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CHAPTER I 
 
 

INTRODUCTION 

 

Research in the field of computer architecture shows that the trend in super scalar 

processors is towards wider and more diverse pipelines, employing more specialized 

functional units for important operations. One such critical operation is that of Cubing.  

Cubing can be defined as an operation involving the multiplication of three numbers. For 

example, a x b x c. A number can also be multiplied with itself thrice. For example, a3. 

Cubing is a crucial operation is because it is an important step in many algorithms. 

 

1.1Previous Research Work 

The Goldschmidt’s algorithm [1] is used to perform division, calculate the reciprocal and 

the reciprocal square root in the arithmetic logic units of many processors. An essential 

step during the process involves the calculation of the product: a x b x c. In graphics, 

algorithms used in shading [2], etc. also require a similar operation. Prior research in this 

area includes the simulation and error analysis of the arithmetic cube optimized for DFT 

and convolution applications [13] and an effort to develop better algorithms for 

computing the cube on very large compresses data sets[14]. 

In most processors today, cubing is performed with the help of look-up tables that are 

generated based on a polynomial [3]. The problem with this method is that look-up tables  
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consume too much memory. Memory is expensive. Besides hardware implementations 

are much faster than look-up table implementations. If cubing is to be implemented using 

hardware, current methods would require two passes through a multiplier. So, the first 

pass would perform the multiplication p = a x b and the second pass would perform the 

operation m = p x c. Besides, the fact that instead of calculating the cube in a single pass 

through the multiplier, such a method would require two passes and hence twice the 

number of clock cycles, this has another disadvantage. Consider the multiplication of 

three 6-bit numbers, a, b and c. The product a x b is a 12- bit number. The multiplication 

of a 12-bit number and a 6-bit number requires the use of an irregular sized multiplier 

which is not always available in a processor.  

 

1.2 Parallel Cubing Engines 

This study discusses the design for a single functional unit implemented in hardware that 

performs cubing in a single pass. The design has been implemented based on the concept 

of carry-save array multipliers. Carry-save array multipliers are built using carry-save 

adders in which the carry-outs from one column are propagated as carry-ins to the next 

column. The motivation behind this comes from the fact that addition can be accelerated 

by delaying carry propagation till the last step. Carry-save based arithmetic architectures 

are widely popular in VLSI design [4]. Array structures are regular. It is easier to build 

larger systems more economically and efficiently in a hierarchical manner by exploiting 

the pattern seen in the smaller structures. Also, this facilitates the coding of a software 

generator that can be used to automatically generate the HDL for the corresponding 

length of input words to the multiplier.  
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1.3 Organization 

This paper first takes a look at the problems of unsigned multiplication and unsigned 

cubing. In the real world, one will always have to work with negative numbers. There are 

different number systems that can be used to represent positive and negative numbers like 

sign magnitude representation, one’s complement representation, two’s complement 

representation, etc. The two’s complement number system is the most commonly used 

number system that represents positive as well as negative numbers. It has its advantages 

like a single and hence, conflict-free representation for zero. Regular mathematical 

operations like addition, subtraction and multiplication work well with it. An n-bit two’s 

complement number represents any number in the range {-2n-1, 2n-1-1}. Chapter 2 looks at 

two’s complement number system and the modifications made to the unsigned multiplier 

to deal with signed numbers.  

 

Also in chapter 2, some background related to multiplication, multipliers, two’s 

complement multipliers while chapter 3 forms the crux of this study- the problem of 

cubing. Chapter 3 also visits the cubing unit designed to perform the cubing operation 

using signed operands, called two’s complement cubing. Both, chapters 2 and 3 take a 

look at examples that use 3-bit operands to gain a better understanding of how the design 

actually works. Similar to that in chapter 2, chapter 3 once again revisits the two’s 

complement representation for signed numbers and the modifications applied to the 

unsigned version to arrive at a design that can handle the cubing of three signed numbers. 

Chapter 4 then looks at the algorithmic analysis of the various designs and compares 
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them for area and delay. It also reviews the results obtained after testing and synthesis. 

