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CHAPTER I

INTRODUCTION

Research related to optimizing networks will continue to be important as packet

traffic continues to increase. This increase in traffic can be attributed to common

applications that are being redesigned to work over packet based networks. Some

examples are multimedia applications such as Voice Over IP (VOIP) and IPTV.

It is forecasted that 44 million US residential lines will be converted to VOIP by

2010[1]. Given the current design of electronic packet switches, it is expected that they

will not be able to handle the quantity of traffic that will be required in the future to

support this and other real-time applications. There is ongoing research into optical

switches that may provide a more efficient solution for carrying very large quantities of

packet based traffic. One issue of interest concerns changes to the statistical

characteristics of traffic as it traverses typical network hardware.

The goal of this research is to characterize VOIP traffic traversing a link from a

VOIP network gateway to a traditional Public Switched Telephone Network (PSTN.)

This includes showing the distinctions between traffic from the VOIP gateway and the

PSTN network. VOIP traffic will be simulated and passed through an Optical Burst

Switched assembly algorithm for comparison of the long range dependence of the input

and output VOIP network gateway traffic. The proceeding section will provide some
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background on the migration of voice systems from analog to digital to packet based

systems.

VOICE COMMUNICATION

The frequency range for audible voice is approximately from 300 to 3.1 kHz.

Older systems would multiplex these signals onto a carrier frequency in order to transport

them across the network. Noise is introduced and amplified as the analog signal is

transported across the network. This type of noise is referred to as channel noise. Channel

noise reduces the distance a signal can be transported as the signal to noise ratio must be

above a certain threshold in order for the receiver in the transmission system to recover

the signal. Figure 1 shows 3 signals. The 1st waveform is an example of a clean signal. It

would be very easy for a receiver to identify this signal. The 2nd waveform has a small

amount of noise added to it. A receiver would still be able to identify the signal despite

the noise component. The third waveform has a significant amount of noise and the

receiver would probably not be able to properly identify the correct signal. A solution to

the channel noise problem is to digitize the signal which allows you to regenerate the

signal at intermediate points and significantly reduce the impact of the noise component

that is added to the signal as it is transported. The benefit to removing the noise is the

total span (reach) of a system can be greatly increased if the digital signal is regenerated

at the appropriate interval to remove the majority of the effects of channel noise.
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Figure 1 - Signal and Channel Noise

Nyquist’s theorem can be used to determine the sampling time needed to

reproduce a signal. The basic premise is that a signal needs to be sampled at a rate greater

than twice the maximum frequency in order to accurately reproduce the signal. In the

case of audible voice with a maximum frequency of 3.1 kHz, the signal would need to be

sampled more than 6200 times per second in order to reproduce the signal. The sampling

rate typically used on the PSTN is 8 kHz.

The conversion of a digital signal to an analog signal also introduces another

source of noise. The amplitude of the voice signal is divided up into discrete levels at

each sampling point. This process is known as quantization. Figure 2 shows a sine wave

and the dashed line indicates how the quantized signal would look.

Figure 2 - Signal Quantization
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Quantization noise occurs as a result of this as the reconstructed signal does not exactly

match the original signal. Figure 3 shows the error associated with the quantized signal,

where the error is defined to be the difference between the original waveform and its

quantized result. Fortunately, the Signal to Noise Ratio (SNR) increases exponentially as

the number of bits used to represent the amplitude of the sample is increased[2]. This

allows the reduction of noise in the system due to quantization by picking the appropriate

number of bits in each sample.

Figure 3 - Quantization Error of a Signal

One of the standards for the conversion of voice from analog to digital is G.711.

This standard is produced by the ITU (International Telecommunications Union)

standards body. This standard is the most adopted for the conversion of analog voice to

digital voice. It uses 8 bit codes for the quantization levels and an 8 kHz sampling rate[3].

The North American digital TDM hierarchy is used for transporting these

individual voice streams across the PSTN in North America. In this hierarchy lower level

signals such as a voice signal are multiplexed with other independent voice signals onto

timeslots via a method called time division multiplexing to produce a higher rate signal.

A G.711 voice signal has a data rate of 64 kbits/sec. The North American digital
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hierarchy takes 24 of these signals and multiplexes them into a 1.544 Mbit/sec signal that

can be carried on a physical T1. The standard then specifies that 28 of these DS1s

multiplexed together will result in a DS3 with a rate of 44.736 Mbits/sec.

Modern telecommunications systems utilize voice switches, transport systems,

cross-connects and multiplexers to provide subscribers with voice communication. These

systems are traditional circuit switched systems. Data communication is typically

provided also but this is usually on an independent packet based system. Modern business

require both voice and data systems and there is a convergence of these two systems

occurring.

VOIP COMMUNCATION

Voice is being provided over packet based networks through a technology

referred to as VOIP. From a subscriber perspective, there is definite interest in moving to

VOIP. One of the main reasons is from a regulatory perspective; the FCC has decided to

limit regulation of VOIP services at this point. This allows VOIP network providers to

bypass access charges that legacy telecommunications providers are required to pay. This

reduces the cost of providing services and allows VOIP providers to be very competitive

from a price standpoint. Also with VOIP technology, subscribers (particularly businesses)

would no longer need separate connections to their establishment for voice and data. The

introduction of VOIP into the market has also created opportunities for data providers to

offer voice services which have increased competition. From a provider perspective,

migrating networks to packet based systems reduces complexity and network components

from the system.
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In a VOIP system, the signal still undergoes an analog to digital conversion. This

conversion happens at the customer premise. This digital signal is then inserted into IP

packets for transmission across a packet based network. In the VOIP system the signal

does not always arrive in a sequential manner as it does in the PSTN network. At the

receiver, this requires the use of buffers to hold the packet for a period of time to allow

for correct assembly of the signal due to non-sequential packet arrivals. Buffers also play

a significant role in removing jitter from the signal. Jitter in VOIP communications

results from variability in packet inter-arrival times. The buffer is able to space the output

digitized voice signal at constant intervals which reduces the jitter. It is also possible to

compress the voice signal because the encoding and decoding of the VOIP signal is done

at the endpoints. A signal can be compressed on the POTS network but since switching is

performed down to the ds0 level only, considerable work and additional equipment

would be needed to perform this type of functionality on a POTS network. A VOIP

network has a considerable amount of flexibility that is hard to match in the legacy PSTN

network. This includes the ability to change compression of signals either globally or at a

line level. Since most data networks have built-in restoration schemes, VOIP can take

advantage of this. Much of the currently deployed PSTN networks have no automated

restoration scheme. They rely on protection schemes with preplanned protection capacity.

