone (Erslev, 1991). Variations of the 

basic model have been developed and applied to both surface and subsurface structures. 

Numerous examples of drape folds have been documented from the North Sea, the Gulf 

of Suez, the Sirte basin, as well as from other basins.  Deformation associated with 

drape folding has been modeled in cross-sectional view (Reches, 1978; Reches and 

Johnson, 1978; Withjack et al., 1990; Jin and Groshong, 2006; Miller and Mitra, 2011; 

Mitra and Miller, 2013).  

Mapping of drape folds requires a better understanding of the three-dimensional 

geometry of drape folds and related secondary faults. The map patterns are dependent 

on the geometry of the faults associated with drape folds. Single faults are associated 

with plunging out of drape folds as the faults lose displacement along trend, and 

intersections of two sets of faults results in trapdoor structures. Both of these patterns 

are commonly observed in extensional terranes. 

In this paper, the three-dimensional geometry and associated fault patterns for single 

faults and trap door structures using two-layer experimental models are studied. The 

results of the study provide insights on the geometry and fault patterns for surface and 

subsurface basement structures and can be used to analyze structures with limited data.  
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2.2 Previous Work on Experimental Fault Propagation Folds 

A model of trishear fault-propagation folding for both contractional and 

extensional basement-involved structures was proposed by Erslev (1991), and applied 

primarily to Rocky Mountain foreland structures to explain the characteristic features of 

many structures in the area. According to the model, slip on basement faults is 

dissipated by oblique shear within an initially triangular zone in the sedimentary cover. 

The deformation occurs by folding and secondary faulting within the trishear zone. 

Reches and Johnson (1976) and Freund (1979) had earlier studied the dissipation of slip 

on a basement fault within a monoclonal flexure. Hardy and Ford (1997) and 

Allmendinger (1998) developed algorithms for the geometric and kinematic evolution 

of fault propagation folds, and also studied the variation in strain with structural 

position for these structures. Other models Erslev (1991)  and Zehnder and 

Allmendinger (2000) suggested that in additional to homogeneous deformation, the 

trishear zone may be characterized by heterogeneous shear between fixed axial surfaces, 

resulting in the curved geometry of beds typically observed in trishear zones. Mitra and 

Mount (1998) and Mitra and Miller (2013) proposed that the heterogeneous shear may 

alternatively be explained by the expansion of the width of the trishear zone with 

progressive deformation, by incorporation of new material from the undeformed units 

on either side. Three dimensional models of fault-propagation folds have been proposed 

by Cristallini and Allmendinger (2001) and Cristallini et al (2004). A review of the 

geometry and kinematics of the trishear mechanism is provided in Hardy and 

Allmendinger (2011). 
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Broad folds related to normal faults, referred to as drape folds or forced folds (Stearns, 

1978) had been documented previously, particularly in extensional provinces. For 

example, Harding (1984) showed a number of examples from the North Sea and Gulf of 

Suez. More recently, there have been a number of examples of drape folds described on 

the basis of both surface and subsurface data, particularly from the Gulf of Suez, the 

North Sea, and offshore mid Norway (Withjack et al., 1989; Sharp et al., 2000). 

Extensional fault-propagation folds have been modeled experimentally using clay 

models (Withjack et al., 1990; Mitra, 1993; Jin and Groshong, 2006; Miller and Mitra, 

2011; Mitra and Miller, 2013). The models provide insight into the progressive 

evolution of the folds and related secondary faults. All of these models examined the 

evolution of the structures in profile view. However, additional information on the 

three-dimensional evolution and fault geometry for different basement fault geometries 

is necessary to interpret the structures. 

This paper addresses the geometry and evolution of extensional fault-propagation folds 

(drape folds) using two-layer clay models, with stiff clay representing basement, and a 

soft clay representing the sedimentary cover. The evolution of the structures and 

secondary faults are studied for a variety of commonly observed fault geometries, 

including throughgoing or terminating faults and faults systems with trapdoor 

geometries. 

2.3 Experimental Methodology 

2.3.1 Experimental Setup 

Experimental clay models were conducted using a motor driven apparatus 

consisting of two plexiglass backstops, one of which is fixed, while the other is 
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connected to two motors which control the rate of motion (Figure 2.2). The contrasting 

deformational behavior of the sedimentary cover and the basement was modeled by 

choosing stiff clay for the basement and soft clay for the cover units. The stiff clay has a 

density of 1.85 gm/cc and a thickness of 1.5 inch (3.8 cm) in the footwall block. The 

soft clay has a density of 1.6-1.65 gm/cc and a thickness of 1 inch (2.5cm). There is a 

significant contrast in strength between the stiff and soft clay which influences the 

nature of deformation of the structures, and results in drape folding.  

This combination of materials for the basement/sedimentary cover package has been 

successfully applied to model strike-slip faults (Mitra and Paul, 2011), and basement-

involved compressional and extensional structures (Paul and Mitra, 2012; 2013). The 

main advantages of using stiff clay instead of rigid metal or wooden blocks used in 

earlier models are: (1) the stiff clay can be cut to produce a variety of pre-existing fault 

geometries or discontinuities in the basement, including terminating faults; and (2) the 

stiff clay can deform in the vicinity of the main faults which is necessary to 

accommodate termination of faults and changes in fault geometry along trend and down 

dip.  

Pre-existing cuts in the stiff clay were used to model basement normal faults which 

result in the propagation of faults through the stiff and wet clay to form drape folds. 

Basement faults were modeled with a dip of 60 degrees.  Movement on the faults was 

initiated by movement of the movable plate, which caused the fault blocks to drop down 

along the preexisting fault cuts. The rate of extension was kept constant at about 

0.0005cm/sec for all experiments. 
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2.3.2 Scaling of Experimental Models 

The importance of using modeling materials that share geometric, kinematic and 

dynamic similarity with the natural analogs has been recognized and quantified by 

previous workers like Cloos (1929, 1930), Hubbert (1937) and Schilische and Withjack 

(2009). The strength of the upper crustal rocks usually increases with increasing depth 

and they obey the Mohr-Coulomb criterion for failure (Byerlee, 1978): 

σs = C0 + (µσn) = C0 + [(tan φ) σn]                                                                     (1) 

where σs is the shear stress, σn is the normal stress, C0 is the cohesive strength, µ is the 

coefficient of internal friction and φ is the angle of internal friction which controls the 

orientation of the fault planes with respect principal stresses. The Mohr-Coulomb 

criterion is also obeyed by wet clay (Richard and Krantz, 1991; Vendeville et al., 1995). 

Earlier workers like Handin (1966) and (Byerlee, 1978) have suggested that φ ranges 

from 29° to 40° in case of natural rocks and 30° in case of wet clay (Schilische and 

Withjack, 2009). C0 for water based wet clay (40% water by weight) is approximately 

50 Pa while C0 for natural sedimentary rocks is approximately 5 MPa. Approximate 

density of the wet clay used in the experimental models is 1.6-1.65gm/cc while the 

average density of the sedimentary cover units is 2.6gm/cc. Geometric and dynamic 

similarity between the modeling materials and the natural analogs requires that 

C0
* = ƿ*g*L*                                                                                                      (2) 

where C0
*, ƿ*, g* and L* are the model-to-natural analog ratios for cohesive strength, 

density, gravitational acceleration and length. Putting appropriate values in Equation (2) 

(g* =1), L* is approximately 10-5 which suggests that a centimeter on the model 

represents a kilometer in real world structures. The approximate cover rock-to-basement 
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rock ratio of densities is 0.89 (considering the average density of igneous/metamorphic 

rocks to be 2.9gm/cc; Attewell and Farmer, 1976) which is the same for wet clay-stiff 

clay pair and higher for wet clay-aluminum pair (0.6). Stiff clay also has a significantly 

less cohesive strength than aluminum blocks and can undergo some degree of 

penetrative deformation which is observed in the basement rocks under extensional 

deformation (Fossen, 1992). Stiff clay is thus chosen over steel ramps as a better 

candidate for modeling the basement.   

It should be noted that for all the experimental models a uniform homogeneity of 

mechanical properties for both the basement and the cover units is assumed. The models 

are designed to represent structural geometries in a regional scale and heterogeneities 

induced by stratigraphic rheology or pre-existing complex structural fabric or changes 

in the stress direction have not been taken into account. In natural settings the cover 

sequence is expected to have multiple stratigraphic layers which will control the 

structural geometry. Small scale local structures may originate from such mechanical 

heterogeneities and these are not represented in the experimental models. 

2.3.3 Experimental Configurations 

Drape folds associated with a number of fault configurations were investigated. 

These included: (1) Single faults which were either throughgoing, or terminated at one 

or both ends (Figure 2.2a). Terminating faults were modeled to study development of 

folds and related faults at fault terminations. Faults orthogonal and oblique (75 and 60 

degrees) to the direction of extension were studied; (2) Trap door geometries involving 

intersecting fault sets (Figure 2.2b). Fault with intersecting angles of 90, 120, and 140 

degrees were modeled. The difference between terminating and through going faults 
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was also studied. A summary of all the basement configurations studied is summarized 

in Figure 2.3. 

For all of experiments, pre-existing cuts in the stiff clay provided the discontinuities 

along which the faults propagated both laterally, as well as upward through the soft 

clay, where they developed secondary fault splays. The stiff clay representing the 

basement was cut thinner in the hanging wall blocks to allow these blocks to drop down 

along the faults (Figure 2.2). 

2.4 Data Analysis 

Data analysis was conducted on two datasets: (1) fault data that were digitized 

and extracted from photographs taken at regular intervals during the experiments, and 

(2) scanned elevations of the top of the soft clay, obtained as point clouds, which were 

used to develop 3-D models of the surface. 

2.4.1 Fault Patterns and Orientations 

Photographs taken at approximately two minute intervals during the experiment 

were used for the analysis of the variation of orientation of the faults. Fault patterns 

were analyzed for different stages of formation of the structures and displayed in Rose 

diagrams documenting the map trends (strikes) of the secondary faults. 

2.4.2 Fault Densities and Trishear Width 

Variations in fault densities and the width of the trishear zone with progressive 

deformation were analyzed for selected experiments of both single and trapdoor 

basement fault geometries to understand the evolution of secondary faults. The fault 

density (Di) was defined by the total length of all faults per unit area at each stage 

(Figure 2.4), so that  
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Di-= Total length of all faults in selected area/ Instantaneous Area  (3) 

To analyze the variation in density along the structure, an additional measurement was 

made by determining the moving average value of the total length of all faults within 

circles of constant radius of 0.3 cm with centers 0.02 cm apart. The mean of this 

moving average value (Dm) was determined to compare with the value of Di for each 

setting.  

An additional parameter of fault density measured was the summed lengths of all faults 

divided by the faulted area in the final stage (Df). The purpose of using this parameter is 

to study the increase in fault densities for the final trishear zone during its evolution. 

The width of the fault zone (W) was measured at right angle to the trend of the major 

faults to compare with the fault density values. 

2.4.3 3-D Surface Analysis 

Laser-scanned point sets were used to build contoured and gridded surfaces. The 

horizontal and vertical resolution of the point sets was 75 DPI (~0.015 inches point 

density). This enabled mapping of faults with a minimum vertical separation of 0.2 mm. 

The modeled surfaces were compared with the photographs to incorporate the detailed 

geometry of the fault surfaces. Major faults and many minor faults were mapped and 

cut out on the surfaces, but some of the smaller faults were not mapped because of 

resolution limitations. The faults and faulted surfaces were then smoothed before 

contouring the surfaces to determine the final topology. This approach enabled the 

surfaces to be correctly contoured incorporating all major and many secondary faults. 

The contour interval used for all the surfaces was 2 mm. Changes in the surface 

geometry were used to study the evolution of the structures and related faults.  
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Because the original surface of the top clay had some relief for all experiments, all 

deformed surfaces were corrected to observe their geometry for an originally flat 

surface. This was accomplished by first developing a difference surface between the 

original surface topology and a horizontal surface the level of which was at the mean 

value of the elevations of all the points on the original surface. This difference was 

applied as a correction to all deformed surfaces, after stretching the difference surface to 

the length of the deformed surface in question (Figure 2.5). The operation applied to 

stretch the difference surface was (Figure 2.5a): 

Yf = Yi + (Yi – Yo)*e,             (4) 

Where the extensional strain e =∆L/Lo, Yi and Yf are the original and final Y-

coordinate of any point, respectively, and Yo is the original y-coordinate for the fixed 

boundary. 

All displayed figures representing the deformed surfaces for the top of the soft clay are 

the corrected surfaces. 

2.5 Experimental Results: Single Faults 

Drape folds associated with single faults were modeled for basement faults that 

were throughgoing, terminating at one end and terminating at both ends, and orthogonal 

to the direction of extension. The reference frame used to describe the structures and 

fault orientations for this and other structures is that north represents the top of the 

experimental setup. 

2.5.1 Single Faults Normal to Extension Direction 

Extension on a throughgoing fault resulted in a broad and slightly asymmetric 

drape fold and a series of secondary faults, a number of which cut the top surface of the 



18 

clay (Figure 2.6a). Increasing extension resulted in the lateral propagation of the faults, 

larger throws on individual faults, and the development of new faults, so that the zone 

of faulting widened (Figure 2.6b). This is consistent with a model of increasing width 

and shearing within the triangular or trishear zone (Erslev, 1991) with progressive 

deformation (Mitra and Mount, 1998; Mitra and Miller, 2013). Linkage of faults also 

resulted in concentration of slip on a few major faults (Figures 2.6c and 2.7a). The mean 

orientation of secondary faults was approximately parallel to the trend of the basement 

fault (Figure 2.6). The top of the soft clay exhibits a downwarp in the footwall, and an 

upturned hanging wall, resulting from the breakthrough of faults through the trishear 

zone. 

A basement fault that terminated in the center of the model resulted in a plunging drape 

fold which terminated on the east side, and had larger displacement on the western end 

(Figure 2.8). The main fault also curved in the direction of dip near its termination. 

Secondary faults developed an echelon pattern, and were curved in the same direction 

as the contours around the plunging nose of the structure (Figure 2.8 and 2.9). This 

resulted from the local reorientation of the stresses due to the oblique dip of the 

deformed surface. The final rose diagram shows a mean orientation of the faults 

trending 104 degrees, oblique to the direction of extension. Some of the large 

displacement secondary faults were connected by cross faults oriented oblique to both 

the direction of extension and the main fault zone. 

For a fault terminating in both directions, the experiment resulted in a more rapid 

propagation of the fault to the east resulting in an asymmetric drape fold plunging to the 

west. The faults were generally normal to the direction of the extension, but curved to 
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an oblique orientation around the plunging nose. The final rose diagram displayed a 

mean trend parallel to the fault cut, with a number of oblique faults symmetrically 

distributed on both sides (Figure 2.10a). 

2.5.2 Single Faults Oblique to Extension Direction 

Throughgoing basement faults oriented 75 and 60 degrees to the direction of 

extension were modeled. A gently plunging drape fold developed with the fold axis 

trending approximately parallel to the basement fault cut (Figure 2.11). The fold 

plunged out on the edge that was located further from the moving plate. The zone of 

secondary faults was generally parallel to the pre-existing fault cut. However, the 

orientations of the individual faults exhibited a more complex pattern. The bounding 

faults formed above the footwall and hanging wall cutoffs of basement were 

approximately parallel to the pre-existing fault cut. On the other hand, the faults formed 

between these two boundaries curved into a direction that was approximately normal to 

the direction of extension (Figures 2.11b and 2.7b).  Because of the obliquity of the 

direction of extension to the basement fault, many of these faults were significantly 

rotated with surface dips opposite to the direction of the main fault. This effect was 

most prominent in the faults with a 60 degree orientation to the direction of extension 

(Figure 2.11). Furthermore, although the faults with significant displacement were 

synthetic, many of the secondary faults were antithetic to the main fault, with the 

percentage of antithetic faults increasing from the 90 degree to the 60 degree case 

(Figure 2.12). The final rose diagram showed a mean trend that was intermediate 

between the original trend of the basement fault and the normal to the direction of 
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extension. For the 75 degree fault cut, the mean trend was 83 degrees, whereas for the 

60 degree fault cut, the mean trend was 77 degrees (Figure 2.12). 

For basement faults terminating in the center of the model (Figure 2.13), an oblique 

drape fold trending approximately parallel to the fault and plunging out to the east 

developed for both the 75 degree and 60 degree cases. Secondary faults formed along 

the flank of the drape fold curved strongly in the direction of the fault dip. For the 75 

degree case the mean trend of the secondary faults was 102 degrees or 27 degrees from 

the basement fault trend whereas for the 60 degree case the mean trend of the secondary 

faults was 93 degrees, 33 degrees from the basement fault trend. 

Fault cuts in the middle of the section (Figure 2.10 b and c) showed a similar pattern of 

secondary faults as that for the throughgoing faults (Figure 2.10a), except that the fault 

zones terminated in both directions along trend and that the faults curved in the 

direction of the fault dip close to the original fault termination in the basement. The 

bounding faults were again approximately parallel to the original fault cut, whereas the 

remaining faults were approximately normal to the direction of extension. 

2.5.3 Fault Densities for Single Faults 

Density and width plots for different stages of extension provide some insight on 

the evolution of secondary faults within the deformation zone. Continuous density plots 

for a throughgoing fault orthogonal to the direction of extension showed that the mean 

density (Dm) increased sharply in the initial stages and then remained approximately 

constant or showed a small decrease in the late stages (Figure 2.14a). A similar pattern 

was observed for the density measured per unit instantaneous area for the entire fault 

zone (Di). The sharp increase in density in the early stages occurred by an increase in 
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the lengths of individual faults as well as by the formation of new faults. The constant 

density or decrease in the late stage is related to the fact that the width of the 

deformation zone also increased, sometimes at a higher rate than the total fault length. 

The density measured relative to the final fault width (Df) increased through all the 

stages (Figure 2.14a). The continuous density plots showed areas of local high densities 

(Figure 2.15a), typically located in the center of the fault zone.  A major basement fault 

trending at an angle of 60 degrees to the direction of extension showed a fairly similar 

pattern of fault densities and widths (Figures 2.14 c and d), except that the continuous 

density plots showed bands of high densities oblique to the trend of the fault zone 

(Figure 2.15b). 

