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CHAPTER 1 
 

INTRODUCTION 

1.1. Motivation 

With the computation capability of the modern CPU processors, many complex real-time 

applications have been made possible and implemented in various fields worldwide. One of the 

widely used real-time applications is video surveillance systems. Video surveillance systems are 

been used for security monitoring, anomaly detection, traffic monitoring and many other 

purposes. Video surveillance systems have decreased the need of human presence to monitor 

activities captured by video cameras. And also one of the advantages of visual surveillance 

systems is videos can been stored and analyzed for future reference. One of the important 

applications of video surveillance systems is traffic surveillance. Extensive research has been 

done in the field of video traffic surveillance. Video traffic surveillance systems are used for 

vehicle detection, tracking, traffic flow estimation, vehicle speed detection, vehicle classification, 

etc. Video traffic surveillance has paved for numerous applications such as ATMS (Advanced 

Transportation Management Systems) [1] and (ITS) Intelligent Transportation Systems [2].  

One of the widely used applications of traffic surveillance systems is vehicle detection 

and tracking. By detecting and tracking vehicles, we can detect vehicle’s velocity, trajectory, 

traffic density, etc. and if there is any abnormality, the recorded information can be send to the 

traffic authorities to take necessary action. The main advantage of the video monitoring systems 

over the existing systems such as physical detectors [3] that uses magnetic loops is the cost 

efficiency involved in installing and maintaining these video systems, and also the aspect of    
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video storage and transmission to analyze the detected events. Table 1.1 shows the performance 

comparison of various incident detection technologies. Thus video-based traffic surveillance 

systems have been preferred all over the world.  

 

 

Table 1.1: Performance comparison among existing incident detection technologies [4] 
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Having said the advantages of video-based traffic surveillance systems a new paradigm 

can be added to the application of video surveillance systems if we can detect accidents at traffic 

intersections and report the detected incident to the concerned authorities so that necessary action 

can be taken. Figure 1.1, shows some of the scenarios depicting traffic accidents and its 

consequences. 

 

 

 

According to World Health Organization reports about 1.2 million lives are lost every 

year due to traffic accidents [5]. What is more amazing is the fact that traffic accident related 

deaths is one among the top ten causes of death worldwide, the list that includes tuberculosis, 

heart disease and AIDS as shown in Table 1.2. And also the cost of these accidents adds up to a 

shocking 1-3% of the world’s Gross National Product [6].  In United States, it is estimated that 

vehicle accidents account for over 40,000 deaths and cost over $164 billion each year. Among 

these, passenger- vehicle crashes account for the vast majority of deaths [7]. Without any 

preventive measures these figures are estimated to increase to 65% over the next 20 years. Studies 

have shown that the number of traffic related fatalities is highly dependent on emergency 

Figure 1.1: Some of the scenarios depicting traffic accidents and its consequences 
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response time [8]. When an accident occurs, response time is critical, every extra minute that it 

takes for help to arrive can mean the difference between life and death. So there arises a need for 

a system that can detect accidents automatically and report it to the concerned authorities quickly 

by which the emergency response time can be made faster, therefore potentially saving thousands 

of lives. With the usage of video-based traffic surveillance systems, accidents can be recorded 

and be sent to the traffic monitoring center so that the incoming traffic can be warned of an 

occurrence of accident and be diverted to avoid traffic congestion. This brings us to the 

motivation of this research. The motivation of this research is to develop an accident detection 

module at roadway intersections through video processing and report the detected accident along 

with the crash video to the concerned authorities, so that immediate action can be taken and 

potentially save thousands of live and property. 

 

 

 

 

Table 1.2: Top ten causes of death world wide 
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1.2. Research Goal and Challenges 

1.2.1 Overview 

Although considerable amount of research has been done to develop a system that can detect an 

accident through video surveillance, real-time implementation of all these systems have not been 

realized yet. Real-time implementation of accident detection through video-based traffic 

surveillance have always been challenging since one has to strike a right balance between the 

speed of the system and the performance of the systems such as correctly detecting accidents and 

also reducing false alarm rate. Ideally we want a system that could maximize the number of 

frames processed per second at the same time able to achieve acceptable performance rate. This 

brings us to the goal of this research. The goal of this research is to develop an accident detection 

module at roadway intersections through video processing that is suitable for real-time 

implementation. In this thesis we developed an accident detection module that uses the 

parameters extracted from the detected and tracked vehicles which is able to achieve good real-

time performance. 

An important stage in automatic vehicle crash monitoring systems is the detection of 

vehicles in each video frame and accurately tracking the vehicles across multiple frames. With 

such tracking, vehicle information such as speed, change in speed and change in orientation can 

be determined to facilitate the process of crash detection. As shown in the Figure 1.2, given the 

detected vehicles, tracking can be viewed as a correspondence problem in which the goal is to 

determine which detected vehicle in the next frame corresponds to a given vehicle in the current 

frame. While for a human analyst, the task of tracking can often be performed effortlessly, this 

task is quite challenging for a computer. Therefore in this thesis more emphasis has been given to 

the real-time implementation of vehicle detection and tracking.  
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1.2.1 Challenges in Vehicle Detection and Tracking 

Implementing a system that does vehicle detection and tracking can be quite challenging. There 

are numerous difficulties that need to be taken into account, while implementing a system that 

performs vehicle detection and tracking. Figure 1.3 shows some of the scenarios encountered. 

Figure 1.3(a) shows frame captured at arbitrary time, Figure 1.3(b) shows the change in 

illumination conditions, Figure 1.3(c) shows change in weather conditions and Figure 1.3(d) 

shows change in traffic conditions. The following are the some of the challenges that can be faced 

while implementing real-time vehicle detection and tracking [9]. 

 

 

 

1. Vehicles can be of different size, shape and color. Furthermore, a vehicle can be observed 

from different angles, making the definition of a vehicle broader. 

Figure 1.2: An example of vehicle tracking (a) Frame at time t (b) Frame at time t+1 

(a) (b) 

Figure 1.3: Scenarios showing different traffic conditions (a) Example frame (b) Change in 

illumination (c) Change in weather conditions (d) Change in traffic conditions (Images were 

downloaded from http://i21www.ira.uka.de/image_sequences/) 

(a) (b) (c) (d) 



7 

 

2. Automatic segmentation of each vehicle from the background and from other vehicles so 

that all vehicles are detected. 

3. Lightning and weather conditions vary substantially. Rain, snow, fog, daylight and 

darkness must all be taken into account when designing the system. 

4. Vehicles can be occluded by other vehicles or structures. 

5. Traffic conditions may vary, and many of the tracking algorithms degrade with heavy 

traffic congestion, where vehicles move slowly, and the distances between the vehicles 

are small. 

6. Ability of the system to operate in real-time. 

1.3. Methodology 

The general description of the accident detection systems is presented below in the Figure 1.4.  

 

 Figure 1.4: Block diagram of the proposed accident detection system 
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In this thesis vehicle tracking is done based on low-level features and low-level human 

visual-system (HVS) modeling. Low-level features (e.g., color, orientation, size) are generally 

used because of their low computational complexity.  Our method employs a weighted 

combination of low-level features along with a human vision based algorithm of visual 

dissimilarity for vehicle tracking. Although HVS models have found widespread use in a variety 

of consumer image processing applications, they have yet to be used extensively for vehicle 

tracking.   

The detail description of the entire system is as follows: The first step of the process is the 

frame extraction step. In this frames are extracted from the video camera input. The second step 

of the process is the vehicle detection step. Here the already stored background frame is 

subtracted from the input frame to detect the moving regions in the frame. The difference image 

is further thresholded to detect the vehicle regions in the frame. Hence the vehicles in each frame 

are detected.  In the third step low-level features such as area, centroid, orientation, luminance 

and color of the extracted vehicle regions are computed. And also for each of the region detected 

in frame at time t, similarity index is computed with all of the regions detected in frame at time 

t+1 using human vision based model analysis. In the tracking stage, Euclidean distance is 

computed between the low-level features of each vehicle in frame n and all the other vehicles 

detected in frame n+1.  This Euclidean distance vector is combined with the already computed 

similarity index for a particular vehicle region in frame n. Based on the minimum distance 

between vehicle regions tracking was done. In the next step, the centroid position of a tracked 

vehicle in each frame is computed and based on this information and the frame rate; the speed of 

the tracked vehicle is computed in terms of pixels/second. Since the position of the video camera 

is fixed, the camera parameters such as focal length, pan and tilt angle of the vehicle remains the 

constant and it can be computed using camera calibration algorithm. From all this information the 

pixel coordinates of the vehicle in each frame is converted to real-world coordinates. By this 
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conversion, the speed of the vehicle in terms of miles/hr is computed. Based on the velocity 

information, position and low-level features of the tracked vehicle suitable thresholds are defined 

to determine the occurrence of accidents. This is the overall description of the proposed system 

for accident detection at roadway intersections.  

1.4. Contribution 

The main contribution of this thesis is the real-time implementation of vehicle detection and 

tracking along with accident detection at roadway intersections. As discussed earlier although 

considerable amount of research has been done related to vehicle detection and tracking most of 

the systems fail to implement them in the real-time because of the complexity of the algorithm. In 

this thesis a new method have been adapted to track the detected vehicles in each video frame that 

is suitable for real-time implementation and also accident detection module have been added to 

vehicle detection and tracking module that can operate in real-time.  We use the low-level 

features such as area, orientation, centroid, color, luminance of the extracted vehicle regions to 

achieve reasonable tracking rate. To determine accidents, speed, area and orientation of the 

tracked vehicle were used. The insight of this thesis is to process maximum video frames as 

possible and also achieve good performance rate simultaneously.  

1.5. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 reviews the previous research work being 

done related to vehicle tracking and incident detection. In Chapter 3, the brief overview of the 

about the system, its advantages and limitations are discussed. Description of vehicle detection 

and feature extraction are presented in Chapter 4, results of vehicle tracking and accident 

detection are discussed in Chapter 5. Real-time performance evaluation and results of the 

algorithm are discussed in Chapter 6. Finally general conclusions and steps for future work are 

presented in Chapter 7. 
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CHAPTER 2 
 

BACKGROUND 

2.1. Overview 

For the last two decades researchers have spend quality time to develop different methods that 

can be applied in the field of video-based traffic surveillance.  Some of the applications of video-

based surveillance include vehicle tracking, counting the number of vehicles, calculating vehicle 

velocity, finding vehicle trajectory, classifying the vehicles, estimating the traffic density, finding 

the traffic flow, license plate recognition, etc. Of late the focus of video-based traffic surveillance 

has shifted to detect incidents in roadways such as vehicle accidents, traffic congestion, and 

unexpected traffic blocks. From researches and surveys it was found that there is more necessity 

to detect accidents in highways and roadway intersections, as vehicle accidents causes huge loss 

to lives and property. Therefore the objective of video-based traffic surveillance of present is on 

accident detection in highways and intersections such that necessary action can be taken promptly 

without losing any quality time, so that lives of the injured can be saved. As discussed earlier the 

another advantage of video based surveillance is that the incidents can be recorded and analyzed 

for future reference and also the videos can be send to the traffic monitoring center to clear traffic 

congestion and divert the incoming traffic. One has to say for sure that the ultimate goal of video-

based traffic surveillance is to pre-determine the accidents at highways and intersections and alert 

the incoming traffic of the occurrence of accident, which can potentially save thousands of lives 

and billions of dollars.  
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Apart from video-based systems, researches have also been done to detect incidents in 

roadways using other systems such as sensors, acoustic signal and others. These systems basically 

use physical detectors to collect the traffic parameters and apply machine learning and pattern 

recognition algorithm to detect the occurrence of an incident.  Some of the techniques that had 

been used are decision trees for pattern recognition, time series analysis, Kalman filters and 

neural networks [10]-[18]. Spot sensors such as inductive loop sensors were employed by 

Gangisetty [19]. All of these systems showed varying amount of detection performance. But all 

the above described systems concentrated only on few areas of incident detection and failed to 

address the problem of traffic crashes at intersection. Only few systems [20] have addressed the 

problem of detecting crashes at intersection.   

Green et al. [21] evaluated the performance of sound actuated video recording system 

which was used to analyze the reasons for traffic crashes at intersections. The system 

automatically records incident based on the sound it receives such as horns, clashing metal, 

squealing tires, etc. The results of this study were used by the transportation department to 

enhance the safety features by the traffic department which resulted in the reduction of accidents 

by 14%. Another system [22] developed a method to detect and report crashes at intersection 

using acoustic signal generated by the crashes. An acoustic database was developed which 

contains the normal traffic sounds, construction sounds and crash sounds and the system would 

compare the captured sound signal with the signals stored in the database to determine crashes. 

The system produced a good performance with false alarm rate of 1%. All the above studies 

suggested that there was a lot of scope for improvement to make these systems robust for 

different traffic flow conditions. 

All the above described systems were able to detect incidents to certain extent; these 

systems can be employed for only a particular application. However the advantage of the utilizing 

the vision sensors for event recognition is their ability to collect diverse information such as 
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illegally parked vehicles, traffic violations, traffic jams and traffic accidents. Description of some 

of the vision based traffic applications can be found in [23]-[25]. Lai et al. [26] developed a 

system that is used to detect red light runners at intersections. There is lot more advantages of 

video based traffic accident detection system since the crashes can be recorded and analyzed and 

these recordings can be used to enhance the safety features at roadways and intersections. And 

importantly once the accident have been detected, the automated reporting of accident can be 

used to reduce the emergency response time which on its own makes the video based traffic 

surveillance systems superior to other non-vision based systems.  

2.2. Traffic Image Analysis 

There are basically four major steps involved in the video-based crash detection systems, various 

researches have been done on each individual section separately and good performance have been 

obtained. These are the following steps 

1. Motion segmentation and vehicle detection 

2. Vehicle tracking  

3. Processing the results of tracking to compute traffic parameters 

4. Accident detection using the traffic parameters 

2.2.1. Motion segmentation and Vehicle Detection 

Motion segmentation is the process of separating the moving objects from the background. The 

motion segmentation step is essential for detecting the vehicles in the image sequence. Figure 2.1 

shows an example of vehicle detection. Figure 2.1(a) is the original image and Figure 2.1(b) 

shows the detected vehicle regions.  
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There are four main approaches to detect vehicle regions, they are 

1. Frame differencing method 

2. Background subtraction method 

3. Feature based method 

4. Motion based method 

2.2.1.1. Frame Differencing Method 

In the frame difference method moving vehicle regions are detected by subtracting two 

consecutive image frames in the image sequence. This works well in case of uniform illumination 

conditions, otherwise it creates non-vehicular region and also frame differencing method does not 

work well if the time interval between the frames being subtracted is too large. Some of the 

vehicle detection methods using this technique are described in detail in [27]-[30]. 

