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CHAPTER 1

Introduction

This thesis examines the problem of target detection and tracking in infrared (IR) image

sequences. IR radiation lies in between the visible spectrum and the microwave spectrum.

These radiations are characteristic of hot objects. All hot objects emit energy in the form

of IR radiation. With the advent of sensors which can detect these radiations even from far

away objects, this technique of IR imaging has become quite popular. IR imaging is possi-

ble irrespective of light conditions, as the principle of imaging is not based on visible light.

IR imaging is a interesting technique in the sense that it is a passive imaging technique,

passive implies that no energy is sent out from the camera but imaging is completely based

on the infrared radiation from the object of interest (target). These properties of IR make it

suitable for a number of applications such as in night vision, target tracking, fire fighting,

medical diagnosis and the likewise.

The idea of not sending out a detecting signal (as in radar, sonar etc), but to use the

energy of the target itself as signal makes infrared imaging very attractive to the military

Figure 1.1: Electromagnetic (EM) spectrum
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and a number of systems have been developed for target detection and tracking using in-

formation from the IR band of the EM spectrum. The thermal signatures of a number of

military vehicles is shown in Fig. 1.2

Figure 1.2: Thermal signatures of military vehicles

The infrared camera system used to capture the background information in our simula-

tions is the Electrophysics PV320L2Z.An image of the camera is shown in Fig. 1.3

Figure 1.3: PV320 Infra red camera

In contrast to optical images, sequences obtained from an IR sensor have heavy clutter

associated with them due to spurious heat reflectors in the scene, thus resulting in very poor

Signal-to-Noise Ratio (SNR). The noise in infra-red images also has very strong correlation

and cannot be considered as white noise or as simple gaussian noise. Some of the real world

data acquired through the PV320 camera is shown in Fig. 1.4.
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Figure 1.4: Long wave and mid wave band images of the same target

Intuitively one can infer from the images in Fig. 1.4 that the major problems in target

tracking in infrared images will be poor target visibility resulting in a very low SNR, spu-

rious heat emitters in the same scene of the target and in addition the non linear motion of

the target and time varying aspects of the target. All these factors make target tracking in

IR images more challenging and demands more research into the area.

1.1 Motivation

Traditional approaches found in literature [1] are based on the separation of detection and

tracking problem. Most commonly the state space approach is used to track the target. The

unknown state of a target estimated usually consisted of a set of kinematics components

such as position, velocity or acceleration. Also these methods frequently do not use the

raw sensor data but preprocessed outputs of preliminary detection systems.

Another traditional method is to use Kalman Filtering. The posterior distribution of the

state of the target, which includes its position and velocity, is estimated recursively in time

given the state transition and the measurement. Still it is inadequate in many cases because

it is based on Gaussian densities which, being unimodal, cannot represent simultaneous

alternative hypotheses [2].

Some recent approaches [3] have combined the detection and tracking into one frame-

work by the use of particle filters, and have also use the raw data from the sensor itself.
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The particle filtering method has been shown to out perform the Kalman-Bucy filtering ap-

proach. Particle Filters (PF) is a probability propagation model in signal processing which

is effective for solving tracking problems, mainly as a result of the exponential growth of

processor speed and memory capacity [4]. Tracking is modelled as a hidden state-space

time series estimation problem in the Bayesian framework, which is solved using the se-

quential Monte Carlo (MC) estimation methods [5].

Previous researches on target detection/tracking with PF mostly deal with target having

constant shape and intensity. Some works on multi-aspect target tracking assume that the

target aspect state is defined on a finite, discrete-valued set [3]. Each index in this set is

a pointer to one possible template model in the target aspect library, which is included as

an additional variable in the state vector. In this case, the template library should include

targets with all of the possible appearances resulting from rotation of its base template or

zoom in/out effect of the camera. Moreover, the matrix of transition probabilities of the

discrete-valued aspect cannot model a continuous aspect transition.

1.2 Contribution

We propose a new algorithm to overcome the limitations of the conventional multi-aspect

target tracking methods using particle filters, in which the target aspect is modelled using

a affine transformation model. The shape of the template at each time instant can be fully

described by several affine parameters, which are augmented along with the position and

velocity as new state variables. These parameters help us to simulate different target sig-

natures without actually having to store all possible signatures of the target. With the new

augmented state space, the algorithm can not only track the target but can also estimate its

aspect, which can be valuable information in the task of target recognition.
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1.3 Outline

This thesis is divided into five chapters. The first chapter consists of this introduction

and it highlights the motivations and contributions of this work. Chapter two describes

the state space model and state estimation methods, with special attention to the theory of

particle filtering and its variations. Chapter three presents the problem of target tracking

using particle filters, and our state space model. In particular it describes the system and

observation model and the implementation of the target tacking algorithm. In chapter four

we discuss the problem of multi aspect target tracking, herein we define the various affine

parameters which we will use in our model. The chapter continues to contain simulation

results and some discussion about the results. Finally chapter 5 contains the conclusions

and ideas for further work along the same lines.
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CHAPTER 2

State space model and state estimation

The tracking problem has always been dealt with in a state space form so in this chapter we

will cover the underlying theory of state space estimation, conventional methods used for

state estimation and the theory of particle filters for state estimation.

2.1 Introduction

Many problems require the estimation of the state of a system, which changes over time,

using a sequence of noisy measurements made from the system. These measurements are

related to the current state of the system. In this thesis our focus will be on discrete-time

formulation of the problem and we will use difference equations to model the evolution of

the system with time, and the measurements are also assumed to be available at discrete

times.

The state-space approach relies on the state vector of a system. The state vector contains

all the information required to describe the system or process investigation. For example,

in the tracking problem, this information is often related to the kinematic characteristics

of the target, including position, velocity and acceleration of the target as state vectors.

The measurement vector represents (noisy) observations that are related to the state vec-

tor. The state space approach makes it very convenient to handle multivariate data and

nonlinear/non-Gaussian processes

For us to analyze and make inference about a dynamic system we need at least two

models: First, a model which describes the evolution of the system state with time (the

system model) and, second, a model which relates the noisy measurements to the state (the
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measurement model). We will assume that these models are available in their probabilistic

form as the probabilistic state-space formulation and the requirement for the updating of

information on receipt of new measurements are ideally suited for the Bayesian approach.

This provides a rigorous general framework for state estimation problems.

In the Bayesian approach to state estimation, we attempt to construct the posterior

probability density function (pdf) of the system state based on all available information,

including the set of received measurements. Since this pdf contains all available statistical

information about the state, it can be considered as the complete solution to the estimation

problem. In principle we can obtain an optimal (with respect to any criterion) estimate of

the state from the pdf. A measure of how accurate our estimate is may also be obtained

from the pdf.

In some problems it may be possible to collect the observations over a period of time

and then do a batch processing on the data for state estimation, but many real time systems

require the data be processed in real time therefore an estimate is required every time a

measurement is received. In this case, a recursive filter is a convenient solution. A recur-

sive filtering approach implies that received observations can be processed sequentially as

and when they are received rather than as a batch so that it is neither necessary to store the

complete set of observations nor to reprocess existing data if a new measurement becomes

available. Such a filter usually encompasses two stages: prediction and update. The pre-

diction stage uses the system model to predict the state pdf forward from one measurement

time to the next. Since the state is usually subject to unknown disturbances (modelled as

random noise), the prediction step generally translates and deforms the state pdf. The up-

date operation uses the latest measurement to modify the predicted pdf. This is achieved

using Bayes theorem, which is the mechanism for updating knowledge about the system

state knowing the extra information from new observation data.