One of the main issues when deploying VOIP solutions is guaranteeing end-to-

end delay. This characteristic of voice packet traffic greatly affects network design and

the ability of users to communicate. End-to-end delay must be between 0-150ms for most

user applications[3]. End-end-delay has many different contributing components

including the coder, the queue, the serialization of the message, the transport of the
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messages, the network switching delay, the de-jitter queue, and the decoder. The network

must be designed such that the total end-to-end delay does not exceed these. Some

protocols assist this process by providing set paths for packets to follow. MPLS in

particular is used to build virtual circuits across the packet based network. This assists in

providing traffic engineering to the packet based networks and VOIP packets end up

arriving in order as a result which reduces the size of the jitter buffer.

Since there is considerable growth in VOIP and transport network capacity is

increasing there is continued interest in optimizing network resources. Current research

and developing technology is working towards using restoration schemes as opposed to

protection schemes for providing network restoration. A protection scheme provides

network resources for rerouting traffic in the event of a network failure. Protection

schemes are typically defined when the circuit or link is established An example would

be a secondary circuit that is provisioned at the same time as a primary circuit. A

restoration scheme does not use pre-planned capacity like a protection scheme. A

restoration scheme will typically reroute circuits using available capacity in the event of a

failure on the network. A restoration scheme cannot guarantee service restorability like

most protection schemes can. A lot of the current work in this area is focused on optical

switching as a solution for providing restoration schemes for networks.

OPTICAL SWITCHING

There has been considerable growth in the optical switching space in recent years.

The primary drivers behind using optical switches are the increased network capacity due

to wavelength division multiplexing (WDM) and need for automated restoration and
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provisioning. In order to narrow the scope of this paper, the focus will be on wavelength

switching and its relationship in optical switching. Since many legacy systems are built

around a circuit switched network, the need for circuit switching in optical switch space

will continue to be important. There are currently optical switching systems available to

help reduce provisioning times and also provide some advanced restoration options for

circuit switched networks.

Figure 4 - Circuit Switched Optical Network

In a circuit switched optical network, a circuit is provisioned across the network

and data is transmitted from the edges of the network. Figure 4 shows an example of a

circuit switched optical network. Assume the links between nodes consist of WDM

systems on fiber. The path the data is following has been setup prior to any data being

transmitted on a certain wavelength on the WDM system. This stays active until the

circuit is no loner needed and the user initiates a request to remove the circuit.

With the continued growth of packet based traffic, packet switched optical

networks will continue to be an important research area. There are still issues with packet
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switching at the optical level. The primary issue at this point is the lack of buffers in an

all-optical-network. This requires conversion of signals from optical to electrical prior to

buffering or sending signals down delay loops which reduces the total reach of a system

due to the increase in the optical path required by delay loops.

In a packet switched optical network, there is not a requirement for physical

circuits established through the network. Through the use of signaling protocols virtual

circuits may be established. Figure 5 shows an example of a packet switch optical

network. In this example, no virtual circuit has been established between nodes and as

such each node is able to send the packets down any available link to the destination.

Because many packets can arrive at a node simultaneously, buffers would be required.

Figure 5 - Packet Switched Optical Network

Optical switching is designed to reduce provisioning times as well as provide

automatic restoration in the event of failures. One of the basic functions of the optical

switch is to build internal connections for connecting external ports together. Optical

switching is accomplished within a switch using an electrical or optical switch matrix.
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The switch matrix is the part of the switch which has a basic responsibility for

building connections between ports on the switch to each other. If the matrix performs a

conversion of the signal to electrical prior to building the connection, this is generally

referred to as an O-E-O (optical – electrical – optical.) If the signal remains in the optical

domain throughout the matrix, the matrix is referred to as O-O-O (optical-optical-

optical). A MEMS (Micro-Electro-Mechanical-System) based matrix is an example of a

switch fabric which uses tiny optical mirrors to build an optical path between ports on the

switch. Switching times in the matrix must be very fast. Research has shown that

switching times can be as fast as 4.1ms[5]. It is important to have low switching times as

telecommunications carriers are accustomed to sub 50ms protection end to end switching

times.

OPTICAL BURST SWITCHING

Circuit switching is an established product for optical switches. Packet switching

still requires optical buffering which is being researched. Optical Burst Switching (OBS)

has emerged as a fit to bridge the gap between circuit switching and packet switching in

optical networks[6]. The basic concept behind OBS is to send bursts of traffic to the

optical network. This burst is assembled on the edge of the network through the use of

electrical buffers. The optical connections are built across the network via burst switching

protocols which only hold each link open long enough for the burst to pass. This allows

reuse of network resources for other traffic. For very small bursts of data, there may

never be an end-to-end circuit established as the initial links have already passed the data

and are being switched for an independent burst to a new location. Figure 6 shows an

example of a burst that has traversed an OBS network. The last link is shown as partially
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activated below indicating that the switch has not completely finished establishing the

cross connect in the switch matrix. Also notice that the initial links the burst traveled

down are no longer provisioned.

Figure 6 - Optical Burst Switch Network

In an OBS network control channels are required for the nodes to communicate

via the OBS protocols. Control channels can be in-band or out-of-band. The nodes are

required to process the information in the control channels in order to establish the

appropriate connections. The separation of control channels from data channels is

referred to as the control plane. The control plane is a very important resource in OBS

due to the necessity of sending messages to nodes prior to the actual data arriving at that

specified node. These messages contain the necessary information to allow the switch to

build the connections in the switch matrix prior to receiving data so there is no

interruption in the transfer. Since there is a small amount of time required to build the

connections in the matrix, the control messages in OBS must arrive in advance with at

least enough time for the last switch in the path to build the connection before the data

arrives.
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Two of the most important components of optical burst switching that distinguish

it from optical circuit switching are the burst assembly algorithms and the control plane

protocol used to transport the burst across the network. In the OBS network burst

assembly occurs on the edges of the network through the use of electrical buffers. The

packets being routed across the network are held in these buffers until an appropriate

condition is met. These conditions can be based on a burst size limit, buffering time limit

or a combination of both. This shapes the input traffic and since packet traffic is typically

bursty in nature, the buffers smooth the traffic at the input to the OBS network.

Once the burst is assembled the OBS initiates control plane signaling to forward

the burst to the appropriate endpoint of the network. In circuit switched networks, the

circuit is established between all links on the network prior to transmission of the signal.

In OBS, bursts are typically small and as such they do not require the entire path to be

established prior to transmission. This partially establishment of a path is accomplished

by sending control messages to nodes shortly before arrival of the burst to configure the

switch matrix for transmission of the burst to the next node in the path. Another control

message is forwarded to that node also to configure the switch matrix prior to the burst

arrival there. This process continues until the burst arrives at the destination.

