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CHAPTER 1  

 

INTRODUCTION 

 

Over the years, major technological advancements and innovations in the way computers 

operate took us through several generations of computers with each conveying a leap 

beyond existing machines. The sustained improvements in the fundamental computer 

architecture are leading to increasingly smaller, cheaper, more powerful, more efficient 

and reliable devices every day. In the first four generations of computers, if the focus had 

been on increasing the number of logic elements in a single CPU, the current generation 

is focused on higher calculation performance using massive parallelism and ever 

improving architecture and organization. 

As high performance superscalar processor organizations are divided into memory access 

and instruction execution mechanisms, improvement in processor performance (clock 

speed of the operation being the metric in measuring computer’s performance) with no 

disparity with memory access speed would result in better overall computer system 

performance. But, over the years there are 55% more transistors every year on a single 

chip that proportionally increase the speed of CPU as compared to only a 7% increase in 

the speed of memory. Always there is this motivating processor – memory performance 

gap (depicted in the figure 1.1 below) existing with the bottleneck of relatively slow 

memory which is posing a greater challenge for memory designers to come up with a 

range of techniques to reduce average memory access time and architectures supporting 

out-of-order and speculative execution. 
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Figure 1-1 Logic and memory performance gap 

 

One major step towards improvising the memory organization was to implement levels of 

hierarchy in memory as compared to the flat memory structure that was in use earlier. 

Taking into account the physical reality that infinitely large and fast memories are not 

possible (it would be impossible to make memory accesses fast and still have large 

amounts of memory in machines [1]) into consideration, memory hierarchies are 

implemented with levels, each of which has greater capacity than the preceding but has a 

greater access latency.  

 

1.0 Thesis Introduction 

Cache was the name chosen in 1969 to represent a level of memory hierarchy between 

the CPU and main memory in the first commercial machine to have this extra level. 

Cache is a temporary storage area where frequently accessed data can be stored for rapid 
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access. Once the data is stored in the cache, future access can be made to the cached copy 

rather than re-fetching or recomputing the original data, so the average access time is 

shorter. Caches have proven to be extremely effective in many areas of computing 

because access patterns in typical computer applications have locality of reference. There 

are numerous cache architecture and organization schemes that exist and there is scope 

for new ones that can be explored for providing as much information as possible, as 

required by a CPU with faster access times. The work presented here as a part of my 

research is aimed at facilitating cache designers with the ability to simulate and 

characterize the performance of cache memory before implementing it in hardware. 

 

An architecture level behavioral model for evaluating the performance of cache in terms 

of average access latencies, miss rates and other miss penalties that are accurate at the 

cycle level without being too detailed to reduce simulation performance has been 

developed in C++. The cache statistics generated assist the designer in selecting an 

appropriate cache block size, associativity, replacement policy and other architecture-

level design features. The cache controller implemented here has only 4 states (memory 

read, memory write, cache read and cache write) with each stage having variable latency. 

All other states that are internal to a regular cache controller are not implemented as the 

primary focus is on the interface of the cache with processor and memory thus giving far 

better performance with regard to number of simulation cycles consumed. 
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1.1 Motivation 

The main motivation for development of such a model was the unavailability of proper 

cache models that are fast (the internal details need not be detailed enough to mimic 

exactly a cache controller) and at the same time are modular such that several types of 

architectures could be easily modified and performance evaluated. Cache size, number of 

cache levels in the memory hierarchy and cache policy design are hot topics in the 

current period which is a highly unexplored field with each processor having a different 

size and varying levels of cache and each application running on a processor behaving 

differently on different cache architectures. The entry of multi-core processors introduces 

another hurdle where several designs and architectures for the cache need to be explored 

so that the various cores can run parallel threads without too much bus communication 

overhead. For example, if you look at the current market, two of the industry giants in 

processor design, Intel and AMD, don’t agree on a single architecture for their dual-core 

and quad-core processors. While Intel wants to stay with a shared L2 cache at least for its 

latest iteration [15], AMD with its quad-core architecture wants a dedicated L2 cache and 

a shared L3 cache [14]. Similarly there are several multi-core microcontrollers that are 

being developed by ARM and IBM that are exploring the use of a shared cache among 

the cores. This is also a big need in the field of game console design where multiple 

processor cores and multiple GPU cores compete on sharing the data at the fastest 

possible rate so that high frame rendering rates could be achieved. Developing cache 

models such as these would help us evaluate the performance of various alternatives 

across several benchmarks without the need for design time and silicon spins for all 

different architectures to be evaluated. 
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1.2 Thesis Organization 

This thesis consists of 5 chapters. Chapter 2 gives more details regarding the memory 

organization, processor communication with different levels of memory and briefly 

describes how level of memory is implemented along with the advantages and limitations 

of them. Chapter 3 deals with cache architecture and organization and gives in depth 

detail about the crucial factors that dictate the cache performance. Chapter 4 talks about 

the simulation methodology developed as a part of this work to evaluate the performance 

of cache. Chapter 5 summarizes results of this work in terms of its simulation robustness 

and gives details regarding scope of further work.
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CHAPTER 2  

 

MEMORY HIERARCHY: CACHE OVERVIEW  

 

CPUs today are much more sophisticated with increased operating frequencies. 

Frequency of the memory bus and the performance of RAM chips have not increased 

proportionally making memory a performance bottleneck. An ideal memory system 

would be the one that provides any datum required by the CPU immediately. 

Implementation of this ideal memory would not be possible in practise, since memory 

design is a fundamental trade-off between capacity, speed and cost. An economic 

solution for memory, aimed towards achieving cost as low as the cheapest memory and 

speeds as fast as the fastest memory, is to implement memory in a hierarchical manner. 

Smaller memories are relatively faster than larger memories built on similar technologies 

because larger memories have more delay in signal path (due to added capacitance from 

transistors and wires) and also require more levels to decode addresses. Also in most 

technologies, smaller memories are faster than larger memories since more memory 

power per memory cell can be afforded in smaller designs as compared to larger ones. 

Thus, implementing memory in a hierarchy as compared to using large amounts of faster 

memory provides more capacity for the same price with only slightly reduced combined 

performance.   
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Hierarchical implementation of memory is based on the ‘principle of locality’ that is 

exhibited by programs. Temporal locality means that there is a high possibility that the 

recently accessed data will be accessed again in the near future. The principle of spatial 

locality states that if an item is referenced, items whose addresses are close by will tend 

to be referenced soon. Programs are considered to be exhibiting spatial locality since 

instructions are normally accessed sequentially with programs showing high spatial 

locality thereby making data accesses also to exhibit high spatial locality.  Programs are 

also considered to be exhibiting temporal locality since programs contain loops with data 

likely to be accessed repeatedly resulting in high amounts of temporal locality.  

 

Superscalar processor organizations that by nature divide into instruction fetch 

mechanisms and instruction execute mechanisms employ aggressive techniques to exploit 

instruction level parallelism (ILP). Those techniques include using wide dispatch and 

issue paths for increasing ‘instruction throughput’, using large issue buffers for providing 

more instructions in parallel to instruction execution engine, enabling concurrent 

execution of instruction by employing parallel functional units and speculating multiple 

branches for supplying a continuous instruction stream to the execution engine. In 

benefiting the most out of these ILP techniques, instruction fetch bandwidth and latency 

are a major concern.  