Major faults that propagate from an initially terminating fault in the stiff clay involve 

the propagation of the fault zone both normal to and in the direction of propagation of 

the major fault. Hence the fault densities Di and Dm drop significantly after an initial 

rise and then rise again (Figure 2.14e). The drop in the fault density probably represents 

a significant rise in the rate of lateral propagation, so that the increase in the fault length 

does not keep pace with the rate of area increase. The width of the fault zone and the 

density measured with respect to the final areas (Df) both increase with increasing 

extension (Figure 2.14e and f). The continuous density plot (Figure 2.15c) shows bands 

of high densities oblique to the main fault. These bands probably represent distinct 

episodes of lateral fault propagation. 

2.6 Experimental Results: Trapdoor Fault Geometries 

Trapdoor geometries result from intersections between two or more fault sets, 

which may either have formed simultaneously under a three-dimensional strain field 
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(Sagy et al., 2003), or at different times, with a change in the orientation of the 

maximum extension direction over time. The Heather and Ninian structures (Figure 

2.16) from the Viking graben (Gray and Barnes, 1981; Harding, 1984) show that the 

angle between two intersections can vary considerably, resulting in structures ranging 

between angular trapdoors and broad warps.  Therefore, models for trapdoor geometries 

included through going fault sets with intersecting angles of 90, 120, and 140 degrees, 

to cover a wide range of observed structural geometries. In addition, terminating fault 

sets were also modeled to study the effects of lateral fault propagation on trapdoor 

geometries. 

2.6.1 120 degree Fault Intersections 

Two faults with dips of 60 degrees and a map intersection angle of 120 degrees 

were cut in the stiff clay representing basement, with the cuts distributed symmetrically 

with respect to the direction of extension. The two faults dipped away from each other, 

so that the hanging wall block contained the larger angle between the faults.  The 

modeled 3-D surfaces were tilted by 5 degrees in a direction opposite to the fault dip so 

that the final structures resembled the trapdoor geometries found in tilt-blocks.  

Two experimental set ups were used: the first with two connecting faults in the stiff 

clay, and the second with the both preexisting faults terminating towards the center so 

that  the central one-third of the area does not have any initial fault cuts. The purpose of 

the second experiment was to study the difference in geometry of the drape fold and the 

related secondary faults when the basement faults propagate and eventually intersect. 

For two connected basement faults, initial extension resulted in a triangular horst block 

in the tilted footwall block. The contours on the flanks of the structures are at a low 
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angle to the normal to the direction of extension (Figure 2.17a). Two sets of incipient 

faults with mean trends of 70 and 101 degrees develop on the flanks, but few faults 

initially developed in the apex area.   

With increasing extension, the faults propagated laterally as en echelon and overlapping 

segments with relay ramps sloping away from the apex separating them (Figure 2.17b 

and c). The throw on the individual faults as well as the number of faults increased with 

increasing extension.  

Furthermore, the width of the fault zone on the flanks expanded from 1 cm at an 

extension of 0.27 cm to 2.2 cm at an extension of 0.97 cm (Figure 2.18). The density of 

the faults (Di and Dm) first increased and then decreased, whereas Df increased with 

extension. Generally, the densities were a little lower in the apex compared to the flanks 

in the early stages of extension. The expansion of the fault zone on the flanks results 

from both the lateral propagation of pre-existing faults, as well as the nucleation of new 

faults. The lower fault densities in the apex in the early stages result from the fact that 

the faults initiate on both flanks and then propagate and connect near the apex area.  

The final mean trends of the faults on the flanks were 74 and 103 degrees, so that the 

faults make a higher angle to the direction of extension than the original major fault 

cuts. There was a progressive transfer of slip to the frontal en echelon faults from the 

flanks to the apex.  In the apex area, the faults curved into an orientation approximately 

normal to the direction of extension, with a mean trend of 79 degrees.  

The throw on the major fault in the stiff clay and the cumulative throw of the secondary 

faults in the soft clay is greatest on the flanks and decreases in the apex area, so that the 

maximum turn up of hanging wall block is in the apex area (Figure 2.17c). 



24 

120 degree trapdoor structures involving propagating faults show some important 

differences (Figure 2.19). First, the deformation zone is wider and has a shallower dip. 

The upturn in the hanging wall is also more prominent. Second, the faults in the apex 

are less influenced by the pre-existing cuts, so that there is a broader zone of faults 

trending perpendicular to the direction of extension. The faults in the flanks curve 

gradually into the trend of the faults in the apex zone. As a result, the trapdoor 

configuration of the basement fault is not as visible in the overlying units, which shows 

a broad convex structural geometry. The final mean trends of faults in the flanks are 71 

and 104 degrees, whereas the apex area shows a mean trend of 83 degrees. Density 

plots (Figure 2.20) show distinct plots for the flanks and apex. The flanks show an 

initial sharp increase in density followed by a later period of small density increase or 

decrease, whereas the apex area show a larger change in density in the later stages as 

the basement faults propagate and connect up. 

2.6.2 90 degree and 140 degree Fault Intersections 

The experiments were repeated with 90 degree and 140 degree fault 

intersections (Figure 2.21). The results of the 90 degree experiment with the connecting 

faults (Figure 2.21a) was very similar to the 120 degree experiment (Figure 2.21b), the 

main differences being in the geometry of the structure, and the orientations of the fault 

zones and individual faults. The drape fold shows a more angular geometry, with a 

smaller interlimb angle than in the 120 degree case. The hanging wall shows a larger 

turn up at the apex of the structure than on the flanks. Also the fault zone and the 

individual faults on the flanks are at a larger angle to the extension direction and curve 

more sharply into an orientation close to perpendicular to the direction of extension. 
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The final mean trends of the faults on the flanks are 59 and 125 degrees, whereas the 

apical area shows a mean trend of 85 degrees. 

The en echelon geometry of the faults is more apparent for this configuration, with the 

progressive transfer of slip to the frontal part of the fault zone in the apex area. 

Overlapping segments are marked by relay ramps sloping away from the apex (Figure 

2.22). Some transfer faults with large strike-slope components connect some of the en 

echelon faults.  

Throughgoing faults with a 140 degree intersection show an even broader structure than 

the 120 degree trapdoor, with a gradual trend in strike, so that the trapdoor geometry is 

not readily apparent from the map geometry (Figure 2.21c). The footwall elevation 

shows very little variation in relief compared to the 90 degree and 120 degree 

intersections, and the overall relief of the footwall block is less. At the maximum 

extension of 1.0 cm, the secondary faults on the two flanks have mean trends at 79 and 

102 degrees so that the angle between them is 157 degrees. The apical area has a mean 

fault trend of 88 degrees. 

Fault densities for the (Di) and the mean fault densities (Dm) show a rapid initial 

increase followed by a constant or decreasing density for the 90-degree trapdoor 

structures (Figure 2.23). The pattern is quite similar to the 120 degree case. The density 

relative to the final deformation zone (Df) and the width of the deformation zone both 

increase progressively over time.  

Comparison of the two flanks of the trapdoor and the apex for the 90 degree trapdoor 

shows that the densities Di and Dm both increase more rapidly on the flanks than in the 

apex in the initial stages. However, in the later stages the apex area shows about the 
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same density as the flanks. This is consistent with the observation that the faults initially 

develop on the flanks and propagate and connect in the apex area in the later stages of 

deformation. 

2.7 Discussions and Conclusions 

Extension on single basement faults results in the development of a trishear zone 

made up of secondary normal faults. If the basement fault is normal to the direction of 

extension, the secondary fault zone and the individual faults are also normal to the 

direction of extension. With increasing extension, the faults propagate laterally and 

many of them connect to form anastomosing fault zones, and new faults also develop. 

The total fault length increase with time, but this is accompanied by an increase in the 

width of the deformation zone. As a result, the fault density initially increases with 

increasing extension, but remains constant or even decreases in the late stages, when the 

deformation is focused on fewer faults which breakthrough the entire cover. These 

observations are consistent with the model of an expanding trishear zone, with 

maximum deformation in the center of the deformation zone (Mitra and Mount, 1998; 

Mitra and Miller, 2013). Basement faults oblique to the direction of extension show a 

similar pattern as the above, except that the trend of the secondary faults are similar to 

that of the main fault at the boundaries of the deformation zone, but curve into an 

orientation that is close to perpendicular to the direction of extension in the center. 

Therefore the amount of curvature of these oblique secondary faults is dependent on the 

obliquity of the underlying basement fault with respect to the direction of extension. 

Conversely, more tightly curved secondary faults reflect a greater degree of obliquity of 
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the underlying basement fault. Oblique faults are also characterized by a significant 

number of antithetic faults and rotated faults. 

Terminating basement faults exhibit a variation in fault slip along trend, resulting in 

rotational deformation on the fault.  The main fault curves in the dip direction and the 

drape fold exhibits a conical termination along trend. The area of secondary faulting 

increases both normal to the fault and in the direction of propagation with increasing 

extension. Secondary faults are generally oblique to main fault on the steep limb of the 

drape fold. The fault density shows discrete highs along trend suggesting episodic 

lateral propagation on the fault. 

Triangular uplift zones within cover units with maximum relief at the apex are 

indicative of underlying basement faults that have a trapdoor geometry. The hanging 

wall is also typically higher in the apex compared to the flanks, especially for fault 

systems with lower intersecting angles, and in the case of propagating basement faults. 

The secondary faults initiate on the flanks and extend into the apex area, curving into 

orientations that are closer to normal to the regional direction of extension. On the 

flanks, the faults exhibit an en echelon pattern with a transfer of slip to frontal faults 

from the flanks to the apex. Transfer zones between en echelon faults are sometimes 

marked by strike-slip faults, which transfer slip to the frontal faults.  

The trends of the secondary faults broadly mimic that of the basement faults. However 

they always trend intermediate between the trend of the basement faults and the normal 

to the direction of the extension. This is partly due to the fact that the faults originally 

develop slightly oblique to the basement faults because of the oblique extension, and 

partly due to their rotation with progressive deformation. The obliquity of the secondary 
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faults is indicative of the angle of intersection of the underlying basement faults. The 

secondary faults also curve into the apex zone where they are close to normal to the 

direction of extension. Fault intersections at high angles (140 degrees) result in only a 

broad curvature in the trend of the secondary faults, so that the presence of an 

underlying trapdoor geometry is not readily apparent from the shape of the surface 

structure.  

 As in the case of single faults, the width of the fault zone and the total fault length 

increase with progressive deformation. The fault densities initially increase and then 

remain approximately constant with increasing extension, although the density 

measured with respect to the final area of the deformation zone increases. Because of 

the progressive transfer of deformation from the flanks to the apex, the fault density and 

the width of the transfer zone are both lower near the apex than on the flanks in the 

initial stages of deformation. 
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Figures 

 

                                        

Figure 2.1 Experimental model of the progressive evolution of an extensional fault-propagation fold 
(drape fold) related to a basement fault dipping 60 degrees in profile view. The basement slip is 
dissipated within the trishear zone bounded by the anticlinal (A) and synclinal (S) axial surfaces. 
The positions of A and S shown are the final positions at the end of the experiment. Modified from 
Miller and Mitra (2011). 
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Figure 2.2 Experimental setup showing the configuration of the base plates, the moving and fixed 
backstops, and the stiff and soft clay, which represent the basement and overlying sedimentary 
cover. Pre-existing cuts in the stiff clay represent preexisting basement faults which propagate both 
laterally and upwards through the soft clay with extension. a. Single faults. b. Trapdoors consisting 
of two intersecting faults. 
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Figure 2.3 Summary of map views of experiments with initial basement fault configurations. Single 
faults modeled included through going and terminating faults, and faults orthogonal and oblique to 
the direction of extension. Trapdoor geometries with different intersecting angles, and with 
connecting or propagating faults were modeled. 
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Figure 2.4 Method of surface correction to eliminate initial topography of top surface. a. Basic 
method (see text for explanation). b. Initial uncorrected surface. c. Difference surface used to 
flatten final surface. d. Uncorrected deformed surface. e. Corrected deformed surface. 
 
 

                              
Figure 2.5 Parameters used to calculated different density types (Di, Df, and Dm) and width of the 
fault zones. 
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Figure 2.6 Evolution of structural geometries and fault patterns in map view for a trishear zone 
associated with a throughgoing basement fault normal to the extension direction. Moving plate is 
towards the north. The contoured and gridded structure map, fault patterns and fault orientations 
for the top of the soft clay, are shown for each stage of deformation.   Extension is 0.2 cm (a), 0.6 cm 
(b), and 1.0cm (c). Rose diagrams show main orientations of faults measured. Bars show percentage 
of total length of faults for each orientation. For this and other similar figures showing 
experimental results, an arbitrary north arrow is assigned as a reference to describe orientations of 
faults. On the contoured structure map, red and yellow indicate high elevations and blue and green 
represent low elevations. Synthetic faults are shown in red, and antithetic faults and rotated 
synthetic faults which dip opposite to the main fault are shown in blue. 
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Figure 2.7 Oblique photographs showing secondary faults at the top of the soft clay for a 
throughgoing basement fault. a. Basement fault at 90 degrees to the direction of extension. Fault 
zone is made up of approximately parallel, overlapping and anastomosing individual faults. b. 
Basement fault at 60 degrees to the extension direction. Faults curve into an orientation normal to 
the direction of extension and many of them curve significantly to dip opposite to the main fault. 
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Figure 2.8 Evolution of structural geometries and fault patterns in map view for a basement fault 
normal to the extension direction, and terminating in the middle. The contoured and gridded 
structure map, fault patterns and fault orientations for the top of the soft clay, are shown for each 
stage of deformation.   Extension is 0.2 cm (a), 0.37 cm (b), and 0. 61 cm (c). Rose diagrams show 
main orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. Initial basement fault geometry is shown in a and b, and the final curved final 
geometry is shown in c. 
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Figure 2.9 Oblique photograph showing secondary faults at the top of the soft clay for a 
terminating basement fault. Faults show an echelon pattern with trends that are oblique to the 
main fault. 
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Figure 2.10 Comparison of final structural geometries and fault patterns in map view for a 
basement fault terminating in both directions. The contoured and gridded structure map, fault 
patterns and fault orientations for the top of the soft clay, are shown. a, b, and c, show patterns of 
basement faults that are at angles of 90, 75 and 60 degrees to the direction of extension, 
respectively. Basement fault geometries are shown for the final deformed state. 
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Figure 2.11 Evolution of structural geometries and fault patterns in map view for a throughgoing 
basement fault at 60 degrees to the extension direction. The contoured and gridded structure map, 
fault patterns and fault orientations for the top of the soft clay, are shown for each stage of 
deformation.   . Rose diagrams show main orientations of faults measured. Bars show percentage of 
total length of faults for each orientation. 
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Figure 2.12 Comparison of final structural geometries and fault patterns in map view for a 
throughgoing basement fault at different angles to the extension direction. The contoured and 
gridded structure map, fault patterns and fault orientations for the top of the soft clay, are shown. 
a, b, and c show patterns of basement faults that are at angles of 90, 75 and 60 degrees to the 
direction of extension, respectively. Note the increased curvature of secondary faults from the 
boundaries to the center of the fault zone, and the larger number of rotated and antithetic faults 
(blue) for the 75 and 60 degree cases. 
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Figure 2.13 Evolution of structural geometries and fault patterns in map view for a terminating 
basement fault at 75 degrees to the extension direction. The contoured and gridded structure map, 
fault patterns and fault orientations for the top of the soft clay, are shown for each stage of 
deformation. Rose diagrams show main orientations of faults measured. Bars show percentage of 
total length of faults for each orientation. Initial basement fault geometry is shown in a and b, and 
the final curved final geometry is shown in c. 
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Figure 2.14 Plots of density (Di, Dm, and Df) and the width of the fault zone for different stages of 
deformation for basement faults with different configurations. a and b. Through going fault at 90 
degrees to direction of extension. c and d. Through going fault at 60 degrees to direction of 
extension. e and f. Terminating fault at 90 degrees to direction of extension. 
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Figure 2.15 Continuous density plots for the deformation zone for different fault configurations. a. 
Throughgoing fault at 90 degrees to direction of extension. b. Through going fault at 60 degrees to 
direction of extension. c. Terminating fault at 90 degrees to direction of extension. 
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Figure 2.16 Maps for the (a) top Brent sandstone in the Heather structure and (b) the base 
Cretaceous unconformity in the Ninian structure in the Viking graben, North Sea. The trapdoor 
geometry of the structures is evident from the change in the trends of the faults and the structure 
along trend. For the Ninian structure the updip edge of the footwall block is eroded by the base 
Cretaceous unconformity. Modified from Gray and Barnes (1981) and Harding (1984). 
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Figure 2.17 Evolution of structural geometries and fault patterns in map view for a trapdoor 
structure related to two faults dipping 60 degrees and intersecting at an angle of 120 degrees. The 
contoured and gridded structure map, fault patterns and fault orientations for the top of the soft 
clay, are shown for each stage of deformation. Rose diagrams show main orientations of faults 
measured. Bars show percentage of total length of faults for each orientation. Initial basement fault 
geometry is shown with dashed lines. 
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Figure 2.18 Plots of density (Di, Dm, and Df) and the width of the fault zone for different stages of 
deformation for basement faults associated with trapdoor structures with 120 degree intersections 
between faults. a. Variation in density for the different parts of the structure. b. Density variations 
for the entire structure. c. Width of the fault zone for different parts of the structure. 
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Figure 2.19 Evolution of structural geometries and fault patterns in map view for a trapdoor 
structure related to two terminating faults dipping 60 degrees with the projected trends 
intersecting at an angle of 120 degrees. The trapdoor structure results from the propagation of the 
two faults to the apical area. The contoured and gridded structure map, fault patterns and fault 
orientations for the top of the soft clay are shown for each stage of deformation. Rose diagrams 
show main orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. Initial basement fault geometry is shown with dashed lines. 
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Figure 2.20 Plots of density (Di, Dm, and Df) and the width of the fault zone for different stages of 
deformation for basement faults associated with trapdoor structures with propagating faults.  The 
projections of the two faults intersect at 120 degree intersections. a. Variation in density for the 
different parts of the structure. b. Density variations for the entire structure. c. Width of the fault 
zone for different parts of the structure. 
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Figure 2.21 Comparison of final structural geometries and fault patterns in map view for trapdoor 
structures with different interesting angles. a. 90 degree intersection. b. 120 degree intersection. c. 
Terminating basement faults with a 120 degree intersection. d. 140 degree intersection. The 
contoured and gridded structure map, fault patterns and fault orientations for the top of the soft 
clay, are shown. See text for major differences. 
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Figure 2.22 Photograph of the frontal limb of a drape fold formed on a trapdoor structure formed 
by two faults intersecting at 90 degrees. Note the progressive transfer of slip towards the apex from 
the back to the front along en echelon faults connected by relay ramps. Strike-slip faults transfer 
slip between some of the normal faults (inset shows details). 
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Figure 2.23 Plots of density (Di, Dm, and Df) and the width of the fault zone for different stages of 
deformation for basement faults associated with trapdoor structures formed by intersecting faults 
with a 90 degree angle. a. Variation in density for the different parts of the structure. b. Density 
variations for the entire structure. c. Width of the fault zone for different parts of the structure. 
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CHAPTER 3  
EXPERIMENTAL MODELS OF TRANSFER ZONES IN RIFT 

SYSTEMS 
 

Abstract 

Transfer zones in rift basins are classified into convergent, divergent, and 

synthetic, based on the relative dip directions of adjacent faults within the transfer zone. 