Sometimes there are no available links to the next node in the path. Typically a

blocking condition would exist. There has been research into deflection routing which

would send the data signal down delay loops to allow the signaling protocol enough time

to configure the switches in an alternate path. Also bursts can be broken up to allow them

to fit in between already scheduled larger bursts. This is referred to as Burst

Segmentation.



13

Optical Burst Switching is a bridge between a circuit switched optical network

and a packet switched optical network. One of the main benefits of using OBS over

optical circuit switching is there is a gain in utilization through statistical multiplexing of

links.

This section has provided an overview of analog and digital voice. It also

compared the differences between optical circuit switching, optical packet switching and

optical burst switching. The next chapter will provide background research on packet

voice models and optical burst switching. It will also identify research related to the

estimation of long range dependence.
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CHAPTER II

REVIEW OF LITERATURE

Traffic characterization is very important from a network modeling perspective. Early

work on traffic characterization led to network optimization through the research and

implementation of statistically multiplexed traffic on network trunks in the voice

network. The identification of the statistical nature of inter-arrival times and call holding

times for customer generated traffic was particularly important. This research led to the

application of erlang and poisson traffic distributions for the sizing of PSTN voice trunks.

MODELS FOR VOIP TRAFFIC

Dang, Sonkoly and Molnar[7] indicate in their research that IP traffic call

interarrival times are exponentially distributed. They further indicate that call holding

times are not exponentially distributed as commonly assumed. They model call holding

times using a pareto distribution.

Fractional Gaussian Noise has also been suggested as a model for IP traffic

traces[7]. Recent research by Hassan, Garcia and Bockstal[8] provides guidelines for

packet interarrival times of VOIP network models. Their research indicates that for light

traffic intensities, the exponential model can be used. For heavy traffic intensities they

claim that there is a long term covariance in the arrival time that appears at larger time

scales which causes poor performance. They approximate the heavy traffic intensity with
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a Markov Modulated Poisson Process (MMPP). As will be shown, traces from a carrier

packet network do not have an exponentially distributed call interarrival time and call

holdings times do not follow the exponential distribution as referenced above.

OPTICAL BURST SWITCHING

There is considerable research activity into the use of OBS for the transport of

internet traffic. OBS was first proposed as a solution as a bridge between optical circuit

switching and optical packet switching[6]. In an OBS switched network links between

nodes are only active long enough for a burst of data to pass. This is a deviation from

Optical Circuit Switching in that the entire path is not necessarily active at the same time.

In an OBS network, control packets are sent to adjacent nodes with enough lead time to

allow the adjacent node to configure the switch matrix shortly prior to the optical burst

arriving. Research into the protocols associated with the timing of sending bursts is not

the focus of this thesis (Just In Time[9] and Just Enough Time[6] signaling). The size of

the bursts can affect the blocking probability associated with these two signaling

protocols in the core of the network and as such has to be considered in burst assembly

analysis. This research has shown that large bursts increase the blocking probability in

the core of the network. The design of the control plane also has an effect on the size of

bursts in the OBS network so as not to overrun the capacity of the control plane network

by the quantity of the control packets sent[10] . Figure 7 shows the minimum burst

duration required to keep utilization below 100% on the control channels for two

different control channel configurations. This graph assumes the control channel has the

same bitrate as the data channels and the control packet size is 64 bytes. The formula

used to calculate the minimum burst duration is
R

B

k

kK
L length⋅

−
=

)(
min where K is the
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number of available channels, k is the number of control channels, Blength is the burst

control packet length, and R is the link bit rate. The minimum burst duration plays a key

factor in the design of the burst assembly algorithm which is another primary element of

an OBS network.

Minimum Burst Transit Time
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Figure 7 - Minimum Burst Size

The burst assembly process has been grouped into 3 categories: timer –based,

burst length and hybrid. Timer based algorithms store packets for a minimum and/or

maximum time prior to building and transmitting a burst[11]. One of the primary benefits

of timer based algorithms is the delay of bursts can be closely controlled. While delay is

able to be controlled in a timer based algorithm, system efficiency suffers because there

is a minimum burst size due to the design of the control plane. In a timer based algorithm

bursts must be “stuffed” in order to send the minimum size burst. Burst length algorithms

wait for a minimum or maximum burst length[12]. In this algorithm delay for real time

applications could be an issue as the OBS network waits for the minimum size prior to
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transmitting. The hybrid approach combines these two utilizing timer and burst length

thresholds to build bursts for transmission across the network[13]. Recent research on

burst assembly algorithms proposes an adaptive burst assembly algorithm based on the

input traffic characteristics[12, 14, 15]. The research has shown that the burst assembly

algorithm is able to shape the traffic and thereby change characteristics of the bursts

within the core of the OBS network.

SELF SIMILAR TRAFFIC

Input traffic characteristics to the edge nodes play an important role in burst

traffic characteristics. Research on internet traffic has shown that it exhibits a self similar

nature and should not be modeled using Poisson distributions[16, 17]. It was first

proposed that the burst assembly process would reduce the self-similarity of the input

traffic[11]. Later analysis showed no change in the self-similarity of generic packet

based input traffic using time based assembly algorithms[13]. Research by Hu, Dolzer

and Guager in 2003 has concluded that “burst assembly does not reduce self similarity in

general.”[18] The distinction is made in their work between self-similarity being byte-

wise and packet-wise. Byte-wise self-similarity is referring to the self-similarity of the

bytes transmitted. Packet-wise is referring to the self-similarity of the count of packets or

bursts. They indicate that packet-wise self similarity can change based on the assembly

algorithm selected.

Self-similarity is the finding that correlations exist in time series data over

different time scales. One of the parameters that assist us characterizing self-similarity is

the Hurst parameter. For time series without long range dependence the Hurst Parameter
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= 0.5. This time series is also identified as being made of unbiased independent values.

For traffic with a very high degree of correlation over different time scales, the Hurst

parameter approaches 1. Here is a basic introduction of long range dependence[19]:

Let }:{ ℵ∈tXt be a weakly-stationary time series. The autocorrelation function

of this weakly-stationary time series is
2

)])([(
)(

σ
µµ −−

=
+ ktt XXE

kp where µ is

the mean and σ2 is the variance. If ∑
∞

−∞=k

kp )( diverges, then Xt is said to be long-

range dependent. The Hurst parameter can be obtained by using a functional form

of this divergence: α−kCp where Cp>0 and )1,0(∈α . The Hurst parameter is

related to α by the equation:
2

1
α

−=H .

