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CHAPTER 1

INTRODUCTION

According to Thrun [1], the broad field of robotics can be classified into three cat-

egories as per their application domains - industrial robotics, professional service

robotics, and personal service robotics. Industrial robotics refer to the robots deployed

in strictly structured industrial settings. Such robots have limited reprogrammability

and little or no interaction with humans. Professional service robots are employed in

special environments such as hospitals and often have very specific tasks, such as per-

forming surgeries. These robots also have limited interaction with humans. Robotics

in these two domains is well developed and has been applied commercially with great

success.

Inspired by the success of these two fields, there is a steeply growing interest in

the robotics research community towards developing general purpose personal service

robots which can reside with and assist humans in daily tasks. Such robots are

expected to adapt to any environment, communicate well with humans, perform

tasks autonomously as well as collaboratively with humans. Apart from classical

challenges in robotics such as perception, localization, navigation and manipulation,

a new challenge involved in deploying personal service robots is that of human-robot

interaction (HRI) [2].

1.1 Human-Robot Interaction (HRI)

The central theme in a variety of science fiction works, including Capek’s play Rossums

Universal Robots, is how robots would live, interact and communicate with humans.
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Human-Robot Interaction (HRI) is a sub-field of robotics that tries to understand

and shape the way humans and robot would interact with each other.

According to a survey on HRI by Goodrich et al. [3], the major attributes that

affect HRI include

• Nature of information exchange which are specified by various communication

modalities

• Level of autonomy which decides whether the robot is completely autonomous,

partially teleoperated or fully teleoperated

• Structure of the team which decides the role of the agents in the interaction

• Adaptation, learning, and training of both people and robots

• Shaping tasks to make them simpler for both humans and robots

It is easy to imagine that information exchange or human-robot communication

(HRC) plays a major role in determining the efficacy of the interaction.

1.2 Human-Robot Communication

Humans can communicate with each other, very effectively using language, sound,

hand gestures etc. Apart from such explicit modes of communication, humans can

also communicate implicitly, by employing body language, facial expressions or by

even performing actions (actions speak louder than words).

Tremendous amount of progress has been made in developing natural language

capabilities for robots. Progress has also been made in the vision community which

allows robots to sense hand gestures and facial expressions. In addition, robots can

also communicate using a variety of devices such as keyboards, visual displays, haptic

interfaces etc. Apart from such communication modalities, in order to make HRI truly

effective and convenient, we also need to enable robots to understand the implicit
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mode of communication. Let us take for example a robotic butler who can assist us

with our daily lives. The butler would be able to perform a task if he is told to do so

explicitly using speech or hand gestures. However, the butler would be really effective

if he could infer our mental or physical state based on various features such as facial

expressions, our bodily motions or even the current context, and proactively provide

assistance. To make implicit communications possible, such robots need to acquire

situational knowledge, which gives them the ability to infer/predict human intention

based on their observations.

1.3 Thesis Overview

The aim of this work is to investigate how human motion can be used for communi-

cating with robots, both explicitly and implicitly. The term human motion is very

general since humans can use their motion for communication in various ways. In

this work we focus on -

• Arm gestures - observing the human arm’s joint angles for learning to imitate

human arm gestures

• Demonstrating tasks - observing the movement of human’s hands in the workspace

for learning to perform tasks by demonstration

• Performing collaborative tasks - inferring human intent by observing his motion

while working with him.

Figure 1.1 illustrates the various segments of this work. In the first two scenarios,

the robot is explicitly shown the gestures and the tasks, which is to be used for

learning them. In the third scenario, the robot has to watch human’s motion while

working with him, and infer his intent.
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Figure 1.1: The role of human motion in HRI

1.3.1 Explicit Communication By Motion

Learning from demonstrations

Learning from Demonstrations (LfD) is a very good example of where explicit com-

munication is needed between a human and a robot [4]. Traditionally, robots have

to be programmed systematically to carry out specific tasks. But if the robot has to

work in a home scenario with non-expert users, it is essential for the to learn a vari-

ety of tasks from humans without having the need of humans to program them using

sophisticated programming techniques. The learning by imitation paradigm offers a

novel method to teach robots various skills [5]. This principle has taken inspiration

from nature, since learning by imitation is one of the most fundamental qualities

possessed by living beings in general and human beings in particular. According to

studies in neuroscience [6] and evolution theory, it is this ability which has helped

human civilization advance with such rapidity.

Imitating arm gestures

Humans often use hand gestures or arm gestures for communication. Arm gestures

could be as simple as waving arms for signalling or as complex as the gestures used

4



by referees in sports like football. It would be very useful if robots could learn to

recognize as well as perform arm gestures, given a few demonstrations. If robots

can characterize the useful information from the demonstrated arm gestures, both

problems could be solved. In this work we consider a scenario where the robot observes

the joint angles of the human arm, while he is performing a specific gesture. From

multiple demonstrations of the same gesture, the robot tries to create a generalized

trajectory for that specific gesture. This trajectory could be used by the robot to

replay the gesture. Chapter 2 details the framework that would allow robots to

imitate arm gestures. We also consider the problem of how to tackle missing data

segments, if present in the training data.

Learning to perform tasks from demonstrations

Apart from teaching robots to imitate humans, they can also be taught to perform

various visuo-motor tasks by human demonstration. The problem is more challenging,

since the state of the environment need not be exactly the same as when the task was

demonstrated. The structure of the human and the robot can also be quite different.

Hence, simply imitating the demonstrator would not accomplish the objective of

performing the task.

For learning to perform tasks by demonstrations, humans tend to observe the

movement of the demonstrator’s hands with respect to the objects of interest in the

workspace, as opposed to observing joint angles of the demonstrator [7]. In this work,

we consider a scenario of a humanoid robot learning to perform a visuo-motor task,

such as grasping a table at a specific point, by observing motion of the human hand

with respect to the table. Again, multiple demonstrations of the same task are needed,

from which critical information is extracted. Chapter 3 details the application of the

GMM/GMR encoding technique [8] to solve this problem.
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1.3.2 Implicit Communication by Motion

According to a survey by Reed et al. [9], humans have been found to convey their

intent by using their motion or actions in a collaborative task. For example, consider

a scenario where two humans are transporting a table from one place to another.

When two humans are working on such a collaborative task, their roles as being a

leader or a follower are not clearly marked. Suppose one member of the team wants

to move the table to the left, he will go ahead and move his end of the table towards

the left, anticipating that his team-mate would oblige. If the other team-mate feels

that he move helps the team to reach their final objective, then he would oblige and

also start moving to the left. This is the kind of communication that not only makes

performing collaborative tasks possible, but also effortless. In this work, we consider

a physical HRI task, where a human and a robot have to move a table to a random

height and place it back down. Since the robot is not assigned a mere follower role,

the task is non trivial. Apart from simply reacting to changes in the pose of the

table, the robot should also be able to predict human’s motion, infer his intent and

take proactive actions to keep the table exactly horizontal throughout the task. For

making this possible, we propose a framework that allows the robot to determine its

own role in the cooperative task and take actions which are appropriate to its role.

Chapter 4 presents the proposed framework.

We also investigate how this framework can be extended to other collaborative

task, where the prediction and inference is for a long term. We consider a scenario

where a human and a robot would work together to assemble various ingredients to

prepare a dish in a cooperative cooking scenario. Chapter 5 discusses the cooperative

cooking scenario. Finally, chapter 6 presents the conclusions derived from this work.
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CHAPTER 2

LEARNING TO IMITATE ARM GESTURES

Humans use their motion to communicate explicitly when they signal to others using

various hand or arm gestures. During human-robot interaction, it would be very

useful if humans and robots could communicate explicitly using arm gestures. Hence

it is very desirable that robots learn to recognize and perform arm gestures. The

gesture recognition part has been extensively researched upon by both the robotics

and the computer vision community. However, there is relatively less work on teaching

robots to perform arm gestures. In this work, we investigate how the learning from

demonstrations or imitation learning concept can be used for teaching a humanoid

robot to perform various arm gestures.

For learning to perform an arm gesture, the robot is told to observe the demon-

strations of the human, specifically the joint angle trajectories of his arm. For learning

a particular gesture, multiple demonstrations of the same gesture are required so that

the robot can extract essential features of the gesture and learn it, instead of simply

copying it [10]. The major issues to address are feature extraction, data representation

and data generalization.

We focus on developing a platform to implement and evaluate the imitation learn-

ing framework. The joint angle data for the arm gesture is collected using a marker

based optical tracking system. The human arm is modeled as being made of 2 seg-

ments - the upper arm and the lower arm. We obtain the joint angle trajectories of

the shoulder and elbow using the pose of the upper arm and lower arm respectively.

For our experimentation, we have considered various hand gestures which explore a

7



variety of human arm joint angles such as sweeping motion, knocking motion and

writing alphabets.

The proposed imitation learning framework aims at obtaining a generalized rep-

resentation of a particular arm gesture from multiple demonstrations of the same.

Dynamic Time Warping [11] is applied to the recorded joint angle trajectories in

order to temporally align the trajectories with minimum error. We generalize these

aligned trajectories by weighted averaging. We pass the averaged trajectory through

a low pass filter to achieve a smooth trajectory, so that the robot’s arm movements

are free of jerks. The technique has to be slightly modified when the demonstrated

trajectories contain missing data segments. Section 2.5 details this case.

2.1 Related Work

Hidden Markov Models have been successfully applied to the problem of encoding the

trajectories and recognizing the arm gestures in [10]. Pollard et al. [12] have proposed

a control systems based approach to learn and reproduce a particular gesture while

satisfying the joint and velocity limits. Dariush et al. [13] have described motion

primitives in a task space and formulated a solution to track the task descriptor while

satisfying the constraints of maintaining balance, collision-avoidance, limiting joint

angles and velocities on the ASIMO humanoid robot. The use of B-spline wavelets

for representing a trajectory has been explored in [14]. For imitation, a novel idea of

connecting some control points on the humanoid to the optical markers attached on

the human, using virtual springs has been proposed in [15]. In [16], The problem of

imitating human motion has been formulated and solved as an optimization problem

with the physical limits of the robot as the constraints .
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Figure 2.1: Arm gesture imitation system diagram

2.2 Platform for Imitation Learning

Figure 2.1 shows the proposed system for imitation learning. Data is collected from

the motion capture system. The joint angle trajectories are extracted from the motion

capture data. These trajectories are used as the training data for the imitation learn-

ing framework. The proposed framework involves temporally aligning the trajectories

using DTW and then deriving their generalized representation. These trajectories are

smoothed and applied to the robot. To evaluate the merit of the proposed imitation

learning framework, the motion performed by the robot is captured using the motion

capture system and compared to the generalized trajectories.

