
CACHE MEMORY MODEL FOR CYCLE ACCURATE

SIMULATION

By

RANGANATHAN SRIDHARAN

Bachelor of Engineering in Electronics & Communications

University of Madras

Chennai, Tamilnadu

2003

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

December, 2007

ii

CACHE MEMORY MODEL FOR CYCLE

ACCURATE SIMULATION

 Thesis Approved:

 Dr. Louis G. Johnson

 Thesis Adviser

Dr. Sohum Sohoni

Committee Member Name Here

Dr. Rama Ramakumar

Committee Member Name Here

 A. Gordon Emslie

 Dean of the Graduate College

iii

ACKNOWLEDGEMENT

First, I would like to thank my advisor and committee chair Dr. Louis G. Johnson

for having stood by me patiently for such a long time and guiding me in the right

direction. I would also like to thank my committee members Dr. Sohum Sohoni and Dr.

Rama Ramakumar for their valuable advice and guidance on features required for a good

cache simulator.

 I would like to thank Dr. Jong Moon Chung and Dr. Chriswell Hutchens for their

guidance and financial support without which my stay at OSU would not have been

possible. I would also like to thank Aswin Ramachandran, Micro architecture Lab, OSU

for helping me in integration of my cache model with his processor model and also for

his valuable suggestions whenever I got stuck. I would also like to thank all the members

of MSVLSI (Mixed-Signal VLSI) lab, Dr.Liu, Usha, Vijay, Srinivasan, Henry and

Dr.Hooi Miin Soo for helping me in all ways during this long stay at OSU. Without them

my life would have been uninteresting and uneventful.

I would like to thank my parents and my sister for their constant encouragement,

motivation and for having believed in me till the end. To all of them I dedicate this work.

iv

TABLE OF CONTENTS

Chapter Page

CHAPTER 1 ... 9

INTRODUCTION .. 9

1.0 Thesis Introduction... 10

1.1 Motivation .. 12

1.2 Thesis Organization.. 13

CHAPTER 2 ... 14

MEMORY HIERARCHY: CACHE OVERVIEW .. 14

2.0 Memory Hierarchy ... 15

2.1 Memory implementation .. 21

CHAPTER 3 ... 24

CACHE ORGANIZATION.. 24

3.0 Cache Terminology...Error! Bookmark not defined.

3.1 Cache Types Based on Block Placement ... 24

3.1.1 Direct-mapped Cache.. 25

3.1.2 Fully-associative cache ... 27

3.1.3 N-way associative cache ... 27

3.2 Cache Replacement Algorithms... 28

3.3 Cache-Memory Interaction .. 30

3.4 Cache Performance Metrics ... 32

3.4.1 Cache Miss Types ... 33

v

3.5 Cache Addressing... 35

3.6 Cache hierarchy.. 36

3.7 Cache coherency algorithms for multi-ported and multi-processor environments

 37

3.8 Latency and bandwidth .. 39

3.9 Cache Modeling ... 40

CHAPTER 4 ... 42

IMPLEMENTATION OF THE CACHE MODEL .. 42

4.0 Introduction .. 42

4.1 Cache Controller Implementation .. 43

4.2 Replacement Controller.. 48

4.3 Constraints in Current Design .. 49

4.4 Implementation Issues on a sequential Processor .. 50

CHAPTER 5 ... 54

SUMMARY AND CONCLUDING REMARKS .. 54

5.0 Results .. 54

5.0.1 Simulation of a single level instruction cache with linear pipeline 55

5.0.2 Simulation results for two level instruction caches with linear pipeline 55

5.0.3 Simulation of four-issue cache for four-wide superscalar 57

5.0.4 Measurement of Average Throughput and Cache Histogram 58

5.0.5 Measurement of Average Latency .. 61

5.1 Conclusion.. 63

5.2 Future Work ... 64

vi

vii

LIST OF TABLES

Table Page

Table 3.1 Mapping function comparison table ... 27

viii

LIST OF FIGURES

Figure Page

Figure 1-1 Logic and memory performance gap .. 10

Figure 2-1 Memory hierarchy showing the trend in speed and size going down the

hierarchy with possible implementations for each level of memory 16

Figure 2-2 Various cache architectures for multi-core systems [11]................................ 18

Figure 2-3 Typical Memory Hierarchy of a modern day computer [11] 20

Figure 3.3-1 The caches in the DECStation 3100 each contain 16K blocks with one word

per block [1].. 26

Figure 3.3-2 Four-way set associative cache with four comparators and a 4-to-1 mux [1]

... 28

Figure 3-3 Cache Coherent System .. 38

Figure 3-4 Cache Model: Mapping Architecture and Application [8] 40

Figure 4-1 Block Diagram of the Cache Controller.. 44

Figure 4-2Hash based fast indexing for most common cases... 52

Figure 4-3 Hash indexing for a fully associative cache.. 53

Figure 5-1 Linear Pipeline Level-1 Instruction Cache Performance 56

Figure 5-2 Linear Pipeline Level-2 Instruction Cache Performance 57

Figure 5-3 Performance of a 1K 4-way cache for a four-issue out-of-order processor 58

Figure 5-4 Histogram of Cache hits to every set for mcf2006 ... 60

Figure 5-5 Modifications for performing average latency calculation 62

Figure 5-6 Modifications for a prefetch performance measurement 65

9

CHAPTER 1

INTRODUCTION

Over the years, major technological advancements and innovations in the way computers

operate took us through several generations of computers with each conveying a leap

beyond existing machines. The sustained improvements in the fundamental computer

architecture are leading to increasingly smaller, cheaper, more powerful, more efficient

and reliable devices every day. In the first four generations of computers, if the focus had

been on increasing the number of logic elements in a single CPU, the current generation

is focused on higher calculation performance using massive parallelism and ever

improving architecture and organization.

As high performance superscalar processor organizations are divided into memory access

and instruction execution mechanisms, improvement in processor performance (clock

speed of the operation being the metric in measuring computer’s performance) with no

disparity with memory access speed would result in better overall computer system

performance. But, over the years there are 55% more transistors every year on a single

chip that proportionally increase the speed of CPU as compared to only a 7% increase in

the speed of memory. Always there is this motivating processor – memory performance

gap (depicted in the figure 1.1 below) existing with the bottleneck of relatively slow

memory which is posing a greater challenge for memory designers to come up with a

range of techniques to reduce average memory access time and architectures supporting

out-of-order and speculative execution.

10

Figure 1-1 Logic and memory performance gap

One major step towards improvising the memory organization was to implement levels of

hierarchy in memory as compared to the flat memory structure that was in use earlier.

Taking into account the physical reality that infinitely large and fast memories are not

possible (it would be impossible to make memory accesses fast and still have large

amounts of memory in machines [1]) into consideration, memory hierarchies are

implemented with levels, each of which has greater capacity than the preceding but has a

greater access latency.

1.0 Thesis Introduction

Cache was the name chosen in 1969 to represent a level of memory hierarchy between

the CPU and main memory in the first commercial machine to have this extra level.

Cache is a temporary storage area where frequently accessed data can be stored for rapid

11

access. Once the data is stored in the cache, future access can be made to the cached copy

rather than re-fetching or recomputing the original data, so the average access time is

shorter. Caches have proven to be extremely effective in many areas of computing

because access patterns in typical computer applications have locality of reference. There

are numerous cache architecture and organization schemes that exist and there is scope

for new ones that can be explored for providing as much information as possible, as

required by a CPU with faster access times. The work presented here as a part of my

research is aimed at facilitating cache designers with the ability to simulate and

characterize the performance of cache memory before implementing it in hardware.

An architecture level behavioral model for evaluating the performance of cache in terms

of average access latencies, miss rates and other miss penalties that are accurate at the

cycle level without being too detailed to reduce simulation performance has been

developed in C++. The cache statistics generated assist the designer in selecting an

appropriate cache block size, associativity, replacement policy and other architecture-

level design features. The cache controller implemented here has only 4 states (memory

read, memory write, cache read and cache write) with each stage having variable latency.