There are many techniques for estimating the Hurst parameter. These include the

R/S statistic method[20], aggregate variance[21], Peng’s method[22], difference of

variance method [21] and the absolute value of moments method[21].

Much of the research in Optical Burst Switching uses generalized models for

internet traffic. There have been more specific models developed for voice packet traffic.

Recently research has produced models for aggregated IP traffic. The focus of this thesis

is to examine the effects of a burst switching assembly algorithm on the self-similarity

characteristics of VOIP network gateway traffic. In Chapter 3, a simulator for generating

VOIP packets will be designed using traffic characteristics from a carrier network. This

traffic will then be passed through a OBS assembly algorithm to compare the long range

dependence of the traffic.
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CHAPTER III

RESEARCH

In order to model aggregated VOIP traffic over an optical burst switched network,

characteristics of the input traffic are needed. This research will initially focus on the

interarrival distribution and call duration distribution of the input traffic. Much of the

prior research assumes an exponential distribution of the interarrival times and call

durations.

CIRCUIT SWITCHED CALL CHARACTERISTICS

Analysis of calls from a competitive local exchange carrier VOIP gateway reveals

the following characteristics of calls. Multiple distinct samples of calls were captured for

this analysis. The first sample was from calls originated primarily on legacy circuit

switched voice networks. The second sample was from VOIP originated calls that

traversed between the VOIP network gateway and a circuit switched voice network.

Table 1 identifies basic characteristics of calls originated from and terminated to VOIP

customers via a VOIP network gateway.

Table 1 – Sample Voice Call Characteristics

Call Origination Type Packet Switched Voice Circuit Switched Voice

# of records 3445 2683

Average Call Duration 2.4174 min 1.8288 min

Average Interarrival Time 1.9155 sec 1.2316 sec
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As can be seen in table 1, the average call duration and average interarrival time

from the two samples are different. It should be noted that these two pools are from two

different sets of end users. The packet voice network in general contains a higher

percentage of business users across the entire CLEC footprint. It is also expected that the

calling patterns between different sets of end users can be significantly different. In the

cases above, the times are typical of what is encountered across the network

In order to establish that the call interarrival times of traditional voice calls are

exponentially distributed, a comparison of the sample data is made via a quantile-quantile

plot (QQPlot) and a histogram of the call interarrival time. A QQPlot is a statistical

graphical analysis tool which can compare sample data to a known random distribution

type. A QQPlot is used in determining if two samples come from a common distribution,

if they have similar location and scale, if they have a similar distribution shape, and if

they have similar tail behavior[25]. The free software package R was used produce the

QQPlot graphs[26]. Given a random variable X, The q -quantile of an experimental result

X is defined as the value of x such that P(X < x) = nq, where n = 1 to the maximum

number of points in the sample), and 0 < nq < 1. The matching quantile for a random

variable Y is that value of y where P(Y < y) = nq. The value of q is determined by the

number of samples in the data set. For the circuit switched voice, 00037.≈q since there

were 2683 samples. For the packet switched voice graphs, 00029.≈q since there were

3445 samples. In the QQPlot graphs if the points on the QQPlot lie above the line, this

indicates that the sample data has a lower CDF at that point than the expected

distribution. If the points are below the line, it indicates that the CDF of the sample data

is higher at that point than the expected distribution. The straight line in the QQPlot
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graphs indicate where the points should lie if the 2 samples come from the same

distribution since their CDF would be the same at those points. For example, on the far

right plot of Figure 8, there is a plotted point at approximately (6, 6.4). This point

indicates that the P(an exponential PDF with a variance equal to that observed

experimental is < 6), call this FX(6), = the P(the observed experimental values are < 6.4),

call this FY(6.4). This means the experimental observations are slightly more spread out

than what would be expected from an exponential distribution. Note that this point lies

above the 45 degree straight line and that FY(6) will be < FX(6).

The QQPlot analysis for circuit switched voice call interarrival time is shown in

figure 8. The first graph is a plot of the interarrival time of all the calls in the sample. The

second graph in figure 8 shows the histogram of the sample data. A line representing the

exponential distribution has been overlaid. The third graph is a QQPlot of the sample data

versus the exponential distribution. This figure indicates that the sample closely matches

the distribution of an exponential random variable. The 95% confidence interval is also

shown as a dotted line in this graph. From this analysis, it is shown that for the circuit

switched voice calls in our sample, the interarrival times can be modeled via an

exponential distribution.
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Figure 8 - QQPlot Analysis of Circuit Switched Voice Calls

Analysis of the call duration for circuit switched originated calls is shown in

figure 9. The first graph is the plot of the call durations for each of the samples. The

second graph is a histogram of the sample with the exponential distribution overlaid. The

exponential graph does not appear to fit the histogram for the short call durations. The

QQPlot also indicates that the exponential model will not model the longer call duration

calls properly. The call duration of the sample used would more accurately be measured

using a lognormal distribution. Figure 10 shows the comparison of the call duration to the

lognormal distribution. The lognormal distribution models the longer call duration better

than an exponential distribution, and it models the short call duration very accurately.
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Figure 9 - Circuit Switch Voice Call Duration

Figure 10 - Circuit switched voice call duration versus the lognormal distribution

VOIP CALL CHARACTERISTICS

The previous sections have identified the characteristics of calls which were

primarily originated on a legacy voice network. The next section will analyze the traffic

originated by CLEC VOIP customers and sent across a VOIP network gateway. Figure

11 shows the comparison of the interarrival time to the exponential distribution. The first

graph is a plot of the sample data versus interarrival time. The second graph is the
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histogram of the data with the exponential distribution overlaid. The third graph is the

QQPlot of the data versus the exponential distribution. The exponential distribution does

not model the sample data closely for short duration or long duration calls. From these

graphs, it is determined that the VOIP originated data from the network gateway does not

fit the exponential distribution.

Figure 11 - VOIP Call Interarrival Time Comparison to the Exponential Distribution

The interarrival distribution mostly closely matches the Weibull distribution. A

few other distributions including the normal and lognormal distributions were not as

close a match. The Weibull distribution matches the shorter interarrival times but fails to

closely model the heavier tails in the sample data. By comparing the range of the y-axis

(sample data) with the x-axis (weibull distribution) of the QQPlot, the heavier tale of the

sample data can be clearly seen. For the purposes of this research the Weibull function

will be used as it is a fairly close match. The graphs in figure 12 contain the histogram

analysis and the QQPlot of the sample versus the Weibull distribution.
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Figure 12- VOIP Interarrival Times vs Weibull Distribution

The data in figure 13 is the analysis of the call duration vs. the exponential

distribution. The first graph is a plot of the data points in the sample set. The second

graph is a histogram of the dataset. The exponential distribution is overlaid in the second

graph. It is evident that the distribution does not model the very short call durations

adequately. The third graph in figure 13 is the QQPlot of the sample vs the exponential

distribution. The QQPlot shows the longer call duration samples can not be modeled

properly using the exponential distribution. Figure 14 shows the comparison of the

lognormal distribution to the call duration for VOIP originated calls across the network

gateway. The first graph is the histogram of the sample with a lognormal distribution

overlaid. The second graph shows the QQPlot of the sample vs a lognormal distribution.