2.2.1.2. Background Subtraction Method 

Background subtraction method is one of the widely used methods to detect moving vehicle 

regions. In this step the either the already stored background frame or the background generated 

from the accumulated the image sequence is subtracted from the input image frame to detect the 

moving vehicle regions.  This difference image is then thresholded to extract the vehicle regions. 

(a) (b) 

Figure 2.1: Example of vehicle detection (a) Original image (b) Detected vehicle regions 
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The problem with the stored background frame is that they are not adaptive to changing 

illumination and weather conditions which may create non-existent vehicle regions and also 

works for stationary background. Therefore there is need to generate a background that is 

dynamic to the illumination and weather conditions.  Various methods based on statistics and 

parametric model have been used. Some of the approaches [31] – [35] assumed Gaussian 

probability distribution for each pixel in the image. Then the Gaussian distribution model is 

updated with the pixel values from the new image frame in the image sequence. After enough 

information about model has been accumulated, each pixel (x, y) is classified either belonging to 

the foreground or background using the equation 2.1. 

                                            I(x, y) – Mean(x, y) < (C x Std (x, y))                                              (2.1) 

where I(x, y) is pixel intensity, C is a constant,  Mean(x, y) is the mean, Std (x, y) is the standard 

deviation.  

Single Gaussian distribution based background modeling works well if the background is 

relatively stationary and it fails if the background contains shadows and non-important moving 

regions (e.g., tree branches). This led the researches to use more than one Gaussian (Mixture of 

Gaussians) to build more robust background modeling technique. In Mixture of Gaussian 

methods [36] – [37] colors from a pixel in a background object are described by multiple 

Gaussian distributions. These methods were able to produce good background modeling. In all 

the above described methods several parameters need to be estimated from the data to achieve 

accurate density estimation for background [38]. However most of the times these information is 

not known beforehand. 

Non-parametric methods do not assume any fixed model for probability distribution of 

background pixels [39]-[40]. These methods are known to deal with multimodality in background 

pixel distributions without determining the number of modes in the background. However these 
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systems does not adapt to sudden changes in illumination. So few methods based on Support 

Vector Machine (SVM), robust recursive learning were proposed to dynamically update the 

background [41]-[43]. Some methods [44] - [45] used Kalman filter to model the foreground and 

background and some other methods [46]-[47] used depth and color information to model the 

background using stereo camera. Background subtraction methods produced better segmentation 

results due to better background modeling, when compared to frame differencing method. But the 

disadvantages of background modeling to detect vehicle regions are high computational 

complexity making them difficult to operate in real-time and increased sensitivity to changes in 

lightning conditions. 

2.2.1.3. Feature Based Method 

Since the background subtraction methods needs accurate of modeling of background to detect 

moving vehicle regions, researched shifted their focus to detect moving vehicle regions using 

feature based methods. These methods made use of sub-features such as edges or corner of 

vehicles. These features are then grouped by analyzing their motion between consecutive frames. 

Thus a group of features now segments a moving vehicle from the background. The advantages 

of these methods [48] is that the problem of occlusion between the vehicle regions can be handled 

well, the feature based methods have less computational complexity compared to background 

subtraction method, the sub-features can be further analyzed for classifying the vehicle type and 

there is no necessity of stationary camera. Koller et al. [49] used displacement vectors from the 

optical flow field and edges as sub-features for vehicle detection. Beymer et al. [3] used corner of 

vehicles as features for measuring traffic parameters. Edges are used as features to detect vehicles 

by Dellart et al. [50]. Smith [51] used combination of corners and edges to detect moving 

vehicles. But the disadvantage of these systems is that if the features are not grouped accurately, 

then there may be failure in detecting vehicles correctly and also some of the systems are 

computationally complex and needs fast processing computers for real-time implementation. 
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2.2.1.4. Motion Based Method 

Motion based approaches were also used to detect the vehicle regions in image sequences [38]. 

Optical flow based approaches were used to detect moving objects in the methods [52]-[53]. 

These methods are very effecting on small moving objects. Wixon [54] proposed an algorithm to 

detect salient motion by integrating frame-to-frame optical flow over time; thus it is possible to 

predict the motion pattern of each pixel. This approach assumes that the object tends to move in a 

consistent direction over time and that foreground motion has different saliency. The drawbacks 

of optical flow based methods are calculation of optical flow consumes time and the inner points 

of a large homogeneous object (e.g. car with single color) cannot be featured with optical flow. 

Some of the approaches used spatio-temporal intensity variations [43, 55] to detect motion and 

thus segment the moving vehicle regions.  

2.2.2. Camera Calibration 

Once the vehicle regions are detected and suitable features such as area, orientation, color, etc. 

are calculated, it is necessary for the 2D information obtained from the image to be mapped to the 

3D information with respect to the real-world. Geometric camera calibration is the process of 

determining the 2D-3D mapping between the camera and the world coordinate systems [56].  

Therefore there is a need to convert the camera coordinates to world coordinates using the 

internal (principal point, focal length, aspect ratio) and external parameters of the camera 

(position and orientation of camera in world coordinate system). We can classify the camera 

calibration techniques in two types: photogrammetric calibration and self-calibration. In 

photogrammetric calibration [57], an object whose 3D world coordinates is known in prior is 

observed by a camera to find the calibration parameters. In self calibration techniques [58], the 

position of the camera is changed to record static scenes and image with known internal 
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parameters, from which calibration parameters can be recovered. Figure 2.2 shows imaging 

geometry for perspective transformation. 

 

 

Earlier research related to camera calibration employed full-scale non-linear optimization 

[60]-[62]. Good accuracy has been achieved using these methods, but the disadvantage of these 

methods is that they require a good initial guess and a computationally intensive non-linear 

search. Although the equations governing the transformation from 3D world coordinate to 2D 

image coordinate are nonlinear functions of intrinsic and extrinsic camera parameters, they are 

linear if lens distortion is ignored. By this assumption perspective transformation matrix can be 

computed using linear equations [63]-[65].  The main advantage of these methods is that they 

eliminate non-linear optimization. However, lens distortion cannot be modeled using these 

methods. If images are taken by the same camera with fixed internal parameters, correspondences 

between three images are sufficient to recover both the internal and external parameters [66]-[67]. 

Bu the disadvantage of these methods is they require a large number of features to achieve 

robustness. 

Figure 2.2: Imaging Geometry: Perspective Transformation [59] 
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Worall et al. employed an interactive tool for calibrating a camera that is suitable for use 

in outdoor scenes [68]. Wang and Tsai [69] used vanishing point technique to calibrate traffic 

scenes. Bas and Crisman [70] used the known height and tilt angle of the camera for calibration 

using a single set parallel line drawn by the user along the road edges while Lai [71] used an 

additional line of know length perpendicular to the road edges to remove the restriction of known 

height and tilt angle of the camera. Fung et al. [72] developed a method that is robust against 

small perturbations in markings along the roadside. The above described methods works well if 

the camera is static and fails if the position of the camera is changed. 

To overcome the problems of calibration when the position of the camera is changed 

automatic calibration techniques were used. Daily et al. [73] relate pixel displacement to real-

world units by fitting a linear function to scaling factors obtained using a known distribution of 

typical length of vehicles. Schoepflin and Dailey [74] calibrated PTZ cameras using lane activity 

maps which are computed by frame-differencing. Zhang et al. [75] used three vanishing point 

method to estimate the calibration parameters.  

2.2.3. Vehicle Tracking 

Once the vehicle regions are detected it is necessary for these vehicle regions to be tracked in the 

image sequences so that necessary information about the vehicle such as speed, vehicle trajectory, 

vehicle dimensions can be computed and used for further use. An illustration of vehicle tracking 

is shown in Figure 2.3. Figure 2.3(a) shows frame at time t, Figure 2.3(b) shows frame at time 

t+1 and Figure 2.3(c) shows frame at time t+2. In these figures, the bounding box around each 

vehicle is same indicating that the vehicles are tracked correctly. 
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Vehicle tracking is an important stage in crash detection systems. Given the detected vehicles, 

tracking can be viewed as a correspondence problem in which the goal is to determine which 

detected vehicle in the next frame corresponds to a given vehicle in the current frame. Over the 

years various researches have been conducted related to vehicle tracking. These approaches can 

be classified as follows. 

1. Region-Based Tracking 

2. Active Contour Tracking 

3. 3D Model-Based Tracking 

4. Markov Random Field Tracking 

5. Feature- Based Tracking 

6. Color and Pattern-Based Tracking 

7. Other approaches 

2.2.3.1. Region-Based Tracking 

In this method image frame containing vehicles is subtracted from the background frame which is 

then further processed to obtain vehicle regions (blobs). Then these vehicle regions are tracked. 

Various methods have been proposed based on this approach [73, 76, 77]. Gupte et al. [76] 

proposed a method that performed vehicle tracking at two levels: region level and vehicle level. 

The method is based on the establishment of correspondences between regions and vehicles as the 

Figure 2.3: Illustration of vehicle tracking (a) Frame at time t (b) Frame at time t+1 (c) Frame at 

time t+2 

 

 

(a) (b) (c) 
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vehicle move through the image sequence using maximally weighted graph. Bu the disadvantage 

of these methods is that they have difficulty in handling shadows, occlusion. 

2.2.3.2. Active Contour Tracking 

The next approach used to track vehicles was tracking the contours representing the boundary of 

the vehicle [78]-[79]. These are known as active contour models or snakes. Once the vehicle 

regions are detected in input frame the contours of the vehicle are extracted and dynamically 

updated in each successive frame. In the method used by Koller et al. [78] the vehicle regions are 

detected by background subtraction and tracked using intensity and motion boundaries of the 

vehicle objects. This method makes use of Kalman filters for estimating the affine motion and the 

shape of the contour. The advantage of active contour tracking over region-based tracking is the 

reduced computational complexity. But the disadvantage of the method is their inability to 

accurately track the occluded vehicles and tracking need to be initialized on each vehicle 

separately to handle occlusion better. 

2.2.3.3. 3D Model-Based Tracking 

In 3D model-based tracking [80]-[84] localize and track vehicle by matching a projected 3D 

model to the image data. Tan et al. [85]-[86] proposed a generalized Hough transformation 

algorithm based on single characteristic line segment matching an estimated vehicle pose and also 

analyzed the one-dimensional correlation of image gradients and determine the vehicle pose by 

voting.  Pece et al. [87] presented a statistical Newton method for the refinement of the vehicle 

pose.  The advantages of 3D model-based vehicle tracking is they are robust to interference 

between nearby images and also be applied to track vehicles which greatly change their 

orientations. But on the downside these models have high computational cost and they need 

detailed geometric object model to achieve high tracking accuracy. 
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2.2.3.4. Markov Random Field Tracking 

Kamijo et al. [88] proposed a method to segment and track vehicle using spatiotemporal Markov 

random field. In this method the image is divided into pixel blocks and spatiotemporal Markov 

random field is used to update an object map using current and previous image. This method 

handled occlusions well. But the drawback of this method is that it does not yield 3Dinformation 

about vehicle trajectories in the world coordinate system. In addition in order to achieve accurate 

results the image in the sequence are processed in reverse order to ensure that vehicles recede 

from the camera. The accuracy decreased by a factor of two when the sequence is not processed 

in reverse, thus making the algorithm unsuitable for on-line processing. 

2.2.3.5. Feature-Based Tracking 

In feature-based tracking [78], [89]-[92] suitable features are extracted from the vehicle regions 

and these features are processed to track the vehicles correctly. These algorithms have low 

complexity and can operate in real-time and also can handle occlusions well. Beymer et al. [3] 

used feature tracking method in which the vehicle point features are tracked throughout the 

detection zone (entry and exit region). The feature grouping is done by constructing a graph over 

time, with vertices representing sub-feature tracks and edges representing the grouping 

relationships between tracks. Kanhere et al. [89] used 3D world coordinates of the feature point 

of the vehicle and grouped those points together in order to segment and track the individual 

vehicles. Texture-based features were used for tracking in [92]. Scale-Invariant features were 

used for tracking by Choi et al. [93].  The drawback of feature-based tracking is the recognition 

rate of vehicles using tow-dimensional image features is low, because of the non-linear distortion 

due to perspective projection and the image variations due to movement relative to the camera. 

 

 



22 

 

2.2.3.6. Color and Pattern-Based Tracking 

Chachich et al. [94] used color signatures in quantized RGB space for tracking vehicles. In this 

work, vehicle detections are associated with each other by using a hierarchical decision process 

that includes color information, arrival likelihood and driver behavior.  In [95], a pattern-

recognition based approach to on-road vehicle detection has been studied in addition to tracking 

vehicles from a stationary camera. But the tracking based on color and pattern matching is not 

that reliable. 

2.2.3.7. Other Approaches  

The other approaches that were used for vehicle tracking includes optical flow based tracking [36, 

51, 96], Markov Chain Monte Carlo based tracking [96] and Kalman-Filtering based tracking 

[97]. 

2.2.4 Accident Detection Systems 

After vehicles in image sequence are detected and tracked correctly suitable traffic parameters 

(e.g. speed, trajectory, traffic flow) are extracted from the vehicle, the computer traffic parameters 

are used to detect incidents at highways and roadway intersections. Many research works have 

been done in the past to address this problem as there are numerous advantages in detecting 

accidents. Earlier researches related to traffic accident detection system involved detecting 

abnormal incidents such as traffic jam, detecting fallen-down obstactles, etc. Ikeda et al. [98] 

proposed an image processing based automatic abnormal incident detect system. The system is 

used to detect four types of incidents namely stopped vehicles, slow vehicles, fallen objects and 

vehicles that have attempted lane successive changes. Kimachi et al. [99]  studied about vehicle 

behaviors causing incidents (e.g. traffic accident) using image processing techniques and fuzzy 

logic to predict an incident before it occurs. Trivedi et al. [100] described a method for 

developing distributed video networks for incident detection and management using 
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omnidirectional camera. Blosseville et al. [101] used image processing technique to detect 

shoulder incidents. Versavel and Boucke [102] presented a video incident detection method that 

used PTZ cameras. Michalopoulos and Jacobson [103] developed a method to detect incidents 

almost 2miles away. These methods were able to detect incidents to good extent with false alarm 

rate of about 3%. However most of these systems were used to detect incidents at roadways and 

have limited ability to detect traffic accidents at intersection. 