In the following sections we will discuss the nonlinear tracking problem and its optimal

Bayesian solution. When some conditions hold, this optimal solution becomes tractable
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and can be computed using methods like Kalman filter and grid-based filter.

Often, the optimal solution is intractable because the constraints imposed by the above

methods are not met. To solve these problems we have methods which provide several

different approximation strategies to the optimal solution. These approaches include the

extended Kalman filter, approximate grid-based filters, and particle filters.

2.2 Bayesian approach

Consider the state sequence {xk, k ε N} of a target to evolve according to

xk = fk(xk−1, vk−1) (2.1)

where fk : <nx ×<nv → <nx is a nonlinear function of the states xk−1, {vk−1, k ε N}

is an i.i.d. process noise sequence,nx, nv are dimensions of the state and process noise

vectors, respectively and N is the set of natural numbers.

The objective of target tracking is to recursively estimate xk from measurements

zk = hk(xk, nk) (2.2)

where hk : <nx ×<nn → <nz is a possibly nonlinear function,{nk, k ε N} is an i.i.d. mea-

surement noise sequence,nz and nn are dimensions of the measurement and measurement

noise vectors, respectively. In particular, we try to find estimates of xk based on the set of

all available measurements, z1:k = {zi, i = 1, ..., k} up to time k.

From a Bayesian perspective, the tracking problem is to recursively estimate the state xk

at time k, given the observation data z1:k up to time k. Therefore it is required to construct

the pdf p(xk | z1:k). It is assumed that the initial pdf p(x0 | z0) ≡ p(x0) of the state

vector (prior) is available (z0 being the set of no measurements). Then, in principle, the pdf

p(xk|z1:k) may be obtained, recursively, in two stages: prediction and update.

If we suppose that the required pdf p(xk−1 | z1:k−1) at time k-1 is available, the predic-

tion stage involves using the system model 2.1 to obtain the prior pdf of the states at time k

using the Chapman-Kolmogorov equation
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p(xk | z1:k−1) =

∫
p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1 (2.3)

At time step k, when a measurement zk becomes available, this may be used to update

the prior (update stage) using Bayes’ rule

p(xk | z1:k) =
p(zk | xk)p(xk | z1:k−1)

p(zk | z1:k−1)
(2.4)

where the normalizing constant

p(zk | z1:k−1) =

∫
p(zk | xk)p(xk | z1:k−1)dxk (2.5)

depends on the likelihood function p(zk | xk) defined by the in 2.2 as the measurement

model and the known statistics of nk. In the update stage 2.4, the measurement zk is used

to modify the prior density to obtain the posterior density of the current state of the target.

The recurrence of relations 2.3 and 2.4 form the basis for the optimal Bayesian solution.

This recursive propagation of the posterior density is only a conceptual solution and it

usually cannot be determined analytically. Solutions exist in a restrictive set of cases,

including the Kalman filter and grid-based filters.

2.3 Kalman filter (KF)

The Kalman filter assumes that the posterior density at every time step is Gaussian and,

hence, can be fully characterized by a mean and covariance.

If p(xk−1|z1:k−1) is Gaussian, it can be proved that p(xk|z1:k) is also Gaussian, provided

that certain assumptions hold:

vk−1 and nk are drawn from Gaussian distributions of known parameters. fk(xk−1, vk−1)

is known and is a linear function of xk−1 and vk−1 and hk(xk, nk) is a known linear function

of xk and nk. Therefore 2.1 and 2.2 can be rewritten as

xk = Fkxk−1 + vk−1 (2.6)
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zk = Hkxk + nk (2.7)

Fk and Hk are known matrices defining the linear functions. The covariances of vk−1

and nk−1 are Qk−1 and Rk respectively. We consider the case where vk1 and nk have zero

mean and are statistically independent. Note that the system and measurement matrices Fk

and Hk, as well as noise parameters Qk−1 and Rk , can be time variant.

The Kalman filter algorithm, which was derived in 2.3 and 2.4, can then be viewed as

the recursion of the following relationships:

p(xk−1 | z1:k−1) = N(xk−1; mk−1|k−1, Pk−1|k−1) (2.8)

p(xk | z1:k−1) = N(xk; mk|k−1, Pk|k−1) (2.9)

p(xk | z1:k) = N(xk; mk|k, Pk | k) (2.10)

where

mk|k−1 = Fkmk−1|k−1 (2.11)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k (2.12)

mk|k−1 = mk|k−1 + Kk(zk − Hkmk|k−1) (2.13)

Pk|k = Pk|k−1 − KkHkPk|k−1 (2.14)

and where N(x; m,P ) is a Gaussian distribution with argument x, mean m, and covari-

ance P, and

Sk = HkPk|k−1H
T
k + Rk (2.15)
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Kk = Pk|k−1H
T
k + S−1

k (2.16)

are the covariance of the innovation term zk −Hkmk|k−1, and the Kalman gain, respec-

tively.

This is the optimal solution to the tracking problem-if the highly restrictive assumptions

of linearity of the system model and gaussian posterior hold. This means that no algorithm

can ever do better than a Kalman filter in this linear Gaussian environment. At this point we

would like to point out that it is possible to derive the same results using a least squares (LS)

argument [6]. All the distributions will be then described by their means and covariances,

and the algorithm remains unaltered, but are not constrained to be Gaussian distributions

anymore. Assuming the means and covariances to be unbiased and consistent, the filter

then optimally derives the mean and covariance of the posterior distribution. However,

this posterior is not necessarily Gaussian and therefore if we define optimality as being the

ability of an algorithm to calculate the posterior, the filter is then not certain to be optimal.

In many situations of interest, the assumptions made above do not hold. So The Kalman

filter cannot be used as described.

2.4 Extended Kalman filter (EKF)

If 2.1 and 2.2 cannot be written in the form of 2.6 and 2.7 because the functions are non-

linear, then in a number of cases local linearization of the equations may be a sufficient

description of the nonlinearity. The EKF works based on this linearization step and the fact

that p(xk|z1:k) is approximated by a Gaussian distribution.

p(xk−1 | z1:k−1) ≈ N(xk−1; mk−1|k−1, Pk−1|k−1) (2.17)

p(xk | z1:k−1) ≈ N(xk; mk|k−1, Pk|k−1) (2.18)
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p(xk | z1:k) ≈ N(xk; mk|k, Pk | k) (2.19)

where

mk|k−1 = fk(mk−1|k−1) (2.20)

Pk|k−1 = Qk−1 + FkPk−1|k−1F̂ T
k (2.21)

mk|k−1 = mk|k−1 + Kk(zk − hkmk|k−1) (2.22)

Pk|k = Pk|k−1 − KkĤkPk|k−1 (2.23)

and where now fk(.) and hk(.) are nonlinear functions, and ˆFk(.) and ˆFk(.) are local

linearizations of these nonlinear functions (i.e., matrices)

ˆFk(.) =
dfk(x)

dx
|x=mk−1|k−1

(2.24)

ˆHk(.) =
dhk(x)

dx
|x=mk−1|k−1

(2.25)

Sk = ĤkPk|k−1ĤT
k + Rk (2.26)

Kk = Pk|k−1ĤT
k + S−1

k (2.27)

The EKF uses the first term in a Taylor expansion of the nonlinear function. A higher

order EKF that retains further terms in the Taylor expansion exists, but it is not used widely

since it has additional computational complexity associated with it.