2.2.1 Motion Capture System

The motion capture system used for our experiments is the Vicon MX motion capture

system [17]. It is one of the most advanced optical motion capture systems available

commercially. The system consists of 12 Vicon T-40 cameras. Each camera can cap-

ture a 10 bit grayscale image at a resolution of 4 megapixels. We can capture data

at speeds upto 370 frames per seconds. The system is equipped with sophisticated

dynamic reconstruction algorithms for real time tracking. The motion capture cam-

eras are connected by a gigabit ethernet port. With the given system, we can track

any optical marker within a tolerance of 7 mm. We can create rigid bodies which
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are nothing but markers attached to a solid body in a specific pattern. The Vicon

Tracker software is used for capturing the rigid-body data. The algorithms used in

Tracker are optimized for tracking rigid bodies.

2.2.2 Humanoid Robot

The Nao humanoid robot shown in Figure 2.2, manufactured by Aldebaran Robotics,

France, is used for the experiment [18]. The robot has 25 degrees of freedom, realized

by a number of motors and actuators. The robot is equipped with a variety of sensors

such as 2 cameras, 4 microphones, 2 sonar distance sensors, inertial sensors, tactile

sensors and force sensors on the feet. The robot can express itself using a variety

of devices such as motion, in built speech synthesizer and a number of LEDs. The

battery can last about 1.5 hours. The robot is equipped with an x86 AMD Geode

processor running at 500MHz. The processor runs a proprietary embedded linux OS

based on the Open Embedded distribution. The robot is equipped with a middle-ware

called NaoQi which allows programmers to develop applications for the robot using

a variety of languages such as C++ and Python.

Figure 2.2: The Nao humanoid robot
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For this experiment, we use only 4 degrees of freedom in the right arm of the

robot. The robot has 2 degrees of freedom in the shoulder joint and 2 degrees of

freedom in the elbow joint.

2.3 Imitation Learning Methodology

2.3.1 Human Arm Modelling

We model the human arm, as consisting of two segments, the upper arm and the

lower arm. It is clear that the motion of the upper arm and lower arm are governed

by the shoulder joint and the elbow joint respectively. Thus, we can estimate the

joint angles of the shoulder joint and elbow joint if the orientation of the upper arm

and lower arm are known. The following sub-sections present a brief overview of the

anatomy of the human arm [19].

Shoulder Joint

The glenohumeral joint or the shoulder joint is a ball and socket joint. It has two sig-

nificant degrees of freedom. Using this joint, the arm can perform the arm abduction-

adduction and arm flexion-extension motions. There can also be the medial and lat-

eral rotations for the shoulder joint, but it is usually very small. In the Nao humanoid

robot, there are only two degrees of freedom at the shoulder. Hence the rotation of

the shoulder joint has to be ignored. There are also other degrees of freedom in the

human arm at the sterno-clavicular joint which gives rise to scapular retraction, pro-

trusion, depression and elevation motions. These movements give rise to expressions

such as shrugging or slumping. Unfortunately, humanoid robots cannot be as flexible

as the real human arm, and hence these degrees of freedom also have to be ignored.

11



(a) Markers placed on

subject for collecting

joint angle data

(b) Rigid bodies

(marker plates)

as seen by Vicon

Tracker

Figure 2.3: Markers for motion capture

Elbow Joint

The elbow joint consists of three independent joints. The humero-ulnar joint is a

hinge joint. It allows for the flexion and extension of the lower arm. The proximal

radio-ulnar joint is responsible for pronation and supination. The humero-radial joint

is an arthroidal joint and does not contribute to the movement of the lower arm.

2.3.2 Data Acquisition

The markers for motion capture are placed on the human subject as shown in Figure

2.3(a). We create a rigid body plate consisting of atleast 4 markers. Three such plates

are attached to torso, upper arm and lower arm as shown in Figure 2.3(b). From

Tracker, we can get the rotation matrix for each rigid body with respect to the world

co-ordinate system.

Let RW
T , RW

U , RW
L be the rotation matrices of the torso plate, upper arm plate and

the lower arm plate respectively with respect to the global co-ordinate system. In

order to compute the joint angles, we need to estimate the orientation of the upper

with respect to the human torso and the orientation of lower arm with respect to the

upper arm. Hence, we convert the reference co-ordinate systems as :
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RT
U = RW

U (RW
T )−1. (2.1)

Equation (1) gives us the rotation matrix of the upper arm marker plate with

respect to the torso marker plate.

RU
L = RW

L (RT
U)

−1. (2.2)

Equation (2) gives us the rotation matrix of the lower arm marker plate with

respect to the upper arm marker plate. Let us represent a rotation matrix R as

R =













r11 r12 r13

r21 r22 r23

r31 r32 r33













We can derive the roll, pitch and yaw angles for the marker plates from their rotation

matrices. We use the X-Y-Z fixed angle system which is represented by the set of

rotations γ, β, α applied to X, Y and Z axes respectively. Given the rotation matrix

R, these angles can be derived as,

β = Atan2(−r31,
√

r211 + r221),

α = Atan2(r21/cβ, r11/cβ),

γ = Atan2(r32/cβ, r33/cβ).

(2.3)

The solution degenerates when β = ±90◦. If β = 90◦, the solution is given by

β = 90◦, α = 0, γ = Atan2(r12, r22). If β = −90◦, the solution is given by β =

−90◦, α = 0, γ = −Atan2(r12, r22).

These angles would define the orientation of the respective arm segments they are

attached to. The yaw and pitch angles of the upper arm marker plate with respect to

13
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Figure 2.4: Shoulder yaw angle trajectories for sweep motion for 5 demonstrations

torso defines the shoulder yaw and shoulder pitch angles respectively. The yaw and

roll angles of the lower arm marker plate with respect to the upper arm marker plate

defines the elbow yaw and elbow roll angles respectively. Thus, we extract the joint

angles of the human arm.

2.3.3 Data Analysis

Figure 2.4 shows the raw data obtained for the shoulder yaw angle for the sweep

gesture performed by the subject five times. Upon visually inspecting the data, the

following conclusions about the data can be drawn:

Noise

It can be seen that that the noise induced in the measurements is very small, since

the motion capture system used gives extremely accurate data. But in the real world

scenario, some noise maybe induced in the measurements which can be removed using

a low pass filter.
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Variation in Data

It can be seen that every trajectory differs from others in phase. Also, the subject may

perform the same gesture with different pace. Hence, we must apply some technique

which will bring temporal coherence between the trajectories, while minimizing the

difference between them caused by time normalization. This problem is similar to

the one, faced in speech recognition systems. Untill more recently, Dynamic Time

Warping (DTW) was a standard algorithm used for speech recognition . It has been

largely replaced today by Hidden Markov Models(HMM). But, it is clear that speech

signals are much more complex than the observed joint angle trajectories. The use

of HMMs would be too costly for such a system. Hence, we propose the use of DTW

for our system.

2.3.4 Dynamic Time Warping

Dynamic Time Warping is an optimum dynamic programming based time normal-

ization algorithm originally intended for use in speech recognition systems [11]. This

Dynamic Programming (DP) based matching algorithm gives a non-linear time nor-

malization effect between two signals. A time warping function is defined as a func-

tion which maps the time scale of one signal to another. Consider 2 vectors A =

{a1, ..., ai, ...aI} and B = {b1, ..., bj , ...bJ}. We can define a vector C = {c1, ..., ck, ...cK}

such that,

c(k) = (i(k), j(k)). (2.4)

c(k) represents a function which realizes a mapping of the time axis of vector A

and time axis of vector B, hence called the warping function. As a measure of distance

between the two vectors we can define

d(c) = d(i, j) = ||ai − bj || (2.5)

The summation of distances on the warping function F is defined as
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E(F ) =
K
∑

k=1

d(c(k)) (2.6)

The minimum of (8) with respect to F gives us the optimal warping path.

The important restrictions on this path are:

1. Monotonicity : The path must be monotonous

i(k − 1) ≤ i(k) and j(k − 1) ≤ j(k)

2. Continuity : The path must be continuous

3. Boundary Conditions

i(1) = 1, j(1) = 1 and,

i(K) = I, j(K) = J

Figure 2.5: Dynamic Time Warping (DTW)

The method can be explained using Figure 2.5. Consider the two joint angle

trajectories as being the two signals A and B. We calculate a distance matrix DI×J

16



whose elements are D(i, j) = ||ai − bj ||. Now, the problem involves finding the least

cost path fromD(1, 1) toD(I, J). This least cost path will give us the desired warping

function. The least cost path can be found out using the dynamic programming

algorithm.

p(i, j) = D(i, j) + min{p(i− 1, j), p(i, j − 1), p(i− 1, j − 1)} (2.7)

where p(i, j) is the least cost path (found iteratively) of the point D(i, j) from the

origin D(1, 1).

To warp the trajectories with one another, we have to first decide a template

trajectory. All the trajectories for the same joint angle for the given hand gesture are

warped to this template trajectory. For selecting the template, we find the distance

of the warping path for each trajectory with the others. We select that trajectory as

the template, which gives the least warping distance for all other signals in the same

class.

2.3.5 Weighted Averaging

Once the trajectories are optimally aligned in time, their general representation must

be obtained. It can be seen from Figure 2.6 that there is very small variance between

the trajectories after they are aligned. Hence, an averaging approach is sufficient.

Instead of simple averaging we use weighted averaging. Intuitively, the weighing

function for each element should be a function which is inversely proportional to its

distance from the class mean. Thus, the elements closer to the class mean get weighed

more heavily than the others. Thus, this reduces the distortions in the averaged

trajectory because of possible outliers. Suppose {x1, · · ·xn} are the n joint angle

trajectories we want to generalize. Since each of the signals is time normalized, let T

be the length of each signal. Let {x1t, · · ·xnt} be the value of each trajectory at the

time instance t where t ∈ {1, · · ·T} We define µt =
∑n

i=1
xit/n and σit

2 = (xit− µt)
2.
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Figure 2.6: Temporally aligned trajectories for the same trajectories shown in Figure

2.4

Then the average value x̄t for the time instance t is found out as,

x̄t =

∑n

i=1
xit/σit

2

∑n

i=1
1/σit

2
(2.8)

Thus X = {x̄1, · · · x̄T } will be the generalized version of the n given trajectories.

This trajectory is the one which the robot will emulate.

2.4 Results of Imitation Learning

The imitation learning framework was tested on common arm gestures to evaluate

our system. The human subject was asked to perform a gesture in his own style for 5
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trials (arbitrarily chosen). The gestures on the basis of which our system is evaluated

are :

1. Sweeping motion : Simple sweeping motion. Use of Shoulder Yaw and Elbow

Yaw angles are prominent.