All other states that are internal to a regular cache controller are not implemented as the

primary focus is on the interface of the cache with processor and memory thus giving far

better performance with regard to number of simulation cycles consumed.

12

1.1 Motivation

The main motivation for development of such a model was the unavailability of proper

cache models that are fast (the internal details need not be detailed enough to mimic

exactly a cache controller) and at the same time are modular such that several types of

architectures could be easily modified and performance evaluated. Cache size, number of

cache levels in the memory hierarchy and cache policy design are hot topics in the

current period which is a highly unexplored field with each processor having a different

size and varying levels of cache and each application running on a processor behaving

differently on different cache architectures. The entry of multi-core processors introduces

another hurdle where several designs and architectures for the cache need to be explored

so that the various cores can run parallel threads without too much bus communication

overhead. For example, if you look at the current market, two of the industry giants in

processor design, Intel and AMD, don’t agree on a single architecture for their dual-core

and quad-core processors. While Intel wants to stay with a shared L2 cache at least for its

latest iteration [15], AMD with its quad-core architecture wants a dedicated L2 cache and

a shared L3 cache [14]. Similarly there are several multi-core microcontrollers that are

being developed by ARM and IBM that are exploring the use of a shared cache among

the cores. This is also a big need in the field of game console design where multiple

processor cores and multiple GPU cores compete on sharing the data at the fastest

possible rate so that high frame rendering rates could be achieved. Developing cache

models such as these would help us evaluate the performance of various alternatives

across several benchmarks without the need for design time and silicon spins for all

different architectures to be evaluated.

13

1.2 Thesis Organization

This thesis consists of 5 chapters. Chapter 2 gives more details regarding the memory

organization, processor communication with different levels of memory and briefly

describes how level of memory is implemented along with the advantages and limitations

of them. Chapter 3 deals with cache architecture and organization and gives in depth

detail about the crucial factors that dictate the cache performance. Chapter 4 talks about

the simulation methodology developed as a part of this work to evaluate the performance

of cache. Chapter 5 summarizes results of this work in terms of its simulation robustness

and gives details regarding scope of further work.

14

CHAPTER 2

MEMORY HIERARCHY: CACHE OVERVIEW

CPUs today are much more sophisticated with increased operating frequencies.

Frequency of the memory bus and the performance of RAM chips have not increased

proportionally making memory a performance bottleneck. An ideal memory system

would be the one that provides any datum required by the CPU immediately.

Implementation of this ideal memory would not be possible in practise, since memory

design is a fundamental trade-off between capacity, speed and cost. An economic

solution for memory, aimed towards achieving cost as low as the cheapest memory and

speeds as fast as the fastest memory, is to implement memory in a hierarchical manner.

Smaller memories are relatively faster than larger memories built on similar technologies

because larger memories have more delay in signal path (due to added capacitance from

transistors and wires) and also require more levels to decode addresses. Also in most

technologies, smaller memories are faster than larger memories since more memory

power per memory cell can be afforded in smaller designs as compared to larger ones.

Thus, implementing memory in a hierarchy as compared to using large amounts of faster

memory provides more capacity for the same price with only slightly reduced combined

performance.

15

Hierarchical implementation of memory is based on the ‘principle of locality’ that is

exhibited by programs. Temporal locality means that there is a high possibility that the

recently accessed data will be accessed again in the near future. The principle of spatial

locality states that if an item is referenced, items whose addresses are close by will tend

to be referenced soon. Programs are considered to be exhibiting spatial locality since

instructions are normally accessed sequentially with programs showing high spatial

locality thereby making data accesses also to exhibit high spatial locality. Programs are

also considered to be exhibiting temporal locality since programs contain loops with data

likely to be accessed repeatedly resulting in high amounts of temporal locality.

Superscalar processor organizations that by nature divide into instruction fetch

mechanisms and instruction execute mechanisms employ aggressive techniques to exploit

instruction level parallelism (ILP). Those techniques include using wide dispatch and

issue paths for increasing ‘instruction throughput’, using large issue buffers for providing

more instructions in parallel to instruction execution engine, enabling concurrent

execution of instruction by employing parallel functional units and speculating multiple

branches for supplying a continuous instruction stream to the execution engine. In

benefiting the most out of these ILP techniques, instruction fetch bandwidth and latency

are a major concern.

2.0 Memory Hierarchy

The number of levels in the memory hierarchy differs for different architectures. The

fastest memories are more expensive per bit than the slower memories and thus are

16

usually smaller. The price difference arises because of the difference in the capacity

among different implementations for the same amount of silicon. A typical memory

hierarchy for optimal performance is implemented in different levels with each level

having higher speed, smaller size and lower latency closer to the processor than lower

levels (shown in figure 1.2). The following triangle shows the famous cost, performance

and size trade-offs and how all goals are achieved at a nominal cost by using multiple

levels of memory.

Voltaile

Immediate term

Volatile

very short term

Non-volatile

short term

Non-volatile

mid term

Non-Volatile

Long term

Processor registers

very fast, very expensive

Processor cache

very fast, expensive

Random access memory

fast, affordable

Flash / usb memory

slower, cheap

Hard drives

slow, very cheap

Tape backup

very slow, affordable

Small size

small capacity

Small size

small capacity

Medium size

medium capacity

Small size

large capacity

Large size

very large capacity

Large size

very large capacity

Figure 2-1 Memory hierarchy showing the trend in speed and size going down the

hierarchy with possible implementations for each level of memory

The memory hierarchy as we go down from the processor in most computers is detailed

as follows:

1. Processor registers – The first level of hierarchy is the general purpose registers.

This level provides the fastest access to data (usually one CPU cycle) as it is

17

designed as a part of the processor core. Registers are very expensive to

implement and thus is the smallest memory object of all (usually a few hundred

bytes). It is not possible to expand this memory as this is fixed in the CPU.

Registers unquestionably provide fast access since they are part of the execution

datapath itslef. Usually these registers are allocated by the compiler to the parts of

programs where data is repetitively used, like in for-loops in counters.

2. Cache – The next highest performing level in the memory hierarchy is cache.

Cache is usually implemented in different levels (hierarchy of cache) with up to

three levels in the recent architectures. Level 1 (L1) cache is a non-expandable

memory with a size of a few tens of Kbytes. It is often accessed in a few cycles

and costs much less than registers. Instructions requiring memory accesses are

slower than those requiring register accesses owing to the fact that if the data

needed for the execution is not present in L1 cache, the cache controller needs to

look in the L2 cache or, in the worst case, on disk in the virtual memory

subsystem. Level 2 (L2) cache is an optional level of memory. L2 cache is present

as part of the CPU package for some processors like Pentium II and III processors

but sometimes it is not incorporated as a part of CPU like in Intel Celeron

processors. It is usually expandable when it is not in the CPU package. L2 is less

expensive than L1 cache owing to relatively higher latencies but among L2

caches, external ones are more expensive than the ones that are part of CPU

package. Accessing L2 cache is always slower than that of L1 cache by atleast

one cycle (perhaps more, and more so if the L2 cache is not packaged with the

CPU) because most of one memory access cycle is spent to determine that the

18

data it is seeking is not present in the L1 cache. L2 caches are also made slower

than L1 caches to make them inexpensive. Also L2 cache tends to be slower than

L1 cache since it is larger.

Based on the type of the data stored, there are instruction caches and data caches.

Usually instruction cache and data cache are separate in L1 cache and they are not

separate in level 2 or level 3 (unified cache for L2 an L3). In multi-processor

architectures, cache is shared among the processors. Not all levels are shared for a

multi-processor system but moving the level that is shared closer to the processor

makes cache faster but is too complex and is expensive, whereas moving it to the

bottom makes the processor go through all the levels above it to talk to the next

processor (which makes it slower).

