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CHAPTER I    INTRODUCTION AND LITERATURE 

 
Background and the problem 

 

There is no efficient way so far for predicting the simulation time of a large 

circuit, which is still the bottleneck of the whole developing process while the time-to-

market for a large circuit is demanded shorter and shorter whit a requirement of more and 

more complex circuits. If the time for simulating a large circuit can be predicted in 

advance, it will benefit the design process. The method of prediction for simulation time 

also can be used to judge if a developing tool is suitable, and selecting a good tool is very 

important to the developing process. Unfortunately, there is a great discrepancy on 

performance tests for different software; therefore it adds the difficulty to the selection of 

a tool. The lack of standards and varieties of testing methods allows the simulation 

software companies to make claims that are difficult to verify. In this study, a method 

will be proposal not only for predicting the simulation time but also for the performance 

comparison empirically. The literature on the performance of simulation software are 

categorized and reviewed as background knowledge of simulators. This is necessary for 

understanding the specification of a simulator. The Cadence® NC-Verilog and Verilog-

XL are applied as tools in this study. The difference between these two tools will be 

figured out and also the performance is compared.  

 

 

 1



Some methods for speeding up simulation 

 

Some literatures and studies about accelerating the simulation or improving the 

bottleneck of design process are picked up and categorized into four classes. They are 

simulating methods and verification, hardware supplement, project partitioning, and 

benchmark selection. The users of commercial tools can follow some of these methods to 

improve their design process while the remaining is for the software engineers, who 

develop the simulating tools. Some experiences shared in the internet are helpful and an 

example is raised in this study. 

 

Simulating methods and verification 

 

There are many simulating methods and two main streams are selected here for 

comparison: the cycle-base and event-driven methods. The cycle-base method evaluates 

the whole circuit in every time unit. It’s slow because that some useless messages are 

calculated. For the long delay gates it will lower the performance very obviously. From 

the other aspects, this method is good for simulating the sequence logic circuits, the 

concurrency and can avoid some glitch problems naturally. For event-driven method, all 

of the events will be collected into a list called event-wheel or timing-wheel. This method 

is very sensitive to glitches. One glitch in a bad timing could take over the whole 

simulation. The feedback circuit is also a great concern in this method. Z. Wang proposed 

a method called LECSIM (LEvelized event driven Compiled SIMulator) can improve the 

simulation by integrating the event driven interpretive simulation and levelized compiled 
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simulation [1]. The LECSIM runs about 8-77 times faster compared to traditional unit-

dealy event-driven interpretive simulator. The great characteristic of this improvement is 

its combining the levelized, event driven and complied together to achieve the 

performance issue. Peter M. Maurer borrowed the idea from object-oriented 

programming skill and invented a technique named EVCF, Event-Driven Conditional-

Free [2]. The EVCF is similar to state machine by eliminating conditional test. In other 

words, it just performs the assignment and ‘gotos’. The EVCF is 7-60 faster times than 

Conventional Event-Driven algorithm. Robert S. French applied static simulation 

technique, which contains two innovations [3]. First, a general event graph replaces an 

event-driven simulation by capturing its semantics. Second, a technique called partial 

evaluation schedules the events as well as possible by using statically available 

information. This method can apply to general models: synchronous, asynchronous 

designs and the certain-delay-time. According to his test, their system speeded up the 

simulation time by two times while its overhead is only 4% of which is in VCS code.  

Since it is impossible to have an exhausted test for a large circuit, the verification 

is helpful. The verification can help rather than replace the simulation. It can be a 

direction to simulation and avoiding some unnecessary simulation. For example, Gary 

York offered an integrated environment for HDL (Hardware Description Language) 

verification, which performs implementation and design verification. Many verification 

skills are presented there [4].  
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Hardware supplement 

 

All the software codes are performed by hardware eventually. If we can have 

specially designed hardware for specific function, the performance of the job will be 

better than while it is finished in general purpose machine. Charlie Burns offered the 

architecture by applying pipeline method on event driven [5]. Because the special 

designed machine is very expensive, there exists a tradeoff of performance and cost by 

moving a part of the test instead of the whole one onto the special designed hardware, 

and Matthias Bauer introduced an idea [6]. The drawback of this method is the 

management overheads for the great communication between the software simulator and 

hardware which takes care the special function. Young-Il Kim brought it further [7]. He 

translated the test bench into equivalent hardware to prevent the cost of communication 

and accelerated the simulating speed. It could compress the simulation time by a factor of 

1000 compared to the conventional hardware accelerating simulation. 

 

Project partitioning 

 

For a large project, it is impossible to be done by a single person. The art of 

dividing a project into small modules is an important issue. The complication is 

proportional to simulation time by exponential rate, and John Willoughby from 

Cadence® offered a tool called Synergy [8]. This tool can help to solve all these 

problems for partitioning a project and to handle the time constraints, connecting single 

levels, and changing of the upper level code. From their test, it showed the memory 
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requirement and simulation time were both significantly reduced. Monte Becker 

proposed an idea by separating the most common part of the whole project [9]. The Bus 

Functional Models (BFM) is separated from the other modules and simulate in a less 

detailed way and it is a good suggestion for design a project. Kunle Olukotun gave a 

concept on how to build a project from the ground to top by hierarchical method [10]. 

The design levels are categorized into four areas: algorithm, architecture, register-transfer, 

and logic. He used the HLL to design algorithm and architecture level, and made sure the 

algorithm and architecture are both correct since this language is faster. Then the HDL 

was applied for the remaining two levels. There are different focuses for different levels 

in the design process. While you are working in the register-transfer level, you do not 

need to worry if the algorithm and architecture are correct by applying this idea. 

Additionally, the study combined different levels for simulation simultaneously. For 

some less important portions of the circuit, the system can switched to higher level and 

returned the result for lower level’s simulation in order to save simulation time. 