Experimental models were constructed to determine the geometry, evolution and fault 

patterns associated with each of these transfer zones. In addition, basement faults with 

initial approaching, lateral offset and overlapping geometries were modeled. The 

models consisted of two layers, with stiff clay representing basement and soft clay 

representing the sedimentary cover. Laser scanning and three-dimensional surface 

modeling were used to determine the map geometry to compare the models with 

examples of natural structures. The experimental models showed many similarities with 

conceptual models, but also showed more details and a few significant differences. 

Typically, divergent transfer zones are narrower than convergent transfer zones, for the 

same initial spacing between basement faults. The differences between the different 

initial fault configurations (approaching, laterally offset, or overlapping) are the degree 

of interaction of the secondary faults, the amount of overlap between the fault zones, 

and in some cases, the width of the transfer zone. The main faults propagate laterally 

and upward and curve in the direction of dip of the faults, so that the faults curve 

towards each other in convergent transfer zones, away from each other in divergent 

transfer zones, and in the same direction in synthetic transfer zones.  A primary 

difference with schematic models is the significant component of extensional fault 

propagation folding (drape folding), accompanied by secondary faulting within the 
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sedimentary cover, especially in the early stages of fault propagation. Therefore, all 

three types of transfer zones are characterized by significant folding and related 

variations in the shapes of structures. The transfer zones are marked by a progressive 

change in relief from the footwall to the hanging wall, resulting in a saddle-shaped 

geometry. The hanging walls of the faults are marked by a gentle flexure or rollover 

into the fault, with the amount of flexure increasing with fault throw away from the 

fault tip. The geometries and fault patterns of the experimental structures match some of 

the observations in natural structures, and also provide predictive analogs for 

interpretation of surface and subsurface structures and the delineation of structural traps 

in rift basins. 
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3.1 Introduction 

Transfer zones are common features in rift basins, where deformation between 

normal faults is accommodated by the formation of oblique structures and complex 

secondary fault systems. The transfer zones result from the interference between 

adjacent laterally propagating normal faults. Three common types of transfer zones are: 

(1) Convergent, with the main faults dipping towards each other (2) Divergent, with the 

main faults dipping away from each other, and (3) Synthetic, with the faults dipping in 

the same direction (Figure 3.1). Schematic models of the map geometries of primary 

and secondary faults in the transfer zone, and the resulting structural geometries were 

described by Rosendahl (1987), and subsequently by Morley et al (1990) and Faulds 

and Varga (1998). Rosendahl (1987) classified the transfer zones into high relief and 

low relief accommodation zones, and also described similar polarity half grabens. 

Morley et al (1990) classified the transfer zones into convergent, divergent, and 

synthetic based on their relative attitude and dip directions of major faults, and into 

approaching, partially overlapping, overlapping (collateral), and collinear, depending on 

the relative positions of the tips of the adjacent faults. Some of the terms coined by 

Morley et al (1990) are commonly used to describe transfer zone geometries.  

Detailed studies of transfer zones in rift systems have been conducted by many authors, 

who have addressed fault linkages and displacement transfer between faults (Peacock 

and Sanderson, 1991; Trudgill and Cartwright, 1994; Huggins et al., 1995; Childs et al., 

1995; Crider and Pollard, 1998; Gupta et al, 1998; Moore and Schultz, 1999; Gupta and 

Scholz, 2000; Crider, 2001; Younes and McClay, 2002; Fossen et al, 2010), structural 

variations within different transfer zones (Rosendahl, 1987;  Larsen, 1988; Morley et al, 
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1990; Younes and McClay ,2002; Nelson et al, 1992; Moustafa, 2002), controls of 

sedimentation patterns by relay ramps (Gawthorpe and Hurst, 1993; Athmer and Luthi, 

2011)  and hydrocarbon traps related to the transfer zones (Rosendahl, 1987; Morley et 

al., 1990; Fossen et al, 2010).  

Rosendahl (1987) and Morley et al (1990) documented the detailed structures in transfer 

zones in the East African rift systems. Scott and Rosendahl (1989) compared the 

transfer zones in the East African rift system with those in the Viking graben.  Ebinger 

(1989), Morley et al (1990), Younes and McClay (2002) and Moustafa (2002) mapped 

transfer zones in the Gulf of Suez- Red Sea area, with particular emphasis of the 

formation of secondary fault arrays in these areas. Larsen (1988) documented different 

transfer zone configurations in East Greenland. These and other studies have 

significantly added to the understanding of transfer zone geometries and their evolution. 

In this paper, some experimental models of transfer zones were developed to better 

understand their geometry and evolution, and to compare with observations in surface 

and subsurface structures. Two- layer models with stiff clay representing basement and 

soft clay representing the sedimentary cover were used in the experiments. Convergent, 

divergent and synthetic structures are modeled, and for each case, basement faults with 

approaching, laterally offset, and overlapping geometries are considered. 

Documentation of both the fault patterns and the three-dimensional topologies of the 

surfaces with progressive evolution enable an understanding of the nature of secondary 

faults and structural geometry.  

One of the key differences in the model results is a significant component of drape 

folding within the soft clay, accompanied by the distribution of slip along a number of 



59 

secondary faults. This also results in a characteristic saddle shape of the transfer zones, 

which has not been previously documented. 

Transfer zones have been identified as important locations for the development of 

structural traps (Morley et al, 1990). Therefore the details of the saddle-shaped 

geometry of transfer zones resulting from drape folding will be important in the 

interpretation of structures and delineation of traps in rift basins. 

3.2 Previous Experimental Studies 

Experimental models have been used to understand the geometry and evolution 

of macroscopic extensional structures. Rift structures involving planar basement normal 

faults have been investigated using both clay and sand models (Sanford, 1959; 

Horsfield, 1977; Withjack et al., 1990; Withjack and Calloway, 2000; Jin and 

Groshong, 2006; Miller and Mitra, 2011). Withjack et al. (1990) studied the propagation 

of faults from the basement to the sedimentary cover and the resulting formation of 

drape or forced folds and secondary faults. Similar experiments were also conducted by 

Jin and Groshong (2006) and Miller and Mitra (2011), who also found similar results. 

Withjack and Calloway (2000) further investigated the role of salt layers in the 

evolution of the structures and related faults.  

Three-dimensional models investigating the effects of oblique slip on normal faults and 

their controls on the component of strike-slip deformation have also been conducted 

(Withjack and Jamison, 1986; Serra and Nelson, 1988). McClay and White (1995) and 

McClay et al (2002) also used sand models to examine the orientations and patterns of 

secondary faults for pure and oblique extension. Analog experimental sand models have 

also been conducted in order to understand the role of salt in the formation of transfer 
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zones (Le Calvez and Vendeville, 2002). Most of these studies have examined the cross 

sectional geometry and evolution of faults and related folds. However, experimental 

approaches have not been applied to study the map geometry and evolution of transfer 

zones. 

Previous experimental models mostly used rigid blocks to represent basement, and soft 

materials (sand or clay) to represent the overlying sedimentary rocks. Although these 

configurations were appropriate for the study of the cross sectional geometries of 

structures, or oblique slip on through going faults, they are not suitable for modeling 

transfer zones, which involve the lateral propagation of faults, and variable slip along 

strike on the main faults. Precut faults in rigid blocks cannot propagate with increasing 

extension, and need to be replaced by material which enables fault propagation. 

Furthermore, variable fault slip along trend involves flexure, which must be 

accommodated by internal strain in the vicinity of the faults to prevent gaps from 

opening up. 

3.3 Experimental Methodology 

3.3.1 Experimental Setup 

Clay experiments were conducted using a motor driven apparatus for 

convergent, divergent and synthetic transfer zones. For each of these transfer zones, 

models were conducted for approaching, overlapping and laterally offset faults. Each 

experiment was repeated at least twice to ensure repeatability.  

The apparatus is made up of two plexiglass backstops, one of which is fixed, while the 

other is connected to two motors which control the rate of motion (Figure 3.2). The 

competency contrast between the weaker cover units and the rigid basement was 
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modeled by choosing stiff clay for the basement and soft clay for the cover units. Cuts 

in the stiff clay were used to model pre-existing basement normal faults which resulted 

in the propagation of faults through the stiff and wet clay. This combination of materials 

for the basement/sedimentary cover package has been successfully applied to model 

both strike-slip faults (Mitra and Paul, 2011) and basement involved compressive 

structures (Paul and Mitra, 2012). The stiff clay has a density of 1.85 gm/cc and a 

thickness of 1 inch (2.5 cm). The soft clay has a density of 1.6-1.65 gm/cc and a 

thickness of 1inch (2.5 cm). There is a significant contrast in strength between the stiff 

and soft clay that influences the nature of deformation of the structures.  

There are a number of advantages of using stiff clay over the rigid metal or wooden 

blocks used in most of the earlier work on experimental analog modeling. The stiff clay 

can be cut to produce specific pre-existing fault geometries or discontinuities in the 

basement, including terminating faults. Moreover, the stiff clay can deform in the 

vicinity of the main faults and also develop secondary faults. These factors are critical 

in modeling transfer zones, which involve laterally propagating faults with variable slip, 

so that basement must deform, at least locally, adjacent to the faults. The main 

advantage of using wet clay is that it allows a good definition of geometry and 

evolution of faults.  

Major faults were modeled with a dip of 60 degrees.  Movement on the faults was 

initiated by movement of the movable plate, which caused the fault blocks to drop down 

along the preexisting fault cuts. The rates of shortening were kept constant at about 

0.0005 cm/sec for all experiments. For scaling and limitation of the experimental 

models refer to Chapter 2 Section 2.3.2.  
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3.3.2 Experimental Configurations 

Three main experimental configurations were used, representing divergent, 

convergent, and synthetic transfer zones. Pre-existing cuts in the stiff clay provided the 

discontinuities along which the faults propagated both laterally within the stiff clay, as 

well as upward through the soft clay. The pre-existing cuts dipped away from each 

other for divergent, towards each other for convergent, and in the same direction for 

synthetic transfer zones. The stiff clay representing the basement was always thinner in 

the hanging wall blocks to allow these blocks to drop down along planar faults. 

However, there was sufficient thickness of the stiff clay in the hanging wall to prevent 

deformation by body forces. 

For each of these types of transfer zones, initially approaching, lateral offset, and 

overlapping fault pairs were investigated (Figure 3.3). In contrast to these terms being 

applied to final configurations of basement faults (Morley et al, 1990), these precut 

geometries represent different configurations of discontinuities in the basement prior to 

the propagation of the faults, resulting in different transfer zone geometries. All of these 

configurations result in overlapping fault geometries in the final stages of deformation, 

but the degree of overlap and the nature of fault interactions vary. 

3.4 Analysis of Data 

The models were used to study the three-dimensional and map geometry of the 

structures and related faults, as well as the patterns and orientations of secondary faults. 

Therefore, data analysis was conducted on two datasets: (1) fault data that were 

digitized and extracted from the photographs, and (2) scanner data, obtained as point 

clouds, which were used to develop 3-D models of the surface. 
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3.4.1 Fault Patterns and Orientations 

Photographs taken at approximately two minute intervals during the experiment 

were used for the analysis of the variation of orientation of the faults. Fault patterns 

were analyzed for different stages of formation of the structures to document their 

evolution with time. Rose diagrams were used to document the map trends (strikes) of 

the secondary faults. 

3.4.2 3-D Surface Analysis 

The surface of the soft clay was modeled to study the three-dimensional 

geometry of the structure. Point sets obtained from laser-scanning were used to build 

the surfaces and to develop grids and contours. The horizontal and vertical resolution of 

the point sets was75 DPI (~0.015 inches 

point density). This enabled mapping of faults with a minimum vertical separation of 

approximately 0.4 mm. The details of the method of laser-scanning and modeling of 

surfaces are discussed by Bose and Mitra (2010). The modeled surfaces were compared 

with the photographs to incorporate the detailed geometry of the fault surfaces (Figure 

3.4). Major faults and many minor faults were mapped and cut out on the unsmoothed 

surfaces (Figure 3.4b). Some of the smallest faults were not mapped because of 

resolution limitations. A number of closely-spaced minor faults were sometimes 

mapped as a single fault, if they could not be mapped separately because of resolution 

problems. The faults and faulted surfaces were then smoothed before contouring the 

surfaces to determine the final topology (Figure 3.4c). This approach enabled the 

surfaces to be correctly contoured incorporating all major and many secondary faults. 
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The contour interval used for all the surfaces was 0.4 mm. Changes in the surface 

geometry were used to study the evolution of the structures and related faults. 

3.5 Experimental Results: 

In this section, the progressive evolution of structures and faults for convergent, 

divergent and synthetic transfer zones are discussed. Orientations of all features are 

described relative to an arbitrarily chosen north direction, which coincides with the 

direction of the moving backstop. 

3.5.1 Convergent Transfer Zones 

The structural and fault geometries were studied for three separate experimental 

setups, representing initial basement fault geometries which were approaching, laterally 

offset and overlapping.   A special case of the lateral offset, in which the two major 

faults are connected by a cross fault in the stiff clay was also conducted. 

Laterally Offset Faults 

For the laterally offset basement faults dipping towards each other (Figure 3.5a), initial 

extension (0.13 cm displacement) resulted in the propagation of the fault closest to the 

moving backstop (Figure 3.5b). The fault propagated to the top of the soft clay and 

developed an extensional fault propagation (drape) fold and related secondary faults. 

The secondary faults were mostly synthetic to the main fault and formed an 

anastomosing network, curving slightly towards the south at their eastern termination, 

so that the fault strikes varied from E-W to ENE-WSW. 

With increasing displacement the fault zone continued to spread eastward, and 

deformation progressed to the southeastern basement fault, where a similar drape fold 

and related fault zone developed at 0.23 cm of displacement (Figure 3.5c). 
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Subsequently, two well defined overlapping fault zones developed (0.33 cm 

displacement- Figure 3.5d), separated by a transfer zone connecting the points of 

termination of the two fault zones. The secondary faults connected to form major faults 

in the northern area.  

As the transfer zone matured, each fault zone developed a major drape fold immediately 

above the basement fault and a gentle rollover structure with decreasing elevation in the 

vicinity of the fault zones (Figures 3.5e and f). In the very late stages (0.53 cm 

displacement), major faults developed at the top of the soft clay above each of the 

basement faults. The footwalls of the two fault zones were connected by an ENE-WNW 

trending low relief transfer zone (LRAZ of Rosendahl, 1987). The width of the transfer 

zone decreased in the middle, primarily as a result of significant drape folding along 

each major fault zone. The width also decreased with progressive evolution but the 

acute angle between the long axis of the LRAZ at its center and the strike of the fault 

zones (approximately 34˚) remained approximately constant. A system of south dipping 

antithetic faults formed on the rollover above the southern fault. These faults also 

extended into the transfer zone, where the faults swung into more ENE-WNW trends, as 

documented in the rose diagrams. A series of horst-graben structures developed due to 

the interaction of the north-and south dipping faults. 

A separate experiment was conducted in which the tips of the two faults in the basement 

were connected by a lateral discontinuity in the basement (Figure 3.6). In this case, 

extension resulted in the basement forming two separate half graben, separated by a 

lateral fault with a scissor geometry (see also Moustafa, 2002). The overlying soft clay 

was not cut by the lateral fault, but exhibited a through-going half graben marked by a 
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bend located above the basement transfer fault, and with opposite polarities on opposite 

sides. In this case, there was no ridge marking the transfer zone. 

Comparison of Approaching, Laterally Offset and Overlapping Faults 

Basement faults with approaching and overlapping relationships exhibited a fairly 

similar evolution and final geometry (Figure 3.7).All cases resulted in a final 

overlapping geometry of the fault zones, and saddle –shaped LRAZ’s which made an 

acute angle with the fault zones in the center and curved into the footwall areas of each 

fault zone. This observation is in contrast to the elongate dome-shaped geometry of the 

transfer zone resulting from pure faulting in the models proposed by Rosendahl (1987) 

and Morley et al (1990). The saddle-shaped transfer zones are the result of significant 

drape folding immediately above master faults, which is common in all types of transfer 

zones.  

An example of drape folding above a basement master fault was documented by 

Moustafa (2002) from the east central part of the Suez rift. In this area the Sinai massif 

fault branches into two splays, the Wadi Sidri and Hadahid faults, near its termination 

(Figure 3.8). These two splays delineate the boundaries of the drape folding. If drape 

folding is more common than previously documented in rift settings, the saddle shape of 

transfer zones exhibited in the models should also be expected. In addition to drape 

folding a gentle flexure or rollover developed in the hanging walls of the main faults. 

This resulted in the formation of antithetic faults in the hanging wall. Documented 

examples of flexure, such as from the Rusizi basin in the East African rift system 

(Ebinger, 1989) exhibit the formation of antithetic faults (Figure 3.9b). 



67 

The primary differences between the approaching, laterally offset, and overlapping 

initial geometries of basement faults were as follows. The width of the accommodation 

zone connecting the footwalls of the major faults was greatest in the case of 

approaching faults, and least for overlapping faults. The angle between the major faults 

and the axis of the LRAZ also decreases from approximately 45 degrees for the 

approaching faults to 34 degrees for the laterally offset faults, and 24 degrees for the 

overlapping faults. Also, interaction between the two fault zones initiated earliest in the 

case of overlapping faults and latest for the approaching faults. 