However, the EKF always approximates p(xk|z1:k) to be Gaussian distribution. How-

ever if the true density happens to be non-Gaussian (e.g., if it is bimodal or heavily skewed),
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then a Gaussian can never describe it well enough. It is in such cases that approximate grid-

based filters and particle filters will give us an improvement in performance in comparison

to that of an EKF [6].

2.5 Particle filtering methods

2.5.1 Sequential importance sampling (SIS) Algorithm

The sequential importance sampling (SIS) algorithm is a Monte Carlo (MC) method that

forms the basis for most sequential MC filters developed over the past few years. This

sequential MC (SMC) approach is also known as bootstrap filtering [5], the condensa-

tion algorithm [7] or particle filtering [8]. It is a technique for implementing a recursive

Bayesian filter using Monte Carlo simulations.

The main idea in these methods is to represent the required posterior density function

by a set of random samples with weights associated with each sample and to compute pos-

terior estimates based on these samples and weights. As the number of samples becomes

keeps increasing, this characterization using samples and weights becomes an equivalent

representation to the usual functional description of the posterior pdf, and the SIS filter’s

estimate approaches the optimal Bayesian estimate.

In order to further develop the details of the particle filtering method, let {xi
0:k, w

i
k}

Ns

i=1

characterize the posterior pdf p(x0:k|z1:k), where {xi
0:k, i = 0, ..., Ns}, is a set of support

points with associated weights {wi
k, i = 1, ..., Ns}, and x0:k = {xj, j = 0, ..., k} , is the

set of all states up to time k. The weights are normalized such that
∑

i w
i
k = 1 . Then, the

posterior density at time instant k can be approximated as

p(x0:k|z1:k) ≈
Ns∑

i=1

wi
kδ(x0:k − xi

0:k) (2.28)

We therefore have a discrete weighted approximation to the true posterior,p(x0:k|z1:k)

where weights are chosen using the principle of importance sampling [9], [10]. This prin-
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ciple is based on the following. ”Suppose p(x) ∝ π(x) is a probability density from

which it is difficult to draw samples but for which π(x) can be evaluated. In addition, let

xi ∼ q(x), i = 1, ..., Ns , be samples that are easily generated from a proposal q(.) called

an importance density. Then, a weighted approximation to the density p(.) is given by

p(x) ≈
Ns∑

i=1

wiδ(x − xi) (2.29)

where

wi =
π(xi)

q(xi)
(2.30)

is the normalized weight of the i’th particle.

Therefore, if the samples xi
0:k were drawn from an importance density q(x0:k|z1:k), then

the weights in 2.28 are defined 2.30 by to be

wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

(2.31)

At each iteration, one has samples constituting an approximation to p(x0:k−1|z1:k−1)

and want to approximate p(x0:k|z1:k) with a new set of samples. If the importance density

is chosen to factorize such that

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (2.32)

then one can obtain samples xi
0:k ∼ q(x0:k|z1:k)by augmenting each of the existing

samples xi
0:k−1 ∼ q(x0:k−1|z1:k−1) with the new state xi

k ∼ q(xk|x0:k−1, z1:k).

To derive the weight update equation, p(x0:k|z1:k) is first expressed in terms of p(x0:k−1|z1:k−1),

p(zk|xk), and p(xk|xk−1). Note that 2.4 can be derived by integrating 2.33

14



p(x0:k|z1:k) =
p(zk|x0:k, z1:k−1)p(x0:k|z1:k−1)

p(zk|z1:k−1)

=
p(zk|x0:k, z1:k−1)p(xk|x0:k−1, z1:k−1)

p(zk|z1:k−1)
× p(x0:k|z1:k−1) (2.33)

=
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
p(x0:k−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1) (2.34)

By substituting 2.32 and 2.34 into 2.31, the weight update equation can then be shown

to be

wi
k ∝

p(zk|x
i
k)p(xi

k|x
i
k−1)p(xi

0:k−1|z1:k−1)

q(xi
k|x

i
0:k−1, z1:k)q(xi

0:k−1|z1:k−1)
= wi

k−1

p(zk|x
i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
0:k−1, z1:k)

(2.35)

Furthermore, if q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk) , then the importance density be-

comes only dependent on xk−1 and zk . This is particularly useful in the common case

when only a filtered estimate of p(xk|z1:k) is required at each time step. In such scenarios,

only xi
k need be stored; therefore, one can discard the path xi

0:k−1 and history of observa-

tions zi:k−1 . The modified weight is then

wi
k ∝ wi

k−1

p(zk|x
i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
0:k−1, z1:k)

(2.36)

and the posterior filtered density can be approximated as

p(xk|z1:k) ≈
Ns∑

i=1

wi
kδ(xk − xi

k) (2.37)

where the weights are defined in 2.36. It can be shown that as Ns → ∞ , the ap-

proximation 2.37 approaches the true posterior density p(xk|z1:k). The SIS algorithm thus

consists of recursive propagation of the weights and support points as each measurement is

obtained sequentially.” [6]
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Table 2.1: SIS particle filter

[{xj∗
k , wj

k, i
j}Ns

j=1] = SIS[{xi
k−1, w

i
k−1}

Ns

i=1, zk]

1. FOR i = 1 : Ns

Draw xi
k ∼ q(xk|x

i
k−1, zk)

Assign the particle a weight, wi
k, according to 2.36

END FOR

2.5.2 Degeneracy problem and its solution

A common problem with the SIS particle filter is that after a few iterations al particles

except a single one will have very small weights. This effect is reffered to as the degeneracy

problem. It has also been shown in [10] that the variance of the weights can only increase

over time, and thus, it is impossible to avoid the degeneracy phenomenon. This degeneracy

implies that a large computational effort is devoted to updating particles whose contribution

to the approximation of p(xk|z1:k)is negligible or almost zero.

A suitable measure of degeneracy of the algorithm is the effective sample size and it is

defined as

Neff =
1

∑Ns

i=1 1 + var(w∗i
k )

(2.38)

where w∗i
k = p(xi

k|z1:k)/q(x
i
k|x

i
k−1, zk) is referred to as the true weight but cannot be

computed exactly. So an estimate ˆNeff of Neff can be obtained as

ˆNeff =
1

∑Ns

i=1(w
i
k)

2
(2.39)

where wi
k is the normalized weight obtained using 2.35. Always Neff ≤ Ns and a small

Neff indicates severe degeneracy. A forceful approach to overcome this problem is to use

large number of particles (very large Ns). This method is too impractical and so we use the

following two methods 1. Good choice of importance density 2. Resampling
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Choice of importance density

”The first method involves choosing the importance density q(xi
k|x

i
k−1, zk) to minimize the

var(w∗i
k ) so that Neff is maximized. There exists optimal importance density function

which achieves this desired result and has been proved [10] to be

q(xi
k|x

i
k−1, zk)opt = p(xi

k|x
i
k−1, zk) =

p(zk|xk, x
i
k−1)p(xk|x

i
k−1)

p(zk|xi
k−1)

(2.40)

substituting 2.40 in 2.36 yields

wi
k ∝ wi

k−1p(zk|x
i
k−1) (2.41)

This choice of importance density is optimal since for a given xi
k−1, w

i
k takes the same

value, whatever sample is drawn from q(xi
k|x

i
k−1, zk)opt, . Hence, conditional on xi

k−1,

var(w∗i
k ) = 0. This is the variance of the different wi

k resulting from different sampled xi
k .

