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CHAPTER 1

INTRODUCTION

The future of technology has been envisioned as that of a Real World Web, analogical

to the World Wide Web or the Internet as we know it. A Real World Web, will be

an era of ubiquitous computing; an intelligent environment where everything in the

surrounding is capable of being monitored through devices as ubiquitous as the current

form of dust, that will be called smart dust. They will act as electronic nerve ends of

the planet ; a large scale network of small devices capable of harvesting information

from the physical environment, processing it and transmitting it to a remote location.

The monitoring might include locations as routine as our homes, cars, furniture, to

keep a check on their operational condition; to places as inaccessible and hard-to-

reach as international borders for monitoring tress-passers or even our own bodies,

monitoring our physical condition such as the heart rates and blood sugar levels and

capable of communicating this information to an appropriate source. This looks like a

very promising goal for technology, but before these systems are assigned to perform

many of the critical tasks, first number of issues and challenges need to be dealt with.

Wireless Sensor Networks (WSNs) have been considered as the precursors of this

future. WSNs are battery powered devices that integrate the task of sensing, process-

ing and communicating the data. The structure of sensor networks is such that they

can be deployed over the area to be monitored, either manually or they can be strewn

over large stretches of lands from aeroplanes. Traditional WSNs measure scalar data

such as temperature, pressure, humidity, lighting conditions etc, and over a few years

have found applications in precision agriculture [1], industrial monitoring [2], Ecology
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monitoring [3], and more recently for applications like parking space monitoring [4].

A detail discussion on the research history and trends is given in [5] . A detail survey

on the different technical and architecture related aspects of WSNs has been covered

in [6].

Even though designing and implementing WSNs is a challenging task, most of its

applications up till now in general have been on low bandwidth data, such as tem-

perature, pressures, humidity sensing etc. But if sensor networks are to be developed

for true ubiquitous sensing, the devices should be made capable of capturing and

processing high level data, such as images, videos, sounds etc. This high bandwidth

data creates many new challenges, like availability of low cost sensor hardware for

cameras and microphones and larger bandwidth requirement for data transmission.

It will also require better and more powerful processors and larger memory units to

perform in-node processing of the data. Still, a more difficult challenge would be

to find a trade-off between the energy consumed for transmission and the quality of

service (QoS). For high bandwidth data, the consumption increases due to increase in

amount of processing to some extent but largely due to the increase in the amount of

transmission. The QoS is important because it determines the quality of information

obtained.

With the advance in semiconductor technology, the challenges in hardware have

been moderated, with ample production of many low-cost, good quality CMOS cam-

eras, microphones and memory units. This has given impetus to the development

of Wireless Multimedia Sensor Networks (WMSNs) , which are devices capable of

capturing, processing and communicating high level multimedia data, which includes

different forms of audio-visual data. The ability of WMSNs to process such data

makes them useful for applications such as surveillance and monitoring especially in

difficult terrains, wildlife monitoring, etc. As mentioned earlier, the real utility of

WMSNs would be when they are capable of operating for a long period of time with
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a reasonable of quality of service.

Wireless Camera Sensor Networks (WCSNs) are a category of WMSNs, which

deal with snapshot data or streaming videos. One of the biggest applications of

WCSNs is in surveillance and monitoring applications. The main requirement for

this application would be that the sensor nodes operate for a long period of time,

providing images with reasonable quality, so that adequate information about the

area being monitored can be obtained. Their environment of operation is also likely

to be harsh and given the limited power source, packet loss may occur in considerable

amounts which can be a big problem, resulting in a deteriorated image quality and

may convey no useful information as a result. Forward Error Correction (FEC) and

Automatic Repeat Request (ARQ) based schemes are available to combat erasures,

but they are complex and impose large processing overheads. Also, retransmission

takes more power resulting in more battery energy consumption.

As part of this thesis a scheme for energy efficient and loss resilient camera sen-

sor networks has been implemented. The idea has been developed by keeping the

application for surveillance and monitoring in mind. The efficiency of the system

has been improved by a two-staged conservation scheme. The first is at the sensing

stage, where the energy spent idle-sensing is conserved by a trigger-driven wake-up

of the sensor node. The event trigger is provided by a passive infrared sensor (PIR),

which wakes up the main sensor board which is in a sleep mode. Considering the

sparseness of activity expected by the WCSNs in surveillance application, the trigger

driven scheme is advantageous over a schedule driven scheme. The second level of

conservation is in transmission, where Compressive Sampling has been used to de-

velop an efficient transmission scheme. Compressed Sampling (CS) provides an error

resilient mechanism and still manages to be efficient in terms of transmission. This

work of implementing CS on WCSNs forms a prominent part of this thesis.

CS turns out to be a good solution for the packet erasure and efficient transmission,
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but there are many challenges in implementing it on the sensor node as well as in

the recovery at the base-station. The thesis has a detailed discussion about the

concept of CS, its implementation on the sensor node hardware and the recovery at

the base-station. CS recovery is done by convex optimization schemes, which is time

consuming and also takes a lot of processor memory. Modifications have been made

in the conventional CS scheme, to make it feasible to reconstruct on the available

processors and also in a acceptable time-frame. There have been a few previous

works which mainly talked about why CS should be used, but this work focusses on

how to use CS on WCSNs to make it practically feasible.

In the next two chapters both the power saving strategies will be discussed for

their relevance, their theoretical background and related works, implementation and

results. The implementations have been devised to be close to the practical require-

ments and as mentioned earlier, the application of the system has been envisioned for

surveillance applications and the operational assumptions have been made accord-

ingly.
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CHAPTER 2

Event Driven Camera Sensor Network

2.1 Importance of Event based wake-up

Sleep scheduling is a standard strategy of energy conservation employed on embed-

ded systems and is even more relevant in WSNs. WCSNs have been envisioned

to be a vital asset in surveillance and monitoring applications especially in hard-to-

reach, infrastructure less terrains, such as unfenced international borders, forest areas,

mountainous regions or places of strategic importance. All these places are expected

to monitor activities such as unwanted intrusions, which are temporally sparse and

critical. Considering this application, most of the time the sensor nodes may remain

idle, but whenever an event occurs, it must be detected and captured (here an image)

with a very high probability . In order to do that, keeping the nodes just idly sensing

would be a gross wastage of the already energy constrained devices.

Depending on the application, different network architectures can be employed [7].

A single tier homogenous architecture can have all sensors equipped with a camera,

while multi-tier, heterogenous architecture , there can be a combination of camera

sensors and intermediate sensors acting as scalar and transceiving units. In any case,

the current condition of the sentry nodes, i.e. their position, orientation, field of view

etc are important in determining the information captured by these node.

Keeping the sentry (sensing nodes, here the camera sensors) nodes on a simple

time-scheduled wake-up cycle is not reliable as the events occurring in the aforemen-

tioned places are not deterministic and there is a probability of the event being missed

in the defined time schedule. There are better collaborative time based scheduling
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mechanisms which can provide better system performances. Most of the techniques

used were developed as MAC protocols for channel sharing, which can also be used

in this case. Noteworthy among them are the SMAC [8] ,TMAC [?], LEACH [9].

The problem here is, as previously mentioned; since these are not scalar sensors, the

current position and orientation information about the camera sensors is necessary

for co-ordinating the sleep cycles. This makes the in-network camera calibration ex-

tremely critical. Thus, a large and accurately calibrated network would be required

which is a difficult task. The sparse and intermittent nature of activity experienced

in surveillance applications makes it even more difficult to set the duty cycle for each

sensor node.

An event-driven wake-up operation, where the sensor nodes wake-up whenever an

event is detected, is a better choice especially for the proposed application. Event

based operations have proven to be useful in implemented projects such as the Vigilnet

project [10] and ExScal [11]. The implementations in these projects proves the effec-

tiveness of event-based wake-up as a power-saving mechanism. But, these projects

have been traditional scalar sensor networks. WCSNs have different and more expen-

sive consumption characteristics, in sensing and especially in communication, hence

effective experimentation should be done before implementing any specific scheme.

For traditional sensor networks, sensing has been a more significant consumer of en-

ergy than transmission because the number of bits transmitted per event are small

because of low-bandwidth data like temperature, pressure or humidity. This is not

the case with multimedia data which requires large number of bits per transmission.

Hence for camera sensors the significance of transmission energy goes on increasing

with larger images. Thus the role of transmission also needs to be analyzed while

studying wireless camera sensor networks.

As a part of this thesis, implementation of an event based wake-up on the Imote2

based WCSN platform has been discussed. The hardware (Imote2 including the mul-
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timedia sensor board) and the software (TinyOS-2.x implemented in nesC) are very

suitable for an event-driven application. In this part it is shown how to judiciously

use these available resources to implement an event triggered snapshot capture and

transmission. All these efforts are towards developing a practically functional camera

sensor node. A lifetime analysis of the system has been performed to evaluate the

effectiveness of the event-based operation on the Imote2 platform, as compared to a

schedule driven one.