 

2.0 Memory Hierarchy 

The number of levels in the memory hierarchy differs for different architectures. The 

fastest memories are more expensive per bit than the slower memories and thus are 
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usually smaller. The price difference arises because of the difference in the capacity 

among different implementations for the same amount of silicon. A typical memory 

hierarchy for optimal performance is implemented in different levels with each level 

having higher speed, smaller size and lower latency closer to the processor than lower 

levels (shown in figure 1.2). The following triangle shows the famous cost, performance 

and size trade-offs and how all goals are achieved at a nominal cost by using multiple 

levels of memory. 

Voltaile

Immediate term

Volatile

very short term

Non-volatile

short term

Non-volatile

mid term

Non-Volatile

Long term

Processor registers

very fast, very expensive

Processor cache

very fast, expensive

Random access memory

fast, affordable

Flash / usb  memory

slower, cheap

Hard drives

slow, very cheap

Tape backup

very slow, affordable

Small size

small capacity

Small size

small capacity

Medium size

medium capacity

Small size

large capacity

Large size

very large capacity

Large size

very large capacity

 

 

Figure 2-1 Memory hierarchy showing the trend in speed and size going down the 

hierarchy with possible implementations for each level of memory 

 

The memory hierarchy as we go down from the processor in most computers is detailed 

as follows: 

1. Processor registers – The first level of hierarchy is the general purpose registers. 

This level provides the fastest access to data (usually one CPU cycle) as it is 
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designed as a part of the processor core. Registers are very expensive to 

implement and thus is the smallest memory object of all (usually a few hundred 

bytes). It is not possible to expand this memory as this is fixed in the CPU. 

Registers unquestionably provide fast access since they are part of the execution 

datapath itslef. Usually these registers are allocated by the compiler to the parts of 

programs where data is repetitively used, like in for-loops in counters. 

2. Cache – The next highest performing level in the memory hierarchy is cache. 

Cache is usually implemented in different levels (hierarchy of cache) with up to 

three levels in the recent architectures. Level 1 (L1) cache is a non-expandable 

memory with a size of a few tens of Kbytes. It is often accessed in a few cycles 

and costs much less than registers. Instructions requiring memory accesses are 

slower than those requiring register accesses owing to the fact that if the data 

needed for the execution is not present in L1 cache, the cache controller needs to 

look in the L2 cache or, in the worst case, on disk in the virtual memory 

subsystem. Level 2 (L2) cache is an optional level of memory. L2 cache is present 

as part of the CPU package for some processors like Pentium II and III processors 

but sometimes it is not incorporated as a part of CPU like in Intel Celeron 

processors. It is usually expandable when it is not in the CPU package. L2 is less 

expensive than L1 cache owing to relatively higher latencies but among L2 

caches, external ones are more expensive than the ones that are part of CPU 

package. Accessing L2 cache is always slower than that of L1 cache by atleast 

one cycle (perhaps more, and more so if the L2 cache is not packaged with the 

CPU) because most of one memory access cycle is spent to determine that the 
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data it is seeking is not present in the L1 cache. L2 caches are also made slower 

than L1 caches to make them inexpensive. Also L2 cache tends to be slower than 

L1 cache since it is larger. 

Based on the type of the data stored, there are instruction caches and data caches. 

Usually instruction cache and data cache are separate in L1 cache and they are not 

separate in level 2 or level 3 (unified cache for L2 an L3). In multi-processor 

architectures, cache is shared among the processors. Not all levels are shared for a 

multi-processor system but moving the level that is shared closer to the processor 

makes cache faster but is too complex and is expensive, whereas moving it to the 

bottom makes the processor go through all the levels above it to talk to the next 

processor (which makes it slower). 

  

Figure 2-2 Various cache architectures for multi-core systems [11] 

 

3. Main memory – After cache in the memory hierarchy comes main memory. This 

is the general-purpose, relatively low-cost memory found in most computer 

systems. Typically, this is DRAM or some similar inexpensive memory 

technology. Main memory access may take hundreds of clock cycles, but can be 

of multiple gigabytes. The amount of data that the system fetches is higher (in 
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blocks) from main memory when L2 - cache miss occurs than the amount of data 

fetched from L1 or L2 cache on a hit. This is how the system is designed to make 

the adjacent access times faster hoping that spatial locality exists in the system. 

This reduces the latency for main memory; however this latency is incurred if the 

program does not access data adjacent to the currently accessed one. 

4. Virtual memory which comes in the next level of hierarchy is not a real memory 

but is a computer system technique that gives an application program the 

impression that it has contiguous working memory while in fact it is physically 

fragmented and may even overflow on to disk storage. This technique makes 

more efficient use of real physical memory and makes programming of large 

applications easier. It employs techniques like overlaying, swapping programs 

and their data completely out to disk while they are inactive and simulating the 

storage on a disk drive as main memory.  

5. After the virtual memory comes file storage or shared memory blocks provided by 

other peripherals like video display cards. Though disk drives are a lot slower 

than main memory, they are very inexpensive and make it conceivable to have 

large amounts of data stored on disk drives. 

The typical memory hierarchy architecture of a modern day processor hierarchy is shown 

below. 
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Figure 2-3 Typical Memory Hierarchy of a modern day computer [11] 



 
21 

 

2.1 Memory implementation 

Basic principles behind implementation of different kinds of memory are stated in this 

section with a more detailed description on cache memory system. A register file is 

implemented as an array of registers built from D flip-flops with a decoder for each read 

or write port. Reading a register is slightly easier as compared to a write operation as read 

operation do not have to change the contents. For performing a read operation, only one 

input to select the designated register is required. For a write, along with the register 

number, the data to be written as well as the clock input are given as inputs. Read and 

write operations cannot be performed simultaneously since that read operation returns the 

value from earlier clock cycle while current data is still being written at the clock edge. 

SRAM: 

Typically caches are built using SRAMs (static random access memories).  SRAMs are 

memory arrays with a single access port capable of providing either a read or a write with 

fixed read access time and fixed write access time to any datum. SRAM has a 

configuration in terms of the number of addressable locations it has and width of each 

addressable location. A chip select signal must be made active to initiate a read or write 

access. For a read operation, instead of using a multiplexer for selecting the designated 

register, tri-state buffers are used for each bit (incorporated into the circuitry of basic 

SRAM cell) with all the outputs connected to a shared line called a ‘bit line’. This makes 

it a more efficient implementation than a large centralized multiplexer [1]. An output 

enable determines which cell drives the bus. The design still needs a decoder for 

generating an output enable signal and organizing memory as rectangular arrays which 
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can be decoded in two stages. For writes, data to be written, the designated address and 

the write enable signals are to be supplied to the SRAM circuitry. The write enable signal 

has to be long enough to allow for set-up times and hold times.  Synchronous SRAMs are 

capable of transferring a block of data from a series of sequential addresses within an 

array or row and this makes them a natural choice for building cache-based systems that 

do block transfers. 

