
A SELF-ADAPTIVE GENETIC ALGORITHM FOR

CONSTRAINED OPTIMIZATION

By

BIRUK GIRMA TESSEMA

Bachelor of Science in Electrical Engineering

Bahir Dar University

Bahir Dar, Ethiopia

2004

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2006

ii

A SELF-ADAPTIVE GENETIC ALGORITHM FOR CONSTRAINED

OPTIMIZATION

Thesis Approved:

Dr Gary G. Yen, Chairman

Dr Guoliang Fan

Dr Louis G. Johnson

Dr. A. Gordon Emslie

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. Gary Yen, for he has constantly

supported, guided and motivated me for the past one and a half year. He has greatly

enriched my knowledge with his exceptional insights into engineering. Without his help,

this work would not have been possible.

I am also thankful to the fellow graduate students; Wenf Leong, Moayed

Daneshyari and Yonas Woldesenbet for their valuable assistance and encouragement.

I am grateful that I have very special parents. Mom and Dad I thank you for

raising me the way you did. You have always been there for me, shown me the right way,

supported and encouraged me all my life.

Aryam and Eden thank you for being my role models. I have always followed

your foot steps and you have always led me to the right way. Misgana and Yabets you are

the best brothers.

I would also like to thank Dr Guoliang Fan and Dr Louis G. Johnson for attending

my defense.

Above all, I cannot express my full gratitude to my Father God who is the source

of all good things.

Biruk Tessema

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

1.1 Overview... 1
1.2 Problem Definition.. 2
1.3 Constraint Handling Techniques... 4
1.4 Research Approach and Goal.. 4
1.5 Document Organization .. 5

II. EVOLUTIONARY ALGORITHMS 6

2.1 Introduction... 6
2.2 EA Implementation... 7

2.2.1 Representation.. 8
2.2.2 Selection... 10
2.2.3 Crossover operator ... 10
2.2.4 Mutation operator... 13

2.3 Classification of EAs .. 14
2.4 Advantages of EAs ... 15

III. LITERATURE REVIEW 17

3.1 Introduction... 17
3.2 Classification of Constraint Handling Algorithms Using EA............................. 18
3.3 Penalty Functions.. 19
3.4 Methods based on Preference of Feasible over Infeasible Solutions.................. 22
3.5 Methods that Use Constraint Violations and Objective Functions Separately ... 24
3.6 Methods based on Multiobjective Optimization Techniques 25
3.7 Summary... 27

IV. THE PROPOSED ALGORITHM 29

4.1 Introduction... 29
4.2 Adaptive Penalty Functions .. 31
4.3 Distance Value .. 32
4.4 Two Penalties.. 36
4.5 Final Fitness Formulation ... 38
4.6 Overall Algorithm... 39

v

V. EXPERIMENTAL RESULTS AND DISCUSSION 43

5.1 Benchmark Functions ... 43
5.2 Algorithm Implementation.. 43
5.3 Test Results... 46
5.4 Result Comparison.. 53

VI. CONCLUSIONS 58

REFERENCES ... 60

APPENDIX... 64

vi

LIST OF TABLES

Table Page

5.1 Summary of main characteristics of the benchmark problems 44

5.2 Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for

testing functions g01-g06 ... 47

5.3 Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for

testing functions g07-g12 ... 48

5.4 Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for

testing functions g13-g18 ... 49

5.5 Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for

testing functions g19, g21, g23 and g24 .. 50

5.6 Number of FES to achieve the fixed accuracy level)0001.0))()(((* ≤− xfxf
rr

,

Success Rate, Feasible Rate and Success Performance 51

5.7 Comparison of best results ... 53

A.1 Data set for testing problem g19 .. 73

vii

LIST OF FIGURES

Figure Page

1.1 An example of constrained maximization problem .. 2

2.1 The pseudocode of an evolutionary algorithm..8

2.2 Flow chart of an evolutionary algorithm ..9

2.3 Binary crossover ...11

2.4 Unimodal Normally Distributed Crossover ..13

2.5 Bitwise mutation ...13

3.1 Feasible and infeasible individuals ...17

4.1 Possible combination of feasible and infeasible individuals in a population ... 30

4.2 Distance value of individuals in Figure 4.1 .. 34

4.3 Pseudocode for finding distance value ... 35

4.4 Pseudocode for finding penalty value ... 37

4.5 Flow chart of proposed algorithm ... 40

4.6 Pseudocode of proposed algorithm ... 42

5.1 Convergence graph for g01 ... 54

5.2 Convergence graph for g04 ... 55

5.3 Convergence graph for g06 ... 57

1

CHAPTER I

INTRODUCTION

1.1 Overview

In our day to day lives we usually encounter situations where we have to make

decisions. The decision could be as simple as choosing a route to follow from one place

to another. Or it could be a more difficult one that requires days or months to analyze

(e.g. buying a house). In most of the decisions we make, with or without conscious, we

intend to minimize (e.g. our energy and expenses) or maximize (e.g. pleasure and

efficiency) certain aspects. This process of minimizing or maximizing a specific problem

is technically termed as optimization.

When dealing with optimization problems, various things should be analyzed in order

to come to the conclusion that one solution is better than another. For example if we

consider an optimization problem of maximizing the profits of a certain production line,

then we should take into consideration raw materials, labor, machinery and other

additional factors in order to determine how we can achieve profit maximization. In

mathematical terminology these determining factors are called decision variables. An

objective function based on the decision variables can then be used to determine what

combination of material, labor and machinery would give a maximum profit.

An optimization problem could be a straight forward problem where there are no

conditions to be met. In more realistic problems, however, there are certain constraints

imposed on the decision variables. In our previous example of optimizing the profit of a

production line, in real world we can only have a limited amount of raw materials, a fixed

number of human labor, and we can not run our machines indefinitely. These kinds of

complex optimization problems where there are constraints involved are called

constrained optimization problems.

2

In Figure 1.1 an optimization of a simple problem expressed mathematically as

21
)(xxxf += is shown. For this problem our decision variables are

1
x and

2
x and they

are defined by
1

0 x≤ and 1
2
≤x . If there are no constraint involved, the maximum value

attained by the function would be =)(xf 2, which occurs when
1

x =1 and
2

x =1. But if

we impose a hard constraint, which is defined by the function, 5.0)(
21
=−= xxxg , on

the decision variables
1

x and
2

x the final result would be changed. The optimum value in

this case would be)(xf =1.5, when
1

x =1 and
2

x =0.5.

Figure 1.1 An example of constrained maximization problem

1.2 Problem Definition

In general, constrained optimization problem, as defined in [28], can be represented

mathematically as follows:

Optimize),,()(
1 n

xxfxf L
r
= (1.1)

0.5

1

0.5 10

Search Space

x2

x1

Feasible space

Optimal point

3

Subject to

0)(≤xg
i

r
ki ,,1 L= (1.2)

0)(=xh
i

r
mki ,,1 L+= . (1.3)

The objective function)(xf
r

is defined on a search space nS ℜ⊆ . Usually the search

space is an n -dimensional hyperbox in nℜ . The domains of the decision variables,
i

x ,

ni ,...,1= are defined by their own lower and upper bounds as shown below.

)()(
iii

xuxxl ≤≤ . (1.4)

In Equation (1.2))(xg
i

r
corresponds to the thi inequality constraint and in (1.3))(xh

i

r

corresponds to the thi equality constraint. There are m number of constraints totally. The

inequality constraints that satisfy 0)(=xg
i

r
at the global optimum solution are called

active constraints. All equality constraints are therefore considered as active constraints.

The presence of equality and inequality constraints will restrict our search space to a

feasible space SF ⊆ , where a usable solution could be found. In Figure 1.1 we can see

that due to the presence of the equality constraint, the feasible space would only be 0.5

percent of the total search space (assuming a resolution up to two decimal places in the

discrete search space).

The goal of constrained optimization is finding the decision variables that would give

an extremum (maximum or minimum) value for the objective function and that would

satisfy the equality and inequality constraints. An extremum value can be local or global.

A local extremum is an optimum in a finite neighborhood .The global extremum is the

actual highest or lowest functional value. In multi-modal optimization we are interested

in both local and global optimum values. But here we focus only on global optimal

values. In addition, without loss of generality we will consider only minimization

problems. Maximization problems can easily be converted to minimization problems by

multiplying them with 1− .

4

1.3 Constraint Handling Techniques

Generally speaking there are two classes of algorithms that can be used to solve

constrained optimization problems [12]. Specific methods (e.g., cutting plane method, the

reduced gradient method, and the gradient projection method [11], [31]) exploit the

mathematical structure of the constraint (e.g. gradient) and are applicable to a special

type of constraints. These methods can be applied to problems having convex feasible

regions only or to problems having few variables as a large number of variables will

cause computational complexity.

On the other hand generic methods do not exploit the mathematical structure (i.e.

linear or non-linear) of the constraint and they can be easily applied to any problem

without much change in the algorithm. Therefore generic constraint handling techniques,

such as penalty functions, can be used with generic search methods for solving complex

constrained optimization problems. Genetic algorithms (GAs), which are a particular

class of evolutionary algorithms (EAs) that use techniques inspired by evolutionary

biology, are stochastic search methods that are recently very popular for solving

constrained optimization problems.

1.4 Research Approach and Goal

This research focuses on developing an adaptive penalty function strategy for solving

constrained optimization problems using EAs. The research has two major goals. The

first goal is designing a reliable algorithm that would always guarantee finding a very

good usable solution. A good solution refers to a close approximation of the global

optimum solution. Most of the existing EA based constraint optimization algorithms

either fail to produce usable solutions in every run of the algorithm, or they fail to

produce good solutions every time. The second goal is designing an algorithm that is free

of any parameter tuning. As we may encounter various types of constrained optimization

problems in real world, tuning the algorithm for each type of problem would make the

algorithm impractical.

To achieve the two goals, the algorithm is designed to encourage infeasible

individuals with low constraint violation and better objective function value so as to

5

facilitate finding feasible individuals in each run as well as producing quality results. The

commonly used single penalty function strategy is also modified to a two penalty

function method, where one penalty function will assist in finding feasible individuals

while the other will assist in finding the optimal solution. Furthermore priority is imposed

to finding feasible individuals before looking for optimal solutions so that the algorithm

can find feasible solutions in problems having small feasible space compared to the

search space.

1.5 Document Organization

The remainder of the thesis is organized as follows. Chapter II presents an

introduction to EAs. This chapter will give a highlight into the common operations in a

typical evolutionary algorithm followed by a brief introduction to constraint handling

using EA. Chapter III provides an overview of related works of handling constrained

optimization problems using EAs. In Chapter IV, the proposed algorithm is presented in

detail. In the proposed method a new fitness, called distance, will be assigned to all

solutions and two penalties will be applied to infeasible solutions in order to efficiently

utilize the information constrained in infeasible solutions. Chapter V discusses the

numerical analysis performed and the results obtained for some selected testing functions.

Chapter VI presents some concluding remarks and relevant observations. The Appendix

part contains mathematical formulation of the test suites used for the experimental

analysis part.

6

CHAPTER II

EVOLUTIONARY ALGORITHMS

2.1 Introduction

According to [40] global search and optimization techniques can be broadly classified

into three categories: enumerative, deterministic, and stochastic. Enumerative techniques

are the simplest search schemes where within some defined search space each possible

solution is evaluated. However these techniques become inefficient as the size of the

search space become very large. Moreover finding acceptable solutions within a

reasonable time becomes difficult as most of the real world problems are computationally

expensive.

Deterministic algorithms, which are usually based upon graph or tree search

algorithms, try to solve this problem by incorporating some type of problem knowledge.

Greedy algorithms and hill climbing algorithms are the most common deterministic

algorithms. These algorithms work by repeatedly expanding a node, examining all

possible successors and then by further expanding the most promising nodes. Although

deterministic algorithm have been successfully applied for solving a variety of problems,

they are usually ineffective when applied to NP-Complete problems or high dimensional

problems. This is because they require problem specific knowledge to direct the search

process and finding this information in very large search spaces is often difficult.

Since most real world problems are high dimensional, multimodal, discontinuous

and/or NP-Complete, enumerative and deterministic method can not be effectively used

as optimizers. Stochastic techniques are developed for solving these kinds of difficult

problems. Stochastic algorithms work with a group of randomly chosen solutions where

fitness value is assigned to the solutions based on their performance. These techniques

7

can not guarantee finding an optimal solution every time; however they generally provide

good solutions for a wide variety of problems.

Evolutionary algorithms (EAs) are stochastic search methods based on the

evolutionary ideas of natural selection and genetic. They are zero order methods that

require only values of the function to optimize. This allows EAs to tackle optimization

problems for which standard gradient based optimization methods that require the

existence and computation of derivatives are not applicable.

In the past few decades, EAs have received significant attention regarding their

potential as global optimization techniques and EA based algorithms have been

successfully applied to solve optimization problems in the fields of science and

engineering [17]. Over the years EAs have been subject to extensive experimentation and

theoretical analysis but the basic concept of EA is designed to simulate processes in

natural system necessary for evolution, specifically those that follow the principles of

survival of the fittest coined by Charles Darwin [13].

2.2 EA Implementation

Generally EA is implemented as computer program where a population of abstract

representations (called chromosomes or genotypes) of candidate solutions (called

individuals or phenotypes) to an optimization problem evolves from generation to

generation toward finding better solutions. The pseudocode for a typical EA is shown in

Figure 2.1 [35] and the corresponding flow chart is shown in Figure 2.2. The evolution

process starts from a population of randomly generated individuals which is called the

initial population. Then in each generation, if the termination condition is not satisfied,

the fitness of every individual in the population is evaluated to determine the better-fit

individuals. The fitness of an individual measures how well the individual satisfies the

optimality condition. Based on their fitness values, multiple individuals are selected from

the current population to be modified to form a new population. The selected individuals

are then modified by applying genetic operators. There are two kinds of modification

operations that are commonly used: crossover and mutation. In crossover operation, two

parent individuals will mate (or recombine) to produce an offspring individual. Crossover

aims at swapping portions of genetic material between two individuals. In mutation

8

operation a parent individual will be modified to create an offspring. The new population

created by applying genetic operations (i.e. the offspring population) will then replace

some of the solutions in the original population. This process is repeated until the

termination condition (which is usually the maximum generation number) is reached; in

which case the result obtained will be reported as the optimal solution.

Figure 2.1 The pseudocode of an evolutionary algorithm

2.2.1 Representation: - There are two different ways of representing solutions in EAs.

Traditionally, a solution is represented as a bit string of length m where each individual

represents one sample point in binary space of size m2 [3]. This way of representing

solutions with binary strings of 0s and 1s is called binary representation. Recently real

representation of solutions is employed where the solutions are represented in actual real

numbers.

Procedure for Evolutionary Algorithm

Begin

0gen ←

initialize population

While (not termination -condition) do

Begin

1gengen +←

select individuals for reproduction

apply operators

evaluate newborn offspring

replace some parents by some offspring

End

End

9

The original Genetic algorithm (GA), which is a branch of EA, was based on binary

coding. This coding was similar to the chromosome structure of biological genes and

therefore it was easy to explain in biology genetic theory. In addition various genetic

operators could be easily utilized that are similar to the actual biological operators.