3.5.2 Divergent Transfer Zone 

Divergent transfer zones formed above basement faults with approximately the 

same spacing as those in convergent zones are much narrower, because the fault zones 

propagate towards each other during upward fault propagation (Figure 3.10). As in the 

case of the convergent transfer zone, the basement fault to the northwest, or closer to 

the moving plate, is the first to propagate upward. 

Laterally Offset Faults 

For laterally offset basement faults (Figure 3.11 a), initial movement results in the 

progressive development of a fault zone above the basement fault and the formation of a 

drape fold (Figures 3.12b and c). A linear trough forms at the base of the drape fold. 

Movement on the southern fault, results in the formation of a fault zone at the top of the 

soft clay when the displacement reaches 0.39 cm. A broad ridge oriented approximately 

ENE-WSW develops between the two fault zones. This ridge corresponds to the high-

relief accommodation zone of Rosendahl (1987). The ridge is narrowest in the middle, 

because of the effects of drape folding.  
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Some of the secondary faults above the north-dipping basement fault coalesce to form a 

major east west fault as the displacement approaches 0.47 cm (Figure 3.11d).  As the 

two sets of faults approach, they curve away from each other, resulting in the 

development of ENE-WSW trends which are displayed on the rose diagram (Figure 

3.10; Figures 3.11 e and f). The curvature of faults away from each other in divergent 

transfer zones has been documented by Morley et al (1990) from the Lake Turkana 

area, in the East African rift system (Figure 3.9c). Additional displacement results in 

increasing displacement on both sets of faults, the development of two overlapping 

systems of major faults, and the progressive narrowing of the transfer zone (Figures 

3.11e and f). 

Comparisons of Approaching, Laterally Offset and Overlapping Faults 

Initially approaching or overlapping geometries of basement faults resulted in relatively 

similar geometries of the transfer zones. In all cases, the transfer zone was very narrow, 

because for any given lateral spacing of basement faults, upward propagation of faults 

results in a narrower transfer zone for the divergent case (Figure 3.12). However both 

the approaching and laterally offset cases result in more interference between curved 

secondary faults which eventually propagate into the transfer zone (Figures 3.12 a and b 

and 3.10). On the other hand, initially overlapping basement faults exhibit more linear 

fault propagation defining a less faulted transfer zone connecting the two footwalls 

(Figures 3.12c and 3.13).There was also not a discernible change in the width or the 

orientation of the transfer zones among the three cases, as in the case of the convergent 

transfer zones, perhaps due to the very narrow transfer zone. 
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Many natural examples of divergent transfer zones are narrow, and approach the 

collinear geometry described by Morley et al (1990). In the Kivu and Rusizi basins in 

the East African rift system (Figures 3.9a and b), a convergent transfer zone forming the 

Kivu basin is immediately adjacent to a divergent transfer zone, separating the Kivu and 

Rusizi basin (Figure 3.9a). The convergent transfer zone is wide compared to the 

narrow sinuous ridge forming the divergent transfer zone. 

3.5.3 Synthetic Transfer Zones 

Synthetic transfer zones were modeled for basement fault cuts dipping in the 

same direction, with approaching, laterally offset, and overlapping initial geometries. 

The moving plate was pulled away in the dip direction of the faults as might be 

expected in a rift setting. The geometry, evolution, and the fault patterns for the initial 

laterally offset geometry of basement faults are presented, and the final geometries are 

compared for the approaching, and overlapping initial geometries. 

Laterally Offset Faults 

For an initially laterally offset pair of faults (Figure 3.14a), initial extension (0.14 cm 

displacement; Figure 3.14b) results in regions of drape folding above the basement 

faults, followed by the development of a zone of secondary normal faults approximately 

parallel to the basement faults (0.29 cm displacement; Figure 3.14c). Each fault is 

marked by a decrease in the fault throw towards the fault tip, resulting in synclines in 

the hanging wall blocks which plunge away from each other. The top of the soft clay 

returns to its regional position towards the moving plate so that the broad flexure that 

forms the syncline in the hanging wall of each fault returns to a horizontal geometry 



70 

towards the northern edge.  The fault zone closer to the moving plate propagated further 

laterally than the more distant fault.  

Increasing displacement (0.42 cm; Figure 3.14d) results in the coalescence of the 

secondary normal faults to form one or more laterally continuous faults. These larger 

faults show significant changes in trend, suggesting that they formed by the coalescence 

of a number of secondary en echelon faults. The major faults curve towards their dip 

direction near their termination.  A few antithetic faults form due to the well-developed 

flexure in the hanging walls of both major faults. A well-defined oblique ramp trending 

approximately 20 degrees to the trend of the major faults connects the undeformed parts 

of the hanging walls of adjacent faults.  Although this ramp generally slopes to the 

ENE, it reverses slope in the undeformed zone of the northern fault, forming an 

asymmetric saddle. In the final stages (0.53 cm and 0.67 cm displacement; Figure 

3.14e-f), lateral propagation of the northern main fault zone forms a series of short 

subparallel faults, breaching the oblique ramp across its lowest area and separating the 

southern rollover structure from the northern one. Also, additional faults propagate into 

the hanging walls of previously developed major faults. 

Fault patterns in the rose diagrams exhibit a dominant east west trend in the early stages 

of extension, but the progressive development of more WNW and ENE trends with 

ongoing deformation (Figure 3.14). This is primarily due to the curvature of the faults 

with lateral propagation along plunging synclines. The ENE trend is more dominant 

than the WNW trend because of the larger number and greater lengths of fault strands 

along the northern fault, which curve towards an ENE trend. 

Comparisons of Approaching, Laterally Offset and Overlapping Faults 
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Initially approaching, laterally offset and overlapping basement fault geometries result 

in some small differences in the geometry and trend of the faults, and the transfer zone 

(Figure 3.15). For both overlapping and laterally offset initial basement faults, the fault 

closer to the moving plate exhibited greater lateral propagation, and therefore a larger 

overlap of the major faults (Figure 3.15). In the approaching case, the fault closer to the 

moving plate also propagated farther, but the degree of overlap was less. The fault tips 

also showed significant curvature closer to the transfer zone.  

All cases showed fault patterns with both WNW and ENE trends due to the curvature of 

the faults in the direction of propagation. Because of the greater propagation of the 

northern fault the ENE trend was more dominant than the WNW trend. The transfer 

zones showed a reversal in slope and were generally narrower at their lowest point. A 

number of south dipping antithetic faults developed during the formation of the rollover 

flexure in the hanging walls of all structures. 

The basement configuration of the faults in the stiff clay (Figure 3.16a) is very similar 

in geometry to the model documented by Morley et al (1990), and to many of the 

surface and subsurface examples cited in the literature. This is because the stiff clay 

does not develop any drape folding or secondary faults. The primary differences for the 

geometry of the top of the soft clay are the additional component of drape folding and 

secondary faulting that results in a progressive, rather than abrupt change in the slope of 

the ramp (Figure 3.16b), and the reversal in slope of the oblique ramp. The hanging 

walls of the faults return to their regional positions both laterally and longitudinally 

from the major faults. Therefore, the northern block is at approximately the same 

regional level as the footwall of the southern block. Most conceptual models and natural 
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examples of synthetic transfer zones show a progressive downward drop of the blocks 

in the dip direction resulting in relay ramps with a single slope (Morley et al, 1990; 

Larsen, 1988). This results if there is a progressive downward drop of structures into the 

basin, or if there is a regional slope that is in the same direction as the dip direction of 

the faults, both of which are common in many basins. 

3.6 Discussion and Conclusions 

The experiments provide some important insights regarding the geometry of 

transfer zones and the evolution and interference of the faults with progressive 

evolution. Many of the features of the models closely resemble previous classifications 

of transfer zones (Rosendahl, 1987; Morley et al, 1990). However, more details 

regarding the structural geometries and fault patterns were obtained from the mapping 

and fault analysis. The experimental models also show some significant differences 

with the conceptual models. Some of the key similarities and differences are discussed 

below.  

For any given lateral spacing of basement faults, the transfer zones in the overlying 

sedimentary cover are narrower for divergent than for convergent transfer zones. 

Because the faults dip away from each other in divergent zones, the upward propagation 

of the basement faults into the overlying sedimentary units results in narrowing of the 

area between the two faults, whereas convergent transfer zones show an increase in the 

spacing between the faults.  Therefore, many divergent transfer zones are narrow, and 

approach the collinear geometry described by Morley et al (1990). This effect is 

observed in the Kivu and Rusizi basins in the East African rift system, where a 

convergent transfer zone forming the Kivu basin is immediately adjacent to a divergent 
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transfer zone, separating the Kivu and Rusizi basin. The convergent transfer zone is 

wide compared to the narrow sinuous ridge forming the divergent transfer zone. The 

spacing is approximately constant for synthetic transfer zones.  

In convergent, divergent, and synthetic transfer zones, initial configurations of 

approaching, laterally offset, and overlapping all result in overlap of the fault zones in 

the cover. The difference is in the degree of overlap, and in some cases, the resulting 

width of the transfer zone. Typically, broader and narrower transfer zones are indicative 

of initially approaching and overlapping geometry of the underlying basement faults, 

respectively. The effects are most apparent in convergent transfer zones, for which both 

the width and the orientation of the transfer zone indicate the initial basement fault 

configurations. Secondary faults on the cover units show more of linear lateral fault 

propagation for initially overlapping basement faults. Lateral propagation of the 

secondary faults in a curved path is indicative of an initially approaching geometry of 

the basement faults.  

The lateral propagation of the major faults results in interference of the secondary 

faults. Typically, the faults curve in their direction of dip where they terminate. 

Therefore the curvatures of the secondary faults towards each other, away from each 

other or in the same direction are indicative of convergent, divergent and synthetic 

transfer zone geometry of the underlying basement faults, respectively. These 

observations are in agreement with conceptualized models and related examples of real 

transfer zones (Morley et al, 1990). With continued displacement, new faults propagate 

laterally and also curve inward, resulting in a series of en echelon faults with curved 

geometries. 



74 

The hanging walls of the faults are marked by a gentle flexure or rollover into the fault, 

with the amount of flexure increasing with fault throw away from the fault tip. The 

propagation of the faults from the stiff to the soft clay results in upward steepening of 

the fault. Downward movement of the hanging wall through the downward shallowing 

fault is the primary cause of the flexure in the hanging wall.  Significant rollover also 

results in the formation of antithetic faults which accommodate the formation of the 

flexure. This is apparent in the experimental models and has also been documented in 

natural examples, such as in the Kivu and Rusizi basins (Ebinger, 1989). 

A primary difference with schematic models is the significant component of extensional 

fault propagation folding (drape folding), accompanied by a zone of secondary faulting 

within the sedimentary cover in the early stages of fault propagation. Eventually one or 

more of the faults break through the entire cover as major faults. Therefore, all three 

types of transfer zones are characterized by significant folding and related variations in 

the shapes of structures. The transfer zones are marked by a progressive change in relief 

from the footwall to the hanging wall. Although the effects of drape folding have been 

documented both in experiment and conceptual models (Withjack et al, 1995; 

Schlische, 1995), as well as in subsurface examples (Scott and Rosendahl, 1989), its 

effects have not been incorporated in conceptual models of transfer zones. The 

experimental models demonstrate the difference in geometry resulting from the effects 

of drape folding.  Transfer zones are believed to be important location for the 

development of hydrocarbon traps in rift basins. Therefore, the differences in geometry 

would be important in subsurface interpretation in areas with poor data quality, and in 

mapping potential prospects involving structural traps in rift basins. 
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Figures 

 

Figure 3.1 Common transfer zone geometries in rift systems. a. Convergent transfer zone. b. 
Divergent transfer zone. c. Synthetic transfer zone (based on Morley et al., 1990 and Bose and 
Mitra, 2010). 
 
 

                            

Figure 3.2 Oblique view of the experimental setup showing the configuration of the base plates, the 
moving and fixed backstops, and the stiff and soft clay, which represent the basement and overlying 
sedimentary cover. Pre-existing cuts in the stiff clay represent preexisting basement faults which 
propagate both laterally and upwards through the soft clay with extension. 
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Figure 3.3 Oblique view of the experimental configurations used to model (a) convergent, (b) 
divergent, and (c) synthetic transfer zones. For each type of transfer zone, cuts in the stiff clay 
representing initially approaching, laterally offset, and overlapping geometries were modeled.  The 
overlying soft clay, representing the sedimentary cover, did not have any pre-existing faults. 
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Figure 3.4 Method of incorporating faults in mapped 3-D surfaces. a. Unsmoothed surface modeled 
from point cloud obtained by laser scanning showing fault escarpment. b. Fault cuts based on sharp 
changes in relief on the modeled surface and comparison with digitized faults on photographs. c. 
Final smoothed faults and contoured surface incorporating fault cuts. Contour interval for this 
display is 0.4 mm. 
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Figure 3.5 Progressive evolution of structural geometries and fault patterns in map view for a 
convergent transfer zone, with two pre-existing laterally offset faults dipping towards each other. 
Moving plate is towards the north. a. Initial fault geometry in stiff clay. b-f. Contoured structure 
map, fault patterns and fault orientations for the top of the soft clay, with progressive evolution.  
On the contoured structure map, red and yellow indicate high elevations and blue and green 
represent low elevations.  North dipping faults are shown in blue and south dipping faults are 
shown in red on the fault map. Displacements of moving plate are 0.13 cm (b), 0.23 cm (c), 0.33 cm 
(d), 0.44 cm (e), and 0.53 cm (f). Rose diagrams show main orientations of faults measured. Bars 
show percentage of total length of faults for each orientation. An arbitrary North arrow is assigned 
as a reference to describe orientations of faults. 
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Figure 3.6 Oblique view of top of stiff clay with two major faults dipping towards each other, 
forming a convergent transfer zone, and connected by a lateral transfer fault. Photograph taken at 
end of experiment after removal of soft clay. b. Oblique photograph of the top of soft clay for the 
same stage as (a ) showing a through-going graben without any expression of the lateral fault at the 
surface. c. Oblique view of the modeled surface of the top of the soft clay showing the opposite 
polarity of the half graben on either side of the lateral transfer fault. Vertical exaggeration is 2:1. 
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Figure 3.7 Comparison of final structural geometries, fault patterns and fault orientations for the 
top of the soft clay for convergent transfer zones with initially (a) approaching, (b) laterally offset, 
and (c) overlapping fault geometries in the stiff clay. The stages of deformation compared all have 
approximately the same total displacement. On the contoured structure map, red and yellow 
indicate high elevations and blue and green represent low elevations. North-dipping faults are 
shown in blue and south dipping faults are shown in red on the fault map. Rose diagrams show 
main orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. An arbitrary North arrow is assigned as a reference to describe orientations of faults. 
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Figure 3.8 Schematic diagram showing extensional fault-propagation (drape) folding along a major 
fault zone in the east central part of the Gulf of Suez rift. The Sinai Massif fault branches into two 
splays, the Wadi Sidri and Hadahid faults, near its termination, delineating the boundaries of the 
drape folding (modified from Moustafa, 2002). 
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Figure 3.9 a. Map of part of the East African rift system showing a number of transfer zones 
between mapped faults (modified from Morley et al, 1990). Boxed areas show locations of detailed 
figures in b and c. b. Schematic diagram (not to scale) showing the formation of synthetic and 
antithetic faults in a convergent transfer zone in the Rusizi basin (modified from Ebinger, 1989). 
Note the narrow divergent transfer zone immediately south of the broader convergent transfer 
zone. c. Complex divergent transfer zone showing the curvature of faults away from each other as 
they approach (modified from Morley et al, 1990). 
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Figure 3.10 Oblique photograph showing the top of the stiff clay for a divergent transfer zone with 
an initial laterally offset geometry. Photograph taken at end of experiment after removal of soft 
clay. b. Oblique photograph showing the top of the soft clay for the same experiment showing a 
narrow transfer zone with a number of en echelon curved faults along the major fault terminations. 
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Figure 3.11 Progressive evolution of structural geometries and fault patterns in map view for a 
divergent transfer zone, with two pre-existing laterally offset faults dipping away from each other. 
Moving plate is towards the north. a. Initial fault geometry in stiff clay. b-f. Contoured structure 
map, fault patterns and fault orientations for the top of the soft clay, with progressive evolution. 
Displacements of moving plate are, 0.31 cm (b), 0.39 cm (c), 0.47 cm (d), and 0.56 cm (e), and 0.65 
cm (f). Note the narrow divergent transfer zone at the top of the soft clay compared to the width of 
the transfer zone at the top of the stiff clay. On the contoured structure map, red and yellow 
indicate high elevations and blue and green represent low elevations. North dipping faults are 
shown in blue and south dipping faults are shown in red on the fault map. Rose diagrams show 
main orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. An arbitrary North arrow is assigned as a reference to describe orientations of faults. 
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Figure 3.12 Comparison of final structural geometries, fault patterns and fault orientations for the 
top of the soft clay for divergent transfer zones with initially (a) approaching, (b) laterally offset, 
and (c) overlapping fault geometries in the stiff clay. The stages of deformation compared all have 
approximately the same total displacement. On the contoured structure map, red and yellow 
indicate high elevations and blue and green represent low elevations. North dipping faults are 
shown in blue and south dipping faults are shown in red on the fault map. Rose diagrams show 
main orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. An arbitrary North arrow is assigned as a reference to describe orientations of faults. 
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Figure 3.13 Oblique photograph of the top of the soft clay for a divergent transfer zone with 
initially overlapping faults in the stiff clay. In this case a well-defined ramp separated by linear 
faults on either side marks the transfer zone (compare with Figure 10b). 
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Figure 3.14 Progressive evolution of structural geometries and fault patterns in map view for a 
synthetic transfer zone, with two pre-existing laterally offset faults dipping in the same direction. 
Moving plate is towards the north. a. Initial fault geometry in stiff clay. b-f. Contoured structure 
map, fault patterns and fault orientations for the top of the soft clay, with progressive evolution.  
Displacements of moving plate are 0.14 cm (b), 0.29 cm (c), 0.42 cm (d), 0.53 cm (e), and 0.67 cm (f). 
On the contoured structure map, red and yellow indicate high elevations and blue and green 
represent low elevations. North dipping faults are shown in blue and south dipping faults are 
shown in red on the fault map. Rose diagrams show main orientations of faults measured. 
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Figure 3.15 Comparison of final structural geometries, fault patterns and fault orientations for the 
top of the soft clay for synthetic transfer zones, with initially (a) approaching, (b) laterally offset, 
and (c) overlapping  fault geometries in the stiff clay. The stages of deformation compared all have 
approximately the same total displacement. On the contoured structure map, red and yellow 
indicate high elevations and blue and green represent low elevations. North dipping faults are 
shown in blue and south dipping faults are shown in red on the fault map. Rose diagrams show 
main orientations of faults measured. Bars show percentage of total length of faults for each 
orientation. An arbitrary North arrow is assigned as a reference to describe orientations of faults. 
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Figure 3.16 Oblique photographs of clay models of synthetic transfer zones for laterally offset pre-
existing basement faults. a. Top of stiff clay after removal of soft clay at the end of the experiment, 
showing two major faults separated by an oblique ramp. View looking west. b. Top of soft clay 
showing a more subtle oblique ramp separating two fault zones, with associated drape folding. 
View looking east. 
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CHAPTER 4  
FAULT EVOLUTION AND ROLE OF SALT IN DECOUPLING 

EXTENSIONAL DEFORMATION IN THE SMØRBUKK AREA OF 
THE HALTEN TERRACE, OFFSHORE MID-NORWAY: 

INSIGHTS FROM 3-D SEISMIC INTERPRETATION AND 
STRUCTURAL RESTORATION 

 

Abstract 

Thick layers of mechanically weak evaporite/anhydrite between basement and 

cover units are prevalent in many extensional settings that were tectonically active in 

geologic time.  The rheological heterogeneity due to the presence of such layers causes 

decoupling of the extensional deformation between the shallower and deeper regions. 