 

Benchmark selection 

 

A good benchmark can shorten the simulation time. There are different kinds of 

benchmarks for variety purposes of simulations. Kunle Olukotun gave three kinds of 

benchmark: statistics-driven simulation, in which the input is a set of statistics gathered 

from an existing machine or a more complete simulator; trace-driven, which has a 

sequence of events primarily used for detailed architecture performance prediction; and 

execution-driven, which has more design detail to model the data transformations for 
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accurately simulating the behavior of the system [10]. Roland E. Wunderlich proposed a 

SMARTS (Sampling Microarchitecture Simulation) framework which applies the 

statistical method to select an appropriate benchmark subset that could speedup the 

simulation [11]. In one words, the input of simulation is one of the key points for the 

speed of simulation. 

 

Experience shared in internet 

 

There are many experiences shared in internet from forums. Sometimes it is more 

helpful than the periodic pressing from the view of a commercial tool user. Because the 

Cadence® tool is used in this study, the Cadence web site was searched and a good 

experience was shared by Kathleen Meade [12]. The author offered some suggestions and 

command-line options that affect the simulating performance of NC-Verilog. There are as 

follows: 

Install the latest software release: The latest version of software will have better 

performance than preceding version. 

Use the NC-Verilog build-in profiler: This function can give you a whole view for 

your simulation, and you can find the bottle neck of your design by applying “ncverilog 

+ncprofile <other_option>”. 

Disable timing for improved performance: For some logic circuit without timing 

concern, you can switch the SDF (standard delay format) off to avoid the timing checking 

for improving performance. The command is “ncverilog +delay_mode_distributed 
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+notimingcheck +noneg_tchk”. There are also some other methods described in the 

electronic manual of Cadence®. 

Optimize use of design access options: The more options you have, the slower the 

simulation is. All options added to the simulation consume the resources of the system. It 

is best to use as few simulating options as possible. If you need to have some options, try 

to select one with less of an impact. You need to take all the options into your account all 

the time, and understand all the options. 
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CHAPTER II    METHODOLOGY AND FINDINGS 

 

The hardship in software testing 

 

There are many obstacles for testing the performance of software. The lack of 

literatures and publications could explain the hard situation [14]. In the real world, the 

performance test seems to compare the apples to oranges. For examples, it is hard to find 

two identical systems with the same hardware, operation system and performing the same 

task. Even though they have the same hardware and software system for the same task, if 

there exist different configurations or input data, it could have a great difference on 

performance. But it does not mean that it is worthless for researching this topic. Under 

some terms, the result could be a very valuable reference. 

 

The tools for this study 

 

This study uses Cadence® tools to evaluate the running time of shift registers for 

predicting simulation time of a similar large circuit. The counter circuits were used in the 

experiment at first, and one big problem of measuring the simulation time was found. 

Since not every bit in a counter changes every clock cycle, it is hard to control the 

measuring on the same base for running time. For example, when the value of the counter 

changes from 2 to 3, in the binary system, it just changes the less significant bit of its 
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content (010 to 011) and from 3 to 4 all three bits are alternated (011 to 100). The change 

is in certain order different from every clock cycle. According to our investigating, the 

NC-Verilog integrated the verification skill and it just evaluates the time of changing bits. 

Therefore we change the counters to shift-registers, which alter their contents every clock 

cycle. The in-site test, which we test the software in the exact system used to develop the 

project, is named in this study. The specifications of our equipments are: Sun Enterprise 

4000 for machine, Solar 9 for OS, Memory 1.5 GB shared by 6 processes, NC-Verilog of 

version 04.10-p002, and Verilog-XL of version 2.8.s008. The behavioral codes and 

structural codes, which are synthesized by the synthesizer from behavioral codes directly, 

are tested for NC-Verilog and Verilog-XL. By measuring the time of fixed clock cycles 

to varying hardware volume and fixed hardware volume to varying clock cycles, the time 

of simulations are recorded and equations are derived for predicting approximate 

simulation time of a similar design. From the equations, the relations of simulation time 

for behavior and structural codes of NC-Verilog and Verilog-XL can be known 

empirically. No matter how it is described in the manufacture’s brochure, this test method 

does mean something for people who use this system to design a project. This method 

also can apply for the people who want to know the performance of their system. The 

difference between NC-Verilog and Verilog-XL will be introduced first. 

 

The differences between the Cadence® NC-Verilog and Verilog-XL 

 

The NC-Verilog is the latest product for replacing Verilog-XL of Cadence, and 

this section as follow comes from reference [13]. These main differences can be 

 9



attributed to compilation, backannotation, interactive debugging, simulation, and races 

and event orders. 

Simulators: Cadence addressed that NC-Verilog is an average 8 times faster in 

RTL simulation while there is about 6 times faster at gate level compared to Verilog-XL. 

NC-Verilog has some utilities that help transform Verilog-XL into NC-Verilog. NC-

Verilog is compliant with the IEEE 1364 standard where the IEEE 1364 standard 

borrowed many definitions from Verilog-XL. The NC-Verilog applies a new architecture 

that is totally different from Verilog-XL. For example, the NC-Verilog merged the 

behavioral and gate level simulating engines into one and there are two in Verilog-XL. 

The performance of NC-Verilog improves significantly. 

Compilation: NC-Verilog supports the compiler directive ‘undefineall, which 

gives more flexibility to programmers by freeing all the macros defined by ‘define. The 

format is “‘ifdef <name>, ‘undefineall, ‘endif”. This function can avoid duplicate of 

defining a name. In Verilog-XL, you must define all output ports to specific blocks. This 

is not a restriction in NC-Verilog. In other words, you can use the “assign” function to 

assign the output ports in NC-Verilog but it does not work in Verilog-XL. 

Backannotation: The NC-Verilog released some restrictions from Verilog-XL for 

SDF backannotation. You do not need to match the reference bits of vectors in the SDF 

file to corresponding specific block exactly and you can just select part of which in NC-

Verilog. Verilog-XL treats a $setuphold check as two checks, while the NC-Verilog does 

not. 