However this representation has some drawbacks when applied to multidimensional,

high-precision numerical problems when compared to real representation. First, binary

representation doesn’t provide adequate precision to solutions unlike the real

representation. In addition with the same number of digits real representation has larger

range. Moreover the real coded genes have the ability to exploit the gradualness of

continuous variables (i.e. small changes in the variables correspond to small changes in

the objective function). Therefore most algorithms prefer to employ real representation of

solutions.

Figure 2.2 Flow chart of an evolutionary algorithm

Generate
Initial Population

Evaluate Fitness

Update Population

Select Parents

Generate Offspring

Terminate?

End

yes

no

10

2.2.2 Selection: - Selection is the process of selecting parents for producing offspring

for successive generations. The selection operator plays an important role in directing the

population toward the optimal solution. In most selection policies the best individuals are

favored to become parents for the next generation. The three commonly used selection

strategies are the roulette-wheel, rank based selection and tournament selection [3].

In roulette-wheel selection strategy, individuals with higher fitness values will be

given high probability of selection. In this method individuals are mapped on a line

segment such that each individual segment is equal to its proportion. The proportion of an

individual is the ratio of the objective function of an individual to the sum of the value of

the objective function of all of the individuals in the population. Afterwards a random

number is generated and the individual whose segment spans the random number will be

selected. This process will be repeated until the mating pool is filled with the required

number of parents. The main drawback of this selection strategy is that it favors the most

fit individuals and is unevenly biased based on the objective value of individuals.

On the other hand, in rank based selection, probabilities will be assigned to

individuals based on their relative ranking, ignoring their absolute fitness values. First the

population will be sorted based on the objective function. Then the fitness value is

assigned based on their rank in the population. This ranking method overcomes the

scaling problems of the roulette-wheel selection and prevents stagnation of the

population. Since the reproductive range is limited, no individual will be allowed to

generate an excessive number of offspring and hence this ranking introduces a uniform

scaling at the same time maintains the selection pressure to have better diversity.

In tournament selection some number of individuals will be chosen randomly from

the population and the best individual out of them will be selected. This process will be

repeated until the mating pool is filled. The size of the tournament, which is equal to the

number of individuals chosen randomly from the population, can vary based on the need.

Generally by increasing the tournament size the selection pressure can be increased since

larger tournament winner will have better fitness value than a small tournament winner.

2.2.3 Crossover operator: - Crossover operators can be categorized as binary coded

and real coded crossovers in order to represent the kind of crossovers used in binary

11

represented EA and real represented EA respectively. The three commonly used binary

crossover operators are one-point, two point and uniform crossovers [17].

In one-point crossover, given two parent binary strings of equal length, a crossover

point will be chosen randomly in those two strings and portions of the bit strings after this

point will be swapped to generate two offspring individuals. Two point crossover is

almost as simple as one point crossover. In this scheme, two crossover points are picked

within the binary strings of the two parents at random with the stipulation that there must

be at least one bit in between the two crossover points. Then the strings between the two

crossover points in each parent are swapped to create two children. Examples of the types

of binary crossovers described above are shown in Figure 2.3.

Uniform crossover makes use of two parents and attempts to create a crossover point

between every two bits within a bit string. Crossovers are made with a probability of 0.5.

The result of uniform crossover is two children with much recombinant information

interspersed within them.

a) Single point crossover b) Two-point crossover

Figure 2.3 Binary crossover

One of the simplest real coded crossover operators is the arithmetic crossover [13].

This operator makes use of two parents and averages the two up with respect to a bias.

The following two formulae will be used to generate two child individuals:

Child Individual 1

Child Individual 2

Parent Individual 2

Parent Individual 1

Crossover point

01010011

01011001

10101001

10100011

01011001

10100011

01000001

10111011

Crossover points

12

)1(21 biaspbiasp −×+× and,

biaspbiasp ×+−× 21)1(. (2.1)

where 21 pandp are the parent values. The bias can be selected initially, at random, or

via a heuristic. Although fast and efficient, this operator has a drawback because it has a

bias toward the center of the range of the two parents, and therefore can lead to a loss of

diversity.

The blend crossover (BLX-α) operator [13] is another fairly simple real coded

operator. In BLX-α , offspring are generated in two steps as follows:

(1) Choose two parent vectors 1x
r

and 2x
r

randomly from the population,

(2) Generate the thi element o

i
x of the offspring vector ox

r
randomly from the interval

[21 ,
ii

XX] given as follows:

21

212

211

),min(

),min(

iii

iiii

iiii

xxd

dxxX

dxxX

−=

+=
−=
α
α

. (2.2)

where α is a positive number between 0 and 1. This formulation allows the BLX-α

crossover operator to choose a child on a baseline that extends some distance beyond the

two parents. This allows for better placement of children than the arithmetic crossover;

however, the children will still be biased to lie on baselines between sets of parents.

The Unimodal Normally Distributed Crossover (UNDX) is slightly more complicated

crossover operator. It first selects three parents at random from the population. Next, it

finds the midpoint of the first two parents and calls it px . Then, it finds the difference

vector of the first two parents as 21 xxd −= . The line containing the first two parents is

called the primary search line and the value D is computed as the distance from the third

parent to the primary search line. These terms are then combined to form a child cx via

the following equation:

∑
−

=

++=
1

1

n

i
ii

c eDdmx ηξ

),0(~ 2
ξσξ . (2.3)

13

),0(~ 2
ηση i

where ie are the set of vectors orthogonal to the primary search space and ξσ and ησ are

standard deviations determined empirically. The operation of this crossover is elaborated

in Figure 2.4. This crossover has the advantage of preserving the mean vector and

covariance matrix of the parent population thereby maintaining a similar distribution to

the parent population in child generations. The population still, however, remains on

search lines near the parent population. Therefore it does not cover the search space very

well.

Figure 2.4 Unimodal Normally Distributed Crossover

2.2.4 Mutation operator: - Similar to the crossover operator the mutation operator can

be divided into two categories: binary and real mutation. In the simplest binary mutation,

the bitwise mutation, one bit value of a parent individual is changed from ‘0’ to ‘1’ or

from ‘1’ to ‘0’ in order to generate an offspring individual. The operation of this

crossover is shown in Figure 2.5.

Figure 2.5 Bitwise mutation

Child Individual

Parent Individual

Mutation point

01011001

01011011

14

The simplest real coded mutation operator is the uniform mutation. In uniform

mutation a gene
i

x is replaced by a uniform random number from the interval

[)(
i

xl ,)(
i

xu], where)(
i

xl and)(
i

xu are defined as in Equation (1.4). This mutation

provides values which are not included in the initial population and it is important to use

this mutation operator when the diversity of the initial population is low.

However the most population real coded mutation operator is the Gaussian mutation,

which modifies all components of a solution by adding a random noise:

),0(σrNxx i
m
i += (2.4)

where),0(σrN is a Gaussian random number with mean zero and standard deviation σr .

Unlike boundary mutation and uniform mutation which are used to search solutions

globally, Gaussian mutation is used to search locally.

2.3 Classification of EAs

EAs are generally classified into three major branches:

1. Evolution strategies (ES) usually work with a single individual or with a

population where individuals are represented as real numbers. The main

operator used with ES is the mutation operator. In each generation a parent

individual will be mutated to generate an offspring. The replacement step is

deterministic where the fittest from the parent and the offspring becomes the

parent of the next generation.

2. Evolutionary Programming (EP) emphasizes the phenotype space. As in ES,

each individual in the population will generate one offspring. Moreover the

only evolution operator used is mutation. Their major difference from ES is

that in each generation the best P individuals among parents and offspring

become the parent of the next generation.

3. Genetic algorithms (GAs) were originally designed to work with individuals

represented in binary. But in most recent works, real valued representations are

also used. Based on the selection scheme used some individuals will be

15

selected in each generation from the whole population as parents. Here both

crossover and mutation operators are used to modify the parent individuals. In

replacement phase offspring individuals will replace some or all of parent

individuals. If elite strategy is used, then the best individual in the generation

will always be included in the next generation.

2.4 Advantages of EAs

EAs are preferred as global optimization techniques from traditional search

techniques for the following reasons [6]:

1. EAs don’t require prior knowledge of the problem in order to carry out the

search. Instead of using previously known domain-specific information to

guide the search they make random changes to their candidate solutions and

then use the fitness function to determine whether those changes produce an

improvement.

2. EAs use stochastic instead of deterministic operators and appear to be robust

in problems where the fitness function is complex, discontinuous, noisy, time

varying, or has many local optima.

3. EAs operate on multiple solutions simultaneously, gathering information from

a population of search points to direct subsequent search effort. This will

make EAs less susceptible to the problems of local maxima and noise. Most

algorithms can only explore the solution space to a problem in only one

direction at a time; and if the solution they discover is suboptimal the search

should be done again.

4. Due to their parallelism, EAs can evaluate many solutions at once. Therefore

they are particularly well-suited to solving nonlinear problems where the

search space is very large.

Also it is worthwhile to note that the process of problem solving is usually preceded

by problem modeling. And in most real world problems, the model must be simplified to

allow classical methods to be applied. For example, most nonlinear problems are often

16

approximated by linear cost functions since, in a general case, no algorithm will

guarantee global solution for nonlinear cost functions. Therefore instead of using an

approximate or simplified model of a real problem and then finding its precise solution

often it is better to use an exact model of the problem and find its approximate solution

using EAs. However the price to pay when using EAs is twofold. First because of their

stochastic nature, EAs can not guarantee finding the optimal solution in every run. And

second the computational cost associated with EAs is generally very high, and a large

number of function evaluations must be performed for a satisfying result to be found.

Therefore it is usually advised not to use EAs whenever some quality deterministic

optimization method is applicable.

17

CHAPTER III

LITERATURE REVIEW

3.1 Introduction

Due to their success as global optimization techniques, EAs have recently attracted

the attentions from different researchers for solving constrained optimization problems

[8], [10], [12], [26]. When dealing with constrained optimization problems with EA,

individuals that satisfy all of the constraints involved are called feasible individuals. On

the other hand, individuals that do not satisfy at least one of the constraints are called

infeasible individuals. Figure 3.1 shows a group of feasible and infeasible individuals for

in a two dimensional search space.

Figure 3.1 Feasible and infeasible individuals

feasible space

infeasible individuals

feasible individuals

search space

x1

x2

18

Since EAs are developed as unconstrained search techniques, when they are used to

solve constrained problems, an additional mechanism is required to be incorporated into

the fitness function evaluation in order to guide the search direction properly. Hence, a

variety of approaches have been proposed to achieve this objective. Most of the

approaches address one of the major issues of constrained optimization: how to deal with

infeasible individuals throughout the search process. One way to handle infeasible

individuals is to completely disregard them and continue the search process with feasible

individuals only. But this has a drawback because EAs are stochastic search methods and

some of the information contained in the infeasible individuals could be unutilized.

Moreover if the search space is discontinuous, the EA can also be trapped in local

minima. Therefore most constraint optimization techniques are designed to exploit the

information contained in infeasible individuals. In this chapter some of the related works

in constrained optimization will be reviewed. In doing so, the basic ideas in each paper

will be presented. In addition some of the weaknesses that should be improved will be

pointed out.

3.2 Classification of Constraint Handling Algorithms Using EA

Different researchers have proposed different ways of classifying constraint handling

techniques and there is no generally accepted classification at present. In [8] Coello

categorized constrained optimization algorithms into the following five broad groups:

1) Penalty Functions,

2) Special Representations and Operators,

3) Repair Algorithms,

4) Separations of Objectives and Constraints, and

5) Hybrid Methods

Out of the five categories, methods based on special representations and operators

[29], repair algorithms [27], and hybrid methods [20] are irrelevant to the algorithm

proposed here. Special representations and operators are used to tackle certain

particularly difficult problems for which a generic representation used in EAs might not

be appropriate. These techniques preserve feasibility at all times and use decoders that

19

transform the shape of the search space. Repair algorithms are normally used in

combinatorial optimization problems in which the traditional genetic operators tend to

generate infeasible solutions all the time. Repair refers to making infeasible individual

feasible through the application of heuristic procedures. Hybrid methods are hybrids with

other techniques like Lagrangian multipliers or fuzzy logic.

In [38] Takahama and Sakai classified constrained optimization algorithms into four

groups:

1) Penalty functions,

2) Methods based on preference of feasible solutions over infeasible solutions,

3) Methods that use constraint violations and objective functions separately and,

4) Methods based on multiobjective optimization techniques

This is a better way of classifying constraint handling techniques because all of the

categories can be implemented using standard EA. Therefore this way of classification

will be employed and in the following the characteristics of each category will be

presented in detail along with some specific examples.

3.3 Penalty Functions

Penalty functions are the simplest and the most commonly used methods for handling

constraints using EAs. They were popularly used in the conventional methods for

constrained optimization [16] and were the first methods used to handle constraints with

evolutionary algorithms [41]. In these techniques a constrained optimization problem is

transformed into an unconstrained one by adding a penalty value to the fitness of

infeasible individuals so that they will be penalized for violating the constraints. This is

intended to make sure that an infeasible individual with a certain objective function value

is less likely to be selected for reproduction than a feasible individual having similar

objective function value.

In classical optimization, two kinds of penalty functions are considered: interior and

exterior [8]. In interior penalty, the penalty value will have small value at points away

from the constraint boundaries and will be very large as the constraint boundaries are

approached. Therefore if we start from a feasible point, points generated afterwards will

20

always lie inside the feasible region since the constraint boundaries act as barriers during

the optimization process. Interior penalty has the following general form [23]:

))((
1

)()(xB
k

xfxF
rrr

+= (3.1)

where k is a penalty coefficient and)(xB
r

is barrier function.

In exterior penalties, one will start with an infeasible solution and then move towards

the feasible region. The most commonly used penalty approach in EA is the exterior

penalty. It is usually preferred because there is no requirement of an initial feasible

solution. The general formulation of the exterior penalty function is [4]:

+= ∑

=

n

i
ji xcrxfxF

1

)()()(
rrr

(3.2)

where)(xF
r

is the new objective function to be optimized, ir are positive constants (i.e.

penalty factors), and)(xc j

r
are functions of the inequality and equality constraints which

are given as follows:

[]

+=
=

=
mkjxh

kjxg
xc

j

j

j ,,1|)(|max

,,1)(,0max
)(

L
r

L
r

r
γ

β

(3.3)

where k is the total number of inequality constraints, m is the total number of constraints,

and β and γ are normally 1 or 2.

Penalty functions can also be classified based on the way the penalties are added. In

the earliest penalty function method, the death penalty, individuals that violate any one of

the constraints are completely rejected. In this method no information is extracted from

infeasible individuals to guide the search. If the penalties added do not depend on the

current generation number and remain constant during the entire evolutionary process,

then the penalty function is called static penalty function. In static penalty function

methods, the penalties are the weighted sum of the constraint violations. The general

mathematical expression for static penalty functions is similar to the one shown in

Equation (3.2).

21

If, alternatively, the current generation number is considered in determining the

penalties, then the method is called dynamic penalty function method [19]. Dynamic

penalty functions have the following general form:

××+= ∑

=

n

i
ji xcrtCxfxF

1

)()()()(
rrr α (3.4)

where C is a constant, t is the generation number and α is usually 2.

Although penalty functions are very simple and easy to implement, they often require

several parameters to be chosen heuristically by users. These parameters are problem-

dependant and need prior knowledge of the degree of constraint violation present in a

problem. Therefore, tuning the parameters leads to unnecessary computation for simple

problems. Although dynamic penalty functions work better than static penalty functions,

they require even more parameters to be tuned.