DRAM: 

DRAMs are much denser and cheaper as only a single transistor is used either to read or 

write the data on to a charged capacitor that holds the data. But since capacitors are leaky, 

data cannot be kept indefinitely on a DRAM cell without having to perform a periodic 

refresh. For this reason, this memory is called dynamic and has a reduced speed. Two-

level decoding structures used in DRAM allow for a refresh of an entire row with a read 

cycle followed immediately by a write cycle. The two-level decoder consists of a row 

access followed by a column access. The row decoder activates the row corresponding to 

the given address and latches the data of all the columns of that row. Refresh is 

performed consuming just one cycle for the entire row by writing back the latched values. 

Complex internal circuitry and two-level addressing schemes make DRAMs much slower 

than SRAM. The much lower cost per bit makes DRAM the choice for main memory. 

Virtual Memory: 

Virtual memory is implemented by dividing the virtual address space of an application 

program into pages. ‘Paging’ is the process of saving inactive virtual memory pages to 

disk and restoring them to real memory when required [10]. ‘Page tables’ are used to 

translate the virtual addresses seen by the application program into real addresses used by 
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the hardware to process instructions. Each entry in a page table contains the starting 

virtual address of the page and either the real memory address at which the page is 

actually stored or an indicator that the page is currently held in a disk file. Since the 

transfer within the CPU is much faster than accessing memory, most dynamic address 

translation components maintain a table of recently used virtual-to-physical translations, 

called a Translation Lookaside Buffer (TLB). The TLB can only contain a limited 

number of mappings between virtual and physical addresses. When the translation for the 

requested address is not resident in the TLB, the hardware will have to look up the page 

tables in memory and save the result in the TLB. 
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CHAPTER 3  

 

CACHE ORGANIZATION 

 

3.0 Introduction 

Cache temporarily stores the data that is likely to be used again. Cache that is 

implemented solely to store instructions is an instruction cache and the one that stores 

only the data that is used during instruction execution is called a data cache. There can be 

a unified cache implementation also which stores both the data and instructions, but this 

is outdated and proven not to be as effective as separate instruction and data caches. 

Basic requests that a cache receives from the CPU are memory reads and memory writes. 

When memory read has to be performed by the CPU, it sends out the address of the 

memory location to cache and cache returns the data if it finds the data item requested by 

the CPU. For a write, the CPU sends out the address and the new data that has to be 

written at that address to the cache. If the address sent by the CPU for either read or write 

is in the cache, then a hit is said to have occurred. If the requested address is not present 

in the cache then either a read miss or write miss is said to have occurred based on 

whether it is a read request or a write request.  

 

3.1 Cache Types Based on Block Placement 

A block is the smallest unit of information that may be transferred to cache from the next 

lower level of memory in the hierarchy [5]. Performance of a cache is highly affected by 
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where a block of data is allowed to the placed in cache since it directly reflects how well 

the spatial locality, exhibited by programs, has been taken advantage of. Based on where 

a block of data from memory can be stored in the cache, cache can be divided into three 

categories as listed below. Table 3.1 compares all the three architectures in terms of the 

speed of access and hit ratio  

 

3.1.1 Direct-mapped Cache 

In direct-mapped cache, for each block in memory only one cache location is assigned 

based on its address and so is called ‘one-way set associative’. It is also called ‘direct-

mapped’ cache for there is a direct mapping for every block in the memory to exactly one 

particular location in the cache. Each cache block in direct-mapped cache may be 

accessed directly with low-order address bits. Since each cache location can contain the 

contents of a number of different memory locations, a set of tags, containing address 

information required to identify whether a word in the cache corresponds to the requested 

word or not, are added. The tag needs only to contain the upper portion of the address 

corresponding to the bits that are not used as an index into the cache as, the bits 

corresponding to the address are used to select the unique entry in the cache. When a 

processor starts up or even after executing many instructions, some or all of the cache 

entries may be empty. To check if the cache block has valid information, a valid bit is 

added to each block that would indicate if the cache entry is valid. 

 

While accessing the cache, the address is divided into a cache index that would select the 

block and a tag field which would be compared with the value of the tag field of the 



 
26 

cache. Since each block in the cache is addressed by n-bit index, the total number of 

blocks in the cache must be a power of two. Also the last two bits of the address in the 

MIPS architecture are used to specify a byte within the word. The total number of bits in 

a direct-mapped cache is given by  

×
n2 (Block size + Tag size + valid field size) 

 

Figure 3.3-1 The caches in the DECStation 3100 each contain 16K blocks with one word 

per block [1] 
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3.1.2 Fully-associative cache 

In a fully associative cache, any block from memory can be placed in any location in the 

cache. To find a given block in a fully associative cache, all the entries in the cache must 

be searched and for making the search practical, comparison is done in parallel with each 

associated cache entry. This results in the use of more comparators thereby increasing the 

hardware cost by a significant amount effectively making fully associative placement 

practical only for caches with small blocks. The following table shows the advantages 

and disadvantages of using various types of cache and we can see that direct mapped is 

best cost-wise but fully-associative is best performance wise. 

 

Table 3.1 Mapping function comparison table 

Cache Type Hit Ratio Hardware 

Complexity 

Search speed 

Direct-mapped Good Simple Best 

Fully associative Best Complex Moderate 

N-way set 

associative, N>1 

Very good, better as 

N increases 

Moderate Good, worse as N 

increases 

 

3.1.3 N-way associative cache 

This scheme falls in between direct mapped cache where N = 1 and fully associative 

cache where N = total number of blocks in the cache. In this scheme, there are a restricted 

number of locations in the cache where a block of memory can be placed. An n-way set 

associative cache consists of a number of sets, each of which consists of n blocks. Each 



 
28 

block in the memory maps to a unique set in the cache given by the index field, and a 

block can be placed in any element of that set. 

 

Figure 3.3-2 Four-way set associative cache with four comparators and a 4-to-1 mux [1] 

 

3.2 Cache Replacement Algorithms 

Whenever a cache miss occurs, a block from cache has to be replaced with the data 

fetched from the next higher-level memory to take the advantage of temporal locality 

exhibited by the programs.  In direct-mapped cache, there is only one way in which a 
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block can be placed in the memory because every block in memory is mapped to a single 

location in the cache. Whereas in a fully associative or set associative, there is more than 

one locations in cache to where every location from memory can be mapped. A 

replacement policy has to be chosen for cache for selecting the block to be evicted. There 

are three primary replacement policies in use – FIFO, LRU and Random. First In First 

Out (FIFO) replacement policy replaces the oldest block in the set. An (LRU) policy 

replaces the least recently used block in the set and a random policy chooses a block to be 

evicted randomly. 

LRU is based on the strategy that if a block has been used more recently by the processor, 

then it is more likely to be used again. This policy needs a significant amount of 

hardware for its implementation that is quite complex and so is not very attractive. Also 

the policy itself is based on an assumption that the block that is used least recently has 

much less chances of being used as compared to any other blocks that are used more 

recently. FIFO policy is a further approximation of LRU since this assumes that if a block 

has been loaded in cache a long time ago, it might not have been referenced for a while. 

This is not so complex to implement because the oldest can be computed by simply time 

stamping the blocks when they are first allocated in the cache. Random replacement 

policy is not so preferred a policy since this might evict the wrong block periodically as 

compared to systematic eviction of wrong blocks that might occur in LRU or FIFO 

policies. And since computers in nature are not random, it is not very simple to 

implement a truly random policy. 
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3.3 Cache-Memory Interaction 

When cache reports a hit on the memory reference, the machine continues using the data 

as if nothing had happened. But when the control unit detects a read miss, it has to 

process the miss by fetching the data from the memory or a lower-level cache. The basic 

approach to handle the miss is to stall the CPU, freezing the contents of all the registers. 