Chapter 5 discusses the conclusions that were arrived at, post the completion of this 

study.  
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CHAPTER 2 
 
 

BACKGROUND - MULTIPLICATION 

 

Multiplication involves the use of addition in some way to produce a product ‘p’ from a 

multiplicand ‘a’ and a multiplier ‘b’ such that: 

p = a x b 

2.1 Multipliers and their types 

The hardware designed to carry out multiplication is known as a Multiplier. High speed 

multipliers can be divided into two categories: 

1. Serial multipliers: Serial or sequential multipliers compute the product 

sequentially, usually utilizing storage elements so that the hardware in the 

multiplier is reused in each iteration. Serial multipliers have low area 

requirements but are slow since they calculate partial products sequentially.  

2. Parallel multipliers: Parallel multiplication involves the use of hardware to 

multiply an m-bit number by an n-bit number to completely produce a n + m bit 

product. Parallel multipliers can also be pipelined to reduce the cycle time and 

increase the throughput by introducing storage elements within the multiplier.  

 

 

 



 6 

2.2 Steps involved in multiplication 

Multiplication usually involves three separate steps as listed below. Although there are 

implementations that can theoretically be reduced to the generation of shifted multiples of 

the multiplicand and multi-operand addition (i.e. the addition of two or more operands), 

most multipliers utilize the steps listed below. 

1. Partial Product generation 

2. Partial Product reduction 

3. Carry Propagate Adder (CPA) 

The following dot diagram [7] further explains the process of multiplication better. The 

multiplier and the multiplicand are both 2-bit words in this case. 

 

Figure 1: The Dot Diagram for Multiplication 

The process of multiplying each bit of the multiplier with each bit of the multiplicand is 

termed as partial product generation. The process of performing addition on a given array 

that produces an output array with smaller number of bits is called reduction. The process 

of partial product reduction produces a sum and a carry. The sum is the partial product of 

the corresponding column while the carry must be propagated to the next column as in 

any addition operation. Hence the use of the carry propagate adder in the multiplier. 
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2.3 The carry-save concept 

When several numbers are added up sequentially, it is not necessary to propagate the 

carries during each addition. Instead, the carries generated during an addition can be 

saved as partial carries and added with the next operand during the next addition. 

Namely, each addition can be accelerated by postponing the carry propagation. This leads 

to the concept of carry save addition. The numbers can be added up by a series of carry-

save additions, followed by a carry propagate addition. Namely, for multi-operand 

addition, only one carry-save addition is required. An adder for carry save addition is 

referred to as a carry save adder. A carry save adder sums up a partial sum and a partial 

carry from the previous stage as well as an operand and produces a new partial sum and 

partial carry. An n-bit carry save adder comprises of just n full adders without 

interconnections among them. The following Figure [7] shows a one such carry save 

adder or (3, 2) counter which is nothing but a full adder: 

 

Figure 2: Carry Save Adder 

Figures 3 and 4 [7] show the half and full adder implementations at the gate level. 
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Figure 3: Half Adder 

 

Figure 4: Full Adder 

The CSA utilizes many topologies of adder so that the carry-out from one adder is not 

connected to the carry-in of the next adder. This is in contrast to what is done in ripple 

carry addition [5]. Eventually a carry propagate adder can be utilized to compute the 

result. This organization of utilizing m-word by n-bit multi operand adders together to 

add m-operands or words each of which is n-bits long is called a multi-operand adder 

(MOA). An m-word by n-nit multi-operand adder can be implemented by using (m-2) n-

bit CSA’s and 1 CPA. Unfortunately, because the number of bits added together 

increases the result, the partial sum and carry must grow as well. Therefore, the result 

will contain [n + log2 (m)] bits.  

 

2.4 Carry Propagate Adder 

By cascading n full adders, an n bit binary adder capable of handling two n bit operands 

can be designed. The implementation of a 4-bit ripple carry adder or binary adder is 
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shown in Figure 5 [7]. When two unsigned integers are added, the input carry c0 is always 

zero. The 4-bit adder is also called a carry propagate adder (CPA), because the carry is 

propagated serially through each full adder. C0 = 0 or 1 for multiprecision addition. The 

design of a carry propagate adder is straight forward but the carry propagation time limits 

the speed of operation.  

 

Figure 5: Ripple Carry Adder 

 

2.5 Carry Save Array Multipliers (CSAM) 

In this section, we look at carry save multipliers – their architecture, performance  and 

speed considerations. 

2.5.1 Architecture of the CSAM 

The simplest of all multipliers is the carry save array multiplier. The principle idea 

behind the CSAM is that it is basically doing paper and pencil style multiplication. In 

other words, each partial product is being added as seen in the dot diagram of Figure 1. 