To address this concerning issue, adaptive penalty functions are suggested recently

where information gathered from the search process will be used to control the amount of

penalty added to infeasible individuals. Adaptive penalty functions are easy to implement

and they do not require users to define parameters heuristically as in the case of static

penalty methods.

In [5] Bean and Alouane developed an adaptive penalty function strategy that takes

feedback from the search process to define the penalty parameters. The fitness

assignment has the following general form:

 ++= ∑∑
−

==

km

j
j

k

i
i xhxgtxfxF

11

2)()()()()(
rrrr λ (3.5)

where the penalty parameter)(tλ is updated at every generation t in the following

manner:

≤≤+−∉

≤≤+−∈

=+
otherwise)(

1allforregion)(feasibleif)(

1allforregion)(feasibleif)()
1

(

)1(2

1

t

tigtbt

tigtbt

t i

i

λ
λβ

λ
β

λ (3.6)

where ib is the best element at generation i , 21 ββ ≠ and 1, 21 >ββ .

22

Farmani and Wright [14] also proposed an adaptive penalty function strategy that

takes feedback from the search process. In their method, a two-stage dynamic penalty is

imposed upon infeasible individuals to make sure that those infeasible individuals with

low fitness value and low infeasibility value remain fit. In the first penalty, the worst

infeasible individual is penalized to have objective function value equal to or greater than

the best feasible solution. The second penalty increases this value to twice the original

value. All other individuals are penalized accordingly. The method requires no parameter

tuning and no initial feasible solution. Although it produced good results for most of the

test functions, the two-stage penalty method requires unnecessary high computation.

Lemonge and Barbosa [23] proposed a simple adaptive penalty function that uses

information from the population to tune the penalty parameters. In their approach, the

average value of the objective function and the level of violation of each constraint

during the evolution process is used to define the penalty parameters. Their fitness

formulation has the following form:

+= ∑
=

m

j
jj xckxf

xxf
xF

1

otherwise)()(

feasibleisif)(
)(rr

r
r

(3.7)

The penalty parameter jk is given by:

[]∑
=

=
m

l
l

j

j

xc

xc
xfk

1

2
)(

)(
)(

r

r
r

(3.8)

where)(xf
r

is the average of the objective function values in the current population

and)(xcl

r
is the violation of the thl constraint averaged over the current population.

3.4 Methods based on Preference of Feasible over Infeasible Solutions

In methods based on preference of feasible solutions over infeasible ones, feasible

solutions are always considered better than infeasible ones. If a feasible individual is

compared with an infeasible individual, the feasible individual will always be preferred

for reproduction regardless of their objective function values.

23

In [30], the authors suggested a technique in which feasible solutions would always

have higher fitness than infeasible ones. A rank-based selection scheme was used and the

rank was assigned based on the objective function values mapped into (-∞ , 1) for

feasible solutions and the constraint violation mapped into (1,∞) for infeasible solutions.

Hence, in this technique, all feasible solutions dominate the infeasible ones. Infeasible

solutions will be compared based on their constraint violation, while feasible solutions

will be compared based on their objective function value alone. This method has the

following characteristics: 1) as long as no feasible solution is found, the objective

function will produce no effect on the rank of the individual; 2) once there is a

combination of feasible and infeasible solutions in the population, then feasible solutions

will be ranked ahead of all infeasible solutions; and 3) feasible solutions will be ranked

based on their objective function values. The main drawback is that once there are many

feasible individuals in the population, the infeasible individuals will be less used in the

search process and the algorithm will not be able to explore the search space. This may

lead to the EA being stuck in a local optimum.

In [12], an algorithm based on the following ideas is proposed: 1) a feasible solution

wins over any infeasible solutions; 2) two feasible solutions are compared only based on

their objective function values; 3) two infeasible solutions are compared based on the

degrees of their constraint violations; and 4) two feasible solutions i and j are compared

only if they are within a critical distance d ; otherwise, another solution j is checked
f

n

times before i is chosen as the winner. The authors also argued that real coded

representation was better suited for constrained optimization problems as it affords a

greater chance of maintaining feasibility. The penalty approach was different in the sense

that the coefficient
j

r was unity for all constraints and all the constraints were normalized

to allow equal importance to each constraint. This method performed very well on a

variety of benchmark test problems. However, it requires heuristic choices of some

parameters, such as the critical distance d and
f

n .

In [25] a differential evolution (DE) based approach is used for solving constraint

optimization problems. In order to increase the probability of a parent generating better

offspring, each solution is allowed to generate more than one offspring. In order to select

24

the best individual out of the generated offspring, three selection criteria based on

feasibility are used. Between two feasible solutions, the one with the highest fitness value

wins. If one solution is feasible and the other one is infeasible, the feasible solution wins.

And if both solutions are infeasible, the one with the lowest sum of constraint violations

is preferred. In addition a diversity mechanism is used to maintain infeasible individuals

located in promising areas of the search space. But a user defined parameter,
r

S , is

required to determine the probability to select between parent and offspring based only

on the objection function value. In addition the algorithm struggled in problems having

higher dimensionality and higher number of nonlinear equality constraints.

3.5 Methods that Use Constraint Violations and Objective Functions Separately

In the third group of methods, constraint violation and objective function are

optimized separately. These methods adopt a lexicographic order, in which the constraint

violation usually precedes the objective function.

In [32], Runarsson and Yao introduced a stochastic ranking method to achieve a

balance between objective and penalty functions stochastically. A probability factor Pf is

used to determine whether the objective function value or the constraint violation value

determines the rank of each individual. Although the method produced very good results

for Pf = 0.45, it provided no assurance analytically that Pf = 0.45 is an optimal choice.

Additionally the algorithm also failed to produce a feasible solution for 23 out of 30 runs

for a particular problem.

In [36] Takahama and Sakai proposed constrained optimization technique by

applying the α constrained method to the nonlinear simplex method. The α constrained

method is a transformation technique where satisfaction level for constraints is

introduced which indicates how well a search point satisfied the constraints. Moreover

α level comparison is used to compare individuals based on their satisfaction level of the

constraints. The α constrained method can convert an algorithm for unconstrained

problems into an algorithm for constrained problems by replacing ordinary comparisons

with the α level comparison.

In [37] the same authors proposed the DEε algorithm by applying the ε constrained

method to DE, which is similar to the α constrained algorithm. In this method, the ε

25

level comparison is used to compare individuals based on their constraint violation and

objective function values. Based on the value of ε , the comparison switches from the

case where constraint violation precedes objective function (0=ε) to the case where

objective function precedes constraint violation (∞=ε). In addition a gradient-based

mutation that finds feasible point using the gradient of constraints at an infeasible point is

used. Although the algorithm is shown to be robust to multi modal problems and

effective for problems with many equality constraints, controlling the value ofε requires

extra computation and parameter definition.

3.6 Methods based on Multiobjective Optimization Techniques

Some researchers have also used multiobjective optimization techniques to solve

constrained optimization problems. The main idea here is to convert the single objective

optimization problem into a multiobjective optimization problem by treating the

constraints as one or more objectives to be minimized. Afterward, any multiobjective

optimization technique (e.g. Multiobjective Evolutionary Algorithm (MOEA)) can be

employed to solve the problem. A multiobjective optimization technique aims to find a

set of trade-off solutions which are considered good in all the objectives to be optimized.

But in constrained optimization, feasibility of solutions should take precedence than

optimality. Therefore some changes are usually done to the original multiobjective

optimization techniques in order to adapt them for solving constrained optimization

problems.

In [7] Coello proposed a sub-population based approach similar to Vector Evaluated

Genetic Algorithm (VEGA) [34] to treat each constraint as objective. In each generation

the population is divided into 1+m sub-populations with equal size. m is the total number

of constraints and the first sub-population is devoted to optimizing the objective function.

In this approach, initially the fitness function for each sub-population (except for the first

one) depends on the violation of its constraint. If the solution evaluated does not violate

the constraint related to the sub-population but is otherwise infeasible, then the sub-

population will minimize the total number of violations. Once the solution becomes

feasible it will be combined with the first sub-population and will be used to minimize

26

the objective function. The major drawback of this approach is determining the size of

each sub-population.

In [9] the authors proposed a version of the Niched Pareto Genetic Algorithm

(NPGA) [18]. To control the diversity of the population, this approach uses a parameter

called selection ratio (rS). This parameter corresponds to the minimum number of

individuals that are selected through dominance based tournament selection. The

remaining (1−rS) individuals are selected probabilistically. Four comparison rules are

used for the dominance based tournament selection: 1) if two individuals are feasible, the

individual with better fitness will be preferred, 2) any feasible solution is considered

better fit than any infeasible individual, 3) if two individuals are infeasible, the

nondominated individual is preferred only if the other individual is dominated; and 4) if

two individuals are infeasible and both are either dominated or nondominated, the

individual with the lowest amount of constraint violation will be considered better fit.

The main drawback of this approach is that it is difficult to maintain a reasonable

proportion of infeasible and feasible solutions in the population.

In [1] the authors proposed the Inverted-shrinkable Pareto Archived Evolutionary

Strategy (IS-PAES) which is an extension of the PAES [21]. In this approach the search

space is shrunk during the search process so that the search space will be focused onto

specific areas of the feasible region. Moreover the size of the search space will be very

small and the solutions obtained will be competitive in the end. In addition, an adaptive

grid is used to store the solutions found. The main problem with this technique is the

difficulty associated with its implementation. In addition, if the search space is shrunk

towards a false direction, there is a possibility that the algorithm will be trapped in a local

optimum.

In [39], a multiobjective optimization technique that uses population-based algorithm

generator and infeasible solutions archiving and replacement mechanism is introduced. A

given constrained optimization problem is first converted to a bi-objective optimization

problem of minimizing objective function and constraint violation. By using population-

based algorithm generator, an individual in the population may be replaced if it is

dominated by a nondominated individual from the offspring population. By using

infeasible solutions archiving and replacement mechanism, the best infeasible individual

27

is kept in an archive and then reintroduced back to the population after some generations.

The method plays a major role in problems where the feasible space is a small proportion

of the search space but it is computationally expensive and requires some parameters to

be chosen ad hoc.

In [41], the authors suggested a two-phase algorithm that is based on multiobjective

optimization technique. In the first phase of the algorithm the objective function is

completely disregarded and the constraint optimization problem is treated as a constraint

satisfaction problem. The search is directed toward finding a single feasible solution.

Once a feasible solution is found, the algorithm switches to Phase 2 where both satisfying

the constraint violation and optimizing objective function are treated as bi-objective

optimization problem. In this case, nondominated ranking is used to rank individuals and

niching scheme is used to preserve diversity. The algorithm has an advantage in that it

can always find feasible solutions for all problems. But its major drawback is that the

algorithm switches to Phase 2 once a single feasible solution is found in Phase 1; and if

the number of feasible individuals starts to decline while the algorithm is in Phase 2 there

is no design the algorithm can switch back to Phase 1 to find more feasible individuals.

In [2], the authors proposed an algorithm that combines penalty function approach

and multiobjective optimization technique for solving constrained optimization problems.

The algorithm has a similar structure as penalty-based approach but borrows the ranking

scheme from multiobjective optimization techniques. Initially, the m constraints are

treated as m objectives to be optimized. Each individual will be ranked in two ways. First,

it will be ranked with respect to its value in the original objective function. Then it will be

ranked based on its non-dominance with respect to the m constraints. Finally, a new rank

is assigned to each individual, which is the sum of the two ranks. However, the main

problem with this method is that it did not perform well for problems involving equality

constraints.

3.7 Summary

From the literature review, we can observe that each type of algorithm possesses

certain advantages and disadvantages. Dynamic penalty functions, static penalty

functions, and methods that use constraint violations and objective functions separately

28

are easy to implement, but usually require some kinds of parameter tuning. This makes

them unreliable because the optimal values of these parameters cannot be known in

advance, and they are often problem-dependent. Methods based on preference of feasible

solutions over infeasible solutions, on the other hand, are also easy to implement but they

do not properly exploit the information contained in infeasible individuals as they tend to

rely solely on feasible individuals. Multiobjective optimization based algorithms require

no specific parameter tuning but they are often complex and computationally expensive.

The algorithm presented here aims to preserve the merits of the above algorithms while

addressing some concerning issues to the drawbacks observed. An ideal constrained

optimization algorithm should be easy to implement, free of parameter tuning, and

guarantee to find good solutions for every problem at every run. The proposed algorithm,

which is based on adaptive penalty function, meets all three goals for solving constrained

optimization problems efficiently and effectively.

29

CHAPTER IV

THE PROPOSED ALGORITHM

4.1 Introduction

One of the major distinctions among constraint handling algorithms is their choice of

the infeasible individuals to be involved in the search process. The main purpose of

involving infeasible individuals in the search process of constrained optimization is to

exploit the information they might carry. There are two kinds of information that an

infeasible individual might carry: information about the feasible region and information

about the optimal solution. Since EAs are stochastic search techniques, omitting

infeasible individuals might lead to the EA being stuck in local optima, especially in

problems having discontinuous search space. In addition, in some highly constrained

problems, finding a single feasible individual by itself might be difficult and the search

has to begin with all infeasible individuals.

Figure 4.1 shows the types of feasible and infeasible individuals one might encounter

during the search process. The figure shows a two-dimensional space with the y-axis

being the original fitness value of the individual in a population and the x-axis being the

sum of all constraint violations (to be defined in Equation (4.4)). There are six individuals

shown in the figure. In a typical evolutionary search process there will be more than six

but for explanation purpose only six individuals are used. Individual “A” has very low

fitness value but high constraint violation, while individual “D” has very low constraint

violation but high fitness value. On the other hand, individuals “B” and “C” have

relatively low value of both fitness and constraint violation. Individuals “E” and “F” are

feasible individuals and have zero constraint violation with E having the lower fitness.

Using these six individuals first the differences between infeasible individual

selection strategies of different constrained optimization algorithms will be explained.

30

Some algorithms prefer individuals such as “D” with low constraint violation [36] only.

These types of algorithms usually have a certain threshold value to compare the

constraint violation of an infeasible individual. If the individual has constraint violation

less than the threshold value, then it can be involved in the reproduction process (i.e.

crossover and mutation). Otherwise the individual can not be involved in reproduction.

Other algorithms favor individuals such as “A” with low fitness value [39] only. Here an

infeasible individual with low fitness value can compete with feasible individuals without

considering its constraint violation value. On the other hand in [41] individuals like “D”

are preferred only at the beginning of the search process and individuals like “A” are

preferred only at the later stages.

Figure 4.1 Possible combinations of feasible and infeasible individuals in a

population

The algorithm presented here is based on the following idea: all of the individuals

shown in the figure are important but at different stages and under different situations

during the search process. For example, if the number of feasible individuals in the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

ConstraintViolation

O
b

je
ct

iv
e

V
al

u
e

A

B

C

D

E

F
Infeasible
Region

31

current population is very small or next to zero, giving a higher probability of

recombination to individuals like “D” will help in finding more feasible individuals. On

the other hand, if we have many feasible individuals in the current population, then the

main effort should be devoted to finding the global optimum solution. In this case,

individuals like “D” will give us little information in finding the global optimum value,

and instead we should place higher priority on individuals such as “A”. This will help the

algorithm to explore the entire search space. In other situations, individuals “B” and “C”

should be preferred as they are close to the feasible region and also have relatively low

constraint violation.