 10



Interactive debugging: Unlike Verilog-XL simulation, whose interactive mode 

commands are a subset of the Verilog language, the NC-Verilog interactive simulation 

supports the industry standard TCL command language. 

Simulation: Verilog-XL supports only 6 delays (0, 1 and X states), and NC-

Verilog supports 12 delays (0, 1, X and Z states). NC-Verilog can handle the recursive 

via the stack scheme whereas Verilog-XL does not have this function. NC-Verilog treats 

initialization from the time zero and it has output from the moment it starts to simulate 

the circuit. But Verilog-XL does not work by this way. For the first several cycles, these 

two simulators could draw different values for the same code. NC-Verilog is better than 

Verilog-XL for handling the glitch. 

Races and Event Orders: According to the IEEE standard 1364, the simulator can 

handle the active events in any order. Since the engines of simulators for NC-Verilog and 

Verilog-XL are different, the output of the same circuit could have different results due to 

the active events they arrange. 

 

The testing codes 

 

All the codes and instructions are put in the appendix. In the [Code & Instruction 

1: The behavioral code of shift register], the Hardware_Volume will be replaced by real 

number, which represents the bit number of shift register while it is active. The value in 

the for-loop should be taken considerably. If the ascending order is used (from 1 to k), the 

synthesizer will not generate the right structural code for the shift register. And the 

maximum Hardware_Volume value in this system that the synthesizer can synthesize is 
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999 (the number is from 0 to 999, which stands for 1000 bits). If a value is greater than 

999 filled, there causes an error during the synthesizing. Due to the tool’s limitation we 

just can write the structural code by hand when the Hardware_Volume is greater than 

1000 for shift register. The [Code & Instruction 2: The translation of behavioral code to 

structural code] of appendix is applied for translating the behavioral codes to structural 

codes. 

The structural code generated by synthesizer is in the [Code & Instruction 3: The 

structural code of shift register]. A part of the repeating codes has been omitted since they 

are trivial. This code is fetched from the synthesizing result for the Hardware_Volume of 

999. 

By checking the codes, we can confirm the structural and behavioral codes 

matched. The df001 is the register module of our library of alf ami350hxsc3.alf. In this 

study, the same test bench is used to NC-Verilog and Verilog-XL for structural and 

behavioral codes. The test bench is presented in the [Code & Instruction 4: The test bench 

of shift register]. 

The Hardware_Volume in the [Code & Instruction 4] is the same variable as the 

behavioral code in the [Code & Instruction 1]. Different timescales of test benches will 

have different results of simulation time. In here the timescale 1ns/10ps is employed. 

According to our test bench, two number stand for one clock cycle. For example, if the 

1000 is replaced for the variable Clock_time_2, it means 500 clock cycles will be 

simulated. For the $dispaly instruction, it will output the calculating result to the console. 

The more it displays, the longer the simulation time needs. From our investigation for the 

NC-Verilog, it combines the verification skill which just calculates the value needed for 
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displaying to console in the simulation. If the $dispaly instruction is taken away for NC-

Verilog simulation, no matter what Hardware_Volume is, it will simulate in a very fast 

speed by calculating nothing. In the same situation, the Verilog-XL still calculates them 

but saves the time for I/O to display. In this study, the highest significant bit of the shift 

register is shown on the console for debugging and performance tradeoff. Therefore 

taking unnecessary messages away from being displayed is always the best rule of thumb 

needed to be kept in mind. 

 

The relationship between different tools 

 

The relationships of NC-Verilog and Verilog-XL for behavioral and structural 

codes are investigated here. This test employed 10,000 clock cycles. The [Code & 

Instruction 5: The simulation instructions] of appendix is used. 

The –v command is used to direct the library ami350hxsc.d.lib. The +ncstatus 

command is applied for displaying the consuming time of NC-Verilog simulation. The 

<target file> stands for the file of structural or behavioral code, and the <test bench> is 

obviously for test bench. The result is in the [Table 1] and the [Figure 1]. 

 

The shift register test at 10,000 clock cycles 

the bit-capacity for shift register 200 400 600 800 1000 

behavioral code of VerilogXL (secs) 14.9 32 54.9 86.5 127.2 

structural code of VerilogXL (secs) 62.2 119.8 197.8 263.1 352.4 

behavioral code of NC-Verilog (secs) 2.9 4.1 6.3 9.2 14.1 

structural code of NC-Verilog (secs) 15.1 26.1 41 50.3 64.5 

 
[Table 1: The shift register test at 10,000 clock cycles] 
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[Figure 1: NC-Verilog and Verilog-XL for structural and behavioral codes for 10,000 clock cycles] 
 

Because the simulation time here is short (4.1 seconds for behavioral NC-Verilog 

at Hardware_volume 400), it means a small difference of time measuring will cause a big 

error. One second difference in the behavioral NC-Verilog test could be a 25% error for 

4.1 seconds of simulation time. Because of the synthesizer problems, the hardware 

capacity cannot exceed 1000 bits in this test mentioned above. In order to reduce the 

measuring errors, the test will be repeated by increasing the clock cycles to 20,000 and 

having more measuring points. 
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The shift register test at 20,000 clock cycle 

the bit-capacity for shift register 100 200 300 400 500 

behavioral code of VerilogXL(secs) 18.9 30.5 45.3 63.6 87.2 

structural code of VerilogXL(secs) 64.2 118.7 173.1 228.8 308 

behavioral code of NC-Verilog(secs) 6.4 7.5 8.6 10.7 12.5 

structural code of NC-Verilog(secs) 19 30.2 41.4 53.5 65.1 

the bit-capacity for shift register 600 700 800 900 1000 

behavioral code of VerilogXL(secs) 115.7 143.8 174.8 214.1 261.2 

structural code of VerilogXL(secs) 398.9 466.2 534.6 617.9 717.8 

behavioral code of NC-Verilog(secs) 14.7 17.2 20 23.6 26.9 

structural code of NC-Verilog(secs) 77.7 90.2 100.8 115.5 126.9 

 
[Table 2: The shift register test at 20,000 clock cycles] 

 

 