A separate controller to which the control is transferred on a miss fetches the data into the 

cache/CPU from lower-level cache or memory. Once the data is available, execution is 

resumed at the cycle that caused the cache miss.  

Read misses are easy to handle because on a read miss, data from the next level of 

memory hierarchy is fetched and replaced into cache while the block that is evicted is 

chosen based on the replacement policy used.  

However, modifying a block in cache during a write operation cannot begin until the tag 

is checked to see if the address is a hit.  Only the portion of the block specified of size 

between 1 and 8 bytes by the processor has to be changed leaving the rest of the block 

unchanged. In contrast, reads can access more bytes than necessary without a problem. 

On a cache miss, data cannot simply be written in the cache since the data constitutes 

only a part of the block and therefore the entire block has to be fetched before a write to 

cache for the whole block to be valid. There are two ways of handling this. One is a 

‘write-allocate scheme’ in which the block is fetched from main memory into cache first 

and then the data is written into the cache. In a non-allocating cache scheme, the first-

level of cache is simply bypassed and the data is written only in main memory or the next 

level of cache.  
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On a write hit for a write-back scheme, only cache is updated with the new data, and after 

the write into the cache, memory would have a different value from that in the cache. So 

there should be a way to recognize the block as ‘dirty’ with a status bit and the memory 

has to be updated with the valid content before the block is evicted from the cache. 

Advantages of write-back cache are that the writes occur at the speed of the cache 

memory and that the multiple writes within a block require only one write to main 

memory resulting in less memory bandwidth usage. This scheme is harder to implement 

and the reads that result in replacement of the dirty block causes memory writes. 

The other scheme in which both copies in the cache and memory are updated 

simultaneously on a write miss is called ‘write-through cache’. The advantages of the 

write-through scheme over the ‘write allocate scheme’ are that the read miss never results 

in writes to main memory, it is easy to implement and the data in the main memory is 

always consistent. On the down side, the writes are slower because memory-write which 

is a lot slower than cache-write has to be performed for every write on miss which results 

in usage of more memory bandwidth.  

Combining the schemes for write hit with write miss result in four possible combinations. 

In write-through with write-allocate, bringing the block to cache on a miss is not useful 

because the next hit to this block will generate a write to main memory (according to 

Write Through policy). In write-through with no write allocate policy, subsequent writes 

to the block will update main memory and so, time is saved not bringing the block in the 

cache on a miss because it appears useless anyway. In write-back with write-allocate, 

subsequent writes to the same block, if the block originally caused a miss, will hit in the 

cache next time, setting the dirty bit for the block. That will eliminate extra memory 
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accesses and result in very efficient execution compared with the write-through with 

write-allocate combination. Write-back with no write-allocate of subsequent writes to the 

same block, if the block originally caused a miss, will generate misses all the way and 

result in very inefficient execution. 

 

3.4 Cache Performance Metrics 

Average memory access time in a computer system is a measure to evaluate performance 

of cache in a memory hierarchy. It can be calculated using the formula, 

Average memory access time = hit time + miss rate ×  miss penalty  …………(3.1) 

The time obtained using the above formula can be converted into CPU cycles for a given 

CPU frequency. Memory system performance in a CPU relative to other operations in the 

CPU like program execution is obtained by using the memory access time in CPU cycles 

rather than in nanoseconds.  

Access time for instruction cache and data cache might have to be calculated separately 

since they both might have different penalties. Also read access time and write access 

time within data cache can be separated as they might have different miss rates and also 

different penalties. 

When a memory system performance is evaluated relative to a CPU with low clock 

cycles per instruction (CPI), the system might suffer more since the penalty will be a 

significant amount of the total time. This might not be the case for a CPU with high CPI. 

From the equation 3.1, there are three ways of reducing average memory access time and 

they are reducing hit time, reducing miss rate or reducing miss penalty. 
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This as well as other important metrics like the number of evictions for a given program, 

eviction rate, effect of a victim cache on the eviction rate or some things in which both 

the architecture designer as well as programmer would be interested in, should be easily 

measurable with a model developed for the cache. The proposed model [detailed in 

chapter 4] being modular helps in easy addition and measurement of such performance 

metrics an end user might be interested in. 

 

3.4.1 Cache Miss Types 

Every cache miss falls into one of the three categories explained. ‘Compulsory miss’ is a 

cache miss that occurs for the first-ever reference to a given block. Since a first access to 

a block cannot be in the cache, there must be a compulsory miss. A miss that occurs on 

the blocks that would have been discarded when cache is too small to hold all of the 

blocks needed during execution of a program is called a ‘capacity miss’. It is the 

difference between the compulsory miss rate and the miss rate of a finite size fully 

associative cache. The third type of cache misses called ‘conflict misses’ occur due to 

placement restrictions that cause useful blocks to be displaced. This is like a capacity 

miss within a set. It is given by the difference between the miss rate of a non-fully 

associative cache and a fully associative cache. Reducing any of the above said cache 

misses could reduce the miss rate of a memory system.  

 

There are several ways of reducing miss rate as explained below: 

1. Larger cache blocks 
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Larger cache blocks decrease compulsory misses, but they may increase the miss 

penalty by requiring more data to be fetched per miss. Conflict misses also 

increase, since fewer blocks can be stored in a given cache. High latency and high 

bandwidth memory systems tend to use large block sizes since cache gets more 

bytes per miss for a small increase in miss penalty. 

2. Higher cache associativity 

Higher associativity decreases conflict misses at the expense of extra hardware 

and increased hit times. Increased hit-times impose upper limits on the degree of 

associativity as the hit rate is offset by the slower clock cycle time. Generally 

associativity of 8 is the largest one used for most of the memory systems. 

3. Victim caches 

Victim cache is used to store a few of the blocks that are eliminated from a 

processor cache during replacement. The processor checks victim cache on L1 

cache miss before it goes to main memory. Since victim cache will have far less 

memory access time than the main memory, the miss penalty is reduced. 

4. Hardware prefetch 

This is a technique of fetching the data before it is requested thereby reducing 

compulsory cache misses. Prefetched blocks are held in a separate buffer until 

they are used in order to prevent eviction of useful blocks. Prefetching uses main 

memory bandwidth and thus might affect the performance if prefetched data is not 

used or if the prefetch process interferes with the main memory access on cache 

misses. 
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3.5 Cache Addressing 

As explained in section 2.1, virtual addressing is implemented to make more efficient use 

of real physical memory by making it appear like a contiguous working memory to the 

programs. To summarize, each program running on the machine sees its own simplified 

address space and accesses it without regard for what other programs are doing in their 

address spaces. The memory management unit (MMU) is the portion of the processor that 

does the translation from a program’s virtual address to a real physical memory address.  