4.2 Adaptive Penalty Functions

The simplicity of penalty functions has made them the most commonly used methods

for solving constrained optimization problems. In penalty functions, infeasible

individuals will be penalized for violation of the constraints by adding some value to their

original fitness value. Adding a penalty value will decrease an infeasible individual’s

probability of being selected for recombination. Generally static penalty functions have

the following form:

∑
=

+=
m

j
jj

xcrxfxF
1

)()()(
rrr

(4.1)

where)(xF
r

is the updated fitness value,)(xf
r

is the original fitness value,
j

r is the jth

penalty coefficient,)(xc
j

r
is the jth constraint violation, and m is the total number of

constraints.

Although very simple to implement, penalty function approach has its own drawback.

The major drawback of penalty function approach is determining the penalty coefficients.

Usually, a prior knowledge about the problem is needed or repeated experiment should be

done to determine the proper coefficients. Adaptive penalty functions are designed to

solve the need of determining penalty coefficients. In these methods the penalty

coefficients will be determined adaptively from information gathered from the search

process.

32

In this research, a self-adaptive penalty function method is proposed. In the method

two penalty values are added to infeasible individuals in order to achieve the two main

goals of constrained optimization algorithm: finding feasible solutions (if they aren’t any

available) and then searching for the optimum solution. The two penalties are designed so

that if there is no feasible individual present in the population, highly infeasible

individuals are more penalized and if there are few infeasible individuals; those with high

objective function are more penalized. In order to determine the amount of penalty added

to infeasible individuals, the algorithm keeps track of the number of feasible individuals

in the population in each generation. Moreover, a new fitness value called “distance” is

introduced and the sum of this value and the penalty added will determine the rank of

each individual. In the next two sections the formulation of the distance value and the two

penalties will be explained in detail. In the end the derivation of the final fitness

according to which individuals will be ranked will be thoroughly discussed.

4.3 Distance Value

The first part of the algorithm involves assigning the distance value to all of the

individuals in the population. The distance value has two major purposes. First if there

are no feasible individuals in the population at the current generation, then the main focus

of the search should be finding feasible individuals. Hence, in this case, the distance

value is formulated so that infeasible individuals with low constraint violation are better

fit. On the other hand if there are feasible individuals in the current population, then the

search should be directed to finding the optimal solution. The infeasible individuals that

carry good information about the optimal solution are the ones that have both low

constraint violation as well as low fitness value. Therefore, in this case distance value is

formulated so that infeasible individuals with low constraint violation and low fitness

value will be better fit. Feasible individual, on the other hand, will have distance value

equal to their original fitness value.

To calculate the distance value, first the objective function of all individuals will be

calculated, and the smallest and the largest values will be identified as
min

f and
max

f

respectively as

33

)(min
min

xff
x

r
= , and)(max

max
xff

x

r
= . (4.2)

Then each individual’s fitness value will be normalized by,

minmax

min
)(

)(
~

ff

fxf
xf

−
−

=
r

r
, (4.3)

where)(
~

xf is the normalized fitness value.

After the above transformations, each individual’s fitness value will lie between 0 and

1 with 0 corresponding to the individual with the smallest fitness value and 1 to the

individual with the highest fitness.

Constraint violation,)(xv
r

, of each infeasible individual is then calculated as the sum

of the normalized violation of each constraint divided by the total number of constraints,

∑
=

=
m

j
j

j

c

xc

m
xv

1 max

)(1
)(

r
r

, (4.4)

where

+=−
=

=
mkjxh

kjxg
xc

j

j

j ,,1)|)(|,0max(

,,1))(,0max(
)(

L
r

L
r

r

δ

)(maxmax xcc
jxj

r
= and

δ is tolerance value (usually 0.001 or 0.0001) .

Then the “distance” value,)(xd
r

, is formulated as follows:

+

=
=

otherwise,)()(
~

0if),(
)(

22 xvxf

rxv
xd

f

rr

r
r

(4.5)

where

sizepopulation

populationcurrentinsindividualfeasibleofnumber
=

f
r .

Figure 4.2 shows the distance values of the individuals in Figure 4.1. From Equation

(4.5), we can observe that if there is no feasible individual in the current population, then

34

the distance value will be equal to the constraint violation of the individuals. In this case,

according to the distance value, an infeasible individual with small constraint violation

will be considered better than another infeasible individual with higher constraint

violation irrespective of their objective function value. This is the best way of comparing

infeasible individuals in the absence of feasible individuals and it will help us in

approaching the feasible space very quickly. For example, in Figure 4.2, if individuals

“E” and “F” were not present, then individual “D” would have the smallest distance

value.

Figure 4.2 Distance value of individuals in Figure 4.1

On the other hand, if there are one or more feasible solutions available, then the

distance value will have the following properties summarized below:

1. For feasible individuals, the distance value is equal to)(
~

xf
r

. This implies that if we

compare the distance value of two feasible individuals, then the individual with

smaller objective function value will have smaller distance value.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Constraint Violation

T
ra

n
sf

o
rm

ed
O

b
je

ct
iv

e
V

al
u

e

Infeasible Region

D(d=1.005)

C(d=0.447)

B(d =0.390)

A(d =1)

E(d=0.1)

F(d =0.7)

35

2. For infeasible individuals, the distance value is the measure of the objective function

value and the constraint violation. As can be seen from the previous figure,

individuals near the origin (in the)()(
~

xvxf
rr

− space) would have lower distance value

than those farther away from the origin. Therefore, if we compare two infeasible

individuals based on their distance value, then the one that has both low objective

function value and low violation will be considered a better-fit.

3. If we compare the distance values of a feasible individual and an infeasible

individual, then either one can have smaller value. But if the two individuals have the

same objective function value, the feasible individual will have smaller distance

value.

Figure 4.3 Pseudocode for finding distance value

The pseudocode for finding the distance value of individuals is shown in Figure 4.3.

The algorithm takes as input the objective function values and the constraint violation

values of each individual in the population, the minimum and maximum values of the

Input:
i

xf)(
r

,
i

xv)(
r

SizePopulationii ,,1, K=∀ ,

min
f ,

max
f ,

f
r

Output:
i

xd)(
r

SizePopulationii ,,1, K=∀

Begin
If 0=

f
r then

For 0=i to Population Size Do

i
xd)(
r

← ixv)(
r

End For
Else

For 0=i to Population Size Do

minmax

min)(
)(

~

ff

fxf
xf i

i −
−

←
r

r

i
xd)(
r

← Sqrt (
2

)(
~

i
xf
r

+
2

)(
i

xv
r

)

End For
End If

End

36

objective function, and the feasibility ratio of the current population. The value of

feasibility ratio is first checked. If it is zero, then the distance value of each individual

will be equal to its constraint violation value. Otherwise, the distance value will be

assigned as in Equation (4.5).

4.4 Two Penalties

From the property of the distance value, we can notice that it is another form of

penalizing infeasible individuals for their constraint violation. This is because an

infeasible individual having a certain objective value will have larger distance value than

a feasible individual having the same objective value. In addition to the penalty imposed

upon infeasible individuals this way, two other penalties will also be added. Adding these

penalties have two major aims: 1) to further decrease the fitness of infeasible individuals

as the penalty imposed upon infeasible individuals by the distance formulation is very

small, and 2) to identify the best infeasible individuals in the population by adding

different amount of penalty to each infeasible individual’s fitness.

The number of feasible individuals in the population is used to determine the amount

of penalty added to an infeasible individual. If there are few feasible individuals in the

population we would want infeasible individuals with low constraint violation to be less

penalized than those with high constraint violation. And if there are many feasible

individuals in the population we would want infeasible individuals with better objective

function value to be less penalized.

The two penalties are formulated accordingly as follows:

)()()1()(xYrxXrxp
ff

rrr
+−= , (4.6)

where

 =

=
otherwise),(

0if,0
)(

xv

r
xX f

r
r

, and

=
individualinfeasibleanisif),(

~
individualfeasibleaisif,0

)(
xxf

x
xY rr

r
r

.

37

From the penalty function definition in Equation (4.6), we can observe that if the

feasibility ratio (
f

r) of the population is small (but not zero), then the first penalty

()(xX) will have more impact than the second penalty ()(xY). The first penalty is

formulated to have large value for individuals with large amount of constraint violation.

Hence in the case when there are few feasible individuals present in the population (
f

r is

small), infeasible individuals with high constraint violation will be more penalized than

those with low constraint violation. On the other hand, if there are many feasible

solutions in the population (
f

r is large), the second penalty will have more effect than the

first one. In this case infeasible individuals with large objective function value will be

more penalized than infeasible individuals with small objective function value. If there

are no feasible individuals in the population (0=
f

r), both penalties will be zero.

Figure 4.4 Pseudocode for finding penalty value

Input:
i

xf)(
r

,
i

xv)(
r

SizePopulationii ,,1, K=∀ ,
f

r

Output:
i

xp)(
r

SizePopulationii ,,1, K=∀

Begin
For 0=i to Population Size Do

If 0=
f

r then

i
xX)(
r

← 0

Else

i
xX)(
r

←
i

xv)(
r

End If
If 0)(=

i
xv
r

then

i
xY)(
r

← 0

Else

i
xY)(
r

←
i

xf)(
~ r

End If

ififi xYrxXrxp)()()1()(
rrr

+−←
End For

End

38

The pseudocode for finding the penalty is shown in Figure 4.4. The objective function

value and the constraint violation value of each individual in the population are inputs to

the algorithm. The algorithm will iterate through each individual first by checking

whether the feasibility ratio of the current population is zero. If that is the case, then the

value of the first penalty will be set to zero for that specific individual, otherwise it will

be equal to the individual’s constraint violation. Next the constraint violation of the

individual will be checked. If it is zero, then the second penalty will be zero. Otherwise

the second penalty will be assigned according to Equation (4.6).

4.5 Final Fitness Formulation

The final fitness value against which individuals will be compared or ranked is

formulated as the sum of the distance value and the penalty value,

)()()(xpxdxF += . (4.7)

This fitness formulation is very flexible and will allow us to utilize infeasible

individuals efficiently. Most constraint optimization algorithms are “rigid” in a sense that

they always prefer certain types of infeasible individuals. For example, they might always

give priority to those individuals with small constraint violation only or those individuals

with low fitness value only. But according to the new fitness formulation, the infeasible

individuals that are considered valuable are not always similar. Instead they vary based

on the current situation of the search process. Here are some of the interesting properties

of this fitness formulation:

1. If there is no feasible individual in the current population,)(xd will be equal to the

constraint violation ()(xv) and)(xp will be zero. In this case the objective value of

the individuals will be totally disregarded, and all individuals will be given a fitness

value based on their constraint violation alone. This will help us to find feasible

individuals before we try to search for the optimum value.

2. If there are feasible individuals in the population, then)(xd will mainly determine

which individuals are better fit. An individual with smaller distance value will be

39

better than an individual with larger distance value; or stated in a different way,

individuals with both low objective function value and low constraint violation value

will be better than individuals that have high objective function value or high

constraint violation or both.

3. If two individuals have equal or very close distance value, then the penalty value

()(xp) will determine which one is better. According to the penalty function, if the

feasibility ratio (
f

r) in the population is small, then the individual closer to the

feasible space will be considered better. Otherwise, the individual with smaller

objective function value will be better.

4. If there is no infeasible individual in the population (1=
f

r), then individuals will be

compared based on their objective function value alone.

Furthermore the best feasible individual in each generation is archived as elite

solution. In the case where there is no feasible individual available, the infeasible

individual with the least constraint violation will be archived until a feasible individual is

found. The archived individual will be allowed to participate in the recombination

process in each generation until it is replaced by a better fit individual. This will allow the

algorithm to preserve the already found good solution until a better solution is found so

that it will not be lost during the search.

4.6 Overall Algorithm

In Figure 4.5 the flow chart of the overall algorithm is shown while Figure 4.6 shows

the corresponding pseudocode. The algorithm has two parts: constraint handling

algorithm and a search algorithm. Every constraint optimization algorithm consists of

these two separate components. The constraint handling algorithm is used for handling

constraints in problems having one or more constraints. The search algorithm, on the

other hand, can be any algorithm that is used for solving unconstrained optimization

problems.

The algorithm begins by randomly generating the initial population of size

Population_Size. Then in each generation (G) the constraint handling algorithm and the

search algorithm will be executed until the termination condition (i.e. Maximum

40

Generation) is satisfied. The constraint handling algorithm begins by evaluating the

objective function (G

i
xf)(
r

) and the constraint violation (G

i
xv)(
r

) of individuals in the

population. Based on the constraint violation of individuals in the current population, the

feasibility ratio (
G

f
r) will be calculated next. If the feasibility ratio is not zero (i.e. if there

are some feasible individuals in the current population), the minimum and maximum

values of the objective function (i.e.
G

f
min

&
G

f
max

respectively) will be calculated. Then

the distance (G

i
xd)(
r

) and penalty (G

i
xp)(
r

) values of individual i will be evaluated and

will be used for determining the fitness value (G

i
xF)(
r

) of each individual. The first part

of the algorithm (i.e. the constraint handling algorithm) stops here after assigning a

fitness value to each individual. This fitness value contains information about the

objective function value as well as the constraint violation of the individual.

Figure 4.5 Flow chart of proposed algorithm

The second part of the algorithm part is the search process. The focus of the research

has been on designing the constraint handling algorithm which can be used with any

End

Start

Terminate?

Constraint
Handling

Search
Algorithm

Assign
Fitness

Selection

Find
Distance

Find
Penalty

Crossover

MutationPopn
Update

Initialize
population

Yes

No

41

search engine (i.e. GA based or DE based) for solving constrained optimization

problems. Therefore in Figure 4.5, a typical GA based search engine is adopted. The

algorithm has four parts: selection, crossover, mutation and population update. Any one

of the commonly used selection mechanisms (i.e. roulette wheel selection, tournament

selection or rank based selection) can be used. There are different techniques of

performing crossover (e.g. BLX-α and SPX) and mutation (e.g. uniform mutation and

Gaussian mutation) that can be employed. A little modification has been made on the

population update part where the best solution in the current population will always be

kept as an elite solution. This will make sure that the information about the best location

reached (either towards the feasible region or towards the optimal solution) so far will not

be lost during the search.