2.2 Related Work

Event-based wake-up is an intuitive choice for the surveillance and monitoring appli-

cation. The event-based wake-up requires some low-power sensor to be in an on-state

in order to monitor and generate a wake-up event. Thus, the WSN cannot be put

in the deep-sleep mode, it needs to be in some higher state so that the low-power

sensing can be done. This has been used in projects like Exscal [11], where the ac-

tivity of the sensed field is intermittent. The SensEye [12] has been a very good

project using both high and low level sensors for event detection in WCSNs. It uses

a low resolution camera, to detect an object of interest. The image is captured and

processed on-board, and if an object of interest is detected, then a high resolution

camera is activated which takes better quality image, which is sent to the base-station

for further processing. This idea is very good, and is a model for future work that

can be done in WCSNs. A few drawbacks are that, first because of the absence of a

power budget analysis, it is difficult to identify its operational capacity. The knowl-

edge of operational capacity is necessary to identify the probable application for the

platform. Since, this has one camera remaining on for a considerable time, it may

not keep the node alive for a long time. Also, the hardware requirements would not

be cost-effective for a large-scale deployment. The presence of also a bulky structure

may also make it difficult for random deployment.
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In a timer based schedule, more energy can be saved by putting the node into deep-

sleep or long term deep-sleep modes. The waking up in such mechanisms is done by

a supervisor Real Time Clock (RTC), which is implemented using an independent

oscillator powered separately by the batteries. This allows the entire sensor board

to be in sleep. Using such mechanisms [13] have provided very long term operations

for sensor nodes, extending as long as 552 days. This type of scheduling can be

employed for applications like environmental data gathering, where there is no need

of an event-based scheme and the overall the application is delay tolerant. Delay

tolerance is relevant since, much more time is needed by the processor to come out

of deep-sleep as compared to any other power saving mode.

There are also applications where sleep-based scheduling would end up using more

resource as compared to a continuous awake strategy. Example for crowd monitoring,

there will be more energy consumed, in putting the node into sleep and then waking

it up. Also, the delay will result in some of the events being missed. The better

approach for this application would be to keep the camera active all the time and use

some other power-saving strategies to conserve energy [14].

As seen from the previous examples the selection of the mode of operation for

sensor networks mostly depends on application. Once the mode has been decided,

the quantity of energy saved depends on the consumption characteristics of the hard-

ware along with the transitional characteristics of the selected mode. There have not

been many works that have performed judicious power-budget analysis of the hard-

ware and the operation mode. ExScal has been one of the biggest real sensor node

implementations. This has been on primitive sensors and developed for the purpose

of surveillance. A lifetime analysis of ExScal has been performed for an always-on

sensor network (where at least one sensor needs to be awake for monitoring and not a

complete deep-sleep operation ) application. The analysis is thorough and perfect for

the specific application, but its main limitation is that since it has been implemented
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on traditional scalar sensors it has assumptions which cannot be extended to multi-

media sensors. For example, the active period for the sensors has been considered to

be 10 seconds, as the target is expected to be in the sensing range for that time. This

cannot be assumed for say camera sensors, where this value may change with respect

to the field of view of the camera, its position with respect to the target. Also, even if

the sensing period is low, WMSNs take maximum time in transmitting the captured

data to the next hop. Similarly other assumptions for packet loss, packet sizes are

not consistent with those of WMSNs.

D. Jung et al [15] have presented models for the two modes of operation i.e. trigger

(event) driven and duty cycle (schedule) driven modes. The models are constructed

using Semi-Markov models for considering the power-transitions. The proposed mod-

els use a set of hardware parameters such as power consumption per task, state

transition overheads and communication costs to compute the average lifetime for a

given event-arrival rate. The advantage of these models is that they consider both

the hardware used and the mode of operation, hence they can be used for deployment

analysis or as a tool to determine the best mode of operations for a given application

and hardware.

In this work, an attempt has been made to implement an event-driven mechanism

on the commercially available Imote2 sensor node and the IMB400 multimedia board.

The IMB400 has an on-board PIR motion sensor which can be used to generate a

trigger to wake the Imote2 up from a sleep mode. The software, TinyOS-2.x and NesC,

also have specific properties that can be very suitable for this application. A number

of different hardware and software parameters need to be known and implemented

correctly, and through this work, a framework has been provided for implementing a

correct event-triggered mechanism on the camera sensor. The consumption analysis of

the camera sensors has been simulated to evaluate the role of transmission in the total

consumption and also to prove the effectiveness of event triggering for a surveillance
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application using lifetime analysis methods proposed by [15].
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2.3 Salient features of hardware and software

 

Figure 2.1: Imote2 camera sensor mote

2.3.1 Hardware

IPR2400 Processor/Radio board
 

Figure 2.2: IPR2400 board

The IPR2400 mainly comprises of the Intel Xscale PXA271 processor board

and the CC2420 radio chip.

The PXA271 is a low power platform with the lowest active power can be obtained

by operating the processor at the lowest supported voltage (0.9V ) and current of 30

mA. It supports 6 power modes. It has a 32 bit processor with 256kB SRAM, 32MB

FLASH and 32MB SDRAM. This amount of memory helps multimedia operations

along with a built in DSP co-processor which supports, a high performance and low

power multimedia operations.

The CC2420 radio chip integrates the 802.15.4 Radio with a built in 2.4 GHz

antenna that supports 250 kb/s data rate with 16 channels. A typical range of 100

feet (30 m) is achieved. For longer range requirements an external antenna can be

used via optimal SMA connector.
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Power Source  

Figure 2.3: IIB2400 battery board

The IIB2400 battery board can hold 3 AAA batteries, with a combined energy

of 18360 J. All the other boards are mounted on this board. There is a Power

Management IC (PMIC) , which is a DA9030 chip on the IPR2400 board, which

actually manages the power distribution. As will be seen later the DA 9030 along

with the PXA271 have a number of power saving functionalities that can be used

together to achieve very low power operations.

IMB400 sensor board
 

Figure 2.4: IMB400 multimedia board

The multimedia board has on-board, an Omnivision OV7670 camera, Panasonic

Passive Infrared Sensor (PIR) and a miniature microphone and speaker. The camera

has resolution 640x480 pixels with video capture capabilities. The PIR sensor is

Panasonic sensor with a detection range of upto 5 m and detection angle of 80-100

degrees.
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Figure 2.5: Block Diagram of the IMB400 sensor board

2.3.2 Software

The embedded OS that is used on Imote2 is TinyOS-2.x, which is programmed using

NesC, a dialect of C. Both TinyOS and NesC are specifically made for WSNs. Some of

the key features that make them very effective for WSNs are as follows. TinyOS has

a very small memory footprint, with 400 bytes of code and data combined, making it

ideal for the resource constrained sensor nodes. It has a component based architecture,

where the components are re-usable software routines. Most of these components are

software modules, while some are also wrappers around hardware. Each application

can be wired to the component, customizing it to its requirement. One of the main

features considered in the programming is the Event-driven nature. The idea here is

that the motes should be fundamentally event-driven, i.e. unlike regular computing

systems which are mainly interactive, the WSN software should react to the changes

in the environment, for example message arrival, sensor acquisition etc. TinyOS was

built to satisfy these critical requirements, and nesC was developed to implement

TinyOS hence it also satisfies these requirements. Thus, along with the hardware

available, the software provides the added impetus necessary for implementing an

efficient event-driven wake-up.

A few disadvantages of these software include; it is not very easy to program and

use. Owing to such component based architecture, it has very less library support
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for image processing functionalities, making on-board image processing programming

very difficult.

2.4 Working

2.4.1 Role of software

 

Start 

Acquire Image 

Acquire buffer 

parameters 

Send Image statitstics 

Stats send Done 

Send Image 

Tx 

Delay

Image send Done 

Sleep 

Motion 
sensed 

Yes No 

Figure 2.6: Flowchart for camera sensor operation

The image capturing process can be explained as a sequence of processes as shown

in Fig.(2.6). The code consists of the camera module and the payload transmission

module (also called as the big message sending module).

When image capturing initiates, i.e. the sensor node is turned on, the camera

module is called first. The important task in this module is the acquire task, which

acquires the image using the camera as per the specifications like resolution, format

etc. The acquired image gets buffered in the memory. The next important task is to

acquire the image parameters from the buffer, namely the image size and the starting

address location. This information is passed on to the payload transmission module.

The transmission is initiated by sending the image statistics such as the dimensions

and size of the payload. This is done using the send interface. In the code this is

given by,
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c a l l ImgStatSend . send (0 , &img stat msg , s izeof ( img s t a t t ) ) ;

Listing 2.1: Sending image stats

In the code, the first input argument is the next hop address, the second the packet to

be sent, and the third the length of the packet. If the header is sent successfully, then

the component will signal the sendDone event in the future. This event triggers the

call for transmission of the payload. This can be seen in the next part of the code,

shown in Lis.(2.2). When the payload transmission is called, the inputs are passed

on to another module called SendBigMsgM.

1 event void ImgStatSend . sendDone ( message t ∗ bufPtr , e r r o r t e r r o r )
2 {
3 c a l l SendBigMsg . send ( sendAddr , s endS ize ) ;
4 }
5 event void SendBigMsg . sendDone ( e r r o r t su c c e s s )
6 {
7 c a l l Leds . l ed0Of f ( ) ;
8 c a l l Leds . led2On ( ) ;
9 post s leepTask ( ) ;

10 }

Listing 2.2: Sending image payload

The main task performed in this module is the packetization of the image data.