Most modern level-1 caches are virtually indexed. Since a virtually indexed cache does 

not have to perform virtual to real address translation for accessing cache, speed is 

improved. This also allows the MMU’s TLB lookup to proceed in parallel with fetching 

the data from the cache. But due to virtual aliases (different virtual addresses referring to 

a single physical addresses by different programs), there might be multiple locations in 

the cache which store the value of a single physical address. This is handled by 

guaranteeing only one virtual aliased address is present in the cache at any give time. For 

an n-way set associative cache, whenever a cache write occurs, the processor searches for 

virtually aliased addresses among those n-ways and evicts them first and since this is 

done only when there is a cache miss, no extra work is required since the checks would 

have already performed while checking for a cache hit.  

Virtual tagging is not much used since the TLB lookup for a tag can be finished by the 

time cache is indexed and tag compare has to be performed. But the advantage of virtual 

tagging is that the tag match can be done well before address translation is done.  
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3.6 Cache hierarchy 

Since pipelined CPUs access memory from multiple points in the pipeline during 

instruction fetch, data fetch and address translation, four separate caches: instruction 

cache, data cache, ITLB and DTLB are included so that one cache doesn’t have to serve 

two points in the pipeline.  

Victim cache is used to store blocks that are eliminated from a processor cache during 

replacement. It lies between the main cache and the next level of memory from where the 

data is fetched into main cache. Victim cache reduces penalty on cache miss, if a block 

that was very recently evicted is referenced again. 

Trace cache is a technique that helps in increasing fetch bandwidth and in decreasing 

power consumption by storing traces of instruction that have already been fetched and 

decoded. Decoded instructions are added to trace caches in groups representing either 

dynamic instruction traces or individual blocks. Blocks consist of a group of non-branch 

instruction ending in a branch. Dynamic trace consists of only instructions that have been 

used. All the unused instructions like instructions following taken branches are 

eliminated. Trace lines are stored in trace cache based on multiple paths that are possible 

with the first instruction in the trace based on the program counter. This branch 

prediction is encountered for and thus can supply the trace line upon the outcome of 

branch condition.  

Multi-level caches constitute of small fast caches backed up by large slower caches to 

eliminate the tradeoff between cache latency and hit rate that arises in larger caches. 

Three-level on chip caches are being used as the latency difference between main 

memory and the fastest cache is becoming significantly larger. 
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Multi-level caches can be either inclusive or exclusive. In an inclusive cache, all the data 

present in the L1 cache should also be present in L2 cache. In case of exclusive caches, 

L1 cache and L2 cache are exclusive in terms of the data content. Exclusive cache can 

store more data and is advantageous especially for larger caches. Since strictly inclusive 

caches have a copy in L2 cache, on eviction of data in L1 cache (occurs especially in 

multiprocessor systems), processor can access L2 cache with much more speed than 

accessing next higher level of memory.  

 

3.7 Cache coherency algorithms for multi-ported and multi-processor 

environments 

In multi-processor systems, since all the processors see the same main memory, caches 

cannot be operated independently as the dirty caches updated by one processor has to be 

seen by the other. The uniform view of memory, as shown in figure 3.1, is called cache 

coherency. Providing access for every processor with every cache is very expensive. 

Cache coherency can be achieved by making a processor detect a write request by any 

processor and then by making the referenced data in its own cache, if present, invalid 

(this process is called snooping). Another way is to find the dirty block if present in one 

of the other caches and send the data from cache directly to the processor that requested 

read or write. Finding out if the cache line in another processor’s cache is dirty, by 

broadcasting information about changed cache lines after each write access, would be 

impractical. 
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Figure 3-3 Cache Coherent System 

 

There are several cache coherency protocols that could be used for a cache coherent 

system. Each of the coherence protocols differs from others in terms of scalability (how 

the size of bus and bandwidth have to be scaled with the size of the system) and 

performance. Implementation of each of these protocols might be based on different 

invalid and update transitions.  Choice of transition may affect the effective cache 

bandwidth available for work.  

 

MOESI (Modified Owned Exclusive Shared Invalid) protocol has five possible states that 

each and every cache line should fall in. All of these states are explained below [17]: 

1. Modified – A cache line is said to be in modified state if the cache line holds the 

recent most data updated by its corresponding processor and the cache line is dirty 

(memory still not updated). It also means no other caches have a copy of it.  

2. Owned – A cache line is said to be in an owned state when it holds the most 

recent copy of data and the main memory is updated with the recent data too. 

Other caches can have the updated data too, but only one cache line among all 

valid cache lines can be in the owned state. All others will be in the shared state. 
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3. Exclusive – a cache line is said to be in the exclusive state if it holds the most 

recent, correct data with correct data in main memory and with no other copies of 

it in other caches. 

4.  Shared – the shared state is similar to the owned state except that none of the 

caches here are in owned states, but every cache line with the copy is in the 

shared state with recent values updated for all copies of it including in memory. 

5. Invalid – a cache line is said to be in the invalid state if the cache doesn’t hold a 

valid copy of data. Valid data might be either in main memory or in other 

processor’s cache. 

As long as the system components select options dynamically, memory system state 

remains consistent. Since implementing a 5-state protocol on on-chip caches can be quite 

expensive, another protocol MESI with 4 states is directly derived. The “Owned” state in 

MESI is eliminated by making modified and shared states illegal to be present at the 

same time. Various cache coherent models are listed here most of which are derived from 

MOESI: MSI protocol, MESI protocol, Berkeley protocol, Dragon protocol, MOSI 

protocol, Illinois protocol, Firefly protocol and write-once protocol.  

 

3.8 Latency and bandwidth  

Block based trace cache and similar approaches have been used to improve the fetch 

bandwidth and the latency. These differ from the basic trace cache in the principle that 

one basic block is stored only once even though it might be part of several traces. This 

avoids the duplication problem in trace cache thereby allowing the block cache to have 

smaller size and still provide the same efficiency in terms of miss rates. 
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3.9 Cache Modeling 

Modeling is an act of representing a system or a subsystem formally [].  A model is used 

to understand the performance of a system based on various parameters and the tradeoffs 

involved in it. Programs are executed on a software model to validate a proposed 

hardware design’s performance. Modeling facilitates simulating the architectural model 

that helps the designers to evaluate the performance and correctness of the system 

thereby providing them with more design space exploration. Figure 3.4 shows a block 

diagram of how a systematic exploration of the architecture is to be performed to tune it 

up to an application domain overcoming the performance loss due to the distinction 

between application and architecture. An application engineer would be able to code 

profile his application with different architectures and choose the best one out of the 

available architectures by comparing performance metrics like throughput, hit rate, 

average memory access time, IPC, etc.. 

 

Figure 3-4 Cache Model: Mapping Architecture and Application [8] 
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Since the electronics market and its applications are growing far more rapidly than ever 

offering products at lower costs and higher performance, there is pressure imposed on the 

design community, which is making them seek techniques for design automation and 

reuse that would accelerate the progress. Cache modeling has become one of the 

significant techniques owing to the importance of the memory hierarchy on performance 

of the programmable systems. 
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CHAPTER 4  

 

IMPLEMENTATION OF THE CACHE MODEL 

 

4.0 Introduction 

                      A modular cache memory model that is cycle accurate (and thereby fast) 

has been developed for  simulating various levels and types of cache to quickly evaluate 

the trade-offs between cache size, cache policy and cache levels versus system 

performance in terms of IPC and cost.  The developed cache model was interfaced with a 

MIPS IV instruction set simulator called ‘Sysabakus’ [20] that was developed at OSU. 