Some of the approaches discussed above were limited to detect abnormal incidents at 

roadways; therefore more emphasis was given to determine accidents by later researchers. Atev et 

al. [104] used vision-based approach to predict collision at traffic intersection. In this method the 

vehicles are tracked using their centroid position and information about the vehicle such as 

velocity, position, width and height are computed and a bounding box is drawn around each 

tracked vehicle. Using the bounding box information around each vehicle collision is determined 

based on the amount to which the bounding box intersect. Hu et al. [105] used vehicle velocity 

and trajectory information to predict traffic accident using neural networking training of traffic 

parameters. Ki and Lee [106] used variation in speed, area, position and direction of the tracked 

vehicle to obtain and accident index which would determine the occurrence of accident at 

intersections. The method produced correct detection rate of 50% and false alarm rate of 

0.00496% on their test conditions. Kamijo et al. [107] applied a simple left-to-right hidden 

Markov model to detect accident at traffic intersections. The system is able to determine three 

types of incident namely bumping accident, passing and jamming. However the conclusion was 

restrictive because there were not enough traffic accident data. Salim et al. [114] used speed, 

angle, position, direction, size of the tracked vehicle and using learning algorithm to detect 

collision at road intersections. Althoff et al. [117] used Markov chain probability model to detect 

collision. Zou et al. [118] used HMM to detect incidents at signaled intersection using modeled 

traffic parameters. How the disadvantage of these methods is that some algorithm need high level 
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learning algorithm that are computationally complex and may not feasible to be implemented in 

real-time. 

2.3 Limitations of existing Vehicle Tracking and Accident Detection Systems 

Some of the limitations of the existing vehicle detection, tracking and accident detection systems 

are given below 

1. Most of the existing vehicle detection and tracking systems have high computational 

complexity 

2. Some of the vehicle detection systems use sophisticated background modeling methods 

which adds to the complexity of the algorithm. 

3. Some of the existing vehicle tracking systems need high speed processors for 

implementation. 

4. Some of the systems make use of high level learning algorithm such as HMM, neural 

network to detect accidents which make the real-time implementation difficult. 

5. Real-time implementation of these systems is not feasible on low speed processors 

In this chapter we have briefly discussed about the existing vehicle tracking and accident 

detection systems and their advantages and disadvantages. Considerable number of research work 

has been done related to this field and few systems have been used in practical situations. 

However there is room for improvement in all the systems that have been reviewed 
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CHAPTER 3 
 

SYSTEM OVERVIEW AND CAMERA CALIBRATION 

3.1. Problem Definition 

The problem addressed in this research is preliminary approach to real -time implementation of 

accident detection systems at traffic intersections. Therefore the main objective of this research is 

to design and implement an accident detection system through video processing that is suitable 

for real-time implementation. Figure 3.1 illustrates brief overview of the system. 

 

 

 

Figure 3.1: Brief overview of the accident detection system [accident image shown in the figure is 

downloaded from http://www.fotosearch.com/GLW051/690397494/] 
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3.2. Approach 

As shown in the Figure 3.1, image sequences are extracted from the video camera mounted on the 

pole at traffic intersection. The image sequences are fed to the accident detection module system 

where the occurrence of the accident is determined. The accident detection system consists of 

vehicle detection, vehicle tracking, vehicle parameter extraction and accident detection sections. 

The brief overview of the accident detection module is presented in detail in chapter 1, section 

1.3. In addition to the image input, some more auxiliary information is also fed as input to the 

system. The following information is fed as input to the system. They are: stored background 

image, threshold values for the image processing, information about the position and orientation 

of the camera, camera calibration parameters and frame rate of the video sequence. After 

analyzing the image sequence, the system identifies the moving vehicles in the image and tracks 

them using low-level features. After the vehicles are tracked correctly in each frame, the speed, 

orientation, position and area of the tracked vehicle are used to determine the occurrence of 

accident. Once an occurrence of accident is detected, the system signals the detection of accident 

to the user.  

3.2.1. Advantages of the System 

The following are the advantages of the system 

1. System is able to operate in real-time with common CPU processor and with the use of 

high speed processor; the processing rate can be speeded up further. 

2. The vehicle detection and tracking algorithm used in the system have low computational 

cost. 

3. Vehicle tracking method used in the system makes use of low-level features which have 

low complexity when compared to the existing systems discussed earlier 
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4. The system focuses on real-time implementation of accident detection at traffic 

intersection where the occurrence of accidents is estimated to be more. 

5. Because of the fast operating time, future enhancements can be added to the system to 

make it more robust. 

3.2.1. Limitations and Assumptions 

The following list the limitations and assumptions used in the thesis 

1. The system assumes that the video camera used to record the traffic image sequence is 

assumed to be parallel to the ground plane. 

2. The system works well only in daylight conditions. The performance of the system has 

not been evaluated in night conditions. 

3. The system does not handle occlusion well especially if part of a vehicle is occluded with 

another vehicle. 

4. Although the system is able to achieve real-time performance, the method had been tested 

and evaluated offline. Online evaluation of the algorithm has not been done. 

3.3. Experimental Setup and Testing Conditions 

For the purpose of testing our algorithm we used two video sequences obtained from traffic 

intersection at Saigon, Vietnam. These videos were used to test the performance of the tracking 

algorithm. These videos were used as they provided nice scenarios for busy traffic intersection. 

The testing was done offline and results were used to improve the performance of the tracking 

algorithm. Few frames from the test videos are shown in the Figure 3.2 and Figure 3.3. Figure 2.4 

shows the frame sequences from the video named saigon01.avi and Figure 2.5 shows the frame 

sequences from the video named saigon02.avi. 
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Figure 3.2: Frame sequences from test video saigon01.avi 

 

Figure 3.3: Frame sequences from test video saigon02.avi 
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3.3.1. Indoor Experimental Setup 

For the purpose of testing the accident detection system, indoor experimental setup was made in 

the laboratory with artificial lighting mimicking daylight conditions. The video camera used for 

this purpose was Q24 Mobitix Camera. The camera was placed parallel to the ground plane to 

shoot the testing sequence. PC controlled cars were used for the purpose of tracking vehicles and 

creating collision between vehicles. The advantage of PC controlled cars is that the trajectory and 

the velocity of the vehicles can be controlled by the user. Optical tracking system was also used 

in the setup. The advantage of Optical tracking system is that the velocity information of the 

vehicles can be obtained instantaneously which is used to verify the velocity information 

determined by the accident detection system. Figure 3.4 shows the experimental setup used in the 

laboratory. 

 

 Figure 3.4: Experimental setup used in the laboratory 
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Figure 3.5 shows the frame sequence in the testing video obtained from the laboratory setup. The 

bottom row shows a scenario for occurrence of accident. 

 

 

The algorithm for vehicle detection, vehicle tracking and accident detection system are 

explained in detail in the following chapters. The detail description of vehicle detection is 

presented in Chapter 3. 

3.4. Camera Calibration  

Camera Calibration is an essential step in a vision-based vehicle tracking system. Camera 

calibration involves estimating a projective matrix which describes the mapping of points in the 

world onto the image plane. A calibrated camera enables us to relate pixel-measurements to 

measurements in real world units (e.g., feet) which are used to handle scale changes (as vehicles 

Figure 3.5: Frame sequences from the test video obtained from the laboratory setup 
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approach or recede from the camera) and to measure speeds [108]. Two types of parameters need 

to be estimated to find the mapping between the image coordinates and world coordinates. They 

are extrinsic and intrinsic parameters of the camera. The extrinsic parameters define the location 

and orientation of the camera reference frame with respect to a known world reference frame. The 

intrinsic parameters are necessary to link the pixel coordinates of an image point with the 

corresponding coordinates in the camera reference plane [109]. Figure 3.6 shows mapping of 3D 

point to 2D point. 

 

 

3.4.1. Calibration for Saigon Traffic Videos 

For the Saigon videos the camera is assumed to be placed parallel to the ground plane since 

accurate information about the camera position is not known. From close observation of the 

traffic video it was estimated that the camera was placed at very high angle, presenting good top-

Figure 3.6: Mapping 3D point to 2D point [109] 
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down view of the traffic intersection. Figure 3.7 shows the scenario encountered in case of Saigon 

traffic intersection. The camera is place parallel to the ground plane. 

 

 

3.4.1.1. Photogrammetric correction factor 

Since the sizes of the objects in an image are measured in pixels, they have to be converted into 

units used in the real world to determine the sizes and speeds of vehicles to which they 

correspond [48]. The Figure 3.8 illustrates the situation where the camera is place parallel to the 

ground plane. 

From the image geometry shown in Figure 3.7 

                                                                     
𝑦

𝑥
=  

𝑑2

𝑑1
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                               (3.1) 

Figure 3.7: Camera placed parallel to the ground plane 
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                                                                           𝑥 =   
𝑑1

𝑑2
 × 𝑦                                                   (3.2) 

where (d1/d2) = scale factor 

In this case, the actual distance can be calculated by multiplying the distance in pixels by the 

scale factor. Similarly, the area of a blob can be calculated using the scale factor. 

 

 

3.4.2. Camera Calibration for Q24 Mobitix Camera 

A perspective-projective pinhole camera model is assumed. The relationship between an object 

point measured with respect to user-defined world coordinate system and its image plane is 

described by a 3x4 homogeneous transformation matrix [108]. The detailed description of the 

intrinsic and extrinsic parameters can be found in [109,110,111].This matrix will be referred as 

the camera calibration matrix C, where C = CinCext. Cin is the matrix containing the intrinsic 

parameters and Cext is the matrix containing the extrinsic parameters. 

Figure 3.8: Photogrammetric correction for camera placed parallel to the ground plane 

 

 

 

 



34 

 

The matrix containing the intrinsic camera parameters is given by: 

                                                      𝐶𝑖𝑛 =  

 
 
 
 
 
 
−𝑓

𝑠𝑥
 0 𝑜𝑥

0
−𝑓

𝑠𝑦 𝑜𝑦

0 0 1  
 
 
 
 
 

                                                (3.3) 

where f is the focal length of the camera. [sx sy] correspond to the effective size of the pixels in the 

horizontal and vertical directions (in millimeters). [ox oy] are the coordinates of the principal point 

(in pixels). 

The matrix containing the extrinsic camera parameters is given by: 

                                                      𝐶𝑒𝑥𝑡 =   

𝑟11 𝑟12 𝑟13 −𝑅1
𝑇𝑇

𝑟21 𝑟22 𝑟23 −𝑅2
𝑇𝑇

𝑟31 𝑟32 𝑟33 −𝑅3
𝑇𝑇

                                         (3.4) 

where T is the translation vector and R is the rotation matrix given by 

                                                                  𝑅 =   

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

                                                 (3.5) 

                                                                                  𝑝  = 𝐶𝑃                                                      (3.6)         

where 𝑝 =   𝑢𝑤 𝑣𝑤 𝑤  and 𝑃 =   𝑥 𝑦 𝑧 𝑇  are vectors containing homogeneous coordinates of 

image point, 𝑝 =   𝑢 𝑣  and world point 𝑃 =   𝑥 𝑦 𝑧 𝑇  respectively. Representing the matrix with 

corresponding entries we get 

                                        𝑢𝑤 𝑣𝑤 𝑤 =   

𝑐11 𝑐12 𝑐13 𝑐14

𝑐21 𝑐22 𝑐23 𝑐24

𝑐31 𝑐32 𝑐33 𝑐34

  𝑥 𝑦 𝑧 1                          (3.7) 

The homogeneous transformation matrix C is unique only up to a scale factor. C by making the 

scale factor c34 = 1. 
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Expanding the above equation (3.7), yields 

                                                             𝑢 =  
𝑐11𝑥+𝑐12𝑦+𝑐13𝑧+𝑐14𝑥  

𝑤
                                                (3.8) 

                                                            𝑣 =  
𝑐21𝑥+𝑐22𝑦+𝑐23𝑧+𝑐24𝑥  

𝑤
                                                 (3.9) 

                                                         𝑤 = 𝑐31𝑥 +  𝑐32𝑦 + 𝑐33𝑧 + 1                                          (3.10) 

Substituting w into two equations (3.8) and (3.9) gives 

                                                             𝑢 =
𝑐11𝑥+𝑐12𝑦+𝑐13𝑧+𝑐14𝑥  

𝑐31𝑥+ 𝑐32𝑦  + 𝑐33𝑧+1
                                               (3.11) 

                                                           𝑣 =  
𝑐21𝑥+𝑐22𝑦+𝑐23𝑧+𝑐24𝑥  

𝑐31𝑥+ 𝑐32𝑦  + 𝑐33𝑧+1
                                                (3.12) 

Equations (3.8) and (3.9) define a mapping from the world coordinates to the image coordinates. 

 For a point in the world, we can calculate its image coordinates if we know the location 

of that point in terms of the user-defined world-coordinate system and camera calibration matrix, 

C. The camera calibration matrix C consists of 11 unknown parameters. Knowing the world 

coordinates and the image coordinates of a single point yields to equations of the form (3.8) and 

(3.9). Six or more points in a non-degenerate configuration lead to an over-determined system: 

             

 
 
 
 
 
 
 
 
 
𝑥1 𝑦1 𝑧1 1 0 0 0 0 −𝑢1𝑥1 −𝑢1𝑦1 −𝑢1𝑧1

0 0 0 0 𝑥1 𝑦1 𝑧1 1 −𝑣1𝑥1 −𝑣1𝑦1 −𝑣1𝑧1

𝑥2 𝑦2 𝑧2 1 0 0 0 0 −𝑢2𝑥2 −𝑢2𝑦2 −𝑢2𝑧2

0 0 0 0 𝑥2 𝑦2 𝑧2 1 −𝑣2𝑥2 −𝑣2𝑦2 −𝑣2𝑧2

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .
𝑥𝑛 𝑦𝑛 𝑧𝑛 1 0 0 0 0 −𝑢𝑛𝑥𝑛 −𝑢𝑛𝑦𝑛 −𝑢𝑛𝑧𝑛
0 0 0 0 𝑥𝑛 𝑦𝑛 𝑧𝑛 1 −𝑣𝑛𝑥𝑛 −𝑣𝑛𝑦𝑛 −𝑣1𝑧1  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑐11

𝑐12

𝑐13

𝑐14

𝑐21

.

.

.
𝑐33 

 
 
 
 
 
 
 
 

=  

 
 
 
 
 
 
 
 
 
𝑢1

𝑣1

𝑢2

𝑣2

.

.

.
𝑢𝑛
𝑣𝑛  
 
 
 
 
 
 
 
 

      (3.10) 

which can be solved using a standard least squares technique. 
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The offline calibration process depends upon the user-specified point correspondences for 

the calibration process. For improving the accuracy, it is desired that the world coordinates are 

derived from the actual measurements of the scene (e.g., having place markers at known 

distance). The internal and external parameters of the camera were measured using the Caltech 

Camera Calibration Toolbox [112]. In total 15 checker board patterns with different orientation 

and position with respect to the camera-centered view were used. Figure 3.9 shows some of the 

checker board patterns used for the purpose of camera calibration as required by the Camera 

Calibration Toolbox. Figure 3.10 shows an illustration of camera calibration process for direct 

estimation of projective matrix as done by the Toolbox. Figure 3.11 shows the estimation of 

extrinsic parameters with camera-centered view.  The detail description of the Camera 

Calibration process is given in [112]. Using the dimensions of a known type of object (e.g., 

vehicle, marker) is an approximated method for estimating world coordinates of control points. 