Figure 2-2 Various cache architectures for multi-core systems [11]

3. Main memory – After cache in the memory hierarchy comes main memory. This

is the general-purpose, relatively low-cost memory found in most computer

systems. Typically, this is DRAM or some similar inexpensive memory

technology. Main memory access may take hundreds of clock cycles, but can be

of multiple gigabytes. The amount of data that the system fetches is higher (in

19

blocks) from main memory when L2 - cache miss occurs than the amount of data

fetched from L1 or L2 cache on a hit. This is how the system is designed to make

the adjacent access times faster hoping that spatial locality exists in the system.

This reduces the latency for main memory; however this latency is incurred if the

program does not access data adjacent to the currently accessed one.

4. Virtual memory which comes in the next level of hierarchy is not a real memory

but is a computer system technique that gives an application program the

impression that it has contiguous working memory while in fact it is physically

fragmented and may even overflow on to disk storage. This technique makes

more efficient use of real physical memory and makes programming of large

applications easier. It employs techniques like overlaying, swapping programs

and their data completely out to disk while they are inactive and simulating the

storage on a disk drive as main memory.

5. After the virtual memory comes file storage or shared memory blocks provided by

other peripherals like video display cards. Though disk drives are a lot slower

than main memory, they are very inexpensive and make it conceivable to have

large amounts of data stored on disk drives.

The typical memory hierarchy architecture of a modern day processor hierarchy is shown

below.

20

Figure 2-3 Typical Memory Hierarchy of a modern day computer [11]

21

2.1 Memory implementation

Basic principles behind implementation of different kinds of memory are stated in this

section with a more detailed description on cache memory system. A register file is

implemented as an array of registers built from D flip-flops with a decoder for each read

or write port. Reading a register is slightly easier as compared to a write operation as read

operation do not have to change the contents. For performing a read operation, only one

input to select the designated register is required. For a write, along with the register

number, the data to be written as well as the clock input are given as inputs. Read and

write operations cannot be performed simultaneously since that read operation returns the

value from earlier clock cycle while current data is still being written at the clock edge.

SRAM:

Typically caches are built using SRAMs (static random access memories). SRAMs are

memory arrays with a single access port capable of providing either a read or a write with

fixed read access time and fixed write access time to any datum. SRAM has a

configuration in terms of the number of addressable locations it has and width of each

addressable location. A chip select signal must be made active to initiate a read or write

access. For a read operation, instead of using a multiplexer for selecting the designated

register, tri-state buffers are used for each bit (incorporated into the circuitry of basic

SRAM cell) with all the outputs connected to a shared line called a ‘bit line’. This makes

it a more efficient implementation than a large centralized multiplexer [1]. An output

enable determines which cell drives the bus. The design still needs a decoder for

generating an output enable signal and organizing memory as rectangular arrays which

22

can be decoded in two stages. For writes, data to be written, the designated address and

the write enable signals are to be supplied to the SRAM circuitry. The write enable signal

has to be long enough to allow for set-up times and hold times. Synchronous SRAMs are

capable of transferring a block of data from a series of sequential addresses within an

array or row and this makes them a natural choice for building cache-based systems that

do block transfers.

DRAM:

DRAMs are much denser and cheaper as only a single transistor is used either to read or

write the data on to a charged capacitor that holds the data. But since capacitors are leaky,

data cannot be kept indefinitely on a DRAM cell without having to perform a periodic

refresh. For this reason, this memory is called dynamic and has a reduced speed. Two-

level decoding structures used in DRAM allow for a refresh of an entire row with a read

cycle followed immediately by a write cycle. The two-level decoder consists of a row

access followed by a column access. The row decoder activates the row corresponding to

the given address and latches the data of all the columns of that row. Refresh is

performed consuming just one cycle for the entire row by writing back the latched values.

Complex internal circuitry and two-level addressing schemes make DRAMs much slower

than SRAM. The much lower cost per bit makes DRAM the choice for main memory.

Virtual Memory:

Virtual memory is implemented by dividing the virtual address space of an application

program into pages. ‘Paging’ is the process of saving inactive virtual memory pages to

disk and restoring them to real memory when required [10]. ‘Page tables’ are used to

translate the virtual addresses seen by the application program into real addresses used by

23

the hardware to process instructions. Each entry in a page table contains the starting

virtual address of the page and either the real memory address at which the page is

actually stored or an indicator that the page is currently held in a disk file. Since the

transfer within the CPU is much faster than accessing memory, most dynamic address

translation components maintain a table of recently used virtual-to-physical translations,

called a Translation Lookaside Buffer (TLB). The TLB can only contain a limited

number of mappings between virtual and physical addresses. When the translation for the

requested address is not resident in the TLB, the hardware will have to look up the page

tables in memory and save the result in the TLB.

24

CHAPTER 3

CACHE ORGANIZATION

3.0 Introduction

Cache temporarily stores the data that is likely to be used again. Cache that is

implemented solely to store instructions is an instruction cache and the one that stores

only the data that is used during instruction execution is called a data cache. There can be

a unified cache implementation also which stores both the data and instructions, but this

is outdated and proven not to be as effective as separate instruction and data caches.

Basic requests that a cache receives from the CPU are memory reads and memory writes.

When memory read has to be performed by the CPU, it sends out the address of the

memory location to cache and cache returns the data if it finds the data item requested by

the CPU. For a write, the CPU sends out the address and the new data that has to be

written at that address to the cache. If the address sent by the CPU for either read or write

is in the cache, then a hit is said to have occurred. If the requested address is not present

in the cache then either a read miss or write miss is said to have occurred based on

whether it is a read request or a write request.

3.1 Cache Types Based on Block Placement

A block is the smallest unit of information that may be transferred to cache from the next

lower level of memory in the hierarchy [5]. Performance of a cache is highly affected by

25

where a block of data is allowed to the placed in cache since it directly reflects how well

the spatial locality, exhibited by programs, has been taken advantage of. Based on where

a block of data from memory can be stored in the cache, cache can be divided into three

categories as listed below. Table 3.1 compares all the three architectures in terms of the

speed of access and hit ratio

3.1.1 Direct-mapped Cache

In direct-mapped cache, for each block in memory only one cache location is assigned

based on its address and so is called ‘one-way set associative’. It is also called ‘direct-

mapped’ cache for there is a direct mapping for every block in the memory to exactly one

particular location in the cache. Each cache block in direct-mapped cache may be

accessed directly with low-order address bits. Since each cache location can contain the

contents of a number of different memory locations, a set of tags, containing address

information required to identify whether a word in the cache corresponds to the requested

word or not, are added. The tag needs only to contain the upper portion of the address

corresponding to the bits that are not used as an index into the cache as, the bits

corresponding to the address are used to select the unique entry in the cache. When a

processor starts up or even after executing many instructions, some or all of the cache

entries may be empty. To check if the cache block has valid information, a valid bit is

added to each block that would indicate if the cache entry is valid.

While accessing the cache, the address is divided into a cache index that would select the

block and a tag field which would be compared with the value of the tag field of the

26

cache. Since each block in the cache is addressed by n-bit index, the total number of

blocks in the cache must be a power of two. Also the last two bits of the address in the

MIPS architecture are used to specify a byte within the word. The total number of bits in

a direct-mapped cache is given by

×
n2 (Block size + Tag size + valid field size)

Figure 3.3-1 The caches in the DECStation 3100 each contain 16K blocks with one word

per block [1]

27

3.1.2 Fully-associative cache

In a fully associative cache, any block from memory can be placed in any location in the

cache. To find a given block in a fully associative cache, all the entries in the cache must

be searched and for making the search practical, comparison is done in parallel with each

associated cache entry. This results in the use of more comparators thereby increasing the

hardware cost by a significant amount effectively making fully associative placement

practical only for caches with small blocks. The following table shows the advantages

and disadvantages of using various types of cache and we can see that direct mapped is

best cost-wise but fully-associative is best performance wise.

Table 3.1 Mapping function comparison table

Cache Type Hit Ratio Hardware

Complexity

Search speed

Direct-mapped Good Simple Best

Fully associative Best Complex Moderate

N-way set

associative, N>1

Very good, better as

N increases

Moderate Good, worse as N

increases

3.1.3 N-way associative cache

This scheme falls in between direct mapped cache where N = 1 and fully associative

cache where N = total number of blocks in the cache. In this scheme, there are a restricted

number of locations in the cache where a block of memory can be placed. An n-way set

associative cache consists of a number of sets, each of which consists of n blocks. Each

28

block in the memory maps to a unique set in the cache given by the index field, and a

block can be placed in any element of that set.