This optimal importance density suffers from two major drawbacks. It requires the

ability to sample from p(xi
k|x

i
k−1, zk) and to evaluate the integral over the new state. In the

general case, it may not be straightforward to do either of these things. There are two cases

when use of the optimal importance density is possible.

The first case is when xk is a member of a finite set. In such cases, the integral in

2.41 becomes a sum, and sampling from p(xi
k|x

i
k−1, zk) is possible. Analytic evaluation

is possible for a second class of models for which is Gaussian [10]. This can occur if the

dynamics are nonlinear and the measurements linear.

For many other models, such analytic evaluations are not possible. However, it is pos-

sible to construct suboptimal approximations to the optimal importance density by using

local linearization techniques [10]. Such linearizations use an importance density that is a

Gaussian approximation to p(xi
k|x

i
k−1, zk). Another approach is to estimate a Gaussian ap-

proximation to p(xi
k|x

i
k−1, zk) using the unscented transform [11]. But the general opinion

is that the additional computational cost of using such an importance density is often more
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than offset by a reduction in the number of samples required to achieve a certain level of

performance.

Finally, it is often convenient to choose the importance density to be the prior

q(xi
k|x

i
k−1, zk) = p(xk|x

i
k−1) (2.42)

Substitution of 2.42 into 2.36 then yields

wi
k ∝ wi

k−1p(zk|x
i
k) (2.43)

This would seem to be the most common choice of importance density since it is intu-

itive and simple to implement. However, there are a plethora of other densities that can be

used, the choice is the crucial design step in the design of a particle filter.” [6]

Resampling

”The second method by which the effects of degeneracy can be reduced is to use resampling

whenever a significant degeneracy is observed (i.e., when Neff falls below some threshold

NT ). The basic idea of resampling is to eliminate particles that have small weights and

to concentrate on particles with large weights. The resampling step involves generating a

new set {xi∗
k }

Ns

i=1 by resampling (with replacement) Ns times from an approximate discrete

representation of p(xk|z1:k) given by

p(xk|z1:k) ≈
Ns∑

i=1

wi
kδ(xk − xi

k) (2.44)

so that p(xi∗
k = xj

k) = wj
k. The resulting sample is in fact an i.i.d. sample from the

discrete density 2.44, therefore, the weights are now reset to wi
k = 1/Ns. It is possible to

implement this resampling procedure in operations by sampling Ns ordered uniforms using

an algorithm based on order statistics.” [6]. The resampling scheme algorithm is listed in

2.2

The intuitive idea of resampling is illustrated in Fig. 2.1. In the figure x1 represents the

state being approximated, the position of the circle (particle) represents the value of x1 and
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Figure 2.1: Idea of resampling

the radius of the circle represents the weight of the particle. The pdf of x1 is represented

by the particles and their corresponding weights. After resampling we see that all the

particles have same weights (radius). What has happened in the process of resampling is

that, all particles which had high weights were replicated in proportion to their weight.

In this process particles with low weights are replicated a few times or completely lost.

Resampling keeps the number of particles constant.

Figure 2.2: Resampling example

To understand the algorithm better an example is shown in Fig. 2.2. The table in the
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Table 2.2: Resampling algorithm

[{xj∗
k , wj

k, i
j}Ns

j=1] = RESAMPLE[{xi
k, w

i
k}

Ns

i=1]

1. Initialize the CDF: c1 = 0

2. FOR i = 2 : Ns

construct the CDF: ci = ci−1 + wi
k

END FOR

3. Start at the bottom of the CDF: i = 1

4. Draw a starting point: u1 ∼ U[0, N−1
s ]

5. FOR j = 1 : Ns

Move along the CDF: uj = u1 + N−1
s (j − 1)

WHILE uj > ci

i = i + 1

END WHILE

Assign sample: xj∗
k = xi

k

Assign weight: wj
k = N−1

s

Assign parent: ij = i

END FOR
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figure lists the particle number m and its corresponding weight wm. The plot alongside

represents the CDF of the weights plotted vs particle number m. Now we draw samples

U (m) uniformly between 0 and 1. Based on the samples we decide how many times to

replicate a particle. We see how many samples U (m) fall within the contribution of a single

particle and replicate that particle accordingly. For example U 0 and U 1 fall within the CDF

contribution of particle 1. Therefore particle 1 is replicated 2 times as shown by the table

in the column (r(m)). On the other hand no samples fall within the contribution of particle

4, therefore it is not replicated as indicated in the table.

Though the resampling step reduces the effects of the degeneracy problem, it introduces

a couple of other problems. Firstly, the opportunity to parallelize is limited since all the

particles must be combined in the resampling step. Secondly, since the particles that have

high weights are statistically selected many times it results in a loss of diversity among the

particles as the resultant sample will contain many repeated points. This problem, which

is known as sample impoverishment, is more severe in the cases of systems with small

process noise. As a matter of fact, for the cases of very small process noise, all particles

will collapse to a single point within a few iterations. ”Thirdly, since the diversity of the

paths of the particles is reduced, any smoothed estimates based on the particles’ paths

degenerate.” [6]

The sequential importance sampling algorithm presented in section 2.5.1serves as the

basis for most particle filters that have been developed so far. The various versions of par-

ticle filters in literature can be thought of as special cases of the general SIS algorithm.

These special cases can be derived from the SIS algorithm by an approximate choice of

importance sampling density or modifying the resampling step. We will consider two such

particle filters proposed in literature. The particle filters considered are i) sampling impor-

tance resampling (SIR) filter; ii) auxiliary particle filter (APF)

21



2.5.3 Sequential importance resampling filter (SIR)

The SIR filter proposed in [5] is a Monte Carlo method that can be applied to bayesian

filtering problems. The only requirements of the SIR filter are that the state dynamics

fk(., .) and hk(., .) in 2.1 and 2.2 measurement functions are known, and we can draw

samples from the process noise distribution vk−1 and the prior. Also the likelihood function

p(zk|xk) needs to be available for pointwise evaluation atleast upto proportionality.

The SIR algorithm can be derived from the SIS algorithm in the following way i)the

importance density q(xk|x
i
k−1) is chosen to be the prior p(xk|x

i
k−1) and ii) the resampling

step is applied at every time index.