 From the camera calibration parameters a point in three dimensional space is mapped into 

a two dimensional image plane. The loss of dimension result into a non-invertible mapping. 

Given the calibration parameters for the camera and the image coordinates of a single point, the 

best we can do is to determine a ray in space passing through the optical center and unknown 

point in the world. To measure distances in the road plane, we can substitute z=0 in above 

equation (3.10) to get the mapping points from the image plane (u,v)  to corresponding points in 

the road plane (x,y):  

                                                   
𝑥
𝑦 =   

𝑐11 − 𝑢𝑐31 𝑐12 − 𝑢𝑐32

𝑐21 − 𝑣𝑐31 𝑐22 − 𝑣𝑐32
 
−1

 
𝑢
𝑣
                                  (3.11) 

            The following intrinsic and extrinsic parameters were obtained from the Camera 

Calibration toolbox: The resolution of images used for camera calibration is 640 x 480 pixels. 
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Intrinsic parameters: 

Focal length [fx  fy] = [ 492.09272   399.23243 ] ± [ 108.28708   56.24564 ] (in pixels) 

Principal point [ox  oy] = [ 252.55073   187.45716 ] ± [ 34.26970   17.50563 ]( in pixels) 

Skew = 0; Angle of pixel axes = 90 degrees. 

Extrinsic parameters: 

Rotation matrix 𝑅 =   
0.21 0.97 −0.099
0.79 −0.23 −0.57

−0.006 −0.73 −0.69
  

Translation vector 𝑇 =  
−162.54
−271.06
3126.48

  

 

 

 
Figure 3.9: Checker board patterns used for camera calibration 
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Figure 3.10: Illustration of Camera Calibration process for direct estimation of projective matrix 

 

 

 

 

Figure 3.11: Estimation of Extrinsic Parameters  
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CHAPTER 4 
 

VEHICLE DETECTION AND FEATURE EXTRACTION 

4.1. Vehicle Detection 

Vehicle Detection is an important stage of the accident detection system in which the moving 

vehicles are segmented from the background. Figure 4.1 shows brief description of vehicle 

detection system.  

 

 
Figure 4.1: Description of vehicle detection system 
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The method that is used for detecting moving vehicles is background subtraction. Since 

the research focused on real-time implementation of the system, background modeling techniques 

that have high computational cost were not tried. And also since the testing of the algorithm is 

done offline and the position of the camera recording the video sequence is static we used a 

stored background frame for background subtraction. Once the vehicle regions are detected, 

suitable low-level features are extracted from the vehicle regions. The process of vehicle 

detection is explained in detail in the following sections.  

4.1.1. Background Subtraction 

The first step in the algorithm is to subtract the background from the current input frame to detect 

the vehicles. Figure 4.2 shows examples of background subtraction method. Figure 4.2(a) shows 

the input frame, Figure 4.2(b) shows the background frame used and Figure 4.3(c) shows the 

difference image. 

  

 
Figure 4.2: Examples of Background Subtraction (a) Input frame (b) Background frame (c) 

Difference Image 

 

 

(a) (b) (c) 
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Here frame at time t from the input video along with the previously acquired background 

frame (containing no vehicles) is fed as input to the algorithm. The algorithm subtracts the 

intensity value of each pixel in the frame It(x,y) from the background image Ibk(x,y) resulting in a 

difference image Idiff(x,y) given by 

                                                   𝐼𝑑𝑖𝑓𝑓  𝑥,𝑦 =  𝐼𝑡 𝑥,𝑦 − 𝐼𝑏𝑘  𝑥,𝑦                                            (4.1) 

As mentioned, this background subtraction step is performed to detect moving objects                                                                          

since the static objects are part of background. Thus, we are left with the intensity values of 

moving objects in the difference image Idiff(x,y). 

4.1.2. Thresholding and Morphological Processing 

 

 

(a) (b) 

Figure 4.3: Illustration of thresholding (a) Difference image (b) Thresholded image 
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The difference image Idiff(x,y) is converted into a binary image bw(x,y) using a specific threshold 

value T as follows 

                                                    𝑏𝑤 𝑥,𝑦 =  
1, 𝐼𝑑𝑖𝑓𝑓  𝑥,𝑦 ≥ 𝑇

0, 𝐼𝑑𝑖𝑓𝑓  𝑥,𝑦 < 𝑇
                                               (4.2) 

The value of T was empirically estimated to be 0.1 in the experiment. Figure 4.3 shows 

the process of thresholding. Figure 4.3(a) shows the difference image and Figure 4.3(b) shows the 

thresholded image. 

 The binary image bw(x,y) obtained from thresholding suffers from noise and 

unwanted pixel values. Therefore morphological operations, opening followed by closing is done 

on the binary image bw(x,y) to obtained a  final cleaned image bwfinal(x,y). Figure 4.4 shows the 

 

 Figure 4.4: Illustration of Morphological Processing (a) Thresholded image (b) Cleaned image 

 

(a) (b) 
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morphological processing. Figure 4.3(a) shows the thresholded image and Figure 4.3(b) shows 

the final cleaned image after morphological operations. The final binary image bwfinal(x,y) 

consists regions of individual detected vehicles.  

4.1.3. Connected Component Labeling and Region Extraction 

The regions in the binary image bwfinal(x,y) are labeled using connected component labeling. This 

process labels the regions in the binary image and yields an estimate of the number of connected 

components. From this process, the number of vehicles detected in the image is estimated. Figure 

4.5 shows connected component labeling output. Figure 4.5(a) is the binary image and Figure 

4.5(b) is the labeled image. 

 

 

(a) (b) 

Figure 4.5: Connected component labeling (a) Binary image (b) Labeled image  
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After connected component labeling, the binary map is applied on the original input 

frame It(x,y) and hence we focus only on those regions in which the vehicle are detected. Figure 

4.6 illustrates the process of vehicle region extraction. Figure 4.6(a) shows the input image; 

Figure 4.6(b) shows the binary mask of the vehicle regions and Figure 4.6(c) shows the detected 

vehicle regions from the input image. 

 

 

4.2. Feature Extraction 

After the regions containing vehicles are extracted, suitable low-level features are extracted from 

the vehicle regions. The features used are area, centroid, orientation, luminance and color. These 

features are used because of their low computational complexity. Figure Let Xi {i= 1, 2, 3...} 

denote the individual vehicle regions detected in the input image It(x,y) and let fk(Xi) denote the kth 

feature.  

 

Figure 4.6: Illustration of vehicle region extraction (a) Input image (b) Binary image (c) Detected 

vehicle regions 

 

 

 

 

 

 

 

 

(a) (b) (c) 
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4.2.1. Bounding Box 

From the connected component labeled image, the bounding box coordinates of each vehicle 

region is calculated. From the bounding box coordinates, the height and width information of the 

vehicle region is estimated. These bounding box coordinates are used to calculate the features of a 

particular vehicle region. Figure 4.7 shows an example of extracted vehicle regions. Figure 4.7(a) 

is the original image with bounding box drawn along each vehicle, Figure 4.7(b) shows the 

extracted vehicle regions using the bounding box information and Figure 4.7(c) shows the binary 

map associated with the vehicle regions. 

 

 

 

(a) 

(b) (c) 

Figure 4.7: Example of extracted vehicle regions (a) Input image with bounding box around each 

vehicle region (b) Extracted vehicle using the bounding box (c) Labeled vehicle regions 
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4.2.2. Area 

Let f1(Xi) denote the area of region Xi. Area is defined as the total number of pixels N in the region 

Xi. The expression for f1(Xi) is given by 

                                                                  𝑓1 𝑋𝑖 = 𝑁 ∈  𝑋𝑖                                                        (4.3) 

From Figure 4.8(b), area of a particular vehicle region is given by the number of white pixels in 

the binary map.                                                                                           

 

 

(a) (b) 

Figure 4.8: Example showing area of the vehicle regions (a) Vehicle region (b) Binary mask 

from which area is estimated 
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4.2.3. Centroid 

Let f2(Xi) denote the area of region Xi. Centroid is defined as the centre of mass of the region Xi. 

The expression for f2(Xi) is given by 

                                                       𝑓2 𝑋𝑖 =   
𝑥1+𝑥2+⋯𝑥𝑛

𝑁
,
𝑦1+𝑦2+⋯𝑦𝑛

𝑁
                                       (4.4) 

                                                                    𝑓2 𝑋𝑖 =   𝑥,  𝑦                                                       (4.5) 

where x1, x2,…. xn denote the points along the horizontal plane of the image and y1, y2,…. yn  

denote the points along the vertical plane of the image. Figure 4.9 shows an example of location 

of centroid of vehicle regions. 

 

 

 

Figure 4.9: Example showing the location of centroid of vehicle regions 
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4.2.4. Orientation 

Let f3(Xi) denote the area of region Xi. Orientation is determined by the bounding box of each 

vehicle region. Orientation is defined as the angle in degrees between the x axis and major axis of 

the ellipse that has the same second moments as region Xi. Orientation ranges from 90 degrees to 

-90 degrees. Figure 4.10 illustrates the orientation of a vehicle region. Figure 4.10(a) shows a 

vehicle region and its corresponding ellipse. Figure 4.10(b) shows the same ellipse, with features 

indicated graphically. In Figure 4.10(b) the solid black lines are the axes. The orientation is given 

by the angle between the horizontal dotted line and the major axis of the ellipse. 

 

 

 

 

 

Figure 4.10: Example showing the orientation of the vehicle region (a) Vehicle region and its 

corresponding ellipse (b) Graphical representation of the ellipse 

(a) (b) 
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The expression for f3(Xi) is given by 

                                           𝑓3 𝑋𝑖 =   

1

2
𝑐𝑜𝑡−1  

𝑎−𝑐

𝑏
 , 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 < 𝑐

𝜋

2
+

1

2
𝑐𝑜𝑡−1  

𝑎−𝑐

𝑏
 , 𝑏 ≠ 0 𝑎𝑛𝑑 𝑎 > 𝑐

                             (4.6) 

where a, b is the semi-length of the of the major axis and minor axis of the ellipse, respectively 

and 𝑐 =  𝑎2 −  𝑏2 . 

4.2.5. Luminance and Color 

Let f4(Xi) and f5(Xi) denote the average luminance and average color in the region Xi. These two 

features are given by  

                                                                    𝑓4 𝑋𝑖 =  𝐿∗ (𝑋𝑖)                                                      (4.7) 

                                                               𝑓5 𝑋𝑖 =  𝑎∗    𝑋𝑖 ,𝑏
∗   (𝑋𝑖)                                            (4.8) 

where 𝐿∗ ,𝑎∗   , 𝑏∗     denote the average 𝐿∗,𝑎∗, 𝑏∗ measured in the CIE 1976 (𝐿∗,𝑎∗, 𝑏∗) color space 

(CIELAB). The value of L* ranges between 0 and 100, while the values of a* and b* ranges 

between negative to positive values. Figure 4.11 shows the RGB image converted to L* a* b* 

color space. Figure 4.11(a) shows the RGB image and Figure 4.11(b) shows different scales of L* 

a* b* color space.  

 

 



50 

 

 

 

 

4.3. Feature Vector 

All the above features discussed earlier are grouped together in a feature vector of a particular 

region Xi. The feature vector is given as ft(Xi)  

                                          𝒇𝑡 𝑋𝑖 =   𝑓1 𝑋𝑖 ,𝑓2 𝑋𝑖 ,𝑓3 𝑋𝑖 , 𝑓4 𝑋𝑖 ,𝑓5 𝑋𝑖                               (4.9) 

Examples of regions extracted from a frame are shown in Figure 4.13, Figure 4.15 and Figure 

4.17 and their measured features are presented in Table 4.1, Table 4.2 and Table 4.3. 

(a) 

(b) 

Figure 4.11: RGB to L
*
 a

*
 b

*
 conversion (a) RGB image (b) Different scales of L

*
 a

*
 b

*
 

color space 
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Features (a) (b) (c) (d) (e) (f) (g) 

Area(pixels) 237 1208 217 56 220 1455 1382 

Centroid(pixel) 𝑥  44 89 84 200 195 190 299 

𝑦  25 78 178 171 73 15 67 

Orientation(degrees) -22.5 -10.5 -15.7 57 44 -5.1 -13 

Luminance 64 83.1 61 67.7 69.8 56.5 69.2 

Color 𝑎∗    1.06 -0.1 -0.21 3.72 1.3 -0.4 0.4 

𝑏∗    -0.78 -0.4 1.26 -0.83 -0.15 -2.1 -0.2 

 

Figure 4.12: Example frame at time t 

Figure 4.13: Regions extracted from Figure 4.12 

(a) 

(b) 

(c) (d) 
(e) 

(g) 

(f) 

Table 4.1: Features extracted from vehicles in Figure 4.13. 
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Figure 4.14: Example frame at time t 

Figure 4.15: Regions extracted from Figure 4.14 

(a) 

(b) 

(c) 
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Features (a) (b) (c) 

Area(pixels) 1393 1472 1583 

Centroid(pixel) 𝑥  24 190 218 

𝑦  120 24 112 

Orientation(degrees) 81.7 -30.6 -51.7 

Luminance 61.2 60.9 83.1 

Color 𝑎∗    0.4 -0.8 0.8 

𝑏∗    -1.5 -2.5 -0.7 

 

 

 

 

 

Table 4.2: Features extracted from vehicles in Figure 4.15. 

Figure 4.16: Example frame at time t 
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Features (a) (b) (c) (d) (e) 

Area(pixels) 180 1448 1124 511 1713 

Centroid(pixel) 𝑥  39 105 174 185 235 

𝑦  159 175 33 202 312 

Orientation(degrees) -37.7 36.4 -21.8 -9.6 -10.2 

Luminance 69.2 85.9 57.7 92.0 75.8 

Color 𝑎∗    1.45 0.6 0.2 -6.83 0.0 

𝑏∗    6.6 0.0 -2.5 33.8 -0.6 

 

Figure 4.17: Regions extracted from Figure 4.16 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

Table 4.3: Features extracted from vehicles in Figure 4.17. 
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CHAPTER 5 
 

VEHICLE TRACKING AND ACCIDENT DETECTION SYSTEM 

5.1. Human Visual System (HVS) Model Analysis 

The features described in Chapter 4, section 4.2 can assist in tracking vehicles across multiple 

frames. However these frames do not explicitly take into account the overall visual appearance of 

each vehicle as gauged by the human eye. To model this aspect, we employ a visual quality 

estimator, called MAD (Most Apparent Distortion), recently developed by the authors [113]. 