Figure 3.3-2 Four-way set associative cache with four comparators and a 4-to-1 mux [1]

3.2 Cache Replacement Algorithms

Whenever a cache miss occurs, a block from cache has to be replaced with the data

fetched from the next higher-level memory to take the advantage of temporal locality

exhibited by the programs. In direct-mapped cache, there is only one way in which a

29

block can be placed in the memory because every block in memory is mapped to a single

location in the cache. Whereas in a fully associative or set associative, there is more than

one locations in cache to where every location from memory can be mapped. A

replacement policy has to be chosen for cache for selecting the block to be evicted. There

are three primary replacement policies in use – FIFO, LRU and Random. First In First

Out (FIFO) replacement policy replaces the oldest block in the set. An (LRU) policy

replaces the least recently used block in the set and a random policy chooses a block to be

evicted randomly.

LRU is based on the strategy that if a block has been used more recently by the processor,

then it is more likely to be used again. This policy needs a significant amount of

hardware for its implementation that is quite complex and so is not very attractive. Also

the policy itself is based on an assumption that the block that is used least recently has

much less chances of being used as compared to any other blocks that are used more

recently. FIFO policy is a further approximation of LRU since this assumes that if a block

has been loaded in cache a long time ago, it might not have been referenced for a while.

This is not so complex to implement because the oldest can be computed by simply time

stamping the blocks when they are first allocated in the cache. Random replacement

policy is not so preferred a policy since this might evict the wrong block periodically as

compared to systematic eviction of wrong blocks that might occur in LRU or FIFO

policies. And since computers in nature are not random, it is not very simple to

implement a truly random policy.

30

3.3 Cache-Memory Interaction

When cache reports a hit on the memory reference, the machine continues using the data

as if nothing had happened. But when the control unit detects a read miss, it has to

process the miss by fetching the data from the memory or a lower-level cache. The basic

approach to handle the miss is to stall the CPU, freezing the contents of all the registers.

A separate controller to which the control is transferred on a miss fetches the data into the

cache/CPU from lower-level cache or memory. Once the data is available, execution is

resumed at the cycle that caused the cache miss.

Read misses are easy to handle because on a read miss, data from the next level of

memory hierarchy is fetched and replaced into cache while the block that is evicted is

chosen based on the replacement policy used.

However, modifying a block in cache during a write operation cannot begin until the tag

is checked to see if the address is a hit. Only the portion of the block specified of size

between 1 and 8 bytes by the processor has to be changed leaving the rest of the block

unchanged. In contrast, reads can access more bytes than necessary without a problem.

On a cache miss, data cannot simply be written in the cache since the data constitutes

only a part of the block and therefore the entire block has to be fetched before a write to

cache for the whole block to be valid. There are two ways of handling this. One is a

‘write-allocate scheme’ in which the block is fetched from main memory into cache first

and then the data is written into the cache. In a non-allocating cache scheme, the first-

level of cache is simply bypassed and the data is written only in main memory or the next

level of cache.

31

On a write hit for a write-back scheme, only cache is updated with the new data, and after

the write into the cache, memory would have a different value from that in the cache. So

there should be a way to recognize the block as ‘dirty’ with a status bit and the memory

has to be updated with the valid content before the block is evicted from the cache.

Advantages of write-back cache are that the writes occur at the speed of the cache

memory and that the multiple writes within a block require only one write to main

memory resulting in less memory bandwidth usage. This scheme is harder to implement

and the reads that result in replacement of the dirty block causes memory writes.

The other scheme in which both copies in the cache and memory are updated

simultaneously on a write miss is called ‘write-through cache’. The advantages of the

write-through scheme over the ‘write allocate scheme’ are that the read miss never results

in writes to main memory, it is easy to implement and the data in the main memory is

always consistent. On the down side, the writes are slower because memory-write which

is a lot slower than cache-write has to be performed for every write on miss which results

in usage of more memory bandwidth.

Combining the schemes for write hit with write miss result in four possible combinations.

In write-through with write-allocate, bringing the block to cache on a miss is not useful

because the next hit to this block will generate a write to main memory (according to

Write Through policy). In write-through with no write allocate policy, subsequent writes

to the block will update main memory and so, time is saved not bringing the block in the

cache on a miss because it appears useless anyway. In write-back with write-allocate,

subsequent writes to the same block, if the block originally caused a miss, will hit in the

cache next time, setting the dirty bit for the block. That will eliminate extra memory

32

accesses and result in very efficient execution compared with the write-through with

write-allocate combination. Write-back with no write-allocate of subsequent writes to the

same block, if the block originally caused a miss, will generate misses all the way and

result in very inefficient execution.

3.4 Cache Performance Metrics

Average memory access time in a computer system is a measure to evaluate performance

of cache in a memory hierarchy. It can be calculated using the formula,

Average memory access time = hit time + miss rate × miss penalty …………(3.1)

The time obtained using the above formula can be converted into CPU cycles for a given

CPU frequency. Memory system performance in a CPU relative to other operations in the

CPU like program execution is obtained by using the memory access time in CPU cycles

rather than in nanoseconds.

Access time for instruction cache and data cache might have to be calculated separately

since they both might have different penalties. Also read access time and write access

time within data cache can be separated as they might have different miss rates and also

different penalties.

When a memory system performance is evaluated relative to a CPU with low clock

cycles per instruction (CPI), the system might suffer more since the penalty will be a

significant amount of the total time. This might not be the case for a CPU with high CPI.

From the equation 3.1, there are three ways of reducing average memory access time and

they are reducing hit time, reducing miss rate or reducing miss penalty.

33

This as well as other important metrics like the number of evictions for a given program,

eviction rate, effect of a victim cache on the eviction rate or some things in which both

the architecture designer as well as programmer would be interested in, should be easily

measurable with a model developed for the cache. The proposed model [detailed in

chapter 4] being modular helps in easy addition and measurement of such performance

metrics an end user might be interested in.

3.4.1 Cache Miss Types

Every cache miss falls into one of the three categories explained. ‘Compulsory miss’ is a

cache miss that occurs for the first-ever reference to a given block. Since a first access to

a block cannot be in the cache, there must be a compulsory miss. A miss that occurs on

the blocks that would have been discarded when cache is too small to hold all of the

blocks needed during execution of a program is called a ‘capacity miss’. It is the

difference between the compulsory miss rate and the miss rate of a finite size fully

associative cache. The third type of cache misses called ‘conflict misses’ occur due to

placement restrictions that cause useful blocks to be displaced. This is like a capacity

miss within a set. It is given by the difference between the miss rate of a non-fully

associative cache and a fully associative cache. Reducing any of the above said cache

misses could reduce the miss rate of a memory system.

There are several ways of reducing miss rate as explained below:

1. Larger cache blocks

34

Larger cache blocks decrease compulsory misses, but they may increase the miss

penalty by requiring more data to be fetched per miss. Conflict misses also

increase, since fewer blocks can be stored in a given cache. High latency and high

bandwidth memory systems tend to use large block sizes since cache gets more

bytes per miss for a small increase in miss penalty.

2. Higher cache associativity

Higher associativity decreases conflict misses at the expense of extra hardware

and increased hit times. Increased hit-times impose upper limits on the degree of

associativity as the hit rate is offset by the slower clock cycle time. Generally

associativity of 8 is the largest one used for most of the memory systems.

3. Victim caches

Victim cache is used to store a few of the blocks that are eliminated from a

processor cache during replacement. The processor checks victim cache on L1

cache miss before it goes to main memory. Since victim cache will have far less

memory access time than the main memory, the miss penalty is reduced.