From these graphs, it is evident that the call duration for VOIP calls from the network

gateway would be more accurately modeled using a lognormal distribution rather than an

exponential distribution.
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Figure 13 - VOIP Call Duration versus Exponential Distribution
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Figure 14 - VOIP Call Duration vs Lognormal Distribution

Since the VOIP call interarrival times most closely match the Weibull

distribution, there is a reduction in the very short call interarrival times. It is also noted

that the distributions above are not exponential distributions as is typically assumed.

Current telecommunications business practice uses probability models to predict link

capacity utilization using the minutes that traverse a trunk in the busy hour. Current

models assume Poisson or Erlang distributions for determining utilization. If the traffic
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on the trunks does not follow one of those distributions, the calculated utilization would

not match the true utilization of the trunks. Further research is needed on the application

of the Weibull distribution to more accurately predict the utilization on the VOIP

gateway trunks based on the busy hour usage.

VOIP CALL AND OBS ASSEMBLY MODELING

The traffic characteristics from the VOIP network gateway are used to analyze the

effects of the burst assembly algorithm. An OBS model was developed using an open

source discrete event simulation model called OMNET++[26]. Figure 15 identifies the

modules created within the simulator and the message flow. The first module is the call

simulator. The call simulator generates traffic using the statistics from the previous

section. The weibull distribution is used for call interarrival time. The call duration is

generated using a lognormal distribution. This module sends messages out based on these

random distributions in order to simulate user initiated calls. The messages created in the

call simulator are passed to the packet generator. This module creates an instance of an

object for each call that is passed to it from the call simulator. These dynamically created

objects are active for the duration of the call and are able to generate the IP packets

required for the duration of the call. The packets generated are all a fixed size based on a

G.729 codec with 2 frames per packet. This codec sends a packet out once every 20

milliseconds. All of the dynamic packet generators send their output to a single input port

of the OBS assembly module. This module stores the message lengths until the burst is

created. The burst assembler was simulated utilizing a timer based assembly algorithm.

Since VOIP is very susceptible to latency, a burst length assembly algorithm was not
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used as it would have more potential for blocking traffic as well as no guarantee

regarding delivery times. When the burst is created, it is sent to a sink module which is

used inside of the simulator to track output statistics from the module.

Figure 15 - OMNET++ Simulation Modules
Figure 16 shows the simulated IP packet input to the burst assembler. This graph

indicates the number of packets in the assembler queue in every 20 millisecond period.

The graph contains over 2.2 hours of data. It also shows the initial ramp period that

occurs at the start of the simulation. This ramp period is excluded from analysis in

proceeding sections. It is evident that the input traffic is bursty in nature and its self
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similar nature will be tested later.

Figure 16 - Simulated VOIP Packet Input Traffic
The histogram of the IP packet interarrival times at the input of the OBS

assembler is shown in figure 17. It looks somewhat exponential. A line representing the

exponential distribution is also shown on the graph as reference.
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Figure 17 - Interarrival Time of VOIP packet Traffic
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The output from the burst assembler given this input sample is shown in figure

18. The simulation used a time-based threshold for burst creation of 50 milliseconds. The

histogram of the burst size is shown in figure 19. The normal distribution with similar

mean and standard deviation is also overlaid for reference only.
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Figure 18 - Simulated Burst Length Output
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Figure 19 - Simulated Burst Size Distribution

The packet input traffic and burst assembler output appear very bursty in nature.

A time-based burst assembly algorithm is used in this analysis due to VOIP being a real

time application and the end to end delay of calls is typically designed to a maximum

value of 200 ms. In actual designs, this value could be calculated based on distance

between end users, delay of processing through equipment and the delay associated with

encoding and decoding.

LONG RANGE DEPENDENCE OF INPUT TRAFFIC AND BURST OUTPUT

The affect of aggregation of three different sources is shown in figure 20. The

first is a poisson generator which has a Hurst parameter of 0.5. The second is a fractional

Gaussian noise (fGn) generator with a Hurst parameter of 0.95. The third is the VOIP

packet generator that was implemented as indicated in the previous section. The lowest

graphs show the traffic aggregated into 0.1 second intervals. The top level shows the

aggregation of the traffic into 100 second intervals.
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Figure 20 - Aggregation of Poisson, Self Similar and Simulated VOIP Traffic

It is evident that there is less variability as Poisson traffic is aggregated over

longer intervals. From visual inspection, there is little change in the variability of the fGn

traffic as it is aggregated. The input VOIP traffic variability is not smoothed as it is

aggregated which indicates it may have long range dependent characteristics. The design

of the simulator is such that packets are generated at deterministic intervals for the

duration of a user session. It is expected that short term correlations would also exist in

the simulated VOIP traces as a result of the session characteristics of a call.

The autocovariance function of the 3 different sources is shown in Figure 21. The

poisson plot indicates very small correlations at all intervals. Long range dependence is

defined as ∞=∑∞

−∞=τ
)(Xacf . The self-similar plot indicates correlations exist and stay

fairly consistent even at the longer intervals which is indicative of long range

dependence. The smoothness of the short term VOIP plot in the lower right hand plot of
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Figure 20 is explained by the autocovariance of this type of traffic. The autocovariance

graph of simulated VOIP traffic has a significant amount of short term correlation. Note

the difference in the lag between the first two graphs and the last graph. The correlation

decays very slowly for the simulated traffic. The average packet count per call for the

simulated VOIP traffic ends up being approximately 7252 packets. The graph indicates a

slight change in correlation at the same interval. The existence of long range dependence

in the simulated voip traffic is difficult to estimate from this particular autocovariance

plot.
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Figure 21 - Autocovariance of Traffic Traces

The input and output data is analyzed for long range dependence next. After

removing the initial ramp up traffic, the input data set had 14,435,993 elements which is

just under 3.5 days of simulated traffic. The output traffic data set contained 12,944,480

elements which is just under 7.5 days of simulated traffic. Both sets took approximately

36 hours to generate.