2. Knocking motion : Motion of knocking door. Use of Elbow Yaw and Elbow

Roll angles are prominent

3. Writing capital letter ‘N’ : Simple alphabet containing straight lines

4. Writing capital letter ‘D’ : Alphabet containing a curve

The joint angles of the subject are calculated using the data from the motion

capture system. These angle trajectories are then filtered with an averaging filter to

remove noise if any. Once all the trials are captured, the Dynamic Time Warping

algorithm is applied to align the trajectories for the each joint angle in time. The

aligned trajectories are generalized using the Weighted Averaging strategy described

above. Once we obtain the generalized trajectories for each joint, we apply these

trajectories to the respective joints of the robots and obtain the results. Figure 2.7

shows the robots imitating action as compared to the action performed by the human

subject, at various instances The robot is able to closely imitate the hand gesture

performed by the human subject

For validating the goodness of the proposed method, we attached the marker

plates to the humanoid’s arm in a way similar to the human being. We follow the

same procedure described in section 2.3.2 to calculate the joint angle trajectories for

the robot’s arm. We compare the trajectory hence obtained, with the generalized

trajectory for the human subject. This gives us a direct measure of how well the

robot is imitating the human subject.

Figure 2.8 compares the generalized trajectory (shown in blue) with the trajectory

of the shoulder yaw angle performed by the robot (shown in red). The mean square
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(a) Sweep Motion

      

 

(b) Writing letter ’D’

 

(c) Knocking

Figure 2.7: Sequence of actions for various gestures performed by subject and imitated

by the robot
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(a) Shoulder yaw angle for ‘sweep’ motion
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(b) Shoulder pitch angle for writing letter ‘D’
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(c) Shoulder pitch angle for writing letter ‘N’

Figure 2.8: Generalized trajectories(blue circles) and trajectories observed from

robot(red squares)
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Table 2.1: Mean Square Error

Sweeping Letter ‘D’ Letter ‘N’ Knocking

Shoulder Yaw 0.0189 0.0041 0.0029 0.0034

Shoulder Pitch 0.0043 0.0039 0.0052 0.0061

Elbow Yaw 0.0075 0.0243 0.0019 0.0326

Elbow Roll 0.0033 0.0075 0.0167 0.0047

error between these two trajectories is calculated and presented in table 2.1. We can

observe that the performed trajectory closely matches the generalized trajectory. It

can also be observed in Figure 2.8(a) that some clipping occurs, because the shoulder

yaw angle for the robot ranges from 0 to π/2. Upon observing the motion of the robot

in real time, there is not much distortion because of this clipping.

2.5 Missing Data in Joint Angle Imitation

We now consider the case where the demonstration data contains missing segments.

Missing data problem occurs in marker based systems when the markers are ob-

structed or even when the cameras fail to locate the correct position of the markers

because of bad calibration. The problem is more severe in marker-less systems using

computer vision, where missing data may occur due to occlusions, insufficient lighting

and general algorithmic failures. Hence, it is necessary to address this problem.

Although multiple demonstrations of the same gesture are available, the problem

of filling in the missing gaps is not straight-forward since the demonstrations are not

time-aligned. The problem is worsened by the fact that the time alignment operation

involves non-linear time shifting and scaling operations. Thus, fundamentally, we

have to derive a time-alignment function by performing non linear optimization so

that the difference between the aligned multiple demonstrations is minimized in some

sense.
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Figure 2.9: Interpolation approach block diagram

 

Figure 2.10: Modified DTW approach block diagram

In this section, we propose and evaluate two approaches to solve the missing data

problem. One is the interpolation approach and the other approach uses a modified

version of the Dynamic Time Warping algorithm [11].

Figures 2.9 and 2.10 show the overall system design for the two proposed ap-

proaches. Data is collected from the motion capture system. The joint angle trajec-

tories are extracted from the motion capture data which has missing data. Figure

2.9 shows the interpolation approach to solving the missing data problem. Figure

2.10 shows the block diagram of the modified DTW approach.

For a given signal or trajectory, there can be two sources of information to infer

the missing data. Horizontally, we can infer the missing data by interpolating across

the trajectory. Vertically, we can infer missing data by guessing the correspondence

between the trajectories arising from multiple demonstrations. But, before we can

infer data vertically, the trajectories must be time-aligned. Hence, we can have two

approaches. In the interpolation approach, we first interpolate along each individual

trajectory and then apply time warping and generalize by weighted averaging. In the

modified DTW approach, we apply the DTW algorithm to the fragmented trajectories

and then generalize. The generalized trajectory in the latter case can still contain
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missing data which can be filled up by interpolation. Thus, in both the proposed

approaches, we make use of the information contained vertically and horizontally.

2.5.1 Interpolation approach

In this approach, the missing raw joint angle trajectory data is reconstructed indepen-

dently through interpolation. Interpolation is done using a piecewise cubic hermite

interpolant as described in [20]. The advantage of this technique is that it gener-

ates shape preserving curve which is not possible using cubic splines. Practically,

it was observed that using this interpolant, best reconstruction results for joint an-

gle trajectories are possible. Once all the trajectories are reconstructed, we apply

Dynamic Time Warping to achieve temporal alignment. After the trajectories are

aligned, weighted averaging is applied to obtain a generalized trajectory for all the

demonstrations.

2.5.2 Modified DTW approach

The DTW algorithm cannot handle signals with missing data. Since the given signals

do not have continuity, the cost matrix d(i, j) cannot be computed. Hence, some

adjustments are needed. For the sake of constructing the cost matrix, we apply

the piecewise hermite interpolant to the given signals. A record of the time steps

which had to be interpolated is kept. Once the cost matrix is constructed, the DTW

algorithm proceeds as usual. After a shortest path has been found out, the parts of

the path which correspond to the interpolated time steps of the original signals are

removed. The reasoning behind doing this is that the interpolated data points should

have no role in producing the final generalized output. Hence, we are left with a

broken piecewise time warping function as shown in Figure 2.11.

Further, this fragmented time warping function is interpolated using the shape

invariant interpolant. Equivalently, this corresponds to predicting the warping for
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Figure 2.11: Broken warping path obtained by modified DTW approach

the missing parts of the signals. This is shown in Figure 2.12. This approach is

different from the interpolation approach, because in this approach, interpolation on

the signals is used temporarily to construct the cost matrix.
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Figure 2.12: Interpolating the broken warping path using a shape preserving inter-

polant
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2.5.3 Results of both approaches

The algorithms again tested on the arm gestures such as sweep motion, knock mo-

tion and writing alphabets ‘D’ and ‘N’. First, we obtain the data from the motion

capture system and compute the joint angles of the arm. To simulate the missing

data conditions, patches of specified length (time steps) are randomly removed until

a specified percentage of data is lost. As in our previous work [21], we apply DTW

and weighted averaging to the original motion capture data and produce generalized

trajectories. We consider these as the ground truth. We present the results of the

interpolation and modified DTW algorithms by comparison with ground truth.

As a distance metric for comparing with ground truth, Euclidean distance does

not perform well. We use the DTW algorithm to find the distance of the generalized

results from the ground truth. Tables 2.2 and 2.3 show the comparison of error

obtained by using the two approaches for the various gestures. For each gesture, 5

demonstrations were considered for training and the indicated amount and length of

missing data was added. Experiments were performed by varying the amount and

length of missing data. The amount of missing data (%) indicates the percentage

of data missing from the trajectory. The length of missing data indicates the size

of the biggest gap (in time steps). The last two columns show the error obtained

by the corresponding approaches as DTW distance with the ground truth. The

general observation is that, as the percentage of missing data increases, the error

(DTW distance) increases. It is also seen that for the same percentage of missing

data, the length of the missing data impacts the error drastically. The reason for

this is, the interpolation becomes poor for longer gaps. Also, the error is more for

complicated hand gesture like ‘knock’ as compared to the other gestures. The results

are acceptable when error is less than 5 rad2. Upon comparing the results obtained by

the two algorithms, we find that the Interpolation approach performs better than the

Modified DTW approach. The reason might be, because we remove the interpolated
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Table 2.2: Comparison of approaches to sweep and knock gestures

Gesture Length Percent Interpolation M-DTW

missing missing approach approach

(time steps) (%) (rad2) (rad2)

Sweep 10 20 0.0442 0.2511

40 0.0856 0.4300

60 0.1334 0.8920

20 20 0.0731 0.2435

40 0.1122 0.4731

60 0.5293 1.4773

50 20 0.2257 0.4146

40 0.6218 0.5153

60 2.9137 9.3397

Knock 10 20 0.4754 1.0993

40 0.6517 3.8922

60 0.6854 3.2733

20 20 0.5826 1.1051

40 1.2573 7.0438

60 1.8742 13.738

50 20 1.3201 2.3362

30 2.4421 6.5206

40 11.431 15.512
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Table 2.3: Comparison of both approaches to tracing ’N’ and ’D’

Gesture Length Percent Interpolation M-DTW

missing missing approach approach

(time steps) (%) (rad2) (rad2)

‘N’ 10 20 0.0154 0.0262

40 0.0233 0.0356

60 0.0491 0.0736

20 20 0.0191 0.1952

40 0.0385 0.2426

60 0.0837 1.4276

50 20 0.1000 0.2640

40 0.5861 0.9860

60 2.8497 3.9402

‘D’ 10 20 0.0094 0.0581

40 0.0211 0.0725

60 0.0343 0.0896

20 20 0.0066 0.0521

40 0.0561 0.0822

60 0.4326 0.1983

50 20 0.0216 0.1643

40 0.0333 0.2112

60 2.9372 4.2631

28



0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Data with missing points

0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Interpolation approach

0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Modified DTW approach

0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Generalized trajectories

 

 
Ground truth
Interpolation
M−DTW

Figure 2.13: Results for shoulder yaw angle for learning the ‘sweep’ gesture

points in the M-DTW approach, the system falls short of data required for learning.

The M-DTW approach truly does not infer the trajectory information contained

horizontally.

The results for the shoulder yaw angle trajectory during the ‘sweep’ gesture are

shown in Figure 2.13. The figure shows the raw data with missing points, the

results obtained by interpolation and modified DTW approaches, and the generalized

trajectories which the robot follows. The ground truth is obtained by applying DTW

to the original data (without missing points) and generalizing it. Figure 2.14 shows

the trajectories followed by the tip of the robot’s hand during the gestures of ‘Knock’,

‘D’ and ‘Sweep’.

 

Figure 2.14: Trajectories of ‘Knock’, ‘D’ and ‘Sweep’ gestures
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This section discussed how the missing data problem can be alleviated by using

the interpolation and the M-DTW approaches. Essentially, the M-DTW approach in-

volves removing the artifacts obtained from the interpolation step. The results show

that the interpolation approach still performs better than the M-DTW approach.