Figure 7 shows a 3-bit x 3-bit CSAM [7]. Each column of the multiplication matrix 

corresponds to a diagonal in the carry save array multiplier. The reason CSAMs are 

always done as a square is because it allows metal tracks or interconnect to have less 
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congestion. This has a tendency to have less capacitance as well as making it easier for 

engineers to organize the design.  

 

The CSAM performs partial product generation utilizing AND gates and uses an array of 

carry save adders to perform reduction. The AND gates form the partial products and the 

CSAs sum these partial products together or reduce them. Since most of the reduction 

computes the lower half of the product, the final carry propagate adder only needs to add 

the upper half of the product. Array multipliers are typically easy to build both using 

Verilog code as well as in custom layout, hence there are many implementations that 

employ both.  

 

For the CSAM implementation, each adder is modified so that it can perform partial 

product generation and an addition. A modified half adder (MHA) comprises of an AND 

gate that creates the partial product bit and a half adder (HA). The MHA adds the partial 

product bit from the AND gate with a partial product bit from the previous row. The 

modified full adder (MFA) consists of an AND gate and that creates the partial product 

bit and a full adder (FA) that adds this partial product bit with the sum and carry bits from 

the previous rows.  

 

An n-bit by m-bit CSAM has n.m number of AND gates, m HAs and ((n-1). (m-1))-1 = 

n.m – n – m FAs. The final row of (n-1) adders is a ripple carry adder CPA. Further 

algorithmic analysis of area and delay has been done in Chapter 4.  
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This CSAM was first proposed by Braun Edward Louis in 1963. It is restricted to 

performing the addition of two unsigned numbers. This is also known as a non-additive 

multiplier since it does not add an additional operand to the result of the multiplication.  

The carry save array multiplier is a parallel multiplier. For an m-bit multiplicand and an 

n-bit multiplier, it is an m-bit by n-bit digital logic system that produces a (m + n) 

product combinationally. It has the following advantages: 

1. The CSAM has a linear delay directly proportional to the length of the input 

word. 

2. The number of gates required to implement the CSAM is directly proportional to 

the product n x m or n2 for m = n. 

3. It has regular area. This enhances the reproducibility of the design. 

The following diagram further explains the above statements: 

 

Figure 6: Multiplication of two 2-bit operands 

When building the array multiplier to implement the operation shown in Figure 3, the 

following are the main components: 

1. AND gates: For partial product generation 

2. Half Adders, Full Adders: For Partial product reduction. 
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Based on all these concepts, a rectangular array multiplier to perform the multiplication 

of two 3 bit numbers a[2:0] and b[2:0] is shown in Figure 7. 

 

Shown below in Figure 7 [7] is a 3-bit x 3-bit rectangular array multiplier. The acronyms 

MHA and MFA stand for ‘modified half adder’ and ‘modified full adder’ respectively’. 

The critical path is shown by the blue dashed line in the Figure.  

 

Figure 7: a 3-bit x 3-bit CSAM 

Figures 8 and 9 [7] show diagrammatic representations for the modified half and full 

adders respectively.  

 

Figure 8: Modified Half Adder 
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Figure 9: Modified Full Adder 

The modified half and full adders are similar to the conventional half and full adders 

respectively, except for the fact that the modified versions of these entities have an 

additional AND gate in order to calculate the product ai.bj. The modified half adders and 

full adders have an extra AND gate when compared to the traditional half and full adder. 

This extra gate is required to calculate the partial products b0a0, b0a1, etc as in Figure 3. 

The blue dotted line shows the critical path through the multiplier. This is the path of 

longest delay from the input to the output of the multiplier. The partial products are 

calculated along the diagonals of the array. The carries are denoted in red. They must be 

carefully carried over to the next column for accurate calculation of all the partial 

products. 

 

2.5.2 Example 

Let us further understand this by looking at the example shown in Figure 10. It shows the 

multiplication of (7)10 and (5)10. 
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Figure 10: Example of a 3-bit x 3-bit CSAM 

The result is (100011)2 = (35)10 which is correct.  