The values in [Table 2] are plotted on [Figure 2] as follow. 
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[Figure2: NC-Verilog and Verilog-XL for structural and behavioral codes for 20,000 clock cycles] 
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By comparing the [Figure 2] to the [Figure 1], the trends of the curves are very 

similar. It means the increasing of clock cycles for this test has a linear relationship to the 

simulation time. In order to have a closer look into the [Figure 2] for their trends, the 

coordinator system will be changed to logarithm system in the [Figure 3] below. 
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[Figure3: NC-Verilog and Verilog-XL for structural and behavioral codes for 20,000 clock cycles (log)] 
 

By inspecting the [Figure 3], except the behavioral XL result, the remaining three 

have the same increasing rate after 500 bits of hardware capacity. It makes sense because 

the percentage of overheads in the small hardware capacity of structural NC-Verilog code 

is higher than it is in large hardware capacity. Because this test will be used to estimate 

the “approximate” simulation time for large design, the behavioral code of Verilog-XL 

will be assumed to have the same increasing rate as the remaining three, and the 

behavioral NC-Verilog code simulation time will be used as base for normalization to 
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define a parameter called “Tool-Factor”. By dividing all the rows to row “behavioral 

code of NC-Verilog” in the [Table 2] respectively, it turns out a multiplying factor table 

shown in the [Table 3] below. 

 

The multiplying factor 

the bit-capacity for shift register 100 200 300 400 500 

behavioral code of VerilogXL(secs) 2.95 4.07 5.27 5.94 6.98 

structural code of VerilogXL(secs) 10.03 15.83 20.13 21.38 24.64 

behavioral code of NC-Verilog(secs) 1 1 1 1 1 

structural code of NC-Verilog(secs) 2.97 4.03 4.81 5 5.21 

the bit-capacity for shift register 600 700 800 900 1000 

behavioral code of VerilogXL(secs) 7.87 8.36 8.74 9.07 9.71 

structural code of VerilogXL(secs) 27.14 27.1 26.73 26.18 26.68 

behavioral code of NC-Verilog(secs) 1 1 1 1 1 

structural code of NC-Verilog(secs) 5.29 5.24 5.04 4.89 4.72 

 

[Table 3: The multiplying factor] 

 

The average value of each row will be found on the [Table 4]. With this table, if 

the simulation time of behavioral NC-Verilog code is found then the remaining 

simulation times are known for similar style programming codes. 

 

The Tool-Factor 

behavioral code of VerilogXL 6.896

structural code of VerilogXL 22.584

behavioral code of NC-Verilog 1 

structural code of NC-Verilog 4.72 

 
[Table 4: The Tool-Factor] 
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According to Cadence® [13], the NC-Verilog is an average of 8 times faster than 

Verilog-XL for behavioral codes, where there is about 6 times for structural codes. This 

result consists with our test in the [Table 4]. It is about 7x for behavioral codes and 5x 

(22.584 / 4.72) for structural codes. 

 

 

The equation for prediction 

 

The module for predicting the simulation time will be conducted. First of all, the 

fixed clock cycle to different hardware capacities are tested to [Table 5] for behavioral 

NC-Verilog codes. 

Shift register on fixed clock cycles (10,000 clock cycles) for NC-Verilog 

the bit-capacity for shift register 1000 2000 3000 4000 5000 

behavioral simulation time (secs) 14.1 40.8 82.4 139.7 213.2 

the bit-capacity for shift register 6000 7000 8000 9000 10000 

behavioral simulation time (secs) 300.7 403.4 521.9 661.4 805.8 

 
[Table 5: Shift register on fixed clock cycles (10,000) for behavioral NC-Verilog] 

 

A fitting equation is derived from [Table 5]: 

Time = 7.662*10-6* Hardware_Volume 2 + 

 3.688*10-3* Hardware_Volume + 2.75                                          (1) 

 

The fitting equation and the original data plotted are put onto [Figure 4]. 
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[Figure 4: Behavioral NC code at fixed cycles (10,000) test vs. fitting function] 
 

This is a perfect match and it presents the test of having a quadratic increasing 

rate. When the hardware volume increases for the same clock cycle, the simulation time 

swells up by a square rate for the style in the [Code & Instruction 1] associated with the 

test bench [Code & Instruction 4]. The next step, different numbers of clock cycles will 

be tested for different fixed hardware capacity of 2000 ([Table 6]), 4000 ([Table 7]), 

6000 ([Table 8]), 8000 ([Table 9]), and 10000 ([Table 10]) bits respectively. 

 

Shift register on fixed hardware capacity 2,000 bits for NC-Verilog 

# of clock cycles 1000 2000 3000 4000 5000 

behavioral simulation time (secs) 5.1 8.9 12.9 16.8 20.5 

# of clock cycles 6000 7000 8000 9000 10000 

behavioral simulation time (secs) 24.5 28.5 32.5 36.5 40.1 

 
[Table 6: Shift register on fixed hardware capacity 2,000 bits for NC-Verilog] 
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Shift register on fixed hardware capacity 4,000 bits for NC-Verilog 

# of clock cycle 1000 2000 3000 4000 5000 

behavioral simulation time (secs) 14.8 28.4 42.2 56 69.4 

# of clock cycle 6000 7000 8000 9000 10000

behavioral simulation time (secs) 83.4 97 110.6 124.5 137.9 

[Table 7: Shift register on fixed hardware capacity 4,000 bits for NC-Verilog] 
 

 

 

 

 

Shift register on fixed hardware capacity 6,000 bits for NC-Verilog 

# of clock cycle 1000 2000 3000 4000 5000 

behavioral simulation time (secs) 30.8 60.6 90.4 120.3 149.9 

# of clock cycle 6000 7000 8000 9000 10000

behavioral simulation time (secs) 179.8 209.6 239.2 268.8 299.4 

[Table 8: Shift register on fixed hardware capacity 6,000 bits for NC-Verilog] 
 

 

 

 

 