4. Hardware prefetch

This is a technique of fetching the data before it is requested thereby reducing

compulsory cache misses. Prefetched blocks are held in a separate buffer until

they are used in order to prevent eviction of useful blocks. Prefetching uses main

memory bandwidth and thus might affect the performance if prefetched data is not

used or if the prefetch process interferes with the main memory access on cache

misses.

35

3.5 Cache Addressing

As explained in section 2.1, virtual addressing is implemented to make more efficient use

of real physical memory by making it appear like a contiguous working memory to the

programs. To summarize, each program running on the machine sees its own simplified

address space and accesses it without regard for what other programs are doing in their

address spaces. The memory management unit (MMU) is the portion of the processor that

does the translation from a program’s virtual address to a real physical memory address.

Most modern level-1 caches are virtually indexed. Since a virtually indexed cache does

not have to perform virtual to real address translation for accessing cache, speed is

improved. This also allows the MMU’s TLB lookup to proceed in parallel with fetching

the data from the cache. But due to virtual aliases (different virtual addresses referring to

a single physical addresses by different programs), there might be multiple locations in

the cache which store the value of a single physical address. This is handled by

guaranteeing only one virtual aliased address is present in the cache at any give time. For

an n-way set associative cache, whenever a cache write occurs, the processor searches for

virtually aliased addresses among those n-ways and evicts them first and since this is

done only when there is a cache miss, no extra work is required since the checks would

have already performed while checking for a cache hit.

Virtual tagging is not much used since the TLB lookup for a tag can be finished by the

time cache is indexed and tag compare has to be performed. But the advantage of virtual

tagging is that the tag match can be done well before address translation is done.

36

3.6 Cache hierarchy

Since pipelined CPUs access memory from multiple points in the pipeline during

instruction fetch, data fetch and address translation, four separate caches: instruction

cache, data cache, ITLB and DTLB are included so that one cache doesn’t have to serve

two points in the pipeline.

Victim cache is used to store blocks that are eliminated from a processor cache during

replacement. It lies between the main cache and the next level of memory from where the

data is fetched into main cache. Victim cache reduces penalty on cache miss, if a block

that was very recently evicted is referenced again.

Trace cache is a technique that helps in increasing fetch bandwidth and in decreasing

power consumption by storing traces of instruction that have already been fetched and

decoded. Decoded instructions are added to trace caches in groups representing either

dynamic instruction traces or individual blocks. Blocks consist of a group of non-branch

instruction ending in a branch. Dynamic trace consists of only instructions that have been

used. All the unused instructions like instructions following taken branches are

eliminated. Trace lines are stored in trace cache based on multiple paths that are possible

with the first instruction in the trace based on the program counter. This branch

prediction is encountered for and thus can supply the trace line upon the outcome of

branch condition.

Multi-level caches constitute of small fast caches backed up by large slower caches to

eliminate the tradeoff between cache latency and hit rate that arises in larger caches.

Three-level on chip caches are being used as the latency difference between main

memory and the fastest cache is becoming significantly larger.

37

Multi-level caches can be either inclusive or exclusive. In an inclusive cache, all the data

present in the L1 cache should also be present in L2 cache. In case of exclusive caches,

L1 cache and L2 cache are exclusive in terms of the data content. Exclusive cache can

store more data and is advantageous especially for larger caches. Since strictly inclusive

caches have a copy in L2 cache, on eviction of data in L1 cache (occurs especially in

multiprocessor systems), processor can access L2 cache with much more speed than

accessing next higher level of memory.

3.7 Cache coherency algorithms for multi-ported and multi-processor

environments

In multi-processor systems, since all the processors see the same main memory, caches

cannot be operated independently as the dirty caches updated by one processor has to be

seen by the other. The uniform view of memory, as shown in figure 3.1, is called cache

coherency. Providing access for every processor with every cache is very expensive.

Cache coherency can be achieved by making a processor detect a write request by any

processor and then by making the referenced data in its own cache, if present, invalid

(this process is called snooping). Another way is to find the dirty block if present in one

of the other caches and send the data from cache directly to the processor that requested

read or write. Finding out if the cache line in another processor’s cache is dirty, by

broadcasting information about changed cache lines after each write access, would be

impractical.

38

Figure 3-3 Cache Coherent System

There are several cache coherency protocols that could be used for a cache coherent

system. Each of the coherence protocols differs from others in terms of scalability (how

the size of bus and bandwidth have to be scaled with the size of the system) and

performance. Implementation of each of these protocols might be based on different

invalid and update transitions. Choice of transition may affect the effective cache

bandwidth available for work.

MOESI (Modified Owned Exclusive Shared Invalid) protocol has five possible states that

each and every cache line should fall in. All of these states are explained below [17]:

1. Modified – A cache line is said to be in modified state if the cache line holds the

recent most data updated by its corresponding processor and the cache line is dirty

(memory still not updated). It also means no other caches have a copy of it.

2. Owned – A cache line is said to be in an owned state when it holds the most

recent copy of data and the main memory is updated with the recent data too.

Other caches can have the updated data too, but only one cache line among all

valid cache lines can be in the owned state. All others will be in the shared state.

39

3. Exclusive – a cache line is said to be in the exclusive state if it holds the most

recent, correct data with correct data in main memory and with no other copies of

it in other caches.

4. Shared – the shared state is similar to the owned state except that none of the

caches here are in owned states, but every cache line with the copy is in the

shared state with recent values updated for all copies of it including in memory.

5. Invalid – a cache line is said to be in the invalid state if the cache doesn’t hold a

valid copy of data. Valid data might be either in main memory or in other

processor’s cache.

As long as the system components select options dynamically, memory system state

remains consistent. Since implementing a 5-state protocol on on-chip caches can be quite

expensive, another protocol MESI with 4 states is directly derived. The “Owned” state in

MESI is eliminated by making modified and shared states illegal to be present at the

same time. Various cache coherent models are listed here most of which are derived from

MOESI: MSI protocol, MESI protocol, Berkeley protocol, Dragon protocol, MOSI

protocol, Illinois protocol, Firefly protocol and write-once protocol.

3.8 Latency and bandwidth

Block based trace cache and similar approaches have been used to improve the fetch

bandwidth and the latency. These differ from the basic trace cache in the principle that

one basic block is stored only once even though it might be part of several traces. This

avoids the duplication problem in trace cache thereby allowing the block cache to have

smaller size and still provide the same efficiency in terms of miss rates.

40

3.9 Cache Modeling

Modeling is an act of representing a system or a subsystem formally []. A model is used

to understand the performance of a system based on various parameters and the tradeoffs

involved in it. Programs are executed on a software model to validate a proposed

hardware design’s performance. Modeling facilitates simulating the architectural model

that helps the designers to evaluate the performance and correctness of the system

thereby providing them with more design space exploration. Figure 3.4 shows a block

diagram of how a systematic exploration of the architecture is to be performed to tune it

up to an application domain overcoming the performance loss due to the distinction

between application and architecture. An application engineer would be able to code

profile his application with different architectures and choose the best one out of the

available architectures by comparing performance metrics like throughput, hit rate,

average memory access time, IPC, etc..

Figure 3-4 Cache Model: Mapping Architecture and Application [8]

41

Since the electronics market and its applications are growing far more rapidly than ever

offering products at lower costs and higher performance, there is pressure imposed on the

design community, which is making them seek techniques for design automation and

reuse that would accelerate the progress. Cache modeling has become one of the

significant techniques owing to the importance of the memory hierarchy on performance

of the programmable systems.

42

CHAPTER 4

IMPLEMENTATION OF THE CACHE MODEL

4.0 Introduction

 A modular cache memory model that is cycle accurate (and thereby fast)

has been developed for simulating various levels and types of cache to quickly evaluate

the trade-offs between cache size, cache policy and cache levels versus system

performance in terms of IPC and cost. The developed cache model was interfaced with a

MIPS IV instruction set simulator called ‘Sysabakus’ [20] that was developed at OSU.