 

2.5.3 Performance of the CSAM or Braun multiplier 

The Braun multiplier performs well for unsigned operands that are less than 16 bits, in 

terms of speed, power and area. Besides, it has a simple and regular structure compared 

to most multiplier schemes. However, the number of components required to build the 

multiplier increases quadratically with the number of bits. This makes this design 

inefficient, so it is rarely employed while dealing with large operands. Another pitfall of 

the Braun multiplier is its potential susceptibility to glitching problems at the last stage of 

full adders due to its exploitation of the carry propagate adder. 
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2.5.4 Speed Consideration 

The delay of the CSAM is dependent on the delay of the full adder cell and also the CPA 

in the last row of the design. In the multiplier array, a full adder with balanced carry and 

sum delays is desirable because the sum and carry, both are in the critical path. The speed 

and power of the full adder are very important in large arrays. More about this will be 

discussed in Chapter 4. 

 

2.6. Two’s Complement Version (the Baugh-Wooley multiplier) 

The Baugh-Wooley multiplier [6] is an enhanced version of the carry save array 

multiplier (CSAM). It is designed to cater to the multiplication of both, signed and 

unsigned operands which are represented by the two’s complement number system. 

 

2.6.1. Architecture of the Baugh-Wooley Multiplier 

The two’s complement number system represents positive as well as negative numbers. 

They have the following format: 

 

The range of an n-bit 2’s complement number is {-2n-1, 2n-1 – 1} 

Squaring two 2’s complement numbers: 

If two 2’s complement numbers were multiplied together, the resulting multiplication 

would result in 4 terms. Let us consider the case of squaring an n-bit 2’s complement 

number. We get: 
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 The Baugh-Wooley matrix is achieved by converting the subtractions by complementing 

the partial products and adding a unit in the last place or ulp to convert the value to its 

two’s complement equivalent. Therefore, the equations above now become: 

 

The last constant terms (2n−1) come from the ulp that is needed after each term is 

complemented (.e.g  ai · an−1). On the other hand, the constant 22·n−2 is needed since this 

term is originally a 0 before the term is one’s complemented. These terms, both constants 

and partial products, can be utilized to form the product with typical array or tree 

multiplication hardware schemes.  

The resulting Baugh-Wooley Carry save array multiplier to perform two’s complement 

multiplication of two 3-bit numbers is shown in the Figure. 
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Figure 11: 3-bit Baugh Wooley Carry Save Array Multiplier 

Some of the AND gates change to NAND gates and the modified full adders change to 

the NAND modified full adders (NMHAs) which is the same as the modified full adder 

except that the extra AND gate is replaced by a NAND gate. 

The constant that must be added into the array is 23 + 25 = 40 = (101000)2. Hence a 

binary 1 is added into the 4th and the 6th partial products. 

 

2.6.2. Example  

Let us see if this works with an example as shown in Figure 12 below. The product of 

(3)10 and (-1)10 is (-3) 10 = (111101)2. As previously mentioned, the value (101000)2 must 

be added into the array to get the correct result. 
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Figure 12: Example of a 3-bit Baugh Wooley array multiplier 

The result obtained is as expected. Hence, the modification to the original Baugh-Wooley 

carry-save array multiplier resulted in a 2’s complement carry-save array multiplier.  

The architecture of the Baugh-Wooley multiplier is also based on the carry save array 

algorithm. It inherits the regular and repeating structure of the array multiplier. 

 

2.6.3. Performance consideration 

The area and power consumption of a number of multiplier structures vary with the 

number of bit operands and layout strategies. Increasing regularity and locality at the 

silicon level reduces the power consumption in a standard cell based design flow. 
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CHAPTER 3 
 
 

THE PROBLEM OF CUBING 

 

As mentioned before, the operation of cubing is calculation of the product a x b x c where 

a, b and c are three n-bit numbers.  In this chapter, we look at parallel cubing, propose 

architectures for cubing units that deal with unsigned and two’s complement numbers and 

discuss the components used in their implementations.  

 

3.1. Parallel Cubing 

Figure 13 shown below helps explain the concept of parallel cubing. 

 

Figure 13: Parallel Cubing 
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The multiplication of three 3-bit numbers yields a 9-bit number and hence there must be 

9 partial products at the end of the operation. But Figure 7 shows only 7 partial products, 

from P1 to P7. The two remaining partial products P8 and P9 are obtained after adding 

the carry propagate adder to the array implementation of the cubing unit. Also, as evident 

from Figure 7, the partial product matrix is not rectangular.  It comprises of three 

parallelograms. This makes it very challenging to arrive at a rectangular implementation 

of the cubing unit.  

