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CHAPTER|

INTRODUCTION

Automated target tracking and recognition (ATR) is the opmeyaystem that no human being is
involved in, but only under its own supervision. It is based ortrémsmission of many kinds of
signals processed by computers according to a specified pro@faure 1.). It can
automatically detect and lock targets that appear in theaddtalso recognize its class. The ATR
can return us the 3D coordinate or location, and also the pimseation of the target, and also
the label can be presented. No human get involved in this precedst the results are quite

stable and reliable.

- & &

Figure 1.1: Example of ATR application.

The human eyes can learn objects in a scene easily angéa@gmize individual or multi-objects
quickly. So that replicating this ability at least partiafiythe main purpose and challenging issue
that triggered our research in the area of object recognitiere are two challenge issues: the
first one is about models that can capture the soul of a atasategory; the other one is how the
metrics are defined and how we can better match our models to data dffestiibat we can do

an efficient reference.



Some of those research focus on human or car detéttiah while some others try to tell the
difference between multiple class&s$. And also some key issues need to be considered such as
how to detect and recognize objects in a scene and how to accobatHanter-class and intra-
class variations. Usually both the identity and view factoestreated as discrete valléss],
while in this paper we introduce an algorithm that both of thesablas are continuous, which
makes it much more flexible to deal with unknown views orsclagiants. For the appearance
model, the major challenge in the vision field is the tam@ygpearance variations based on
different viewports and underlying 3D structures. Moreover,daastity is usually represented by
discrete variables in most ATR algorithms. So the method vilkeintioduce is using this
generative model to deal with both of these two factors in ancmnts manner, coupling both
view and identity manifold for target representation, andiit significantly make the ATR
inference process easier, allowing us to meaningfully analgwetarget appearances and hence

to handle unknown targets under unknown views or previous viewpoints that bamseen.

In nature target representations in the IR data are usuallparametric, including templates,
histograms, edge features and so[@®&]. In [7] the target is characterized by shape features,
intensity and a self-organizing map is used for classificatiisiogram-based representati¢@is
have been shown to be simple and robust under difficult tracking twosdi9], but such
methods cannot distinguish effectively between various ta@tgeses because they do not have
enough shape information. |h0], the shapes and poses variability is represented by deformable
models with many parameters that have to be optimized ftatéocalization and recognition.
Moreover, this method has an assumption that, observations have essaofghion and the
boundary of targets can be well detected and evaluated agaigsbgused parametric model.
Many existing IR target recognition approachiés 11, 12] depend on the use of exemplar
templates from several viewpoints to train a classifigtt ttan associate the observed target

appearance with a discrete identity variable. Such metmuly need a very dense training set



of viewpoints to successfully recognize targets from amyitkdews and they are often not

capable of handling unknown targets that did not appear in the training data.

Particularly we introduce a shape/silhouettes based geretatiget model developed by Dr.
Vijay, which is controlled by both continuous view and identityialdes on two manifolds for
multi-view target modeling. The simpe view of this genemtnodel is shown ifrigure 4.2 the
identity manifold is a 1D circle structure which is catiegd by only one variable, and the view

manifold is a 2D hemisphere which contains two variables: elevagigrad azimuth € ) angle.

A non-linear tensor decomposition technique is used to couple theanifolds into a compact
generative model which can be incorporated in a particle filter based infalgodéhm for ATR
purpose. The most convenience of this model is the controlling of brég tvariables. Our
research in this paper is based on the new ATR databésssed by the Military Sensing
Information Analysis Center (SENSIACFigure 1.2 [13] which contains a large amount of
infrared imagery dataset of many different military and liami vehicles: BTR70 Armored
Personnel Carrier (APC), T72 Main Battle Tank, BRDM2 Infatf8cput Vehicle, BMP2 APC,
ZSU23 Tank with Anti-Aircraft Weapon, 2S3 Tank with Self-propetllelowitzer, MTLB
Armored Reconnaissance Vehicle Towing a D20 Artillery Pieoed Pick-up and ISUZU SUV.
Particularly, except from the MTLB with an artillery pieege use the rest of these vehicle’'s data
in our experiments, and group them into four different classe3afiks: T72, 2S3, and ZSU23;
(2) APCs: BTR70, BRDM2 and BMP2; (3) SUVs: ISUZU SUV anil Ri&ck-ups: Ford Pickup.
Moreover, we will use two visible video data taken in an indabrdf two remote controlled toy
vehicles: Lexus 1S350 sedan, BMW X5 SUWidure 1.3 (a) and () And also we collected
another visible data from PETS2004] of a white cargo var~{gure 1.3 (). So totally we have

six classes: Tanks, APCs, SUVs, Pick-ups, Cars, and Mini-vans.

To evaluate the efficiency of the generative target madeldesigned four different methods to

handle the view and identity factors, and we will also defirsetaof quantitative metrics for

3



Figure 1.21R imagery from SENSIA[13] (Left: BTR70 APC; Right: T72 Main Battle Tar.

(@) (b) (c)

Figure 1.3: Visibleband imager ( (a) and (b): videos taken in VCIPL of R@y vehicle: Lexus 1S350

sedan car and BMW XSUV respectively, and (c): video from PETS2004]).

algorithm evaluation. ¥perimental results shows that tgenerative model can improve 1
tracking and recognitioaccurac significantly, and the advantages of litgawith both identity
manifold and view manifold for target tracking aretognition is demonstrated as well, b

qualitatively and quantitativel)

This thesis is organized in the order that theaietewas completed. First we wtalk about the

related work in @apter 2,introducingprevious work that has been done in the field ofiom
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and appearance model, and also ATR algorithm. Then we will bdgingtaabout the feature
extraction method and camera calibration in Chapter 3, mainlysiftg on background
subtraction through which we can get the initial silhouettes that ac foe the shape based ATR
algorithm. The camera calibration is important since during i@rénce process we need to
compare the position hypothesis with the true data using camegjectmn matrix. Then in
Chapter 4, we will introduce our view and identity manifold and édhe tensor decomposition
method which couple these two manifolds into one generativefotdhrAnd most importantly
we will talk about the learning of this generative model, dsd the reconstruction of target

silhouettes theoretically.

Then in Chapter 5, we will focus on our inference algorithm, upargjcle filter based target
tracking and recognition method that applies the recently devel@pgdt model for ATR

purpose testing. In details, we will talk about the motion modeliseefor the inference process,
and also the training appearance we need for the learning génleeative model, or how do we

get the target silhouettes for the training.

Then finally, in Chapter 6, we will concentrate on our experimgmtatessing, showing the
learning process of the generative model, and several exges of how do we interpolate target
shape between training viewpoints, and also the interpolation beameewithin classes. Then,
we will apply the recently proposed generative model into ApRlieations from SENSIAC
dataset and some visible video data, by comparing four differethtocts we developed in which
the ways of handling target view and identity are differgvi¢ will also mention the limitations

and possible extensions of our algorithm. Finally we will present thdusimes in Chapter 7.



CHAPTERIII

RELATED WORK

In this chapter we will talk about several related warkt thas been done previously related to
different ways of representing 3D objects, and then we willméa their capabilities to
parameterize shape variations, and the abilities of intéipolto make the parameter estimation

easier.

2.1 Multi-view target models

Object representation has two branches of ideas, one is abetubB2D snapshois5, 16} and
the other one is about the 3D object mode&ls. For the first one, we can interpolate unknown
views through given ones, and for the second one, the 3D model is usudltp nsatch with the
2D observation using 3D to 2D projection, mainly using the 3D-2Deption camera matrix
obtained by camera calibration. And similarly, object recognitisnes could also be grouped
into two different categories: the first one is those invoh\@gmulti-view images18-23], and
the second one is those supported by explicit 3D m¢a&l&7]. Some researches try to use both
of the 3D shape and 2D information. Various 2D features suclhasiedites, edges, HOG, and
SIFT, or 3D models such as meshes, polygons, and polyhedrons wetie theesse methods. But
the psychophysical experiments guide us to use 2D view-based di#isoieetmulti-view object
representation. There are also hybrid meth@dighat is using both of the 3D shapes and 2D

information.

2.1.1 Templates Methods




The Simplest multi-view model is the 2D Templates. Theseeesentative view samples of
many different targets in many different views. Somengtas will be shown irFigure 2.1 In
this work, they use two specific photographs and define an adjustadéton of several points,
the structure of skeleton compatible formats. They define éwplate models, male and female,

which are nake{8].

Figure 2.1: 3D human shape reconstruction usinglzie mode[28].

The limitation of this kind of models is that we have to savarge number of training model

clips, which is quite challenging and not efficient.