The processor consists of both a linear in-order pipeline model and also an N-

wide out-of-order processor with ALU, multiply, branch and load/store units. It also

consists of an N-wide fetch front-end which would fetch N-instructions every single

cycle and would try to decode, issue and retire a similar number of instructions every

cycle. The fetch module was initially using a perfect memory model where any data

requested was available instantaneously without any delay. This fetch module was

modified to instruction cache, which would include all cycle latencies that are needed for

performance evaluation. The fetch module would also control the fetch PC based on a hit

or miss from the cache. It would also insert NOP’s for the decode/issue unit for all

missed instructions until a hit for a given address is achieved. The cache controller also

included all counters that would be needed for performance evaluation.

43

4.1 Cache Controller Implementation

The cache controller was mainly targeted towards being faster than being very efficient in

terms of memory management as memory is usually available cheap on modern day

servers that would be used for running the simulation. Also, running faster and at the

same time being modular could be seen as the central idea around which several of the

design decisions have been based on. For example, the memory needed for most of the

datatypes was pre-allocated in the constructor function and not as runtime at that would

slow down simulation. This allows us to change various cache parameters dynamically

every time a new simulation is run without having to re-compile the entire program but at

the same time not being bogged down by the constant memory allocate and delete

overhead. Now there is a problem with this approach in the sense that if the cache data

structures are pretty huge then they would not fit into the data cache of the target system

on which the simulation is being run and hence might slow down simulation. This can be

overcome by doing virtual paging of the cache data structure and then loading pages

dynamically into the cache of the target system.

The current design revolves around a two-port non-blocking cache that has various

modifications according to the design being evaluated. The core model that is being used

in this design is given below.

44

EVENT/COMMAND QUEUE

CACHE DATA

CPU PORT

CPU/L1

MEMORY PORT

MEMORY/L2

REPLACEMENT

CONTROLLER

C
o
m
m
a
n
d

&
 D
a
ta

C
o
m
m
a
n
d

&
 D
a
ta

D
a
ta

D
a
ta

CACHEREAD & CACHEWRITE

MEMREAD & MEMWRITE

COMMAND ADDRESS SIZE
DATA

POINTER
LATENCY

VALID DIRTY TAG DATA CNTR

Figure 4-1 Block Diagram of the Cache Controller

As you can see there are five main blocks for the cache controller in the above diagram

and each one of these is implemented in separate modules/functions so that it is very easy

to modify one part and evaluate the performance gain without affecting the other parts.

This modular design would also help in extending this cache model to fit future

applications like multiple ports and multi-processor interfaces. Adding new performance

45

metrics for something like this modular design would be very easy since this can be done

without affecting the other parts and just adding one separate module that would give

new performance metrics.

The main part that gives this cache its flexibility is the event queue controller. It is a

linked list which both the CPU port and the memory port (the memory port could actually

be lower level cache and the CPU port could be interface to a higher level cache) to

queue requests in case of misses or evictions.

There is a latency field in the queue which allows for states in the queue to have variable

delays before they are eventually fetched and requests completed. The latency field also

allows for simulating the slower cycle memory bus by not even issuing a memory read

request until the latency parameter gets to zero. So each level of cache memory running

at different clock rates can easily be simulated by just setting the latency parameter to be

variable for each level. Also, since the states can now have variable latency it allows the

controller to have a lot fewer states than would be present in a normal cache controller. In

fact, the current implementation of the cache controller consists of only 4 states called

CACHEREAD, CACHEWRITE, MEMREAD and MEMWRITE. As you can see from

the list of states, there are no states separately for evictions for when waiting for evictions

to happen. This is all hidden by the variable latency states and hence the controller itself

simulates a lot faster with only the necessary details that are required for a cycle accurate

simulation.

An example of some common cases that can be handled with just these four states is

given below. Consider a write back cache in the case of write miss. Also let the location

46

that was selected, by the replacement algorithm, for the new block to be written have a

valid but dirty block. Then the sequences of cache events in the queue are shown below.

COMMAND ADDRESS SIZE

DATA

POINTER

LATENCY

(cycles)

MEM

READ

Miss block

address

Size of Memory

bus

pointer to data

buffer

latency of memory

access

CACHE

WRITE

Miss block

address

Store

Instruction size

pointer to data

buffer

cache write

latency (~=1)

MEM

WRITE

evicted block

address

Size of Memory

bus

Data buffer with

data

Memory write

latency

Table 2 Event Queue during a Write Miss

(Replacement Location has a Dirty block that needs to be written back)

 As you can see from the block diagram of the event queue for this particular case there

are only three events of which two can happen in parallel since their ports are separate.

The first event that is queued is the memory read which is added to the queue by the

cache write method on a write miss since the entire block needs to be read before any

data is written into the cache. The cache write also queues a call to itself after the

memory read happens. This is so that once the block is fetched the new data can be

replaced in the fetched block. Since every cycle a memory port event and a CPU port

event is processed these can be done simultaneously if there was no read request that

cycle or the cache policy gives preference to writes over reads. Since the data to be

written is also put in the queue as soon as this request is queued the controller can accept

more read/write requests from the CPU and once the memory port does the read the

47

cache can do the write to that block. Also since the processor has load/store forwarding

there won’t be a request for the data that was just written untill the write is finished. As

mentioned above the current scenario requires that on a read miss when the data has to be

brought into cache to do a replacement of another block chosen by the replacement

controller, a valid dirty block has to be checked for the block selected for eviction. If so

the memory read queues a memory write request with the data of the dirty block copied

to the queue. This act frees up the location and the memory read request can write its

block to the selected location and let the cache write proceed without waiting any further.

This act of saving that data in a memory port buffer is nothing new but the controller

must go through a large number of states and cycles and all these complexities are

skipped by using a variable latency state and an event queue.

The latency field is an important parameter that is novel to this design. This allows us to

model slower memory buses; bus arbiters etc. efficiently and build a sequential state

machine with just an event queue. When a latency parmeter for the next level is set to an

event and added to the queue the events in the queue are handled in a FIFO manner. The

latency of the element at the top of the queue is decremented checked every cycle and

checked if it equal to zero. If it is zero then this event is processed. This means that the

second level is not called every cycle of the processor clock but only at the clock

frequency of that particular level. Also this approach means that you don’t have to go

through every element of queue every cycle to update their latency count or time stamp

only the top of the queue which is the element which is ready to be processed is accessed

and modifications made thereby making the simulation very fast and efficient.

48

4.2 Replacement Controller

 The algorithm that selects the block to be replaced is the one that is researched

and optimized the most in a cache since this directly decides the cache performance in

terms of capacity misses and compulsory misses. Hence this block has been implemented

as a separate module called the replacement controller. The current version of the

replacement controller models FIFO, pseudo LRU and random. A proper random or LRU

controller cannot be implemented easily in hardware and hence to model this in software

a pseudo LRU [18] and random model that could be easily implemented in hardware has

been chosen to look at the performance of these algorithms.

The primary addressable element that is stored in the cache is one word (4bytes for this

MIPS architecture). This was chosen for two reasons:

1. The word data type is the one that is most frequently used by the processor,

always words are accesses by the instruction cache and mostly words are accessed

by the Data cache, so using a primary datatype of word speeds up these accesses.

Although words are the primary data structure, primitives for reading/writing a

byte and half words are provided which work by reading the word and then

separating the byte/half-word for a read, and read a word modify the byte/half-

word and write back the word for a write access. As you can see these primitives

are pretty slow since they require 2 or 3 operations per access but since these are

used very rarely the use of word addressing is justified.

2. The smallest data that can be read out of modern 32-bit or 64-bit processors is 4

bytes thereby making the access for words a lot faster during simulation.

49

The event queue linked list that is currently used is based on the STL (Standard Template

Library) [19] and hence can be easily modified to a thread safe list class without any

change to the list access functions itself. This might be necessary in the future when there

is several memory and CPU ports and we want to run them as individual threads with all

threads accessing and updating the event queue simultaneously. The use of STL classes

provides this flexible switching of classes without a change to the member functions.

4.3 Constraints in Current Design

1. Although the Memory fetch port can be parameterized to any number of bytes in

the constructor, the class wont accept any cache block size that is not an integer

multiple of the memory bus size. This is done to ease the event queue design

where if the cache block is an integer multiple of the memory bus size then the

integer number of memory read/write requests can be queued with their address

offset and then cache can then proceed with what it was doing without waiting for

the memory port to get free.