 

3.2 Architecture of the Cubing Unit 

To arrive at a two dimensional array implementation of the cubing unit, first consider a 3 

dimensional view of the three parallelograms comprising the partial product matrix. This 

is show in the Figure below: 

 
Figure 14: Parallelograms in Space 

In Figure 8, the partial products are computed along the corresponding diagonals of the 
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array cubing unit. The different diagonals haven been represented by different colors 

since this makes HDL coding of the implementation easier and the Figure, more legible. 

The columns traverse not only along the x and y but also the z axis. This very fact makes 

a rectangular array implementation of the cubing problem extremely challenging.  

 

3.2.1. Cubing Unit Implementation 

In order to save area and to have as regular a design as possible, the following design is 

arrived at, as shown in Figure 8. This two dimensional implementation shows that it is 

not necessarily area-efficient in terms of a VLSI layout. The Figure shows that a new 

special unit in the carry propagate unit of the implementation has been used. This new 

block is the (7, 3) adder. The (7, 3) adder comprises of four half adders. It takes in seven 

1-bit inputs and produces three 1-bit outputs. Care has to be taken to ensure that the 

carries traverse to the correct corresponding columns of the partial product matrix so that 

the partial products are computed accurately.  

 

It has been discussed earlier that the multiplication of three 3-bit numbers produces a 9-

bit output results which means that we must have 9 partial products at the end of the 

operation as opposed to 10 partial products P1, P2… P10, as seen in Figure 15. This is a 

fallout of using (7, 3) adders in our design. They have 3 outputs which mean that the 

most significant bit of the result must be carried to the second column to the right and the 

next bit must be carried to the adder on the immediate right. To understand this better, 

take a look at Figure 17 and section 3.2.2. which shows the (7, 3) adder in better detail. 
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Figure 15: Cubing Unit Implementation 

The last row in the implementation shown in Figure 15 comprises the carry propagate 

adder part of the 3-bit x 3-bit x 3-bit cubing unit. Every component in the implementation 

represents one node from the 3-dimensional view of the parallelograms of the partial 

product matrix.  

 

3.2.2. The (7, 3) Adder 

The (7, 3) adder produces 3 outputs for example x0, x1 and x2. While x0 is the current 

partial product, x1 is the carry that must be propagated to the immediate next column and 

x2 is the carry to be propagated to the column after that. The size of the carry propagate 

adder increases with the size of the input operands since the number of columns and the 

disparity in the column sizes increases.  
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Let’s take a closer look at the (7, 3) adder used in the carry propagate section of the 

cubing unit. Consider the case in which seven binary 1’s need to be added. The result in 

binary y2y1y0 would 1 1 1. This means that while y0 = 1 is added to the same column 

while adding this binary result to another binary number, y1 = 1 must be taken to the 

immediate next column on the left and y2 = 1 to the column after that. 

Figure 17 shows the this component in greater detail 

 

 

Figure 17: The (7, 3) Adder 

The black wires represent the inputs; the red wires represent the carry-outs or carry-ins 

while the blue wires represent the sums at the end of the computation. 

As mentioned earlier, the extra bit P10 in Figure 9 is a fallout of using (7, 3) adders in 

the implementation of the carry propagate part of the cubing unit. The partial product P10 

is always a binary 0 and can be ignored. To understand this better, consider the case 

where the binary number 111 i.e. decimal number 7, is multiplied thrice by itself. This 
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means that the operation 73 is being performed. The result is decimal 343 or binary 

0101010111. Hence P10 will always be 0. The half adder can therefore be modified to a 

Simplified Half Adder or SHA such that the carry out from it is ignored. 

 

3.2.3 Trends in the partial product matrix 

The trends in the columns of the partial product matrix are as shown below in Figure 10. 

 

Figure 16: Trends in the partial product matrix 

In the above Figure, the different numbers represent the number of partial products in 

each column of the corresponding partial product matrices. So for example, in the case 

where three 3-bit numbers are being multiplied, the partial product matrix has 7 columns 

each containing 1, 3, 6, 7, 6, 3 and 1 partial products. It is important to analyze this trend 

in order to arrive at an algorithmic regularity between the designs corresponding to 

different sized operands. 