The degree to which the decoupling effect plays a significant role in defining the 

structural geometry is dependent on the mechanical stratigraphy of the weak layer and it 

overburden as well as the amount and rate of fault displacement. Even if the mechanical 

stratigraphy is favorable for decoupling of deformation hard linkage of basement and 

cover fault can still be achieved by an increase in the amount and rate of fault 

displacement. In many rift basins the amount and rate of fault displacement, which are 

indicators of the rift activity, are slow to begin with (‘rift initiation’) and is followed by 

a period of increased activity and subsidence (‘rift climax’). This study presents a 

structural analysis of the Smørbukk area of the Halten Terrace, offshore Mid-Norway.  

The area has a thick sequence of Middle-Late Triassic evaporite interbedded with 

dolomite and anhydrite rich shale (collectively referred to as ‘salt’) between the Permo-

Triassic sedimentary basement and the Jurassic cover. Seismic interpretation of a 3-D 

time migrated seismic dataset and structural restorations of depth converted sections 

provided means to investigate the fault evolution and the role of the salt in decoupling 
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the shallower deformation from the deeper. The results of the study show that 

extensional deformation was partitioned above and below the salt layer by the 

development of major faults that detached at the level of base of salt. The positions of 

such major basement-detached faults are controlled by basement faults that are blind 

below the top of salt. Most of the basement faults have a two-phase activation history: 

first during the earliest phase of ‘rift initiation’ stage and second during the ‘rift climax’ 

stage.  Hard linkage of basement and cover faults is achieved at some places only 

during the ‘rift climax’ stage. The ‘rift climax’ stage is accompanied by the 

development and activity of newer basement-detached faults and the reactivation of 

some older basement faults which are probably indications of increase in the strain rate.
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4.1 Introduction 

The presence of thick sequences of mechanically weak units like halite and 

anhydrite (collectively referred to as salt) play a significant role in influencing the 

structural geometries of active and passive extensional margins. Salt by virtue of its 

viscosity is able to flow under low shear stresses, thus acting as layers of detachment in 

many sedimentary basins. The degree to which a layer of salt may decouple the 

deformation style above and below it was studied in detail in the North Sea area 

(Petersen et al., 1992), in the off-shore Mid Norway area (Withjack et al., 1989; Pascoe 

et al., 1999; Richardson et al., 2005; Marsh et al., 2010) and in the Gulf of Suez area 

(Brown, 1980; Colleta et al., 1988). Similar studies were carried out in experimental 

works of Withjack et al. (1990), Koyi et al (1993), Nalpas and Brun (1993), Vendeville 

et al (1995), Higgins and Harris (1997), Withjack and Callaway (2000) and Dooley et 

al. (2003).  

The most comprehensive discussion is probably done by Withjack and Callaway 

(2000) who studied the effect of various factors like the thickness of the weak layer and 

the overburden, cohesive strength of the overburden and the amount and rate of 

displacement on the preexisting faults beneath the weak layer in decoupling the nature 

of the deformation (Figure 4.1). In Figure 4.1 note the significant control of the position 

of the fault below the weak layer in localizing the faults within the overburden. It is also 

apparent from Figure 4.1 that for a given combination of a strong overburden and an 

underlying weak unit with sufficient decoupling thickness and viscosity, the only factor 

that will determine the hard linkage of the faults in the upper and lower sections is the 

amount and rate of the displacement. In case of many continental rift basins the amount 
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and rate of displacement or subsidence are initially slow and then they increase rapidly 

at a later stage. Prosser (1993) refers these two stages as ‘rift initiation’ and ‘rift climax’ 

which are marked by a transition from early fluvial/shallow marine sequence to a deep 

marine sequence (Lambiase and Bosworth, 1995). Workers like Steckler et al. (1988), 

Prosser (1993) and ter Voorde et al (1997) have suggested that this transition from ‘rift 

initiation’ to ‘rift climax’ is due to the increase in the rate of extension. Other workers 

(Gupta et al, 1998; Marsh et al. 2010) have argued that the increase in the rate of 

subsidence can be achieved even at constant extension rates and can be explained by 

strain localization and linkage of the most active faults.  

In order to investigate the role of a mechanically weak layer of salt in decoupling the 

extensional deformation it is important to determine with a considerable amount of 

certainty the relative age of the development of the subsalt and the supra salt faults.  

The present study focuses on the structural interpretation of a time migrated 3-D 

seismic dataset from the Smørbukk area of the Halten terrace, offshore Mid-Norway. 

The goals of this study are to determine a) The relative ages of fault development in a 

rift system b) The control of any preexisting sub-salt faults in localizing basement-

detached faults within the salt and overburden and c) the role of salt in decoupling the 

extensional deformation and factors promoting the hard linkage of fault above and 

below the salt layer. This area was chosen because of the relatively good quality of the 

seismic dataset, the availability of well data with check-shots to calibrate the seismic 

data and the presence of a relatively stationary salt layer. The salt apparently has not 

gone through any buoyancy driven halokinetic movements. It is present as a 
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mechanically weak layer between the sub-salt pre-rift units and the overburden syn-rift 

and post-rift units thus enabling to study its decoupling effect or hard linkage of faults. 

4.2 Tectonic Setting of the study area 

There is a presence of large scale sedimentary basins of Jurassic age beneath the 

shelf and continental slope in the area offshore of the central Norwegian mainland 

between latitudes 62°N and 69°N.  The important physiographic features that are seen 

in this area (Figure 4.2a) at the level of top of Jurassic are the Trøndelag Platform 

towards the east, the rhomboidal shaped Halten Terrace in the middle and the deep 

Cretaceous Vøring Basin and Møre Basin towards the west. The western margins of 

these Cretaceous Basins are defined by the Late Cretaceous-Early Tertiary volcanic 

oceanic margin of the Vøring Marginal High and the Møre Marginal High separated by 

the Jan Mayen Fracture Zone. 

The Smørbukk area is located approximately 200 km west of the Norwegian mainland 

and at approximately 290 m water depth, towards the north-western part of the Halten 

Terrace. The Halten Terrace is about 80 km wide and 130 km long with an area of 

approximately 10000 km2. It is located between 64˚N-65˚25’N and 6˚E-7˚40’E (Figure 

4.2a). A complex pattern of normal faults of varying ages affects the entire terrace. 

There are two dominant trends of these faults – N-S and NNE-SSW which overall 

defines the rhomboidal shape of the Halten Terrace. The Halten Terrace is bounded by 

the Bremstein Fault Complex towards the east which separates it from the Trøndelag 

Platform. The Vingleia Fault Complex defines the southern and the southeastern 

boundary of the Halten Terrace separating it from the Frøya High. It is bounded by the 

Klakk Fault Complex towards the west and southwest which separates it from the 
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deeper Møre Basin and Vøring Basin. Towards the north, the Halten Terrace merges in 

to the narrower and deeper Dønna Terrace. The Halten terrace thus occupies an 

intermediate structural level between the structural high of the Trøndelag Platform 

towards the east and the structural low of the deep Møre Basin and Vøring Basin 

towards the west. Internally the terrace is divided into approximately two halves by the 

Grinda Graben and the Kya Fault complex with the Gjæslingan Lineament separating 

them. The seismic dataset in the Smørbukk area used in this study is located towards the 

northwest of the Grinda Graben (Figure 4.2b). A series of basement-detached and 

basement-involved faults are present in this area as shown in Figure 4.3 and Figure 

4.11. Major among the basement-involved faults are the NNE-SSW trending Smørbukk, 

the Trestakk, the eastern E1 and the northern R2 shown in Figure 4.11. The major 

basement-detached normal faults including the Trestakk Shallow are shown in Figure 

4.3. Towards the north this area covers what is believed to be a relay zone between the 

Smørrbukk Fault and the southernmost part of the major Revfallet Fault zone. The area 

under the seismic dataset covers two major hydrocarbon fields – Smørrbukk and 

Smørrbukk Sør. (Forbes et al., 1991; Ehrenberg, 1992; Blystad et al., 1995; Corfield 

and Sharp, 2000; Klefstad et al., 2005; Marsh et al., 2010). 

4.3 Regional Stratigraphy 

The sediments contained in all the Mid-Norway basins range in age from late 

Paleozoic to Cenozoic. The regional stratigraphy of the Haltenbanken area is 

summarized in Figure 4.4. No Haltenbanken wells have penetrated any pre-Triassic 

strata. The oldest beds penetrated by a well in this area are of consistent thickness and 

of Middle Triassic in age. It consists of 220 m of continental shale and sandstone 
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collectively referred to as the Red beds in Figure 4.4. This interval is considered as the 

basement by earlier workers like Marsh et al. (2010) and in the present study. The term 

‘basement’ is loosely used in this study to refer to the sub-salt units. The actual 

mechanical basement comprising of igneous/metamorphic rocks is expected to be at a 

deeper level beyond the coverage of the seismic data. The Red beds are overlain by two 

evaporite layers each 500 m thick. The evaporite layers are Middle to Upper Triassic in 

age and are separated by a 500 m thick dolomite and anhydrite rich shale. The upper 

and the lower evaporite layers were not seismically resolved separately in this study. 

For the simplicity of description the three above-mentioned layers are collectively 

referred to as ‘Salt’ in Figure 4.4 keeping in mind the stratigraphic heterogeneity of the 

interval. They are overlain by a layer of Red/Gray beds of variable thickness (150m-

500m) and on these sits the approximately 500 m thick Åre Formation of Upper Triassic 

to Lower Jurassic age. The presence of the thick salt layer introduces a significant 

variability in the stratigraphic rheology. The Åre Formation is comprised of sandstone, 

shale and coal and is probably a reflection of a deltaic environment. The coal is 

considered as a potential source rock. The sandstones commonly show fining upward 

trends and probably are derived from point bar and crevasse splay deposits. In the study 

area the lower Åre Formation show significant growth along the hanging walls of few 

of the major large displacement basement-detached listric faults.  

 The Åre Formation is overlain by a 112-150 m thick tidally influenced near-shore 

marine sandstone of the Tilje Formation. The Tilje Formation contains thin zones of 

offshore shale and bioturbated siltstone within it. It underlies the Ror Formation 

believed to be deposited from a major marine transgression in the Halten Terrace area. 
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It consists of an upward coarsening sequence of marine shales. The 0-84m thick Tofte 

Formation comprised of coarse grained poorly sorted cross bedded sand occurs in 

between upper and lower Ror Formation of 55-75m and 0-20m thickness respectively. 

The transgressive deposits of the Ror formation are overlain by the beds of the Middle 

Jurassic Fangst Group believed to be deposited during a marine regression. The Fangst 

Group is comprised of three formations: the lower 60-80 m thick nearshore marine sand 

and bioturbated shale deposits of the Ile Formation, the middle 25-35 m thick marine 

shelf deposit of the Not Formation, and the upper 40-45 m thick sandstone deposition of 

the Garn Formation. The Garn Formation is overlain by 115-280m thick shale and 

siltstone deposits of the Melke Formation and 10-70 m thick deep marine shale deposits 

of the Spekk Formation. The entire upper Jurassic in the Smørbukk area underwent 

significant erosion and in most of the study area the upper Spekk Formation is bounded 

by the regional Base of Cretaceous Unconformity (BCU).   

The BCU is overlain by the thick Cretaceous shale and occasional turbiditic sandstone 

deposits of the Cromer Knoll and Shetland Groups of 660-750 m and 850-900 m 

thickness respectively. In the study area these units are mostly unfaulted but show 

noticeable thickness changes above the major underlying buried faults suggesting 

extensional reactivation on the underlying faults. There is a regional Upper Cretaceous 

unconformity which underlies the Tertiary deposition of the Tang Formation (50-100 m 

thick), the Tare Formation (70-100 m thick), the Brygge Formation (150-350 m thick) 

and 300-450 m of the Kai Formation from bottom to top. All these are overlain by the 

Pliocene Naust Formation and Quaternary sequence of alternating gray shale and poorly 

sorted sand (Ehrenberg, 1992; Marsh et al. 2010). 
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4.4 Geologic and Tectonic history of the study area 

The tectonic evolution of the Halten Terrace area and the overall North Atlantic 

rifting has been studied by several authors in the past (Buckovics and Ziegler, 1985; 

Ziegler and Hoorn, 1989; Withjack et al, 1989; Ehrenberg, 1992; Blystad et al., 1995; 

Dore et al., 1997 and 2008; Marsh et al., 2010). The earliest deformation phase at the 

Norwegian margin is recorded during the Silurian-Early Devonian time when the 

Caledonian Orogeny developed by the collision of Fennoscandian Russian plate and 

Laurentian Greenland plate through roughly 500-420 Ma time period.  By Mid-

Devonian to Late Carboniferous times this area was subjected to major sinistral 

movements which gave rise to subsidence and basin development. In this study this 

event is referred to as the HT1 phase. This was accompanied by transpressional 

deformation and volcanic and intrusive igneous activity. Crustal extension in the 

Norwegian margin probably commenced from Late Carboniferous time (450 Ma) 

onwards and continued till early Eocene (50 Ma) with volcanic activity and opening of 

the North East Atlantic Ocean.  The rifting continued through this time span of 

approximately 350 Ma in different phases. After the Late Carboniferous rift initiation 

the second major rifting event was during the late Permian-Early Triassic time during 

which the subsidence center shifted westwards within the Trøndelag Platform. In this 

study this event is referred to as the HT2 phase. The rift axis propagated further 

southwards into the North Sea. Extension picked up again during a third major phase of 

rifting (referred to as HT3 in this study) initiating during Late Triassic to Early Jurassic 

time (‘HT3 rift initiation’) and continued through Jurassic reaching the ‘HT3 rift 

climax’ stage during middle-early to late Jurassic time. There was a period of tectonic 
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quiescence between the time of cessation of HT2 activity and initiation of HT3 from 

Middle to Late Triassic. The bulk of the salt layer on the Trøndelag Platform and Halten 

Terrace is believed to have been deposited during this post-HT2 and pre-HT3 rift phase.  

The terms like pre-rift, syn-rift, ‘rift initiation’, ‘rift climax’ and post-rift used in this 

study refer to the HT3 phase of rifting. The HT3 phase resulted in significant rollover 

and growth on the hanging wall of both the basement-detached and basement-involved 

major normal faults. The HT3 rifting event is recorded in most of the areas within the 

Halten Terrace. Throughout the time span of the HT3 phase the rift axis gradually 

shifted towards the west. By early Cretaceous extension started to die out in the 

Smørbukk area so that very few faults actually displaced the BCU horizon. The fourth 

phase of rifting (referred to as the HT4 phase in this study) spanning a time from Early 

to Late Cretaceous was focused more on the western side in the Vøring Basin area 

developing very deep Cretaceous Basins. The remnant extension in the Smørbukk area 

of the Halten Terrace still managed to keep the earlier soft and hard linked faults active 

thus promoting the development of extensional fault propagation fold on the BCU 

horizon and within the Lower Cretaceous units of the Cromer Knoll and Shetland 

groups. By Paleocene-Eocene time the Halten Terrace experienced the very last phase 

of extension recorded by the forced folds on the Top of upper Cretaceous Lange 

Formation in some parts of the study area.  During the same time the crustal separation 

was achieved further west and the North Atlantic Ocean opened up accompanied by 

volcanism. 
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4.5 Dataset and Methodology 

A 3-D time migrated seismic dataset was used to derive the results and 

conclusions of the present study. The seismic data have a line spacing of 12.5 m and 

covers an area of about 2720 km2. The seismic data is zero phase, the seismic wavelet 

having a symmetric shape around zero time. A peak represents an increase in acoustic 

impedance.  The vertical resolution is approximately 30 m. Interpretations of key 

horizons and faults were made for every 40 in-lines and 40 cross-lines. The data quality 

is generally good above the Top Salt reflector. It gradually gets poor beneath this 

horizon. There are twenty-six wells in the area of the dataset out of which data was 

available for sixteen wells. Checkshot data available from six of these wells (see 

Addendums) were used to constrain the stratigraphic ages of the horizons picked. None 

of the wells go any deeper than the top of the Åre Formation. There is some degree of 

uncertainty in projecting the horizon picks through the fault blocks that did not have any 

well control especially for those horizons deeper than the Åre Formation. The reasoning 

and criteria for picking the key horizons are discussed below in detail. 