The above choice of importance function requires that we need to draw samples from

p(xk|x
i
k−1). A sample xi

k ∼ p(xk|x
i
k−1) can be generated by first generating a process noise

sample vi
k−1 ∼ pv(vk−1) and setting xi

k = fk(x
i
k−1, v

i
k−1), where pv(.) is the known pdf of

vk−1. The choice of this importance density means the weights will be now given by

wi
k ∝ wi

k−1p(zk|x
i
k) (2.45)

However since we resample at every time step, we have wi
k−1 = 1/N ∀i; therefore

wi
k ∝ p(zk|x

i
k) (2.46)

The weights given by 2.46 are normalized before the resampling each stage. An itera-

tion of the algorithm is given below in Table 2.3

Though the SIR method is advantageous in the fact that the importance weights are

easily evaluated and that the importance density can be easily sampled we must note that the

importance sampling density for the SIR filter is independent of the measurement zk, which

means the state space is explored without any knowledge of the observations. Therefore

the filter becomes very sensitive to the presence of outliers and is also inefficient. Also

the process of resampling at every time instant can result in rapid loss of diversity of the
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Table 2.3: SIR algorithm

[{xi∗
k , wi

k}
Ns

i=1] = SIR[{xi
k−1, w

i
k−1}

Ns

i=1, zk]

1. FOR i = 1 : Ns

Draw xi
k ∼ p(xi

k|x
i
k−1)

Calculate wi
k = p(zk|x

i
k−1)

END FOR

2. Calculate total weight: t =
∑Ns

i=1 wi
k

3. FOR i = 1 : Ns

Normalize: wi
k = t−1wi

k

END FOR

4. Resample using [{xi
k, w

i
k,−}Ns

i=1] = RESAMPLE[{xi
k, w

i
k}

Ns

i=1]

particles.

2.5.4 Auxiliary Particle Filter (APF)

The auxiliary particle filter was introduced by Pitt and Shephard [12] as a variation of

the standard SIR filter. This filter can be obtained from the SIS framework by modifying

the importance density q(xk|x
i
k−1, zk) to be q(xk, i|z1:k),which samples the pair {xj

k, i
j}Ns

j=1

where ij refers to the index f the particle at time step k − 1.

By Bayes’ rule we can obtain p(xk, i|z1:k)

p(xk, i|z1:k) ∝ p(zk|xk)p(xk, i|z1:k−1)

= p(zk|xk)p(xk|i, z1:k−1)p(i|z1:k−1)

= p(zk|xk)p(xk|x
i
k−1)w

i
k−1 (2.47)

The APF filter operates by sampling from the joint density p(xk, i|z1:k) and then omits

the indices i in the pair (xk, i) to produce a sample {xj
k}

Ns

j=1 from the marginalized density
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p(xk|z1:k). The importance density used to draw samples {xj
k}

Ns

j=1 is defined to satisfy the

proportionality

q(xk, i|z1:k) ∝ p(zk|µ
i
k)p(xk|x

i
k−1)w

i
k−1 (2.48)

where µi
k is some characterization of xk given xk−1. This could be the mean, in which

case µi
k = E[xk|x

i
k−1] or as in our case a sample µi

k ∼ p(xk|x
i
k−1)

We can also show that the weights at every time step will be assigned according to

wj
k ∝ wij

k−1

p(zk|x
j
k)p(x)kj|xij

k−1)

q(xj
k, i

j|z1:k)
=

p(zk|x
j
k)

p(zk|µij

k )
(2.49)

The algorithm for the APF is given in Table. 2.4. Compared with the SIR filter the

advantage of the APF filter is that it generates points from the sample at k − 1 which,

conditioned on the current measurement, are most likely to be close to the true state of the

target. The APF can be thought of a resampling at a previous step, based on some point

estimate µi
k that represents p(xk|x

i
k−1). The APF’s performance is very much affected by

the process noise of the system. If the process noise is too strong then it may happen that

µi
k does not characterize p(xk|x

i
k−1) well enough and the result is a poor set of particles. In

such cases the use of APF degrades the performance of the tracking system.
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Table 2.4: APF algorithm

[{xi∗
k , wi

k}
Ns

i=1] = APF [{xi
k−1, w

i
k−1}

Ns

i=1, zk]

1. FOR i = 1 : Ns

Calculate µi
k

Calculate wi
k = q(i|z1:k) ∝ p(zkµ

i
k)w

i
k−1

END FOR

2. Calculate total weight: t =
∑Ns

i=1 wi
k

3. FOR i = 1 : Ns

Normalize: wi
k = t−1wi

k

END FOR

4. Resample using [{−,−, ij}Ns

j=1] = RESAMPLE[{xi
k, w

i
k}

Ns

i=1]

5. FOR j = 1 : Ns

Draw xi
k ∼ p(xi

k|x
ij

k−1)

Assign wj
k =

p(zk|x
j

k
)

p(zk|µ
ij

k
)

END FOR

6. Calculate total weight: t =
∑Ns

i=1 wi
k

7. FOR i = 1 : Ns

Normalize: wi
k = t−1wi

k

END FOR
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CHAPTER 3

Target tracking using particle filters

Our aim will be to detect the 2-D spatial location of the target and estimate its current

aspect. For simplicity let us consider the case of a single target being present in the scene.

The following sections develop the target motion, target signature, and the background

clutter models that form the basis of our detection and tracking algorithms.

3.1 System models

3.1.1 Target motion model

We assume the data we observe is sampled from a set of continuous valued state vari-

ables at a constant sampling rate determined by the frame rate of the camera. Let k be a

non-negative integer number and denote by ∆ the time interval between two consecutive

measurements. The state vector at instant t = k∆ of a target typically consists of the

position, xk and yk, and the velocity, ẋk and ẏk, of the target centroid in a 2D Cartesian

coordinates system: xk = [xk ẋk yk ẏk]. The random sequences of the centroid position

and the velocity are assumed to be statistically independent and evolve in each dimension

in time according to the white noise acceleration model [3].

The state update equation can be written as

xk = Fxk−1 + wk−1 (3.1)

where the transitional matrix F = [1 ∆; 0 1], and the process noise wk is assumed to be

white, zero-mean Gaussian noise [13].
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3.1.2 Target signature model

We assume that in any frame, the clutter free target image is contained within a rectangular

region of size (ri + rs + 1)x(li + ls + 1).Here ri and rs denote the maximum vertical pixel

distances in the target template image when we move up and down respectively from the

target centroid. Similarly li and ls are the maximum horizontal pixel distances in the target

image when we move away, respectively left and right, from the centroid of the target.

For each centroid position (i, j)εL where L = (i, j)|1 ≤ i ≤ L, 1 ≤ j ≤ M the nonlin-

ear function H returns a spatial distribution of real valued pixel intensities ak,l,−ri ≤ k ≤

rs,−li ≤ l ≤ ls, centered at (i,j). We can write

H(in, jn) =
rs∑

k=−ri

ls∑

l=−li

ak,lEin+k,jn+l (3.2)

where Er,s is an L x M matrix whose entries are all zeros except for the element (r,s) which

is equal to 1.The coefficients ak,l in (3.2) are referred to as the target signature parameters.

3.2 Clutter model

The clutter frames {vk} is assumed to be an independent, identically distributed (i.i.d.)

Gaussian random sequences relative to the processing noise wk in the motion model, also it

is statistically independent of xk, and with zero mean and non-singular covariance matrices

respectively. It is described by the first order, non-causal Gaussian Markov random field

(GMRF) model in each frame [14]:

vn(i, j) = βc
v[vn(i− 1, j)+ vn(i+1, j)]+βc

h[vn(i, j − 1)+ vn(i, j +1)]+ εn(i, j) . (3.3)

where E[vn(i, j)εn(p, r)] = σ2
cδi−p,j−r and the unknown parameters βc

v and βc
h are, respec-

tively, the vertical and horizontal predictor coefficients, and εk is the prediction error [15].