The processor consists of both a linear in-order pipeline model and also an N-

wide out-of-order processor with ALU, multiply, branch and load/store units. It also 

consists of an N-wide fetch front-end which would fetch N-instructions every single 

cycle and would try to decode, issue and retire a similar number of instructions every 

cycle. The fetch module was initially using a perfect memory model where any data 

requested was available instantaneously without any delay. This fetch module was 

modified to instruction cache, which would include all cycle latencies that are needed for 

performance evaluation. The fetch module would also control the fetch PC based on a hit 

or miss from the cache. It would also insert NOP’s for the decode/issue unit for all 

missed instructions until a hit for a given address is achieved. The cache controller also 

included all counters that would be needed for performance evaluation.  
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4.1 Cache Controller Implementation 

The cache controller was mainly targeted towards being faster than being very efficient in 

terms of memory management as memory is usually available cheap on modern day 

servers that would be used for running the simulation. Also, running faster and at the 

same time being modular could be seen as the central idea around which several of the 

design decisions have been based on. For example, the memory needed for most of the 

datatypes was pre-allocated in the constructor function and not as runtime at that would 

slow down simulation. This allows us to change various cache parameters dynamically 

every time a new simulation is run without having to re-compile the entire program but at 

the same time not being bogged down by the constant memory allocate and delete 

overhead. Now there is a problem with this approach in the sense that if the cache data 

structures are pretty huge then they would not fit into the data cache of the target system 

on which the simulation is being run and hence might slow down simulation. This can be 

overcome by doing virtual paging of the cache data structure and then loading pages 

dynamically into the cache of the target system. 

The current design revolves around a two-port non-blocking cache that has various 

modifications according to the design being evaluated. The core model that is being used 

in this design is given below. 
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Figure 4-1 Block Diagram of the Cache Controller 

 

As you can see there are five main blocks for the cache controller in the above diagram 

and each one of these is implemented in separate modules/functions so that it is very easy 

to modify one part and evaluate the performance gain without affecting the other parts. 

This modular design would also help in extending this cache model to fit future 

applications like multiple ports and multi-processor interfaces. Adding new performance 
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metrics for something like this modular design would be very easy since this can be done 

without affecting the other parts and just adding one separate module that would give 

new performance metrics. 

The main part that gives this cache its flexibility is the event queue controller. It is a 

linked list which both the CPU port and the memory port (the memory port could actually 

be lower level cache and the CPU port could be interface to a higher level cache) to 

queue requests in case of misses or evictions. 

There is a latency field in the queue which allows for states in the queue to have variable 

delays before they are eventually fetched and requests completed. The latency field also 

allows for simulating the slower cycle memory bus by not even issuing a memory read 

request until the latency parameter gets to zero. So each level of cache memory running 

at different clock rates can easily be simulated by just setting the latency parameter to be 

variable for each level. Also, since the states can now have variable latency it allows the 

controller to have a lot fewer states than would be present in a normal cache controller. In 

fact, the current implementation of the cache controller consists of only 4 states called 

CACHEREAD, CACHEWRITE, MEMREAD and MEMWRITE. As you can see from 

the list of states, there are no states separately for evictions for when waiting for evictions 

to happen. This is all hidden by the variable latency states and hence the controller itself 

simulates a lot faster with only the necessary details that are required for a cycle accurate 

simulation. 

An example of some common cases that can be handled with just these four states is 

given below. Consider a write back cache in the case of write miss. Also let the location 
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that was selected, by the replacement algorithm, for the new block to be written have a 

valid but dirty block. Then the sequences of cache events in the queue are shown below. 

COMMAND ADDRESS SIZE 

DATA  

POINTER 

LATENCY 

(cycles) 

MEM 

READ 

Miss block 

address 

Size of Memory 

bus 

pointer to data 

buffer 

latency of memory 

access 

CACHE 

WRITE 

Miss block 

address 

Store  

Instruction size 

pointer to data 

buffer 

cache write 

latency (~=1) 

MEM 

WRITE 

evicted block 

address 

Size of Memory 

bus 

Data buffer with 

data 

Memory write 

latency 

Table 2 Event Queue during a Write Miss 

(Replacement Location has a Dirty block that needs to be written back) 

 

 As you can see from the block diagram of the event queue for this particular case there 

are only three events of which two can happen in parallel since their ports are separate. 

The first event that is queued is the memory read which is added to the queue by the 

cache write method on a write miss since the entire block needs to be read before any 

data is written into the cache. The cache write also queues a call to itself after the 

memory read happens. This is so that once the block is fetched the new data can be 

replaced in the fetched block. Since every cycle a memory port event and a CPU port 

event is processed these can be done simultaneously if there was no read request that 

cycle or the cache policy gives preference to writes over reads. Since the data to be 

written is also put in the queue as soon as this request is queued the controller can accept 

more read/write requests from the CPU and once the memory port does the read the 



 
47 

cache can do the write to that block. Also since the processor has load/store forwarding 

there won’t be a request for the data that was just written untill the write is finished. As 

mentioned above the current scenario requires that on a read miss when the data has to be 

brought into cache to do a replacement of another block chosen by the replacement 

controller, a valid dirty block has to be checked for the block selected for eviction. If so 

the memory read queues a memory write request with the data of the dirty block copied 

to the queue. This act frees up the location and the memory read request can write its 

block to the selected location and let the cache write proceed without waiting any further. 

This act of saving that data in a memory port buffer is nothing new but the controller 

must go through a large number of states and cycles and all these complexities are 

skipped by using a variable latency state and an event queue. 

The latency field is an important parameter that is novel to this design. This allows us to 

model slower memory buses; bus arbiters etc. efficiently and build a sequential state 

machine with just an event queue. When a latency parmeter for the next level is set to an 

event and added to the queue the events in the queue are handled in a FIFO manner. The 

latency of the element at the top of the queue is decremented checked every cycle and 

checked if it equal to zero. If it is zero then this event is processed. This means that the 

second level is not called every cycle of the processor clock but only at the clock 

frequency of that particular level. Also this approach means that you don’t have to go 

through every element of queue every cycle to update their latency count or time stamp 

only the top of the queue which is the element which is ready to be processed is accessed 

and modifications made thereby making the simulation very fast and efficient. 
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4.2 Replacement Controller 

 The algorithm that selects the block to be replaced is the one that is researched 

and optimized the most in a cache since this directly decides the cache performance in 

terms of capacity misses and compulsory misses. Hence this block has been implemented 

as a separate module called the replacement controller. The current version of the 

replacement controller models FIFO, pseudo LRU and random. A proper random or LRU 

controller cannot be implemented easily in hardware and hence to model this in software 

a pseudo LRU [18] and random model that could be easily implemented in hardware has 

been chosen to look at the performance of these algorithms. 

 

The primary addressable element that is stored in the cache is one word (4bytes for this 

MIPS architecture). This was chosen for two reasons: 

1. The word data type is the one that is most frequently used by the processor, 

always words are accesses by the instruction cache and mostly words are accessed 

by the Data cache, so using a primary datatype of word speeds up these accesses. 