Given two images (or image regions), MAD will return an index which is proportional to how 

dissimilar the two images appear to a human observer. MAD operates by using a combination of 

visual detection model and a visual appearance model. The detection-based employs models of 

the human contrast sensitivity function, luminance masking and contrast masking to gauge subtle 

(near-threshold differences). The appearance-based model employs a log-Gabor transform and 

local comparisons of log-Gabor coefficient statistics in an attempt to model the visual appearance 

of clearly visible differences. The MAD index is computed via a weighted geometric mean of 

these two model outputs. 

 Here we use MAD to assist in tracking by searching for the vehicle in the next frame that 

mostly closely matches (i.e., yields the lowest MAD index) for a given vehicle in the current 

frame. Specifically, after the regions in the frames It and It+1 are detected, they are subjected to 

MAD analysis. In this step each of the regions Xi {i= 1, 2, 3...} frame It are compared one-by-one 

with each of the regions Xj{j= 1, 2, 3...} in frame It+1. Thus the regions in It forms the first input 

to MAD algorithm and the regions in frame It+1 form the second input to MAD algorithm. The
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(a) (b) 

Figure 5.1: Example of HVS model analysis (a) Frame at time t (b) Frame at time t+1 (c) MAD 

index for different vehicle comparisons (d) MAD index for matching vehicles 

(c) 

(d) 
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(a) (b) 

(c) 

(d) 

Figure 5.2: Example of HVS model analysis (a) Frame at time t (b) Frame at time t+1 (c) MAD 

index for different vehicle comparisons (d) MAD index for matching vehicles 
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output for each comparison is denoted by dMAD(Xi, Xj).If a particular region in frame It+1 matches 

with a region in frame It, MAD should yield an index close to zero, meaning that the vehicles 

detected in frame It+1 and It are the same. An example of the MAD analysis is shown in the Figure 

5.1 and Figure 5.2. The regions are resized to a common size (of atleast 64x64 pixels) as required 

by MAD. A lower MAD index denotes a closer visual match between the vehicle regions. From 

Figure 5.2 it was found out that MAD gave good performance results even when some details of 

the region such as color, luminance, and texture were not well presented. 

5.2. Vehicle Tracking 

The tracking is done via corresponding via: (1) Searching for the region in frame It+1 whose 

features most closely match the features of the given region in frame It and (2) searching for the 

region in frame It+1, with the lowest MAD index as compared to the given region in frame It. 

5.2.1. Feature Distance 

In this step the feature vector of the regions extracted from frames It and It+1 are used. For the 

purpose of tracking the vehicles accurately across each frame, the Euclidean distance between the 

feature vector of each region Xi {i= 1, 2, 3...} in It and the feature vector of each region Xj {j= 1, 

2, 3...} in It+1. Let ft(Xi) denote the feature vector of the ith region extracted from frame It and 

ft+1(Xi) denote the feature vector of the jth region extracted from frame It+1. Let dfeatures(Xi, Xj) 

denote the distance between ft(Xi) and ft+1(Xi) and is given by: 

                                        𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  𝑋𝑖 ,𝑋𝑗  =   𝒇𝑡 𝑋𝑖 ,  − 𝒇𝑡+1 𝑋𝑗   
2
                                   (5.1) 

5.2.2. Weighed Combination of Feature Distance and MAD analysis 

Equation (5.1) provides one measure of similarity between vehicle regions in frame It and It+1. 

This similarity measure can be improved by combining distance index dfeatures(Xi, Xj) and MAD 
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index dMAD(Xi, Xj) to compute an overall similarity measure between the vehicle regions. For this 

purpose dfeatures(Xi, Xj) and dMAD(Xi, Xj) are combined using weights. The overall similarity 

measure d (Xi, Xj) is given by: 

                               𝑑 𝑋𝑖 ,𝑋𝑗  =  𝛼𝑑𝑀𝐴𝐷 𝑋𝑖 ,𝑋𝑗  +  1 − 𝛼 𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  𝑋𝑖 ,𝑋𝑗                              (5.2)  

where α is the weighting factor. The value of α was empirically chosen to be 0.9. Finally the 

closest matching between vehicle regions in frame It and frame It+1 is determined by searching for 

the minimum value resulting from the weighted combination output d (Xi, Xj) and is given by 

                                                           𝑗∗ = arg𝑚𝑖𝑛𝑗  𝑑 𝑋𝑖 ,𝑋𝑗                                                   (5.3) 

Tracking is done typically between two consecutive frames It and It+1.   At first instance 

of the system, vehicle regions in two consecutive frames are detected and their corresponding 

features are extracted simultaneously. In next step using the vehicle feature vector, feature 

distance vector dfeatures is computed between vehicle regions in frames It and It+1.   Also similarity 

index dMAD  is computed between vehicle regions in frames It  and It+1 and the tracking is done 

using a weighted combination of  dfeatures  and dMAD  as explained by the equation (5.2) and 

equation (5.3).  

Since the tracking is done between two consecutive frames at a time, for rest of the 

instances of the system, the information of the vehicles in frame It+1 are carried over to the next 

tracking step between frames It+1 and It+2, and there is no necessity to extract the vehicle 

information in frame It+1, since this information is already computed in the previous step, thus 

saving time and computation. In the following steps the vehicle information in the upcoming 

frames (It+2, It+3, It+4…) are extracted and are compared with the vehicle information obtained in 

the previous frames (It+1, It+2 ...) to track the vehicle as explained earlier. For the purpose of 

tracking, when the vehicle information computed in the previous frames (e.g., It+1) are carried 
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over in the next step, the vehicles in It+1 are labeled in the order they occurred in the frame It and 

then compared with the vehicle information in the frame It+2, thus the system will be able to know 

which vehicle it is tracking. This process is repeated for the upcoming frames. 

If a match for particular vehicle region in frame It cannot be found in the frame It+1, the 

vehicle region is assumed to be left out of the scene and the vehicle is no more tracked and its 

information are not carried over to the next step. Similarly if a new vehicle region is detected in 

the frame It+1, the features of the vehicle are extracted and used for tracking in the upcoming 

frames. These procedures are explained in detail as follows. 

 While finding the minimum index from the overall similarity measure d (Xi, Xj) to find 

the matching vehicles between frames It and It+1, suppose a vehicle found in frame It has left the 

scene in frame It+1, the system still tries to find a closely matched vehicle in frame It+1 

corresponding to a vehicle region in frame It , which is not a true match of the vehicle in It since it 

has left the scene in It+1 but unknown to the system. Inorder to overcome this situation, when the 

system finds a false match to a vehicle in It, the area and centroid position of the vehicle in search 

belonging to It is compared to the falsely matched vehicle in It+1. Since they are false matches the 

Euclidean distance between the area and centroid of these vehicles should be larger than some 

predefined threshold value. If this condition is satisfied, the system is informed that there was a 

false match and made to know that the vehicle in search has left the scene. There may be 

situations where the Euclidean distance may be lesser than the threshold value. In these cases 

other features such as the orientation and color information of the vehicles were used in addition 

to area and centroid. Since the comparison between the vehicles are done between consecutive 

frames, the area and centroid information of the vehicles were effective in finding the false 

matches in most of the cases. Similarly when a new vehicle region is detected in It+1 not 

previously detected in It, the scenario of false matches cannot be encountered since the system 

searches for close matches only for the vehicles belonging to It in It+1.           
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Illustration of vehicle tracking is explained as follows: 

 

 

 

 

Features (a) (b) (c) 

Area(pixels) 1301 1271 1502 

Centroid(pixel) 𝑥  24 189 219 

𝑦  119 24 112 

Orientation(degrees) 82.2 -32.6 -53.1 

Luminance 60.8 60.0 84.1 

Color 𝑎∗    0.4 -0.9 0.8 

𝑏∗    -1.6 -0.9 -0.6 

Figure 5.3: Example frame at time t 

(a) 

(b) 

(c) 

Figure 5.4: Regions extracted from Figure 5.3 

 

 Table 5.1: Features extracted from vehicles in Figure 5.4. 
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Features (a) (b) (c) 

Area(pixels) 1304 1372 1511 

Centroid(pixel) 𝑥  23 193 221 

𝑦  122 26 114 

Orientation(degrees) 81.3 -31.6 -52.6 

Luminance 60.7 60.2 84.1 

Color 𝑎∗    -0.5 -1.3 0.6 

𝑏∗    -0.8 -1.7 -0.5 

Figure 5.5: Example frame at time t+1 

(a) 

(b) 

(c) 

Figure 5.6: Regions extracted from Figure 5.5 

 

 Table 5.2: Features extracted from vehicles in Figure 5.5. 



63 

 

 

dfeatures 
Vehicles in frame It+1 

(a) (b) (c) 

Vehicles in 

frame It 

(a) 2.04 308.78 440.23 

(b) 325.91 51.23 228.68 

(c)  444.21 286 7.11 

 

 

dMAD 
Vehicles in frame It+1 

(a) (b) (c) 

Vehicles in 

frame It 

(a) 4.38 9.43 12.12 

(b) 9.59 5.16 10.45 

(c)  12.07 10.39 2.69 

 

 

d with α=0.9 
Vehicles in frame It+1 

(a) (b) (c) 

Vehicles in 

frame It 

(a) 4.14 39.36 54.93 

(b) 41.22 9.77 32.27 

(c)  55.28 37.95 3.13 

 

Table 5.3: dfeatures computed between vehicle regions in It and It+1 

Table 5.4: dMAD computed between vehicle regions in It and It+1 

Table 5.5: Overall similarity measure d computed between vehicle regions in It and It+1 
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From the above Table 5.3, the matching vehicle regions between It and It+1 are determined based 

on the equation (5.3) as shown in the Figure 5.7. Example of tracked vehicles is shown in the 

Figure 5.8. Color rectangle box is drawn around each vehicle and from the Figure 5.8 it can be 

seen that the color of the box around each vehicle across the frames remains the same indication 

that the vehicles are detected and tracked correctly. 

 

 

 

Figure 5.7: Overall similarity measure d for matched vehicles in It and It+1 

 

 

 

Figure 5.8: Example showing tracked vehicles across different frames 
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5.3. Computation of Vehicle Parameters 

Once the vehicles are detected and tracked correctly, vehicle parameters such as speed and 

trajectory are computed using the features extracted from the tracked vehicles.  

5.3.1. Speed of the Vehicles 

Speed of a particular vehicle region Xi in frame It is computed using the distance travelled by the 

vehicle in frame It+1 and the frame rate of the video from which the image sequence are extracted. 

The distance travelled by the vehicle is computed using the centroid position (𝑥 , 𝑦 ) of the 

vehicle in It and It+1. Let Xi denote a particular vehicle detected in It and Xj denote the same vehicle 

detected in  It+1, assuming the correspondence between the vehicles is determined using the 

vehicle tracking step. Speed of a particular vehicle region Xi is given by: 

                                               𝑆𝑝𝑒𝑒𝑑 𝑋𝑖 =
  𝑥  𝑋𝑖 −𝑥  𝑋𝑗   

2
+ 𝑦  𝑋𝑖 −𝑦  𝑋𝑗   

2

1

𝑓𝑟𝑎𝑚𝑒  𝑟𝑎𝑡𝑒

                               (5.4) 

The above equation (5.4) gives the speed of the vehicle in terms of pixels/sec. Inorder to 

determine the speed of the vehicle in terms of real-world unites (miles/hr), camera calibration 

process is used as explained in Chapter 3, Section 3.4. The relation between the image 

coordinates and real-world coordinates is given by the equation (3.11). Using the equation (3.11) 

the centroid position of a particular vehicle in It and It+1 is converted from pixel coordinates to 

real-world coordinates. From this step the speed of the vehicle in terms of (miles/hr) is 

determined. Similar process is repeated for all the vehicle regions detected and tracked. An 

illustration of determination of vehicle speed is given below: 
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Centroid(pixels) (a) (b) (c) 

𝑥  24 189 219 

𝑦  119 24 112 

 

 

 

Figure 5.9: Example frame at time t 

(a) 

(b) 

(c) 

Figure 5.10: Regions extracted from Figure 5.9 

 

 Table 5.6: Centroid of vehicles detected in Figure 5.10 
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Centroid(pixels) (a) (b) (c) 

𝑥  23 193 221 

𝑦  122 26 114 

 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒𝑖𝑐𝑙𝑒  𝑎 =
3.16 𝑝𝑖𝑥𝑒𝑙𝑠

1/15
= 47.4 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒𝑖𝑐𝑙𝑒  𝑏 =
4.48 𝑝𝑖𝑥𝑒𝑙𝑠

1/15
= 67.2 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

(a) 

(b) 

(c) 

Figure 5.11: Example frame at time t+1 

Figure 5.12: Regions extracted from Figure 5.11 

 

 Table 5.7: Centroid of vehicles detected in Figure 5.12 
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𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒𝑖𝑐𝑙𝑒  𝑐 =
2.83 𝑝𝑖𝑥𝑒𝑙𝑠

1/15
= 42.45 𝑝𝑖𝑥𝑒𝑙𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

 Since for the Saigon video the camera is assumed to be parallel to the ground plane, the scale 

factor as explained by equation (3.2) was obtained by comparing the known vehicle width and 

height with the pixel width and height of the vehicle as found in the image sequence. The scale 

factor that relates pixel distance to real-world distance was approximately found to be (1pixel ≃ 

10cm). Therefore scale factor = 0.00001(in terms of km units). Therefore the speed of the vehicle 

is in terms of miles/hr is given by: 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒𝑖𝑐𝑙𝑒  𝑎 = 11𝑚𝑖𝑙𝑒𝑠/𝑟  

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒𝑖𝑐𝑙𝑒  𝑏 = 15𝑚𝑖𝑙𝑒𝑠/𝑟 

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒𝑖𝑐𝑙𝑒  𝑐 = 10𝑚𝑖𝑙𝑒𝑠/𝑟  

These speeds are typically the speed of vehicles expected at traffic intersection. Therefore the 

assumption of the camera placed parallel to the ground plane to capture the video holds good in 

this case. 

5.3.2. Trajectory of the Vehicles 

Similar to finding the speed of the vehicles, trajectory of the vehicles are also estimated using the 

centroid information of the vehicles in frame It and It+1. A line fit is made connecting the centroid 

of a particular vehicle detected and tracked correctly in It and It+1 from the instant the vehicle 

enters the scene until it leaves the scene. Figure 5.14 and 5.16, illustrates the vehicle trajectory 

obtained for frame It to It+n. 
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(a) (b) 

Figure 5.13: Example frames for showing the vehicle trajectory (a) Frame at time t (b) Frame at 

time t+n 

 

 

Figure 5.14: Trajectory of the vehicles tracked from 

frame It to It+n 

 

 

Figure 5.15: Example frames for showing the vehicle trajectory (a) Frame at time t (b) Frame at 

time t+n 

 

 

(a) (b) 
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5.4. Accident Detection System 

Once the vehicles are detected and tracked correctly in frames It and It+1, the next step in the 

process is to determine the occurrence of accident using vehicle parameters such as the speed, 

trajectory and the features extracted from individual vehicles detected in It and It+1. In this thesis 

the work done by Ki and Lee [106] was adapted for the implementation of accident detection 

system. To determine the occurrence of accident at traffic intersection the variation in speed, area, 

orientation and position of the vehicles tracked are used. The accident detection process is 

explained as follows. 