We also assume that the clutter frames vn are statistically independent. Sample clutter

frames generated with different parameters is shown in Fig. 3.1
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3.3 Observation model

An infrared sensor device sequentially generates raw measurements of a surveillance region

that contain both target of interest and spurious heat sources (clutter). The raw measure-

ments at instant k are sampled and processed to form a 2D digital sensor image called a

frame. Each frame k is modelled using a L x M matrix, Yk which collects the measured

2D frames. Fig. 3.4 shows how each observation is generated according to 3.4

Yk = H(xk) + vk . (3.4)

3.4 Algorithm implementation

The first step in the particle filter algorithm is to initialize the particles or in other words

draw samples from the prior. In initialization, the particles are drawn from some known

prior p (x0). Instead of picking particles from a uniformly distributed prior which conveys

no specific information about the location of the target, we draw particles according to a

possibility map Mk(i, j), which is obtained by convolving the initial observation Y0(i, j)

first with the template of the GMRF noise model H = [0 − βv 0; − βh 1 − βh; 0 −

βv 0], and then the target signature template model G0(i, j). The parameters βh and βv are

estimated using the approximate maximum likelihood (AML) algorithm [14].

M0(i, j) = G0(i, j) ∗ [Y0(i, j) ∗ H] . (3.5)

The figures corresponding to 3.5 are shown in Fig. 3.3, the bright points in image (c)

correspond to possible positions of the target. The final initialization of the particles is

shown in Fig. 3.2. The dark circles indicate the position of the particles, to make the

illustration clear only a 100 particles are used in this example. Notice how a number of

particles are clustered around the actual position of the target indicated by * in the figures,

this indicates a good initialization of the particles.
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Likelihood computation is a critical step in particle filtering as the weights are assigned

in proportion to the likelihood value of each particle. A proper likelihood function will

guide particles towards the true position of the target, as it directly determines the weight of

each particle. Actually, it is a measurement of how exactly a particle is consistent with the

current observation or in other words it is a measure of how likely is it that the particle under

consideration produced the current observation. Following this point, we use a similar

function as the one we used in the initialization: p (Yk|xk) ∝ Mk(i, j). It is the similarity

between the observation and the template formed by the state variables of the particle under

consideration. The only difference is, instead of computing the whole similarity map, we

only find the possibility value at one position for a given particle.
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βc
h = 0.24, βc

v = 0.25, σ2
c = 25 βc

h = 0.24, βc
v = 0.25, σ2

c = 64

βc
h = 0.49, βc

v = 0.01, σ2
c = 25 βc

h = 0.01, βc
v = 0.49, σ2

c = 25

βc
h = 0.24, βc

v = 0.24, σ2
c = 128 βc

h = 0.49, βc
v = 0.01, σ2

c = 128

Figure 3.1: Sample clutter frames with different parameters
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Figure 3.2: Initialization of particles

(a) (b) (c)

Y0(i, j) Y0(i, j) ∗ H G0(i, j) ∗ [Y0(i, j) ∗ H]

Figure 3.3: Initialization steps

H(xk) vk Yk

Figure 3.4: Observation model
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CHAPTER 4

Rotation and scaling invariant target tracking using particle filters

Though a lot of previous work address the problem of target tracking only a few have tried

to answer the question of multi-aspect target tracking. In our work we have tried to address

this problem by incorporating an affine model to account for random changes in scale and

rotation of the target signature as a first step towards multi aspect target tracking. The

details of our affine model and the results of our simulations are discussed in this chapter.1.

4.1 Affine transformation

An affine transformation is any transformation that preserves collinearity and ratios of dis-

tances. In general, it is a composition of rotations, translations, scaling, and shears of the

basic template. A shear preserving horizontal lines has the form (x, y) −→ (x + αy, y),

where α is the shearing factor. To model the different aspects of the target in motion, we

apply the following affine transformation to the base template in each frame:

T =




1 α −αy

0 1 0

0 0 1







sx 0 (1 − sx)x

0 sy (1 − sy)y

0 0 1







cos θ sin θ (1 − cos θ)x − (sin θ)y

− sin θ cos θ (1 − cos θ)y + (sin θ)x

0 0 1




(4.1)

where α, sx, sy and θ are the shearing, scaling along x-axis, y-axis and rotation parameter,

respectively. All of them are continuous-valued random variables which follow the first

order Markov chain.
1Joint work with Dr Tang Li
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Process noise (γα, γsx
, γsy

, γθ) is added to each random variable to reduce the quanti-

zation effect on parameter estimation. Therefore, we define a new augmented state vector

as:

xk = [xk ẋk yk ẏk sx sy α θ] . (4.2)

4.2 Rotation and scaling model

The rotation model is defined to be

θk+1 = H(θk) + γθ (4.3)

in which the function H is is a first order Markov chain with equal transition probability

(i.e., 1/3) of increasing, decreasing by a quantization step (∆θ) or staying at the same value

in each time instant. The rotation angles vary within [−30◦, 30◦] degrees with a step size

∆θ = 2◦. The function H is shown in Fig. 4.1. To make the rotation state variable a

continuous valued variable a small process noise γθ is added to the rotation angle. This

noise is uniformly distributed with zero mean and its variance depends on the step size ∆θ.

Figure 4.1: First order Markov model for affine parameters

The target scale vector is also modelled as a first order Markov chain with equal transition

probability (i.e., 1/3) of increasing, decreasing by a quantization step (∆sx
) or staying at
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the same value in each time instant. The scaling factors vary within [0.5, 1.5] with a step

size of ∆sx
= ∆sx

= 0.05. We also add to it a uniform zero mean process noise depending

on the step size.

Due to the small size of the target template we do not consider shearing effects on the

target. But the shearing variable may be modelled similar to the rotation or scale variables

and can be estimated using the same particle filtering methods.

4.3 Multi aspect tracking using SIR and APF

The tracking algorithm is implemented in a similar way as in the single aspect tracking case,

but now the state vector also include the added affine parameters to account for random

scaling and rotation of the target template.

The initial template of the target G0(i, j) is obtained by applying the mean affine pa-

rameters to the base template (i.e. sx = sy = 1, θ = 0 and α = 0). Since with the affine

model, we add additional variables to the state vector, we hope the true position of the tar-

get will be included in the initial set of the particles. The pseudo-code algorithm for multi

aspect target tracking using SIR and APF is given in Table. 4.1

4.4 Simulation and results

For all our simulations we used the target template shown in Fig. 4.2. The size of the

original template is 15x35 pixels. For the purpose of simulation the original template was

attenuated by a factor of 0.05. The mean intensity of the template after attenuation is

9.9509 and it has an energy of 179.721. The variance of the GMRF noise is 25, resulting

in a SNR of 8.566dB. Since the target is very small, we set the shearing factor to zero to

avoid significant distortion.