42

Figure 4.6 Pseudocode of proposed algorithm

Procedure for the Proposed Algorithm

Begin
Randomly generate initial population

i
x
r

SizePopulationii ,,1, K=∀
For 1=G to Maximum Generation Do

// Part 1: Constraint Handling
For 0=i to Population Size Do

Evaluate G

i
xf)(
r

Evaluate G

i
xv)(
r

End For
Find

G

f
r

If 0≠G

f
r then

))((minmin
GG xff

r
←

))((maxmax

GG xff
r

←
End If
Evaluate G

i
xd)(
r

SizePopulationii ,,1, K=∀
Evaluate G

i
xp)(
r

SizePopulationii ,,1, K=∀
For 0=i to Population Size Do

G

i
xF)(
r

← G

i

G

i
xpxd)()(
rr

+
End For
// Part 2: Search Algorithm
Perform selection
For 0=i to Population Size Do

Perform crossover
Perform mutation

End For
Keep Elite solution
Update population

1+← GG
End For

End

43

CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Benchmark Functions

The proposed algorithm was tested on 22 test functions. The detailed formulation of

the problems [24] can be found in Appendix A. These test functions are extensions to the

commonly used 11 test functions in [22]. Some of the characteristics of the benchmark

functions are summarized in Table 5.1. As can be seen from the table, these functions

represent a diverse set of functions that will help to evaluate the performance of different

constraint handling algorithms. They involve linear, nonlinear, quadratic, cubic and

polynomial problems. In addition the number of decision variables, which is shown in the

second column, varies for each problem. The numbers of constraints as well as their types

(i.e. linear inequality (LI), nonlinear inequality (NI), linear equality (LE), and nonlinear

equality (NE)) are shown in columns 5, 6, 7 and 8. The number of the inequality

constraints that are active is shown in the last column. Each test function has a different

feasibility ratio “ ρ ” which is determined experimentally by calculating the percentage of

feasible solutions among 1,000,000 randomly generated individuals [19]. It is an estimate

of the ratio of the feasible space to that of the entire search space. This is shown in the

fourth column. Most of the test functions have feasibility ratio less than 1% and finding

feasible solutions in these functions is challenging.

5.2 Algorithm Implementation

The algorithm proposed is applied to the 22 benchmark problems using a real coded

GA as the search algorithm. In real coded GA, optimization is performed in real-valued

search spaces. This approach allows for greater precision and complexity than the

44

comparatively restricted method of using binary numbers only and often “is intuitively

closer to the problem space” [15].

TABLE 5.1

Summary of main characteristics of the benchmark problems

Prob. n Type of function ρ LI NI LE NE A

g01 13 Quadratic 0.0111% 9 0 0 0 6

g02 20 Nonlinear 99.9971% 1 1 0 0 1

g03 10 Nonlinear 0.0000% 0 0 0 1 1

g04 5 Quadratic 52.1230% 0 6 0 0 2

g05 4 Nonlinear 0.0000% 2 0 0 3 3

g06 2 Nonlinear 0.0066% 0 2 0 0 2

g07 10 Quadratic 0.0003% 3 5 0 0 6

g08 2 Nonlinear 0.8560% 0 2 0 0 0

g09 7 Nonlinear 0.5121% 0 4 0 0 2

g10 8 Linear 0.0010% 3 3 0 0 3

g11 2 Quadratic 0.0000% 0 0 0 1 1

g12 3 Quadratic 4.7713% 0 1 0 0 0

g13 5 Nonlinear 0.0000% 0 0 0 3 3

g14 10 Nonlinear 0.0000% 0 0 3 0 3

g15 3 Quadratic 0.0000% 0 0 1 1 2

g16 5 Nonlinear 0.0204% 4 34 0 0 4

g17 6 Nonlinear 0.0000% 0 0 0 4 4

g18 9 Quadratic 0.0000% 0 13 0 0 6

g19 15 Nonlinear 33.4761% 0 5 0 0 0

g21 7 Linear 0.0000% 0 1 0 5 6

g23 9 Linear 0.0000% 0 2 3 1 6

g24 2 Linear 79.6556% 0 2 0 0 2

In all of the problems linear rank based selection [3], [4] was used as the selection

strategy. In this selection method the individuals in the population will be ranked

according to their fitness value. The probability that an individual will be selected is

45

proportional to its rank in this sorted list. The advantage of this method is that it can

prevent very fit individuals from gaining dominance in early generations at the expense

of less fit individuals which would reduce the population's genetic diversity.

Crossover is implemented using the blend crossover (BLX-α) operator which was

discussed in section 2.2. In BLX-α , offspring are generated in two steps as follows:

(3) Choose two parent vectors 1x
r

and 2x
r

randomly from the population,

(4) Generate the thi element o

i
x of the offspring vector ox

r
randomly from the interval

[21 ,
ii

XX] given as follows:

21

212

211

),min(

),min(

iii

iiii

iiii

xxd

dxxX

dxxX

−=

+=
−=
α
α

(5.1)

where α is a positive number between 0 and 1. The BLX-α crossover has an advantage

in generating diverse offspring as well as being simple to implement.

As in [37] three mutation operators- boundary mutation, uniform mutation and

Gaussian mutation- are adopted. In boundary mutation when a gene
i

x of a vector x
r

is

mutated, it is replaced by either)(
i

xl ′ or)(
i

xu ′ with equal probability, where)(
i

xl ′ and

)(
i

xu ′ are defined as follows:

)max()(

)min()(

ii

ii

xxu

xxl

′=′
′=′

(5.2)

where
i

x′ is a feasible solution. Boundary is an effective mutation operation in

constrained optimization as optimal solutions often exist in the neighborhood of the

boundary of the feasible region.

In uniform mutation, a gene
i

x is replaced by a uniform random number from the

interval [)(
i

xl ,)(
i

xu], where)(
i

xl and)(
i

xu are defined in Equation (1.4). Uniform

mutation produces values which are not included in the initial population and is important

to use this mutation operator when the diversity of the initial population is low.

46

Unlike boundary mutation and uniform mutation which are used to search solutions

globally, Gaussian mutation is used to search locally. In Gaussian mutation,
i

x is mutated

to give m

i
x as shown below:

δ+=
i

m

i
xx (5.3)

where
i
δ is a Gaussian random number with the normal distribution

)))()((,0(22

iiG xlxuN −β . The standard deviation is proportional to the spread between

the upper and the lower bound of
i

x (i.e.))()((ii xlxu −) and Gβ is a parameter to be

defined.

The parameters used for algorithm implementation are given as follows:

Population Size: 100,

Maximum Generation: 5,000,

Maximum Fitness Evaluation (FES): 500,000,

Crossover rate: 0.9,

Alpha value: 0.5-0.8,

Boundary mutation rate: 0.01,

Uniform mutation rate: 0.01,

Gaussian mutation rate: 0.1.

Gaussian mutation parameter Gβ : 0.01-0.05

5.3 Test Results

The test results of the algorithm are summarized in Tables 5.2, 5.3, 5.4 5.5 and 5.6

according to the guidelines given in [24]. Each test problem is run for 50 independent

trials. For each trial the following procedure is followed:

1) The function error, or the difference between the best value found and the

optimal value (i.e.)(xf
r

-)(*xf
r

), after 3105× , 4105× and 5105× number of

function evaluations (FES) is identified.

2) The function errors for the 50 trials are then compared and the best, the

median, the worst, the mean and the standard deviation values are reported in

47

Tables 5.2 to 5.5. The numbers in parenthesis after the error values correspond

to the number of violated constraints at the corresponding values. For example

if the value in the parenthesis for the median run is 4, then it implies that the

best individual for this run has violated 4 constraints. A value of zero indicates

that the run has produced a feasible solution.

TABLE 5.2

Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for

testing functions g01-g06

FES g01 g02 g03 g04 g05 g06

Best 4.3547(0) 0.0284(0) 0.9961(0) 3.4730(0) 152.8019(0) 530.4634(0)

Median 4.3547(0) 0.0284(0) 0.9961(1) 3.4730(0) 387.5015(0) 530.4634(0)

Worst 1.1116(4) 0.0325(0) 0.9968(0) 6.0174(0) 387.5015(0) 557.7571(0)

v 0.0000 0.0000 0.0911 0.0000 0.0000 0.0000

Mean 2.7980 0.0293 0.9962 4.2363 274.8457 531.5551

3105×

Std 1.6202 0.0016 0.0003 1.1659 117.2558 5.3484

Best 0.0309(0) 0.0028(0) 0.2836(0) 0.5178(0) 3.6177(0) 4.5157(0)

Median 0.6929(0) 0.0172(0) 0.3591(0) 1.1853(0) 4.6911(0) 8.3433(0)

Worst 1.4087(0) 0.0304(0) 0.8519(0) 2.3214(0) 19.4236(0) 12.1043(0)

v 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.6303 0.0190 0.4350 1.0859 8.9762 7.8102

4105×

Std 0.5555 0.0089 0.2110 0.4962 7.1801 3.1004

Best -0.0001(0) 0.0000(0) 0.0001(0) -0.1211 (0) 0.0000(0) -0.2285(0)

Median -0.0001(0) 0.0001(0) 0.0001(0) -0.1131(0) 0.0000(0) -0.1790(0)

Worst 0.0000(0) 0.0001(0) 0.0001(0) 0.0000(0) 3.5431(0) 0.0001(0)

v 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean -0.0000 0.0001 0.0001 -0.0106 1.0453 -0.0013

5105×

Std 0.0000 0.0001 0.0000 0.0014 1.4324 0.2321

3) The mean value of constraint violations (i.e.)(xv in Equation (4.4)) for the best

solution in the median trial is shown as v in Tables 5.2 to 5.5.

48

4) In Table 5.6 the best, the median, the worst, the mean and the standard

deviation of the number of FES to achieve a fixed accuracy level (i.e. ()(xf
r -

0001.0)(* ≤xf
r) are shown. In addition the Feasible Rate (rate of runs where at

least one feasible solution is found), the Success Rate (rate of runs where the

required accuracy is met) and the Success Performance (the mean FES of the

successful runs multiplied by the total number of runs and divided by the total

number of successful runs) are also reported.

TABLE 5.3

Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for testing

functions g07-g12

FES g07 g08 g09 g10 g11 g12

Best 119.2733(0) 0.0020(0) 19.0029(0) 1400.3890(0) 0.0009(0) 0.0001(0)

Median 896.6370(0) 0.0020(0) 28.9447(0) 1400.3890(0) 0.0011(0) 0.0002(0)

Worst 896.6370(0) 0.0033(0) 28.9447(0) 1400.3890(0) 0.0011(0) 0.0082(0)

v 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 818.9006 0.0025 27.3540 1400.3890 0.0011 0.0038

3105×

Std 233.2091 0.0006 3.6447 0.0000 0.0001 0.0037

Best 0.2653(0) 0.0000(0) 0.1547(0) 490.5240(0) 0.0001(0) 0.0000(0)

Median 4.9832(0) 0.0001(0) 0.4131(0) 1097.0097(0) 0.0008(0) 0.0001(0)

Worst 937.1398(0) 0.0004(0) 0.6197(0) 1097.0097(0) 0.0031(0) 0.0003(0)

v 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 246.9571 0.0002 0.3956 854.4154 0.0013 0.0001

4105×

Std 379.7854 0.0001 0.1382 297.1160 0.0012 0.0001

Best 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0001(0)

Median 0.0000(0) 0.0000(0) 0.0000(0) 12.4641(0) 0.0000(0) 0.0001(0)

Worst 0.0001(0) 0.0000(0) 0.0000(0) 140.3215(0) 0.0000(0) 0.0001(0)

v 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 0.0000 0.0000 28.4341 0.0000 0.0001

5105×

Std 0.0000 0.0000 0.0000 51.2404 0.0000 0.0000

49

TABLE 5.4

Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for testing

functions g13-g18

FES g13 g14 g15 g16 g17 g18

Best 0.9503(0) 4.3012(0) 0.0327(0) 0.0231(0) 185.7021(1) 0.2903(0)

Median 0.9503(0) 4.7716(0) 0.0327(0) 0.0231(0) 185.7021(1) 0.2903(0)

Worst 0.9025(1) 4.7716(0) 0.2531(0) 0.0238(0) 270.7656(4) 0.3026(0)

v 0.0000 0.0000 0.0000 0.0000 0.3485 0.0000

Mean 0.9446 4.6963 0.0415 0.0233 206.9679 0.2962

3105×

Std 0.0155 0.1724 0.0431 0.0001 36.8335 0.0061

Best 0.3458(0) 0.7374(0) 0.0000(0) 0.0011(0) 71.6903(1) 0.0013(0)

Median 0.8830(0) 2.5243(0) 0.0014(0) 0.0011(0) 256.5883(4) 0.0076(0)

Worst 0.6228(1) 4.0504(0) 0.0095(0) 0.0033(0) 316.9424(4) 0.2547(0)

v 0.0000 0.0000 0.0000 0.0000 0.0441 0.0000

Mean 2.6931 2.3165 0.0024 0.0021 171.6836 0.0456

4105×

Std 4.0419 0.9680 0.0031 0.0001 101.6865 0.0935

Best 0.0000(0) 0.0001(0) 0.0000(0) 0.0000(0) 0.0001(0) 0.0000(0)

Median 0.0001(0) 0.0001(0) 0.0000(0) 0.0000(0) 56.7392(0) 0.0001(0)

Worst 0.0001(0) 0.0002(0) 0.0000(0) 0.0001(0) 58.8482(0) 0.0001(0)

v 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0001 0.0001 0.0000 0.0001 34.9479 0.0001

5105×

Std 0.0000 0.0001 0.0000 0.0000 29.0347 0.0000

The first thing we notice from Tables 5.2, 5.3, 5.4 and 5.5 is that the algorithm was

able to find very good feasible solutions for all the 50 runs and for all of the 22 testing

functions. In addition, we also notice from the tables that only 3105× FES is sufficient

for the algorithm to produce at least one feasible solution except for g17, g21 and g23.

For most of the testing functions the feasibility ratio is less than 1% and the algorithm

had to start with all infeasible individuals in the initial population. Only g02, g04, g12,

g19 and g24 have feasibility ratio greater than 1 percent in which case finding feasible

solutions is not difficult. In fact, the initial population in these test functions always

consisted of feasible solutions. Although g11 has zero feasibility ratio, relaxing the only

50

available equality constraint led to always finding feasible individuals in the initial

population. Actually all equality constraints were relaxed by a threshold value of 0.0001.

TABLE 5.5

Error values achieved when FES = 3105× , FES = 4105× or FES = 5105× for testing

functions g19, g21, g23 and g24

FES g19 g21 g23 g24

Best 24.0635(0) 55.5527(6) 3.9117(5) 0.0781(0)

Median 24.0635(0) 91.1871(6) 3.9117(5) 0.0781(0)

Worst 34.6545(0) 91.1871(6) 12.1624(6) 0.0781(0)

v 0.0000 0.0923 0.1063 0.0000

Mean 28.2999 89.7617 4.9018 0.0781

3105×

Std 5.1885 6.9828 2.6811 0.0000

Best 0.3505(0) 7.2581(5) 4.5320(6) 0.0001(0)

Median 0.8940(0) 71.1181(5) 47.6524(6) 0.0003(0)

Worst 1.2213(0) 103.6376(5) 78.6462(6) 0.0007(0)

v 0.0000 0.0895 0.0876 0.0000

Mean 0.8975 60.5697 44.4369 0.0004

4105×

Std 0.2139 33.1987 23.9404 0.0002

Best 0.0000(0) 2.9085(0) 0.2927(0) -0.0000(0)

Median 0.0000(0) 4.8113(0) 3.4647(0) 0.0000(0)

Worst 0.0001(0) 11.6892(0) 16.0222(0) 0.0000(0)

v 0.0000 0.0000 0.0000 0.0000

Mean 0.0000 5.7913 5.2924 0.0000

5105×

Std 0.0000 2.3565 3.8656 0.0000

In addition to the feasibility ratio, nonlinear constraints also pose some difficulty on

finding feasible solutions. However the flexibility of the fitness formulation allowed the

algorithm to search for feasible individuals before proceeding to finding the global

optimum value. Whenever there is no feasible individual the main objective of the

algorithm will be finding feasible individuals. And hence infeasible individuals that will

help to achieve this will be given precedence. Generally, finding feasible individuals in

51

every run is very important because in real world applications infeasible individuals will

have no usable value.