2. The latency field of the event queue only allows for integer values and hence all

clocks for various levels of memory should be integer multiples of other levels.

This cannot be easily modified either since the latency is decremented or issued

only once every clock cycle of the higher level.

3. Using a multi-threaded port means use of a multi-threaded queue which for easier

change would mostly be an STL thread-safe queue like the Boost Library

50

[www.boost.org]. This is usually terribly slower than non thread safe versions and

might slow the simulation quite a bit.

4.4 Implementation Issues on a sequential Processor

There are several restrictions in simulating a lot of hardware, that are essentially by

design parallel in nature, in software on a sequential processor which leads to some

design trade-offs and modifications. Similarly what can easily be done using complex

algorithms in software might take a lot of silicon area to implement in hardware and are

hence not cost effective. While modeling the cache structure, such problem were faced as

well which are detailed below along with steps taken to work around the problem.

Implementing a true LRU policy in hardware is very expensive as it requires keeping

track of exactly when and which of the ways in a set were accessed. Several solutions

have been proposed to this problem that are easy to implement in hardware and are cost

effective [18]. Hence to show/analyze/determine the actual performance impact of using

these compromised algorithms a pseudo LRU replacement algorithm that just uses one

counter per set was used. This counter is incremented during every hit to point to the

way one above the hit. Doing so basically splits the ways into two sets where above the

location pointed to by the counter, there are locations that have not been accessed in the

current period (one period is when the counter overflows and resets itself to zero) and

below that counter are ways that have might have been recently accessed although not

necessarily. Also the random replacement policy was implemented by bit shifting the

counter and exoring some bits in the counter to achieve a random output.

51

Similarly to make copying of data from memory to cache easier the ‘memcpy’ function

was used which copies several bytes of data at once although this might not be practically

feasible on a hardware cache controller.

The main cache feature that takes a major performance hit due to lack of parallelism is

the associative tag search function. This is done by parallel comparators in each way of a

set-associative or fully-associative cache, and whichever comparator gets a hit for the

given address that data is selected by a mux and send out. Doing this in software requires

a sequential search of the entire associative ways for a tag match and valid bit being set.

This problem is not easy to alleviate even by using parallel processing using threads or

some similar structure in software since this is a very primitive task and overhead is high

for creating threads for them and also since there needs to be thousands of such

comparisons making the creation of that many threads impossible. To overcome this

problem a hashing policy and extra free buffers were created. When the associativity is

large the tag address would be used to generate a hash index which would point in to a

smaller set of ways to be searched. Each of these might be full in which the free list is

checked to see if there are would have been any free locations if hashing was not used. If

a free location exists then this entry is added to a secondary array and the free pointer is

decremented after setting a bit at the hash indexed location. Setting this bit helps in

knowing right away whether the secondary slower linear search array has to be searched

or not before giving a miss for a given address during the next access. If the bit is set for

the last hash indexed search location then the secondary array is searched linearly for a

match otherwise a miss is declared right away. This process is explained in detail in the

cache structure diagram drawn below.

52

Valid

.

.

.

.

.

.

.

.

.

Dirty

.

.

.

.

.

.

.

.

.

Tag

.

.

.

.

.

.

.

.

.

Data

.

.

.

.

.

.

.

.

.

Counter

.

.

.

.

.

.

.

.

.

Linear

.

.

.

.

.

.

.

.

.

128

3

4

.

.

.

.

.

.

.

2

1

TAG
31 30 29………………………….…..11 10 9 8…………..……….4 3 21

7
Block

and

Word

Address

FREE COUNT

0

1

Figure 4-2 Hash based fast indexing for fully-associative cache

On a cache miss, if all valid bits are 1 and linear bit is 1 search the linear cache

53

Valid

.

.

.

.

.

.

.

.

.

Dirty

.

.

.

.

.

.

.

.

.

Tag

.

.

.

.

.

.

.

.

.

Data

.

.

.

.

.

.

.

.

.
1023

1024

.

.

.

.

.

.

.

1

2

3

4

5

31 30 29………………………….…..11 10 9 8…………..………….4 3 21

32

Tag

 Figure 4-3 Hash indexing for a fully associative cache

54

CHAPTER 5

SUMMARY AND CONCLUDING REMARKS

5.0 Results

Several different cache configurations and architectures were evaluated in simulation and

their performance metrics for various SPEC benchmarks are listed below. The processor

simulator used to test the cache was Abakus [20] developed at Oklahoma State

University, which simulates MIPS IV instruction sets. There are two versions of the

abakus processor available. One, a linear pipeline which fetches and executes a single

instruction per cycle in instruction order and uses a branch evaluation in the execute

stage. The second is a highly configurable superscalar simulator with out-of-order

execution capability. The configuration used for the superscalar processor for all

simulations was a 4-wide instruction fetch with a perfect branch prediction and 4 ALU,

Multiply and Load/Store units. All tests programs were taken from the SPEC-95

benchmarks or SPEC-2006 benchmarks compiled for the MIPS-IV instruction set.

55

5.0.1 Simulation of a single level instruction cache with linear pipeline

The first simulation that was carried out was a simple linear pipeline with a single level

of 1K instruction cache with 4-way set associativity. This model was used for simple

measurements like read hit and misses as well as for evaluating cache replacement

algorithms such as pseudo-LRU using counters [18]. The performance of the cache

simulation code itself was measured using a comparison of the seconds needed to

simulate a given benchmark program. The results for a linear pipeline showed that the

cache was causing the simulator to slow down only by about 2 times as compared to 10-

100 times for the SIMICS simulator.

5.0.2 Simulation results for two level instruction caches with linear pipeline

The next step was to simulate a two level cache with the linear pipeline. The previous

L1 Cache used a perfect memory model with no latency and no TLB, which is not

practical in the modern processor world. Therefore this simulation would show us

56

realistic numbers in terms of latency and actual hit/miss rate of a cache configuration.

Figure 5-1 Linear Pipeline Level-1 Instruction Cache Performance

57

Figure 5-2 Linear Pipeline Level-2 Instruction Cache Performance

5.0.3 Simulation of four-issue cache for four-wide superscalar

The next simulation was to make the Cache-CPU bus width larger to accommodate

for a larger fetch width of the superscalar processor. The L1 cache was set to provide four

instructions every cycle.

58

Figure 5-3 Performance of a 1K 4-way cache for a four-issue out-of-order processor

5.0.4 Miss Rate Curves for various sizes of instruction cache

The size of the cache and the associativity of the cache were varied and the miss rates for

various benchmark programs were plotted to look for a general trend on the behaviour

and performance of a given size and associativity cache. Data from the sim-cache

simulator which is part of the simplescalar toolset [www.simplescalar.com] were also

plotted for the direct mapped cache to check if the same general trend was observed. The

plots for two SPEC95 benchmark programs compress95 and cc1 are shown below.

59

60

5.0.5 Measurement of Average Throughput and Cache Histogram

The cache model developed above was described to be modular and flexible enough to

add any new performance metric that the designer would be interested in easily. To prove

this, two things that would interest the programmer, namely the average throughput of the

next level memory bus and histogram of hits of every location in the cache, was added to

the cache code and the results for one benchmark is shown below. The addition of these

parameters took only 3 lines of code and was easily done by modifying only the memory

port and CPU port for the two metrics respectively.

Figure 5-4 Histogram of Cache hits to every set for mcf2006

Since the cache model is cycle based and has no real sense of time the throughput was

measured in bytes/processor cycle. The average throughput for some programs looked

like:

61

� Compress95 – 1.41429 bytes/cycle

� cc1 – 1.88725 bytes/cycle

� go – 0.630861 bytes/cycle

5.0.6 Measurement of Average Latency

The measurement of average latency of a given level of the cache is very important since

it is measuring overall how effective is the cache in keeping the processor busy

irrespective of the slow lower memory levels. In the current model, since it is modular,

the measurement of average latency could be easily done without much change to the

current cache configuration. The main change needs to come in the CPU port code to

increment the latency counter for every cache read event in the Event queue. Once a

cache read event comes to the top, ready to be satisfied, the CPU port uses the latency

count for this particular event to update the average latency up to that point. These

changes would take only a few lines of code and provide valuable information using the

already existing architecture.