To generate the ground truth data we initialed the target’s initial centroid position to be

randomly distributed uniformly between pixels 160 and 200 in the x direction and between
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Table 4.1: Pseudo-code of the algorithms

Implementation of SIR Filter Implementation of APF Filter

1. Initialization 1. Initialization: same as SIR

forj = 1, · · · , Np 2. for j=1,· · · , Np

Draw xj
0,1 ∼ p(x0,1), x

j
0,2 ∼ p(x0,2) Draw µ̃j

n,1 ∼ p(xn,1|x
j
n−1,1)

rj
0 ∼ p(r0), sj

0,x ∼ p(s0,x), s
j
0,y ∼ p(s0,y) µ̃j

n,2 ∼ p(xn,2|x
j
n−1,2), µ̃

j
n,r ∼ p(rn|r

j
n−1)

and set wj
0 = 1/Np, n = 1 µ̃j

n,sx ∼ p(sn,x|s
j
n−1,x),

end µ̃j
n,sy ∼ p(sn,y|s

j
n−1,y) and compute

2. for j=1,· · · , Np ŵj
n ∝ p(yn|µ̃

j
n,1, µ̃

j
n,2, µ̃

j
n,r, µ̃

j
n,sx, µ̃

j
n,sy)

Draw x̃j
n,1 ∼ p(xn,1|x

j
n−1,1) end

x̃j
n,2 ∼ p(xn,2|x

j
n−1,2), r̃

j
n ∼ p(rn|r

j
n−1), 3. Normalize such that

∑Np

j=1 ŵj
n = 1

s̃j
n,x ∼ p(sn,x|s

j
n−1,x), 4. for j = 1, · · · , Np

s̃j
n,y ∼ p(sn,y|s

j
n−1,y) and compute Draw kj ∼ {1, 2, ..., Np} such that

wj
n ∝ p(yn|x̃

j
n,1, x̃

j
n,2, r̃

j
n, s̃j

n,x, s̃
j
n,y) p(kj = i) = ŵi

n for i = 1, 2, ..., Np

end Draw xj
n,1 ∼ p(xn,1|x

kj

n−1,1),

3. Normalize such that
∑Np

j=1 wj
n = 1 xj

n,2 ∼ p(xn,2|x
kj

n−1,2), r
j
n ∼ p(rn|r

kj

n−1),

4. Resample to generate a new set of sj
n,x ∼ p(sn,x|s

kj

n−1,x),

samples [xj
n,1, x

j
n,2, r

j
n, sj

n,x, s
j
n,y] such sj

n,y ∼ p(sn,y|s
kj

n−1,y) and compute

that p([xj
n,1, x

j
n,2, r

j
n, sj

n,x, s
j
n,y] = wj

n ∝
p(yn|x

j
n,1,x

j
n,2,r

j
n,s

j
n,x,s

j
n,y)

p(yn|µ̃kj

n,1,µ̃kj

n,2,µ̃kj
n,r ,µ̃kj

n,sx,µ̃kj
n,sy)

[x̃k
n,1, x̃

k
n,1, r̃

k
n, s̃k

n,x, s̃
k
n,y]) = wk

n end

5. Set wj
n = 1/Np for 1 ≤ j ≤ Np and 5. Normalize such that

∑Np

j=1 wj
n = 1

estimate the mean values 6. Estimate the mean values

6. Set n = n + 1 and return to step 2 7. Set n = n + 1 and return to step 2
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Figure 4.2: Target template

pixels 140 and 180 in the y direction. The initial velocities along both directions were

initialized to be normal random variables of zero mean and unit variance. In addition to the

white noise acceleration model a constant drift of -2 and -0.5 pixels/frame were added in

the x and y directions respectively.

The sensor observation image is of size 239 x 239 pixels. We generated the background

image from a real infrared video by subtracting from the real infrared image its spatially

variant local mean and then fitting a first order GMRF field to the resultant image. The

parameters of the GMRF field are estimated using the Approximate Maximum Likelihood

(AML) algorithm discussed in [14]. Then using these parameters we generate random

GMRF field to which we add the local means from the original image to create a cluttered

background. To this cluttered background we add the target template to generate the final

observation. The original IR image and the cluttered image are shown in figure 4.3

Figure 4.3: (a) Original Infrared image (b) Simulated cluttered background
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We assumed the time interval between two consecutive measurements to be ∆ = .075.

We tried to track a target moving according to the white noise acceleration model and with

rotation and scaling according to the model in 4.3 over 50 time frames. Three sample

observations are shown below in Fig. 4.4

Figure 4.4: Sample observation 10’th, 35’th frames and 50’th frames

Each of the particle filter runs were simulated with 3500 particles. The particles were

either initialized according to the proposed initialization method or were uniformly dis-

tributed around the true position of the target. The effects of the initialization is discussed

in the following sections.

4.4.1 Importance of affine parameters

The infrared signature of most real world targets keep varying over time resulting in dif-

ferent target signatures on the sensor. To model these varied signatures we have included

in our state vector the rotation, scaling and shearing variables. To demonstrate the effect of

including these affine parameters, we tried to run the particle filtering algorithms (SIR and

APF) without considering the affine parameters. The results are shown in Fig. 4.5

As seen from Fig. 4.5 when we do not consider the affine parameters both filters per-

form poorly especially the SIR filter which completely looses track of the target and the

estimated trajectory begins to deviate from the ground truth trajectory. When affine param-

eters are considered the mean position error is quite small, usually within 1 to 2 pixels,
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Figure 4.5: Comparison of mean tracking error with and without affine parameters

which is quite good. Thereby we have shown that considering affine parameters improves

the tracking ability of the particle filter.

4.4.2 Comparison between SIR and APF

In this section we compare and evaluate the tracking performance of the SIR and APF im-

plementations. We also study the contribution of the match filtering based initialization.

There are four criteria to be used for algorithm evaluation, i.e., the number of convergent

runs out of 15 Monte Carlo runs, the mean convergence time (the first time when the track-

ing error of position is below 1 pixel), the mean and the standard deviation of estimation

errors for the four state variables (x position,y position,rotation and scale). The results of

15 Monte Carlo runs for SIR and APF filters, with and without initialization, are shown in

Table 4.2.

It is seen from the table that both SIR and APF can effectively estimate all state vari-

ables, including positions, rotation and scaling parameters. This demonstrates the capabil-

ity and robustness of particle filters to deal with tracking problems with strong nonlinearity
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Table 4.2: Comparison of SIR and APF performance with affine parameters

Algorithm Initialization Steps to Mean error in Std Dev of error in

(INIT) converge position rotation scale position rotation scale

(x, y) θ s (x, y) θ s

APF with INIT(12) 7.75 0.8652 1.1322 0.0212 0.8227 2.1387 0.0358

w/o INIT(10) 10.90 1.1888 1.5535 0.0379 1.1927 2.8408 0.0567

SIR with INIT(12) 9.42 1.0490 1.1551 0.0342 0.7423 1.6371 0.0544

w/o INIT(4) 13.75 1.5666 2.0995 0.0636 1.6337 3.9023 0.0865

(N) indicates how many monte carlo runs out of 15 converged

in the target motion model. Specifically, the APF filter outperforms the SIR filter almost in

all aspects, showing the usefulness of the two-step sampling process with the consideration

of present observations. Also, the matching filtering based particle initialization is helpful

to improve the number of convergent results and also the effectiveness of state estimation,

in both the SIR and APF case.