TABLE 5.6

Number of FES to achieve the fixed accuracy level)0001.0))()(((* ≤− xfxf
rr

, Success

Rate, Feasible Rate and Success Performance

Prob. Best Median Worst Mean Std
Feasible

Rate

Success

Rate

Success

Performance

g01 255200 301400 453300 419692.0000 258887.8412 100% 100% 419692.0000

g02 240900 441100 479800 410266.6666 52042.2904 100% 60% 683777.7777

g03 58500 289100 495100 232505.2631 103159.8426 100% 100% 232505.2631

g04 166900 194100 283500 207400.0000 37914.4651 100% 100% 259250.0000

g05 280432 310678 324568 312654.6789 654.6787 100% 55% 568463.0525

g06 100600 124100 178400 128887.5000 22378.6693 100% 100% 201386.7187

g07 60000 176600 259300 215300.0000 81755.2852 100% 100% 215300.0000

g08 2000 46000 163600 57076.0000 43738.2146 100% 100% 57076.0000

g09 18200 34600 291699 53031.8181 63102.6752 100% 100% 53031.8181

g10 163000 190000 266000 203710.4285 34390.9810 100% 70% 291020.0408

g11 5500 209400 408900 217650.0000 118376.8664 100% 100% 217650.0000

g12 17600 78200 195900 108180.0000 66366.6904 100% 100% 108180.0000

g13 48500 135000 110900 77970.0000 51225.0236 100% 70% 111385.7142

g14 89300 158600 214900 150750.0000 44900.5846 100% 64% 235546.8750

g15 7400 10900 43700 18460.0000 13539.3648 100% 100% 18460.0000

g16 45765 48765 55675 48578.6769 189.7678 100% 80% 48578.6769

g17 100700 108900 154500 115800.0000 15936.6802 100% 36% 32166.6666

g18 137600 182100 355500 210033.3333 63437.8435 100% 96% 218784.7221

g19 22300 25400 34800 26100.0000 1598.8714 100% 100% 26100.0000

g21 - - - - - 100% - -

g23 - - - - - 100% - -

g24 26400 157000 459900 196023.5294 139329.4763 100% 100% 196023.5294

52

Also in the same tables the function error values are reported after 3105× , 4105× and

5105× number of FES. From Tables 5.2 and 5.5 we can notice that negative error values

are reported for test functions g01, g04, g06 and g24. This is because the algorithm was

able to find better solutions than the already reported optimal solutions for these

problems. For g01 a new optimal value of -15.000136 is found at =*x (0.999999,

0.999998, 0.999999, 1.000000, 1.000000, 1.000000, 0.999998, 1.000000, 1.000000,

3.000052, 3.000053, 3.000051, 1.000000). For g04 the new optimal value is -

30665.659868 which is at =*x (78.000000, 33.000001, 29.994777, 45.000000,

36.776315). For g06 the optimal value found is -6962.042447 which is located at =*x

(14.094902, 0.842758). And for g24 a new optimal value of -5.508113 is found at =*x

(2.329520, 3.178593). In addition for g08, g11, g12, g15 and g24 a solution satisfying the

required accuracy level (i.e. ()(xf
r

- 0001.0)(* ≤xf
r

) was found only using 4105× FES.

Actually for g08, g11 and g12 only 3105× FES was enough for finding error value less

than 0.002.

The high rate of finding feasible solutions is also shown in Table 5.6 where the

feasible rate is 100% for all of the test functions. In addition the success performance in

the same table shows that the algorithm achieved 100% success for finding the required

accuracy level for 12 of the 22 test problems. For the rest test problems either the low

feasibility ratio or the presence of nonlinear constraints prevented the algorithm to reach

the desired accuracy level every time. This is because the algorithm has to spend more

time in finding feasible solutions than in locating the optimal value. A success rate less

than 50% is achieved only for three test functions (g17, g21 and g23) where each test

problem has a zero feasibility ratio and one or more nonlinear equality constraints. On the

other hand except for g01 and g02, a FES less than 5102× is enough for finding the best

individual. For test functions g21 and g23, although the required error value could not be

reached repeatedly, the best result found is not very far from the true optimal value as can

be seen in Table 5.7.

53

TABLE 5.7

Comparison of best results

Test

Function

Optimum

value

Proposed

Algorithm

Farmani &

Wright [14]

Runarsson &

Yao [33]

Venkatraman &

Yen [41]

g01 -15.000000 -15.000136 -15.0000 -15.0000 -14.9999

g02 -0.803619 -0.803601 -0.802970 -0.803619 -0.803190

g03 -1.000500 -1.000493 -1.0000 -1.0001 -1.0000

g04 -30665.538671 -30665.659868 -30665.500 -30665.539 -30665.531

g05 5126.496714 5126.496797 5126.989 5126.497 5126.630

g06 -6961.813875 -6962.042447 -6961.800 -6961.814 -6961.179

g07 24.306209 24.306217 24.480 24.306 24.411

g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

g09 680.630057 680.630058 680.640 680.630 680.762

g10 7049.248020 7049.248021 7061.340 7049.248 7060.553

g11 0.749900 0.749918 0.75 0.750 0.749

g12 -1.000000 -0.999999 - -1.000000 -

g13 0.053941 0.053941 - 0.053942 -

5.4 Result Comparison

In Table 5.7 the best results found by the proposed algorithm for test functions g01 to

g13 are compared with other related algorithms in the literature. From the table we can

observe that the proposed algorithm performed better than the rest by finding the true

optimal solution to 0.0001 accuracy level for all of the 13 testing functions. In addition

the algorithm has found results better than the optimal results reported so far for test

functions g01, g04, and g06 which are shown in bold. Of the other algorithms stochastic

ranking [33] (with γ = 0.85) has produced the better results. However this algorithm

needs a parameter (i.e. γ) to be defined by users. On the other hand in [14] only 17 out of

20 runs produced feasible solutions for problem g10. For the same algorithm feasible

solutions could be found only for 9 out of 20 runs for g05. But the proposed algorithm

54

produced feasible solutions in all runs for all testing functions. In [41] the algorithm was

able to find feasible solutions for every run in all test functions, however the algorithm

could find the optimum solutions only for four test functions.

Figure 5.1 Convergence graph for g01

To show why the proposed algorithm performed better than other algorithms, the

convergence graphs for the testing functions are shown in Figures 5.1 to 5.3. The figures

show the function error (i.e.)(xf
r

-)(*xf
r

) vs FES and constraint violation (i.e.)(xv) vs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-15

-10

-5

0

5

10

FES

F
u

n
ct

io
n

E
rr

o
r(

f(
x)

-f
(x

*)
)

Proposed algorithm

Feasible solution preference algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

FES

C
o

n
st

ra
in

t
V

io
la

ti
o

n
(v

(x
))

Proposed algorithm

Feasible solution preference algorithm

55

FES for the best individual in the best runs for those three problems. The convergence

graphs are slightly modified than those in [16]; instead of showing the logarithmic values

of the function error and constraint violation, their exact values are shown as the function

error can be negative.

Figure 5.2 Convergence graph for g04

For comparison purpose in addition to the fitness assignment using the proposed

algorithm another fitness assignment using preference of feasible solutions over

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-1500

-1000

-500

0

500

1000

1500

FES

F
u

n
ct

io
n

E
rr

o
r(

f(
x)

-f
(x

*)
)

Proposed algorithm

Feasible solution preference algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FES

C
o

n
st

ra
in

t
V

io
la

ti
o

n
(v

(x
))

Proposed algorithm

Feasible solution preference algorithm

56

infeasible ones is adopted. In this method, feasible solutions will always be better than

infeasible solutions; between feasible solutions the one with better objective value is

better; and between infeasible solutions the one with lower constraint violation is better.

This method is chosen for comparison because most of the algorithms in the literature use

this technique for constraint handling.

In Figures 5.1 we can see that the error values found by the proposed algorithm in the

initial FES are negative which increase to a positive value as the FES increases. After a

certain FES value is reached, the error starts to decrease quickly to a value slightly less

than zero. This is because for g01 the feasibility ratio is very small and in the initial

generations the population consisted of infeasible individuals only. Infeasible individuals

can have negative error value as they do not satisfy the constraints. In the same figure,

we can see that the constraint violation of the best individual decreases as the error value

increases from negative to positive. On the other hand, for the preference of feasible

individuals over infeasible individuals method, we can see that the error value is always

positive which decreases very slowly to a value slightly greater than zero. This is due to

the fact that only feasible individuals are given precedence in this method. The proposed

algorithm will always produce better result because infeasible individuals with low

constraint violation and very low fitness value (i.e. negative error value) are also given

precedence, which in turn can lead us to finding feasible individuals with better fitness

value.

In Figures 5.2 and 5.3 we can notice that for the initial few FES the error found by the

proposed algorithm alternates between negative and positive values which is unlike the

error found using the feasible solution preference method. In g04 the initial population

always consisted of feasible solutions because the feasibility ratio is very large. Therefore

instead of giving priority to feasible individuals as always, the algorithm tries to gather

information from infeasible individuals as well by giving them better fitness value. Also

for g06, which has very low feasibility ratio, as many infeasible individuals are better

fitted as feasible individuals in the initial FES. This is in order to utilize the information

contained in infeasible individuals.

From Figures 5.1 to 5.3 we can notice that the proposed algorithm produced better

result than most of the algorithms in the literature because unlike most of them search for

57

the optimal solution is done from two directions. One direction is minimizing the

function error value of feasible individuals until an individual with minimum error is

found. This is the search method that most algorithms, including preference of feasible

solutions, employ. But the second search direction, which is equally important, is

minimizing the constraint violation of infeasible individuals with very low or negative

error value until zero constraint violation is reached. This search direction will assist the

algorithm both in finding feasible solutions and also in finding the optimal solution.

Figure 5.3 Convergence graph for g06

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

FES

C
o

n
st

ra
in

t
V

io
la

ti
o

n
(v

(x
))

Proposed algorithm

Feasiblesolutionpreference algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

FES

F
u

n
ct

io
n

E
rr

o
r(

f(
x)

-f
(x

*)
)

Proposed algorithm

Feasible solution preference algorithm

58

CHAPTER VI

CONCLUSIONS

In this thesis report a self-adaptive constraint handling algorithm is proposed that can

be used with any generic search algorithm for solving constrained optimization problems.

In developing the algorithm the main objective has been solving some of the drawbacks

of previously designed algorithms for constrained optimization using evolutionary

algorithms (EAs). One drawback, which is common with penalty function based

constraint handling techniques, is the necessity of defining problem specific parameters

which will make these types of methods impractical as the values of the parameters is

problem dependant. Lack of reliability in finding feasible solutions for every run of the

algorithm is also a drawback observed in most methods. In addition most algorithms,

especially multiobjective optimization based constraint handling methods, are complex

and computationally expensive.

As solution to these problems the algorithm is designed to be reliable, free of any

parameter tuning and easy to implement. In addition it is designed to work well in

problems having very small feasible space compared with the search space. The

algorithm aims at exploiting the information hidden in infeasible individuals efficiently

by selecting the proper individuals at different stages of the evolutionary process and

under different conditions. Infeasible individuals carry two types of information. They

carry information about the location of the feasible space and the location of the optimal

solution. Therefore the main objective of the algorithm is to give priority to infeasible

individuals with low constraint violation value whenever the need is locating the feasible

space; and to infeasible individuals with better objective function value whenever the

requirement is finding the optimal solution.

To achieve this objective, a new fitness called distance value and two penalty

functions are introduced. The distance value, which is a measure of the objective function

59

value and the constraint violation, will be assigned to every individual in a given

population. The penalties, on the other hand, will be applied to infeasible individuals in

order decrease their fitness compared to feasible individuals. The number of feasible

individuals in the population adaptively determines the values of the distance and the two

penalties. This will avoid the need of parameter tuning usually present in most of the

constraint handling techniques in the literature. And finally the sum of the distance and

the penalties will be used to rank and compare individuals in each generation of the

search. This fitness formulation is a very flexible formulation that identifies the best

infeasible individuals adaptively.

The performance of the algorithm is tested on 22 benchmark functions that resemble

real world optimization problems and that are commonly used by different researchers for

comparison. From the results produced it is observed that the algorithm is capable of

finding feasible, quality solutions in all of the runs in the test functions using only 3105×

FES indicating the fact that the algorithm is computationally efficient. In particular the

algorithm is faster and more accurate for low dimensional problems with inequality

constraints only. This is because in these problems feasible solutions can be found easily

and more focus can be given to finding the optimal solution. In addition the results of the

algorithm are compared with some of the well-regarded algorithms in literature. The

comparison results indicate that the proposed algorithm can perform as good as these

algorithms. In fact the algorithm found better results than the already reported optimal

results in four of the benchmark functions.

Although the algorithm is designed to work with any heuristic search algorithm, its

performance for the test functions has been evaluated using GA as the main search

algorithm. Therefore, as a future design further investigation should be done to check the

performance of the algorithm using a different search algorithm, particularly differential

evolution (DE). DE is a stochastic direct search method that is fast and robust to non-

convex and multi-modal problems [38]. In addition further work is needed to test the

algorithm in real world application problems. Moreover the algorithm can also be

extended to solve muliobjective optimization problems with multiple constraints.

60

REFERENCES

[1]. A. H. Aguirre, S. B. Rionda, C. A. C. Coello, G. L. Lizaraga and E. Mezura-

Montes, “Handling constraints using multiobjective optimization concepts,”

International Journal for Numerical Methods in Engineering, vol. 59, pp. 1989-

2017, 2004.

[2]. J. Aidanpaa, J. Anderson, and A. Angantyr, “Constrained optimization based on a

multiobjective evolutionary algorithm,” in Proceedings of Congress on

Evolutionary Computation, Canberra, Australia, pp. 1560-1567, 2003.

[3]. T. Bäck and F. Hoffmeister ‘‘Extended selection mechanisms in genetic

algorithms,’’ in Proceedings of Fourth International Conference on Genetic

Algorithms, San Diego, CA, pp 92---99, 1991.

[4]. J. Baker “Adaptive selection methods for genetic algorithms,” in Proceedings of

First International Conference on Genetic Algorithms and Their Applications,

Hillsdale, NJ: Lawrence Erlbaum, pp 101–111, 1984.

[5]. J. C. Bean, A. B. Alouane, “A dual genetic algorithm for bounded integer

programs,” Technical Report TR 92-53, Department of Industrial and Operations

Engineering, The University of Michigan, 1992.

[6]. B. P. Buckles and F. E. Petry, Genetic Algorithms, Technology Series, IEEE

Computer Society Press, 1992.

[7]. C. A. C. Coello, “Treating constraints as objectives for single-objective

evolutionary optimization,” Engineering Optimization, vol. 32, pp. 275-308, 2000.

[8]. C.A.C. Coello, “Theoretical and numerical constraint handling techniques used with

evolutionary algorithms: a survey of state of the art,” Computer Methods in Applied

Mechanics and Engineering, vol. 191, pp. 1245-1287, 2002.

[9]. C. A. C. Coello and E. Mezura-Montes, “Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection,” Advanced Engineering

Informatics, vol. 16, pp. 193-203, 2002.