4.5.1 Criteria for interpreting key horizons 

Five time horizons were picked manually throughout the seismic survey to 

constrain the age of the faults. Faults were defined manually by outlining the fault gaps 

on each horizon. These horizons from bottom to top are: 

Base of Salt: The Base of Salt horizon is considered as the top of basement in this 

study. Movement on basement-involved faults under extension develops broad warps 

within the cover units. As discussed in Chapter 2 (Figure 2.1) these warps are called 

extensional fault propagation folds or drape folds. Drape folds are observed in the 
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central part of the study area (Figure 4.8) where the Base of Salt horizon shows more 

faulted and the Triassic salt layer and the Jurassic overburden is more folded. Note that 

because of the sedimentary nature of the basement some degree of drape folding can be 

expected at the level of Base of Salt horizon (Figure 4.8). These faults probably 

originate at a much deeper level, either in a shear zone within the hard rock 

(igneous/metamorphic) basement or at the brittle-ductile transition zone (Skogseid et 

al., 1992). The Base of Salt horizon was interpreted in detail to compare the nature of 

faulting in the basement to that in the salt and the cover sequence. The seismic data is 

noisy at this level mainly because of a) attenuation of seismic signal by the salt layer on 

the top and b) interference of the seismic signals with migration related artifacts. The 

approximate time-level of this horizon is determined from the existing publications 

(Marsh et al., 2010). The tectonic model of this area suggests that the salt was deposited 

during a period of relative quiescence and does not have significant stratigraphic 

thickness variation (Ehrenberg, 1992; Marsh et al., 2010). Based on this the Base of salt 

is picked at a constant time-thickness from the Top of Salt horizon wherever the dataset 

is extremely noisy at this level and it is assumed that the salt did not undergo any flow 

related thickness change.  

Top of Salt: The regional tectonic model suggests that the Top of Salt horizon separates 

the pre-rift and syn-rift units for the third major HT3 phase of rifting initiating during 

Early Jurassic time. Also, the thick layer of salt introduces a major rheological variation 

in the mechanical stratigraphy. Thus the Top of Salt horizon is important to constrain 

the age of the faults and to study the degree to which the salt decouples the nature of 

deformation above and below it. The approximate time-level of the Top of Salt is again 
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determined from published data (Marsh et al., 2010). The presence of the Red/Grey 

beds on the top of the salt results in a considerable contrast in the acoustic impedance. 

The noisiness of the seismic data increases drastically beneath this horizon in a number 

of areas.  Due to these reasons the Top of Salt horizon can be tracked through the 

survey with greater amount of confidence.  

Top of Åre: The Top of Åre is the most prominent horizon in the syn-rift (HT3) 

package.  It is an approximate boundary between the ‘rift initiation’ and ‘rift climax’ 

stages of the HT3 phase of rifting. In the study area a major basement-detached fault 

(referred to as the Trestakk Shallow in this study) shows significant growth within the 

syn-Åre and post- Åre units as shown by the diverging nature of the reflectors in 

Figures 4.6 and 4.7. Other basement-detached faults of lesser displacements also show 

subtle amount of growth within the Åre interval (Figures 4.6 and 4.9). On the other 

hand, the hard linked major Smørbukk fault shows majority of growth only in the Post-

Åre units (Figures 4.6,4.7 and 4.8). Thus the Top of Åre horizon is important to 

constrain the age of these two different sets of faults of different ages. The time-level of 

this horizon is determined from the depth of well tops converted to two-way travel time 

using checkshot velocities. The contrast in acoustic impedance of the Åre Formation 

with the overlying Tilje Formation is significant and the Top of Åre horizon can be 

confidently tracked even within fault blocks with no well data. 

BCU: The BCU horizon represents a major unconformity throughout the offshore mid 

Norway area. The tectonic history of this area suggests that this horizon marks a 

temporary pause in the extension between the HT3 and the HT4 major phase of the 

rifting event. Most of the areas in the Halten Terrace have undergone the largest amount 



108 

of extension only during the HT3 phase of rifting and by HT4 phase the rift axis shifted 

further west towards the deeper Vøring Basin. The BCU horizon therefore represents 

the boundary between the syn-rift units and the post rift units in the Smørbukk area. 

Well tie with the seismic dataset suggests a negative amplitude for the BCU. The 

seismic signal for BCU is very strong within the dataset and can confidently be mapped 

throughout. 

Top of Lange: In the study area the Late Cretaceous Lange Formation was deposited 

during the end of the regional HT4 major phase of rifting which marginally affected the 

structural styles in the Smørbukk area and the Halten Terrace as a whole. The top of 

Lange is therefore an important horizon that represents the near end of extension. It is a 

prominent positive-amplitude reflector as suggested from the well ties and can 

confidently be mapped throughout the study area. 

4.5.2 Depth conversion of time horizons and selected time sections: 

The 3-D seismic dataset used to make structural interpretations in this study is a 

time migrated volume.  A depth conversion of the above mentioned time horizons and 

representative structural cross sections in the study area is required to investigate the 

true to scale structural geometries. Within the study area six wells with checkshot data 

(see Addendums) were available. The plot of average P-wave velocity derived from the 

checkshot data versus depth shows an overall linear trend (see Addendums). A linear 

function was used to make a velocity model of average P-wave velocity for each time 

horizon for the entire span of the study area. Using these velocity models the time 

horizons were converted to depth horizons. Local adjustments to the depth horizons 

were made to fit the well tops.  
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The representative cross sections were chosen as near as possible to a well with 

checkshot data. The checkshot data were used to determine the average P-wave velocity 

and the two-way travel time for a given measured depth of a stratigraphic marker. These 

were used to calculate the interval velocity between two stratigraphic markers using 

Dix’s Equation (Dix, 1955) (see Addendums). In some areas there is a considerable 

lateral variation in P-wave velocity within an interval across a major fault. The average 

time-depth scatter was plotted combining the data from both the wells. The regression 

equation for a best linear fit across such a scatter was determined and was used as the 

velocity function for that particular section. Eventually adjustments to velocities were 

made after initial depth conversion of sections in order to fit well tops. 

4.5.3 Isochore Maps 

Vertical thicknesses between the depth horizons are calculated and plotted as 

isochore maps in this study. Changes in the vertical thickness adjacent to the faults in 

the hanging wall are indicative of growth in between the bounding horizons along the 

faults. The offset in the positions of a fault polygon between the upper and the lower 

horizon poses a problem in determining the vertical thickness between the horizons. For 

this reason while calculating the vertical thickness, the depth horizons which did not 

have the fault polygons defined on them were used. This method still has a geometric 

limitation as shown in Figure 4.5a. Near the middle of the fault where the top and the 

bottom of an interval are closer, the vertical thickness has its minimum value. The areas 

on the fault surface away from this middle part will still show lower thickness values 

because parts of the fault surface are considered as the top or bottom of the interval. 

Thus the entire fault would show as a zone of anomalously low vertical thickness on the 
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map. Therefore variations in thickness are only studied away from the fault zone. It 

should also be noted that vertical thickness is a good approximation of true thickness 

only for shallow dipping intervals. For steeply dipping intervals vertical thickness is 

always higher than the true thickness. The objective of this study is to determine the 

changes in thickness and not the absolute value of the thickness.  Thus the difference 

between the vertical thickness and the true thickness does not limit the understanding of 

the structure even for steeply dipping intervals. 

In some scenarios the interval of interest is not displaced by an underlying blind fault  

but is still affected by drape folding associated with the fault. The upward widening 

drape fold develops a syncline towards the hanging wall of the blind fault. The syncline 

act as a local depocenter and its position is offset from the underlying blind fault as 

shown in Figure 4.5b. 

4.5.4 Structural Restoration 

The representative time sections converted to depth were restored in order to 

study the validity of the interpretation and to investigate the structural geometry and 

amount of extension during the syn-rift and post-rift stages. All sections are oriented 

perpendicular to the dominant NNE-SSW trend of the structural grain. Parameters to be 

considered for balancing cross-sections in extensional terrains are discussed in detail by 

Gibbs (1983). An important step in the restoration process is decompaction, since all the 

syn-sedimentary units undergo a substantial amount of thickness change during the 

evolution of the structure and later by the burial under thick overburden (Rowan, 1993). 

For each section the entire interval from Top of Lange to Base of Salt was decompacted 

by backstripping the thick Tertiary overburden layers using solidity parameters shown 



111 

in the Addendums.  An iteration of restoration and decompaction was then repeated for 

the post-rift Lange Formation and each Jurassic syn-rift unit. Almost all the faults are 

concave up in shape and restoration was done using a 25˚ antithetic shear angle. In case 

of faults having convex bends, the portion of the section affected by the convex up bend 

was restored by 25˚ synthetic shear. Wherever the relief on the BCU is not structurally 

controlled, underlying units were projected across the BCU to determine their uneroded 

geometries. The presence of the ductile salt layer in all these sections offers an 

additional challenge for restoration due to its ability to flow in and out of the section. In 

the study area, buoyancy driven halokinetic movement or extension driven reactive 

diapirism is absent within the salt. The salt acts as a detachment layer separating the 

nature of deformation above and below it. To account for this decoupled style of 

deformation the post-salt and pre-salt units were restored separately for the restoration 

of all basement-detached faults. The assumption for this method is that the sectional 

areas of all the intervals including the salt remain conserved during each step of the 

restoration; however the thickness of the salt can change locally near the major faults. 

The change of sectional geometry of a fault due to the synchronous movement on 

another fault towards the footwall side of the former was taken into consideration while 

restoring the sections. 

4.6 Results: Structural geometry and fault evolution 

The structural analysis was done for four major intervals representing the rifting 

event from Early Jurassic to Late Cretaceous in the Smørbukk area: Base of Salt to Top 

of Salt, Top of Salt to Top of Åre, Top of Åre to BCU and BCU to Top of Lange. 
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Results are discussed separately for the seismic interpretation and structural restoration 

parts of the study. 

4.6.1 Results from seismic interpretation 

Four time sections and their depth converted versions from across the study 

area, five depth-structure maps and four isochore maps were chosen to describe the 

structural style and geometry of the faults and growth units. 

Structural geometry and fault evolution in the Base of Salt to Top of Salt Interval:  

This interval was deposited during a stage of tectonic inactivity spanning from Middle 

to Late Triassic and represents the pre-rift interval for the HT3 rift phase in the Halten 

Terrace. The Base of Salt horizon (Figure 4.11) is characterized by an overall relief 

drop in the middle of the study area and high relief on the western and eastern margins. 

The horizon is displaced by at least eight major faults. Faults with longest surface traces 

are the Smørbukk fault towards the NW and the Trestakk fault towards the SE. Both the 

faults show a gradual strike curvature which may be due to a) connection of each fault 

segment by oblique ramps during an earlier stage of lateral propagation of the fault 

and/or b) due to deformation in a 3-D strain field explained by Reches (1983). 

Synclines related to extensional fault propagation folding is present on this horizon for 

most part of the Smørbukk fault and the northern part of the Trestakk fault. The 

Trestakk fault loses its displacement on this horizon from south to north and eventually 

dies out. The R1 and R2 faults towards the north are believed to be the southernmost 

part of the major Revfallet Fault system (Pascoe et al., 1999). The displacement on 

these faults increases towards the north. Majority of faults on this surface have an 
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approximate NE-SW trend and dip towards NW except for the extreme eastern fault 

which is SE dipping (Figure 4.12).  

Towards its northern end the Smørbukk fault shows an offset relation with a smaller 

basement-involved fault of similar trend and is connected to it by an oblique fault. The 

Smørbukk fault shows a gradual decrease in slip towards the north while the offset 

basement fault shows a local increase in slip towards the north before eventually losing 

its displacement. From this geometric relation and from the observations of 

experimental models in Chapter 3 (Section 3.5.3) it can be inferred that the Smørbukk 

fault and the right stepping offset fault establishes a synthetic transfer zone. Fault slip is 

probably transferred by the oblique fault connecting them. Earlier workers like Corfield 

and Sharp (2000) and Dooley et al. (2003) suggested that this area with oblique faulting 

is a part of the Smørbukk-Revfallet Transfer System. At their intersection (at an angle 

of approximately 120°) the footwall of the Smørbukk fault and the oblique transfer fault 

shows an area of triangular high which is more prominent on the structure maps of the 

tops of younger units (Figures 4.12, 4.13 and 4.14). The structure between these two 

faults thus presents a trapdoor geometry as observed from the results of the 

experimental models discussed in section 2.6.1 of Chapter 2.   

On the Top of Salt horizon the Trestakk fault is absent (Figure 4.12). This fault is 

replaced by a major basement-detached listric fault described as the Trestakk Shallow 

fault in this study. The location of this fault is constrained by the position of the 

basement-involved Trestakk fault below as is observed in the time sections in Figures 

4.6 and 4.7. Basement-detached faults of relatively smaller displacement are present on 

the Top of Salt horizon towards the SW and NE. The locations of these faults are 
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apparently unconstrained by a major basement fault below (Figures 4.6 and 4.9). All the 

basement-detached faults across the entire study area detach on the Base of Salt 

horizon.  

The isochore map of the salt interval is shown in Figure 4.16a. The structural geometry 

in the time sections (Figures 4.6, 4.7 and 4.9) suggests that the major thickness change 

of this interval is associated with the flow of salt near the basement-detached listric 

faults. There is no significant growth-induced change in stratigraphic thickness along 

any of the major faults that displaces the Top of Salt Horizon. This is in agreement with 

the regional tectonic history of the study area according to which the salt layer was 

deposited in a period of relative quiescence before the initiation of the third major phase 

of the rifting event (Buckovics and Ziegler, 1985; Ehrenberg, 1992; Marsh et al., 2010). 

A zone of low salt thickness towards the west is seen on the isochore map. This is 

attributed to the flow of salt towards the lower relief of the Smørbukk hanging wall 

(Figures 4.7 and 4.8).  

Structural geometry and fault evolution in the Top of Salt to Top of Åre Interval:  

This interval represents the syn-rift deposition during the ‘rift initiation’ stages (Late 

Triassic to Middle-Early Jurassic) of the HT3 rifting phase in the Halten Terrace area. 

The structural relief of the upper bounding surface of this interval, the Top of Åre 

horizon has an overall drop from east to west (Figure 4.13). The synclines on the Top of 

Åre are related to the extensional fault propagation folding associated with movement 

on faults that either displace the horizon or are buried below it. The basement-involved 

faults that displace this horizon are the Smørbukk fault and to some extent the oblique 

faults of the Smørbukk-Revfallet transfer system.  Among the basement-detached listric 
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faults displacing this horizon the Trestakk Shallow fault has the maximum 

displacement. Along a linear stretch towards the south as shown in Figure 4.13 the 

Trestakk Shallow fault comes very close to the Smørbukk fault. Footwall erosion of the 

Smørbukk fault results in the lower Cretaceous erosional level reaching up to the top of 

Are in this linear stretch (Zone marked as ‘Erosion’ in Figure 4.13). Most of the other 

basement-detached faults that displace the Top of Salt Horizon (Figure 4.12) also 

displace the Top of Åre horizon with decreasing amount of displacement. Towards west 

the Top of Åre map shows two highly oblique NW-SE trending normal faults that 

detach on the top of salt (Figure 4.10). They are believed to have been developed from 

gravity driven movements of the salt induced by sufficient change in dip of the 

underlying faulted basement (Marsh et al, 2010) 

The Trestakk Shallow fault has the maximum growth in this interval as shown in the 

isochore map in Figure 4.16b. On all the time sections shown in Figures 4.6, 4.7, 4.8 

and 4.9 an Intra- Åre horizon was picked to study the growth history of different faults 

during the deposition of the Åre interval. Growth during the deposition of the Åre 

interval was always observed to be more on the basement-detached faults (highest being 

on the Trestakk Shallow fault) than on the basement-involved faults. All these indicate 

that the basement-detached faults were more active than the basement-involved faults 

during the ‘rift initiation’ stage of the HT3 phase (syn Åre).  

Structural geometry and fault evolution in the Top of Åre to BCU interval: 

This interval correlates to the ‘rift climax’ stage (Prosser, 1993) of the syn-HT3 phase 

of rifting event in the Halten Terrace.  The top bounding surface of this interval, the 

BCU, has an overall drop in structural relief from east to west (Figure 4.14). The 
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basement-involved faults that displace the BCU horizon are the northern part of the 

Smørbukk fault and the eastern (E1 and E2) faults. Among the basement-detached 

faults the Trestakk Shallow fault towards the south and the western and northern 

oblique fault pairs partly displace the BCU horizon. The Smørbukk fault loses 

displacement towards both north and south and eventually dies out in both directions on 

the BCU horizon. Synclinal axes on BCU that line up with the major faults on the Top 

of Åre horizon suggest that those faults were active at least till the end of the ‘rift 

climax’ stage.  

Most of the basement-involved (except R1 and R2 towards the north) and basement-

detached faults show growth in this interval. This is evident from the diverging 

geometry of the reflectors in the hanging wall and synclines associated with these faults 

(Figures 4.6, 4.8 and 4.9). The thickness variation is reflected by the curvilinear zones 

of higher thickness values on the isochore map of this interval in Figure 4.16c. It should 

be noted here that the synclinal depocentres associated with the late movement on the 

blind basement faults are always offset from fault strike due to the drape folding in the 

salt and the cover units (Figure 4.5b). The majority of the growth on the western 

oblique faults (related to salt movement) is observed in post-Top of Not units. The 

basement-involved Trestakk and the basement-detached Trestakk Shallow fault above it 

show an interesting relation in terms of their position and age of growth units. The 

shallower Trestakk Shallow fault shows growth in the syn Åre and post Åre units. As a 

major fault it shows activity only in the southern side and dies out towards the central 

part of the study area. The deeper Trestakk fault underlying it shows indications of post 

Åre activity in terms of axial thickening and diverging geometry of reflectors in the 
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syncline associated to it only towards the immediate north of the tip of the Trestakk 

Shallow fault. This syncline related to drape folding above the Trestakk fault is absent 

towards the south where the Trestakk Shallow fault is active. These observations lead to 

the conclusion that the Trestakk Fault was probably active in two stages: a) First, during 

a pre- Åre time and b) Second, during a post- Åre time synchronous with the deposition 

of the uppermost Jurassic-lower Cretaceous units. From the above discussion about the 

relative age of fault development it is apparent that major activity along most of the 

basement-involved and the basement-detached faults are restricted during the deposition 

of Top of Åre to BCU interval which represents the ‘rift climax’ of the HT3 phase. It is 

probably an indication of significant escalation of tectonic activity during this time and 

may suggest an increase in the rate of extensional deformation in the Halten Terrace 

area.   