Packetized data is advantageous for many reasons, but the simplest being that if

lost, in case of packet data, only some information is lost not all. Each packet

consists of a header and payload. The payload carries the image information. Each

payload is of 64 bytes. The transmission module keeps track of the number of packets

transmitted. When all the packets are transmitted, a signal indicating that the

transmission is completed is generated. This signal is returned to the camera module,

as the sendDone event. It is this event that can be used to trigger the sleep interface,

as can be seen on line 9 of Lis.(2.2). This is an example of the event-based operation

of TinyOS and nesC.

A McuSleep interface is available, which is wired to the McuSleepC component.

This component is capable of generating an interrupt,which can put the mote in a
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desired sleep state.

Thus, the operational capabilities of both TinyOS and nesC, such as a component

based architecture, event-based task completion etc, are utilized to the fullest in

implementing an event-triggered wake-up procedure in an efficient manner.

2.4.2 Role of hardware
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Figure 2.7: Operational Diagram of the sensor board

The PXA271 processor and the DA9030 Power Management IC (PMIC) together

offer several power-save modes. The DA9030 PMIC was developed in close coopera-

tion with Intel to achieve optimized power management for the mobile handset units

that use the Intel communications processor along with the PXA27x application pro-

cessor series. Because of this, the terminologies used will bear close association with

the mobile handset applications.

The PXA271 provides the following power modes: run, turbo,idle,standby,sleep

and deep-sleep. The Idle mode is the first level of reduced power consumption, in

which the CPU clock is stopped. The DA9030 does not take any part in this mode.

The Sleepmode significantly reduces the power consumption as the internal processor

is not clocked and therefore not preserved either. Only the real time clock(RTC) and

the power manager are clocked, resulting in significant reduction in consumption. The
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Stand-by mode is similar to the sleep mode, just that the CPU state is preserved,

the activity inside the processor stops. RTC and OS timer are optional. The Deep-

sleep mode is one where all power domains except the VCC battery can be powered

down.

The PMIC on the other hand provides assistance mainly for the two modes, sleep

and deep-sleep. Entering into the power-save mode is initiated by the processor,

during which the PMIC needs to be in the active state. The PWREN is an active

high input from the PXA271 to the DA9030. When de-asserted, the PMIC is informed

that the processor is entering the sleep mode and all the low voltage power supplies

are to be shut down, which includes the Core, SRAM and the PLL. The other input

is SYSEN, which when de-asserted disables the high voltage supplies that includes

the I/O, LCD, memory, USIM and the USB.

As explained previously, the McuSleep is the interface which is called to put the

mote to sleep and internally it acts as wrapper around these hardware and initiates

the signals.

2.4.3 Implementing the Wake-up

As the power manager, the DA9030 is responsible for handling the switch-on or wake-

up process of the processor. There are four different ways in which this can be done.

The most obvious way is the ONKEY. It is also powered if the external adapter is

detected. An external peripheral device can also wake-up the device by generating a

input high signal. The important one here is the ALARM baseband signal generated

at the PWREN1 of the PMIC. The alarm signal gets its name from the mobile handset

application. When an alarm is set on a mobile handset it is triggered, irrespective

of which power-saving state it is in. The same idea is used in this case. The PIR

sensor on the IMB400 multimedia board is connected to this ALARM pin, as shown

in Fig.(2.7). As a result whenever an event is detected by the PIR motion sensor, it
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generates a baseband signal resulting an event based wake-up.

2.5 Camera Sensor Lifetime Analysis

Event driven operation of the WCSNs is justified only if a significant improvement

can be observed over the other operational mode, i.e. a schedule driven operation.

The consumption of sensor network system depends on a number of factors such as

consumption per task, state transition overhead, communication costs etc. Thus, the

mode which consumes less energy for a given application, which largely depends on

the event arrival rate, should be selected for operation. The idea here is to perform

the lifetime analysis of the available hardware using the model-based design proposed

by D.Jung et al [15]. Through the results of this analysis it can be determined

whether this or a set of similar hardware can be useful for the proposed surveillance

application.

As discussed earlier the available system is well suited for event based operation

with the availability of an on-board PIR sensor. But even a schedule based scheme

can be well supported on the Imote2, with the processor having an in-built RTC. The

PMIC too has an internal RTC which remains on all the time and sinks very little

current. Thus, the available hardware also has good support for a schedule based

operation.

With a capable hardware for implementing both type of models, the main variable

parameter which makes a difference is the event arrival rate. The event detection

probability will thus depend on the arrival rate and the model used. For an event-

driven model, the event sensor is always on, keeping the event detection probability

very high, almost one. But this requires the sensor to be always on and also the

event arrival rate will be crucial, as putting the node to sleep and then waking it

frequently might expend more energy. Thus, the power saving mode is efficient only

if time spent in that mode is greater than a certain threshold. This event rate will
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largely depend on the application. For example, if surveillance has to be done over a

rough and inaccessible terrain the expected activity will also be low and sparse. In

applications with medium and high activity, schedule based strategy might be better.

The first analysis is a life-time analysis of the given hardware, taking the power

consumption characteristics for each operation, event-arrival rate (for event driven),

duty cycle (for schedule driven) as inputs. This will indicate which mode of operation

will serve better for a surveillance application.

The second important parameter that needs to be evaluated through simulation

is the achievable lifetime for different power-states for a fixed event-arrival rate. This

analysis predicts the duration for which the given set of hardware can operate.

The third analysis is simple but significant, which analyzes the role of the data

size in the total power consumption. Traditionally, the power spent in transmission

has been considered insignificant as compared to the one expended in monitoring es-

pecially in case of scalar sensors. The main reason being that the time for monitoring

is very long as compared to the transmission time. But in case of camera sensors, the

data transmitted per event is large, resulting in more consumption in transmission.

This has been simulated in the third analysis.

2.5.1 Event driven vs Schedule driven

In Fig.(2.8) the lifetime plot for a very long inter arrival rate has been shown. The

experience activity frequency is 1 event per hour to 1 event per day. This is quite

sparse though a typical monitoring application may experience even sparser activities.

In the plot it can be seen that the event-driven scheme is the clear choice. For some

values the lifetime of schedule driven comes close to that of the event-driven, but in

that case the detection probability for the schedule driven operation is very low. Thus,

it can be concluded that for high inter-arrival times the event-driven mechanism is

the best choice.
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Figure 2.8: Lifetime analysis plot for large event interval

This may not be the case with a lesser event intervals, which can be observed in the

analysis shown in Fig.(2.9) Here the expected range of events is between an event per

minute and to one per hour. In this case there is a trade-off on the models that can be

employed. It can be seen that for event arrival values less than 102 events/hour, which

is equivalent to an event every second, the schedule based scheme has a better lifetime

performance. Such small event-intervals are unlikely in a surveillance application, but

may occur in some other applications.

Thus, lifetime analysis plots can be used for purposes such as selecting the models

of operation for a particular application, test the operational capability of new hard-

ware designs, predict the accuracy of the system for detection for different arrival

rates, especially for schedule based schemes.

2.5.2 Achievable lifetimes on the Imote2 hardware platform

As mentioned previously, together with the PMIC and the PXA271 a number of

power-saving modes can be implemented for the Imote2. But each power-saving

mode has a peculiar characteristic which can affect the ability of wake-up. The most
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Figure 2.9: Lifetime analysis plot for small event interval

important one here is the Deep-sleep. In this mode, all the high voltage system

power supplies are also turned off. As a result the system cannot be triggered using

an internal on-board sensor, like the PIR. The Sleep, Stand-by modes are possible to

wake-up. A good indicator to observe the benefits of sleep operations is to compare

the lifetime with respect to an Idle mode sensing. The event-arrival rate considered

is 20 events per day.

At this rate, the Idle mode can support the Imote2 for 2 days. For the same in

the Stand-by mode the mote will last for 11.22 days and for the Sleep mode it will

be 15.22 days. This shows the effectiveness of the power-saving modes in prolonging

the lifetime. Previous projects on scalar sensors had discussed and proved the role of

such mechanisms, but an analysis for this set of hardware was not available.

2.5.3 Effect of data-size on the consumption characteristics

As mentioned previously the data-size could be an important factor in the consump-

tion. This can be seen in the graph shown in Fig.(2.10)

With the increase in the number of packets, the prominence of monitoring power
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Figure 2.10: Decreasing influence of monitoring on the total consumption with in-

creasing packets

in the total power consumption has decreased, indicating the increased role of trans-

mission.

This fact can also be proven through lifetimes for variable image sizes. At 20

events per day, in the Sleep state, the lifetime when capturing and transmitting a

QVGA image is 15.22 days. The same combination will only last for 11.08 days for a

VGA image.