One of the methods that can be used to estimate the Hurst parameter of a time

series is the RS method. Given the time series { }1, ≥= iXX i , the partial sum is
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points are then plotted against the log of the block size(d). The slope of the line generated

via least square error of the sample points can then be determined. According to research

by Mandlebrot, HCddSRE ≈)](/[ where C is a constant not dependent on d therefore

the slope of the line in the log-log plot is the estimated Hurst parameter.[20].The R/S plot

of the input and output traffic is shown in figure 22.
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Figure 22 - R/S method

In order to visually distinguish between the two sets of data, the input traffic was

shifted 1 unit to the right after the log function was performed as this does not affect the

slope of the line. The slope of the input packet traffic was .936. The slope of the output

burst traffic was .960. These values which are also the estimated Hurst parameters for the

traffic indicate there may be significant long range dependence in the traffic. One thing to

note is that the OBS assembly algorithm did not decrease the self similarity of the traffic

over the range analyzed. Lower values have been excluded from the slope determination

due to short range dependencies causing a transient zone at the low end of the plot.
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Another method for estimating the Hurst parameter is called the variance of

residuals or Peng’s method. In this method, the time series is divided into blocks of size

m. The partial sums are then calculated within each block as ∑
=

=
t

i
iXtY

1

)( where

t={1,2,…,m}. A least-squares line is fitted to the partial sums in each block to obtain the

slope(b) and intercept(a) for the partial sums within the block. The sample variance of

residuals(residuals) can then be calculated with: ∑
=

−−
m

t

btatY
m 1

2))((
1

where a is the

intercept and b is the slope determined previously. According to research by Peng, the

variance of these residuals is proportional to Hm2 [22]. The slope of the line in the log-log

plot of the variance of the residuals vs the block size is then used to estimate the Hurst

parameter. Peng’s method for estimating the Hurst parameter for the simulated VOIP

traffic and the output OBS traffic is shown in figure 23. Using this method, the Hurst

parameter is estimated to be half of the slope of the least-square fitted line. A line

identifying the slope where the Hurst parameter would be 1 is shown in the figure.

Peng's Method for Hurst Estimation
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Figure 23 - Peng's Method

For the given data set, the estimated Hurst parameter for the input and output

traffic utilizing all the points was 1.105 and 1.070 respectively. Since the x-axis is the log

of the block size, the points on the right side of the plot are made up of very few values
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so statistical inaccuracies might exist at those points. The residuals from the points to the

right of 5.5 on the x-axis are made up of 30 values or less and as such the accuracy is

questionable. Removing those from the least-square fitted line process causes the Hurst

parameter to be well outside the valid range for the Hurst parameter. This is a not

uncommon problem with Hurst parameter estimators, especially if the Hurst parameter

happens to be near one. If so, the long term dependence may require an astronomical

number of data points to obtain a reliable estimate. A key point to note, is that again note

there is not a significant difference in the Hurst parameter or the graph of the input and

output traffic.

The next method used to estimate the long range dependence of the time series

was the aggregated variance method. In this method the series with N samples is divided

into blocks of length m. ]/[,...,2,1,
1

:)(
1)1(

)( mNkX
m

kX
km

mki
i

m == ∑
+−=

is used to find the

average of the series based on the blocks the series has been divided into. The variance is

then calculated via the formula: ∑
=

−=
mN

k

mm XkX
mN

VarX
/

1

2)()( ))((
/

1
. The aggregate

variance plot method for estimating the Hurst parameter is shown in figure 24. This is the

log-log plot of )(mVarX versus the block length. Research has shown that the slope of the

least-square fitted line can be used to estimate the slope because of the approximation

βσ mVarX m 2)( ≈ where m is the aggregation size and 22 −= Hβ and H is the Hurst

parameter with a value from .5 to 1[21]. The slope of the line in the Aggregate Variance
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plot is equal to β .

Aggregate Variance Method for Hurst Estimation
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Figure 24 - Aggregate Variance Method

Two lines have been added to the graph to identify two different slopes. The left

hand side of the graph indicates that the initial input and output traffic might have a Hurst

parameter of .998 and .997 respectively. The right hand side of the graph yields a Hurst

parameter of the input and output traffic of .562 and .568 respectively. Note that the

accuracy of the slope of the right line is very questionable due to the number of values

used to estimate the aggregate variance. The points associated with 5 on the x-axis would

consist of 129 and 144 points for the input and output traffic respectively. These

quantities get lower as the aggregation levels increase so the variance would be made of

up only two points for the furthest point to the right on the graphs.

The difference of variance method for Hurst estimation is yet another method that

can be used. Research has shown that this method is able to distinguish long range

dependence from two types of non-stationarity in the time series. Non-stationarities

would prove a problem for the estimators since many of the estimators use the mean over

the entire data set to perform the estimate. The difference of variance method is able to

help distinguish long range dependence from jumps in the mean and slowly decaying
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trends in the time series[21]. This method utilizes the same formula as the aggregated

variance method for determining the variance. The sample points are then calculated via

the formula )()1( ii mm VarXVarX −+ . The differences of variance plot for estimating the

Hurst parameter for the input packet traffic and output OBS traffic is shown in figure 25.

The Hurst parameter for this method is estimated using the slope of the log-log plot as

was performed in the aggregate variance method. This graph indicates that the slope is

initially positive which would not yield values for H within the range of .5 and 1. The

right hand side of the graph indicates the data points may be decreasing in that range

which if the trend continues would yield a valid Hurst estimation. As stated previously,

statistical accuracies exist at the right of the graph due the large aggregation levels yield

few points for determining the true variance. The lines in the graph provide the slope of

the input and output traffic using the entire data set. If we exclude the points with

questionable statistical accuracy these estimates would also stray further from the valid

Hurst parameter range. The slopes of the lines were very similar. The input traffic slope

was .239012 and the output traffic slope was .246414. This yields Hurst parameters of

1.120 and 1.123 for the input and output traffic respectively.
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The slopes of the lines found using least square error and the corresponding Hurst

parameter is shown in table 2. Two of the 4 methods gave estimations outside the bounds

of .5 and 1 required for a valid Hurst estimate. The RS method gave a valid but high

value for the Hurst estimate. The aggregate variance method also indicates that the Hurst

parameter would fall within the valid range. Research by T. Karagiannis indicates the

following[27]:

a) No single estimator can provide a definitive estimate.

b) If the estimators return results between .5 and 1 though different, long range

dependence may exist.

c) Long-range dependence is unlikely to exist if several estimators are unable to

produce a valid estimate.

d) Periodicity can obscure the analysis of a signal giving partial evidence of long

range dependence.