The tracking results at a number of time steps for the APF and SIR filter with initializa-

tion are shown in Fig. 4.6, we notice that the particles converge to the true position of the

target within the first few time steps itself. Then all of the particles keep tracking the target

even though we can hardly see it with our eyes in the original observation sequence. The

first column and the third column show the particle distribution at the k’th time step for the

APF and SIR filter respectively. The second and the fourth column show the actual position

of the car and the bounding box represents the estimated position. The size and angle of

orientation of the box represents the aspect (scale factor and rotation angle) estimate. A

bounding box which fits exactly around the target represents an accurate estimate of both

position and the aspect of the target.

In particular at k = 1 in Fig. 4.6 the particles are distritbuted according to the possibility

map. Particles are produced where they have the most significant values in the possibility
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map, which turns out to always contain the true position of the target both in the APF and

SIR case. Then at time step k = 2 almost all of the particles converge to the actual position

of the target and as time progresses the particles converge to the target centroid and begin

to track its position along with the aspect. By contrast in the case without initialization in

Fig. 4.7, where the particles are uniformly distributed at first, in the time step k = 2 we see

that not all the particles have converged to the actual position of the target, thereby proving

that initialization helps the particles to converge faster to the actual position of the target.

The plots of the position state variables and the corresponding errors are shown in Fig. 4.8,

Fig. 4.9, Fig. 4.10 repectively, the results for the rotation angle estimation are shown in

Fig. 4.11 and the corresponding error is shown in Fig. 4.12. Similar estimation results for

the scaling factor ar shown in Fig. 4.13 and the corresponding error is shown in Fig. 4.14.

Discussions about the results are alongside the figure itself.

Based on the results discussed till now we can conclude that the APF filter is a better

algorithm than the SIR filter and the initialization step helps the algorithm to converge to

the true state faster.

4.4.3 Influence of noise

From the above section we see that the APF filter with initialization provides the best

tracking results, so in this section we will examine the effect of noise on the performance

of the APF filter with initialization. To demonstrate the robustness of the algorithm to noise,

we run it at different noise levels independently with the energy of the target unchanged.

The noise level is changed by increasing the variance of the GMRF clutter field. The results

of the experiment are shown in Table 4.3.

As the noise level keeps increasing the algorithm manages to converge to the true po-

sition of the target but take a longer time to converge. Also we notice the mean error also

increases as the noise power increases. Finally when the noise variance was 36 the esti-

mated position failed to converge within 1 pixel of the actual position within 50 time steps.

40



Table 4.3: Tracking performance under different noise levels

Variance of the noise 4.1383 9 25 36

Corresponding SNR (dB) 10.055 6.681 2.244 0.660

Mean tracking error 0.8652 1.4629 2.3544 9.0098

Steps to converge(≤1 pixel) 7.75 8.00 13.00 -

Thereby we can conclude that the particle filtering technique is quite effective in estimating

the target trajectory under heavy noise conditions even when the target is almost invisible

to the naked eye.
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APF particles APF estimate SIR particles SIR estimate

k = 1

k = 2

k = 5

k = 10

k = 25

k = 50

Figure 4.6: Tracking results at time steps 1,2,5,10,25 and 50 for SIR and APF with initial-

ization
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APF particles APF estimate SIR particles SIR estimate

k = 1

k = 2

k = 5

k = 10

k = 25

k = 50

Figure 4.7: Tracking results at time steps 1,2,5,10,25 and 50 for SIR and APF without

initialization
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.8: shows the actual and the estimated trajectory of the target over 50 time steps

for the APF and SIR filter with and without initialization. From these figures we are not

able to decide any major differences except for the fact that all the methods are effectively

able to track the target.
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.9: shows the euclidian error in the position estimate of the object from the first

time step. At time step k = 1 the error is large because the particles all have equal weights

in the first time step and thereby the mean estimate is quite far from the actual position of

the target. From Fig. 4.9 we can see overall that the methods with initialization converge

faster to the actual position than those without initialization.
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.10: shows the euclidian error in the position but this time from the 2’nd time step

(k = 2). This plot will help us to compare the APF and SIR performances more closely.

We see that the APF with initialization shows the best performance by converging fast

and the error remains below the 0.5 pixel level majority of the time. The SIR filter with

initialization also converges fast but the error oscillates between 0.5 pixel and 1 pixel level.

The APF without initialization converges slowly compared to the previous two methods and

the error is between 1 and 2 pixels most of the time. The SIR filter without initialization

takes the longest time to converge to the true position and the error is significantly above 1

pixel for most of the tracking period.
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.11: Rotation angle estimate
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.12: This figure and Fig. 4.11 show the rotation angle estimate and the correspond-

ing absolute error respectively. As seen from the figures we observe that all the methods

have a significant peak error in the first few steps of the angle estimation. The APF filter

with initialization performs the best with a peak error of 3 degrees and the subsequent error

in the angle is below 1 degree most of the time. The SIR filter with initialization has a peak

error of about 9 degrees and then decreases significantly to about 1 degree. The angle esti-

mation with this filter is not as smooth as of that in the APF with initialization case. Both

the methods without initialization have the same peak error of about 22 degrees which is

quite high, but they converge and begin tracking the correct angle, with the APF method

converging before the SIR method. The absolute value of the error in the two methods after

converging is about 2 degrees.
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.13: Scaling factor estimate
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APF with initialization APF without initialization

SIR with initialization SIR without initialization

Figure 4.14: This figure and Fig. 4.13 show the scaling factor estimate and the correspond-

ing error respectively. In this comparison the APF and SIR with initialization both converge

comparably but the APF keeps the error below 0.05 consistently unlike the SIR filter. As

seen in the previous cases here also the methods without initialization take considerable

longer time to converge, with the SIR method taking the longest time to converge. After

convergence the APF and SIR methods without initialization perform almost similarly
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusion

A nonlinear Bayesian algorithm based on sequential importance sampling was developed,

which was able to track a moving target with random scale and rotation angles. The new

algorithm added affine parameters to model the scale and rotational aspect of the target

at every time step, and these parameters were estimated at every time step using particle

filters. So now even though only a base template of the target has to be stored in the

template library , we can track many different aspects of the target. Simulations show very

good tracking performance for the APF tracker, which takes into consideration the current

available observation, using 3500 particles. The SIR tracker also produces fairly good

results. The first step of initializing particles according to a possibility map helps both the

SIR and APF algorithms to converge faster with better tracking results. Even in cases with

low SNR the estimated trajectory is quite accurate with the APF, but it does take a longer

time to converge than the cases with higher SNR.

5.2 Future work

We propose to extend the framework to account for real multi aspect tracking with only a

few base templates. By real multi aspect tracking we hope to track a real moving target

given only a few of its possible signatures. The current algorithm can track only objects

signature varying from one view but we believe the framework can be further extended to

include all possible views of a 3D object. One idea to do this is by principle component
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analysis (PCA), and using the state variables in the particle filter as eigen values of the PCA

analysis. Using this approach we may be even able to track multiple objects moving in the

same scene.

Secondly the current scaling and rotation models need to be made more realistic and

also include the shearing factor more effectively. Also the likelihood function may be

modified so that the information conveyed by the velocity component is also used in the

likelihood computation.

Thirdly more recent advances in particle filtering technique, which include the likes of

turbo particle filter [16], density assisted particle filters [17] may be incorporated into the

algorithm to provide for more improvement in the tracking results.
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