Although the artifacts occuring from interpolation are removed in the M-DTW ap-

proach, the artifacts occuring because of warping are not removed. Artifacts appear

after warping since we use the warping path directly to manipulate the signals. It

can be seen from Figure 2.12 that the warping path is quite rough, which leads to

abrupt signal warping. Instead of interpolating the warping path with a shape in-

variant interpolant in the M-DTW approach, a smoother interpolant might lead to

better results. Further, adding slope constraints to the warping path might also help.

In this chapter, we have seen how robots can be taught to perform simple arm

gestures by imitation learning. The learnt arm gestures can be used extensively while

interacting with humans. Apart from arm gestures, robots can also be taught to

perform various tasks using the learning from demonstration paradigm. We discuss

this in the next chapter.
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CHAPTER 3

LEARNING TASKS FROM DEMONSTRATIONS

In the previous chapter, we have seen how robots can be taught to perform simple arm

gestures by imitation learning. It would be highly desirable to transfer visually guided

skills such as grabbing an object, from the human to the robot using demonstrations.

This concept is vastly applicable in personal service robots, where the end-users would

be non-experts having limited programming knowledge. The idea of teaching tasks by

showing, would give them a very intuitive programming capability, and enable them

to teach robots new tasks. In our work, we consider a task of teaching the robot to

grasp a table at a specific point.

However, transferring task skills is more challenging than transferring imitation

skills. This is because, the task environment need not be exactly the same as when it

was demonstrated. For example in the table grasping task, the position of the table

could be different than when the task was demonstrated. Hence, the robot cannot

reproduce the task by simply recording human’s joint angles and replaying them. For

the robot to actually learn the task, it has to observe motion of the human’s hand

with respect to the object and extract the essential constraints. Again, the problems

involved are data representation, generalization and reproduction.

3.1 Related Work

Amongst the robot learning from demonstration paradigm, there are several questions

that determine the structure of the learning framework. These questions are what to

imitate, how to imitate, when to imitate and whom to imitate. A large body of
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research tries to answer the first two questions at different levels.

Based on the distinction made, there exist three major approaches -

• Low level approaches - where the robot observes and learns raw visuo-motor

skills (answers the how to imitate question)

• Mid level approaches - answers the what to imitate and how to imitate questions

• High level approaches - where the robot has a semantic understanding of the

world and tries to observe and learn tasks symbolically (answers the what to

imitate question)

The last chapter was a good example of a lower level approach, where the robot

learns motion primitives in the joint space. However, such lower level learning is

limited in producing only simple robot behaviors. In higher level approaches, it is

assumed that the robot has some prior knowledge about motion primitives. For

example, in [22], the robot is taught a task to lay table for dinner. Typically, in such

approaches, tasks are split into subtasks or actions, and their interdependence and

sequencing is learnt. The learning could result into the robot building up an abstract

knowledge base such as Pickup Bowl, Place Bowl, Pickup Saucer and so on. In such

approaches, the prior knowledge assumed is that the robot knows how to pickup the

bowl.

Mid level approaches have started gaining more popularity, since they answer both

the what to imitate and how to imitate questions simultaneously. Mid level approaches

extract the essential task constraints from the given demonstration. These constraints

are with respect to the task environment. Given a new state of the task environment,

mid level approaches determine the new constraints (what to imitate) and use the

existing demonstrations to derive controllers for task reproduction (how to imitate).

However they require a larger number of human demonstrations as compared to

higher level approaches.In this work, we use a mid level approach which uses the
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Figure 3.1: Experimental setup and the various co-ordinate frames involved

GMM/GMR framework proposed by Calinon et al. [23]. The framework provides a

continuous representation of the task constraints which can be used to generalize and

reproduce the gestures.

3.2 Experimental Setup

The experimental setup mainly consists of the motion capture system and the hu-

manoid robot. Figure 3.1 shows the experimental setup. C++ is used at the front-end

for communicating with the robot and MATLAB R© is used at the back-end for pro-

cessing data. Markers are attached only to the human’s wrist to track his hand

position in the work-space. Markers are placed on the table as well as the robot.
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Table 3.1: Co-ordinate frames involved

Rigid Body Notation

Human left wrist HLW

Robot left wrist RLW

Table TAB

Robot’s external frame (torso) RE

World frame W

As we had seen in the earlier chapter, the motion capture system allows us to

create ‘rigid body’ objects. Each rigid body defines its own co-ordinate frame having

its translation and rotation with respect to the global frame. The rigid body frames

defined for our setup are listed in Table 3.1. The convention we follow in this paper

are: the X-Y-Z co-ordinates (position) of a rigid body ‘A’ with respect to rigid body

‘B’ is denoted as APB and the rotation of body ‘A’ with respect to body ‘B’ is denoted

by ARB

Firstly, the human demonstrates the table-reaching action multiple times, which

is captured by the motion capture system. The goal is to extract the constraints

from the demonstration, and map them to the robot embodiment. However, the end

effector position of the robot is controlled by a frame located somewhere inside its

torso. We shall call this the robot’s ‘internal’ frame denoted by RI. The table’s

frame is used to observe the human’s hand motion with respect to table during the

demonstration. The human demonstrations have to be mapped to the robot by

removing the embodiment difference that exist between the human and the robot.

This mapping is simplified by considering all the trajectories in the task space as

opposed to the joint space. Calibration is further needed to derive the transformation

for converting the trajectories in robot’s external frame to the robot’s internal frame.

Calibration is discussed further in this section.
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3.2.1 Calibration

The robot’s end-effector has to be controlled with respect to its internal frame of

reference. But the mapped data obtained from demonstrations, is the trajectory of

the markers placed on the robot’s hands with respect to the markers placed on the

robot’s torso. Hence, a calibration is needed to establish a correspondence between

the external marker frame with the internal robot frame. The robot’s SDK can

provide the position of the robot’s end effector with respect to its internal frame of

reference. Hence given the corresponding motion capture data and encoder data,

a transformation can be derived. We model this transformation as a homogenous

transformation which takes care of scaling, translation and rotation.

For calibration, the robot waves its hand in random trajectories trying to cover

all the possible joint configurations of its arms. While it is doing so, positions are

collected simultaneously from motion capture (denoted by A) and forward kinematics

applied to robot’s internal joint encoders (denoted by B). The linear least squares

formula used to calculate this homogenous transformation (H) can be given as

H = (ATA)−1ATB (3.1)

It can be easily seen that B = AH would convert the motion capture trajectory

(A) to the trajectory that can be enacted by the robot.

3.3 Methodology

For learning the task from demonstrations, we adopt the probabilistic learning frame-

work proposed by Calinon et al [24]. Firstly, a Gaussian Mixture Model (GMM) is

used to encode the set of demonstrated trajectories (data-representation problem).

Then, Gaussian Mixture Regression (GMR) is applied to the GMM model to retrieve

a smooth generalized version of these trajectories and associated variances (general-
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Figure 3.2: Learning tasks from demonstration framework

ization problem)[25]. These generalized trajectories are then mapped to the robot’s

embodiment (human-robot mapping problem).

In a new scenario, such as new position and orientation of the robot and the

table, a position controller is derived from the generalized trajectories (reproduction

problem). The block diagram for the learning tasks from demonstration framework

is shown in Figure 3.2. The details of the block diagram are described next.

Coordinate transformation

Various coordinate transformations are required for converting the captured trajecto-

ries to the trajectories of actual interest. The obtainable trajectories from the motion

capture are HLWPW , REFPW and TABPW which are with respect to the world frame.

The human’s wrist trajectory with respect to the table (denoted by HLWPTAB) is of

interest for learning. So we need to transform the trajectory HLWPW from the world

frame to the table’s frame given the pose of the table object (TAB). The transfor-

mation essentially is first a translation and then a rotation. It is given by

HLWPTAB =TAB RW (HLWPW −
TAB PW ) (3.2)
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Generalization

Let {εj}
N

j=1
denote the N demonstrations. Each demonstration is normalized to 100

time steps. Each datapoint εj =
{

tj , ε
S
j

}

consists of a time step tj and a coordinate of

position εSj which is a point in trajectory of the human’s left wrist with respect to the

table, HLWPTAB. The dataset is first modeled by a Gaussian Mixture Model(GMM)

of K components, each data point is defined by its probability density function[26]

p(ǫj) =

K
∑

k=1

πkN(ǫj ;µk,Σk) (3.3)

where, πk are prior probabilities and N(ǫj ;µk,Σk) are Gaussian distributions de-

fined by centers µk and covariance matrices Σk, whose temporal and spatial compo-

nents can be represented separately as

µk = (µT
k , µ

S
k ), Σk =







ΣTT
j ΣTS

j

ΣST
j ΣSS

j






(3.4)

Based on the GMM, a generalized version of the trajectories is computed by

applying Gaussian Mixture Regression (GMR). The procedure is as follows. For each

component k, the expected distribution of likelihood of εSj given a time step tj and

gaussian mixture component k is defined by

p(ǫSj |tj, k) = N(ǫSj ; ǫ̂
S
k , Σ̂

SS
k ) (3.5)

ǫ̂Sk = µS
k + ΣST

k (ΣTT
k )−1(tj − µT

k ) (3.6)

Σ̂SS
k = ΣSS

k − ΣST
k (ΣTT

k )−1ΣTS
k (3.7)

By taking the complete GMM into account, the expected distribution is defined

by

p(ǫSj |tj) =
K
∑

k=1

βk,jN(ǫSj ; ǫ̂
S
k , Σ̂

SS
k ) (3.8)
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Figure 3.3: Embodiment difference between the human’s hand and the robot’s hand.

where βk,j is the probability of the component k responsible for tj . By using

the linear transformation property of Gaussian distribution, and estimation of the

conditional expectation of ǫSj given tj is thus defined by p(ǫSj |tj) ∝ N(ǫ̂Sj , Σ̂
SS
j ),

where the parameters of the Gaussian distribution are defined by

ǫ̂Sj =
K
∑

k=1

βk,j ǫ̂
S
k , Σ̂SS

j =
K
∑

k=1

β2

k,jΣ̂
SS
k (3.9)

By evaluating
{

ǫ̂Sj , Σ̂
SS
j

}

at different time steps tj , a generalized form of the tra-

jectories ǫ̂ =
{

tj , ǫ̂
S
j

}

and associated covariance matrices Σ̂ =
{

Σ̂SS
j

}

representing the

constraints along the task can be computed [23].