These analysis provide enough evidence that in WCSNs both monitoring and

transmission are equally important in terms of consumption. In this section it is

shown how to implement an effective scheme for saving up on monitoring. In the

next section, a scheme for an energy efficient transmission will be discussed. In

traditional transmission schemes, overhead in terms of parity bits are used to enable

error correction or loss recovery. This excess overhead can be avoided by using a new

technique signal sampling called Compressed Sampling. The next section discusses

its relevance, theory, implementation and the results.
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CHAPTER 3

Compressive Sampling for Energy-Efficient and Loss-Resilient Camera

Sensor Networks

3.1 Relevance of CS

As mentioned earlier WCSNs are embedded systems capable of capturing and trans-

mitting snapshot or streaming multimedia over a multi-hop network, making them

suitable for surveillance and monitoring; application which also demands longevity of

operation while maintaining a certain degree of quality of service.

Different energy consumption models [16],[17] show that the communication pro-

cess takes much larger power as compared to the processing and sensing units of the

WSNs. In the previous section, an attempt to conserve energy was made on the

sensor node level, which reduces the idle sensing period of the sentry nodes, but the

Tx/Rx, where the maximum energy gets consumed needs to be more efficient. Thus,

efficient transmission schemes can help in operating WCSNs for long durations.

Data loss has been a notorious problem in the wireless domain and it gets ag-

gravated in sensor networks because of the harsh environments and a limited power

source. Excessive losses can result in most of the image being lost, even making a

complete transmission useless. This results in wastage of the already energy con-

strained devices. Forward Error Correction (FEC) and Automatic Repeat Request

(ARQ) schemes are available to combat erasures, but they are complex and with high

packet overheads making them not very energy efficient schemes.

Thus an ideal requirement in WCSNs is a scheme which is loss tolerant and energy

efficient at the same time. CS turns out to be an effective solution to both these
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problems and also suitable for implementation in the sensor networks domain. The

theory of Compressive Sampling enables us to generate samples of a sparse signal

through linear random projections such that the compressed signal is smaller than

the original, reducing the number of packets that need to be transmitted. This signal

can be recovered using the fact that the L1 minimization of a CS signal provides the

sparsest solution. This helps to mitigate the challenge of reducing the transmission

costs and because of the inherent randomness in the sampling stage, random erasures

make little difference to the overall signal statistics making the CS data resilient to

losses.

Thus CS proves to be a valuable asset for WCSNs, but using CS in WCSNs has

some practical difficulties. WCSNs are being developed with prospective applications

in surveillance and monitoring. This requires the cameras to capture images over a

wide field of view, which also requires large images to be processed. It is known that

the recovery algorithms of CS data such as the Basis Pursuit have a complexity of

O(N3), where N is the length of the data. This makes the large images computa-

tionally intensive with long recovery times. These factors hinder the use of CS in

practical applications and hence need to be minimized.

As a part of this thesis a CS based solution to the aforementioned problems of

WCSNs has been proposed and implemented on the Imote2 sensor node. This includes

using CS parameters suitable for sensor node implementation. The implementation

of CS has been validated through extensive testing over an actual sensor node test-

bed. Another important contribution has been in making CS computationally more

feasible, by modifying the basic scheme to block-based schemes and extremely sparse

binary matrix, in order to improve the decrease time and reduce the processor memory

requirements.
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3.2 Theoretical Background

Data sampling has been governed by the Nyquist theorem, which gave a formulation

of sampling a given signal at a rate at least twice its frequency in order to recover

the samples correctly. This conventional belief is a sufficient condition, and not a

necessary onw. This is because, the Nyquist theorem does not consider the properties

of the signals being sampled. There are a certain class of natural signals, which can be

recovered with high probability, from samples obtained at much lesser rate than given

by the Nyquist theorem. Compressed Sampling (aka Compressive Sensing) deals with

this newly developed sampling theory. The theory of Compressed Sampling gives a

detailed mathematical review of the signals on which such type of under-sampling

can be performed, the methods of sampling and their recovery.

Compressed Sampling (CS) derives its name from the fact that even in case of

conventional sampling schemes, the data is first sampled at the Nyquist rate, impor-

tant samples are retained and the less important samples are discarded. This results

in most of the sampling resources going unused. The best example for this is the

JPEG compression scheme. First the image is captured, then it is transformed in

the DCT domain and components are ordered in a descending order. Of these only a

few components are kept while most of them are discarded. Thus, sampling resources

are not efficiently used in the traditional sampling. But, this does not hurt much

for applications like JPEG used in conventional cameras, as the sensors have become

very cheap. But in fields like Infrared imaging, sensor costs are very high and if by

some method the number of sensors required can be reduced, then it can be econom-

ically very beneficial. Another probable application for CS is MRI scanning, where

the time taken by the complete scan is very long. If the time taken for scanning

can be reduced then it will be more convenient for patients and could even help to

serve more patients. Thus, CS can find many other applications where conventional

compression schemes worked.
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The question is how to collect enough data with lesser sensors or in lesser time

than usual. The theory of Compressed Sampling attempts to answer these questions.

The ideology of CS is very simple , Take only what you need. i.e. sampling only those

components that are going to be actually required rather than taking all and then

discarding some. The theory of Compressed Sampling tries to answer questions such

as, the type of signals on which such sampling can be performed ? How to perform

this selective sampling ? How to recover the complete information from the limited

samples etc. In the next two parts, the concepts of CS sampling and recovery have

been discussed in detail.

3.2.1 Sampling

The first question was the type of signals on which CS works. As mentioned earlier

there a certain class of natural signals on which the CS strategy works the best. These

signals are called sparse signals. A signal is called sparse if the most of it components

are zero or of a very small value, which can be approximated to zero. Actually very

few natural signals are sparse in their natural form, but signals do exhibit sparsity

in their transform domains. For example, images are sparse in the DCT or Wavelet

domain, sound signals are known to be sparse in the Fourier domain. Thus, CS works

on sparse signals or signals that can be expressed in a sparse form in some transform

domain. The reason behind this would be clear in the recovery section, but since

sparsity in a transform domain is allowed, most of the signals can be operated under

the purview of CS.

The problem as to how to sample the data such that only the important samples

are picked during sampling appears to be more complicated, because determining

which samples are important even before they are observed seems to be paradoxical.

Using some prior knowledge will not always be possible, as the information to be

captured is mostly random in nature. For example, in an image it is impossible to
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decide before hand which part is important which is not, mainly because for every

image the important part is different and random.

But ironically the solution to this problem has been found to be Random sampling.

Random sampling is a process of generating linear random projections. It can be

given as random selection or random weighting and addition of the signal elements

to generate a set of measurements. This type of sampling ensures a measurement

contains information from multiple signal components, and thus less measurements

inherently carry more signal information, resulting in a Compressed Sample. Random

sampling just ensures that a a set of measurement has information from all parts of

the signal, making each measurement statistically same.

Mathematically, sampling is given by

y = Φx (3.1)

, where x is a sparse signal of length n. y is the set of measurements of length m,

(m << n). Φ is the sampling matrix of size m x n.

The important conditions that need to be satisfied by the sampling matrix is

the Restricted Isometric Property (RIP), which has been discussed in [18]. Different

types of random sampling matrices have been found to satisfy this property and work

well as sampling matrices, like the Gaussian matrix, Vandermonde matrix, Scrambled

Fourier matrix and Binary Sparse matrices.

3.2.2 Recovery

After compressively sampling the data, the question is how to recover the original

signal from the measurements. As can be seen from Eq(3.1), signal xn has to be

recovered from the measurements ym, where m << n. This is an ill-posed problem

resulting in an under-determined linear system with infinitely many solutions. It

is the solution to this problem that has given a huge impetus to the work in CS
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[19],[18],[20],[21]. The solution of the problem states that the l1 -norm minimization

of the Eq(3.1), results in the sparsest solution.

x̂ = argmin ∥ x ∥l1 s.t. y = Φx. (3.2)

As seen in Eq(3.1) and Eq(3.2), the signal x should be sparse and as discussed previ-

ously most natural signals would not be sparse in the original (canonical) basis and

they have to be transformed. Now, when sensing a physical signal, i.e. a process

when it is being acquired, there is no actual signal available that can be transformed,

rather it is being acquired.

It is here that the Basis Pursuit(l1 minimization) provides an advantage. Suppose

the transform domain of sparsity of the signal is known, i.e. x = Ψ ∗ s, where Ψ here

is the matrix corresponding to the ortho-normal basis. Then at the recovery step, the

signal to be recovered can be written as, y = ΦΨs, as shown in Fig(3.1). As stated

earlier, the l1 minimization produces the sparsest solution to the problem, which is

the s . The recovery equation when sampling has been performed in the dense domain

is given by,

ŝ = argmin ∥ s ∥l1 s.t. y = ΦΨs. (3.3)

After finding ŝ, the original signal can be obtained by simply using an inverse trans-

form operator on ŝ, i.e. x̂ = Ψŝ. This gives the freedom of sampling the signal in

its original/dense domain as in Eq(3.1), and still perform successful recovery. It has

been proven that for a sparse enough signal, basis pursuit provides exact recovery

if the measurements are taken in the order of klogn, where k is the sparsity of the

signal.