5.4.1. Variation in Speed of the Vehicles 

Speed of the vehicles is an important factor while determining the occurrence of crashes at traffic 

intersection. Rapid change in the speed of the vehicles is a useful descriptor for a traffic accident. 

For example if a particular vehicle travels with a velocity v, after an occurrence of an accident 

there is rapid change in the velocity of the vehicle. Therefore variation in velocity of the vehicles 

across frames is used as a factor for judging the occurrence of crashes by the system. In the 

accident detection system vehicles are detected and tracked correctly and their velocity 

Figure 5.16: Trajectory of the vehicles tracked from 

frame It to It+n 
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information is extracted at each frame the vehicle occurs. After successful tracking of a vehicle in 

two consecutive frames It and It+1, the velocity information of the tracked vehicle obtained from It 

and It+1 is compared with that obtained from It-1 and It. Since it is assumed that the vehicles moves 

at approximately constant velocity, if a vehicle crashes with another vehicle in frame It+1, the 

velocity of the vehicles is expected to go down drastically. So when the velocity of the vehicle 

determined in It+1 is compared with that obtained in It, there should be a larger difference in the 

velocity of the vehicle indicating that a crash has occurred.  To determine the occurrence of 

accident the difference in velocity of vehicles obtained between two consecutive frames 

compared with that of a predefined threshold. 𝐶𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  ∆𝑣 = 𝑣 𝑎𝑡 𝐼𝑡+1 −  𝑣 𝑎𝑡 𝐼𝑡 . 

The following expression is used for the traffic accident detection algorithm: 

                                                             𝑉𝐼 =   
1,      𝑖𝑓 ∆𝑣 ≥ 𝑎

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒       
                                                 (5.4) 

where VI is the velocity index and a is the speed threshold. Figure 5.17 shows a scenario for 

accident detection. 

5.4.2. Variation in Area of the Vehicles 

Rapid change in the area of the vehicles detected and tracked can be used as a descriptor to detect 

accidents. When an accident occurs, two vehicles come into contact and there is possibility that 

the bounding box of the vehicles may intersect and in this case there is a rapid change in the area 

of the vehicles detected. To detect accidents the area of the vehicles detected and tracked in It and 

It+1 are compared and if the change in area of the vehicles exceeds a area threshold, then there 

may be possibility of accident. 𝐶𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑟𝑒𝑎 =  ∆𝑎𝑟𝑒𝑎 = 𝑎𝑟𝑒𝑎 𝑎𝑡 𝐼𝑡+1 −  𝑎𝑟𝑒𝑎 𝑎𝑡 𝐼𝑡 .The 

following expression is used as a factor for traffic accident detection: 

                                                            𝐷𝐼 =   
1, 𝑖𝑓 ∆𝑎𝑟𝑒𝑎 ≥ 𝑏
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒       

                                                 (5.5) 
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where DI is the area index and b is the speed threshold. Figure 5.18 shows a scenario for accident 

detection using change in area factor. 

5.4.3. Variation in Position of the Vehicles 

Change in centroid position of the vehicles in frames It and It+1 can be used as a factor to 

determine the occurrence of accident. Just like the change in area of the vehicles, when an 

accident occurs the bounding of two vehicles intersect causing a change in overall position of the 

vehicles. Therefore change in centroid of the vehicles in consecutive frames can be used as a 

descriptor to determine the occurrence of an accident. Change in centroid is given by: 

                                                        ∆𝑥 = 𝑥  𝑎𝑡 𝐼𝑡+1 −   𝑥  𝑎𝑡 𝐼𝑡                                                    (5.6) 

                                                       ∆𝑦 = 𝑦  𝑎𝑡 𝐼𝑡+1 −   𝑦  𝑎𝑡 𝐼𝑡                                                      (5.7) 

The following expression is used as a factor for traffic accident detection: 

                                                    𝑃𝐼 =   
1, 𝑖𝑓 ∆𝑥  ≥ 𝑐, 𝑖𝑓 ∆𝑦  ≥ 𝑑  

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
                                            (5.8) 

where PI is the position index and c,d are thresholds. Figure 5.19 shows an illustration of 

determining accidents using centroid information. 

5.4.4. Variation in Orientation of the Vehicles 

Variation in orientation of the vehicles can be used as a factor to determine the occurrence of an 

accident. As in the case of speed, area and centroid of the vehicles, the orientation of the vehicle 

in frames It and It+1 are compared. If there is a significant change in the orientation of the vehicles 

detected and tracked between two consecutive frames, then a possibility of accident is 

determined. 𝐶𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  ∆𝛳 = 𝛳 𝑎𝑡 𝐼𝑡+1 −  𝛳 𝑎𝑡 𝐼𝑡 . The orientation index OI is 

given by: 
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                                                              𝑂𝐼 =   
1, 𝑖𝑓 ∆𝛳 ≥ 𝑒

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒       
                                                (5.9) 

where e is the threshold for change in orientation of the vehicles. . Figure 5.19 shows an 

illustration of determining accidents using change in orientation. 

5.4.5. Overall Accident Index 

After computing the velocity, area, position and orientation index of the vehicles, the overall 

accident index is determine by the sum of individual indexes. The overall accident index is then 

compared with the accident threshold to determine the occurrence of accident. If the accident 

index exceeds a particular threshold, then an occurrence of accident is signaled, otherwise the 

system determines that there is no accident and the process is repeated until an accident is 

detected. The overall Accident Index (AI) is given by: 

                                                              𝐴𝐼 = 𝑉𝐼 + 𝐷𝐼 + 𝑃𝐼 + 𝑂𝐼                                            (5.10) 

The occurrence of accident is determined by: 

                                     𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 =  
1, 𝑖𝑓 𝐴𝐼 ≥ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑟𝑒𝑠𝑜𝑙𝑑
0,                                   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

                       (5.11) 

An outline of the accident detection process is shown in the Figure 5.21 and the accident 

detection algorithm is summarized as follows: 

1. Vehicle regions are detected in image frames.  

2. Low-level features such as area, orientation, centroid, luminance and color of the 

detected vehicles are extracted. 

3. Vehicles are tracked using the tracking algorithm. 

4. Speeds of the tracked vehicles are calculated. 

5. Velocity, Area, Position and Orientation Indexes are calculated. 
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6. Overall Accident Index is calculated using the sum of individual indexes and occurrence 

of accident is identified. 

5.4.6. Locating the point of accident 

Once an occurrence of accident is determined by the system, the next step is to locate the 

point where the accident has occurred. This information can be obtained using the position of 

the vehicles that were involved in the accident at a particular frame. By using this information 

the user is informed about the occurrence of accident along with the point where the accident 

has occurred. This information is useful because when accidents has been detected and 

suppose this information has to be transmitted to an information center or analyzed for future 

purposes, having the crash clip recorded along with the point of occurrence of accident 

reduces the redundant image frames need to be transmitted and also the end user can detect 

the occurrence of accident without having to analyze the video being transmitted. This results 

in considerable saving of analyzing time. Figure 5.22 shows a frame with an accident 

detected and the point where the accident is located. 

 

 

 

 

 

 

 

 



75 

 

 

 

 

 

Figure 5.17: Example of accident scenario (a) Frame before the occurrence of an accident (b) 

Frame after occurrence of an accident 

 

 

(a) (b) 

Figure 5.18: Illustration of accident detection using change in area (a) Frame and its 

corresponding binary image before occurrence of an accident (b) Frame and its corresponding 

binary image after occurrence of an accident 

 

 

(a) (b) 
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Figure 5.19: Illustration of accident detection using change in centroid (a) Binary image showing centroid 

position of vehicles before accident (b) Binary image showing centroid position of vehicles after accident 

 

(a) (b) 

(b) (a) 

Figure 5.20: Illustration of accident detection using change in orientation (a) Binary image showing 

orientation of vehicles before accident (b) Binary image showing orientation of vehicles after accident 
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Figure 5.21: Flowchart of the Accident Detection Algorithm [106] 

 

Figure 5.22: Location of occurrence of accident 
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CHAPTER 6 
 

REAL-TIME IMPLEMENTATION AND RESULTS 

6.1. Experimental Results of Detection and Tracking Algorithm 

Since the main objective of this thesis is the real-time implementation of accident detection 

system at traffic intersection, certain aspects of vehicle detection and vehicle tracking are 

compromised to achieve good real-time performance. Especially, in the vehicle detection step, 

already pre-processed background frame was used for background subtraction inorder to extract 

vehicle regions. And also the system does not address the problem of vehicle occlusion and 

changes in illumination conditions. Also the accident detection algorithm was designed to detect 

accidents at day-light conditions. Inspite of these limitations, the system was able to perform 

fairly well at the same time achieve good-real time performance. Initially the algorithm was 

developed using MATLAB and Image Processing Toolbox, since MATLAB environment is 

convenient for testing purposes. Using the MATALB results, the algorithm was converted in C++ 

platform for the real-time implementation of accident detection system.  

6.1.1. Vehicle Detection and Tracking Performance of the Algorithm 

For the purpose of training and testing the tracking algorithm, two video sequences obtained from 

traffic intersection at Saigon, Vietnam were used. These videos presented a good representation 

of busy intersection with different classes of vehicles. The complexity involved with these videos 

is that the vehicles do not have particular lanes to travel. They travelled at random direction with 

traffic coming at all directions. So these sequences made the vehicle tracking process bit difficult, 

since the vehicles cannot be tracked using estimated path as in Kalman filter or search window. 
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The testing was done offline on the videos named saigon01.avi and saigon02.avi.  These 

sequences were shot in daylight conditions from a top-down view. The video sequences have 

resolution of 320x240 pixels and a frame rate of 30Hz. The lengths of the sequences were 22 and 

14 seconds respectively containing 684 and 424 frames in total. But for the tracking purpose the 

sequences were resampled at 15Hz, since a frame rate of 15Hz was able to give enough 

information about the vehicle speed and trajectory. By this conversion, the algorithm averts 

processing redundant frames. The choice of binary threshold value T for vehicle detection and 

weighing factor for vehicle tracking are discussed in the following sections. 

6.1.1.1. Selection of Binary threshold T for Vehicle Detection 

For the purpose of selecting the binary threshold T for converting the difference image Idiff(x,y) to 

binary image bw(x,y), different threshold values of 0.05,0.1,0.15 and 0.2 were used and the 

threshold value that yielded best results in terms of vehicle detection were chosen. To determine 

the best threshold value for test video sequences, a subset of frames were chosen (frame number: 

1 to 100) from two test video sequences, saigon01.avi and saigon02.avi. Number of vehicles 

detected using different threshold values were compared to the ground truth which was computed 

manually using a naive human subject for the subset of frames. A total of 200 frames were used 

from both video sequences to determine the threshold value. Table 6.1 and 6.2 shows the number 

of vehicles detected for subset of frames chosen from saigon01.avi and saigon02.avi with 

different threshold values. From Table 6.1, it is shown that a threshold value of T = 0.1, yielded 

the best results in terms of vehicle detection for saigon01.avi. And from Table 6.2 it is shown that 

a threshold value of T = 0.15, yielded the best results in terms of vehicle detection for 

saigon02.avi. Although a threshold value of 0.1 yielded best results for saigon02.avi, the numbers 

of false positives were more when compared to the results produced by a threshold value of T = 

0.1. Therefore from the results obtained from two videos, the threshold value for test sequences 

were chosen as 0.1. Figure 6.1 and 6.3 shows example frames used for to determine the threshold 
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value. Figure 6.2 and 6.4 shows the binary map generated for the example frames using different 

threshold values. In Figure 6.2 and 6.4, the first row shows the binary maps generated using T = 

0.05, second row shows the binary maps generated using T = 0.1, third row shows the binary 

maps generated using T = 0.15 and the fourth row shows the binary maps generated using T = 0.2. 

 

 

Threshold 0.05 0.1 0.15 0.2 

Ground Truth 752 752 752 752 

Algorithm 1165 735 658 805 

 

 

 

Threshold 0.05 0.1 0.15 0.2 

Ground Truth 806 806 806 806 

Algorithm 895 746 759 918 

 

 

 

 

 

 

Table 6.1: Comparison of number of detected vehicles using different T values for subset of frames in 

saigon01.avi 

 

 

Table 6.2: Comparison of number of detected vehicles using different T values for subset of frames in 

saigon02.avi 
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Figure 6.1: Example frames from saigon01.avi used to determine threshold T 

 

Figure 6.2: Binary maps generated for frames shown in Figure 6.1 using different threshold 

values 
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Figure 6.3: Example frames from saigon02.avi used to determine threshold T 

 

Figure 6.4: Binary maps generated for frames shown in Figure 6.2 using different threshold 

values 
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6.1.1.2. Selection of weighing factor α used for Vehicle Tracking 

In equation (5.2) α was used as a weighting factor to combine feature distance index dfeatures and 

MAD index dMAD to obtain the overall similarity measure between vehicle regions detected in 

frames It and It+1.  To determine the best weighing factor α, a subset of frames chosen from two 

video sequences saigon01.avi (Frames 100-200) and saigon02.avi (Frames 1-100) were used and 

α was chosen based on the tracking results obtained. A total of 200 frames were used from both 

video sequences to determine the weighing factor α. Number of vehicles tracked correctly using 

different weighing factors were compared to the ground truth computed manually using a naive 

human subject for the subset of frames. Table 6.3 and 6.4 shows the comparison of number of 

vehicles detected by the algorithm with the number of correctly tracked vehicles for different 

weighing factor α for videos saigon01.avi and saigon02.avi respectively.  