Structural geometry and fault evolution in the BCU to Top of Lange interval: This 

interval correlates to the post-rift stage of the HT3 rifting phase in the Halten terrace 

during early to late Cretaceous. During this time the rift axis shifted towards the west so 

that activity was more concentrated along the faults in the Vøring Basin. None of the 

faults discussed in the previous sections intersect the Top of Lange horizon (Figure 4. 

15). However the structural geometry of the hanging wall synclines on this surface 

suggests the remnant activity of the basement-involved Smørbukk, Trestakk, and 

Eastern E1 faults and the basement-detached Trestakk Shallow fault and the 

southwestern and northeastern listric faults.  

Growth in this interval is restricted mostly within the units of the Cromer Knoll and 

Shetland Group deposited in the synclines of the forced folds associated with the major 
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faults.  This is evident from the thickening and thinning of units near the synclinal axes 

and flanks respectively within the lower part of this interval (Figures 4.6, 4.7, 4.8 and 

4.9). The thickness variation is reflected on the isochore map of this interval as shown 

in Figure 4.16d. It is interesting to note that even though this interval is displaced by 

fewer faults there is noticeable growth related thickness variation of the post BCU units 

on the hanging wall synclines offset from the major underlying blind faults. 

4.6.2 Results from structural restoration 

Structural restoration of selected depth sections is done on six key horizons to 

study the fault evolution through the post-rift, late syn-rift (’rift climax’), early syn-rift 

(‘rift initiation’), and pre-rift stages of the HT3 rifting phase in the Smørbukk area of 

the Halten Terrace. Restoration on the Top of Lange and BCU yields the extensional 

deformation during the late and early post-rift stages respectively. A regional drop of 1° 

towards WNW was considered for the top of Lange and BCU horizons since the 

Cretaceous units show a gradual thickening towards the west. Restoration on the Top of 

Åre shows the extension during the ‘rift climax’ stage. Restoration on the Intra Åre and 

Top of Salt horizons shows the extension during ‘rift initiation’ stage and restoration on 

the Base of Salt horizon yields the pre-rift extension during the earlier pre-salt (Late 

Permian-Early Triassic) HT2 phase of rifting.  

In all the depth sections, decompaction for a particular interval always results in the 

increase of thickness and the structural amplitude of the intervals below it. As discussed 

in a previous section the restoration was done separately for units above and below the 

salt layer. The implication of this method is that a basement-involved fault that is blind 

and inactive below a basement-detached fault was restored only after the restoration of 
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the basement-detached fault above it. The amount of extension involved in each step of 

restoration is measured both on the Top of Salt and the Base of Salt horizon in order to 

study the decoupling effect of the salt. It should be noted however that the total amount 

of extension measured on the Top of Salt horizon in each stage includes the activity of 

both the hard linked basement-involved faults and the basement-detached faults 

displacing the post salt units.  

Restoration on the Top of Lange horizon shows negligible amount of extension for all 

the sections. This reflects the lack of tectonic activity during the late post-rift stages of 

the HT3 phase. For the restoration on the BCU the undeformed BCU horizon is not 

always considered to be uniformly flat especially in those areas where the structural 

controls on the relief of this horizon is not apparent.  BCU being a major unconformity 

associated with significant erosion and non-deposition, supports the idea. There is 

always a degree of uncertainty in determining the exact structural geometry of the 

undeformed BCU. Wherever truncated by the BCU, the faults and the pre-BCU 

horizons were projected maintaining the uniformity of their structural trends to 

determine their uneroded geometries. In all the depth sections restoration on the Top of 

Åre (or Top of Not in case of Inline 1820) always shows the maximum amount of 

extension involved as expected during the ‘rift climax’ stage. 

Inline 1820: Figure 4.17 shows a 23.8 km long depth converted section for inline 1820. 

Due to a significant amount of growth of the post Åre units on the Trestakk Shallow 

fault in this area two additional horizons, Lower Cretaceous and  Top of Not was 

introduced in this section in order to better constrain the steps of restoration. Step 1 

through Step 3 shows the restoration on the Top of Lange, the Lower Cretaceous 
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horizon and the BCU. Restoration on these horizons yields low amount extension due to 

post rift drape folding on major faults. In Step 3 the BCU was considered to have a 

scarp on the footwall of the Smørbukk fault. In Step 4 units affected by the BCU 

erosional unconformity were reconstructed to their true stratigraphic thickness in order 

to restore on an uneroded horizon. The assumption for this reconstruction is that after 

the deposition of the upper Jurassic (BCU to Top of Not) interval there was a period of 

activity on the basement-involved Smørbukk fault that was associated with little or no 

sedimentation thus exposing a fault scarp. Step 5 through Step 10 shows the restoration 

on the Jurassic horizons including salt and the Permo-Triassic basement. Most of the 

extensional activity is restricted within the interval between Top of Åre to BCU which 

corresponds to the ‘rift climax’ stage and is contributed mainly by the large 

displacement basement-detached Trestakk Shallow fault.  Since this fault detaches 

towards the footwall side of the basement-involved Smørbukk fault, the shallower part 

of the Smørbukk fault was considered to have a curved geometry in Step 6 in order to 

address area problems. In step 7 of Figure 4.17 the shallower part of the Smørbukk fault 

and its antithetic fault loses their displacements. This validates the notion from seismic 

interpretation that majority of the post-salt activity of the basement-involved Smørbukk 

fault was restricted during the post Åre time. Step 7 and Step 8 show that during the syn 

Åre time (‘rift initiation’) only the shallow listric faults were active which indicates that 

the salt was effectively decoupling the extensional deformation at this time. 

It is interesting to note that The Smørbukk fault does not die out totally on the Base of 

Salt horizon at Step 7. This may suggest two different scenarios: 1) The Smørbukk fault 

was active during the pre-salt HT2 phase of extension (Late Permian-Early Triassic) 
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and presented a faulted topography for the later salt deposition. There was no movement 

on the fault during the HT3 phase until the post- Åre time (‘rift climax’) during which it 

was reactivated. 2) The entire movement history of the Smørbukk fault is restricted 

within the HT3 phase. The first stage of activation of the Smørbukk fault was post-salt 

but pre- Åre corresponding to the earliest phases of the HT3 ‘rift initiation’ stage; the 

second stage of activation was during HT3 ‘rift climax’ (post- Åre) time.  It should be 

noted that Scenario 2 does not rule out the initiation of the Smørbukk fault from a pre-

existing basement weakness zone developed during the earlier HT2 phase. The same 

scenarios also hold true for the other major basement-involved Trestakk fault which 

shows larger displacement on the Base of Salt horizon than the Smørbukk fault.  The 

evidence for its reactivation is however present in the form of synclinal growth of post- 

Åre units associated to the forced fold towards the north where the Trestakk Shallow 

fault dies out (as discussed in an earlier section) (Figure 4.8). Though both the scenarios 

are credible Scenario 2 seems to provide a better explanation for the driving force 

(movement on subsalt faults during earliest phases of HT3 ‘rift initiation’) required to 

initiate the large scale basement-detached Trestakk Shallow fault.  Plausibility of 

Scenario 2 comes with the assumption that the early movement on the subsalt faults 

(especially that on the Trestakk fault) was enough to initiate the Trestakk Shallow fault 

within the salt but not sufficient to keep pace with the rate of sedimentation to record 

any growth wedges within the lower or upper Åre interval. On the other hand if 

Scenario 1 were to be true, one would have to assume that the driving force for the 

initiation of the Trestakk Shallow fault is just passive flow of salt on an initially faulted 

topography thus requiring no regional extension which is unlikely in this tectonically 
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active area. Irrespective of which scenario is true, the results from the seismic 

interpretation from the supra-salt section and structural restoration in this study strongly 

indicate at least two stages of activity of the basement faults.  

Inline 3180: Figure 4.18. shows a 21.6 km long depth converted section for Inline 

3180. The structural geometry of the faults and horizons in this depth converted section 

does not differ significantly from that in inline 1820. The Trestakk Shallow fault is the 

single major listric fault in this section.  The other faults in this section are the hard 

linked Smørbukk fault and the blind Trestakk fault. The salt layer thins out towards the 

WNW end of the section and suggests salt withdrawal from the west and flow of salt 

towards the hanging wall of the Smørbukk fault. The timing of the salt movement is 

however unclear in this section since noticeable thickness differences of supra salt 

stratigraphic units associated to salt movement were not observed.  

The results of restoring this section are similar to the ones obtained from restoring 

Inline 1820 as discussed in the previous section. Most of the extensional activity is 

noted during the deposition of the Top of Åre to BCU interval corresponding to the ‘rift 

climax’ stage (Step 3 in Figure 4.18). Similar to Inline 1820, the Smørbukk fault dies 

out in the post salt units after restoring on the Top of Åre horizon (Step 3 in Figure 

4.18).  At this step (as in Inline 1820) the Trestakk Shallow is the single major fault 

with significant displacement and growth within the Åre interval. All these suggest that 

throughout the southern part of the study area the salt acted as an agent for decoupling 

the extensional deformation especially during the ‘rift initiation’ stage. Basement faults 

were not hard linked till the ‘rift climax’ stage which was probably accompanied by an 

increase in overall extensional activity in the whole Halten Terrace area.  
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Inline 4100: Figure 4.19. shows a 36km long depth converted section for inline 4100. 

In this section all the active faults are basement-involved and only the Smørbukk fault is 

hard linked through the salt interval. The other basement faults are blind below the level 

of Top of Salt and show drape folding of salt and supra salt units above them. The 

absence of shallow faults detaching at the Base of Salt horizon points to the fact that in 

this area the salt did not act as an agent for decoupling the extensional deformation 

above and below it. Extension was thus measured only on the Base of Salt horizon. The 

thickness difference of the salt unit towards the western end of the section is probably 

due to the flow of salt as a response to the movement on the hard linked Smørbukk 

fault.  

Step 1 and Step 2 show the post rift (HT3) activity during the deposition of the 

Cretaceous units. Among the Jurassic supra-salt horizons restoration on the Top of Åre 

yields the maximum extension (Step 3 in Figure 4.19) involved during the deposition of 

the Top of Åre to BCU interval. The very low amount of extension when restored on 

the top of Intra Åre (Step 4 in Figure 4.19) or the Top of Salt horizon (Step 5 in Figure 

4.19) validates the notion from seismic interpretation that most of the basement-

involved faults in this area remained almost inactive during the deposition of the Åre 

interval (‘rift initiation’ stage of HT3 phase). The 867m of extension when restored on 

the Base of Salt horizon in Step 6 is probably related to the early movements on the 

basement-involved faults (Scenario 1 or Scenario 2 from a previous discussion).  

Inline 5820: Figure 4.20. shows a 16.7km long depth converted section for inline 5820. 

The structural style in this section is different from that in Inline 1820 and Inline 3180. 

The basement-detached faults dip towards SE unlike the NW dipping basement-
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detached faults in Inline 1820 and Inline 3180. Basement-involved faults are hard to 

detect in this area. The basement-detached listric fault in the middle of the section 

shows drape folding of the Cretaceous units. The listric fault towards the SE end of the 

section detaches at a level higher than the Base of Salt (probably at the top of the lower 

salt interval in the stratigraphic column in Figure 4.4).  Extension was however 

measured only on the Top of Salt horizon and contribution by individual listric fault 

was not determined.  

Step 1 and Step 2 in Figure 4.20 show the amount of extension involved during the 

drape folding of the Cretaceous units above the listric fault in the middle of the section. 

Similar to restoration of the previous sections, highest amount of extension was 

involved when restored on the Top of Åre (Step 3 in Figure 4.20). Thus the notion that 

the activity of the faults was maximum during the deposition Top of Åre to BCU 

interval (‘rift climax’ of the HT3 phase) still holds true in this northern part of the study 

area. Step 4 and Step 5 shows the amount of extension involved during the deposition of 

the Åre interval. These values are still less than those in Inline 1820 (Step 8 and Step 9 

of Figure 4.17) and Inline 3180 (Step 4 and Step 5 of Figure 4.18) where the majority of 

the extension during the deposition of Åre is on the Trestakk Shallow listric fault. This 

observation probably suggests that the degree to which the salt decoupled the 

extensional deformation was more in the southern side during the ‘rift initiation’ stage. 

4.7 Discussion 

4.7.1 Relative ages of fault development 

Based on the results from the seismic interpretation and structural restoration the 

major basement-involved and basement-detached faults present a complex episodic 
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history of activity in the study area. Table 4.1 summarizes the relative ages of activity 

of the major faults.  The subsalt basement faults (Smørbukk , Trestakk, eastern E1) 

were probably the earliest active faults in this area during the early ‘rift initiation’ stage 

(Late Triassic) (Figure 4.21b; Considering Scenario 2 to be more plausible than 

Scenario 1 as discussed in an earlier section). However their activity was restricted to a 

post salt but pre Åre period. Indications of their syn- Åre activity in terms of growth is 

not observed. These subsalt faults probably provided the driving force for the initiation 

of shallower large displacement basement-detached faults like Trestakk Shallow. After 

this, during the majority of the ‘rift initiation’ stage (Latest Triassic to Early Jurassic) 

corresponding to the bulk of deposition of the Åre interval the Trestakk Shallow fault 

had the maximum amount of extension and thus maximum activity associated to it.  The 

activity of the other basement-detached faults in terms of thickness of growth units was 

less compared to that on the Trestakk Shallow (Figure 4.21c). Later during the ‘rift 

climax’ stage (middle-early to late Jurassic) most of the faults were active. The hanging 

walls and the synclinal axes related to these faults record the activity in terms of growth 

induced thickness difference and diverging reflectors (Figure 4.21d). During a later part 

of this stage (post-Top of Ror; Middle Jurassic) a gentle southward tilting of the entire 

terrace probably initiated the gravity induced salt movement that resulted in the WNW-

ESE trending oblique faults towards the western part of the study area (Marsh et al, 

2010). Most of these faults discussed above were active through Early Cretaceous 

during the post-rift stage of the HT3 rifting phase in the study area. 
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4.7.2 Controls of subsalt fault in localizing the shallow basement-detached faults 

The results of the present study show that the relationship of the basement-

involved Trestakk fault and the large displacement basement-detached Trestakk 

Shallow fault above it is complex in terms of their position and the age of growth units. 

The relatively smaller displacement basement-detached faults do not seem to have any 

noticeable basement control. Previous studies of this area (Marsh et al., 2010) have 

interpreted the Trestakk fault as one single fault displacing horizons from Base of Salt 

level to BCU. There are places within the study area where the Trestakk and the 

Trestakk Shallow do seem to be a single fault but in other places these faults can be 

clearly identified separately (Figure 4.7). In order to have these faults interpreted as a 

single fault the sectional geometry of that single fault would have to have a sharp 

convex bend which does not seem likely from the geometry of the horizons in most of 

the southern part of the study area where the Trestakk Shallow is active. Furthermore, 

growth is observed in different intervals for these two faults. The Trestakk Shallow fault 

has rollover and growth on its hanging wall throughout the deposition of syn- Åre and 

post- Åre intervals (Figures 4.6 and 4.7). On the other hand, growth on the Trestakk 

fault is restricted only to the post- Åre units in the hanging wall syncline of the drape 

fold associated to it Figure 4.8). These observations lead to invoke a two-stage 

activation hypothesis for the deeper Trestakk fault. Initial movement of the Trestakk 

fault during the earliest ‘rift initiation’ stage (pre- Åre) probably helped to initiate and 

localize the Trestakk Shallow fault above it. During most of the ‘rift initiation’ stage 

and later during the ‘rift climax’ stage a significant portion of the tectonic activity was 

taken up by the Trestakk Shallow fault towards the southern side of the study area.  The 
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Trestakk fault is active in response to the extension during ‘rift climax’ stage towards 

the central part of the study area where the Trestakk Shallow fault is absent. 

4.7.3 Role of salt in decoupling the extensional deformation 

The nature of the seismic data has led to the interpretation of most of the large 

displacement faults as soft linked basement-detached faults, which has interesting 

implications on the regional tectonic model. The factors related to mechanical 

stratigraphy that determine whether or not the faults in the basement and in the cover 

units would be hard or soft linked are the relative thickness and ductility/viscosity of the 

salt layer and cover units. Apart from this the structural factors are the amount and rate 

of displacement on the faults. The degree to which these factors might be active in salt 

related extensional systems has been studied in detail by Withjack et al, 1989, Davy et 

al (1995), Pascoe et al (1999), Dooley et al (2003), Withjack and Callaway (2000) and 

Richardson et al (2005) both in analog models and in the Halten Terrace area and the 

areas just north of it. The studies by these authors have shown that partitioning of 

extensional deformation between basement and cover units would occur wherever the 

mechanical stratigraphy consists of a salt layer of sufficiently low viscosity overlain by 

a thinner overburden with high cohesive strength. However, even if the mechanical 

stratigraphy is favorable for a soft linkage of the basement and cover faults, hard 

linkage can still be attained if the amount or rate of displacement on the fault increases. 

The amount of activity on a fault is again dependent to some extent on the stage of 

rifting it belongs to. The role of salt as a regional décollement in the Halten Terrace area 

thus has to be considered in terms of the above mentioned factors.  
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The large displacement basement-detached listric faults are active towards the southern 

and northern part of the present study area (Figures 4.6, 4.7 and 4.9) and are absent in 

the central part (Figure 4.8). The presence of the listric faults detaching at the base of 

salt (or within the salt) probably infers that the salt has effectively decoupled the 

extensional deformation between the basement and the cover units in the northern and 

the southern parts.  

In the southern area of study the time during which salt was the only defining factor in 

partitioning the extensional deformation was probably during the ‘rift initiation’ stage 

(syn Åre) when all the active faults were listric (Step 8 and Step 9 of Figure 4.17 and 

Step 4 and Step 5 of Figure 4.18). The ‘rift initiation’ stage is supposedly accompanied 

by lower rates of extension (Prosser, 1991). During the ‘rift climax’ stage (post Åre) 

extensional activity was however shared between both the basement-detached faults and 

the reactivated basement-involved Smørbukk fault (Step 5 through Step 7 in Figure 4.17 

and Step 3 in Figure 4.18). The ‘rift climax’ stage had also seen the reactivation of the 

basement-involved Trestakk fault and the eastern E1 fault  in the central part (Step 2 in 

Figure 4.19) and an increase in the activity of the basement-detached faults towards the 

northern part of the study area as well (Step 3 in Figure 4.20). All these might suggest 

that there was an overall increase in the rate of extension during the ‘rift climax’ stage 

of the HT3 phase of rifting. This increase in the rate of extension may have become the 

defining factor for the hard linkage of the Smørbukk fault in the southern part of the 

study area where the overall mechanical stratigraphy was still favorable for decoupling 

of extensional deformation in the basement and the cover units.  