Correspondence problem

The constraints are derived from HLWPTAB which are obtained from the human

demonstrations. The constraints derived for HLWPTAB have to be mapped to the

robot’s end effector with respect to the table denoted by RLWPTAB. All the trajec-

tories considered for learning are in the task space as opposed to joint space. Hence,

inherently the embodiment mapping problem is simplified. The mapping problem is

further simplified by mapping only the positional constraints. Hence, only the bias

difference shown in Figure 3.3 between the human’s wrist and the robot’s end effector

has to be taken care of. A simple method is proposed to calculate this dimension
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difference. The human and robot grasp a fixed object in space. The coordinates with

respect to the fixed object are obtained. The difference between these two coordinates

is the required bias compensation. Hence, a simple human to robot mapping can be

achieved.

Reproduction

In the reproduction phase, a new trajectory for the robot’s end effector RLWPRE has

to be produced based on the generalized version of RLWPTAB. Given the pose of the

table (TAB) during reproduction phase, RLWPRE can be derived as follows:

We have RLWPTAB which is

RLWPTAB =TAB RW (RLWPW −
TAB PW ) (3.10)

RLWPW can be obtained as

RLWPW = TABRW
−1 RLW

PTAB +TAB PW (3.11)

Finally we can derive RLWPRE as

RLWPRE =RE RW (RLWPW −
RE PW ) (3.12)

RLWPRE is then transformed for by calibration to yield a trajectory that can be

enacted by the robot.

Mirroring the trajectory

In the imitation learning phase, only left hand demonstrations are provided to the

robot. This trajectory is mirrored across the vertical robot axis to obtain the corre-

sponding trajectory for the robot’s right end effector.
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3.4 Experiments and Results

3.4.1 Calibration results

The calibration matrix is obtained by moving the robot arm randomly covering as

many configurations as possible, during which the coordinates of the robot’s left arm

with respect to its own torso is collected both in the motion capture and the robot’s

internal frame.
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Figure 3.4: Calibration Results

Then, the homogeneous transformation is used to calculate the calibration matrix.

The homogenous matrix basically gives a transformation for the robot hand motion

from motion-capture to fit the data obtained from the internal encoder data. Figure

3.4 shows the coordinates in the two frames before and after calibration. It can be

observed from the figure, that using the calibration matrix the trajectories can be

successfully converted from the motion capture frame to the robots internal frame.
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3.4.2 Imitation learning results

In the imitation learning phase, multiple demonstrations are performed by the human.

In each demonstration, the human tries to approach the same position of the table

with his left hand from an arbitrary initial position. An open source MATLAB code

has been used to implement GMM/GMR [23]. The GMM/GMR results are shown

in Figure 3.5. Generalized trajectories and constraints are thus obtained.
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Figure 3.5: Trajectory encoding and generalization.

From the results, it can be seen that the constraints of the human hand’s final

position with respect to the table becomes narrower, which suggests that the final

position of the robot’s end effector with respect to the table should also be consistent.

After compensating for the bias difference between human’s hand and robot’s hand,

the robot can generate its own trajectory given the extracted constraints.
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Figure 3.6: Replaying the generalized trajectory. (a)-(d)

Given a new position of the table with respect to the robot, a new trajectory is

reproduced by the position controller. The calibration matrix is then used to convert

the trajectories from the robot’s external frame to the robot’s internal frame. In the

imitation learning phase, demonstrations of grasping the table with only the left hand

are provided to the robot. This trajectory is mirrored to obtain the corresponding
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Figure 3.7: Reproducing the generalized trajectory in an unknown position. (a)-(d)

trajectory of robot’s right end effector. The results are shown in Figure 3.6 and

Figure 3.7. The former is the robot replaying the generalized trajectories extracted

from the demonstrations and the latter is the robot reproducing the trajectories in

a new situation (different position of the table). It is observed that the trajectories

generated are quite smooth.
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Thus, in this chapter we have seen how a humanoid robot can be taught to perform

a visuo-motor task by showing human demonstrations. Learning from demonstrations

is a classic human-robot interaction example where gestures or tasks are communi-

cated explicitly to the robot. Performing collaborative tasks is a good example where

humans communicate implicity. In the next two chapters, we shall see how humans

can convey their intentions implicitly by using their motion or simply performing

actions in human-robot collaborative tasks
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CHAPTER 4

IMPLICIT COMMUNICATION BY MOTION IN A PHYSICAL HRI

TASK

A physical HRI (pHRI) task involves any task in which the human and robot are

coupled to an object. Possibly, the best example of a pHRI task is a joint table

lifting task. Other examples of pHRI tasks include shaking hands and handing over

objects. Such tasks are also called co-operative manipulation tasks. According to the

survey by Reed et al. [9], humans typically do not tend to communicate explicitly

when performing cooperative manipulation tasks, but use a variety of implicit cues

to express and understand their intentions. Our interest is to investigate how robots

can utilize the cues hidden in human motion and actions to infer human intent and

thus carry out the cooperative task successfully.

An important factor that shapes human-robot collaboration is the role of the

robot. In collaborative tasks, agents can assume leader, follower or mixed roles. Tradi-

tionally the role of the robot has to be pre-determined. However, humans performing

collaborative tasks can switch between or share the leader-follower roles effortlessly

even in the absence of audio-visual cues. In the absence of explicit communication

modalities, humans communicate implicitly using their motion or by performing cer-

tain actions [9]. We propose a framework that can endow robots with a similar

capability. The behavior of the robot is controlled by two types of controllers such as

reactive and proactive controllers. The reactive controller causes the robot to behave

as a follower and the proactive controller causes it to behave as a leader. The proac-

tive controller suggests proactive actions based on human motion prediction. The
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framework relies on a novel technique to compute a measure of confidence for the

prediction. This confidence measure determines the leader/follower role of the robot.

Hence, the robot can switch roles during the task autonomously and dynamically.

A table-lifting task which is essentially a cooperative manipulation task is consid-

ered to demonstrate the proposed framework. Performance of the human-robot team

carrying out this task is experimentally evaluated.

4.1 Related Work

In earlier works, the intellectual responsibility of planning and guiding the co-operative

task is placed entirely on the human while the collaborating robot is assigned a mere

follower role. These robot followers are pre-programmed with simple reactive be-

haviors. For example, a popular approach for accomplishing a cooperative object

manipulation task, is using impedance control [27], [28]. However adopting such a

naive strategy requires the human to spend extra energy in dragging the robot, apart

from the energy spent in moving the load itself. Furthermore, a goal such as keep-

ing the table exactly horizontal throughout the table-lifting task is very difficult to

achieve using this technique alone.

Maeda et al. were amongst the earliest to provide a solution to this problem, by

using a human motion prediction technique which enables the robot partner to work

proactively with the human [29]. Human motion prediction was obtained by following

the assumption, that the fellow human’s motion satisfies the minimum jerk model [30]

in the cooperative manipulation setting. Based on estimation of the minimum jerk

model parameters, the robot could predict the velocity profile of the human’s motion,

which could then be used to take a proactive action. This strategy was shown to

reduce the human’s effort for the cooperative manipulation task. Recently, we have

seen a resurgence in the studies of physical human robot interaction which make use

of motion prediction strategies. Corteville et al. presented a robot assistant which
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could predict the humans motion using a Kalman filter (KF) [31]. The KF was

designed according to the minimum jerk model. The amount of assistance provided

by the robot throughout the entire task had to be decided beforehand. In [32] the

authors proposed a solution to change the role of the robot during the task execution

using a homotopy switching model, although manually. Automatic adjustment of

the homotopy variable αi which decides the role of the robot was left as an open

question, for which the proposed work offers a solution. Another shortcoming in [31]

and [32] is the assumption that the robot should know the destination of the object

being transported so that a plan of motion could be generated. If the destination is

changed mid-way, a new subtask has to be generated on the fly which is non-trivial

and is a separate work in itself [33]. Apart from cooperative tasks, human motion

prediction has also been applied extensively in robotic teleoperation tasks [34], [35],

[36].

Recent works show that the minimum jerk model may not be suitable for cooper-

ative manipulation tasks [37]. The minimum jerk model assumption fails when there

are large perturbations in the motion trajectory, or if the human decides to change the

course of the trajectory during the task execution. In such cases, the robot might fail

to comply with the human, which may lead to disastrous consequences. Also, in order

to apply the minimum jerk model successfully, the final position of the object must

be known both to the human and robot which is cumbersome in real world situations.

It is interesting to note that two humans can excel in a table-lifting task even if one

does not know the final position of the object. Other related work include [38] which

proposes a task-model learning approach combined with an adaptive control system.

After going through a two-step learning process, the robot can work collaboratively

with the human while inferring his intent.

In this work, we propose a novel solution to address the problem of switching

the robot’s role automatically during a cooperative manipulation task. Additionally,
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the robot does not need to know the final position of the object. This is practically

desirable, since the motion trajectory of the object may require to be changed during

task execution, depending upon the environment, obstacles or the physical limitations

of the human and/or the robot.

The proposed work uses a prediction-evaluation method to estimate the confidence

of prediction and use it to adjust the role of the robot. Our hypothesis stems from

the observation that, in a human-human team performing a collaborative task, each

human constantly predicts the other’s motion. Based on how well the other person

conforms to his predictions, the human can decide whether to lead him or follow him.

We apply the same strategy to the humanoid robot. Another way of looking at this

solution is, suppose if the robot is able to predict the human’s motion accurately, it

means that the robot has acquired an accurate model of the human’s behavior. Hence,

it can start behaving as a leader and proactively take the next action based on its

prediction. However if the robot has not been able to predict the motion correctly, it

is better for the robot to reactively comply with the human. This intuition sets the

basis for adjusting the leader/follower role of the robot continuously and dynamically.

4.2 Experimental Platform

For the experiments we developed a platform which consists mainly of a Vicon motion

capture system and a Nao humanoid robot. The table-lifting task consists of the

human and humanoid robot lifting up a dummy table to a random height and keeping

it down. Figure 4.1 shows the experimental setup. Only the positional information

of the table is used for characterizing the task. We do not use force sensors because

the table does not have a significant weight. The Vicon motion capture system

provides precise position and motion information about the table. Motion of the

robot hand is constrained to 1-D up-down motion. However, the proposed system

can be easily extended to handle multiple dimensions. C++ is used at the front-
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Figure 4.1: Experimental setup

end for communicating with the robot and MATLAB c©is used at the back-end for

processing data.

4.3 Methodology

Figure 4.2 shows the conceptual block diagram for the proposed system. The frame-

work consists of the reactive controller, proactive controller and the behavior gain

control blocks. As the name suggests, the reactive controller generates a reactive

robot behavior based upon the current state of the environment. The proactive

controller consists of a kalman filter (KF) based human motion predictor and an

evaluation-based confidence generator. Based upon the observed human actions, the

predictor estimates the position of the human in the next time-step, which decides

the robot’s proactive action. Additionally, it generates the confidence of prediction,

which is the key in adjusting the role of the robot. Based upon the confidence value,

the behavior gain control block mixes the reactive and proactive actions to generate
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a composite action which is taken by the robot. According to our hypothesis, the

weight allotted by the gain control block to the proactive behavior varies directly as

the confidence value. In the remainder of this section, we discuss the details of the

proposed framework.