2.1.2 3D Models Approaches

The 3D multi-view models are the 3D representation of tasigape, and it can be of two types.
(1) The first one is rigid model$-igure 2.2, these are complete mesh or vertices based models.
One previous work25] is proposed to use this kind of model, aims at tracking vehicles
monocular intensity image sequences and presents an effici@mbbust approach to 3D model
based vehicle tracking. Although it is very accurate, itgse difficult to store, and we need to

project the 3D model into 2D at each frame to perform inference.



(2) The second one is the parametric model, in which thettsingpe is roughly predefined, and
several segments are joined together to form a shape. Arplexarshowing how this model
looks like Figure 2.3. In[10] a deformable 3D geometric vehicle model with 12 parameters is
set up as prior information and Bayesian Classification Esradopted for evaluation of fithness
between the model and images. Using a novel evolutionary compugtigod called EDA
(Estimation of Distribution Algorithm), we can not only determiihhe 3D pose of the vehicle but
also obtain a 12 dimensional vector which corresponds to tishdi parameters of the model
[10]. But these models need optimization at each frame to determinertbet set of parameters,

and also there is no clear distinction between target types.

Figure 2.2: 3D rigid model example.

Sedan Hatchback Bus

Wagon

6
X 0
I X-Y Plane 2
II: Y-Z Plane 1
MI: X-Z Plane .
y Generic Model

1V: Ground Plane Pickup Minibus Van Truck

Figure 2.3: A generic parametric 3D vehicle modéiol can be deformed to fit with different vehicles

[10].



(3) The third one is using the 3D feature model. This method is based on a new 3®rfeatel.
Instead of using a complicated mechanism for relating multiplér&bing views, this method
establishes spatial connections between these views by mappingliteetty to the surface of
3D model[29] (Figure 2.4. Still, this method needs to store a large amount of traininge@ire

model images, and the computational load is quite large.

Figure 2.4: Construction of 3D feature model fortonbikes[29].

2.2 Generative M odels

Two topics are related to each other on shape representalienfirst one is how we can
characterize the variation of shapes, and the second one is teffediively infer the hidden
variables of shape, including the viewpoints and identity indion [30]. Feature vectors
obtained from common shape descriptors like shape confE{tsmoment descriptor$2] etc.

are usually assumed to be in a Euclidean space to ease shagpiegrau# recognition. But in
most cases, we can learn the underlying shape better by somi@eandimension reduction

methods through non-linear manifold in a lower dimension space. Howlegse kinds of



manifold learning are usually either view dependent or idewlityenden{33]. An identity
independent view manifold was proposed3#| where the identity variable is still discrete. $till
the lacking of a global shape representation framework thatipported by both view and
identity variables in a LD space triggers our research. ematcent research trend is trying to
find a space where every point in this space stand for a lplewssiape and a curve between two
points in this space stands for a deformation path between twmessh@his was shown
effectively in action recognitiofi30] and shape clustering5], it is still hard to separate the

identity and view factors explicitly which is very necessary irRAdpplications.

All these triggers us the research of learning the low wsoa (LD) latent factors, view and
identity, from the high dimension (HD) observations, or in otherd®, silhouettes. In an early
work, [36], PCA method was used to find two separate eigen-spaces in oddethi® learning of
3D objects, one for the identity and the other one for the pose.cbyngesing observations into
a bunch of independent factors, the bilinear mogiis and multi-linear analysig38] provide a
much more systematic multi-factor representatiorj3#j, a shape sub-manifold was introduced
that can link the shape variable to the appearance, and we hava tihiefor each category. All
these methods introduced above have a limitation of discretétydesnrtiable, where each object

is associated to different view manifold.

2.2.1 PCA Approaches

Principal component analysis (PCA) is a mathematical procedhate uses an orthogonal
transformation to convert a set of observations of possibly ctadelariables into a set of values
or uncorrelated variables called principal components, whicly@seanteed to be independent
only if the data set is jointly normally distributelidure 2.5. However, PCA is sensitive to the

relative scaling of the original variables.
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Figure 2.5: PCA: determine a subspace with dimentiat captures the largest variat{G6].

2.2.2 Multi-linear Tensor Analysis

Another approach introduced j&8] using a multi-linear modeling technique, which employs a
tensor extension of the conventional matrix singular value decongmodhown as the N-mode

SVD, which is shown ifrigure 2.6

The limitation for both the linear PCA and multi-linear tenapiproach is that there is no
interpolation ability between training data. This means wlensted to store a huge amount of

data for training, and it is impossible to know and hence reconstruct dasehdtaining data.

2.2.3 Manifold Representation

One commonly used non-linear model is called manifold, which camtifg low dimensional
embedding using locally linear embedding (LLE), etc., such as discasgkéd, they adopt LLE
to represent HD car samples in a 2D space and further npenthése 2D points onto a circle.
Within this compact space, car samples are grouped into seubrahtegories by the K-means
clustering method, and then an agglomerative clustering methe®#dsto construct a tree from

top to down Figure 2.7. But in this method, different targets lie in different subspaoesihey

11



Figure 2.6: Image set for human face. Left to riglferent illuminations; within each of the thrpanels,

expressions and views changes horizontally andcedyt38].

(@) (b) (©)

Figure 2.7: Multi-view car detection: (a) 2D embedpof cars using LLE; (b) normalized 2D pointsrfro

(a) onto a circle, and then K-mean clustering igliad; (c) hierarchical clusteringo].

12



need to be aligned to be useful in the multi-target case,h&nd is no smooth change between

each training targets, or no interpolation is available for icixas identification.

2.3 Our Approach and Advantages

In this work, our target is represented by its represent@iveriews, and we have two main
reasons to do this. First, theoretically this is supported by fahpghysical views presented in
[41] which suggests th#tte human visual system is better described as recognizing objects by 2D
view interpolation than by alignment or other methods that rely oectlgentered 3D models
Secondly, storing and using lots of detailed and fine 3D modelarimius target types in an ATR
system can be very difficult and troublesome. Moreover, robust ésasuch as HOG, SIFT that
is being used to characterize objects in 2D views aréeattloped for visible images, and they
are also limited by several issues such as the regolotithe image, and the quality, too. In IR
dataset, targets are usually pretty small and we do notemawugh resolution that can support the
using of features. Specially, IR sensors in our dataset (SENSiACstatic, which makes the
preprocessing of the segmentation easier, using background —sobtr&atce it is possible to
extract target shape information and also easier to représenshape using silhouette, it

motivates us to use this 2D view based silhouettes for multi-vigettegpresentation.

And we are also inspired much from the non-linear tensor decampgosioposed iri34] which

a radial basis function (RBF) non-linear mapping was involved beforte-fianctior tensor analysis.
In detail, both the view and identity variables are involvedahyidentity-independent view
manifold shared by all target types and also a view-independentity manifold. By this
generative model, we can interpolate new shapes along both view atity ichanifolds, and this
is controlled by only three variables, which makes our infergmocess much more efficient and

flexible.

13



With using the RBF kernel mapping and the non-linear tensor decormppsie can factorize
out the identity factor from view information, and hence buia tindependent manifolds:
identity and view manifold. Most importantly, we don’t need toestdr the view information for
each target, and we can either interpolate between eacgraisiw point, and also do inter-

class and intra-class interpolation.

To illustrate the efficiency of this generative model, we tgve particle filter based ATR
inference algorithm, which can estimate the 3D location, posehariddntity of a target appears
in the scene. We also include more training dataset, not onliagibilit also military vehicles for
the learning of this generative mode, and put them all togethem @retity manifolds, so that
we can not only track and recognize civilian targets bot @iitary targets. Experimental results
of the interpolation shows smooth changes on both of the view manifold,handidntity
manifold. This recently proposed generative model based paitieleifference algorithm is
tested on both IR data and visible data, and the tracking anchimogesults from overall 48
IR data sequences and 3 visible data sequences show tieneyfiof the generative model for

ATR purposes.
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CHAPTER 11

FEATURE EXTRACTION AND CAMERA CALIBRATION

In this chapter we will talk about the feature extraction aathera calibration, which are
important for the future application of the generative model iRt data and visible-band data.
Through feature extraction we can build the appearance model whitthe used for the
hypothesis evaluation during inference process, and camebpsatah can help us to find the
corresponding projected 2D point in an image from a given 3D poititeirworld coordinate

system, which is also important during the inference process and utteexaduation.

3.1 Background Subtraction

Background modeling is usually used to detect the moving foregrooinjdct) in various
applications in a scene like video surveillané®, 43} optical motion capture and multimedia
[44, 45] It involves the comparison between an observed image and aratestirstatic
background image without objects of interest. Lots of workbeen done related to this issue,
and they can be classified as: Basis Background Modeling, tiBttiBackground Modeling,
Fuzzy Background Modeling, and Background Estimation. It is well knoantke most used

one method is the Mixture of Gaussian (MOG) model, introduced by StaufferransoG[46].