61

[10]. B. Craenen, A. Eiben, and J. Van Hemert, “Comparing evolutionary algorithms on

binary constraint satisfaction problems,” IEEE Transaction on Evolutionary

Computation, vol. 7, pp. 424-444, 2003.

[11]. K. Deb, Optimization for engineering design: Algorithms and examples, Prentice-

Hall, New Delhi, 1995.

[12]. K. Deb, “An efficient constraint handling methods for genetic algorithms,”

Computer Methods in Applied Mechanics and Engineering, vol. 186, pp. 311-338,

2000.

[13]. L. Eshelman and J. Schaffer “Real-coded genetic algorithms and interval-

schemata,” Foundation of Genetic Algorithms, pp 187–202, 1991.

[14]. R. Farmani and J. Wright, “Self-adaptive fitness formulation for constrained

optimization,” IEEE Transaction on Evolutionary Computation, vol. 7, pp. 445-

455, 2003.

[15]. P. Fleming and R.C. Purshouse. "Evolutionary algorithms in control systems

engineering: a survey." Control Engineering Practice, vol.10, p.1223-1241, 2002.

[16]. R. Fletcher, Practical Methods of Optimization, 2nd ed. New York: Wiley, 1990.

[17]. D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning,

Addison-Wesley, Reading, 1989.

[18]. J. Horn, N. Nafpliotis and D.E. Goldberg, “A niched Pareto genetic algorithm for

multiobjective optimization,” in Proceedings of the 1st IEEE Conference on

Evolutionary Computation, Piscataway, NJ, pp. 82-87, 1994.

[19]. J. Joines and C. Houck, ‘‘On the use of nonstationary penalty functions to solve

nonlinear constrained optimization problems with GAs,’’ in Proceedings of the

First IEEE Congress on Evolutionary Computation, Orlando, FL, pp. 579---584,

1994.

[20]. J. Kim and H. Myung, ‘‘Evolutionary programming techniques for constrained

optimization problems,’’ IEEE Transaction on Evolutionary Computation, vol. 1,

pp. 129---140, 1997.

[21]. J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the

Pareto archived evolution strategy,” Evolutionary Computation, vol. 8, pp. 149-172,

2000.

62

[22]. S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homorphous mappings,

and constrained parameter optimization,” Evolutionary Computation, vol. 7, pp. 19-

44, 1999.

[23]. A.C.C. Lemonge and H.J.C. Barbosa, “An adaptive penalty scheme in genetic

algorithms for constrained optimization problems,” in Proceedings of Genetic and

Evolutionary Computation Conference, New York, NY, pp. 287-294, 2002.

[24]. J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan, C. A.

C. Coello, and K. Deb, “Problem definitions and evaluation criteria for the

CEC2006 special session on constrained real-parameter optimization,”

2006.[Online] Available: http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-

06/CEC06.htm .

[25]. E. Mezura-Montes, J. Velazquez-Reyes, and C.A.C. Coello, “Modified differential

evolution for constrained optimization,” in Proceedings of the IEEE Congress on

Evolutionary Computation, Vancouver, Canada, pp. 332-336 , 2006.

[26]. Z. Michalewicz, “A survey of constraint handling techniques in evolutionary

computation methods,” in Proceedings of the 4th Annual Conference on

Evolutionary Programming, Cambridge, MA, pp. 135–155, 1995.

[27]. Z. Michalewicz and G. Nazhiyath, “GENOCOP III: A coevolutionary algorithm for

numerical optimization problems with nonlinear constraints,” in Proceedings of

Congress on Evolutionary Computation, Perth, WA, Australia, pp. 647–651, 1995.

[28]. Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained

parameter optimization problems,” Evolutionary Computation, vol. 4, pp. 1–32,

1996.

[29]. Z. Michalewicz and C. Janikow, “GENOCOP: A genetic algorithm for numerical

optimization problems with linear constraints,” Commun. ACM, pp. 122–133, 1996.

[30]. D. Powell and M. Skolnick, “Using genetic algorithms in engineering design

optimization with nonlinear constraints,” in Proceedings of the International

Conference on Genetic Algorithms, Urbana-Champaign, IL, pp. 424-431, 1993.

[31]. G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering optimization

methods and applications, Wiley, New York, 1983.

63

[32]. T.P. Runarsson and X. Yao, “Stochastic ranking for constraint evolutionary

optimization,” IEEE Transaction on Evolutionary Computation, vol. 4, pp. 344-

354, 2000.

[33]. T.P. Runarsson and X. Yao, “Search biases in constrained evolutionary

optimization,” IEEE Transaction on Systems, Man and Cybernetics, Part C, vol. 35,

pp. 233-2443, 2005.

[34]. J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic

algorithms”, in Proceedings of the 1st International Conference in Genetic

Algorithms and their Applications , Hillsdale, NJ, pp. 93-100, 1985.

[35]. M. Schoenauer and Z. Michalewicz, “Evolutionary Computation”, Control and

Cybernetics, vo1. 26, pp.307-338, 1997.

[36]. M. Sheng-jing, S. Hong-Ye, C. Jian, and W. Yue-Xuan, “An infeasibility degree

selection based genetic algorithms for constrained optimization problems,” in

Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, Washington, DC, pp. 1950-1954, 2003.

[37]. T. Takahama and S. Sakai, “Constrained optimization by applying the α constrained

method to the nonlinear simplex method with mutations,” IEEE Transactions on

Evolutionary Computation, vol. 9, pp. 437-451, 2005.

[38]. T. Takahama and S. Sakai, “Constrained optimization by the ε constrained

differential evolution with gradient-based mutation and feasible elite,” in

Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver,

Canada, pp. 308-315 , 2006.

[39]. Y. Wang and Z. Cai, “A multiobjective optimization based evolutionary algorithm

for constrained optimization,” in Proceedings of the IEEE Congress on

Evolutionary Computation, Edinburgh, UK, pp. 1081- 1087, 2005.

[40]. D. A. Van Veldhuizen, “Multiobjective Evolutionary Algorithms: Classifications,

Analyses, and New Innovations”, Ph. D. Thesis, Dayton, OH: Air Force Institute of

Technology, 1999.

[41]. S. Venkatraman and G.G. Yen, “A generic framework for constrained optimization

using genetic algorithms,” IEEE Transaction on Evolutionary Computation, vol. 9,

pp. 424-435, 2005.

64

APPENDIX

BENCHMARK FUNCTIONS

1) g01

Minimize:)(xf
r

= 5∑
=

4

1i
ix - 5∑

=

4

1

2

i
ix - ∑

=

13

5i
ix

subject to:

g1(x
r

) = 2 1x + 2 2x + 10x + 11x - 10 ≤ 0

g2(x
r

) = 2 1x + 2 3x + 10x + 12x - 10 ≤ 0

g3(x
r

) = 2 2x + 2 3x + 11x + 12x - 10 ≤ 0

g4(x
r

) = -8 1x + 10x ≤ 0

g5(x
r

) = -8 2x + 11x ≤ 0

g6(x
r

) = -8 3x + 12x ≤ 0

g7(x
r

) = -2 4x - 5x + 10x ≤ 0

g8(x
r

) = -2 6x - 7x + 11x ≤ 0

g9(x
r

) = -2 8x - 9x + 12x ≤ 0

where the bounds are 0 ≤ ix ≤ 1 (i = 1,…, 9), 0 ≤ ix ≤ 100 (i = 10, 11, 12) and

0 ≤ 13x ≤ 1 . The global minimum is at *x
r

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where six

constraints are active (g1, g2, g3, g7, g8 and g9) and f (*x
r

) = -15.

2) g02

Minimize:)(xf
r

=

∑

∑ ∏

=

= =

−

n

i
i

n

i

n

i
ii

ix

xx

1

2

1 1

24)(cos2)(cos

65

subject to:

g1(x
r

) = 0.75 -∏
=

n

i
ix

1

≤ 0

g2(x
r

) =∑
=

n

i
ix

1

- 7.5n ≤ 0

where n = 20 and 0 ≤ ix ≤ 10 (i = 1, . . . , n). The global minimum *x
r

=

(3.16246061572185, 3.12833142812967, 3.09479212988791, 3.06145059523469,

3.02792915885555, 2.99382606701730, 2.95866871765285, 2.92184227312450,

0.49482511456933, 0.48835711005490, 0.48231642711865, 0.47664475092742,

0.47129550835493, 0.46623099264167, 0.46142004984199, 0.45683664767217,

0.45245876903267, 0.44826762241853, 0.44424700958760, 0.44038285956317), the

best found is f (*x
r

) = -0.80361910412559, constraint g1 is close to being active.

3) g03

Minimize:)(xf
r

= - ∏
=

n

i
i

n xn
1

)(

subject to:

h(x
r

) =∑
=

=−
n

i
ix

1

2 01

where n = 10 and 0 ≤ ix ≤ 1 (i = 1, . . . , n). The global minimum is at *x
r

=

(0.31624357647283069, 0.316243577414338339, 0.316243578012345927,

0.316243575664017895, 0.316243578205526066, 0.31624357738855069,

0.316243575472949512, 0.316243577164883938, 0.316243578155920302,

0.316243576147374916) where f (*x
r

) = -1.00050010001000.

4) g04

Minimize:)(xf
r

= 5.3578547 2

3x + 0.8356891 1x 5x + 37.293239 1x - 40792.141

subject to.

g1(x
r

) = 85.334407 + 0.0056858 2x 5x + 0.0006262 1x 4x -

0.0022053 3x 5x - 92 ≤ 0

66

g2(x
r

) = -85.334407 - 0.0056858 2x 5x - 0.0006262 1x 4x +

0.0022053 3x 5x ≤ 0

g3(x
r

) = 80.51249 + 0.0071317 2x 5x + 0.0029955 1x 2x + 0.0021813 2x

3 - 110 ≤ 0

g4(x
r

) = -80.51249 - 0.0071317 2x 5x - 0.0029955 1x 2x - 0.0021813 2x

3 + 90 ≤ 0

g5(x
r

) = 9.300961 + 0.0047026 3x 5x + 0.0012547 1x 3x + 0.0019085 3x 4x

- 25 ≤ 0

g6(x
r

) = -9.300961 - 0.0047026 3x 5x - 0.0012547 1x 3x - 0.0019085 3x 4x

+ 20 ≤ 0

where 78 ≤ 1x ≤ 102, 33 ≤ 2x ≤ 45 and 27 ≤ ix ≤ 45 (i = 3, 4, 5). The optimum

solution is *x
r

= (78, 33, 29.9952560256815985, 45, 36.7758129057882073) where

f (*x
r

) = -3.066553867178332e + 004. Two constraints are active (g1 and g6).

5) g05

Minimize:)(xf
r

= 3 1x + 0.000001 3

1x + 2 2x + (0.000002/3) 3

2x

subject to.

g1(x
r

) = - 4x + 3x - 0.55 ≤ 0

g2(x
r

) = - 3x + 4x - 0.55 ≤ 0

h3(x
r

) = 1000 sin(- 3x - 0.25) + 1000 sin(- 4x - 0.25) + 894.8 - 1x = 0

h4(x
r

) = 1000 sin(3x - 0.25) + 1000 sin(3x - 4x - 0.25) + 894.8 - 2x = 0

h5(x
r

) = 1000 sin(4x - 0.25) + 1000 sin(4x - 3x - 0.25) + 1294.8 = 0

where 0 ≤ 1x ≤ 1200, 0 ≤ 2x ≤ 1200, -0.55 ≤ 3x ≤ 0.55 and -0.55 ≤ 4x ≤ 0.55. The

best known solution *x
r

= (679.945148297028709, 1026.06697600004691,

0.118876369094410433,-0.39623348521517826) where f (*x
r

) = 5126.4967140071.

67

6) g06

Minimize:)(xf
r

= (1x - 10) 3 + (2x - 20) 2

subject to:

g1(x
r

) = -(1x - 5) 2 - (2x - 5) 2 + 100 ≤ 0

g2(x
r

) = (1x - 6) 2 + (2x - 5) 2 - 82.81 ≤ 0

where 13 ≤ 1x ≤ 100 and 0 ≤ 2x ≤ 100. The optimum solution is *x
r

=

(14.09500000000000064, 0.8429607892154795668) where f (*x
r

) = -6961.81387558015.

Both constraints are active.

7) g07

Minimize:)(xf
r

= 2

1x + 2

2x + 1x 2x - 14 1x - 16 2x + (3x - 10) 2 + 4(4x - 5) 2 + (5x -

3) 2 + 2(6x - 1) 2 + 5 2

7x + 7(8x - 11) 2 + 2(9x - 10) 2 + (10x - 7) 2 + 45

subject to:

g1(x
r

) = -105 + 4 1x + 5 2x - 3 7x + 9 8x ≤ 0

g2(x
r

) = 10 1x - 8 2x - 17 7x + 2 8x ≤ 0

g3(x
r

) = -8 1x + 2 2x + 5 9x - 2 10x - 12 ≤ 0

g4(x
r

) = 3(1x - 2) 2 + 4(2x - 3) 2 + 2 2

3x - 7 4x - 120 ≤ 0

g5(x
r

) = 5 2

1x + 8 2x + (3x - 6) 2 - 2 4x - 40 ≤ 0

g6(x
r

) = 2

1x + 2(2x - 2) 2 - 2 1x 2x + 14 5x - 6 6x ≤ 0

g7(x
r

) = 0.5(1x - 8) 2 + 2(2x - 4) 2 + 3 2

5x - 6x - 30 ≤ 0

g8(x
r

) = -3 1x + 6 2x + 12(9x - 8) 2 - 7 10x ≤ 0

where -10 ≤ ix ≤ 10 (i = 1, . . . , 10). The optimum solution is *x
r

=

(2.17199634142692, 2.3636830416034, 8.77392573913157, 5.09598443745173,

0.990654756560493, 1.43057392853463, 1.32164415364306, 9.82872576524495,

8.2800915887356, 8.3759266477347) where g07(x
r

) = 24.30620906818 (The recorded

68

results may suffer from rounding errors which may cause slight infeasibility sometimes in

the best given solutions). Six constraints are active (g1, g2, g3, g4, g5 and g6).

8) g08

Minimize:)(xf
r

= -
)(

)2sin()2(sin

21

3

1

21

3

xxx

xx

+
ππ

subject to:

g1(x
r

) = 2

1x - 2x + 1 ≤ 0

g2(x
r

) = 1 - 1x + (2x - 4) 2 ≤ 0

where 0 ≤ 1x ≤ 10 and 0 ≤ 2x ≤ 10. The optimum is located at *x
r

=

(1.22797135260752599, 4.24537336612274885) where f (*x
r

) = -0.0958250414180359.

9) g09

Minimize:)(xf
r

= (1x - 10) 2 + 5(2x - 12) 2 + 4

3x + 3(4x - 11) 2 +10 6

5x + 7 2

6x + 4

7x -

4 6x 7x - 10 6x - 8 7x

subject to:

g1(x
r

) = -127 + 2 2

1x + 3 4

2x + 3x + 4 2

4x + 5 5x ≤ 0

g2(x
r

) = -282 + 7 1x + 3 2x + 10 2

3x + 4x - 5x ≤ 0

g3(x
r

) = -196 + 23 1x + 2

2x + 6 2

6x - 8 7x ≤ 0

g4(x
r

) = 4 2

1x + 2

2x - 3 1x 2x + 2 2

3x + 5 6x - 11 7x ≤ 0

where -10 ≤ ix ≤ 10 for (i = 1, . . . , 7). The optimum solution is *x
r

=

(2.33049935147405174, 1.95137236847114592,-0.477541399510615805,

4.36572624923625874,-0.624486959100388983, 1.03813099410962173,

1.5942266780671519) where f (*x
r

) = 680.630057374402. Two constraints are active (g1

and g4).