But there is one important condition that must be satisfied by a pair of sampling

matrix (Φ) and the ortho-normal basis (Ψ). It is called the mutual coherence. It is

a representation of the idea that signals that have a sparse representation in Ψ must

spread out in the domain which they are acquired in. Mutual coherence between Phi
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Figure 3.1: CS sampling process with sampling matrix Φ and Orthonormal matrix Ψ

and Psi ,

µ(Φ,Ψ) =
√
n1≤i≤m,1≤j≤nmax |< Φi,Ψj >|, (3.4)

where Φi’s are rows of Φ and Ψj’s are columns of Ψ. It is the measure of the correlation

between the rows of Φ and the columns of Ψ. The requirement for a good CS recovery

is that the pairs of Φ and Ψ should have a low coherence or high incoherence [21]. The

good thing about random sampling matrices are that most of them are found to be

highly incoherent with most of the standard ortho-normal basis. Mutual coherence

plays a very important role in selecting the CS parameters in this project and it will

be discussed in the later sections.

Basis Pursuit or l1 minimization is the most popular and holistic approaches for

CS recovery as it operates on a wide variety of problems. One of the main drawbacks

of this approach though is, since it is an optimization based approach, it takes a long

recovery time and huge computational resource. Some other less intensive methods

have been developed which are computationally less expensive. Prominent among

them are approximation based approaches, where an iterative approximation based

scheme is used to recover the signal. Popular algorithms in this category include

Matching pursuit based approaches such as Orthogonal Matching Pursuit (OMP)

29



[22] and Compressive Sampling Matching Pursuit (CoSaMP) [23]. Methods such as

Iterative Hard Thresholding have also been known to work for CS recovery [24]. The

limitation of these approximation based methods is that they provide local minimums

as compared to global minimization provided by the optimization approaches, hence

the recovered signal quality may not be as good as compared to the optimization

based approaches.

3.3 CS for WCSNs

After the theoretical background of the CS mechanism it will now be clear that how

CS can be an effective tool in WCSNs.

3.3.1 Channel Erasure

One of the main advantages is that CS makes the data resilient to erasures. When

an image is routed over an ad-hoc network, it is sent in form of packets, where a

specific number of pixels are put into one packet and this packet is transmitted over

a network. However, a transmission process is never perfect and a number of packets

can get lost in the process of transmission. This loss of packets in a communication

channel is called an erasure.

A channel is can be termed as an erasure channel if the a packet is either received

perfectly or lost. Usually a channel is an AWGN channel (Additive White Gaussian

Noise); however if packets with some error are dropped at the receiver, then the

AWGN channel can be modeled as an erasure channel. In the available hardware

platform the radio chip used, CC2420 has a CRC (Cyclic Redundancy Check) field.

If the CRC fails, the packet is marked and the TinyOS module discards that packet.

Thus, even if bit errors are present, the channel gets modeled as a Packet Erasure

Channel.

Analyzing the performance of the WCSN system in presence of erasure is im-

30



portant because the packet delivery performance of the sensor network system is an

important parameter. The delivery performance of WSNs varies with the environment

it operates in. Zhao and Govindan [25] have tried to asses the performance of WSNs

in various operating environments. They have attributed the delivery performance

to different factors in two communication layers, namely the physical layer and the

Medium Access Control (MAC) layer. In the physical layer the delivery performance

is affected by the environmental characteristics such as multi-path propagation and

signal attenuation. Multi-path can be a more prominent factor in a dense environ-

ments and a possibility of a dense surrounding in a WCSN application cannot be

ruled out. The MAC layer deals with the arbitration of the channel for access, thus

the traffic on the channel becomes critical. In case of WCSNs because of the bulky

nature of data, transmission of a single image involves transmission of large number

of packets, which proportionately increases the traffic on the channel and is one of

the main factors which affects the packet delivery performance. The topology or the

spatial relationship between the nodes also affects the number of nodes that might

potentially contend for the channel at a given point of time which in turn affects the

delivery performance of the sensor network.

A poor packet delivery performance in an image can lead to major portions of

image not being received correctly, resulting in loss of information. This problem can

be formulated as a CS problem. Suppose, x of size n (signal) is the image captured

by the camera sensor node that has to be transmitted to the base-station. This signal

is subjected to compressed sampling, i.e. linear random projections of the signal are

obtained using the sampling matrix, to form a set of measurements y of size m ,

which are transmitted over a multi-hop network. Suppose t packets are lost, since it

is an erasure channel, (m-t) packets are received correctly. The problem is to recover

n packets from m-t packets. The only variation of this problem from the original CS

problem eq(3.3 and 3.4) is that the Φ will be different at the transmitter and receiver,
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because of the packet loss. If the packet loss is accounted for while reconstructing the

sampling matrix at the receiver (call it Φ′), then the signal can be recovered using

basis pursuit. Note that Φ′ is a sub-matrix of Φ.

Random sampling plays an important role in making this transmitted data loss

resilient. As describer earlier the packet transmitted consists of CS measurements.

Since each measurement is generated randomly, each packet carries statistically the

same information. This makes the system immune to individual packet loss. Thus,

we can reconstruct the signal as long as we receive enough number of packets, inde-

pendent of which packets have been received.

3.3.2 Energy Efficient Transmission

As discussed earlier, CS provides the ability to recover complete information from far

lesser number of packets than the ones required by a regular image. Continuing the

previous analogy, if an image originally requires n packets and using CS if almost the

same information can be recovered by transmitting only m packets, where m << n,

then there is definite saving in the number of transmissions per image. Power required

for transmission is very high as compared to the power required for processing. Espe-

cially, the Imote2 as seen in chapter 2, is specifically made for low power processing

and equipped with a special co-processor which can compute mathematical instruc-

tions faster. This is better than the traditional error correction schemes, which use

parity bits for error control which is more costlier because of the extra transmissions.

The ARQ schemes where packet is re-transmitted does not work for WSNs at all, as

it consumes even more energy.

Thus, Compressed Sampling is a powerful tool for transmitting images over WC-

SNs as it is a mechanism that ensures resilience to erasure and still proves efficient in

terms of transmission. The challenge that remains is to implement a CS algorithm

on an actual sensor node hardware. There are a number of CS parameters that need
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to be considered for selecting the best approach. The different parameters required

for CS and their selection criteria have been discussed in the following sections.

3.4 Related Work

As mentioned before the inherent randomness and signal compression can solve both

the limited power and data loss problems simultaneously, making CS an ideal choice

for WSNs. Performance of CS for erasure coding has been discussed in [26]. In this

work the authors propose a compressive oversampling approach to compensate for the

expected erasure to maintain a target signal quality. This work has been extended in

[27], where the oversampling is performed for expected loss due to bit-errors too, along

with channel erasure, leading to some improvement in the reconstruction quality. The

premise of this Oversampling approach is that the target signal quality is known. The

problem here is that in a practical WCSN application, determining a target quality is

not possible, because it is a no-reference system. Also, a standard compression ratio

at the transmitter cannot be assumed because through erasure analysis we found that

the number of samples required for a given reconstruction quality varies with the type

of image captured. Thus, the compression at the camera will depend on the image

being captured and hence will vary as per application.

Conventional CS schemes suggest a dense random projection matrix for signal

sampling. However, it was shown later that binary and sparse random matrices

have a good performance as well and are very convenient for implementation. [28]

and [29] have a very good analysis on binary sparse random matrices and discuss

the special properties of binary sparse projection matrices, especially the impact of

the sparsity of the matrix (low column weight in their case), in the reconstruction

as well as the recovery time. The findings in these studies can be related to our

work for theoretical analysis. [30] proposes a block compressed sensing approach for

improving the recovery time and memory storage. The approach in [30] involves
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using a sampling matrix similar to an FIR filter to generate CS measurements from

the traversed portion of the image. For reconstruction, a minimum mean squared

error estimation is used to obtain an initial linear estimation and then use some non-

linear techniques for refinement. Using this approach in sensor networks is difficult

because of the filter type implementation to generate samples, which increases the

computation time and cost. Moreover, the performance of the linear estimation in

presence of erasures is not known.

As a part of this thesis, solutions to aforementioned problems have been provided

along with a CS framework that is suitable for implementation on an actual embedded

sensor node. To the best of our knowledge, this work is unique in providing such a

framework supported by an implementation on a real sensor node platform.

3.5 Selecting Appropriate CS Parameters

3.5.1 Measurement matrix (Φ)

From the theoretical background it is understood that the Measurement matrix or

Sampling matrix is a matrix used for taking random linear projections of the original

signal (hence also known as a projection matrix). The main independent condition

that a measurement matrix needs to satisfy is the Restricted Isometric Property

(RIP)[18]. There are a number of matrices which satisfy this property, some which are

dense matrices such as the Gaussian Random matrices, constructed by selecting i.i.d

random variables from a Gaussian distribution. Same is the case with the Bernoulli

matrix. These matrices have a very good performance but they are costlier to work

with on a resource constraint embedded processor. Hence, another class of matrices

called Sparse Binary matrices are used.

A very thorough analysis about binary sparse matrices was done by Berinde et

al [28], where they found the performance of sparse binary matrices comparable to

Dense matrices. It was shown that such matrices satisfy a weaker form of the RIP
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property called the RIP-p property, where the l2 norm is replaced by the lp norm for

p ≈ 1. It was found that binary and sparse matrices provide advantage in terms

of efficient update and encoding times, which also speeds-up the decoding. These

matrices have recovery errors comparable to that of dense matrices but in much less

recovery time.