The idea of the MOG is that, each pixel is characteriged Gaussian mixture model, then the

probability of the observed pixel value is given[by]:
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P(X):ZQI'U(X’MI’ZJ’ (3.1)

where K is the number of distributions, or components in the MOG, ax, is i" weight

associated with each component of the MOG, with meag;, pfand a standard deviatioy , .

Due to the computational load, here we assume that the RGB components are indépeadant
other. Actually in our SENSIAC dataset, infrared framesadr@ne channel instead of RGB.
Experimentally, this is much easier. But for the visible dataare using, we will apply this

assumption.

Then, we will use the K-mean method to initialize the WweigVhen a new frame is given, we
can update the Gaussian distribution of each pixel. If the Mahasadisitance from the sample
to the component is less than a predefined constant, the samglese” to this component. Our
algorithm propose that, a pixel belongs to background corresponds terawaight with smaller

variance. So we can approximate the background by theBfilGtaussian distributions which

exceed certain thresholf} :

b
B=argmin} @, >T) . (3.2)
b i=1

But in real practice, sometimes if a sequence of the bawgkdrframes is available, target
segmentation will be much easier (in the case of a fixed regrsince we can stop updating the
parameters of the Gaussian distribution until a moving object astméhe scene, and then just
simply compare the coming data with the Gaussian distributionaleady built for the
background. InFigure 3.1we will show some Background subtraction result using this MOG

model.
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Figure 3.1: Segmentation results, from left to tidhe first 6 showing the background subtractiesufts

from SENSIAC databadé 3], and the last two showing the results from visitd¢a.

3.21R Camera Calibration

Since the SENSIAC database which we will be using for our experimentinsomtarge amount
of ground truth data, so here we develop a simple Pinhole mbdelr¢ 3.2 based camera
calibration method, in order to do the 3D tracking and recognilimure 3.3will show us the

perspective projection of this Pinhole Camera Model.

In Figure 3.3 P' and P are the 2D coordinate and 3D coordinate in the 2D image cotadina

system and 3D camera coordinate system respecti¥élis the focal length, and is defined

as.:
f 1
A= . (3.3)
Z

And then this model can give us the relation betweérand P :

X'=AX,
y'=2y, (3.4)
z'=f'=4z
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Since the calibration in SENSIAC dataset which Wwél used for experiment will be based on
3D camera coordinate fra, so given theP' at theimage center, and the corresponcP in

camera coordinate systewe can find the¢ f ', then it will be much simple to do the calibrat

18



Slant/ground
ranges

100 meter
diameter

Sensor

angle

Sensor
: Up
Elevation

‘VEA?\ Aspect
AIS ‘:.mf targel i) North == orientation
relative 0 senso - Heading~,
¢ ?Z'rtn'r"tlh :\E direction
Heading 1a %e J arthe
Direction (a) 'otueno (©
Sensor
Si
aﬂf range ¥
Optical
Ground range Target cgnter
(b) (d

Figure 3.4: Definition of the 3D coordinate systamd the spatial geometry of the sensor, and akso th
target in the SENSIAC dataset. (a) The aspect eftahget relative to the sensor, and the azimutthef
target relative to the true north, and the elevatié the sensor; (b) side view of the ground arahtsl
distances between the target and sensor; (c) toprddew of the aspect direction and the heading

orientation; (d) A sensor-centered 3D coordinagdusr algorithm evaluation.

In Figure 3.4 several ground truth data is displayed in order to cadilihet camera in the camera
frame 3D coordinate system, and also for the 3D tracking andearatuation later. These data
includes: the relative position and pointing angle of the seosiie target, as iRigure 3.4 (&)

the ground range and slant range from the target to the sessarFigure 3.4 (b)the pixel
location of the center of target in each frame, and aspect adithgalirection of the target, as in
Figure 3.4 (¢)and finallyFigure 3.4 (dthe camera frame 3D coordinate system centered at the

Sensor.
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By using the frame which the target's aspect angle is 9@&ddgrthe sensor, we can compute the
intrinsic parameter and hence the transformation matrix, amdvtbewill be able to find the 2D
pixel location of any given point in the defined 3D coordinatéesysThe reason of doing this is
that we do not have any calibration information from the datas® neither the true 3D position

of the target geometric center.
3.3 Visible Camera Calibration

For the visible video data taken in the lab VCIPL (Visual Coimguind Image Processing Lab)
at Oklahoma State University, and with the help of the Cant@alibration Toolbox for

MATLAB ® [48], we can do the camera calibration easily using a cheakd pattern, and some

markers on the floor.

First we generate and print a check-board pattern, and them ipash a flat panel. We can
download one directly from its website or make our own. In theeqpaavailable online, each
square is 30mm30mm. then we need to generate some calibration im&ggsrd 3.5 in a

folder and then we can get the intrinsic parameters by runhagrogram and extract those

corners.

After we get the intrinsic parameters: focal lendth the skew coefficientr. which defines the

angle between the x and y pixel axis, the distortiggswhich store the image distortion

coefficients (radial and tangential) as a 5x1 vector, we teeléfine our 3D world coordinate
scene on a flat floor with markers suchFagure 3.6 (ashows, and then run this program again
to obtain the extrinsic parametersgure 3.6 (bshows the 3D coordinate system after calibration,

and the re-projected points.

In order to verify the calibration, we can simply define a 8Decin the world coordinate system,

and then use the calibration information we got from the preymwasedures introduced to
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compute the 2D pixel location, and then show this cube in the image of the 3D coordinate system

as shown irFigure 3.7

Figure 3.5: Image of pattern board for intrinsionesia calibration.

(a) (b)

Fig.3.6. Extrinsic camera calibration (a): Real 8&ne of a flat floor plane. (b): 3D coordinatetsys

after camera calibration.
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Figure 3.7: Two white cubes (140x140 mm) drawnhe 8D world coordinate system using camera
calibration data computed earlier; the further-lovest corner of the left cube lies at the origand the
further-lower-left corner of the right cube lies(61.0,610,0) in the world coordinate system in imiditer.

Note that the dimension of the bricks in the fl&@305x305 in mm.

* Figures taken fronhttp://www.cs.gmu.edu/~zduric/it835/Slides/Cameras.pdf
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CHAPTER IV

SHAPE BASED GENERATIVE MODEL

The key of the generative appearance model will be showvagime 4.1 The first step of the
model learning is to obtain group of silhouettes from a setrgéts which belong to several
different classes that are observed from different viewpaititen, we will try to learn a mapping
from the high dimensional silhouettes space to tow low dimensionaifatitawhich contains
only the information of the variations in terms of pose and igeriter this model is learned,
we can reconstruct or interpolate a semantically meanindffidlugittes image given any arbitrary
point on each of the LD manifolds. In this chapter, we will intreddentity and view manifolds,
and then the non-linear tensor decomposition method which can corbimentity and view
manifold together into a generative model for multi-view tasigmpe modeling, and finally the
target tracking and recognition. This work was previously prapbgeDr. Vijay Venkataraman
[4]. But in this paper we expand it to include more trainingetargnot only civilian vehicles but
also military vehicles, and we will expand the applicatiorthi§ generative model to the IR

database ATR purpose and some other visible band data.

4.1 Preliminary

The generative model uses two very important mathematicas, tedlich | would like to

introduce first in this section.

4.1.1 RBF Mapping
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Figure 4.1: lllustration of the generative model feew and identity based shape appearance syathesi
Reconstruction results of the shape are showrhtobtue path traversed along the view manifold fand
six different points on the identity manifold. laegh case the reconstructed shape has strong céstcs

of the view and target class.

The first tool which will be used is called the radial bdsisctions (RBF), this is a non-linear
kernel function that is normally used for function approximatiorerpalation, etc. for example
as shown inFigure 4.2 just knowing the function values at the black markers, ae ¢
approximate the function by placing radial basis kernel aktizsvn values and interpolate to
other unknown regions. The advantage that RBF can offer is a sfuoection approximation

that preserves local similarity.

Figure 4.2: RBF mapping and interpolation *.

4.1.2 Tensor
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Another tool we will use is called tensor decomposition or highreler singular value
decomposition (HOSVD)38]. It is similar in spirit to the singular value decompositwrSVD
where we identify the basis vectors of a given matrix. HOSMows us to identify the basis
vector of a higher dimensional data vector. For example as simofsigure 4.3 we have face
images arranged in 3D, with each dimension representing ot dbllowing (identity, view,
illumination). HOSVD allows us to identify the basis vectors of eachex¥d subspaces or factors.