Although words are the primary data structure, primitives for reading/writing a 

byte and half words are provided which work by reading the word and then 

separating the byte/half-word for a read, and read a word modify the byte/half-

word and write back the word for a write access.  As you can see these primitives 

are pretty slow since they require 2 or 3 operations per access but since these are 

used very rarely the use of word addressing is justified. 

2. The smallest data that can be read out of modern 32-bit or 64-bit processors is 4 

bytes thereby making the access for words a lot faster during simulation. 
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The event queue linked list that is currently used is based on the STL (Standard Template 

Library) [19] and hence can be easily modified to a thread safe list class without any 

change to the list access functions itself. This might be necessary in the future when there 

is several memory and CPU ports and we want to run them as individual threads with all 

threads accessing and updating the event queue simultaneously. The use of STL classes 

provides this flexible switching of classes without a change to the member functions. 

 

4.3  Constraints in Current Design 

1. Although the Memory fetch port can be parameterized to any number of bytes in 

the constructor, the class wont accept any cache block size that is not an integer 

multiple of the memory bus size. This is done to ease the event queue design 

where if the cache block is an integer multiple of the memory bus size then the 

integer number of memory read/write requests can be queued with their address 

offset and then cache can then proceed with what it was doing without waiting for 

the memory port to get free. 

2. The latency field of the event queue only allows for integer values and hence all 

clocks for various levels of memory should be integer multiples of other levels. 

This cannot be easily modified either since the latency is decremented or issued 

only once every clock cycle of the higher level. 

3. Using a multi-threaded port means use of a multi-threaded queue which for easier 

change would mostly be an STL thread-safe queue like the Boost Library 
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[www.boost.org]. This is usually terribly slower than non thread safe versions and 

might slow the simulation quite a bit. 

 

4.4 Implementation Issues on a sequential Processor 

There are several restrictions in simulating a lot of hardware, that are essentially by 

design parallel in nature, in software on a sequential processor which leads to some 

design trade-offs and modifications. Similarly what can easily be done using complex 

algorithms in software might take a lot of silicon area to implement in hardware and are 

hence not cost effective. While modeling the cache structure, such problem were faced as 

well which are detailed below along with steps taken to work around the problem. 

Implementing a true LRU policy in hardware is very expensive as it requires keeping 

track of exactly when and which of the ways in a set were accessed. Several solutions 

have been proposed to this problem that are easy to implement in hardware and are cost 

effective [18]. Hence to show/analyze/determine the actual performance impact of using 

these compromised algorithms a pseudo LRU replacement algorithm that just uses one 

counter per set was used.  This counter is incremented during every hit to point to the 

way one above the hit. Doing so basically splits the ways into two sets where above the 

location pointed to by the counter, there are locations that have not been accessed in the 

current period (one period is  when the counter overflows and resets itself to zero) and 

below that counter are ways that have might have been recently accessed although not 

necessarily. Also the random replacement policy was implemented by bit shifting the 

counter and exoring some bits in the counter to achieve a random output. 
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Similarly to make copying of data from memory to cache easier the ‘memcpy’ function 

was used which copies several bytes of data at once although this might not be practically 

feasible on a hardware cache controller. 

The main cache feature that takes a major performance hit due to lack of parallelism is 

the associative tag search function. This is done by parallel comparators in each way of a 

set-associative or fully-associative cache, and whichever comparator gets a hit for the 

given address that data is selected by a mux and send out. Doing this in software requires 

a sequential search of the entire associative ways for a tag match and valid bit being set.  

This problem is not easy to alleviate even  by using parallel processing using threads or 

some similar structure in software since this is a very primitive task and overhead is high 

for creating threads for them and also since there needs to be thousands of such 

comparisons making the creation of that many threads impossible. To overcome this 

problem a hashing policy and extra free buffers were created. When the associativity is 

large the tag address would be used to generate a hash index which would point in to a 

smaller set of ways to be searched. Each of these might be full in which the free list is 

checked to see if there are would have been any free locations if hashing was not used. If 

a free location exists then this entry is added to a secondary array and the free pointer is 

decremented after setting a bit at the hash indexed location. Setting this bit helps in 

knowing right away whether the secondary slower linear search array has to be searched 

or not before giving a miss for a given address during the next access. If the bit is set for 

the last hash indexed search location then the secondary array is searched linearly for a 

match otherwise a miss is declared right away.  This process is explained in detail in the 

cache structure diagram drawn below.  
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Figure 4-2 Hash based fast indexing for fully-associative cache 

 

On a cache miss, if all valid bits are 1 and linear bit is 1 search the linear cache 
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  Figure 4-3 Hash indexing for a fully associative cache
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CHAPTER 5  

 

SUMMARY AND CONCLUDING REMARKS 

 

5.0 Results 

Several different cache configurations and architectures were evaluated in simulation and 

their performance metrics for various SPEC benchmarks are listed below. The processor 

simulator used to test the cache was Abakus [20] developed at Oklahoma State 

University, which simulates MIPS IV instruction sets. There are two versions of the 

abakus processor available. One, a linear pipeline which fetches and executes a single 

instruction per cycle in instruction order and uses a branch evaluation in the execute 

stage. The second is a highly configurable superscalar simulator with out-of-order 

execution capability. The configuration used for the superscalar processor for all 

simulations was a 4-wide instruction fetch with a perfect branch prediction and 4 ALU, 

Multiply and Load/Store units. All tests programs were taken from the SPEC-95 

benchmarks or SPEC-2006 benchmarks compiled for the MIPS-IV instruction set. 
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5.0.1 Simulation of a single level instruction cache with linear pipeline 

The first simulation that was carried out was a simple linear pipeline with a single level 

of 1K instruction cache with 4-way set associativity. This model was used for simple 

measurements like read hit and misses as well as for evaluating cache replacement 

algorithms such as pseudo-LRU using counters [18]. The performance of the cache 

simulation code itself was measured using a comparison of the seconds needed to 

simulate a given benchmark program. The results for a linear pipeline showed that the 

cache was causing the simulator to slow down only by about 2 times as compared to 10-

100 times for the SIMICS simulator. 

 

5.0.2 Simulation results for two level instruction caches with linear pipeline 

The next step was to simulate a two level cache with the linear pipeline. The previous 

L1 Cache used a perfect memory model with no latency and no TLB, which is not 

practical in the modern processor world. Therefore this simulation would show us 
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realistic numbers in terms of latency and actual hit/miss rate of a cache configuration. 

 

Figure 5-1 Linear Pipeline Level-1 Instruction Cache Performance 
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Figure 5-2 Linear Pipeline Level-2 Instruction Cache Performance 

 

5.0.3 Simulation of four-issue cache for four-wide superscalar 

The next simulation was to make the Cache-CPU bus width larger to accommodate 

for a larger fetch width of the superscalar processor. The L1 cache was set to provide four 

instructions every cycle.  
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Figure 5-3 Performance of a 1K 4-way cache for a four-issue out-of-order processor 

 

5.0.4 Miss Rate Curves for various sizes of instruction cache 

The size of the cache and the associativity of the cache were varied and the miss rates for 

various benchmark programs were plotted to look for a general trend on the behaviour 

and performance of a given size and associativity cache. Data from the sim-cache 

simulator which is part of the simplescalar toolset [www.simplescalar.com] were also 

plotted for the direct mapped cache to check if the same general trend was observed. The 

plots for two SPEC95 benchmark programs compress95 and cc1 are shown below. 
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5.0.5 Measurement of Average Throughput and Cache Histogram 

The cache model developed above was described to be modular and flexible enough to 

add any new performance metric that the designer would be interested in easily. To prove 

this, two things that would interest the programmer, namely the average throughput of the 

next level memory bus and histogram of hits of every location in the cache, was added to 

the cache code and the results for one benchmark is shown below. The addition of these 

parameters took only 3 lines of code and was easily done by modifying only the memory 

port and CPU port for the two metrics respectively. 