The compression process of binary matrices comprises of random selection and

addition of variables, hence they are easy and fast to compute.
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Figure 3.2: Sparse matrix representation of a bipartite graph

The operation of CS sampling using a binary and sparse matrix can be represented

as a bipartite graph as shown in Fig.(3.2). It shows the operation of the matrix in

the random selection and addition form. The signal co-efficients correspond to the

columns of Φ and the measurements correspond to the rows of Φ. The number

of signal elements combined to form one measurement is equal to the row/column

weight of the sampling matrix, which is indicated by the edges between the signal

and measurements. In this implementation a Constant Row Binary Matrix has been

used.

There is a specific reason behind using a constant row matrix . For CS sampling

implementation, as will be explained in the later section, signal elements are selected

randomly and sequentially. Hence, having a constant row weight matrix ensures
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that each selection is made independently, since for each measurement generation

there is only a constraint on the number of signal elements selected. This is not

the case with a Constant Column matrix, where there is a constraint on the number

of times each signal element can be chosen, making the current selection dependent

on the previous. This can especially be a problem in case of an erasure channel

operation, where because of the mutual dependence, an erasure can result in a wrong

reconstruction of the Φ′ matrix. Again, it is important to note that the dependence

in selection arises because of the sequential selection procedure of the pseudo random

generator.

3.5.2 Orthonormal Matrix (Ψ)

As mentioned earlier, the signal can be compressed in its dense domain, just that the

domain of sparse transformation should be known at the receiver. But from Eq.(3.3)

we can see that the ortho-normal (transform) basis needs to be available in its matrix

form during the recovery. The problem with this additional constraint is that, even

though higher dimensional wavelet transforms provide higher degree of sparsification

of images, they are not available in a matrix form and hence cannot be used. The

basis that can be represented in a matrix form are the 1D Haar, Discreet Cosine

Transform (DCT) and Discreet Fourier Transform (DFT). Note that this constraint

is there only because we are sampling in the dense domain. If the signal would have

been first sparsified, then this constraint wouldn’t have appeared.

Another property that was discussed previously was the Mutual Coherence. As

explained before it is a property shared by a pair of orthonormal matrix and measure-

ment matrix. Thus, while selecting an orthonormal matrix, it is pertinent that the

use of a Binary Sparse matrix as a measurement matrix is taken into consideration

and they should have a low mutual coherence. The Binary Sparse matrix is highly

coherent with the 1D Haar matrix hence even though an image has a better sparse
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representation the Haar wavelet cannot be used. Between DCT and DFT the DCT

performs better than DFT because of the better energy compaction. Hence, the DCT

matrix is used as the ortho-normal basis.

Mutual Coherence also helps in setting up another parameter, the Row Weight

of the sparse matrix. As seen earlier the row weight will determine how many pixels

are combined together to generate one sample. Intuitively, it seems like a higher row

weight will ensure more original signal elements being combined and hence a better

result; but this is not entirely correct. The results with a higher row weight are better,

but as the row weight increases, so does the coherence between the DCT and Sparse

sampling matrix as shown in Fig.(3.3). Because of these two opposing effects, the
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Mutual Coherence as a function of Row weight for a pair of Binary Sparse and DCT matrix

Figure 3.3: Mutual coherence vs row weight of the measurement matrix

increase in quality with row weight is not significant.

3.5.3 Sampling Strategy

As shown in the Fig.(3.2), sampling in case of a sparse binary matrix is performed

by random selection and addition of the signal elements. The range over which the

selection is made, determines the number of columns of the Φ matrix, which is also

equal to the size of the Ψ matrix. From Eq.(3.3) it is clear that Ψ is required in its
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matrix form for exact recovery of the original signal. The Ψ being used here is a 1D

DCT matrix. Suppose an image has a width of w and height h. The DCT matrix

Ψ will be of size w ∗ h × w ∗ h. In a double precision format, this matrix requires

w2 ∗ h2 ∗ 8 bits of memory storage. For a QVGA (320x340) size image, the amount

of Random Access Memory (RAM) storage would be around 6 Gigabytes, which is a

huge requirement as compared to the amount of RAM available in regular computers.

This too is only for a QVGA size image, which is the smallest of the standard image

sizes used.

The recovery time of the basis pursuit problem holds a non-linear relationship

with the vector size it is operating on. It is of the order of O(N3). As a result if

large vector as big as a QVGA image is used, then it may take over 2-3 hours just to

process one image.

Thus, the memory requirement and the recovery time are problems which make CS

incompetent for practical implementation. Using a 2D DCT can alleviate the problem

by some measure, but it puts a constraint of using square images for processing, which

may not be always available.

A practical solution to this problem is a subtle change in the sampling strategy. A

block-wise sampling scheme may solve both the aforementioned problems. The idea

is to take independent measurements from each block, thus effectively reducing the

vector size upon which the l1 minimization operates on. As the effective length of

the vector reduces, the problems of both memory and recovery time are solved. This

also helps to make the mechanism independent of the image size. It is also know

that the quality of reconstruction depends on the length of the vector, the larger the

vector, better the quality [30]. Hence, there is a trade-off between the image quality

and the recovery time. The optimum size can be found through experimentation, as

it depends on the application; if an application requires a higher image quality with

less constraints on time, then a longer vector can be used and vice-versa.
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3.5.4 Implementation of CS for WCSNs

On the camera senor node (transmitter)

The previously explained compressed sampling strategy is implemented on an Imote2

sensor node coupled with an IMB400 multimedia sensor board, which bears the cam-

era. The image used is gray-scale, hence a uint8 (8 bit) data type is sufficient to store

a single pixel.Each packet of image data comprises of a header field and a 64 byte (64

pixel) payload.
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Fixed start bit sequence 
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Figure 3.4: Sparse matrix representation of a bipartite graph

As discussed earlier, the sampling process in CS is of generating linear random

projections of the original signal data. Since, a binary random matrix is used in

this case, it basically has two operations; first is random selection of pixels and

second adding together the selected pixels. Random selection is the more complex

and important step.

A pseudo random generator (PRG) based on a multiplicative congruential genera-

tion (MCG) mechanism [31] is implemented on the sensor node. The default generator

was not used because the default generator in TinyOS and the one in MATLAB may

not be the same. Since, it is extremely critical to get exactly the same random se-

quence on the receiver side in order to get the CS reconstruction, a self -defined pseudo

random generator is used. An MCG based mechanism was preferred because it is very

simple to implement, which makes it suitable for implementation on a embedded plat-
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form , but still giving a very good random generation. The implementation of the

MCG used is given by ,

si = asi−1 mod d,

offset = simodimagesize (3.5)

The PRG shown in Eq.(3.5) generates random numbers sequentially, i.e. in each

step it generates one random number. It is a two step generation process, where a is a

multiplier and d is a non-zero modulus. The values of a and d used in the code are 125

and 2796203 respectively. The question is how to use the random generator output

to get a sample (here an image pixel). On the camera sensor, the only information

available about the image is the starting address in the buffer where the image is

stored. As shown in the equation, in the second step of the generator, an offset

is generated. The range of this offset value is restricted by the maximum selection

range (here the image size). This generated offset is added to the start-address of the

image. The resulting address is the location of any random pixel of the image. The

pixel at this location is selected and added to the measurement packet. The random

selections are added to the same measurement packet until it reaches the row-weight.

It is extremely essential to have an ability generate exactly the same random

combinations, since the same sampling matrix should be used for sampling and re-

construction Eq.(3.2)and(3.3). To ensure that this is possible the first step is, as

explained earlier, to use a self-defined PRG both at the transmitter and the receiver.

The second step taken is that the PRG is to initialize the generation sequence by the

same seed value. To ensure uniqueness in the seed values and reduce an extra payload

value, the packet numbers are used as seed values.

The exact reason for using the packet numbers will be clear in the next section.

At the transmitter, the measurements are generated as described before. Each mea-

surement packet is then packetized and transmitted over the network. Note, that the

40



packet is the unit entity of communication, so in case if the data is lost in channel

erasure, then a packet will be lost.

At the base-station

At the base-station the original signal is to be recovered from a set of CS measure-

ments. In order to do that the information needed is, from Eq. (3.3), the measure-

ments, the Ψ matrix and the Φ matrix, which conveys the correct random combination

information of the received measurements. As mentioned previously, the same PRG

is required to get the same set of random combinations, hence the same PRG is

implemented in MATLAB as the one in NesC.

To get the correct combinations, packet numbers are used as seeds. Thus each

packet is initialized with a known and new seed . This is done because due to the

erasure channel, packets may get lost during transmission and if each packet carries its

own seed, it basically carries the combination information about its measurements.

Thus a matrix can be constructed as per the received seeds and in case of losses,

may be different from the original sampling matrix. Hence, this matrix is called the

sampling reconstruction matrix (Φ).

The matrix is constructed using the fact that each measurement received cor-

responds to a row and each randomly generated number corresponds to a column.