Shift register on fixed hardware capacity 8,000 bits for NC-Verilog 

# of clock cycle 1000 2000 3000 4000 5000 

behavioral simulation time (secs) 53.1 105.5 156.5 208.7 260 

# of clock cycle 6000 7000 8000 9000 10000

behavioral simulation time (secs) 312.3 364.2 416.3 468.1 519.1 

[Table 9: Shift register on fixed hardware capacity 8,000 bits for NC-Verilog] 
 

 
Shift register on fixed hardware capacity 10,000 bits for NC-Verilog 

# of clock cycle 1000 2000 3000 4000 5000 

behavioral simulation time (secs) 81.2 161.3 241.6 321.8 400.6 

# of clock cycle 6000 7000 8000 9000 10000

behavioral simulation time (secs) 481.9 562.1 641.9 721.8 801.3 

 
[Table 10: Shift register on fixed hardware capacity 10,000 bits for NC-Verilog] 
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The values from the [Table 6] to the [Table 10] are plotted on the [Figure 5] and 

the fitting function for each line will be found. 
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[Figure 5: Fixed hardware capacity vs. variable clock cycles for NC-Verilog] 
 

It is very obvious, for fixed hardware capacity to variable clock cycles, the time of 

simulation associates with increasing clock cycles linearly. The fitting equations for each 

line in the [Figure 5] are: 

Hardware Volume 2000: Time = 3.89*10-3* Clock_cycles + 1.21  (2) 

Hardware Volume 4000: Time = 1.37*10-2* Clock_cycles + 0.9  (3) 

Hardware Volume 6000: Time = 2.89*10-2* Clock_cycles + 1.0  (4) 

Hardware Volume 8000: Time = 5.18*10-2* Clock_cycles + 1.3  (5) 

Hardware Volume 10000: Time = 8.00*10-2* Clock_cycles + 1.2  (6) 
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The curve on the [Figure 4] is known that it could be fitted by a quadratic 

equation (1). In here, the procedure is repeated and equation (2), (4), and (6) are selected 

to plug into “Time = a * Hardware_volume^2 + b * Hardware_volume + c” respectively. 

The parameter a, b, and c can be refined out and an equation combined 

Hardware_Volume and Clock_cycles can be used to estimate the simulation time for 

similar design. The equation is: 

Time = (7.59*10-10*Clock_cycles + 1.22*10-8)* (Hareware_volume2) +  
 

(4.06*10-7*Clock_cycles - 1.45*10-4)* (Hardware_volume) +  
 

(4*10-5*Clock_cycles +1.43)                                                    (7) 
 

Let us have a little discussion for equation (7). First, the figure for clock cycles at 

1,000,000,000 (1 billion) to variable hardware volume from 1 to 1,000,000 (1 million) 

will be drawn to the [Figure 6: The 1 billion clock cycles vs. variable hardware volume]. 

Then the hardware volume is set to 1,000,000 (1 million) and the clock cycle is changed 

from 1 to 1,000,000,000 (1 billion) in the [Figure 7: The 1 million hardware volume vs. 

variable clock cycles]. Finally, a graphic with two variables for the variable clock cycle 

and the variable hardware volume is put into the [Figure 8: The variable hardware 

volume vs. variable clock cycles]. Two arbitrary big values of 1 billion clock cycles and 

1 million hardware volume are selected; the test time for this case at this system 

approximates to be 7.594*1011 seconds. It is about 24080.4 years.  This result is not 

accepted in the real world since no one can wait for such a long time. From the view of 

this point, the testing for a large circuit is pessimistic. The speeding up skills will have a 

great helpful here.  
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[Figure 6: The 1 billion clock cycles vs. variable hardware volume] 
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[Figure 7: The 1 million hardware volume vs. variable clock cycles] 
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[Figure 8: The variable hardware volume vs. variable clock cycles] 

 

 

In order to have a more realistic investigation, another arbitrary set of parameters is 

picked up: 1 million clock cycles and 0.1 million hardware volume. The results are below: 

[Figure 9: The 1 million clock cycles vs. variable hardware volume], [Figure10: The 0.1 

million hardware volume vs. variable clock cycles], and [Figure 11: The variable 

hardware volume vs. variable clock cycles for smaller value]. 

The maximum time for this set of parameters is 7630777.93 seconds (88.31 days).  
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[Figure 9: The 1 million clock cycles vs. variable hardware volume] 
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[Figure10: The 0.1 million hardware volume vs. variable clock cycles] 
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[Figure 11: The variable hardware volume vs. variable clock cycles for smaller value] 

  

 

The equation (7) is for predicting the simulation time of the behavioral NC-

Verilog, and it can be expanded by multiplying the Tool-Factors from the [Table 4] for 

the structural XL, behavioral XL, and structural NC codes. It turns out equation (8). 

Time = (7.59*10-10*Clock_cycles + 1.22*10-8)* (Hareware_volume2) +  
 

(4.06*10-7*Clock_cycles - 1.45*10-4)* (Hardware_volume) +  
 

(4*10-5*Clock_cycles +1.43)   * {Tool-Factor}                           (8) 
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All the tests above use the default system configuration and the library is in the 

same directory of tested codes in order to save communicating time. It is hardware 

related for structural codes; in other words the synthesizer will pick up the actual modules 

from the library for the simulator to run the circuit, for instance the df001 in the [Code & 

Instruction 3]. Therefore the equation (8) is just for predicting simulation time of the 

structural codes where the same type of registers (df001) used. But for the behavioral 

codes, if the program format is similar and no matter how its function is, equation (8) can 

be applied to estimate the simulation time. Some examples will be raised to verify this 

result in the next section. 

 

Some samples and expending the application 

 

Example one: The [Code & Instruction 1] is selected for behavioral Verilog-XL 

test. The Hardware_volume is 10,000 and the Clock_cycles is 5,000. 

Time = {(7.59*10-10*10000 + 1.22*10-8)*(50002) + (4.06*10-7*10000 - 1.45*10-4)* 
 

(5000) + (4*10-5*10000 +1.43)} * {6.896} 
 

The result is 1458.22 seconds and the actual simulating result is 1844.8 seconds. 