4.3.1 Reactive Controller

The reactive controller generates a reactive response by the robot to the observed state

of the object. In the table-lifting task, this controller observes the position of the table

and suggests a suitable action to perform so that a certain objective is achieved. For

our experiments, the objective is to keep the table horizontal throughout the task.

This can be accomplished using any generic feedback controller. However, we choose

to use a controller learned from reinforcement learning for the following reasons :

• It is possible to learn a good controller in a short time.

• It compensates for the time needed to manually tune the parameters of a feed-

back controller.

• Objective of the task is very simple in the current experiment. However, in the

future, we will consider complex tasks such as keeping a bowl in the center of

50



1
Z

Table

State  1

State (N+1)/2

Human 

Side

Robot 

Side

State N

2
Z

Figure 4.3: State representation for reinforcement learning

the table while performing the table lifting task. Complex tasks like these, have

a long term reward to maintain for which reinforcement learning is most suited.

Also, such high level objectives are much easier to specify using reinforcement

learning.

In this work we use the discrete Q-learning algorithm. The Q-table update equa-

tion is given by

∆Q(st, at) = α[r + γmax
a

Q(st+1, a)−Q(st, at)] (4.1)

where r is the reward, α is the learning rate and γ is the discount factor. For the

task at hand, γ does not play a significant role, since there is no sense of a long term

reward. The state of the environment is determined by the incline of the table at the

given moment. This information is obtained from the motion capture system. Incline

of the table is quantized into discrete number of states. Figure 4.3 shows a state

space consisting of N states. The action space consists of a predetermined discrete

set of commands which move the robot’s hand-tip up or down by specified distances.

The robot has to undergo an online learning phase to learn the Q-table. During this

phase, it is assumed that the human remains comfortably stationary. To speed up

the learning phase we use a simple guided reinforcement learning algorithm based

on counting the number of state-action visits. Essentially, the action selection for
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exploration is done on the basis of the number of visits to the particular state-action

pair, instead of random action selection as in ǫ - greedy algorithms. The reinforcement

learning algorithm is given below.

Algorithm 1 Guided Reinforcement Learning

1: Initialize V isit(si, ai) = 0 ∀i ∈ N

2: Initialize Q-table Q(si, ai) = 0 ∀i ∈ N

3: while Learning phase do

4: t = timestep

5: st = getState()

6: Select at ← argmin(a)[V isit(st, a)]

7: Take action at

8: V isit(st, at)← V isit(st, at) + 1

9: r = getReward()

10: Update Q(st, at) using (4.1)

11: end while

4.3.2 Proactive Controller

The proactive controller is the most important block of the proposed system. Role

of the proactive controller is to keep a track of actions performed by the human and

generate a prediction of the human’s position in the next time-step, along-with a

confidence measure for the prediction. For the prediction purpose, a Kalman filter is

used. State of the KF xk is given by

xk =













sk

vk

ak













(4.2)
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The measurement model is given by

zk = sk + v (4.3)

where sk is the displacement of the human’s end of the table (equivalently his hand-

tip), vk is his velocity, ak is his acceleration and v ∼ N(0, R) is the measurement

noise, all at the instant k. The measurement model can be rewritten as

zk =

(

1 0 0

)

xk + v (4.4)

We use the assumption that the acceleration of the human hand changes slowly

throughout the motion since humans naturally try to minimize jerk. Note that this

is not the same as using the minimum jerk model.

Hence, the state update equation can be written as

xk+1 =













sk + vkt+
1

2
akt

2

vk + akt

ak













+ w (4.5)

where w ∼ N(0, Q) is the process noise. For t = 1 the system model can be rewritten

as

xk+1 =













1 1 0.5

0 1 1

0 0 1













xk + w (4.6)

Based on the state estimate x̂k, the human’s position at the next time-step can

be predicted as

ŝk+1 = ŝk + v̂kt +
1

2
âkt

2 (4.7)

The variance of the measurement noise (R) is initialized to 0.7 which corresponds

to the uncertainty in measurement obtained by the Vicon system. Using this KF, it

is possible to get nearly accurate predictions of the human’s motion.
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For obtaining the confidence of prediction, we derive inspiration from [39], wherein

the authors proposed a technique, to obtain a confidence measure based on the statis-

tical properties of the residuals between the predicted measurements and the observed

measurements. In our technique, the KF provides a state estimate and an associated

covariance matrix. Firstly, we marginalize the covariance matrix to include only the

1-D variance associated with the position prediction, say ρ. Let the predicted posi-

tion be ŝk. Then, we evaluate the likelihood of the observed measurement zk using

an unnormalized Gaussian distribution given by

Lk = exp

(

−
(zk − ŝk)

2

2ρ2

)

(4.8)

We choose an unnormalized Gaussian distribution to make 0 < L ≤ 1. It can be

seen that L would give us a direct measure of confidence about the prediction based

on the evaluation of the previous prediction against the true measurement. However,

considering only the last step measurement error is not sufficient. For the confidence

measure, we introduce a function given by

Ck+1 =
Lk + φLk−1 + · · ·+ φk−1L1

1 + φ+ · · ·+ φk−1
(4.9)

The subscripts denote the time-steps at which they were obtained. Hence, Ck+1 is

the confidence of prediction for the next time-step, that considers all the likelihoods

observed previously, weighted by the forgetting factor φ, where 0 < φ ≤ 1. This

function can be implemented recursively. Also, it can be seen that the denominator

is for normalization.

4.3.3 Behavior Gain Control

At a given time step k, let the reactive controller suggest a next-step action Rk+1

and the proactive controller suggest a next-step action Pk+1. Let the confidence of

this prediction be Ck+1. The gain control block combines these together to form a
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composite action Ak+1 given by

Ak+1 = Ck+1Pk+1 + (1− Ck+1)Rk+1 (4.10)

This action is taken by the robot at time-step k+1. The inspiration for this form

has been taken from [32]. Note that because 0 < C ≤ 1, the robot does not act as a

pure leader or pure follower, but has characteristics of both in different amounts.

If the confidence of prediction Ck+1 is high, larger weight is allotted to the proactive

action. Hence, the robot’s action has leader-like characteristics. If the robot is not

very confident about the prediction, larger weight is allotted to the reactive behavior

and the robot’s action seems follower-like. Since the system works in real time, the

change of behavior is dynamic and automatic.

4.4 Experimental Results

In this section we present the experiments performed and the results obtained.

4.4.1 Learning the Reactive Controller based on Q - Learning

For Q-learning, a state-action space consisting of 5 states and 5 actions was arbitrarily

chosen. The reward r was decided as

r = (|Z2 − Z1|)k − (|Z2 − Z1)|)k+1 (4.11)

where Z1 and Z2 represent the position of the human-end and the robot-end of the

table respectively.

Hence, if the slant of the table is decreased, the robot receives a positive reward.

The action set consists of actions {+2,+1,0,-1,-2}, which correspond to the direction

and magnitude of the robot’s motion by a defined position step. The position step

was set to be 2 cm, since it is the smallest precise movement that can be performed by
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the robot’s arm. Values of the reinforcement learning parameter used were, learning

rate α = 0.9 and discount factor γ = 0.2.

Ten trials were performed to test how quickly the algorithm could converge to

an optimal policy. Median value for number of iterations to converge was 36. The

longest episode took 62 iterations before it could converge. Hence, the learning could

converge approximately within 40 trials. Each learning trial took about 5 minutes to

complete.

4.4.2 Prediction

The previously described KF is used for predicting the human motion one time-

step ahead. Each time step is typically about 100 ms, which is the minimum time

required for the robot’s arm to move from one position to another. Figure 4.4 shows

the predicted and observed values of position, velocity and acceleration.

The predicted position is calculated from (4.7). True velocity and accelerations

calculated from the actually observed positions, and are shown in the figure for com-

parison with the predicted velocities and accelerations.

It can also be observed from Figure 4.4 that the predictions are inaccurate during

the initial steps of the motion. After about 10 time steps the estimates improve.

It can be seen that the difference between the predicted velocity and the calculated

velocity is very small. The calculated acceleration nearly remains centered at 0 with

small changes. This partly justifies our assumption that the acceleration remains

nearly constant.

4.4.3 Confidence Measure

Figure 4.5 shows how the confidence (C) of the prediction varies throughout the task,

along with the position predictions and observations.

It can be seen that initially, when the task has not begun and the table is still, the
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Figure 4.4: Predictions obtained from KF
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Figure 4.5: Confidence value with predictions

predictor accurately estimates the motion to be zero which causes the high confidence

value at the beginning. Once the trial starts, in the initial steps, the predictions are

inaccurate because of the drastic change in the motion model. This causes confidence

value to drop down suddenly. The reactive controller of the robot becomes dominant

in this region. As the predictor gains knowledge about the motion, the predictions go

on improving. As the predictions improve, the confidence values also improves. As a

result the proactive behavior becomes more dominant.
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Figure 4.6: Effect of the forgetting factor on confidence

Figure 4.6 shows the role of the forgetting factor φ in determining the confidence.

Since it is not possible to reproduce the exact same trajectory during the task, the
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confidence trajectories shown in fig. 4.6 are computed offline step-by-step using data

collected from a table lifting task. As seen from (4.9), a low value of φ means that

the predictor allots a small weight to older likelihood estimates. Thus, C mostly

depends upon the recently observed L. Hence, if the likelihood values L change

quickly, it causes C fluctuate heavily. Using a similar reasoning, a large value of φ

causes the confidence measure to settle very slowly. Hence the robot cannot adapt to

the motion changes quickly and generates high confidence values even for incorrect

predictions. A good value for φ which gives a good tradeoff between smooth variation

and adaptability for C was found to be 0.45.

4.4.4 Handling Irregular Cases

One of the major improvements our system offers over most existing systems, is that,

no assumption has been made regarding the trajectory of the entire motion. The

human has the right to change the trajectory at any point of time, during the trial.

Figure 4.7 shows a case where the motion of the human is not typical. Instead of

lifting up the table and keeping it down continuously, the human chooses to take a

pause while lifting the table up. Because of this, an abrupt change of motion can

be seen around time-step 15. The confidence value drops to zero in 3-4 time steps.