Thus, for every packet received, a 1 is put in the column location generated by the

PRG. The total number of rows of the matrix will be equal to the number of packets

received (m′), making the matrix of size m′ × n. With the sampling matrix con-

structed and knowing the orthonormal matrix, the original signal can be recovered

using l1 minimization as long as m′ is large enough.
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Block-wise sampling scheme

The sampling process has to be modified on the transmitter in order to perform a

block-wise sampling. The only information available about the image array is the

starting address where the image is stored. The task is to take CS measurements

independently from each block. Segmenting the image vector into an actual block-

wise structure would be cumbersome and the process will have a high latency. A faster

and simpler way is to modify the random selection Eq.(3.5). If the selection range is

changed from the image size to block size and the addressing done with respect to

the block starting address then an efficient block-wise sampling can be performed. It

can be given by Eq.(3.6) and shown in Fig.(3.5)

si = asi−1 mod d,

offset= si mod blocksize,

offset = offset+ blockoffset (3.6)

 

Image vector size of n 

Block 1, Offset=0 Block 2, Offset=blocksize Block 3, Offset=blocksize * 2

m measurements 

Figure 3.5: Schematic for block-sampling

This procedure ensures that only one block is sampled at a time, keeping the

measurements from each block independent. The block-offset is incremented by an

amount equal to the block size after measurements from one block are taken. This

method provides an efficient, low latency mechanism for block-wise sampling by virtue

of simple additive computations.
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This process can be best explained through the part of the code where this opera-

tion in performed, which is the task that performs random sampling called randsam-

ple. The process starts with picking a certain packet id, a. In regular transmission,

data stored in the memory is packetized sequentially, hence a or the part id incre-

ments sequentially. For random sampling this a, is generated randomly, as shown in

Lis.(3.1), lines 16 and 17. This is the implementation of the MCG pseudo-random

generator discussed earlier. This results in a randomly generated buffer offset, shown

on line 10. The memcpy copies the data pointed by the buffer offset to the buffer. The

first if loop generates random samples for one complete 64 byte payload packet. The

else statement keeps a check on the block that is being processed. When a complete

block is sampled, the block-offset is incremented, resulting in the selection been done

from the next block, as shown on line 28.

1

2 task void randsample ( )
3 {
4 b igmsg f rame par t t ∗msgData =
5 ( b igmsg f rame part t ∗)
6 c a l l FrameSend . getPayload(&tx msg , s izeof ( b igmsg f rame par t t ) ) ;
7 u in t 32 t b u f o f f s e t ;
8

9 msgData−>pa r t i d = a ;
10 b u f o f f s e t = a+b l o c k o f f s e t ;
11

12 memcpy(msgData−>buf ,&( bu f f e r [ b u f o f f s e t ] ) , l en ) ;
13 i f ( i <64)
14 {
15 ar r [ i ]= msgData−>buf [ 0 ] ;
16 s=(s ∗ 125)%2796203;
17 a=(s % b lk s z )+ 1 ;
18 i++;
19 post randsample ( ) ;
20 c a l l Leds . l ed1Toggle ( ) ;
21 }
22 else
23 {
24 i f ( b lkc t r<blkpkt ) // No. o f packe t s per b l o c k
25 b l k c t r++;
26 else
27 {
28 b l o c k o f f s e t =( b l o c k o f f s e t+b lk s z ) ;
29 b l k c t r =1;
30 }
31 post send ( ) ;
32 }
33 }
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Listing 3.1: CS implementation

3.6 Experimentation and Analysis

As mentioned earlier, the sampling part has been implemented on an Imote2 sen-

sor node. The first and second part of the experimentation analyze the sampling

parameters that affect CS recovery quality and recovery time, done to validate the

modifications made in standard CS sampling methodology through comparisons be-

tween reconstruction quality and time. The third part of the experiment has been

conducted to observe the performance of CS recovery in presence of packet erasures.

In the last part, the transmission efficiency of CS has been analyzed in terms of the

number of bits transmitted and also in terms of the increase in number of days of

lifetime.

We consider a multi-hop network that transmits data to the base-station. The

received data is read into MATLAB using its serial reader interface. The received

packet consists of a header and a payload. In this application, the header carries the

important information, that of the packet number. As mentioned earlier, the packet

number is used as the seed for reconstructing the sampling matrix at the receiver.

The payload contains the CS measurements from which the signal is recovered using

the Basis Pursuit. It is implemented in MATLAB 7.1(R2010a) on an Intel Xeon

3GHz processor. The SPGl1 package is used for l1-norm minimization.

Another important part in the analysis is assessing the quality of reconstruction of

the images. There are two general approaches in Image Quality Assessment (IMQ),

reference based and non-reference based. In a reference based approach a reference

image is available for comparison, while in case of no-reference the quality of the

image is determined through its statistical properties. For the proposed application

of WCSNs for surveillance and monitoring, ideally a no-reference system is required
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Figure 3.6: Experimental Setup

since in practical situations it is not possible to have reference images. But the

research in no-reference IMQ is in a nascent stage and there is no standard and

reliable technique available that can be used. Hence, reference based system has been

opted for, which finds a great deal of research and many very good methods available

for analysis. The Structural Similarity Index (SSIM) is a widely used reference based

image quality assessment technique [32] , has been used in this work. To obtain a

reference image, we first take an uncompressed no loss snapshot of the object under

consideration. All the future reconstructed images are compared against this reference

image.

3.6.1 Block size vs Quality and Recovery Time

The first experiment is designed to test the effect of the block size on the quality

of reconstruction and recovery time. As mentioned earlier block-wise sampling was

opted primarily because of the massive memory required to store the ortho-normal

matrix for recovering large images. Also the fact that l1 minimization holds a non-

linear relationship with the length of the processed vector gives a much less recovery

time for smaller blocks . The trade-off here is that a longer block gives better quality

of reconstruction. Also shown is the effect of row-weight to show the significant

reduction in recovery time for a low row weight and small block size .
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The experiment has been performed on a 128x128 Lenna image, since this is the

largest size of single image that could be computed without block-sampling, as more

memory was required to store the large Ortho-normal matrix.

Table 3.1: Performance vs variable block size and row weight

No.of blocks SSIM SSIM Time(s) Time(s)

Rwt 10 Rwt 1 Rwt 10 Rwt 1

1 0.9221 0.9203 1600 625

2 0.9215 0.9168 1514 236

4 0.9234 0.9149 974 181

8 0.9164 0.9100 228 68

16 0.9168 0.9004 78 30

The number of samples taken are 50 percent of the original image. Through these

results as shown in Table(3.1) it can be seen that the block size has a huge impact on

the recovery time, due to the non-linear relationship. Similarly, the row weight is also

a major factor in the recovery time. The important thing here is that the difference

in quality between the best case result (block size 1, row weight 10) and the worst

case (block size 16, row weight 1) is tolerable, but with significant gain in time.

The image results are shown in Fig.(3.7). It can be seen that, as the block size

decreases the visual quality of the image deteriorates, so is the case with the row

weight too. In the image with large row weight and large block size, the quality

is good. In terms of information, many of the image details are retained, even in

case of 50 percent compression. While in the image with the lowest row-weight and

block size, the quality is not that good, but information wise, the image can still be

identified as Lenna, with all the global features retained. It is the finer details that

are lost. But, as discussed earlier and seen in the results table, the gain in recovery
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Figure 3.7: Reconstruction results for variable block-size

time is very very high.

A similar observation can be made on actual images captured using a camera

sensor with variable row weigh 3.8. The image has testing parameters of, image size

n=76800, measurements m= 53760, row-weight l=1. As seen in the image results,

there is a small but gradual reduction in quality with decrease in block size. But,
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Figure 3.8: Camera sensor image results for variable block-size

the important requirement, especially for applications in surveillance is the retention

of the information content of the image. For the images with lower block sizes, even

though the quality, the loss in information has been in the minute details, i.e. the

smaller features in the image, but the global features have been retained to high
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extent. Thus, block processing results only in decrease of very minute features, which

for most applications may not be even required. But the biggest gain here is the

reduction in recovery time. A reduction from 97 minutes to 2.5 minutes with nearly

the same quality image is a very significant difference. This reduction in time actually

brings CS in the realm of practical applications.

The last image has a significant quality loss, but a recovery time less than a minute.

This shows that, it is possible to bring CS recovery to real-time requirements, with

a sufficiently good quality of reconstruction. With some more better modifications it

might be possible to get a better quality of reconstruction too.

Thus, depending on application and requirement these parameters can be selected.

Applications requiring finer details can opt for longer blocks and higher row-weights,

while with applications which require a general, global information about the observed

scenes can opt for the faster combinations.

3.6.2 Reconstruction performance with variable row weight on real image

As discussed earlier, the row weight of the sampling matrix determines the degree

of coherence it shares with the ortho-normal DCT matrix. From Fig.(3.3), it is seen

that the coherence increases with increase in row-weight, which is undesirable. But,

a row-weight basically signifies how many signal elements are being combined to

generate one measurement and a higher row weight ensures more signal information

per measurement.

The results of increasing row weight can also be seen for the images obtained from

the sensor cameras. The reference image is shown in Fig.(3.9). Since the object is

close to the camera, the image is dense, with a number of details being captured.