Input Output
Method Slope of Line Hurst Parameter Slope of Line Hurst Parameter % Diff
R/S 0.936 0.936 0.960 0.960 2.58%
Peng's 2.210 1.105+ 2.140 1.070+ -3.17%
Difference of Variance 0.239 1.112+ 0.246 1.123+ 0.33%
Aggregated Variance (initial data points) -0.004 0.998 -0.006 0.997 -0.10%

Table 2 - Simulated VOIP Slope and Hurst Estimates

Based on the conclusions above and in particular a) and d), it is likely that the

simulated VOIP traffic does contain long range dependence. A Hurst parameter near one

can be difficult to accurately estimate due to the large number of samples required in

order to obtain a reliable estimate. Also the autocovariance function does indicate that
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some periodicity might be occurring which might obscure the analysis according to

Karagiannis. Despite this, the analysis does show that the output traffic from the OBS

simulator exhibits very similar characteristics with the input traffic in all the estimators

used above. The Hurst parameters of the input and output traffic calculated via the slopes

are all within +/- 3.2% of each other.

In order to verify that the OBS simulator does not change the long range

dependence of the input traffic, a synthesized traffic source with a known long range

dependence is also passed to the OBS simulator. Research by Paxson has shown that a

fast fourier transform function can be used to generate a long range dependent (LRD)

source[28]. 4.19 million points were generated using the Paxson method with a Hurst

parameter of .95. The autocovariance function of the LRD input traffic and output OBS

traffic is shown in figure 24. The Hurst parameter of the LRD input and output traffic

will be run through the same Hurst estimators used previously.
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Figure 26 - Autocovariance of LRD Input and Output Traffic

The RS plot for the LRD traffic and output is shown in Figure 27. The points are

calculated as indicated previously. The output was shifted 1 unit to the right after the log
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was taken to visually distinguish between the two estimations. This shift will not affect

slope determination which is used to estimate the Hurst parameter. The least-square fitted

lines are shown on the plot. The slope of the input line was .906 and the slope of the

output line was .883. The Hurst estimate using this method is equal to the slope.
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Figure 27 - RS Method for LRD Traffic

Peng’s method for estimating the Hurst parameter of the LRD traffic and output is

shown in figure 28. The points on this plot are generated as indicated previously. The

least-square fitted line is shown on the plot. Points at both ends of the plot were excluded

from the slope determination. The input LRD traffic Hurst estimate was calculated to be

.946 and the output OBS traffic Hurst estimate was .949.
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Peng's Method for Hurst Estimation
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Figure 28 - Peng's Method for LRD Traffic

The next method used was the aggregate variance method. The details on

producing this have been indicated previously. The plot for this method is shown in

figure 29. The Hurst parameter estimate for the LRD input traffic was calculated to be

.909. The Hurst parameter estimate for the OBS output traffic was calculated to be .918.

At the right side of the plot, there is a slight trend down as was shown in the previous

aggregate variance plot. It is not as pronounced in this plot as it was for the simulated

VOIP traffic. The points on the right are made up of very few values since the block size

is very large at those points. Statistical inaccuracies are likely due to that. These points

were not used in the estimation of the Hurst parameter.



43

Aggregate Variance Plot for Hurst Estimation
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Figure 29 - Aggregate Variance Method for LRD Traffic

The difference of variance method for estimating the Hurst parameter of the LRD

traffic and output is shown in figure 30. The points on this plot are also generated as

indicated previously. The least-square fitted lines are shown on the plot. The right hand

side of the graph shows significant variability. Points at both ends of the plot were

excluded from the slope determination. The input LRD traffic Hurst estimate was

calculated to be .947 and the output OBS traffic Hurst estimate was .943.
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44

The slopes and the estimated Hurst parameters are shown in table 3. All of the

estimators produced a valid Hurst estimation for the LRD input and output traffic. It is

evident that the OBS assembly algorithm did not significantly change the long range

dependence of the traffic. The input LRD traffic Hurst parameter estimations using the

four estimators were all within -5% of the expected value of .95. Two of the estimators

were within .5% of the expected value. The output OBS Hurst parameter estimations

were all within +/-2.55% of the LRD input Hurst estimations.

Input Output
Method Slope Hurst Slope Hurst
R/S 0.906 0.906 0.883 0.883 -2.52% -4.66%
Peng's 1.892 0.946 1.899 0.949 0.35% -0.42%
Difference of Variance -0.106 0.947 -0.114 0.943 -0.42% -0.29%
Aggregate Variance -0.182 0.909 -0.163 0.918 1.06% -4.33%

% difference
(input vs output)

% difference (input
vs expected)

Table 3 - LRD Slope and Hurst parameters
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CHAPTER V

CONCLUSION

Voice Over IP continues to gain momentum in the telecommunications industry.

The volume of traffic is expected to continue increasing. Research into optical packet

switching and optical burst switching will continue to be important as customers and

network providers migrate voice and data to packet based networks.

This study analyzed VOIP traffic from a VOIP network gateway. It is shown that

the interarrival time of calls initiated on a VOIP network are not exponentially

distributed. Based on the traces collected, some serial buffering occurs and is more

accurately modeled using a Weibull distribution. The interarrival times from the

traditional voice network were also analyzed and did have an exponential distribution.

The call duration was analyzed for both VOIP and traditional calls. The lognormal

distribution was found to be a close match for both types of calls.

This analysis is important as it identifies that the calls from the service provider

VOIP network gateway do not follow traditionally assumed models. Currently available

back office systems use exponential distributions to predict utilization and blocking. This

research has shown that the VOIP network gateway traffic has Weibull and lognormal

modeling probabilities. Further research would be needed to enhance the back office

systems.
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OMNet++ was used to simulate VOIP generated traffic from a network gateway

using the call distributions above. OMNet++ is a freeware c++ based discrete event

simulator. Models were developed to aggregate VOIP traffic based on the distributions

identified by live traffic traces as well as VOIP standards like G.729. A burst switch

assembly module was also designed to provide burst output traffic for analysis. These

modules were designed for use with real-time applications using a time-threshold based

assembly algorithm.