During this phase, the robot starts behaving as the follower and simply tries to make

the table horizontal using the reactive controller. As the human continues to keep

still, the predictor learns this model and predicts zero movement. Hence, although

the confidence is high and the robot is the leader, there is no proactive action since

the predicted change in position is zero. Again at time-step 35, the human starts

moving the table upwards. Again, the robots switches from leader to follower based

on the confidence value. Once the motion has been stabilized the robot maintains a

confidence value centered somewhere around 0.5.
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Figure 4.7: Irregular case

4.4.5 Overall System Performance

Table 4.1: Average RMSE

Subject Avg. RMSE w/o Prediction Avg. RMSE with Prediction

(mm) (mm)

1 19.139 12.967

2 23.567 16.591

3 24.872 18.418

4 20.085 15.391

5 22.432 17.684

In this experiment we evaluate the improvement offered by our system for the

table lifting task. If Z1t is the position of human side of the table and Z2t is the

position of robot side at any instant t, then the objective is to minimize the absolute

error given by

AbsoluteError =
∑

t

|Z1t − Z2t| (4.12)

We use the motion capture system to record the trajectories of the human and

robot table ends. Figure 4.8 shows these trajectories for cases where the the proposed

system was used (case I : with predictions) and the case where only the reactive
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controller was used (case II : without predictions) The figure also shows the absolute

error calculated for the two cases. We use the root mean square error (RMSE) to

characterize the performance.
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Figure 4.8: Comparison

The following observations can be made from Figure 4.8

• The RMSE for the case I is less than RMSE for case II.
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Figure 4.9: Human-human team lifting the table

• The motion observed for case I is smoother than that of case II.

• The absolute error is lower in case I.

Quantitative results are provided in table 4.1 for multiple users. 5 human subjects

were asked to participate in the table lifting task with the robot, one at a time. Each

person was asked to lift up the table to a random height and keep it down for 10

trials. Totally, for both the cases, 100 trials were acquired. The table shows the

average RMSE for the 10 trials observed for each subject, for each case. It can be

seen that, for all the users, RMSE is lower when the proposed approach is used as

opposed to a simple reactive approach. Hence a definite improvement can be observed.

4.5 Discussions

Figure 4.9 shows the performance of two humans performing the table lifting task.

For the sake of comparison with the human-robot team, the RMSE observed was

6.531 mm.

The motion of the robot is jerky when its reactive behavior is dominant, because

of the fixed step sizes. The design of our system is such that the prediction accuracy
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influences the confidence of prediction. Because of this, many interesting possibilities

follow. Better predictions result in better confidence values which allow for proactive

robot behavior. Hence, if the human keeps moving smoothly as the robot expects

him to move, the motion of the robot is also smooth. This in-turn causes smoother

motion of the table as a whole and hence smoother motion of the human, thus re-

sulting in better predictions. However, if the motion of the human is jerky, then

the robot is unable to estimate the motion accurately, and hence does not allow for

leader behavior. The predictions are not fully utilized in such cases and reflects poor

performance. Thus, the results are not only influenced by the robot’s performance

alone, but also by the human performance. Especially, subject 1 had been working

with the system for a longer time than others. Hence, the results for subject 1 were

better compared to other human subjects.

In Figure 4.8 we could observe in case I, the trajectory is much smoother when the

human is placing the table down as compared to moving upwards. This is because,

inherently, the robots motion while lifting the table against gravity is jerky because

of the internal control characteristics. This induces some jerks in the human motion

also since they are coupled by the table. Because of this, the prediction suffers, which

causes lower confidence levels. But while moving downwards, the robot is able to move

very smoothly which allows the human to move smoothly and hence the system is

utilized to its full potential resulting in better performance. It can also be speculated

that sophisticated velocity or torque controlled robots would yield smoother motions

and offer better improvements in performance using the proposed technique.

Due to the limitation in the control speed of robot, we could obtain atmost 10

motion capture samples per second. With a faster robot, more samples could be

obtained per second which would improve the quality of predictions.

Finally, our work can also be easily extended to proactive teleoperation. The

teleoperated robot can choose to take a proactive action based on the confidence
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values which could reduce the effect of time delays observed in teleoperation and

increase transparency.

Thus, we have seen how implicit communication by human motion is possible,

and can be used by robots to determine their role in a collaborative task. We have

also seen how robots can utilize predictions to take a leader-like role in collaborative

tasks. In the next chapter, we shall see how robots can infer human intentions based

on his actions and also predict human’s motion for pre-emptive task planning.
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CHAPTER 5

INFERRING HUMAN INTENT FOR PREDICTIVE TASK

PLANNING

As we have seen in the last chapter, human-robot collaborative tasks are the best

examples where implicit communication is involved. In the table lifting task, we

do not make any assumptions about pre-existing robot knowledge. If we assume

that the robot has a knowledge of task primitives (such as knowing how to pickup

a bowl), humans and robots can perform collaborative tasks which require a higher

level of representation and reasoning. An example of such collaborative task could

be a human and a robot collaboratively setting up a table for dinner. This task can

be decomposed into primitives such as pick-up bowl, place bowl, pick-up spoon and so

on.

In the final part of this thesis, we investigate implicit communication by human

motion, in a high level human-robot collaborative task. Specifically, we investigate

how the robot can utilize long term human motion predictions for predictive task

planning.

5.1 Related Work

For achieving tasks which can be decomposed into robot primitives, task planners are

generally used. Task planning involves mapping a given set of high level instructions

to a sequence of robotic tasks [40]. Task planning is extensively used in industrial

settings. The planner generates plans based on the required goal and the current

observation of the robot’s environmental state. Such planners can be employed only
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in highly structured and highly deterministic domains.

Instead of waiting for the environmental state change to actually occur, it would

be advantageous if planning takes place based on prediction of the state change, given

some observations. Some of the earliest works in this area was investigated by Dean

et al [41]. The intuition that humans use predictions for planning is supported by

studies in neuro-science, specifically [42] in which the authors report different areas

of the brain being used in planning for predictable and non-predictable events. It is

financially risky to use predictive planners in the industry, since wrong predictions

can lead to wrong plans, and hence there is limited research in this area. However,

in human-robot collaborative tasks, purely reactive planners can considerably slow

down the task performance. This is because the robot would have to wait untill the

human has somehow influenced the environmental state, often by completing a part

of the task. It is possible for the robot to predict outcome of human actions and thus

infer his intent. Based on such predictions, the robot could generate plans and start

working on them immediately.

The planners that consider human presence in the robot’s environment are called

human aware task planners. The simplest example of human aware task planning is

human aware navigation. Works such as [43] provide a framework for mobile robots to

plan their path from one place to another, while predicting and avoiding the human’s

path. Human motion prediction is also important for the sake of the human’s safety.

In the work presented by Kulic et al. [44], a danger criterion is minimized by the

robot in the planning stage to avoid collisions with a human in an object hand off

task. A comprehensive human aware task planning framework is proposed by Alami

et al. [45] in which the authors present a three layered HRI architecture that takes

care of various spatial, temporal and even social constraints while planning a task.

In this work, we setup a restaurant kitchen-like scenario where a human and a

robot work collaboratively to assemble various ingredients to prepare a dish. Sakita
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et al. have presented a work in which human’s gaze direction is used by the robot to

infer his intent, and plan a cooperative assembly task [46]. In our work, we propose

using the direction of the human’s hand motion to infer his intent and plan the task

predictively. Our framework derives inspiration from the intuition that, we humans

begin to plan our tasks based on our prediction of what the other person might do

next, by observing his movements.

5.2 Experimental Setup

The restaurant-kitchen task basically involves assembling a set of ingredients in a

bowl, given the menu, recipes and customer order. Both human and the robot know

the menu, recipes, and the customer’s order. The human and robot are in charge

of different ingredients. We assume that there will be 3 customer orders at a time.

Hence, the human-robot pair will be working on 3 bowls at a time. The only thing

that the robot does not know is, which bowl should hold which dish. The human is

in charge of deciding this. Hence, once the robot figures out which bowl corresponds

to which dish, it can take an appropriate action towards that bowl.

However, inferring the dish based upon the ingredients observed in the bowl, is

a simple problem. In this work, we propose that the inference should occur based

on the prediction of human’s hand-motion. Predictive task planning is achieved by

utilizing the prediction on which bowl the human is reaching towards. Thus, even

before the human can put an ingredient in the bowl, the robot can already infer what

dish is the particular bowl going to be for, and can start acting immediately. Apart

from the bowl on which prediction is made, the robot can also infer the possible

dishes planned in the other bowls, and can decide its actions towards them. Figure

5.1 shows the complete setup. The human hands, the ingredients and the bowls are

tracked by the Vicon motion capture system.
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Figure 5.1: Experimental setup

5.3 Methodology

Figure 5.2 shows the block diagram for the proposed framework. The remainder of

this section explains the block diagram in detail.

5.3.1 Motion Capture Program

The motion capture program obtains the position and motion information of the

bowls and the human hands from the motion capture system. If the human wants

to pick-up an ingredient, he has to put his hand over that particular ingredient and

hold for 1 second. He is notified by a beep upon success. If he wants to drop that

ingredient in a particular bowl, he has to hold his hand (containing the ingredient)

over the bowl for 1 second. He is notified by a beep on success and the particular

ingredient gets added to that bowl. Bowl contents is updated accordingly.
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Figure 5.2: Block Diagram
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Figure 5.3: Hand Motion Prediction

5.3.2 Motion Prediction

The motion prediction program tracks the human hand only after he has “picked-

up” an ingredient from the bowl. The predictor basically fits a line through the

tracked hand positions. When the distance of one of the bowls from this line falls

below a threshold, the system predicts that the human would put the ingredient

into that particular bowl. Only the last 3 positions of the human hand are used

for line-fitting, since older data points are not relevant for making predictions. Also

the predictions are made only when significant hand motion is observed. Fig. 5.3
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illustrates the motion prediction strategy. The solid black line represents the observed

trajectory of the human hand. The dotted line represents the line fitted through the

last 3 observations. When the perpendicular distance of any bowl falls below a pre-

determined distance threshold (dthresh), prediction is made for that particular bowl

and the bowl status is updated. Additionally a directional constraint is added to

ensure that the human hand is moving towards the bowls and not away from them.

5.3.3 Inference Engine

The inference engine generates plans and subsequently robot actions based on bowl

status. Based on the ordered dishes, all valid plans for each bowl are generated. De-

pending upon the bowl status, which is updated by the motion capture and prediction

programs, the invalid plans are ruled out. The planner then searches for the imper-

ative robot actions in the remaining set of plans for each bowl. Once an imperative

action is found, the engine triggers robot actions available in the Nao robot Interface.

An example of the inference and planning process is given in the next section.

5.4 Results

The menu consists of three dishes {FR, FN, SP} (abbreviations for fried rice, fried

noodles and soup). The ingredients available are {rice, noodles, veg, egg} (abbrevia-

tions to rice, noodles, vegetables and eggs). The human is in charge of handling rice,

noodles and vegetables. The robot is in charge of handling eggs.