The quality of the reconstructed image can be observed from the number of details

preserved.

The original size of these images is 320x240(QVGA), hence the length of the
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Figure 3.9: Reconstruction performance with variable row weights

image vector is 76800 pixels. These images have been taken at 70 percent (53760)

measurements of the total image size, with a block size of 7680 pixels per block.

As seen in the reconstruction performance, Fig.(3.9), there is almost no perceptive

difference between the images. Their SSIM values are 0.9512, 0.9396 and 0.9239 and

the time taken in minutes is 145.9, 88.2 and 27.6 for row weights 5,2 and 1 respectively.

From these results it is clear that with row weight, the quality does not improve much

but there is significant gain in time. This makes a very sparse binary matrix (row

weight=1) a very useful proposition. This improvement in the recovery time due

to the decrease in row weight can be attributed to the fact that, since lesser signal

elements are combined, the optimization takes lesser combinations of values, hence

speeding up the process.
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3.6.3 System performance in case of erasures

In this experiment we test the loss resilience of the sensor network system. For this

we use one camera sensor taking snapshot data. It passes this data through a series

of intermediate nodes to the base-station. The packets are routed using a simple

address based scheme. The intermediate nodes act as transceivers, the variation

in packet erasure was obtained by changing the number of hops and the distance

between the nodes, keeping the transmission power constant. The degree of erasure

is measured by the difference between the number of transmitted packets and the

number of received packets.

Considering an image as a source of information , the experiment has been per-

formed on two types of images, one image is a close-up snapshot of an object, termed

as a spatially dense image Fig.(3.11) and another image is one capturing a wider area,

referred as spatially sparse Fig.(3.12).

The close-up or dense image contains a number of observable and detailed features,

and the quality is determined by ability of the image to convey the information about

these minute features and conversely , the image quality will degrade as the visibility

of these minute features reduces. On the other hand, for the wide area sparse image, it

is the overall content of the scene that serves as information. Thus, the nature of the

image captured needs to be considered while analyzing the results. The idea of image

being used as a source of information is more clear from the images in Fig.(3.10).

This is the sparse image used. As mentioned earlier the information needed from this

image is the overall scene content, i.e. the number of object, their relative location,

etc. Now, because of the packet erasures, about 30 percent packet loss has occurred.

Even that has altered basic information such as the number of the objects. For

example, there are two small objects besides the computer monitor, but because of

the losses, one of them is barely visible and it might result in a false object count for

the image. In case of CS even if the visual quality degrades, the information retention

51



is more important.

 

Figure 3.10: Erasure performance without compressed sampling

The image reconstruction results can be seen in Figures (3.11) and (3.12). These

images have been taken at initial compression of 70 percent, so the received data will

be much less than that. The important observations is the graceful degradation of

the image quality because of CS. It can be seen that the image quality degrades very

little for high degree of losses, for example,the effective percentage data received for

60 percent erasure, will be around 28 percent of the image size. Considering that

such small amount of data is received the reconstruction quality is good, especially

as compared to the degradation observed for the uncompressed image Fig. (3.10).

The role of the image type can be observed through the two image result sets

and also through the erasure analysis plot shown in Fig.(3.13). For small degree of

erasure, as compared to the sparse image, the dense image has a better quality and

conveys decent information about the small observable features, hence its SSIM val-

ues are slightly better than the sparse image. But as the degree of erasure increases,

the difference reduces and for higher degree of erasure (greater than 60 percent), the

sparse image has a better SSIM index. This as discussed before, is because of the

information conveyed. As the erasure increases, a denser image even though quali-

tatively looks better than the sparse image, it conveys lesser degree of information

52



  

 

 

 

 

 

  

 

 

 

 

 

 

 

  

Original Reference Image 

10 % Loss 20 % Loss 30 % Loss 

40 % Loss 50 % Loss 60 % Loss 

�(���������	
) = 0.7 ∗ � 

��(�	�	��	
) = (% ����) ∗ � 

Image transmitted at 30 percent 

compression i.e. only 70 percent 

of the original numbers of bits are 

transmitted. 

 

Figure 3.11: Erasure performance for dense image

as compared to the sparse image. Hence, factors such as initial compression, erasure

tolerance will depend on the type of scene (which in turn decides type of image being

captured) being monitored. Thus, the performance of the system depends on the

type of images being captured.
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Figure 3.12: Erasure performance for sparse image

3.6.4 Energy saved using CS

We call CS an energy-efficient mechanism. In Imote2 if we transmit at -10dBm power

level at which then energy/bit for transmission is approximately 134nJ/b [33].

One image packet comprises of a 64 byte payload and a 13 byte header. Thus each

packet is of 77 bytes. A regular QVGA image takes 1200 packets for transmission.

Thus, the total number of bytes transmitted are 1200∗77 = 92400. With 134 nJ/b the

transmission energy for one complete image will be 92400∗8∗134 = 99mJ ≈ 100mJ .

At 70 percent compression, only 840 packets need to be transmitted. Therefore

energy required will be, 840 ∗ 77 ∗ 8 ∗ 134 = 69.3mJ ≈ 70mJ . Thus, using CS saves
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Figure 3.13: Performance of CS for increasing erasure

an average 30 mJ per transmission per node.

Extra energy might be expended in the increase in processing because of CS.

The Imote2 has a DSP co-processor along with main processor, making it difficult

to calculate the consumption per instruction cycle. But the instruction overhead

imposed by the multiplicative congruential generator used for CS includes two extra

modulus operations, two additions and 1 multiplication. The processors used are

known for very low power operation hence these additional instructions should not

consume much and a sizable energy conservation should be expected over a large

network.

The number of days the lifetime increases because of efficient transmission are

about 1.5-2 days, considering an event arrival rate of 20 events per day. This is

clearly not a big increase. But, as discussed earlier the transmission consumption

depends on the data size, and for higher resolution images, a better improvement
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Figure 3.14: Lifetime for variable compression

can be observed, as shown in Fig.(3.14).A VGA image shows a steeper gradient,

which means that the effect of CS will be felt more on a VGA image in terms of

the lifetime. This proves the effectiveness of CS as mechanism for prolonging camera

sensor lifetime.
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CHAPTER 4

CONCLUSIONS

In this thesis, an energy efficient and loss resilient mechanism for operating wireless

camera sensor networks has been proposed. A framework has been proposed to save

up precious energy spent in idle sensing and transmission. The propositions have

been supported by implementations on an actual sensor node platform. Considering

that these devices may find their biggest application in surveillance and monitoring

their operational surroundings have been assumed to be hard-to-reach areas and the

assumptions about their working have been made accordingly.

In the first part of the thesis, the energy spent is idle-sensing is saved through the

use of an event-driven sleep wake-up mechanism. There are basically two standard

modes of operation in sensor networks, schedule-driven and event-driven. Both the

modes find useful applications in their own capacity based on their working char-

acteristics. For the application of camera sensors in surveillance, the event-driven

mechanism turns out to be a better choice. In this part, an event-driven mecha-

nism has been implemented on an actual wireless camera sensor node hardware, the

Imote2. The hardware and software have special properties which, if appropriately

harnessed, can be used to implement an efficient event-based wake-up scheme. These

properties and the best ways to use them have been discussed. Finally, the signifi-

cance of this mechanism on the life-time of a sensor node has been discussed through

a lifetime analysis, where the consumption characteristics of the Imote2 have been

used to determine its probable lifetime. Thus, in this part the relevance, implementa-

tion and analysis of an event-driven sleep wake-up mechanism for a wireless camera
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sensor node has been discussed.

The second part is the more prominent part of this thesis, where conservation has

been attempted through efficient transmission. The new technique of data sampling,

Compressed Sampling, has been used for this purpose. Compressed sampling also pro-

vides an added advantage of making the transmitted data resilient to losses, which

is one of the biggest problems in ad-hoc networks. This too has been implemented

on the Imote2. The traditional compressed sampling approach is not ideal for oper-

ating on sensor nodes and also not practical it terms of operation. In this thesis we

suggest a framework suitable for implementation of camera sensors and also suggest

modification in the traditional approach to improve the performance. Through the

results, the effectiveness of compressed sampling for loss resilience can be seen. The

other results show the improvements achieved through our proposed modifications.

Finally, the energy saved per transmission is also provided.

Through this thesis we suggest schemes which can help to alleviate problems that

might be faced by wireless camera sensor networks in the actual environment. Even

though it may not solve all the problems, our work tries to improve some relevant

ones. There is ample scope of extending this work, by still improving upon the param-

eters discussed. The block-wise sampling proposed opens the probability of parallel

computing, which can further improve the results. Considering that parallel com-

puting has lot of active research, our propositions can be tested for their optimum

capabilities. Unequal compressive sampling strategies can be implemented to give

prominence to target objects over the background. This will require practical mech-

anisms suitable for implementation on sensor hardware, but can definitely improve

the results. Using a no-reference image quality analysis on the sensor node to judge

the received signal quality in order to influence the future results through a feed-back

centric mechanism can also improve the quality of results obtained.

This thesis can serve as a good platform for future research on wireless camera
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sensor networks, especially in terms of implementing compressed sampling on it and

testing better ways on improving their quality of service.
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