The change in the Hurst parameter was estimated based on four different methods

utilizing the simulated VOIP traffic and a known long range dependent source. The

simulated VOIP traffic yielded proof of probable long range dependence in the input and

output traffic. The LRD synthesized source was used to confirm the results of the VOIP

tests. It was shown that the time-threshold OBS assembly algorithm does not

significantly change the self-similarity of the input traffic.
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APPENDIX

Discrete Event Simulation Code

Filename: TRAFGEN.NED

simple Source
parameters:

num_messages: numeric,
ia_time: numeric;

gates:
out: out;

endsimple

simple PackGen
gates:

in: in;
endsimple

simple CallProc
gates:

in: in;
out: out;

endsimple

simple OBSAssembler
parameters:

time_thresh: numeric;
gates:

in: in;
out: out;

endsimple

simple Sink
gates:

in: in;
endsimple

module trafgen
submodules:

CallSimulator: Source;
parameters:

num_messages = input,
ia_time = input;

display: "i=abstract/people;p=56,104";
PacketGenerator: CallProc;

display: "p=171,104;i=block/source";
OBSAssembler: OBSAssembler;

parameters:
time_thresh = input;

display: "p=288,104;i=abstract/opticalswitch";
Sink: Sink;

display: "i=block/sink;p=392,104";
connections:

CallSimulator.out --> PacketGenerator.in;
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PacketGenerator.out --> OBSAssembler.in;
OBSAssembler.out --> Sink.in;

display: "b=429,336";
endmodule

network TrafGen1 : trafgen
parameters:

endnetwork

Filename: OMNETPP.INI

[General]
preload-ned-files=*.ned
ini-warnings = no
# The name below is optional, default is omnetpp.sca
output-scalar-file = fifo.sca
# The name below is optional, default is omnetpp.vec
output-vector-file = fifo.vec

[Cmdenv]
runs-to-execute = 1
express-mode = yes
# for non-express mode:
module-messages = yes
event-banners = yes
# for express mode:
status-frequency = 50000
performance-display = no

[Tkenv]
# Uncomment the line below to set up Run 1 automatically on startup
#default-run= 1
use-mainwindow = yes
print-banners = yes
slowexec-delay = 300ms

[Parameters]
TrafGen1.source.num_messages = 10000
TrafGen1.assembler.time_thresh = .5

[Run 1]
description = "simple source sink"
network = TrafGen1

TrafGen1.CallSimulator.ia_time = weibull(1.563559,2.119915)
TrafGen1.CallSimulator.num_messages = 100000
TrafGen1.OBSAssemblere.time_thresh = .05

Filename: SOURCE.H

#ifndef __SOURCE_H
#define __SOURCE_H

#include <omnetpp.h>
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#define STACKSIZE 16384

/**
* Generates jobs (messages); see NED file for more info.
*/

class Source : public cSimpleModule
{

public:
Source() : cSimpleModule(STACKSIZE) {};

virtual void activity();
};

#endif

Filename: SOURCE.CPP

#include "source.h"

Define_Module( Source );

void Source::activity()
{

int num_messages = par("num_messages");
cPar& ia_time = par("ia_time");

for (int i=0; i<num_messages; i++)
{

char msgname[32];
sprintf( msgname, "job-%d", i);

cMessage *msg = new cMessage( msgname );
msg->setTimestamp();

send( msg, "out" );

wait( (double) ia_time );
}

}

Filename: CALLPROC.CPP

#include <omnetpp.h>

class CallProc : public cSimpleModule
{

private:
cModuleType *PackGenType;

protected:
virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

Define_Module(CallProc);
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void CallProc::initialize()
{

PackGenType = findModuleType("PackGen");
}

void CallProc::handleMessage(cMessage *msg)
{

cModule *mod = PackGenType->createScheduleInit("packgen",this);
ev << "Created process ID=" << mod->id() << endl;
sendDirect(msg, 0.0, mod, "in");

}

Filename: PACKGEN.CPP

#include <omnetpp.h>

class PackGen : public cSimpleModule
{

public:
double calldur;

protected:
virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

Define_Module(PackGen);

void PackGen::initialize()
{

// schedule first sending
//scheduleAt(simTime(), new cMessage);

calldur = simTime() + lognormal(4.34,1.25);

}

void PackGen::handleMessage(cMessage *msg)
{

//ev << "SimTime: " << simTime() << " calldur: " << calldur <<
endl;

// generate & send packet
if (simTime() < calldur) {

cMessage *pkt = new cMessage;
cGate *paOutGate = parentModule()->gate("out");
sendDirect(pkt,0, paOutGate);
// schedule next call
scheduleAt(simTime()+.02, msg);

} else {
delete(msg);
deleteModule();

};
}
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Filename: OBSASMBLR.H

#ifndef __obsasmblr_H
#define __obsasmblr_H

#include <omnetpp.h>

/**
* Consumes packets; see NED file for more info.
*/

class OBSAssembler : public cSimpleModule
{

private:
double time_threshold;
int burst_size;

protected:
virtual void initialize();
virtual void handleMessage(cMessage *msg);
virtual void finish();

};

#endif

Filename: OBSASMBLR.CPP

#include "obsasmblr.h"

Define_Module( OBSAssembler );

void OBSAssembler::initialize()
{

time_threshold=par("time_thresh");
burst_size=0;

}

void OBSAssembler::handleMessage(cMessage *msg)
{

if(burst_size==0) {
scheduleAt(simTime()+time_threshold, new cMessage);

}
if(msg->isSelfMessage()) {

cMessage *burst = new cMessage;
burst->setLength(burst_size);
send(burst, "out");
burst_size=0;
delete msg;

} else {
burst_size++;
delete msg;

}
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}

void OBSAssembler::finish()
{
}

Filename: SINK.H

#ifndef __SINK_H
#define __SINK_H

#include <omnetpp.h>

/**
* Consumes packets; see NED file for more info.
*/

class Sink : public cSimpleModule
{

private:
int pack_cnt;
int start_collect;
int fileout;

protected:
cOutVector intarrtime;
cLongHistogram histogram;

virtual void initialize();
virtual void handleMessage(cMessage *msg);
virtual void finish();

};

#endif

Filename: SINK.CPP

#include "sink.h"

Define_Module( Sink );

void Sink::initialize()
{

intarrtime.setName("packet_count");
scheduleAt(simTime()+2000, new cMessage);

pack_cnt=0;
histogram.setNumCells(2000);
histogram.setRange(200,400);
start_collect=0;
fileout=0;

}

void Sink::handleMessage(cMessage *msg)
{

if(msg->isSelfMessage()) {
delete msg;
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if(simTime()<4000) {
if(start_collect==0) {

scheduleAt(simTime()+2000, new cMessage);
}
start_collect=1;

} else {
scheduleAt(simTime()+.05, new cMessage);
if(fileout==0) {

FILE *f=fopen("randomgen.csv","w");

for(int i=0;i<20000;i++) {
long y = histogram.random();
fprintf(f,"%d\n",y);

}
fclose(f);
fileout=1;

}
}

} else {
if(start_collect==1) {

histogram.collect(msg->length());
ev << "adding: " << msg->length() << endl;

}
intarrtime.record(msg->length());
delete msg;

}
}

void Sink::finish()
{
}
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