But this is a linear decomposition.

Although the application of common linear algebra techniques likeipal component analysis
(PCA) and independent component analysis (ICA) have been sucgeaskdl in lots of image
analysis and problems mainly in the field of face recognitit}j, most of these methods are
built for the analysis of a single varying factor. In researcface recognition usually the factor
means the individual identity. Therefore these methods hauweo&iksues in decomposing other
varying factors like pose or illumination when they are ented in the dataset. So, we are
trying to develop a target appearance model by which the igdemtit view information can be
decomposed into different factors, this method is combined Wweéhnbn —linear RBF kernel,
resulting in a non-linear tensor decomposition metdddNow we will introduce the tensor as
followed, which was previously talked about in Dr. Vijay’s PHiBsertationAdvanced Machine

Learning Approaches for Target Detection, Tracking and Recogni@®i’0.

A tensor is defined as a multi-dimensional matrix or a n-way aaiag-mode matrix. They are
higher order generalizations of a vector (first order tenmod) a matrix (second order tensor).

Here we will indicate scalars by lower case letteag(...), vectors by bold lower case letters

(a,b,...), matrices using bold upper case lettef/s B,...), and higher order tensors by script

upper case letterg\(, B ,...), the order of atensdk € R '*'**'~ js N and an element of this
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Figure 4.3: Example of HOSV[38].

tensor is denoted b ; , wherel<i, <i

Tensor Flattening: Flattening is one of the most significant operation thithei performed on
tensor, or we can call it matricization or unfoldingsithe reordering of the elements of a tensor

into a 2D matrix. For example, 2x 3x 4 tensor can be re-arranged intéla 6 matrix, 3x 8 or
a 2x12 matrix. The mode-n matricization of a tengore R '*'#*!v is denoted byA, . The

example provided in50] is repeated here for clarity of the flattening concept. hetftontal

slices of A € R **? can be represented by

147 10 13 16 19 2
A=|2 5 8 11|,A,=| 14 17 20 28, (4.1)
36 9 12 15 18 21 2

then the three mode-n flattened matrices are given by
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1 4 7 10 13 16 19 2
Ay=|2 5 8 11 14 17 20 2 4.2)
3 6 9 12 15 18 21 2

1 2 3 13 14 1
4 5 6 16 17 1

A7 g 9 10 20 21’ (43)
10 11 12 22 23 2
1 2 3 .. 11 1

Po=(13 14 15 .. 23 21‘ “9

Keep in mind that different paper or work use various @mgeof the columns for the n-mode
flattening. But in general, the particular matrix permutatiothefcolumns is not important only

if it is compliant along all related calculatiofS0]

Mode-n product: the next thing involving tensors that is of our intereghés mode-n product.

The mode-n product of a tens8r e R "2 with a matrixQeR > is denoted by

B =A x, Q. The tensoB e R ""!7*mr9vt v gnd element-wise we have

|n
ql"jn—ljiml"i'N - Z a.ilzi'n (ﬂ n’ (45)
=l

The mode-n multiplication may be represented using flattened matsitedoavs
B=Ax,QeB,=QA,. (4.6)
Another important property of the mode-n product is
Ax Px Q=Ax_Qx P(m . (4.7)

We will discuss about the tensor decomposition later in this chapter.
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4.2 | dentity Manifold

Identity
Manifold

Figure 4.4: LD identity manifold

Not like many other methods in terms of the way how they handl@#mity manifold, it is
possible for us to interpolate and reconstruct any unknown subehigsevinformation given a
limited number of training data. The continuous nature ofdéstity manifold will give us great
help to interpolate meaningful target silhouetted between two rkritoaining targets. In this
section we are going to introduce an identity manifold whielygobhn important role in our target

tracking and recognition algorithm where both inter-class and irdsz-chape are captured.

However, since we want a LD latent space which contains tbelydentity factor Kigure 4.3
rather than the HD space in which both view and identity infoomare coupled together with
each other, and moreover, we are trying to build a semantieily and meaningful identity
manifold that can support us to do the interpolation which significanake sense in the real
world between class and within class, so it will be very ingpdrfor us to answer two questions:

the first one is where and which should we learn this manifadta second one is, how do we
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learn this semantically meaningful manifold or what kind afperty should we keep on the

designated manifold.

We will discuss about the first question in section 4.4. Heravildocus on the second one,
which is related to how we determine the topology of the identiyifwid, and also the ordering
or topological relationship of those training data. If the trjrdata are sparse, a 1D closed-loop
structure was suggested to ensure valid interpolatiodemtity manifold and in this way we can
ease the inference process later for the vehicle trackimgrecognition. It starts with a few
considerations which seems arbitrary but actually due to sorogcptassues. First, the learning
of a large number of the dataset of targets may not be aegdss a specific ATR application.
And this is also the motivation for us to interpolate the vehstiape information between and
within class. The second one is, this identity manifold is asduiméoe open because all the
training vehicles are artificial and share some common shape informtatéach other, instead of
extremely different. And the third one is that the closed-kiogcture will facilitate the inference

process, preventing the hypothesis from going to a dead end on the structure.

Since now we have determined the topology of the identity widnifhe next step is how do we
order the data on this manifold. Although there is no well-defordéring relationship among
different vehicles, we want vehicles within the same ctaag close to each other, so here a
class-constrained shortest-closed-path method was suggestedemn to find this specific
ordering across all training vehicles along the identity nogohifBut this method requires view
independent dissimilarity between identities which shouldlieimed from 3D models, but for
convenience, to compute the dissimilarity we talked about, welysimse the accumulated mean

square errors of multi-view silhouettes after the distance transfor

In detail, assume we have a training set of target shapesNr view independent identity

vectors in a LD spacial‘, andke{l,...,N}, and Lk is the associated class Iabe}é‘ is the
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silhouette of objeck with view m after vectorization and distance transfof®3]. Here we

denote targetl andVvby i andi’, then the similarity between these two targets dver

number of training views is defined as:

Yu—Yul+a-e(L,L,) (4.8)

D(i”,iv)=i‘

where the

g(L,,L,)=0 if L,=L,,

] (4.9)
=1 otherwise

and the||~|| here denotes the Euclidean distance, @ni$ a constant. The term(Lu, LV) is a

penalty term makes sure that targets within the same wifistay together next to each other on
the identity manifold. Since targets in the same claddaak closer to each other, and this can
give us some reasonable interpolation within class. Otherfvise put all training targets in

arbitrary orders, most probably we will get a lot of interpedatargets that do not exist in the real

world.

Next we denote the manifold topology by
T :[Tiytzy---)tN+1] ) (410)

wheret, e(l, N], t #t,, fori=j andt =ty,,. Then we can write down the class-constrained

shortest-closest-path as

T= argmini( i) . (4.11)

T i=1
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This topology tends to group all those objects of the similast&pes together, since the penalty
term makes sure targets within same class stay nextlootaer, so we can guarantee the best
local smoothness along this identity manifold, and this is vesergial for valid identity

interpolation of some unknown sub-class.

4.3 Conceptual View Manifold

We need to design a view manifold which yields the view-ldathape variability to each target
except from the identity manifold, or independent from the idemtignifold. Some common
ways were found using non-linear dimension reduction algorittues as LLE or Laplacian
Eigenmaps, trying to find the LD view manifold given the high dinera observations for a
particular targef33]. But two main defects exist here. One is, since they aréitiddependent,
so the involved multiple view manifolds will be aligned togetfugrgeneral multi-view target
modeling in the same latent space. The other one is, theysaedly constrained by the 1D
structure which is too simple to capture all possible aljjeses in the real world. So, we will
develop a hemisphere-like view manifold which will include almaltthose possible view
angles around a vehicle as shownFigure 4.5 This view manifold is characterized by two

parameters: the azimuth/ aspect anfleand the elevation angle . This conceptual view

manifold can help us to stay away from the learning and dtparad of multiple view manifolds
for various targets. And simultaneously, it will also provideausgnified and intuitive viewing
space representation, and give us strong supports on effigiggatnic view estimation since this
conceptual view manifold is continuous and it contains most of thabp@wiewports we will

meet during training and testing.
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Figure 4.5: Coupled view-identity manifolds for peabased multi-view target modeling. Two factors,
identity and view can be decomposed from the shlapiations in the training dataset, and both ofithe
can be mapped to a low dimension (LD) manifold b8aelecting a point on each of the manifold, we ca

interpolate a new shape through the reconstrugttinh we will talk about later.