10) g10

Minimize:)(xf
r

= 1x + 2x + 3x

69

subject to:

g1(x
r

) = -1 + 0.0025(4x + 6x) ≤ 0

g2(x
r

) = -1 + 0.0025(5x + 7x - 4x) ≤ 0

g3(x
r

) = -1 + 0.01(8x - 5x) ≤ 0

g4(x
r

) = - 1x 6x + 833.33252 4x + 100 1x - 83333.333 ≤ 0

g5(x
r

) = - 2x 7x + 1250 5x + 2x 4x - 1250 4x ≤ 0

g6(x
r

) = - 3x 8x + 1250000 + 3x 5x - 2500 5x ≤ 0

where 100 ≤ 1x ≤ 10000, 1000 ≤ ix ≤ 10000 (i = 2, 3) and 10 ≤ ix ≤ 1000 (i = 4, . .

. , 8). The optimum solution is *x
r

= (579.306685017979589, 1359.97067807935605,

5109.97065743133317, 182.01769963061534, 295.601173702746792,

17.982300369384632, 286.41652592786852, 395.601173702746735), where f (*x
r

) =

7049.24802052867. All constraints are active (g1, g2 and g3).

11) g11

Minimize:)(xf
r

= 2

1x + (2x - 1) 2

subject to:

h(x
r

) = 2x - 2

1x = 0

where -1 ≤ 1x ≤ 1 and -1 ≤ 2x ≤ 1. The optimum solution is *x
r

= (-

0.707036070037170616, 0.500000004333606807) where f (*x
r

) = 0.7499.

12) g12

Minimize:)(xf
r

= - (100 - (1x - 5) 2 - (2x - 5) 2 - (3x - 5) 2) = 100

subject to:

g(x
r

) = (1x - p)2 + (2x - q)2 + (3x - r)2 - 0.0625 ≤ 0

where 0 ≤ ix ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of the

search space consists of 93 disjointed spheres. A point (1x , 2x , 3x) is feasible if and only

70

if there exist p, q, r such that the above inequality holds. The optimum is located at *x
r

=

(5, 5, 5) where f (*x
r

) = -1. The solution lies within the feasible region.

13) g13

Minimize:)(xf
r

= 54321 xxxxxe

subject to:

h1(x
r

) = 2

1x + 2

2x + 2

3x + 2

4x + 2

4x - 10 = 0

h2(x
r

) = 2x 3x - 5 4x 5x = 0

h3(x
r

) = 3

1x + 3

2x + 1 = 0

where -2.3 ≤ ix ≤ 2.3 (i = 1, 2) and -3.2 ≤ ix ≤ 3.2 (i = 3, 4, 5). The optimum

solution is *x
r

= (-1.71714224003, 1.59572124049468, 1.8272502406271,

-0.763659881912867,-0.76365986736498) where f (*x
r

) = 0.053941514041898.

14) g14

Minimize:)(xf
r

=∑
∑=

=

+
10

1
10

1

)ln(
i

j
j

i
ii

x

x
cx

subject to:

h1(x
r

) = 1x + 2 2x + +2 3x + 6x + 10x - 2 = 0

h2(x
r

) = 4x + 2 5x + 6x + 7x - 1 = 0

h3(x
r

) = 3x + 7x + 8x + 2 9x + 10x - 1 = 0

where the bounds are 0 ≤ ix ≤ 10 (i = 1, . . . , 10), and 1c = -6.089, 2c = -17.164, 3c =

-34.054, 4c = -5.914, 5c = -24.721, 6c = -14.986, 7c = -24.1, 8c = -10.708, 9c = -26.662,

10c = -22.179. The best known solution is at *x
r

= (0.0406684113216282,

0.147721240492452, 0.783205732104114, 0.00141433931889084, 0.485293636780388,

0.000693183051556082, 0.0274052040687766, 0.0179509660214818,

0.0373268186859717, 0.0968844604336845) where f (*x
r

) = -47.7648884594915.

71

15) g15

Minimize:)(xf
r

= 1000 - 2

1x - 2 2

2x - 2

3x - 1x 2x - 1x 3x

subject to:

h1(x
r

) = 2

1x + 2

2x + 2

3x - 25 = 0

h2(x
r

) = 8 1x + 14 2x + 7 3x - 56 = 0

where the bounds are 0 ≤ ix ≤ 10 (i = 1, 2, 3). The best known solution is at *x
r

=

(3.51212812611795133, 0.216987510429556135, 3.55217854929179921) where f (*x
r

)

= 961.715022289961.

17) g17

Minimize:)(xf
r

=)(1xf +)(2xf

where

)(11 xf =

≤≤
<≤

40030031

300030

11

11

xx

xx

)(22 xf =

<≤
<≤
<≤

100020030

20010029

100028

22

22

22

xx

xx

xx

subject to:

h1(x
r

) = - 1x + 300 – ((3x 4x) /131.078) cos (1.48477 - 6x) +

((0.90798 2

3x) /131.078) cos (1.47588)

h2(x
r

) = - 2x – ((3x 4x) /131.078) cos ((1.48477 + 6x) +

((0.90798 2

4x) /131.078) cos (1.47588)

h3(x
r

) = - 5x – ((3x 4x) /131.078) sin ((1.48477 + 6x) +

((0.90798 2

4x) /131.078) sin (1.47588)

h4(x
r

) = 200 – ((3x 4x) /131.078) sin ((1.48477 - 6x) +

((0.90798 2

3x) /131.078) sin (1.47588)

72

where the bounds are 0 ≤ 1x ≤ 400, 0 ≤ 2x ≤ 1000, 340 ≤ 3x ≤ 420, 340 ≤ 4x ≤ 420,

-1000 ≤ 5x ≤1000 and 0 ≤ 6x ≤ 0.5236. The best known solution is at *x
r

=

(201.784467214523659, 99.9999999999999005, 383.071034852773266, 420,

-10.9076584514292652, 0.0731482312084287128) where f (*x
r

) = 8853.53967480648.

18) g18

Minimize:)(xf
r

= -0.5(1x 4x - 2x 3x + 3x 9x - 5x 9x + 5x 8x - 6x 7x)

subject to.

g1(x
r

) = 2

3x + 2

4x - 1 ≤ 0

g2(x
r

) = 2

9x - 1 ≤ 0

g3(x
r

) = 2

5x + 2

6x - 1 ≤ 0

g4(x
r

) = 2

1x + (2x - 9x) 2 - 1 ≤ 0

g5(x
r

) = (1x - 5x) 2 + (2x - 6x) 2 - 1 ≤ 0

g6(x
r

) = (1x - 7x) 2 + (2x - 8x) 2 - 1 ≤ 0

g7(x
r

) = (3x - 5x) 2 + (4x - 6x) 2 - 1 ≤ 0

g8(x
r

) = (3x - 7x) 2 + (4x - 8x) 2 - 1 ≤ 0

g9(x
r

) = 2

7x + (8x - 9x) 2 - 1 ≤ 0

g10(x
r

) = 2x 3x - 1x 4x ≤ 0

g11(x
r

) = - 3x 9x ≤ 0

g12(x
r

) = 5x 9x ≤ 0

g13(x
r

) = 6x 7x - 5x 8x ≤ 0

where the bounds are -10 ≤ ix ≤ 10 (i = 1, . . . , 8) and 0 ≤ 9x ≤ 20. The best known

solution is at *x
r

= (-0.657776192427943163,-0.153418773482438542,

0.323413871675240938,-0.946257611651304398, - 0.657776194376798906,

-0.753213434632691414, 0.323413874123576972,-0.346462947962331735,

0.59979466285217542) where f (*x
r

) = -0.866025403784439.

73

19) g19

Minimize:)(xf
r

=∑∑ ∑ ∑
= = = =

+++ −+
5

1

5

1

5

1

10

1

3
)10()10()10(2

j i j i
iijjjiij xbxdxxc

subject to:

jg (x
r

) = 5,,1032
5

1

10

10

2

)10()10(K=≤+−−− ∑ ∑
= =

++ jxaexdxc
i i

iijjjjiij

where b
r

= [-40,-2,-0.25,-4,-4,-1,-40,-60, 5, 1] and the remaining data is on Table A.1.

The bounds are 0 · xi · 10 (i = 1, . . ., 15). The best known solution is at *x
r

=

(1.66991341326291344e -17, 3.95378229282456509e-16, 3.94599045143233784,

1.06036597479721211e-16, 3.2831773458454161, 9.99999999999999822,

1.12829414671605333e-17, 1.2026194599794709e-17, 2.50706276000769697e-

15, 2.24624122987970677e-15, 0.370764847417013987, 0.278456024942955571,

0.523838487672241171, 0.388620152510322781, 0.298156764974678579) where f (*x
r

)

= 32.6555929502463.

TABLE A.1

Data set for testing problem g19

j 1 2 3 4 5

je -15 -27 -36 -18 -12

jc1 30 -20 -10 32 -10

jc2 -20 39 -6 -31 32

jc3 -10 -6 10 -6 -10

jc4 32 -31 -6 39 -20

jc5 -10 32 -10 -20 30

jd 4 8 10 6 2

ja1 -16 2 0 1 0

ja2 0 -2 0 0.4 2

ja3 -3.5 0 2 0 0

ja4 0 -2 0 -4 -1

ja5 0 -9 -2 1 -2.8

ja6 2 0 -4 0 0

ja7 -1 -1 -1 -1 -1

ja8 -1 -2 -3 -2 -1

ja9 1 2 3 4 5

ja10 1 1 1 1 1

74

20) g21

Minimize:)(xf
r

= 1x

subject to:

g1(x
r

) = - 1x + 35 6.0

2x + 35 6.0

3x ≤ 0

h1(x
r

) = -300 3x + 7500 5x - 7500 6x - 25 4x 5x + 25 4x 6x + 3x 4x = 0

h2(x
r

) = 100 2x + 155.365 4x + 2500 7x - 2x 4x - 25 4x 7x - 15536.5 = 0

h3(x
r

) = - 5x + ln (- 4x + 900) = 0

h4(x
r

) = - 6x + ln (4x + 300) = 0

h5(x
r

) = - 7x + ln (-2 4x + 700) = 0

where the bounds are 0 ≤ 1x ≤ 1000, 0 ≤ 2x , 3x ≤ 40, 100 ≤ 4x ≤ 300, 6.3 ≤ 5x ≤

6.7, 5.9 ≤ 6x ≤ 6.4 and 4.5 ≤ 7x ≤ 6.25. The best known solution is at *x
r

=

(193.724510070034967, 5.56944131553368433e- 27, 17.3191887294084914,

100.047897801386839, 6.68445185362377892, 5.99168428444264833,

6.21451648886070451) where f (*x
r

) = 193.724510070035.

21) g23

Minimize:)(xf
r

= -9 5x - 15 8x + 6 1x + 16 2x + 10(6x + 7x)

subject to:

g1(x
r

) = 9x 3x + 0.02 6x - 0.025 5x ≤ 0

g2(x
r

) = 9x 4x + 0.02 7x - 0.015 8x ≤ 0

h1(x
r

) = 1x + 2x - 3x - 4x = 0

h2(x
r

) = 0.03 1x + 0.01 2x - 9x (3x + 4x) = 0

h3(x
r

) = 3x + 6x - 5x = 0

h4(x
r

) = 4x + 7x - 8x = 0

75

where the bounds are 0 ≤ 1x , 2x , 6x ≤ 300, 0 ≤ 3x , 5x , 7x ≤ 100, 0 ≤ 4x , 8x ≤ 200

and 0.01 ≤ 9x ≤ 0.03. The best known solution is at *x
r

= (0.00510000000000259465,

99.9947000000000514, 9.01920162996045897e-18, 99.9999000000000535,

0.000100000000027086086, 2.75700683389584542e-14, 99.9999999999999574,

2000.0100000100000100008) where f (*x
r

) = -400.055099999999584.

22) g24

Minimize:)(xf
r

= - 1x - 2x

subject to:

g1(x
r

) = -2 4

1x + 8 3

1x - 8 2

1x + 2x - 2 ≤ 0

g2(x
r

) = -4 4

1x + 32 3

1x - 88 2

1x + 96 1x + 2x - 36 ≤ 0

where the bounds are 0 ≤ 1x ≤ 3 and 0 ≤ 2x ≤ 4. The feasible global minimum is at *x
r

= (2:329520197477623:17849307411774) where f (*x
r

) = -5:50801327159536. This

problem has a feasible region consisting on two disconnected sub-regions.

VITA

Biruk Girma Tessema

Candidate for the Degree of

Master of Science

Thesis: A SELF-ADAPTIVE GENETIC ALGORITHM FOR CONSTRAINED
OPTIMIZATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Addis Ababa, Ethiopia, on September 10, 1981.
Current Address: 36 South Univ. Apt 4, Stillwater, OK.

Education: Graduated from St. Joseph High School, Addis Ababa, Ethiopia, in
June 1999.
Received Bachelors of Science degree in Electrical Engineering
from Bahirdar University, Bahirdar, Ethiopia, in July 2004.
Completed the requirements for the Masters of Science degree with
major in Electrical Engineering at Oklahoma State University in
December 2006.

Experience: Research and Teaching Assistant, Oklahoma State University,
Stillwater, OK.
Junior Electrical Engineer, ZTE Telecommunications, Addis
Ababa, Ethiopia.
Distribution Systems Engineer, Ethiopian Electric Power
Corporation, Addis Ababa, Ethiopia.
Part-time Lecturer, CPU College, Addis Ababa, Ethiopia.

Professional Memberships: IEEE Computational Intelligence Society.

Name: Biruk Girma Tessema Date of Degree: December 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A SELF-ADAPTIVE GENETIC ALGORITHM FOR CONSTRAINED
OPTIMIZATION

Pages in Study: 75 Candidate for the Degree of Master of Science.

Major Field: Electrical Engineering

Scope and Method of Study: This study proposes a self-adaptive penalty function

algorithm for solving constrained optimization problems using genetic algorithm

(GA). Constrained optimization is a practically relevant and challenging field that

deals with optimization of real world problems that involve complex constraints

that make them difficult to tackle. GA is a stochastic search method based on the

evolutionary ideas of natural selection and genetic. In GA candidate solutions to a

certain problem, called individuals, will evolve from generation to generation

toward finding better solutions. In this research GA based constraint handling

algorithm is proposed that combines the merits of previously designed algorithms.

In the proposed method a new fitness value, called distance value, and two

penalties are applied to infeasible individuals that violate the constraints. The

algorithm aims to encourage infeasible individuals with better objective function

value and low constraint violation. The number of feasible individuals in the

population is used to guide the search process either toward finding the optimum

solution or toward finding more feasible solutions.

Findings and Conclusions: The performance of the algorithm is tested on 22 benchmark

functions in the literature. The results show that the approach is able to find very

good solutions comparable to other state-of-the-art designs. Furthermore it is able

to find feasible solutions in every run for all of the benchmark functions.

ADVISER’S APPROVAL:
Dr Gary G. Yen