The error is about 20% of actual testing time. 

 

Example two: The behavioral NC-Verilog code in the [Code & Instruction 1] will 

be tested with 20,000 clock cycles and 11,000 bits of hardware capacity. 

Time = {(7.59*10-10*20000 + 1.22*10-8)*(110002) + 
 

(4.06*10-7*20000 - 1.45*10-4)*(11000) + (4*10-5*20000 +1.43)} * {1} 
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The result is 1928.21 seconds and the actual simulating result is 1932.2 seconds. 

Because the behavioral NC-Verilog is selected as base in this study; therefore the error is 

less than 0.2% of actual testing time. 

 

Example three: The [Code & Instruction 3] is reused for the structural Verilog-XL 

test. The Hardware_volume is 500 and the Clock_cycles is 30,000. 

Time = {(7.59*10-10*30000 + 1.22*10-8)*(5002) + (4.06*10-7*30000 - 1.45*10-4)* 
 

(500) + (4*10-5*30000 +1.43)} * {22.584} 
 

The result is 323.80 seconds and the actual simulating result is 463.8 seconds. The 

error is about 30% of actual testing time. 

 

Example four: The [Code & Instruction 3] is used again for the structural NC-

Verilog test. The Hardware_volume is 500 and the Clock_cycles is 30,000 the same as 

above. 

Time = {(7.59*10-10*30000 + 1.22*10-8)*(5002) + (4.06*10-7*30000 - 1.45*10-4)* 
 

(500) + (4*10-5*30000 +1.43)} * {4.72} 
 

The result is 67.68 seconds and the actual simulating result is 96.1 seconds. The 

error is about 30% of actual testing time. 

 

Example five: The [Code & Instruction 3] is applied again for the structural NC-

Verilog test. The Hardware_volume is 1,000 and the Clock_cycles is 300,000. 
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Time = {(7.59*10-10*300000 + 1.22*10-8)*(10002) +  
 

(4.06*10-7*300000 - 1.45*10-4)*(1000) + (4*10-5*300000 +1.43)} * {4.72} 
 

The result is 1712.42 seconds and the actual simulating result is 1879.4 seconds. 

The error is about 9 % to the actual testing time. 

 

Example six: For the behavioral codes, if a program has similar format with the 

[Code & Instruction 1], equation (8) can be applied. In the previous cases, just one bit 

register is simulated. The dimension is expanded here. An 8x10 shift register will be 

tested in the behavioral NC-Verilog code. The code is in the [Code & Instruction 6: The 

behavioral code of 8 bit wide shift register]. This code is synthesized into structural code 

by synthesizer in order to make sure this is the right thing, and it is in the [Code & 

Instruction 7: The structural code of 8 bit wide shift register]. 

Simulate the [Code & Instruction 7] with the same test bench [Code & Instruction 

4] at 100,000 clock cycles, and the result comes out of 28.2 seconds where it is 9.15 

seconds by the equation (8) with parameters filled into the following calculation. 

Time = {(7.59*10-10*100000 + 1.22*10-8)*(802) + (4.06*10-7*100000 - 1.45*10-4)* 
 

(80) + (4*10-5*100000 +1.43)} * {1} 
 

This result does not surprise us since the format of the code has been modified. 

The code in the [Code & Instruction 6] and the code in the [Code & Instruction 1], which 

is used to derivative the equation (8), share the same format. Using the same way of 

predicting the simulation time for the other codes (structural XL, behavioral XL, and 
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structural NC), a new Tool-Factor is derived for this case. In other words, the relationship 

of the code in the [Code & Instruction 6] to our equation (8) will be found. It is easy 

enough just by using 28.2 / 9.15 and the result is 3.08. Now the clock cycles are increased 

to 200,000, redo the test, and plug the values into the equation (8) again. 

Time = {(7.59*10-10*200000 + 1.22*10-8)*(802) + (4.06*10-7*200000 - 1.45*10-4)* 
 

(80) + (4*10-5*200000 +1.43)} * {3.08} 
 

The data from above calculation is 52.02 seconds and from the real test is 54.7 

seconds. By applying this method, we can expand our shift register to any dimensions. 

The error here is about 5%. 

Because the purpose here is to show the idea of making a prediction for 

simulation time, the derivation of the Tool-Factor is very rough and the Tool-Factor 

(actually the relationship in other words) could be an equation. This will cause a great 

error since we ignore the detail of the curve trends. The behavioral NC-Verilog code used 

to estimate the behavioral NC-Verilog code itself has a very satisfied result because it 

does not have any derivation problem for the Tool-Factor.  
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CHAPTER III    CONCLUSION  

 

There still is no standard for the performance test of hardware simulation. In this 

thesis, a method is developed which you can use to predict the simulation time of your 

system. If the simulation time of a design could be known before the simulator is 

launched, it is beneficial for arranging the schedule of your project. From the 

investigation for a one bit shift register in our system, if the clock cycle is 1 billion and 

the hardware capacity is 1 million, the simulation time was 24080.4 years for the 

behavioral NC-Verilog code. This result implied that it is impossible to have such a big 

design on this system. When the clock cycle is reduced to 1 million and the hardware 

capacity is changed to 0.1 million for a one bit shift register of the behavioral NC-Verilog 

code, the simulation can be finished within 3 months (about 88.31 days). This result is a 

lower bound for the simulation time of hardware systems with greater complexity than a 

shift register. In general by selecting one similar behavioral code as a base, the prediction 

can be extended from the base case. 
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APPENDIXES 

 
 
[Code & Instruction 1: The behavioral code of shift register] 

module shiftregister(d, clk, q); 
 input   d, clk ; 
 output [Hardware_Volume : 0] q ;  //change Hardware_Volume to test 
 reg  [Hardware_Volume : 0] q;    // change Hardware_Volume to test 
 reg insignal ; 
 integer k; 
  
 always @ (posedge clk) 
 begin 
  
    for(k= Hardware_Volume; k>=1; k=k-1)  // change Hardware_Volume to test 
     begin 
       q[k] = q[k-1]; 
     end 
     q[0] =  d;    
     
 end 
endmodule 

 