4.4 Non-linear Tensor Decomposition

We will extend the non-linear tensor decomposition method that esasibled irf{34] to develop
the shape-based generative target model, which is controlledlpythree variables. This will
involve learning a non -linear mapping function that will find teéationship from the HD
observation to the unified view manifold and then by given & nelependent space, factorizing

out the identity vector for identity representation (the firsiasse mentioned in 4.1).

For the target numbek, we will learn a non —linear mapping between each of them by the

generalized radial basis function (GRBF) kernel as:
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vE = wie(|O, - ) +[10,]h , (4.12)

here we denote the d-dimensional observation of tdtgender viewm by y,']‘1 eR?, and

©,, =[O #y] is the LD point of view m on the view manifold, whede 0m§271,0£¢m£%

m

{Y,|I=1,...N.} are N. kernel centers on the view manifoldf is the specific target
weights of each kernel ang is the mapping coefficient of the linear ponnom[élI@m]

included for regularizatiorvr(-) is the common Gaussian Kernel.

This mapping can be written in a matrix form as:

ye=BY¥(0,) . (4.13)

B*is ad x (N +3) linear mapping corresponding to targetind containing the weight terms
W in Eq.4.12, and wher® (0, )= [K(”@m—Yl”),...,K‘(H@m—Y ,%H) 10 m} is a non-linear

kernel mapping that composed of the regularization {dr@, ]. Since¥(®,) is dependent
only on the view angle, it will be easier for us to undedthat, the identity related information
is included inB*. For K number of training vehicles, we might want to obtain their

corresponding mapping* for eachk = {1, 2, ...,K} that could be stacked together later to form

a 3D tensoC:[Ble...BK], which contains all those identity —dependent information belong

to different view angles, or poses. Intuited by the fact thgutar value decomposition is usually
used to find the basis vectors of its row and column spéoesapplication of the high-order

singular value decomposition (HOSV[)1] to this tensoiC could help us to factorize ot
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identity vectors* € R, which can be interpreted as the basis vectors of a lspace for the

identity factor. And this will give us the following tensor decomposition:

C=Ax;i* , (4.14)

Wherekz{l, 2,...,K}, A is adx (N, +3)x K core tensor that serves as coupling the identity

and view factors together ang denotes the modg¢-tensor product.

Then from Eq.4.13 we will be possible to reconstruct the trainingttartpouettes corresponding

to the k™ target under viewn:
yi=Cx,¥(0,) . (4.15)

It is also possible for us to interpolate the shape silhoueta giny® on the view manifold and

an interpolated between training identity vectaf . Because of the RBF kernels’ nature of
possibly interpolation nature, we can do this reconstruction betwaiemgy target and training
views. And furthermore, since this kind of interpolation can be attrioutee sparse nature of the

training dataset in terms of the identity variation, seihard to say that given any arbitrary

identity vectori which span the basis vectc(rié, conl k) in the tensor coefficient space.

Another point is, one may think any linear combination of these lvasitors could form a new
identity vector, and this vector may lead to a meaninghape interpolation. But the shape
produced in this way usually does not represent a real worldtolfjetD space that is
appropriately supported by all training targets is needed to ensure \sgiel rfitonstruction. This

motivates us to learn a 1D closed-loop identity mani{éidure 4.6)via B-spline curve fitting

(Figure 4.7)in the tensor coefficient spa«‘(ial< |k = 1,...,K} according to the manifold topology

defined in Eq.4.11. We constrain this identity space to inclutietbase points that lie on this
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closed B-spline curveonnecting basis vectors according to the manifofblogy. This closed
loop 1D spline curve is defined as the identity ifedd. It is expected that an arbitrary ident
vector along this identity manifold would be msemanticallymeaningful due to s proximity
to training targets, and it should support validgh interpolatio on the manifol. Thus Eq.4.14
is controlled by onlytwo continuous variabl in a LD latent spageand each of them follows i

own manifold, to form a mu-view shape model which will comsin the smoothness of t

K -dimensional

o] Identity coefficient Loop with single
angle parameter &
o space o
Mapping o

\ > ¢ | N

3 o

b o
o @
o o

Figure 4.6: Mipping from the l-dimensional identity coefficient space to the 1Bseld loop controlled b

one single angle parameter.

Figure4.7: Left: linear interpolation. Right: Spline intedption. **

interpolation transition between different targiDue to he reason that we constrain the spac

the identityto be a closed spline R* , we can always find a one to one mapping from pc
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on this spline to those points on a unit circle controlled byglesiangular variable [0, 27r) :

This will significantly simplify the inference process dre tidentity manifold, by using only one
single variable instead of the identity vector. Now, the Eq.4aiMbe generalized to reconstruct
valid shape silhouettes corresponding to arbitrary points along thethview and identity

manifolds:
C,=Ax;i(a) , (4.16)
and then Eq.4.15 can re-written as:
y(a,0)=C,x, ¥ (0©) . (4.17)
Thus we can generalize the above two equations as:

y(@,0)=Ax;i(a)x,¥(0), (4.18)

wherei (a) is a specific identity vector along the identity manifold, §q.4.17 defines a new

target generative model for multi-view shape modeling, whictorily controlled by two
continuous variablesy and ® , each of which are defined along their own manifold. Duedo th
fact that the identity manifold is a closed loop spanning in thecdd¥ficient space, we can map

it to a circle in order to make the inference easier.

In the following chapter, we will begin to talk about our iefece algorithm and how we utilize

our generative model and integrate both of the view and identity manifolddaltapplications.

* Figure taken fronhttp://www.algebra-cheat.com/radial-basis-functions-for-simulating-pdes.htm|

**  Figures taken fronhttp://en.wikipedia.org/wiki/Interpolation
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CHAPTER YV

JOINT TRACKING AND RECOGNITION

In this chapter we will go through the most important part foragpplication of this generative
model we introduced in earlier chapter, into the ATR purpose. Weifitroduce the motion
model we used during the tracking and recognition process, and thernllvtallkwabout the

obtaining of target silhouettes for training, and hence the partidelfiitsed inference algorithm.

5.1 Maneuvering Target Motion Models

The white noise acceleration model is probably the simplestInmdirget maneuvering with
two -dimensional per coordinate. And this is a widely used modelediefrom simple equations
of motion: constant acceleration and constant veldBity. It is general in the explanation that
the second and third order derivatives of the position are not lzet@® zero-mean random
process. In our application, since all vehicles are drivindherrdund and there is no big change

of acceleration, we decide to use this simple white noise motion model defioed be

6, :9t71+th'
Vo=V + W,
X =X%_,+V ,SiN@_)At+ w, (5.1)
Y= Yeat W,

Z =74+ Y,C086 Nt W,

where At is the time interval between two adjacent frames. tadon model assumes that the

process noise coupled with the target’'s kinematics follow a Gaussiabution, so we define
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thatw ~ N(0,05), W ~N(0,67), W' ~N(0,65), W ~N(0,07), w ~N(0,67), and

these variances can be chosen flexible to accommodate véaiges dynamics and ground
conditions. Which means, for example, if a target is moving fagtnaaking turn fast, a larger

variance could be used, and for the case if the ground condition is uneven and rocglambaa

Iargeroﬁ will be needed. This motion model will be clearly showkigure 5.1

Y Optical Axis

Xt — 1 Vt—1,Zt—1

XVt Z¢ v

Figure 5.1: Motion model.
5.2 Target Silhouettes Used for Training

Before we train our generative model, one important thing isbtain all those silhouettes at
different training viewpoints from vehicles we are intezdstBut since it is inaccurate and
impossible for us to do this in the real world, we will useraara in a virtual world to create all

the training silhouettes we need, in order to train the generative model.
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The easiest way is to set up a camera and load a fixeddgel in 3Ds Max and then render all
silhouettes at a sequence of training camera positions, whiefuisalent to the way when
camera is fixed and the pose of target is changing. But due to som that we want to save time
and build all these training silhouettes efficiently, we wikk XNA in Visual Studio C# to render
them. It is the same idea but we can choose to change the ptse tafget at all training

viewpoints to build the silhouetteSigure 5.2will show how this is done in XNA. But due to the
fact that the distance from target to sensor/camerelasively large, we will use orthographic

projection in practices.

& o -~ uw
Y &£ » = gy ~

Figure 5.2: Obtaining training silhouettes from B8@dels in XNA.