 

3.2.4. The Algorithm Problem 

Studies conducted on the 3-, 4-, 5- and 6-bit versions of the cubing unit reveal that in 

each case, the maximum number of carry-ins from the columns to the different blocks of 

the carry propagate adder in the last row are 3, 4, 5, 6 respectively. For the smaller 
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designs, the use of the (7, 3) adder in the CPA is sufficient. But as the length of the input 

word increases, there will be a requirement for using larger adders like the (15, 4) adder, 

etc. Not only does this translate into higher area requirement for the implementation but 

also leads to larger delays through the CPA which in turn leads to the problem of 

glitching. This is one important aspect of array structures- the problem of glitching 

becomes more and more important as the length of the input word increases since this 

automatically means larger CPAs. This has been seen in the case of the CSAM and 

Baugh Wooley multipliers as well. 

 

3.3. Two’s complement Cubing 

Similar to the Baugh Wooley multiplier, the cubing unit must be modified in order to be 

able to perform the multiplication of three signed numbers.  

A two’s complement number has the following representation: 

 

 

3.3.1. Architecture of the two’s complement cubing unit 

Two’s complement cubing is complicated by the fact that there are three terms to 

multiply producing 8 terms, similar to the multiplication scheme presented above. So, for 

cubing of two’s complement integers, the new partial product matrix, which forms a 

23·n−2 answer, is formed by the following terms: 
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Using a similar analysis to the Baugh-Wooley multiplication matrix, the negative terms 

in the two’s complement cubing matrix can be complemented as previously done. The 

new cubing matrix now becomes: 

   

The value K represents the terms for adding an ulp and most significant bits that need to 

be complemented, as described previously with the multiplication example. However, 

cubing is significantly more complicated due to 8 terms that are produced. Moreover, the 

value of K must be analyzed for a two-dimensional summation. In multiplication, there 

was no need to worry about this term, because it was only a single summation, however, 

in cubing the two-dimensional sum produces several ulps and complementations. In order 
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to Figure out K, it is easiest to start with an example, and then simplify it into a closed 

form solution. Since all values of K are the same, since the weights are all the same (i.e. 

2j+k+n−1), the value of K can be computed for one term and then multiplied by 3. For n 

= 4 cubing matrix, the value of K is given below: 

 

Examining these terms and subtracting n arbitrary terms forms two simple summations: 

 

The value of K can be simplified into a close form value, as follows: 

 

For example, cubing 4-bit integers produces the value of 3 · K = 8721. Compared to 

multiplication, this constant is larger; however, having a closed-form solution allows any 

cubing matrix to be formed for two’s complement operations. 

For a cubing operation involving 3-bit operands, n = 3. Hence the value of K = 220. The 

value 3.K = 660 = (1010010100)2 must be added into the array.  The following Figure 

shows the modified cubing unit to perform 2’s complement cubing operation: 



 28

 

Figure 18: Implementation of a two’s complement cubing unit 

The dashed line shows the critical path through the array unit. Figure 18 shows that some 

components have been NAND-modified, similar to what we looked at in the 3-bit two’s 

complement multiplier case.  

 

3.3.2. Example 

Once again, in order to verify that this design indeed works, let’s look at the example 

shown below. The operation 3 x 3 x (-1) = -9 = (1111110111)2.  
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Figure 19: Example of a 3-bit two’s complement Cubing Unit 

 

3.3.3. Performance Consideration 

The carry-save implementations of the cubing unit have performed well for small length 

operands as will be seen in Chapter 4. The delay of the CSAM and Baugh Wooley 

multipliers increases quadratically with the size of the input operands whereas the delay 

of the cubing unit is seen to increase somewhat exponentially with the size of the input 

operand. The area requirement increases dramatically with the increasing size of the input 

operands as well. Careful floor planning is required since the number of components in 

the design increases as well. The delay through the CPA is a point of major concern since 

it falls in the critical path and the delay increases as the size of the CPA increase with 

larger input operands. 
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CHAPTER 4 
 
 

RESULTS 

 

This chapter takes a look at deriving the delay and area requirements of various 

architectures using algorithmic analysis. The results obtained from testing and synthesis 

for these architectures are also discussed and compared. 