Weights chosen for comparison are 0, 1, 0.5, 0.75 and 0.9 where α = 0 means the vehicles 

are tracked purely based on feature distance dfeatures and α = 1 means the vehicles are tracked 

purely based on MAD index dMAD. Although the feature distance dfeatures and MAD index dMAD on 

their own produced good tracking results, it was found that the performance of tracking can be 

increased by combining these two factors by giving appropriate weights to them.  From Table 6.3 

and 6.4 it was found that dMAD on its own is good enough to produce reasonable tracking 

performance, however when two vehicles of same description (e.g., two cars of same model and 

color)as shown in Figure 6.5 were detected, MAD index dMAD  found difficult to distinguish 

between them and produce false tracking results. Similarly the feature index dfeatures failed in cases 

when two vehicles of same area and orientation were found to be close together in terms of their 

position in consecutive frames as shown in Figure 6.6. Therefore there was a necessity to 

combine dfeatures and dMAD using suitable weighing factors to compensate for errors in vehicle 

tracking algorithm.  Finally from Table 6.3 and 6.4, it is shown that a weighing factor of α = 0.9 

yielded best tracking results for both the video sequences.  
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Weighing  factor α No. of detected vehicles by 

algorithm 

No. of correctly 

Tracked vehicles by 

algorithm 

0 12 9 

1 12 10 

0.5 12 9 

0.75 12 11 

0.9 12 12 

 

 

Weighing  factor α No. of detected vehicles by 

algorithm 

No. of correctly 

Tracked vehicles by 

algorithm 

0 12 9 

1 13 12 

0.5 13 12 

0.75 13 13 

0.9 13 13 

 

 

 

Table 6.3: Comparison of tracking performance using different weighing factors α for subset of 

frames in saigon01.avi 

 

 

Table 6.4: Comparison of tracking performance using different weighing factors α for subset of 

frames in saigon02.avi 
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The weighing factor α=0.9 suggests that more importance has been given to low-level 

vision analysis part to help vehicle tracking. From detailed analysis it is found out that weighing 

factor α acts more like a scaling factor to bring both the feature index dfeatures and MAD index 

dMAD to equal proportion, since these indexes could not be normalized before combining them. In 

some cases the value of feature index was found to be high in orders of 100 and the value of 

MAD index was found to be low in orders of 1. Therefore there is a necessity to scale both the 

indexes relatively to a common order before combining them. 

 

 Figure 6.5: Example showing failure in tracking using MAD index dMAD only 
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Figure 6.6: Example showing failure in tracking using feature index dfeatures only 
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6.1.1.3. Tracking Results 

Figure 6.7 and 6.8 shows the tracking results on some of the frames in saigon01.avi and Figure 

6.9 and 6.10 shows the tracking results on some of the frames in saigon02.avi. Figures [6.7, 6.9, 

6.11, and 6.13] (a) shows the original frame extracted from the video.  Figures [6.7, 6.9, 6.11and 

6.13] (b) shows the ground truth for the number of vehicles in each frame. Figures [6.7, 6.9, 6.11 

and 6.13] (c) shows the segmentation results indicating the detected vehicle regions and Figures 

[6.7, 6.9, 6.11, and 6.13] (d) shows the tracking results on the vehicles detected. Color rectangle 

box is drawn around each vehicle as a reference for tracking and from Figures [6.7, 6.9, 6.11 and 

6.13] (d) it is shown that the color of the box around each vehicle remains the same indicating 

that the vehicles are detected and tracked correctly. Also in the Figures 6.8, 6.10, 6.12 and 6.14, 

the trajectory of the vehicles found in Figures 6.7, 6.9, 6.11 and 6.13 are shown. Figures [6.8, 

6.10, 6.12 and 6.14] (a, b) shows the start frame and end frame respectively used for illustrating 

vehicle tracking and trajectory. Figures [6.8, 6.10, 6.12 and 6.14](c) shows the trajectory of the 

vehicles from start frame and end frame. Figures [6.8, 6.10, 6.12 and 6.14] (d) shows the 

temporal smoothness map used for reference as ground truth. From the above illustration it is 

shown that the algorithm performs fairly well in detecting and tracking vehicles. 
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Figure 6.7: Some tracking results on saigon01 (a) Original frame (b) Ground Truth (c) 

Segmentation (d) Tracking results 

 

 

(a) (b) (c) (d) 

Figure 6.8: Illustration of Vehicle Trajectory for Figure 6.7 (a) Start Frame (b) End Frame (c) 

Vehicle trajectory obtained from algorithm (c) Temporal smoothness map 

 

(a) (b) (c) (d) 
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Figure 6.9: Some tracking results on saigon01 (a) Original frame (b) Ground Truth (c) 

Segmentation (d) Tracking results 

 

 

(a) (b) (c) (d) 

Figure 6.10: Illustration of Vehicle Trajectory for Figure 6.9(a) Start Frame (b) End Frame (c) 

Vehicle trajectory obtained from algorithm (c) Temporal smoothness map 

 

(a) (b) (c) (d) 
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Figure 6.11: Some tracking results on saigon02 (a) Original frame (b) Ground Truth (c) 

Segmentation (d) Tracking results 

 

 

(a) (b) (c) (d) 

Figure 6.12: Illustration of Vehicle Trajectory for Figure 6.11 (a) Start Frame (b) End Frame (c) 

Vehicle trajectory obtained from algorithm (c) Temporal smoothness map 

 

(a) (b) (c) (d) 
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Figure 6.13: Some tracking results on saigon02 (a) Original frame (b) Ground Truth (c) 

Segmentation (d) Tracking results 

 

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 

Figure 6.14: Illustration of Vehicle Trajectory for Figure 6.13 (a) Start Frame (b) End Frame (c) 

Vehicle trajectory obtained from algorithm (c) Temporal smoothness map 
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6.1.1.4. Errors in Vehicle Detection and Tracking 

Errors in vehicle tracking were primarily caused by wrong vehicle detection. Wrong vehicle 

detections were caused by occlusion, small size of the vehicles and vehicles have low contrast 

with the background. Few error examples are shown in the Figure 6.15. Figure 6.15(a) shows the 

frames used, Figure 6.16(b) shows the ground truth labeled manually, Figure 6.15(c) shows the 

segmentation map for the frame used and Figure 6.15(d) shows the error results. From the first 

row of the Figure 6.17 it can be seen that a single vehicle is identified as two objects due to the 

fact that part of the object has a contrast similar to the background and hence is considered as a 

part of background giving rise to a disjoint vehicle which is incorrectly interpreted as two 

separate vehicles. The error is zoomed and shown in the Figure 6.16. From the second and third 

row of the Figure 6.15 it can be seen that part of an object is merged with other object due to 

existence of shadow which creates partial occlusion or due to small size of the vehicle and hence 

there is a problem of two or more objects detected as single object. The errors are zoomed for 

better display in Figure 6.17.  From the fourth row of Figure 6.15 it can seen that an object is not 

been detected due to its relatively small size and hence not been tracked correctly. 
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Figure 6.15: Error Examples (a) Original Frame (b) Ground Truth (c) Segmentation (c) Error 

Detection 

 

(a) (b) (c) (d) 

Figure 6.16: Error due to vehicle having low contrast with background 
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  saigon01 saigon02 

Single Frame 

Detection 

Frames 342 212 

Vehicle Instances 2572 1403 

Merged Instances 89 70 

Detections 2395 1274 

Detection Rate 93.1% 90.8% 

False Detection 21 15 

Tracking through 

video 

Individual vehicles 39 27 

Complete tracks 36 24 

Incomplete tracks 3 3 

Tracking rate 92.3% 88.8% 

 

Figure 6.17: Errors due to merging of vehicles 

 

Table 6.5: Evaluation on Detection and Tracking 
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6.1.1.5. Overall Performance of Vehicle Detection and Tracking Algorithm 

The detection and tracking algorithm were tested on two video sequences saigon01.avi and 

saigon02.avi.The original frame rate of the videos were 30 Hz but were resampled to 15 Hz to 

reduce processing redundant frames. The segmentation and tracking performance of the proposed 

method were evaluated quantitatively. Ground truth labels for these videos were manually 

determined using a naive human subject. Table 6.5 shows the performance of the algorithm on 

vehicle detection and tracking. To evaluate vehicle segmentation, each frame was processed 

independently. Correct detection is defined as detection which has an overlap of more than 80% 

with a ground truth vehicle. The detection rate of the algorithm was found to be quite high 

(93.1% for saigon01.avi and 90.8% for saigon02.avi). This is considering the fact that detection 

is based only on background subtraction and no occlusion detection process has been added to the 

detection algorithm. Miss detection is mostly due to two reasons: 1) large part of the objected is 

not detected as foreground, because of low contrast to the background or scene occlusion 2) large 

part of the object is occluded by other objects. Among a total of 39 individual vehicles in 

saigon01.avi, 36 are tracked completely. 24 of 27 individual vehicles in saigon02.avi have 

complete tracks. Shorter tracks or broken tracks are mostly caused by persistent miss-detections. 

Overall the algorithm had a reasonable performance rate and results were promising. 

6.1.1.6. Speed of the tracked vehicles 

Once the vehicles are detected and tracked correctly, speed of the vehicles can be calculated using 

the distance travelled by the vehicle between consecutive frames. The computation of speed of 

the vehicles is explained in Chapter 5, Section 3.1. Table 6.6 shows the average velocity of the 

vehicles in mph in the two video sequences (saigon01.avi and saigon02.avi). Speed of the 

vehicles obtained from the algorithm is reasonable, since they closely resemble the speeds of 
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vehicles at busy intersections. Since there is no ground truth for vehicle velocities in two videos, 

the exact accuracy and precision of the method cannot be determined. 

 

Vehicle Number  Average Speed (mph) 

saigon01.avi 

Average Speed (mph) 

saigon02.avi 

1 6.97 9.1 

2 12.2 7.2 

3 6.4 8.4 

4 13.1 12.6 

5 7.2 22.2 

6 14.1 11.8 

7 Incorrectly tracked 10.6 

8 18.8 10.1 

9 16.1 12.7 

10 11.5 Incorrectly tracked 

11 14.5 17.3 

12 21.3 11.6 

13 10.31 10.3 

14 Incorrectly tracked 13.7 

15 16.25 22.1 

16 10.1 14.1 

17 17.3 12.4 

 

Continued on next page….. 

Table 6.6: Average velocity of the vehicles in video sequences 
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Vehicle Number  Average Speed (mph) 

saigon01.avi 

Average Speed (mph) 

saigon02.avi 

18 13.5 10.3 

19 18.3 9.2 

20 9.1 Incorrectly tracked 

21 15.1 7.8 

22 15.3 Incorrectly tracked 

23 Incorrectly tracked 15.5 

24 23.8 16.1 

25 12.8 17.1 

26 10.17 15.9 

27 7.45 14.7 

28 17.6 - 

29 12.2 - 

30 18.1 - 

31 15.3 - 

32 12.9 - 

33 14.5 - 

34 17.1 - 

35 13.5 - 

36 21.7 - 

37 16.4 - 

38 10.9 - 

39 8.9 - 
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6.1.1.7. MATLAB Performance 

Vehicle Detection and Tracking algorithm were developed on MATLAB and the performance of 

the algorithm was reasonably good as discussed earlier. Table 6.7 presents the timing 

performance of the detection and tracking algorithm using MATLAB. The algorithm was tested 

on Intel Core2Quad 2.4 GHz CPU with 3 GB RAM.  The operating system used was Microsoft 

Windows 7, 64 bit operating system. As one can expect MATLAB is good for testing and 

simulation but not suitable for real-time implementation. Also from the analysis, it was found that 

average processing time per frame using MATLAB is approximately 22 seconds. The vehicle 

detection and feature extraction step took 1000 ms on an average and Tracking and Speed 

detection step took 20 ms on an average. But from the table was found that the MAD analysis had 

high computational rate because of block based processing of the algorithm. On an average MAD 

analysis took 21 seconds for analysis on two consecutive frames. Using features alone based 

detection and tracking the average processing time was found to be 1020 ms per frame, which 

was quite acceptable. Therefore there was a need to replace Human vision based (MAD) analysis 

by equivalent metric (e.g., Mean squared error), which can yield acceptable performance and 

results.  

Algorithm Average Timing (milliseconds) per frame 

Vehicle Detection 600 

Feature Extraction 400 

MAD Analysis 21000  

(two consecutive frames) 

Tracking and Speed Detection 20 

(two consecutive frames) 

Total 22020 

 

Table 6.7: Timing Performance of Detection and Tracking Algorithm using MATLAB 
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6.1.1.8. MAD equivalent metric suitable for Vehicle Tracking 

From the Table 6.7 it can be seen that average processing time per frame for detection and 

tracking was 22 seconds, this was largely due to the high computation rate of MAD analysis. 

Therefore there was a need to replace MAD by another equivalent metric that closely resembles 

Human vision based analysis on image similarity. For this purpose Mean squared error (MSE) 

metric was chosen. Although MSE is not good metric for predicting visual similarity of two 

images (objects, vehicles), the main advantage of MSE is the computation time. It has fairly low 

computational complexity. And also when MAD was replaced by MSE in our algorithm, the 

system produced reasonable results and also the processing time per frame was way faster than 

before. Just like MAD, MSE compares two vehicle regions extracted from consecutive frames 

and gives the similarity index between the two regions. Figure 6.18 shows an illustration of how 

MSE works.  

From Table 6.19 it is shown that MAD index obtained for Figure 6.18 and MSE index 

obtained for Figure 6.20, is equivalent suggesting that MAD index indeed can be replaced by 

MSE. Similar to MAD the regions have to resized to be common size of atleast (64x64 pixels) 

and lower the MSE index higher is the match between two regions. However it should be noted it 

works only in case of vehicles here, where the vehicle regions are of low resolution and assumed 

noise free. However for other image processing applications MAD has high performance when 

compared to MSE. Therefore in the tracking algorithm MAD index was replaced by equivalent 

MSE index. However the same weighing factor α = 0.9 was used to combined feature index and 

MSE index. Table 6.9 shows the tracking performance of the algorithm where MAD index is 

replace by MSE index. From the table it was shown that the performance of tracking using the 

combination of feature index and MSE index compared to the combination of MAD index and 

MSE index remains the same. This was largely due to the fact that errors created by MSE index 

are overcome by feature index and vice-versa. Therefore the combination of feature index and 
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MSE was chosen for vehicle tracking for real-time implementation of the vehicle tracking system. 

Table 6.10 shows the timing performance of the algorithm using MSE. The average processing 

time per frame was 1320 ms which is much faster than using MAD. MSE analysis on two 

consecutive frames consumed about 300 ms when compared to 22 seconds. This may not be 

reasonable comparison since MAD was originally developed for predicting the visual quality of 

an image but was used in the tracking algorithm because of its advantage of predicting image 

(vehicle) similarity.  

 

 

Regions 

 

 

 

 

 

 

 

 

dMAD dMSE dMAD dMSE dMAD dMSE 

4.38 625 9.43 7826 12.12 1804 

 

 

dMAD dMSE dMAD dMSE dMAD dMSE 

9.59 7844 5.16 898 10.45 8412 

 

 

dMAD dMSE dMAD dMSE dMAD dMSE 

12.07 1822 10.39 8524 2.69 449 

 

 

Table 6.8: Comparison of MAD and MSE index for Figure 6.18 
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(a) (b) 

(c) 

(d) 

Figure 6.18: Example of MSE (a) Frame at time t (b) Frame at time t+1 (c) MSE index for different 

vehicle comparisons (d) MSE index for matching vehicles 
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  saigon01 saigon02 

Tracking through 

video 

Individual vehicles 39 27 

Complete tracks 36 24 

Incomplete tracks 3 3 

Tracking rate 92.3% 88.8% 

 

 

 

Algorithm Average Timing (milliseconds) per frame 

Vehicle Detection 600 

Feature Extraction 400 

MSE Analysis 300 

 (two consecutive frames) 

Tracking and Speed Detection 20 

(two consecutive frames) 

Total 1320 

 

 

 

 

 

Table 6.9: Tracking performance of the algorithm with MSE 

 

 

Table 6.10: Timing Performance of Detection and Tracking Algorithm using MSE 
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6.2. Experimental Results of Accident Detection System 

Since there were no real crash data to work on, an experimental setup was build indoor in the 

laboratory. The complete description of the setup is explained in detail in Chapter 3, Section 3.3. 