5.3 Inference algorithm

A generative graphical model is used to combine all the fattmether with their conditional
dependencies into a framework which is probabilistic, and hence to testiraastate of the target

including 3D location and category sequentially from a datasettaofet silhouette

{Zt |t =1,...,T}, which could be obtained from background subtraction that we déestliss

earlier chapters. We show this probabilistic graphical modéigure 5.3 X, = [xt Y, Z6, \(] is

the state vector containing the targets 3D position albieghorizontal, vertical and range
orientations, the heading direction with respect to the optikisl and the speed in a 3D
coordinate system as shownHigyure 5.4.P. is the camera projection matrix, and since in all of
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our dataset, the camera is static, so we could sePtafP. Another variable, indicates the

identity position on the identity manifold.

3D Position

Camera
projection

ldentity
varaible

Synthesized
shape

Observed
Z; i silhouettes

Figure 5.3: ATR inference graphical model.

Optical
center

Figure 5.4: Sensor centered 3D coordinate system.
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(= (fl,...,d,;?1,...,4;21,...,4)

l

0 = (xl,...,s; yl,...,szl,...,S)

Figure 5.5: lllustration of the 3D-2D projection

Moreover, the generative model defined in Eq.4.14 needs anothergter® to synthesize the

target shapdy, that can be computed froX, and F, . Since our target silhouettes are obtained

from a fixed range virtual camera, we need to scale all oethpsappropriately in order to
accommodate all different camera distances in the real skjaences. To summary, the

synthesizedy, is a function of those three factors;, P andX,.

Specifically, as shown iffigure 5.5 given the location of the target centroid cerftery, 2) and

the dimension of the vehicle, we can always find the correspgrdi locations of the 8 corners

...............

translation matrixI of the cube from the sensor center. And, from the aspect &ngiel the
target's azimuth angle relative to the north, and also thett&fg location, we can find out the
rotation matrixR. So together, we can find out the 2D image pixel location of a bogitutix
around the target in the imade= P(T + RO), where0 = (%;_4,9:.4,%:_4) Note that we will

only need four corners’ 2D image location in order to determine this 2D bounding box.
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Given an observation, the target silhouetféom the background subtraction result of the data,
the automatic target tracking and recognition problem becomesethential estimation of the
posterior probability op(at | X, ,Zt) . Because of the non-linear nature of this inference problem,
the particle filter approacfb3] is applied here, and it needs the dynamics of the two variables

p(X,1X,), andp(e, |, ), and also the likelihood functigp(z, |, , X, ). The condition for

P is omitted because we assume that the camera is static.

Given the hypothesis oK, and ¢, in the i" frame as well as th& , we can find the

corresponding shape information (silhouetteg) from the generative model Eq.4.17 with
additional scaling factor depends on the actual range of thet tiiogn the sensor. Then the

likelihood function which measures the similarity between thpothesisy, and the observation

Z, will be defined as:

Pz, e, X ) o expPHZtZ_—y;H], (5.2)
o)

where theo? controls the sensitivity an# ||2 gives the mean square error between the
hypothesis and the observation shape.

During the joint tracking and recognition, although the targegstity does not change like the
pose, the estimation of identity along the identity manifold shdnddvarying due to the
uncertainty and ambiguity of the observations. Hence we defindymamic along the identity

manifold as a simple random walk:

o =0, +W , (5.3)
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wherew ~ N(0,5>). This simple model will give the estimation of identity sofreedom to

evolve along the identity manifold and hence converge to thectatess during the sequential

estimation.

Table 5.1: Pseudo-code of the particle filteringdshATR algorithm

e Initialization: DrawX} ~N(X, .} , and/)=«, ,
Vje[L...Np] . HereX, and, are the initial kinematic state and

identity values respectively.
e Fort=1,...T (number of frames)
1. Foij = 1,..N, (number of particles)

1.1DrawX! (X! X.,) samples
andy (e d/,) asinEq5.1andEq5.3.

1.2 Compute weights;’ p=z,(«],X!) using Eq.5.2.
End

No
2. Normalize the weights such that;! = 1.
-1

3. Compute the mean estimation of the kinematics and idasiitg
A N Np
X, => wX!, andy, =Y w/ o]
j=1 j=1
4.Sef o) X!'|= resample) X! 1)
e End
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CHAPTER VI

EXPERIMENTAL RESULTS

In this chapter we will discuss in details about the expersn@&mR) we did in order to show the
practical application of the generative model we introducgutemious chapters. Specifically, we
have developed four different kinds of ATR algorithms which slia@esame particle filtering
inference framework shown Figure 5.3 Through these four different methods, we will evaluate

the effectiveness of shape silhouettes interpolation on both view anidlyicestifold.

Method | uses the recently proposed generative model we introchatedvolves both the view
and identity manifold, and we will use the interpolated silhegetih both two manifolds as the
target appearance model, which means both the view and idermitifotds are continuous.
Method Il and Il are simplified versions of the appearance mimdevhich the silhouettes
information is interpolated only on the view, and identity manifofgheetively (i.e., in method Il,
the view manifold variable is continuous and the identity manifaliable is discrete, while in
method llIl, the identity variable is continuous and the view ro&hivariable is discrete). In
method 1V, we will only use the training silhouettes as appearéor shape matching without
any shape interpolation. This means both the view and identityfotthvariables are discrete.
These four different methods will basically show us thecéffeness of the interpolation on view,

and identity manifold throughout the real ATR application.

Three major experiment results will be shown next. These involvieaitléng and recognition
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based on IR video data from SENSIAC dataset, and also on thedaital. Firstly we will show
the learning of the recently proposed generative model, dentedskyathe simulation results of
shape interpolation on view and identity manifold respectivelyn ¥ introduce the SENSIAC
datasef13] followed by experimental results on a set of IR video sequesfcerght different
targets at six different ranges. Then, we also included thrieeatit visible video data sequences
for our algorithm evaluation. These visible data contains two segsdhat were captured in
VCIPL at Oklahoma State University from two remote-contebliey vehicles, and another one
from a real-world surveillance video provided from PETS2001sea{a4]. Before the ATR
algorithm, some pre-processing (Background subtradtioih as shown inFigure 6.) was
applied to the data in order to get the initial background suiona@sult in each frame, and also
the distance transfori33] was used to generate the observation data that were onceutes f

learning of the generative model.
6.1 L earning of the Generative M odel

First we collected thirty-six 3D models that can be handi€gDis Max, these models contains 6
models for each of the 6 target types: Tanks, APCs (Armored Pergtamielrs), Pick-ups, mini-
vans, cars and SUVs for the model learning. All these madelshown irFigure 6.2 All these
3D models are scaled to the same size as they are irathveord, except those tanks and APCs,
which are 0.8 times the real size in the real world, due to the fact thelegah these two classes
are much more larger than the other four classes. Such kiseoimodulation and category
dependent scaling can help us to learn the unified generativd amatéhen to estimate the real
distance information in a scene. For each 3D model, we generated a set ofteghwilietrespect
to training viewpoints previously chosen on the view manifold, iasudsed in 5.2. For

convenience, we only consider the azimuth angle that rdbgeé< 27 , and the elevation angle

rangesO< ¢ < % .
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Figure 6.1: Group of snapshots of the segmentaésults for all eight targets at all six differeahges

together with the original IR sequences.

Because of the computational load, and the fact that most of thenvaur experimental data are

below elevation angle d% , and also the reason that shape silhouettes variety changkars

and smaller as the elevation anglegoes larger and larger to the top of the hemisphere view

manifold. This will lead to a non-uniformly sampled view manifold. Speadiftc 150 training

46



J
i
!

CGC V100

Hummer Galant DC_working Chevy suburban

}
]
!

Crewcab CGC V100 Caravan 99 Hummer

I
)
!

SA-9 GASKIN M1-Abrams impreza

LUCIDA GMC Jimmy
Or Mercedes
= L TR T

BTR70 Te2 Chevy NISSAN SKYLINE GT-R VW Samba N/A

3
[
)

Isuzu rodeo 92

Ratel Chevy Bmw_8er-Coup Nissan Elgrand Or Mitsubishi pajero
ﬁ § !tova ”l“da c!u
BMP1 AMX -30 ) BMW 23 N/A Or Land Rover Discovery
Or Silverado

Figure 6.2: All 3D models that have been used fodeh learning. Each target class contains six. Hedtm

to right; APCs, Tanks, pick-ups, cars, mini-vangVs, in the order according the identity manifotdrh

top-down and left to right.
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Figure 6.3: Shape interpolation on the view madifethere the left, middle and the right ones ingisahe

training shapes, and others are the interpolataiwden those training views from left to right. Tiivst

and second training shapes 4 away from each other along the azimuth angle, tard2nd and 3rd

ones areél0° along the elevation angle.
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viewpoints were used, and the interval between each viewpoint2aesnd10® on the azimuth

iy oy iy —
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Ve

Figure 6.4: Shape interpolation of one target fieanh class of targets in each row on the identégifold.
The left, middle and right ones are the trainingess, adjacent to each other in each row. Othershe

interpolated shape silhouettes between trainirggetarfrom left to right.
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Figure 6.5: Shape interpolation between two adjaiz@get classes along identity manifold.

and elevation angle direction respectively, which leadsaamtim-uniformly distributed sampling
points on the hemisphere view manifold. Moreover, less trawiggs might be needed as the

elevation angle goes larger, this is also due to the lesisndégity of shape silhouettes along the
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view manifold. The way of choosing training viewpoints is closellated to the RBF kernel

parameters setting in Eq.4.12 to ensure the validness and effectieéiies model learning.