129 

4.8 Conclusions 

Two dominant structural styles were observed in the Smørbukk area of the Halten 

Terrace – basement-involved faulting and basement-detached listric faulting. The 

basement-detached faults detach at the level of Base of Salt horizon and are present in 

the northern and southern part of the study area; they are absent in the central part of the 

study area.  

The Smørbukk area of the Halten Terrace has recorded a complex history of fault 

activity. The basement-involved faults show at least two stages of activity whereas the 

basement-detached faults show a single stage of activity. Earliest activity of the 

basement faults can be pre-salt or post-salt (but pre Åre). A post-salt (pre Åre; Late 

Triassic earliest ‘rift initiation’ stage) initial activity model for the basement faults is 

favorable to explain the driving force for the development of the overlying major 

basement-detached faults. The second stage of activity of the basement-involved faults 

was during a post Åre time corresponding to the ‘rift climax’ stage (Middle to Late 

Jurassic) and their activity continued through the post HT3 rift phase (Early 

Cretaceous). Most of the basement-detached faults were active through the later ‘rift 

initiation’ (syn Åre; Latest Triassic to Early Jurassic) and ‘rift climax’ stages, majority 

of the activity being during the ‘rift climax’ stage as recorded by the greater thickness 

of the growth units. The activity of some of these basement-detached faults continued 

through the post HT3 rift phase. 

Among the basement-detached faults the Trestakk Shallow shows the highest amount of 

extensional activity in terms of growth and its position is controlled by the underlying 

basement-involved blind Trestakk fault. The Trestakk Shallow fault is active only in the 
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southern part of the study area. Reactivation of the deeper Trestakk fault is seen in 

terms of growth in the hanging wall synclines of broad drape folds towards the central 

part of the study area where the Trestakk Shallow fault has died out.  

The role of salt as a regional décollement varies both spatially and temporally in the 

study area.  It decouples the extensional deformation above and below it towards the 

northern and southern part of the study area where the basement and the cover faults are 

soft linked. During the ‘rift climax’ stage there was probably an overall increase in the 

rate of extension in the Halten Terrace area. This caused the basement-involved 

Smørbukk fault to be hard linked during a post Åre time even towards the southern part 

of the study area where the mechanical stratigraphy was still favorable for soft linkage 

of basement and cover faults.
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Figures and tables 

 
 
Figure 4.1 Summary of results from extensional analog modeling using rigid basement and ductile 
cover with an intermediate viscous layer (from Withjack and Callaway, 2000). The top three panels 
show the variation of the sectional geometry of the structure resulting from difference in thickness 
and cohesive strength of the cover and the thickness of the viscous layer under a uniform rate of 
displacement. The two bottom panels show the effect of change of viscosity of the weak layer and of 
the amount and rate of displacement. 
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Figure 4.2 a. Regional structural map of the offshore Mid-Norway region showing the location of 
the Halten Terrace with respect to the major structural zones and basins. Red dotted box outlines 
the area shown in (b). b. Enlarged structural map of the Halten Terrace with the key bounding 
regional fault zones and in the study area. The red dotted box outlines the 3-D seismic survey area.  
Redrawn and modified from Blystad et al. (1995). 
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Figure 4.3 Sub-regional index map of the study area showing the location of the wells and major 
normal faults. Fault polygons and color and line contours are drawn on the depth-top of the Early 
Jurassic Åre Formation. The positions of the cross sections shown in subsequent figures are 
marked by thick black lines. For the locations of the other major basement-involved faults, refer to 
Figure 4.11. 
 

 

 

 

Meters 



134 

 

Figure 4.4 Regional stratigraphic framework showing the representative lithologies and the ages of 
the formations in the Halten Terrace area (Modified from Marsh et al., 2010). Interpretation of the 
main tectonostratigraphic units in the area is shown in the right column. Colored and highlighted 
lines represent the seismic marker horizons interpreted in the present study. 
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Figure 4.5 a. Schematic cross section of units adjacent to a fault showing the limitation of 
determining vertical thickness on a fault. Note the zone of anomalously low vertical thickness on 
the fault. Also note that for most dipping horizons vertical thickness is always higher than true 
thickness (Tvert>Ttrue). b. Schematic cross section showing the offset relation of the basement fault 
and the hanging wall depo-center associated with it. 
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Figure 4.6 Uninterpreted (a) and interpreted (b and c) time section showing the structural 
geometry of the faults and key marker horizons along Inline 1820 towards the southern part of the 
study area (Refer to Figure 4.3 for location). Note (in the blown out interpreted section in c) that 
growth related thickness variation is more prominent to the post- Åre units for most of the faults. 
Growth geometry within syn- Åre units is observed only along the Trestakk Shallow fault. Axial 
thickening of the Lower Cretaceous units on the hanging wall synclines of the major faults is 
related to the late movement of the faults during the post-rift (HT3) phase. 
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Figure 4.7 Uninterpreted (a) and interpreted (b and c) time section showing the structural 
geometry of the faults and key marker horizons along Inline 3180 towards the south-central part of 
the study area (Refer to Figure 4.3 for location). In the blown out interpreted section in c. note the 
truncation of the Top of Salt horizon against the Base of Salt horizon probably due to salt 
withdrawal and flow into the Smørbukk hanging wall. The Trestakk Shallow is the single fault in 
this section that shows majority of growth within Åre to immediate post-BCU interval. 
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Figure 4.8 Uninterpreted (a) and interpreted (b) time section showing the structural geometry of 
the faults and key marker horizons along Inline 4100 towards the north-central part of the study 
area (Refer to Figure 4.3 for location). In b. note the absence of any basement-detached faults in 
this section. The thickness difference in the salt unit towards the western side of the section is 
attributed to the flow of salt probably in response to the movement on the hard linked Smørbukk 
fault. Towards the central and eastern part of the section synclinal depocenters within the post- Åre 
units are related to the late movement on the buried Trestakk and E1 faults.  
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Figure 4.9 Uninterpreted (a) and interpreted (b and c) time section showing the structural 
geometry of the faults and key marker horizons along Inline 5820 towards the northern part of the 
study area (Refer to Figure 4.3 for location). In the blown out interpreted section in c note the 
change in polarity of the basement-detached faults in this section. Growth related thickness change 
within the Jurassic interval is more for the post- Åre units. Axial thickening of the lower 
Cretaceous units on the hanging wall syncline of the central listric fault and the onlap of the 
reflectors against the BCU horizon suggest episodic movement on this fault. 
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Figure 4.10 Uninterpreted (a.) and interpreted (b and c) time section showing the structural 
geometry of the faults and key marker horizons along the strike line EE’ towards the western part 
of the study area (Refer to Figure 4.3 for location). In the blown out interpreted section in c the 
conjugate faults that detach within the salt unit are interpreted to have originated from gravity 
driven flow of salt triggered by the tilting of basement (Marsh et al., 2010). Growth geometries 
associated with these faults are restricted to the post-Top of Not units. 
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Figure 4.11 Depth structure map of the Middle Triassic Base of Salt horizon showing the major 
basement-involved faults and the structures associated to them. The presence of the hanging wall 
synclines related to these faults attests to the sedimentary nature of the basement. Note in this 
figure and in the three subsequent figures the oblique geometry of the Smørbukk-Revfallet transfer 
system. 
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Figure 4.12 Depth structure map of the Late Triassic Top of Salt horizon showing the major faults 
that displace it and the structures associated with them. Fault polygons for the basement-involved 
faults are marked with dashed lines and those for the basement-detached faults are marked with 
solid lines. The strike variation of the faults ranges from NNE-SSW to NNW-SSE. Note the 
presence of a separate Trestakk hanging wall syncline in the north central part of the study area 
where the Trestakk Shallow fault is absent. 
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Figure 4.13 Depth structure map of the Early Jurassic Top of Åre horizon showing the major faults 
that displace it and the structures associated with them. Fault polygons for the basement-involved 
faults are marked with dashed lines and those for the basement-detached faults are marked with 
solid lines. Note the difference in trend between the Trestakk Shallow hanging wall syncline in the 
central part and the Trestakk hanging wall syncline in the north-central part of the study area. But 
for the addition of the two oblique salt related faults towards the west the overall strike variation of 
the faults still varies from NNE-SSW to NNW-SSE. 
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Figure 4.14 Depth structure map of the BCU (Base of Cretaceous Unconformity) horizon showing 
the major faults that displace it and the structures associated with them. Fault polygons for the 
basement-involved faults are marked with dashed lines and those for the basement-detached faults 
are marked with solid lines. The structural orientation of the faults and related folds remain 
similar to those mapped on the Top of Åre horizon in Figure 4.13. The overall lack in the number 
of faults displacing this horizon and the discontinuous geometry of the faults that actually displaces 
it points to the decrease in extensional activity during the lower Cretaceous time. 
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Figure 4.15 Depth structure map of the Lower Cretaceous Top of Lange horizon. Note that this this 
horizon is not displaced by any faults and represents a late post-rift (HT3) stage. The approximate 
positions of the anticlines and synclines related to the blind faults partially active below this horizon 
are shown by red dashed lines. The overall trend of these structures is similar to those mapped on 
the horizons below it (Figures 4.12, 4.13 and 4.14). 
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Figure 4.16 Isochore maps between different intervals. Increase in vertical thickness is interpreted 
to be related to growth along faults. The curvilinear zones of anomalously low vertical thickness 
correspond to the position of the faults (refer to Figure 4.5 for the origin of the low vertical 
thickness zones). The approximate positions of the faults are shown in black dashed lines. a. 
Isochore map between Base of Salt and Top of Salt horizons. Zones of high vertical thickness right 
adjacent to the major faults are attributed to the flow of salt. b. Isochore map between the Top of 
Salt and the Top of Åre horizons. Note the curvilinear zone of growth related high vertical 
thickness right adjacent to the Trestakk Shallow fault. c. Isochore map between the Top of Åre and 
BCU horizons. Highest vertical thickness is still in the hanging wall depo-centers related to the 
Trestakk Shallow fault. However increase in vertical thickness along the hanging walls of the other 
faults is more prominent in this map than in b. Note the separate depo-centers for the Trestakk 
Shallow and the Trestakk faults. d. Isochore between BCU and the Top of Lange horizons. Fault 
related depo-centers are still prominent in this Lower Cretaceous interval. 
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Meters Meters 



147 

 

Figure 4.17 Depth section along AA’ (Inline 1820; see Figure 4.3 for location) and stepwise iteration 
of decompaction and structural restoration. The amount of extension yielded from each step is 
measured on the Top of Salt and on the Bottom of Salt horizons and is shown at the bottom of each 
step.   The stratigraphic column used for the restoration is shown on the right. See text for detailed 
explanation of each step. 
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Figure 4.18 Depth section along BB’ (Inline 3180; see Figure 4.3 for location) and stepwise iteration 
of decompaction and structural restoration. The amount of extension yielded from each step is 
measured on the Top of Salt and on the Bottom of Salt horizons and is shown at the bottom of each 
step.   The stratigraphic column used for the restoration is shown on the right. See text for detailed 
explanation of each step. 
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Figure 4.19 Depth section along CC’ (Inline 4100; see Figure 4.3 for location) and stepwise iteration 
of decompaction and structural restoration. The amount of extension yielded from each step is 
measured only on the Bottom of Salt horizon and is shown at the bottom of each step.   The 
stratigraphic column used for the restoration is shown on the right. See text for detailed 
explanation of each step. 
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Figure 4.20 Depth section along DD’ (Inline 5820; see Figure 4.3 for location) and stepwise iteration 
of decompaction and structural restoration. The amount of extension yielded from each step is 
measured on the Top of Salt and on the Bottom of Salt horizons and is shown at the bottom of each 
step.   The stratigraphic column used for the restoration is shown on the right. See text for detailed 
explanation of each step. 
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Figure 4.21 Schematic block diagrams showing the progressive evolution of the basement-involved 
and the basement-detached faults over time in the study area. a. Initial layer parallel geometry 
during the pre-rift (HT3) stage. b. Earliest rift initiation stage during late Triassic time resulting in 
the first phase of activity of the basement faults. c. Development of basement-detached faults 
during the later major part of the rift initiation stage. The position of the basement-detached fault 
with higher displacement is somewhat constrained by the blind basement faults below it. The 
position of the smaller basement fault is unconstrained by any basement fault below it. d. Further 
growth of existing faults, hard linking of basement fault and development of new basement-
detached faults during the rift climax stage. Note the difference in the trends of the hanging wall 
synclines for the basement-detached faults and the blind basement fault active in this stage. 
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Table 4.1 Summary of activity of the basement-involved and the basement-detached faults in the 
study area. 
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Addendums 

Dix (1955) Equation: Given VRMS and T0 for the top and bottom of the kth layer in a 

stack of layers within the earth’s surface as shown below 

 

The interval velocity is obtained from the Dix Equation: 

                                        

Wells with checkshot data: 

Well Latitude Longitude KB (m) TD (m) 

6406-1-1 64°54’34.3”N 6°17’40.8”E 24 5057 

6406-3-2 64°51’52.5”N 6°49’51”E 22 4513 

6406-3-4 64°53’05.9”N 6°50’47.6”E 29 4380 

6506-11-1 65°11’10.3”N 6°39’53”E 29 4657 

6506-12-1 65°10’13.4”N 6°43’43.1”E 22 4939 

6506-12-4 65°12’52.8”N 6°43’29.4”E 25 4437 
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Summary of Interval Velocities: 

Profile Formation Interval Vel(m/s) Solidity 

Inline 1820 Water 1475 Water 

Inline 1820 Nordland/Naust 2170 Sand50/Shale50 

Inline 1820 Kai 2138 Sand  

Inline 1820 Tang 2386 Shale  

Inline 1820 Lange 3584 Shale  

Inline 1820 BCU to Not 3605 Shale  

Inline 1820 Not to Upper Are 2607 Sand50/Shale50 

Inline 1820 Upper Are 3588 Shale33/Sand33/Carbonate33 

Inline 1820 Lower Are 4077 Shale33/Sand33/Carbonate34 

Inline 1820 Salt 4600 Salt 

Inline 1820 Basement 5800 Solid 

Inline 3180 Water 1475 Water 

Inline 3180 Nordland/Naust 2173 Sand50/Shale50 

Inline 3180 Kai 2136 Sand  

Inline 3180 Tang 2381 Shale  

Inline 3180 Lange 3589 Shale 

Inline 3180 BCU to Upper Are 3029 Shale 

Inline 3180 Upper Are 3593 Shale33/Sand33/Carbonate33 

Inline 3180 Lower Are 4071 Shale33/Sand33/Carbonate34 

Inline 3180 Salt 4600 Salt 
Inline 3180 Basement 5800 Solid 
Inline 5820 Water 1475 Water 

Inline 5820 Nordland/Naust 2221 Sand50/Shale50 

Inline 5820 Kai 2172 Sand  

Inline 5820 Tang 2422 Shale  

Inline 5820 Lange 2884 Shale  

Inline 5820 BCU to Upper Are 3639 Shale  

Inline 5820 Upper Are 3743 Shale33/Sand33/Carbonate33 

Inline 5820 Lower Are 3838 Shale33/Sand33/Carbonate33 

Inline 5820 Salt 4600 Salt 

Inline 5820 Basement 5800 Solid 
Seismic velocities for the basement were obtained from Breivik et al., 2009. 
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Average Velocity vs. Depth plots for checkshot wells: 
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CHAPTER 5  
CONCLUSIONS 

 

The experimental models have helped to understand the map patterns of the 

deformation zones and secondary faults in the cover units associated with the normal 

movement on basement faults in rift settings. The effect of obliquity of the basement 

fault with respect to the direction of extension was also studied in detail. The choice of 

stiff clay over steel ramps in the two layered experimental models helped to understand 

the extensional deformation both in the basement and in the cover units and also study 

the effect of lateral propagation and different degrees of interaction of the basement 

fault.  

The overall trend of the deformation zone in the cover unit broadly mimics the trend of 

the basement fault and its width increases with increasing extension. The secondary 

faults within the deformation zone have a complex pattern depending on the degree of 

lateral propagation and obliquity of the basement fault with respect to the direction of 

extension. For throughgoing faults, fault densities show an initial sharp increase with 

the initiation of extension and then remain approximately constant or even decrease 

with further extension. In case of initially terminating faults propagating laterally under 

extension, fault densities show discrete highs with increasing extension. For multiple 

basement faults complex structures develop at the areas of interaction of the 

deformation zones within the cover units. For trapdoor structures involving two 

connected or approaching basement faults both oblique to the direction of extension, the 

area of intersection of the associated oblique deformation zones is marked by 

development of secondary faults trending approximately normal to the direction of 
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extension. In other cases of basement fault interactions where both the faults are 

orthogonal to the direction of extension and offset with respect to each other, the 

interaction of the deformation zones results in an oblique saddle shaped high with the 

development of oblique secondary faults. The width of the deformation zones (drape 

folds) restricts the width of the oblique saddle shaped high (the transfer zone), a 

scenario not considered in the existing conceptual or physical models of transfer zones. 

In the case study from offshore Mid-Norway some of the structures modeled 

experimentally like trapdoor structures, synthetic transfer zones and extensional fault 

propagation folding have been documented. The study has also shown the role of salt in 

the partitioning of extensional deformation in the basement and the cover units. During 

the initial stages of rifting when the rate of extension was presumably low the salt layer 

decoupled the extension above and below it. An earlier phase of movement on the 

basement-involved faults helped to localize the large displacement basement-detached 

listric faults. During a later stage of rifting when the rate of extension was high, the role 

of salt as an agent for partitioning the extensional was undermined. Faults in the 

basement were connected to the faults in the cover units under higher amount and rate 

of displacement of the basement faults in this stage.  