 

 

 
[Code & Instruction 2: The translation of behavioral code to structural code] 

do_remove_design –all      //delete existed compiled files 
read_ver shiftregister.v      //read the behavior file 
do_build_generic           //optimize logic 
set_wire_load_mode enclosed     
read_alf ami350hxsc3.alf     //read the reference library 
do_optimize    //map logic into cells from technology library and minimize area 
write_ver -hier shiftregister_syn.v   //write structural code into file 
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[Code & Instruction 3: The structural code of shift register] 

// Generated by ac_shell v5.10-s071 on Mon Mar 14 01:15:51 CST 2005. 
// Restrictions concerning the use of Ambit BuildGates are covered in the 
// license agreement.  Distribution to third party EDA vendors is 
// strictly prohibited. 
 
module shiftregister(d, clk, q); 
 
 input d; 
 input clk; 
 output [999:0] q; 
 
 df001 q_reg_0(.Q(q[0]), .C(clk), .D(d)); 
 df001 q_reg_1(.Q(q[1]), .C(clk), .D(q[0])); 
 df001 q_reg_2(.Q(q[2]), .C(clk), .D(q[1])); 
 df001 q_reg_3(.Q(q[3]), .C(clk), .D(q[2])); 
 df001 q_reg_4(.Q(q[4]), .C(clk), .D(q[3])); 

: 
:  (Omission) 
: 

 df001 q_reg_996(.Q(q[996]), .C(clk), .D(q[995])); 
 df001 q_reg_997(.Q(q[997]), .C(clk), .D(q[996])); 
 df001 q_reg_998(.Q(q[998]), .C(clk), .D(q[997])); 
 df001 q_reg_999(.Q(q[999]), .C(clk), .D(q[998])); 
endmodule 
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[Code & Instruction 4: The test bench of shift register] 
 
`timescale 1ns/10ps 
module shiftregister_testbench(); 
reg d, clk; 
wire [Hardware_Volume:0]  q;   // Hardware_Volume the same as above 
integer  k, i; 
shiftregister test(.d(d) , .clk(clk) , .q(q)); 
 
 
//start to testing the shift registers 
initial begin 
  clk = 1'b0;  
  #1; 
  d = 1'b1; 
  #1; 
  i = 0; 
 
   for (k=0; k<= Clock_time_2; k=k+1) begin   // # of Clock_time_2 for simulation 
   
      clk = ~clk ; 
      #1; 
      i = i + 1; 
      if(i == 2) begin 
        i = 0; 
        d = ~d; 
        #1; 
      end 
       
     $display ("Time=%t  q=%b  k=%d  clk=%b ", $realtime, q[Hardware_Volume], k, 

clk);   //Hardware_Volume as above 
 
    end 
end 
endmodule 
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[Code & Instruction 5: The simulation instructions] 

ncverilog <test bench> <target file> -v <library ami350hxsc.d.lib> +ncstatus 
verilog <test bench> <target file> -v <library ami350hxsc.d.lib> 

 

 

[Code & Instruction 6: The behavioral code of 8 bit wide shift register] 
 
module shiftregister(d, clk, q); 
 input   d, clk ; 
 output [79 : 0] q ;  //change Hardware_Volume to test 
 reg  [79 : 0] q;    // change Hardware_Volume to test 
 reg insignal ; 
 integer k; 
  
 always @ (posedge clk) 
 begin 
 
  
    for(k= 9; k>=1; k=k-1)  // change Hardware_Volume to test 
     begin 
       q[k] = q[k-1]; 
       q[k+10] = q[k-1+10]; 
       q[k+20] = q[k-1+20]; 
       q[k+30] = q[k-1+30]; 
       q[k+40] = q[k-1+40]; 
       q[k+50] = q[k-1+50]; 
       q[k+60] = q[k-1+60]; 
       q[k+70] = q[k-1+70]; 
     end 
 
     q[0] =  d;    
     q[10] =  d; 
     q[20] =  d; 
     q[30] =  d; 
     q[40] =  d; 
     q[50] =  d; 
     q[60] =  d; 
   q[70] =  d; 

        
 end 
endmodule 
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[Code & Instruction 7: The structural code of 8 bit wide shift register] 
 
// Generated by ac_shell v5.10-s071 on Thu Mar 17 21:22:30 CST 2005. 
// Restrictions concerning the use of Ambit BuildGates are covered in the 
// license agreement.  Distribution to third party EDA vendors is 
// strictly prohibited. 
 
module shiftregister(d, clk, q); 
 
 input d; 
 input clk; 
 output [79:0] q; 
 