We will examine the generative model in terms of its ggenince and capacity of shape

interpolation by three experiments simultaneously:

(1) Shape interpolation along the view manifold by changing the azimuogfe & and the

elevation anglep respectively. One target is selected from each of theygestof targets

and three interpolation image are shown (after thresholding ritezpolated distance
transformed result) between three training view, as showigime 6.3 A smooth transition
along the interpolated shape silhouettes and those trainingamd® observed, and this can

be more obviously seen from the target wheels transition.

(2) Shape interpolation along the identity manifold within the salm&sc3 interpolated shapes
along the identity manifold were generated between eachaglje@ent training targets for
each of the 6 target types, as showrrigure 6.4 We can see that although those training
targets are quite bit different from each other, the intatpdl shapes preserves the spatial

characters from the two adjacent training targets in a veryahatay.

(3) Shape interpolation on the identity manifold between two adjadesses. As shown in
Figure 6.5t is interesting for us to observe the transition ofdh&pe interpolation between
two adjacent target classes. Our generative model catedlee shape silhouettes smoothly

between two adjacent classes and they look realistic, too.

All these result approve to us that the generative modelestalareate semantically meaningful
shape interpolation along the view and identity manifolds. More iraptbyt it enables us to
analyze a known vehicle from a new given view, but also a unkrengattfrom arbitrary views.

Also, the continuous property of both of the manifolds can make the inferencesprases.
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6.2 Testson the SENSIAC Dataset

The SENSIAC ATR database contains a large amount of vigifste mid-wave IR (MWIR)

imagery of seven military and two civilian vehicles. But wi#l use 8 out of these 9 targets, as

shown inFigure 6.6

BMP2-Armed Personnel Carrier (APC) Z8U23-4 Anti-aircraft Weapon T72-Main Battle Tank 2S3-Self-propelled Howitzer

Figure 6.6: All eight targets we used for algoritbwaluation from SENSIAC database.

These vehicles are driving along a continuous circle markeldeoground with a diameter of 100
meters (m). These video data were taken at a frame r&@ lat for one minute from distances
of 1,000m to 5,000m, (with 500m steps increment between each data) durirdpiitie and

nighttime conditions. In those four methods we discussed earliersrchiaipter, we will set

ol=1,0;=0102=01, o, =1and of, =0.8~1.2 due to the fact that vehicles in each

videos drives in different speed. But we will make sure tthmb'; setting is same for all of the

four methods within each sequence. We choose 48 different nightlR sequences of eight
vehicle targets at six ranges — 1000m, 1500m, 2000m, 2500m, 3000m, and 3500m. Each
sequence has approximately 1000 frames. Fortunately each SEN&t#€ENce contains a large
amount of meta data for each frame. This contains the asptw tdrget relative to the sensor

and the azimuth of the target relative to the true norith,the elevation of the sensor; the target

type, speed, range and slant ranges from the sensor to the ttaeggixel location of the target
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centroid, and the aspect orientation of the target. Furthermerdefined a 3D world coordinate
system centered at sensor and using a calibration technique bdetiala camera to obtain the
ground-truth 3D location of the target in each frame as shawkigure 3.4and discussed in

Chapter3. For your convenience, we stiogure 3.4here again denoted Bgyure 6.7

Sensor
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Slant/ground
ranges
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angle~_

Aspegt of ta :
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i ( =] North —__ orientation
relative Q senso Ty .
~Azimuth of E?fﬂ'lﬂﬁ -
Heading htargtet relatrlt\;:'e
Direction (a) 'otueno (c)
t\x‘
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S,
M range y
Optical
Ground range Target cgnter
(b) (d)

Figure 6.7 (Figure 3.4): Definition of the 3D coovate system and the spatial geometry of the seasdr
also the target in the SENSIAC dataset. (a) Theaspf the target relative to the sensor, and gi@wath

of the target relative to the true north, and tleeaion of the sensor; (b) side view of the groand slant
distances between the target and sensor; (c) toprddew of the aspect direction and the heading

orientation; (d) A sensor-centered 3D coordinagdusr algorithm evaluation.

We initialize the tracking algorithm using ground truth dataluding the vehicles’ 3D position,
and heading direction, and a small positive number for the speeel we don’t have ground
truth data for this. Another reason is because the data wgdirsg in a relatively large rate, so

between each two frames the distance vehicles traveled was small.

On the identity manifold, the initialization is also using tlweugd truth, since we know the
vehicle’s class, and hence we know the true position on the ydewitifold. Then random walk

was applied on the identity manifold in each tracking frameheasaime time with the particles
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applied on the view manifold. The closed —loop structure of theitgenanifold prevent any

particles- assumptions from going to a dead end on the manifold.

After each tracking frame, the SIR particle filter vglve us one state with the largest weight as
the current estimation result, and then do the resampling to prépatee next frame step

tracking.

6.2.1 Evaluation of Tracking

The tracking evaluation is based on the errors in approximatedrgBx locations along the
(horizontal direction) andz (the range direction) as shown Fkigure 6.7 (d) The averaged
tracking results over 8 targets with the same rangehansrsin Figure 6.8 We can see that the
errors along the horizontal directiotare all within around 1 meter for all of those four methods.
But for the errors on range directianare much larger than this. It makes sense because the
range estimation is relatively much more difficult than the looitil direction due to the fact that
the size of the vehicle is largely related to the rangdgewhée resolution of the imagery and the
large distance difference between the circle dianmatdrthe range of target to the sensor is too
big, and it is very hard to see the size changes as the vdhigs as a circle even by human

eyes.

Method | shows performance gains of 10%, 20% - 40%, and 3%-50% otteod& Method lil

and method IV respectively. Method | also out-performs the @heethods on the range and
aspect approximation with over 10-50% and 20-80% improvements. Tdwmgts mlso show that
using the two manifolds together yields the best tracking pedioce. Even at the range of

3500m, the averaged horizontal, range, and aspect errors of Mett@odnha0.5m, 25m and 0.5

rad (28.7), compared to those result of Method IV's errors of 0.9m, 45m, and 1(68&f).
In order to observe the tracking result better, we also show sagieng results for Method |

against four 1000m sequencesHigure 6.9 from front view, rear view, and side views. The
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interpolated shapes contours are overlaid on the target bagbé estimated 3D location and

aspect direction and also the given camera calibration. All teeséis demonstrate effectiveness
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Figure 6.8: Overall 3D tracking evaluation of falifferent methods. (a) Horizontal error (m); (bhge

direction errors (m); (c) aspect angle errors (rad)

and usefulness of the generative model in interpolation tangges silhouettes along the view

and identity manifolds for real ATR applications.

6.2.2 Evaluation of Identity
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Since we can map the identity information along the 1D clésagl identity manifold learned

from the tensor coefficient space to a 1D unit circle idgmtianifold, which can significantly
simplify our inference procedure, then the identity variableimes a variablex € [0, 27[) in 1D

space. Correspondingly, the six target categories: tankss AR€k-ups, SUVS, mini-vans, and
cars, can be represented by 6 angular variables alongjrtlwar shaped identity manifold (as

shown inFigure 4.4. Since the target type is estimated frame by frame during traclooggs,

Ford BMP-2
Cb Q Pickup @ Q O C} APC
Z8U23

o o Kl & & 4 @ N
BTR70
N -y @ APC '__‘CB Tank

BRDM2

P @ T W RN @ B S

283 Self-
propelled
Hotwitzer

Figure 6.9: Tracking results for eight differentgats from SENSIAC database, with original SENSIUWRC

imageries overlaid with the interpolated shape @anas white lines.

we define the percentage of frames where the target isctigrrecognized in terms of the 6
classes as the overall recognition accuracy, which mearngethentage of the angular variable
«a lies within the range of the true class. And more interestimgtycan also check two training
targets that are best matched for a given data that canubd bn the identity manifold. The
overall recognition performance of the 4 methods for 48 sequencsiscava inTable 6.1 where
the accuracy of tanks is averaged over those of the T72, ZSU22Ssdnd the APCs is
averaged over those of BTR70, MP2, and BRDM2. Generally speakirtgpié outperforms
other three methods, this further demonstrate the effectivefidhe shape interpolation along
both identity and view manifolds. The improvement of Method | is nebrgous for long-range
sequences when the targets are small and shape interpotatioore significant for better

recognition. When the target range32500m, we can see that the recognition result of tanks and
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APCs are relatively worse than others, which is below 808is i mainly because of the poor
segmentation result and small target sizes as shotigume 6.1 which shows the segmentation
results of all eight targets in all ranges. A simple photogical operation is used to clean up the
background subtraction results. However, when the targets aresnbadl, morphological
processing has to be adjusted to ensure the target shaples pegserved better, and this also
results in more noisy segmentations. Otherwise, after de-noisatgrget shape silhouettes will

be seriously damaged, which is impossible for us to do the tracking aphitéam.