Different scenarios involving collisions were implemented that are difficult to be simulated in the 

real world due to constraint of resources and technology. Different collision scenarios such as 

side-on collision, rear-collision, front-end collision were simulated and tested. The objective was 

to create as much as scenario as possible and to study the performance of the algorithm on 

detecting accidents at intersection. Figure 6.19 shows a complete description of different collision 

scenarios. 

 

 

 

Figure 6.19: Different collision scenarios (a) Vehicles moving closely (b) Rear end collision by the 

incoming vehicle (c) Side-on collision at intersection (d) Rear end collision by the trailing vehicle (e) 

Side-on collision at turn (f) Side on collision from left (g) Side-on collision from right (h) Multiple 

vehicle collision (g) Normal tracking 
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Along with collision data, normal movement of vehicles with occlusion was also added to test the 

accuracy and precision of the system. 

6.2.1. Performance of the algorithm 

The performance of the accident detection system as described in Chapter 5, Section 5.4 was 

tested on different collision scenarios created. The results of the collision detection algorithm on 

various crash scenarios are presented in Figure 6.20. Figure 6.20(a) shows the scene before the 

occurrence of accident. Figure 6.20(b) shows the scene at point of accident as denoted by drawing 

black circle around the point of accident and Figure 6.20(c) shows the scene after the accident. To 

denote the occurrence of accident a red box is drawn around the scene of accident. As discussed 

earlier using the Accident Index AI the occurrence of accident is determined and the point of 

accident can be obtained from the centroids of the vehicles involved in the accident. While 

determining the occurrence of accident the speeds of the vehicles were critical, since the speed 

was a major factor in determining accident. The algorithm also presented false cases, especially 

when the vehicles are moving together. Due to the problem of merging of closely moving 

vehicles, the area, centroid, and orientation of the vehicles being tracked changes significantly, 

thus presenting a scenario for false detection.  This is illustrated in the Figure 6.21. In this case 

the vehicles follow each other closely and because of the merging, a false alarm was raised.  

6.2.2. Algorithm Evaluation 

 Since the main objective of the algorithm was to detect all possible cases of accident, 

false alarms are acceptable as long as there are not many false alarms. When a collision happens 

and it is detected correctly, it is true positive. When a collision does not happen and collision 

detection is determined, it is false positive. When a collision happens and it is not detected by the 

system, it is false positive. The algorithm was designed to have more true positives and false 

positives; therefore there were no false negatives for the simulated crash scenarios. 



105 

 

 

 

Continued on Next Page….. 



106 

 

 

 

 

 

 

 

 The performance of the algorithm is evaluated in terms of precision (of all the detections) 

and coverage (of all the collisions respectively) [114]. The terms are described in Figure 6.22. 

 

(a) (b) (c) 

Figure 6.20: Illustration of accident detection system for various crash scenarios (a) Before 

occurrence of accident (b) At point of accident (c) After accident 

(a) (b) (c) 

Figure 6.21: Example of False alarm (a) Closely moving vehicles (b) Merged Blob (c) False alarm 

raised by the system 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑛𝑜. 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

                                                        =
𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 )
=

𝑥

𝑥+𝑧
                                   (6.1)                    

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑛𝑜. 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠
 

                                                            =
𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖 𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 )
=

𝑥

𝑥+𝑧
                              (6.2) 

For the nine test scenarios as shown in Figure 6.19 the precision and coverage of the algorithm is 

given as follows as: Number of true positives = 7, Number of false positive = 1 and Number of 

false negative = 0. Therefore 

Figure 6.22: Performance Evaluation Terms (114) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
7

8
= 0.875 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
7

7
= 1 

Based on accuracy evaluation of the algorithm, the precision of the algorithm is about 87.5% and 

coverage is about 100% for the test scenarios. Besides proving the effectiveness of the collision 

detection by the system, this evaluation method helps to find parts of the collision detection that 

needs improvement. Overall the performance of the collision detection system was acceptable. 

6.3. Real-Time Implementation of the System 

For the Real-time implementation of the collision detection system at traffic intersection the 

MATLAB algorithm was converted to C++. The videos were obtained from Mobotix Q24 camera 

and images were read by gbuffer class in C++ implemented by Dr. Damon Chandler. Since the 

main objective of this thesis is to develop a collision detection system capable of operating in 

real-time, some compromises were made in vehicle detection part, especially the incapability of 

the system to handle occlusion. Also for the system to operate in real-time the MAD index was 

replaced by equivalently good MSE index. And it was shown earlier that MSE index indeed 

worked well for vehicle tracking.  The detection and tracking part of the algorithm were tested on 

real-traffic scenarios (saigon01.avi and saigon0.avi) and average processing time per frame was 

found to be 210 ms which is about 5 frames/second. But frame rate of the videos were 15 

frames/second. But it was found that 5 frames/second processing speed was good enough, since 

some of the frames were redundant and the algorithm performed fairly well in terms of detection 

and tracking which included vehicle speed and trajectory calculation. The above processing time 

were computed using Intel Core2Quad 2.4 GHz CPU with 3 GB RAM.  The operating system 

used was Microsoft Windows 7, 64 bit operating system. Table 6.11 shows the overall timing 

performance of detection and tracking algorithm using C++. These timings were obtained for 



109 

 

videos with resolutions 320x240 pixels. Table 6.12 shows the overall timing of the detection and 

tracking algorithm implemented on different core processors. 

 

Algorithm Average Timing (milliseconds) per frame 

Vehicle Detection 40 

Feature Extraction 130 

MSE Analysis 10 

(two consecutive frames) 

Tracking and Speed Detection 30 

(two consecutive frames) 

Total 210 

 

 

Processor Specifications Overall time (milliseconds) per frame 

Intel Core2Quad 2.4 GHz 210 

Intel Core2Duo 2.00 GHz (Laptop) 318 

Intel Core 2.4 GHz 266 

 

         

 

 

Table 6.11: Timing Performance of Detection and Tracking Algorithm using C++ 

 

 

Table 6.12: Processing speed of tracking algorithm obtained using different core processors 
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For the C++ implementation of collision detection system, the developed algorithm was 

tested on crash scenarios simulated in the testbed. The original resolution of the videos used was 

640x480 pixels with a frame rate of 10 Hz. Table 6.13 shows the timing performance of the 

collision detection algorithm for the test cases with an image resolution of 640x480 pixels and 

Table 6.13shows the timing performance of the collision detection algorithm for the test cases 

with an image resolution of 320x240 pixels. From Table 6.13 and Table 6.14 it is shown that the 

videos having image resolution of 320x240 pixels were processed faster compared to videos 

having image resolution of 640x480 pixels. The difference in processing time was primarily due 

to vehicle detection and feature extraction step, where quality time is consumed by binary 

processing, connected component labeling and finding the region properties of the extracted 

vehicle regions. 

From Table 6.15 it is shown that the collision detection performance of the algorithm on 

videos having image resolution of 320x240 pixels and resolution of 640x480 pixels were the 

same, indicating that the resolution of images can be scaled down by atleast a factor of two for 

faster processing of the collision detection algorithm.  

 

Algorithm Average Timing (milliseconds) per frame 

Vehicle Detection 

and Feature Extraction 

130 

Vehicle Tracking and Speed Detection 40 

Collision Detection 10 

Total 180 

 

 

Table 6.13: Timing Performance of Collision Detection algorithm on image resolution of 320x240 

pixels 
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Algorithm Average Timing (milliseconds) per frame 

Vehicle Detection 

and Feature Extraction 

630 

Vehicle Tracking and Speed Detection 40 

Collision Detection 10 

Total 680 

 

 

Evaluation terms Image resolution of  

640x480 pixels 

Image resolution of  

320x240 pixels 

True positive 7 7 

False positive 1 1 

False Negative 0 0 

 

 

 

 

 

 

 

Table 6.14: Timing Performance of Collision Detection algorithm on image resolution of 640x480 

pixels 

 

 

Table 6.15: Comparison of Collision Detection Algorithm on different image resolution 
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6.4. Comparison with other existing methods 

It is a fact that an exact comparison between vision-based works of traffic monitoring is nearly 

impossible because of difference of difference of input stream as aspect of complexity, light 

condition, average number of vehicles running on the highway, quality of film, height and angle 

of camera and also quality of image acquisition [97]. But from the tracking and collision 

detection results it is shown that the collision detection system performs reasonably well in 

comparison with other methods. 

Some of the algorithms that have focused on real-time vehicle tracking using video 

processing are that of Rad and Jamzad [97]. Their method was able to process 11frames/second 

with frame sizes (320x320 pixels) and had accuracy of 96% on tracking vehicles. Kim and Malik 

[9] work was able to process 10 frames/second with frame sizes (200x200pixels) and had 

accuracy of 85% on tracking vehicles. Gupte et al. [76] work was able to process 11 

frames/second and accuracy of 90% on tracking and detecting vehicles. Kanhere and Birchfield 

[115] work was able to process 30 frames/second with frame sizes (320x240 pixels) and had 

accuracy of 91-97% on tracking vehicles. Lin et al. [116] method was able to process at 15 ms.  

In comparison with the above methods, the tracking algorithm presented in this thesis 

was able to process 5 frames/second and had an accuracy of 88-92% on vehicle detection and 

tracking. Along with tracking the speed of the vehicles are computed which is an essential step in 

collision detection systems. However, using computers with higher CPU speed this frame rate can 

be improved. 

Although there are number of vehicle detection and tracking methods that are capable of 

operating in real-time, rarely few methods have focused on real-time implementation of collision 

detection system which is quite complex. Ki and Lee [106] developed a collision detection 

method that had a detection rate of 60% and false alarm rate of 0.00496%, but their processing 
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speed was unknown.  Salim et al. [114] developed a computer simulation for detecting collision 

and their method had precision and coverage of 100% for their test cases. In comparison with 

these methods, the proposed method in this thesis is capable of operating in real-time and also has 

sufficiently good collision detection performance rate for the test cases considered. It is believed 

that with more training data and analysis the performance of the algorithm can be improved for 

real-traffic accidents.   
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CHAPTER 7 
 

CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

In this thesis a crash detection system at traffic intersections that is capable of operating in real-

time is presented. More emphasis has been given to vehicle detection and tracking stage, since 

they are essential to extract suitable vehicle features and vehicle parameters that can be used as 

factors for determining crashes at intersections. In this work, a tracking algorithm that uses a 

weighted combination of low-level features extracted from moving vehicles and low-level vision 

analysis on vehicle regions extracted from different frames is presented. The vehicle detection 

rate of the proposed algorithm is about 90-93% and tracking rate is about 88-92% on two test 

videos. The average processing speed of the algorithm is about 5 frames/second for the two test 

videos used. The detection and tracking rate of the algorithm was decremented due to the problem 

of shadows and occlusion, which the algorithm did not address in this work. If the problems of 

shadows and occlusion are addressed, the performance rate of the proposed algorithm is expected 

to go high. Overall from the work presented it is shown that proper combination of low-level 

features that have low computational complexity are sufficient for vehicle tracking compared to 

complex feature tracking methods.  

Using the low-level features and vehicle velocity of the correctly tracked vehicles, 

crashes were detected by the system using an accident index calculated from speed, area, 

orientation and position indexes of the tracked vehicles. The proposed crash detection system has
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a precision (correct detection rate) of 87.5% and detection rate of 100% for test crashes created 

using experimental test-bed.  Overall the performance of the collision detection system is good 

particularly considering the fact that the algorithm is capable of operating in real-time. Also the 

method used a low-level features instead of any learning algorithm such as Hidden Markov 

Model, Neural Networks, etc. that can consume a lot of time for computation and take decision. It 

is believed that with more analysis of traffic crashes data and more training for the collision 

detection algorithm, it can be implemented for monitoring real-time traffic scenarios. 

7.2. Future work 

To improve the performance of the detection and tracking algorithm, problems created by 

shadows and occlusion is planned to be addressed by using better background modeling 

techniques and re-segmentation of the segmented vehicle region using average color and lightness 

distance of blocks in the segmented vehicle regions. And also it is planned to make the vehicle 

detection and tracking algorithm operate under night conditions. Currently studies having been 

done on determining the features to be used to detect and track vehicles in night conditions. Also 

it is planned to collect more traffic data from different camera angles to make the algorithm 

robust to various conditions and situations. Also the current focus is on analyzing the parts of the 

algorithm that can be optimized to increase the processing speed of the detection and tracking 

algorithm. 

 To improve the performance of the collision detection algorithm, it is planned to collect 

more crash cases from real-traffic situations by installing a camera at busy intersection and to 

analyze the performance of the algorithm on real-traffic situations.  Currently the focus is on to 

determine the factors that can be added with existing low-level features and velocity information 

of the vehicle that can improve the overall performance and increase the robustness of the system.  
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Findings and Conclusions:  

  

Studies in the past have shown that number of traffic related fatalities is highly dependent 

on the emergency response time after the occurrence of an accident. Also traffic 

intersections were found to be one of the most vulnerable places for occurrence of an 

accident. Therefore there is a need to reduce the emergency response time by alerting the 

emergency response team by an automated accident detection system at traffic 

intersections, once an accident is detected. 

 

The goal of this project is develop an accident detection system at traffic intersections 

that is capable of operating in real-time with good performance rate. Therefore an 

accident detection system was developed which uses the vehicle parameters such as the 

speed and trajectory and other features such as area, orientation and position of the 

vehicle. Since one of the key elements in accident detection step is accurate tracking of 

moving vehicles, more focus was given to vehicle detection and tracking step. In this 

work, a tracking algorithm that uses a weighted combination of low-level features 

extracted from moving vehicles and low-level vision analysis on vehicle regions 

extracted from different frames is implemented.   

 

The speed of the tracked vehicles are calculated and along with the features extracted 

from the tracked vehicle, an accident detection system is designed which validates the 

factors cueing the occurrence of an accident. Once an accident is detected, the user is 

signaled about the occurrence of an accident. 

 

The detection and tracking performance of the algorithm was around 90% for two test 

videos used and collision detection system produced a correct detection rate of 87.5% for 

the test crashes simulated in the test bed setup in the laboratory. Overall the algorithm 

shows promise since it has a processing rate of 5frames/sec with good collision detection 

performance. With more test crashes and real-crashes data training, the performance of 

the algorithm is expected to improve.  