 

4.1 Algorithmic analysis delay: 

Before analyzing the array multipliers or cubing units for different n-bit operands, let’s 

take a look at the delays along the critical paths of the various components that form 

these structures like the full adder, half adder, etc. 

When included in an array, the critical path along the modified half adder (or half adder) 

and the modified full adder (or full adder) is shown in Figures 5 and 6 respectively. The 

delays are enumerated below:- 

1. Half Adder/Modified Half Adder: 

ai, bi to ci+1 : 1∆  

ai, bi to si : 3∆ 

2. Full Adder/Modified Full Adder: 

ai, bi to si : 6∆ 

ai, bi to ci+1 :  5∆ 
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ci to si : 3∆ 

ci to ci+1 : 2∆ 

3. Ripple Carry Adder (RCA): the delay of an n-bit RCA is given as (2n + 4) ∆. 

4. The (7,3) adder: the critical path of the (7,3) adder passes through 3 full adders. 

The delay along its critical path was computed as 17∆. 

Where 1∆ is the delay of a basic gate such as an OR, NOT and AND gate with a fan-in of 

4 or less. 

 

The delay along the critical path of an (n x m) array multiplier is characterized as follows: 

Delay (n x m) = 1 AND gate + 1 modified half adder + (m-2) modified full adders + (n-1) 

ripple carry adders 

             = 1∆ + 3∆ + (m-2) ∆ + {2(n-1) + 4} ∆ 

Using the above equation, the computed delays for the various array multipliers are as 

follows: 

(3 x 3) array multiplier has the delay 18 ∆ along its critical path. 

(6 x 3) array multiplier has the delay 24 ∆ along its critical path. 

In order to compute the product of three 3-bit operands using traditional hardware 

techniques, the first pass would require the use of a (3 x 3) array unit and the second pass 

would require the use of a (6x3) array unit. The total time required for a single 

computation to complete would be the addition of the delays along the critical paths of 

these two array units. Hence, the total delay sums up to 42 ∆. 

 



 32

Similarly, the critical path delays for the (4 x 4) and (4 x 8) array units were computed as 

26 ∆ and 34 ∆ respectively. Hence the total time required for the computation (a x b x c) 

where a, b, and c are 4-bit operands can be summed up as 60 ∆.  

 

To find the product of three 6-bit operands using the traditional array multipliers, it 

would require one pass through a (6 x 6) array unit and a second pass through a (12 x 6) 

array unit. The delays along the critical paths for these designs are 42 ∆ and 54 ∆ 

respectively. Hence, the total delay can be summed up as 96 ∆. 

 

The delay along the critical path for the 3-bit cubing unit that was designed in Chapter 4 

can be characterized as follows: 

Delay (3 x 3 x 3) = 1 AND gate + 1 modified half adder + 5 modified full adders + 3 half 

adders + 2 (7, 3) adders 

                         = 61 ∆ 

 

Similarly, we computed the delays along the critical paths of the (4 x 4 x 4) and (6 x 6 x 

6) cubing units. They were found to be 130 ∆ and 270 ∆ respectively. These results from 

our algorithmic analysis have been tabulated in Appendix A. It is seen that while the 

delays for the traditional multipliers increase linearly with increase in input operand size, 

the growth in the critical path delays of the cubing unit in our designs is almost 

exponential. 
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4.2 Algorithmic Analysis of Area 

An estimate the areas of the various components in terms of the area of a basic gate, 1 g 

can be made. This section deals with the algorithmic analysis if the area requirement for 

different array structures. 

1. Half Adder: It comprises of 4 gates as shown in Figure. Hence its area is 4g. 

2. Modified Half Adder: this unit uses an additional AND gate as compared to the 

half adder. Hence its area is 5g. 

3. Full Adder: the full adder comprises of 2 half adder and an OR gate for the final 

carry-out computation. Hence its area is 9g. 

4. Modified Full Adder: the modified full adder comprises of an extra AND gate as 

compared to the full adder. Its area is 10g. 

 

The algorithmic analysis of area gives the following results for the traditional multiplier 

implementations for the 3-bit, 4-bit and 6-bit versions: 171 g, 348 g and 882 g 

respectively. The algorithmic analysis of the area of the cubing unit designs 

corresponding to 3-bit, 4-bit and 6-bit operands yielded the numbers 274 g, 534 g, 2144 g 

respectively. 