Targets Tanks APCs SUVs Pick—-ups
1000m 96/94/91/90 94/92/89/88 100/100/99/99 | 100/100/100/99
1500m 93/91/88/86 88/86/85/82 100/99/98/98 100/100/100/98
2000m 86/83/82/81 85/83/80/80 98/96/96/95 97/96/97/95
2500m 78/73/72/69 76/72/71/70 92/90/89/86 90/88/88/86
3000m 70/65/62/60 72/69/66/65 86/84/82/79 82/80/79/77
3500m 68/62/58/57 70/65/64/62 78/76/75/70 73/72/70/65

Table 6.1: Averaged recognition accuracies (%)oafr fmethods (Method | through Method 1V) against

forty eight SENSIAC data sequences.

In Figure 6.10 more detailed recognition results of Method | for eight targater range 1000m
are shown. This not only shows the target recognition resulteef-frame but also the two
raining targets that are best matched. | most of the fraheeapproximated identity values are in
the correct region on the identity manifold and misclassifinatisually happens at front views
and rear views, where the targets are less recognizableisimgjuishable. It is interesting that
the two best matches of BTR70 and ISUZU-SUV sequences intghedexact correct target
model. Also, those of other sequences also include a similar taogitl. For example, BMP1,
T72, BRDM1, and AS90 are among the two best matches for BMP2, TEMBRand 2S3,
respectively (both AS90 and 2S3 are self- propelled tanks)oddth we do not have the 3D

models for the Ford pick-up and the ZSU23 in our training set, their best méitieey/Toyota
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Figure 6.10: Target recognition results frame-wissghown for eight target sequences at 1000m range

distance. For display issue we down-sampled 10@@ds into 500 frames. Vertical axis is the valuéhef
angular vaIueaE[O,Zﬁ) and the range ofx corresponding to six different target classes. The

estimated target class is also shown along withvtleeadjacent training target classes.

still resemble the actual targets in the SENSIAC sequences.

6.3 Resultson Visible Video Data Sequences
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Figure 6.11: Visible data: first row and second rang the data of remote controlled toy vehicle exus

IS350 and BMW X5 taken in VCIPL lab respectivelyirtl row is the data from PETS2001 data sequences.

Other than the IR video data sequences from SENSIAC databasdso tested our generative
model of four ATR methods on three visible-band video sequerogs€¢ 6.1). Two of them

(data of car and SUV) were captured indoor from a remoteatieatrtoy vehicle, and 3D target
tracking and recognition was applied due to the availahifitgamera calibration for the indoor
setting and another one was a real-world surveillance videbita eargo van) for which camera
calibration is not available in the outdoor setting and only posmat&in was performed based

on the normalized silhouette sequences. In order to quantitatoeipare those four methods,
we used an overlap metrig4] to evaluate the overlap between the interpolated shapes with the
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segmented targets. L& andH denotes the tracing gate and the ground-truth bounding box

respective, then the overlap ratfois defined as below:

S T HEVLHA) (6.1)

where # is the number of pixels. A larger overlap ratio méger overlap of the interpolated
shapes in the estimated 3D position, and hence better trackingnpeent@. Some examples of
this overlap metric are shown iRigure 6.12 Figure 6.13shows the overlap ratios of four
methods on three video sequences. Obviously Method | is much betteother three methods

due to it capability of shape interpolation along both view and identity manifolds

In Figure 6.14the performance of Method | of three sequences regarditige teecognition are
shown. Again, although the models of the three targets are tadedcin the training data, the
recognition accuracy is still 100% for the first two seqasnand 97% for the white cargo van,
and the two best matches do resemble the unknown target forsequeénce. Especially the
unknown cargo van is very different from all training modelshm class of mini-van, the VW
Samba and Nissan Elgrand, which looks much more similar to tge ean appears in the data

gives a reasonable approximation results. The tracking results andsposgeeresults are shown
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for four methods against three real world sequerfessn left to right are Method | to Method V.
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Recognition Accuracy: 100%
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mini-van.
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Figure 6.15: Tracking results: Left hemisphere gl lines on it show the pose trajectories on tleavv
manifold on the left, and also the selected vidames, segmented objects, and shapes from intépola
and superimposed shapes from the 1st to the 4th, nohile super-imposed result is not availabletfear
cargo van which only pose estimation was perfornf@dLexus 1S350 car. (b) BMW X5 SUV. (c) White

cargo van.
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in Figure 6.15 In some frames especially in the data of the white cargpthie segmentation
result is relatively worse, but the estimation of theepiwgjectories on the view manifold are still
smooth and it shows us the real pose changing of the motion tangeg the sequences were
taken. Furthermore, the interpolation results for those thréreatit sequences match well with
the segmented target, which indicates that the estimation &lothgthe view and identity

manifolds are correct.

6.4 Limitations and Discussion

The generative model is approved to be useful. We can interfpabteen each training view
and identity, and it can save a lot of memory for us since wethoeed to store all the vehicles
at each possible training views. This generative modélhelp us to interpolate semantically
meaningful unknown vehicles between training targets under unknowrpeies, which is not
only efficient but also expand our known knowledge of existing tardgais it is still time
consuming to learn a model that contains more training tarpatles, and the memory is a main
issue during the learning process. Since we need to storaiilhg templates rendered from 3D
models, and we need to build a core tensor which has dargeydimension, usually it requires
at least 4 gigabytes for learning a model that was usddsinvork. And the ATR algorithm still
cannot be real time processed because of the interpolationcamdtreiction of target shapes. So
there is still a long way to go in order to further improve tloenputing efficiency of this

generative model.

These experimental results are promising, but we still consigtework preliminary due to two
main reasons. First, we use a silhouette-based target shppmserdgation that requires
preprocessing of the target segmentation. It is fine to astwhehe camera platform is static
with static camera. But in the case of a moving camera&rmeyshe preprocessing of the target

segmentation will be a very challenging issue. Second, we did nateptise occlusion issue
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that has to be handled with in any real ATR systems. The siteoc@tld be very sensitive to
those occlusion issues. So we could extend our algorithm to some atiuee$esuch as SIFT or
HOG features which are much more salient and stable. By doingi¢hémn definitely increase

the ability of the application of the generative model for real world sgifits.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this work we further expand the application of a recepthsented generative model which
combines a continuous identity manifold for target recognition Eadsamulti-view shape-based
generative model which combines a hemisphere view manifoldingflede military tanks and
APCs in our training dataset, together with civilian cars, -pjg&, SUVs and mini-vans. And
hence we apply this generative model to the ATR applicatiorguB imagery from SENSIAC
database, and also some visible-band sequences. We proposedla fijat-based inference
algorithm that involves tracking and recognition at the same turing inference process. The
experiments show us the advantages of shape interpolation alonghbotiew and identity
manifold, and the tracking and recognition accuracies using #mergtive model always

outperform other three comparison methods.

However, since we are using shape information as thettagmearance, and background
subtraction is usually a hard issue. Moreover, in IR data the shigeation is always not
accurate compared with visible-band imagery data. Most impgtytathe target shape
information (i.e. silhouette) is relatively sensitiveodclusion is counted. Due to these facts, we
propose to learn this generative model by using some featur&fikeand HOG feature. These
features can strongly capture the appearance and identitye dfiterested target, and also less

sensitive when occlusion happens.
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Furthermore, factorizing out the identity from view informatis based on the assumption that
view and identity is independent from each other. But in theweddl they are always influence
by each other to some extent. For example the shape of a balt¢haget will not change from
different view point, but a cube-shaped target will have saif changes. Based on these
factors, we propose to learn a generative model that not only mioigtihe view and identity
manifolds, but also incorporate them together into one generatiniéatad that captures the view
information based on identity at the same time, and hence &pplthe IR imagery based ATR

applications.
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