 

Figure 5-4 Histogram of Cache hits to every set for mcf2006 

 

Since the cache model is cycle based and has no real sense of time the throughput was 

measured in bytes/processor cycle. The average throughput for some programs looked 

like: 
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� Compress95 – 1.41429 bytes/cycle 

� cc1 – 1.88725 bytes/cycle 

� go – 0.630861 bytes/cycle 

5.0.6 Measurement of Average Latency 

The measurement of average latency of a given level of the cache is very important since 

it is measuring overall how effective is the cache in keeping the processor busy 

irrespective of the slow lower memory levels. In the current model, since it is modular, 

the measurement of average latency could be easily done without much change to the 

current cache configuration. The main change needs to come in the CPU port code to 

increment the latency counter for every cache read event in the Event queue. Once a 

cache read event comes to the top, ready to be satisfied, the CPU port uses the latency 

count for this particular event to update the average latency up to that point. These 

changes would take only a few lines of code and provide valuable information using the 

already existing architecture. 
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very satisfied miss

 

Figure 5-5 Modifications for performing average latency calculation 

 

Note that the latency count needs to be updated only for cache read events and not for 

write events as they don’t affect the fetch latency directly. But this implementation 

requires the updation of cycle latency for all the elements in the queue which is a slow 

process if the queue is implemented as a linked list. To avoid doing this every cycle 

another method would be to add a timestamp field to the event queue and then when an 

event is added to the queue it is time stamped with the current time. Later on when it 

comes to the top of the queue, the timestamp is compared with the current time and the 

elapsed time is used to update the average latency. 
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5.1 Conclusion 

 A cycle accurate cache model has been developed and tested as an instruction 

cache with both a linear pipeline as well as an out-of-order multi-instruction issue 

superscalar processor. Since the model did not actually model all the internal states of a 

cache controller but effectively mimicked them using a variable latency event queue this 

model was very fast and efficient when compared to other similar cache models. The ease 

with which one can add several desired performance metrics was shown by adding 

metrics such as average throughput and a histogram of hits for every set. Several integer 

SPEC2006 and SPEC95 benchmarks were run to check whether the cache model had any 

underlying problems and this was verified by two methodologies. There is an inbuilt 

checker internal to the cache that when enabled in debug mode checks for the validity of 

all data, with the main memory, as they are fetched by the processor. Also the final 

output produced by the simulated SPEC benchmark was compared with the reference 

output that comes along with the benchmark to verify that the program did follow the 

exact same direction and gave the same output. A third verification for the performance 

metrics such as number of hits or miss ratio was done by setting the sim-cache 

[www.simplescalar.com] with similar parameters and running the same benchmarks. 

Although this would not give the exact same numbers since the processor models are 

different (for example the linear-pipeline would fetch and then flush two instructions in 

case of a mis-predicted branch but sim-cache uses a perfect predictor in the fetch stage 

and hence never fetches any waste instructions) they matched to the first order properly. 

All these verifications showed that the developed processor model is correct for the 

instruction cache. 
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5.2 Future Work 

1. Development of a thread safe queue structure and multi-threading the various 

cache banks to improve simulation performance. 

2. Test the various Writeback and Write allocate policies implemented using a L1 

and L2 Data Cache. 

3. Implement a multi-port Cache apart from the multi-bank version already 

developed and evaluate the performance differences. 

4. Implement a Multi-processor coherency protocol and test it across multi-core 

processor architectures. 

5.2.1 Measurement of Prefetch Performance 

Prefetching is an efficient way to reduce a number of misses (particularly compulsory 

misses). But if the prefetch algorithm is not propoerly designed and the prefetched 

instructions are not used, then it ends up in wasted memory bandwidth. So evaluating the 

performance of a prefetch algorithm is very important in cache design. The following 

figure [Figure 5-6] shows a list of minimal changes that need to be done to enable us in 

measuring prefetch performance.  
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Figure 5-6 Modifications for a prefetch performance measurement 
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APPENDIX-I 

List of parameters in the current model 

name     - Name of this particular cache. This is useful while creating and analyzing log 

files for various performance parameters. 

sets – Total number of sets in this cache. Should be power of two. 

ways – total number of ways in this cache. If number of sets is equal to the number of 

ways then it becomes a fully-assocaitive cache configuration. Should be power of two. 

replacepolicy – An enumerated data type of the replacement policy to be used for this 

level of the cache. It could be LRU (pseudo-LRU based on counters), FIFO or RNDM 

(random) for the current model. 

writepolicy - An enumerated data type of  write policy to be used with the lower level of 

memory  during a write from the cache. The two supported policies are Wback 

(writeback) and Wthrough (write through). 

CPUBusSize – Width of the processor side bus in bytes. Should be power of two. 

MemBusSize – Width of memory side bus in bytes. Should be power of two.  

nblocks – Number of blocks in the cache. Should be an integer multiple of memory bus 

size. 

nlevel – An enumerated datatype that denotes whether the next level of memory is 

another cache or main memory. Supported values are MEMORY and CACHE. 

nextlevelobject – A pointer to the next level object. Since memory is not modeled as an 

object in the current design it is passed a null pointer if next level is main memory.
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APPENDIX-II 

List of functions in the current model 

cacheaccess     - The main toplevel cache function that will be called by the CPU or the 

top-level cache and it calls all other internal functions according to the arguments. It gets 

the type of access (cache read or cache write) and number of bytes that needs to be 

fetched/modified along with the address and data pointer. Based on the number of bytes it 

makes calls to readbank, readbyte or readhalfword functions for a cache read and similar 

fucntions for write. 

readbank – This function reads a specified number of words (upto the number of blocks) 

and copies it to the passed data buffer.  

readbyte  & readhalfword – These are specializations of the readbank function that can 

return back a selected byte(8 bits) or half word(16 bits) from the word(32 bits) returned 

by readbank. 

updateway – The replacement algorithm controller. This function gives the way that 

needs to be replaced for a given set and needs to be called in case of a hit/miss to update 

the controller accordingly. 

MemoryRead – This function is called from the queue in case of a miss and is used 

tofetch missed blocks from the next level in the hierarchy and fill up the cache. Once data 

is read from the next level (using the nextlevelobject) it calls updateway to find the block 

that needs to be replaced and then wirtes the new data there. 

writebank – This function writes (copies) a specified number of words (upto the number 

of blocks) from the passed data buffer. In case the specified word is missing it queues a 

memory read followed by a cachewrite. 
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writebyte & writehalfword – These are specializations of the writebank function that 

can write a selected byte(8 bits) or half word(16 bits). It initially reads the entire word 

using readbank modifies the byte and then writes the whole word back using writebank. 

MemoryWrite – A function that writes a whole cache block to the next level of memory. 
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