The recipes are given below :

FR = {rice, veg, eggs}; FN = {noodles, veg}; SP = {noodles, eggs};

5.4.1 Inference

Suppose the customer orders all the three dishes that is FR, FN and SP . Fig. 5.4

shows the possible plans generated by the planner for this particular order.
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B1 B2 B3

Empty Empty Empty

Possible Plans for each bowl: 

FR = {rice, veg, eggs}

FR = {rice, veg, eggs}

FN = {noodles, veg}

FN = {noodles, veg}

SP = {noodles, eggs}

SP = {noodles, eggs}

FN = {noodles, veg}

SP = {noodles, eggs}

FR = {rice, veg, eggs}

SP = {noodles, eggs}

FR = {rice, veg, eggs}

FN = {noodles, veg}

SP = {noodles, eggs}

FN = {noodles, veg}

SP = {noodles, eggs}

FR = {rice, veg, eggs}

FN = {noodles, veg}

FR = {rice, veg, eggs}

Figure 5.4: Planning - all bowls are empty

Initially all bowls are empty, so all possible plans are valid. Suppose, the human

decides to assemble FR in bowl B2. He picks up “rice” and starts moving his hand

towards bowl B2. The prediction program starts tracking the human hand and makes

the prediction that he is moving towards bowl B2. Bowl status is updated, with bowl

B2 now containing “rice”. Based on the updated bowl status, the inference engine

rules out the invalid plans and generates a new set of plans, as shown in Fig. 5.5.

Now, imperative actions are searched for in the new set of valid plans. For example,

in Fig. 5.5, we can see that “eggs” are present in all plans for bowl B2. The inference

engine then sends a command to the robot to put eggs in bowl B2.

5.4.2 Motion Prediction

As we have discussed, the framework relies on motion prediction for predictive task

planning. Humans typically take an action based on their prediction, only if they

have predicted it with a good confidence. The distance of a bowl from the fitted

line acts as the confidence measure for prediction. In this work, a threshold (dthresh)

determines how confident the prediction should be, before the action can be taken.
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B1 B2 B3

Empty rice Empty

Updated Possible Plans : 

FN = {noodles, veg}

SP = {noodles, eggs}

FR = {rice, veg, eggs}

FR = {rice, veg, eggs}

SP = {noodles, eggs}

FN = {noodles, veg}

- Robot is in charge of eggs

- Eggs are present in all valid plans

- Robot puts eggs in bowl B2

Figure 5.5: Planning - bowl 2 contains “rice”

If the threshold is never reached, then the robot simply waits for the human to

actually put the object in the bowl. We perform experiments to evaluate the accuracy

and usefulness of motion prediction for two different arrangements of the bowls with

respect to the ingredients. Fig. 5.6 shows the position of the ingredient with respect

to the bowls for the two setups. The orange circle indicates the ingredient, whereas

the blue circles indicate the bowls. The distance between two bowls is more than 250

mm. In the first setup, we can see that the direction of each of the bowls is quite

different with respect to the ingredient. In the second case, the directional separation

of the bowls is less than the previous case.

The most important factor that determines the prediction results is the threshold

(dthresh). The threshold value basically specifies how close the bowl should be to

the predicted human hand path/line, before a prediction can be made. We add a

condition that if two bowls are within the threshold simultaneously, then a prediction

is not made (single-bowl condition). The threshold value is varied from 10 to 200

in steps of 50. Two subjects are employed for the experiments. For every setup,

for a given threshold value, the subject has to pickup the ingredient and drop it in
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Setup-1 Setup-2

Figure 5.6: The two different experimental setups

the bowls for 15 trials. For each trial, the system may give a correct prediction,

an incorrect prediction or no prediction at all. Let each trial start at time t = 0.

We define tpredict as the time when the prediction is made. We also define tfinish as

the time when the trial ends i.e. the subject drops the ingredient in the bowl. We

calculate lead time as

Lead T ime = tfinish − tpredict (5.1)

We calculate the percentage lead as

Lead(%) =
tfinish − tpredict

tfinish
(5.2)

Table 5.1 shows the prediction results (correct predictions (%), no predictions(%),

wrong predictions (%), lead time(s) and lead (%) ) for different values of threshold

for setup-1. Results are given separately for each of the two subjects. Table 5.2 shows

the prediction results for setup-2.

Observations

From Table 5.1, we can see that when the threshold value is very small, predictions

are not made most of the times. For calculations of lead time and percent lead,

incorrect and no prediction cases are excluded. We can see that for small values of
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Table 5.1: Setup 1

Subject 1 Subject 2

Threshold Correct No Wrong Lead Lead Correct No Wrong Lead Lead

dthresh Pred. Pred. Pred. Time (%) Pred. Pred. Pred. Time (%)

(mm) (%) (%) (%) (s) (%) (%) (%) (s)

10 33.34 66.67 0 0.51 22 66.67 33.34 0 0.32 15.49

50 100 0 0 0.81 33.92 93.34 6.67 0 0.97 36.41

100 93.34 0 6.67 1.27 43.53 100 0 0 1.13 42.23

150 100 0 0 1.33 45.1 93.34 0 6.67 1.01 38.14

200 66.67 33.34 0 0.74 32.69 66.67 33.34 0 0.56 31.89

Table 5.2: Setup 2

Subject 1 Subject 2

Threshold Correct No Wrong Lead Lead Correct No Wrong Lead Lead

dthresh Pred. Pred. Pred. Time (%) Pred. Pred. Pred. Time (%)

(mm) (%) (%) (%) (s) (%) (%) (%) (s)

10 46.7 53.34 0 0.53 21 60 33.34 6.67 0.12 8.24

50 93.34 6.67 0 1.14 40 60 26.67 13.34 0.49 15.71

100 86.67 0 13.34 1.37 46.48 66.67 13.34 20 0.81 38.23

150 93.34 6.67 0 1.06 43.32 86.67 13.34 0 0.98 36.19

200 46.66 53.34 0 0.69 31.02 46.66 53.34 0 0.56 21.89

thresholds, the prediction is made quite late. Hence lead times and percentages are

small. Lead times and percentages improve as dthresh is increased. Since the threshold

is larger, the system can make predictions at an earlier time. For moderate values of

thresholds (100-150 mm), best results for lead is observed. However, there is a tradeoff

with incorrect predictions. For large values of threshold (200 mm), the number of

no predictions increase since the threshold value may be crossed simultaneously by
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two bowls leading to no predictions. Even if predictions are made, they are made

late, only when the single bowl condition is reached. For setup 2, since the directions

of bowls with respect to the ingredient are very similiar, the occurrences of wrong

predictions and incorrect predictions are increased. However, the trend is similar to

setup 1.

From the results, we can say that the motion prediction algorithm can work quite

reliably since the number of wrong predictions is very low (less than 10%). No

predictions are better than wrong predictions, since wrong predictions can lead to

incorrect robot actions, thus disrupting the task. Ofcourse, the threshold value needs

to be adjusted for different setups. For this particular setup a threshold value of

about 100-150 mm should be sufficient.

Lead

We see that the lead time given by the system is about 1 second, for tasks of length

2-2.5, which is about 40% lead time on an average for a well tuned system. For

tasks where the human is slow and the robot is fast, such an improvement definitely

improves task performance. Figures 5.7 and 5.8 show two cases where the robot takes

action based on human motion prediction. We can see that the robot starts taking

action when the human hand approximately completes half of the motion path.

5.5 Discussions

In this chapter we have seen how robots can infer human intent by using motion

predictions. As compared to the table-lifting task, this task necessitated longer term

predictions by the robot. We used a simple technique for human motion prediction

based on line-fitting and thresholding. The threshold value plays an important role

in determining how confident the robot needs to be before it can take the action.

Experiments showed the influence of threshold value on the prediction results.

75



    

     

Veg 

B1 

Figure 5.7: Human putting “veg” in bowl B1. The circles in the last 2 frames highlight

the robot taking action

    

         

B2 

Noodles 

Figure 5.8: Human putting “noodles” in bowl B2. The circles in the last 3 frames

highlight the robot taking action

76



CHAPTER 6

CONCLUSIONS

Human-robot interaction is possibly the key factor in making personal service robots

a reality. For facilitating natural HRI, humans and robots need to communicate

effortlessly. In this work, we investigated the role of human motion in both explicit

and implicit communication.

As an example of explicit communication, we considered the learning from demon-

strations problem in both joint angle space and the task space. For the joint angle

space learning, we developed a platform for implementing and evaluating a learning

by imitation framework for the humanoid robot to learn hand gestures. We collect the

joint angle trajectories of the human arm motion. The imitation learning framework

makes use of DTW to temporally align multiple trajectories. Weighted averaging is

applied to these signals to get a generalized version of the joint angle trajectory for a

particular hand gesture. We evaluated the imitation learning framework by attach-

ing markers to the humanoid robot and compared it to the human motion. It was

found visually and experimentally that the algorithms perform well for various hand

gestures. As an extension to this work, we considered how to handle the missing data

problem while learning arm gestures. We proposed and tested the two approaches

for handling the missing data problem while learning arm gestures by demonstration

in humanoid robots. It is found that interpolating the signals first, using a shape

invariant interpolant like the piecewise hermite interpolant gives better results. Next,

we considered the learning from demonstrations problem in the task space. We saw

how the GMM/GMR framework could be used to transfer a table-grasping skill from
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the human to the robot.

We saw how human motion can be used for implicit human-robot communication.

We considered humans and robots performing collaborative tasks, in which implicit

communication is the most important medium of communication. First we considered

a physical HRI task (collaborative table lifting task). Adjusting the leader/follower

role for the robot autonomously was an important open problem. We contributed to

a framework that utilizes human motion prediction to adjust the leader/follower role

of the robot. The proposed framework consisted mainly of the reactive and proactive

controllers. The proactive controller is based on a kalman filter for human motion

prediction. Experimental results provided conclusive evidence that the proposed ap-

proach offered a definite improvement over simple reactive approaches. Further, we

considered a higher level cooperative task in which human and the robot had to as-

semble various ingredients to prepare a dish in a cooperative cooking scenario. We

presented a framework in which the robot could infer the humans intention by pre-

dicting his hand motion. Experimental analysis showed that inferring by predictions

gave the robot lead time to start planning and acting.

6.1 Future Works

In this work, we have seen how human motion can be used for effective and natural

human-robot interaction. For future works, it would be interesting to see how implicit

and explicit communications can be used simultaneously for continuous and life-long

human robot interaction. It would also be interesting to incorporate other media

of communications such as speech, hand-gestures, facial expressions , etc. into a

comprehensive framework. In this work, we mostly made use of the motion capture

system for sensing human motion. It would be useful if the presented algorithms could

be implemented to work for other sensing devices such as video cameras, Microsoft

Kinect [47] or inertial motion sensors.
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