 
 df001 q_reg_0(.Q(q[0]), .C(clk), .D(d)); 
 df001 q_reg_1(.Q(q[1]), .C(clk), .D(q[0])); 
 df001 q_reg_2(.Q(q[2]), .C(clk), .D(q[1])); 
 df001 q_reg_3(.Q(q[3]), .C(clk), .D(q[2])); 
 df001 q_reg_4(.Q(q[4]), .C(clk), .D(q[3])); 
 df001 q_reg_5(.Q(q[5]), .C(clk), .D(q[4])); 
 df001 q_reg_6(.Q(q[6]), .C(clk), .D(q[5])); 
 df001 q_reg_7(.Q(q[7]), .C(clk), .D(q[6])); 
 df001 q_reg_8(.Q(q[8]), .C(clk), .D(q[7])); 
 df001 q_reg_9(.Q(q[9]), .C(clk), .D(q[8])); 
 df001 q_reg_10(.Q(q[10]), .C(clk), .D(d)); 
 df001 q_reg_11(.Q(q[11]), .C(clk), .D(q[10])); 
 df001 q_reg_12(.Q(q[12]), .C(clk), .D(q[11])); 
 df001 q_reg_13(.Q(q[13]), .C(clk), .D(q[12])); 
 df001 q_reg_14(.Q(q[14]), .C(clk), .D(q[13])); 
 df001 q_reg_15(.Q(q[15]), .C(clk), .D(q[14])); 
 df001 q_reg_16(.Q(q[16]), .C(clk), .D(q[15])); 
 df001 q_reg_17(.Q(q[17]), .C(clk), .D(q[16])); 
 df001 q_reg_18(.Q(q[18]), .C(clk), .D(q[17])); 
 df001 q_reg_19(.Q(q[19]), .C(clk), .D(q[18])); 
 df001 q_reg_20(.Q(q[20]), .C(clk), .D(d)); 
 df001 q_reg_21(.Q(q[21]), .C(clk), .D(q[20])); 
 df001 q_reg_22(.Q(q[22]), .C(clk), .D(q[21])); 
 df001 q_reg_23(.Q(q[23]), .C(clk), .D(q[22])); 
 df001 q_reg_24(.Q(q[24]), .C(clk), .D(q[23])); 
 df001 q_reg_25(.Q(q[25]), .C(clk), .D(q[24])); 
 df001 q_reg_26(.Q(q[26]), .C(clk), .D(q[25])); 
 df001 q_reg_27(.Q(q[27]), .C(clk), .D(q[26])); 
 df001 q_reg_28(.Q(q[28]), .C(clk), .D(q[27])); 
 df001 q_reg_29(.Q(q[29]), .C(clk), .D(q[28])); 
 df001 q_reg_30(.Q(q[30]), .C(clk), .D(d)); 
 df001 q_reg_31(.Q(q[31]), .C(clk), .D(q[30])); 
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 df001 q_reg_32(.Q(q[32]), .C(clk), .D(q[31])); 
 df001 q_reg_33(.Q(q[33]), .C(clk), .D(q[32])); 
 df001 q_reg_34(.Q(q[34]), .C(clk), .D(q[33])); 
 df001 q_reg_35(.Q(q[35]), .C(clk), .D(q[34])); 
 df001 q_reg_36(.Q(q[36]), .C(clk), .D(q[35])); 
 df001 q_reg_37(.Q(q[37]), .C(clk), .D(q[36])); 
 df001 q_reg_38(.Q(q[38]), .C(clk), .D(q[37])); 
 df001 q_reg_39(.Q(q[39]), .C(clk), .D(q[38])); 
 df001 q_reg_40(.Q(q[40]), .C(clk), .D(d)); 
 df001 q_reg_41(.Q(q[41]), .C(clk), .D(q[40])); 
 df001 q_reg_42(.Q(q[42]), .C(clk), .D(q[41])); 
 df001 q_reg_43(.Q(q[43]), .C(clk), .D(q[42])); 
 df001 q_reg_44(.Q(q[44]), .C(clk), .D(q[43])); 
 df001 q_reg_45(.Q(q[45]), .C(clk), .D(q[44])); 
 df001 q_reg_46(.Q(q[46]), .C(clk), .D(q[45])); 
 df001 q_reg_47(.Q(q[47]), .C(clk), .D(q[46])); 
 df001 q_reg_48(.Q(q[48]), .C(clk), .D(q[47])); 
 df001 q_reg_49(.Q(q[49]), .C(clk), .D(q[48])); 
 df001 q_reg_50(.Q(q[50]), .C(clk), .D(d)); 
 df001 q_reg_51(.Q(q[51]), .C(clk), .D(q[50])); 
 df001 q_reg_52(.Q(q[52]), .C(clk), .D(q[51])); 
 df001 q_reg_53(.Q(q[53]), .C(clk), .D(q[52])); 
 df001 q_reg_54(.Q(q[54]), .C(clk), .D(q[53])); 
 df001 q_reg_55(.Q(q[55]), .C(clk), .D(q[54])); 
 df001 q_reg_56(.Q(q[56]), .C(clk), .D(q[55])); 
 df001 q_reg_57(.Q(q[57]), .C(clk), .D(q[56])); 
 df001 q_reg_58(.Q(q[58]), .C(clk), .D(q[57])); 
 df001 q_reg_59(.Q(q[59]), .C(clk), .D(q[58])); 
 df001 q_reg_60(.Q(q[60]), .C(clk), .D(d)); 
 df001 q_reg_61(.Q(q[61]), .C(clk), .D(q[60])); 
 df001 q_reg_62(.Q(q[62]), .C(clk), .D(q[61])); 
 df001 q_reg_63(.Q(q[63]), .C(clk), .D(q[62])); 
 df001 q_reg_64(.Q(q[64]), .C(clk), .D(q[63])); 
 df001 q_reg_65(.Q(q[65]), .C(clk), .D(q[64])); 
 df001 q_reg_66(.Q(q[66]), .C(clk), .D(q[65])); 
 df001 q_reg_67(.Q(q[67]), .C(clk), .D(q[66])); 
 df001 q_reg_68(.Q(q[68]), .C(clk), .D(q[67])); 
 df001 q_reg_69(.Q(q[69]), .C(clk), .D(q[68])); 
 df001 q_reg_70(.Q(q[70]), .C(clk), .D(d)); 
 df001 q_reg_71(.Q(q[71]), .C(clk), .D(q[70])); 
 df001 q_reg_72(.Q(q[72]), .C(clk), .D(q[71])); 
 df001 q_reg_73(.Q(q[73]), .C(clk), .D(q[72])); 
 df001 q_reg_74(.Q(q[74]), .C(clk), .D(q[73])); 
 df001 q_reg_75(.Q(q[75]), .C(clk), .D(q[74])); 
 df001 q_reg_76(.Q(q[76]), .C(clk), .D(q[75])); 
 df001 q_reg_77(.Q(q[77]), .C(clk), .D(q[76])); 
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 df001 q_reg_78(.Q(q[78]), .C(clk), .D(q[77])); 
 df001 q_reg_79(.Q(q[79]), .C(clk), .D(q[78])); 
endmodule 
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