 

4.3 Testing 

The HDL for the various designs was written in Verilog. The test vectors were generated 

using a test bench, also written in Verilog. The design was debugged using the emacs 

editor till all the errors and warnings were carefully dealt with. The results are shown in 



 34

the Appendix C.  A different and random test vectors were used. Appendix C shows one 

instance. 

 

4.4. Synthesis 

The design was synthesized using the Synopsys Design Vision tool in the 180 nm 

SCMOS MOSIS process at a frequency of 200 MHz, a temperature of 25 degrees Celsius 

and a supply voltage of 1.8 Volts.  The HDL codes for the 6-bit versions of the array 

multipliers and the cubing unit were submitted to the synthesizer and the results that were 

obtained were quite surprising. Contrary to the algorithmic analysis of delay, the 

synthesis showed that the delay along the critical paths of the (6 x 6) and (12 x 6) array 

units was 3.77 ns and 4.00 ns respectively. This adds up to 7.77 ns for a single 

computation. In contrast, the cubing unit required 7.47 ns to complete a single pass 

through it. The cubing unit design is clearly better in terms of delay. But it has high area 

requirements. The total area required for the array implementation for the 6-bit version is 

705 cells as compared to 1319 cells required for our design. These results have been 

tabulated in Appendix B.  
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CHAPTER 5 
 
 

CONCLUSION 

 

This study has looked at array multipliers and cubing units and their two’s complement 

versions. Due to the interesting nature of the partial product matrix of the cubing 

operation, it is quite challenging to arrive at a rectangular structure during synthesis. 

However, during layout, the lower half of the design can be flipped in order to fill in the 

blank spaces and a compact floorplan and hence, a compact layout can be arrived at. 

Also, it is seen that as the length of the input words increases, so does the requirement for 

larger adders in the carry propagate chain in the last row of the cubing unit. This 

automatically translates into more area for the design.  

 

Our design is generic in the sense that our goal was to design an array structure to 

perform the operation a x b x c where a, b and c and three n-bit quantities. The design can 

be optimized for operations involving cubes of the same number, for example, x3. For 

example, the nodes in the design that require an AND gate for the operation a0.b0.c0 could 

be replaced by a single wire that propagates a0. Similar optimizations can be applied to 

other aspects of the design as well. 
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As mentioned earlier, an important point of concern is also the delay along the carry 

propagate adder. Also, the length of the ladder increases as the size of the input operand 

increases, which means increased delay since the carry-outs from the previous adders are 

connected to the carry-ins of the successive adders. This means that at some components 

along the critical path, some of the signals arrive earlier at a particular component. This is 

known as glitching where in a single transition on a primary input may give rise to 

multiple switchings on the internal nodes [12]. 

 

The results showed that the design for the cubing unit in the 6-bit case worked faster 

compared to the method employing the traditional CSAM. It will be interesting to further 

study similar comparisons for the 8-bit, 16-bit and 32-bit case.  

 

While the area and delay for the Braun multiplier or the carry save array multiplier 

increases quadratically with the number of bits in the input word, the study shows that the 

area and delay for the array based cubing unit increases almost exponentially. Further 

research into this would be worthwhile to find out the maximum size of the input words 

for which the cubing unit can be employed without much performance degradation.  

Another interesting aspect that can be looked at is the power dissipation from the cubing 

unit and comparison with the power dissipated by corresponding carry save array 

multipliers. .  
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APPENDICES 

A. Algorithmic analysis of area and delay of the CSAMs and cubing units 

 3-bit 4-bit 5-bit 

Cubing Unit Area 274 gates 534 gates 2,144 gates 

CSAM Area 171 gates 348 gates 882 gates 

Cubing Unit Delay 61 ∆ 130 ∆ 270 ∆ 

CSAM Delay 42 ∆ 64 ∆ 102 64 ∆ 

 

B. Results after Synthesis – Synopsis Design Vision 

Functional Unit  Critical Path Delay (ns) Area (No. of Cells)  

6-bit x 6-bit Array Multiplier  3.77 ns  177  

12-bit  x 6-bitArray Multiplier  4.00 ns  528  

6-bit  Cubing Unit  7.47 ns  1319  

      

 C. Results after testing the Verilog code for the 6-bit x 6-bit x 6-bit cubing unit: 

Input operands   ||      Output in binary form 

(in decimal) 

33   33    33        || 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 

33   33    33        || 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1
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