62

COMMAND ADDRESS SIZE DATA POINTER LATENCY

MEMREAD Miss addr
Memory

bus size

Fetched Data

Pointer
Memory read

latency

CACHE

READ
Miss addr

CPU fetch

size

Cache Data

Pointer to CPU
Increment

Every Cycle

MEM

WRITE

Replace

block addr

Memory

fetch

size

Pointer to data

buffer with data

to be written

Memory write

latency
``

CPU Port needs to be modified to update the latency count of all cache

miss request and when it gets satisfied (i.e. when it comes to the top of

the queue) the latency value is used to update the average latency on

very satisfied miss

Figure 5-5 Modifications for performing average latency calculation

Note that the latency count needs to be updated only for cache read events and not for

write events as they don’t affect the fetch latency directly. But this implementation

requires the updation of cycle latency for all the elements in the queue which is a slow

process if the queue is implemented as a linked list. To avoid doing this every cycle

another method would be to add a timestamp field to the event queue and then when an

event is added to the queue it is time stamped with the current time. Later on when it

comes to the top of the queue, the timestamp is compared with the current time and the

elapsed time is used to update the average latency.

 63

5.1 Conclusion

 A cycle accurate cache model has been developed and tested as an instruction

cache with both a linear pipeline as well as an out-of-order multi-instruction issue

superscalar processor. Since the model did not actually model all the internal states of a

cache controller but effectively mimicked them using a variable latency event queue this

model was very fast and efficient when compared to other similar cache models. The ease

with which one can add several desired performance metrics was shown by adding

metrics such as average throughput and a histogram of hits for every set. Several integer

SPEC2006 and SPEC95 benchmarks were run to check whether the cache model had any

underlying problems and this was verified by two methodologies. There is an inbuilt

checker internal to the cache that when enabled in debug mode checks for the validity of

all data, with the main memory, as they are fetched by the processor. Also the final

output produced by the simulated SPEC benchmark was compared with the reference

output that comes along with the benchmark to verify that the program did follow the

exact same direction and gave the same output. A third verification for the performance

metrics such as number of hits or miss ratio was done by setting the sim-cache

[www.simplescalar.com] with similar parameters and running the same benchmarks.

Although this would not give the exact same numbers since the processor models are

different (for example the linear-pipeline would fetch and then flush two instructions in

case of a mis-predicted branch but sim-cache uses a perfect predictor in the fetch stage

and hence never fetches any waste instructions) they matched to the first order properly.

All these verifications showed that the developed processor model is correct for the

instruction cache.

 64

5.2 Future Work

1. Development of a thread safe queue structure and multi-threading the various

cache banks to improve simulation performance.

2. Test the various Writeback and Write allocate policies implemented using a L1

and L2 Data Cache.

3. Implement a multi-port Cache apart from the multi-bank version already

developed and evaluate the performance differences.

4. Implement a Multi-processor coherency protocol and test it across multi-core

processor architectures.

5.2.1 Measurement of Prefetch Performance

Prefetching is an efficient way to reduce a number of misses (particularly compulsory

misses). But if the prefetch algorithm is not propoerly designed and the prefetched

instructions are not used, then it ends up in wasted memory bandwidth. So evaluating the

performance of a prefetch algorithm is very important in cache design. The following

figure [Figure 5-6] shows a list of minimal changes that need to be done to enable us in

measuring prefetch performance.

 65

Figure 5-6 Modifications for a prefetch performance measurement

 66

REFERENCES

[1] David A. Patterson, John L. Hennessy, “Computer Organization and Design: The

Hardware/Software Interface,” 2
nd

 edition, 1996, Morgan Kauffman Publishers.

[2] http://simplescalar.com/

[3] www.faculty.iu-bremen.de/.../cache%20memory.htm

[4] http://www.faculty.iu-bremen.de/birk/lectures/PC101-

2003/07cache/cache%20memory.htm

[5] R. Sam, “ZOOM: A Performance-Energy Cache Simulator,” S. B. Electrical and

Computer Science, Massachusetts Institute of Technology, June 2002.

[6] L. Harrison, “CS433: Computer System Organization – Memory Hierarchy

Design,” University of Illinois, Nov 2005

[7] http://www.cs.uiuc.edu/class/fa05/cs433ug/SLIDES/CS433-16.pdf

[8] P. Viana, E. Barros, S. Rigo, R. Azevedo, G. Araujo, “Exploring Memory

Hierarchy with ArchC,” IEEE, 2003.

[9] Jung-Hoon Lee, Jang-Soo Lee, Shin-Dug Kim, “A New Cache Architecture based

on Temporal and Spatial Locality,” Journal of Systems Architecture, 2000.

[10] http://lwn.net/Articles/252125/

[11] http://www.hardwaresecrets.com/article/481/4

[12] http://www.acm.org/crossroads/xrds5-3/pmgap.html

[13] http://www.sandpile.org/impl/k8.htm

[14] http://www.xbitlabs.com/articles/cpu/display/amd-k10.html

[15] http://www.xbitlabs.com/articles/cpu/display/core2extreme-qx9650.html

 67

[16] http://webster.cs.ucr.edu/AoA/Windows/HTML/MemoryArchitecture.html

[17] “AMD64 Architecture Programmer's Manual Vol 2: System Programming,”

Advanced Micro Devices, Sep 2003.

[18] Y. Denville, “A low-cost usage-based replacement algorithm for cache

memories,” ACM Computer Architecture News, Vol. 18, No. 4. December

1990, pp. 52-58.

[19] http://www.sgi.com/tech/stl/index.html

[20] Aswin Ramachandran and Louis Johnson, "Advanced Microarchitecture

Simulator for Design, Verification and Synthesis, Proceedings of 50th IEEE Symposium

for Circuits and Systems, Aug 2007.

68

APPENDIX-I

List of parameters in the current model

name - Name of this particular cache. This is useful while creating and analyzing log

files for various performance parameters.

sets – Total number of sets in this cache. Should be power of two.

ways – total number of ways in this cache. If number of sets is equal to the number of

ways then it becomes a fully-assocaitive cache configuration. Should be power of two.

replacepolicy – An enumerated data type of the replacement policy to be used for this

level of the cache. It could be LRU (pseudo-LRU based on counters), FIFO or RNDM

(random) for the current model.

writepolicy - An enumerated data type of write policy to be used with the lower level of

memory during a write from the cache. The two supported policies are Wback

(writeback) and Wthrough (write through).

CPUBusSize – Width of the processor side bus in bytes. Should be power of two.

MemBusSize – Width of memory side bus in bytes. Should be power of two.

nblocks – Number of blocks in the cache. Should be an integer multiple of memory bus

size.

nlevel – An enumerated datatype that denotes whether the next level of memory is

another cache or main memory. Supported values are MEMORY and CACHE.

nextlevelobject – A pointer to the next level object. Since memory is not modeled as an

object in the current design it is passed a null pointer if next level is main memory.

69

APPENDIX-II

List of functions in the current model

cacheaccess - The main toplevel cache function that will be called by the CPU or the

top-level cache and it calls all other internal functions according to the arguments. It gets

the type of access (cache read or cache write) and number of bytes that needs to be

fetched/modified along with the address and data pointer. Based on the number of bytes it

makes calls to readbank, readbyte or readhalfword functions for a cache read and similar

fucntions for write.

readbank – This function reads a specified number of words (upto the number of blocks)

and copies it to the passed data buffer.

readbyte & readhalfword – These are specializations of the readbank function that can

return back a selected byte(8 bits) or half word(16 bits) from the word(32 bits) returned

by readbank.

updateway – The replacement algorithm controller. This function gives the way that

needs to be replaced for a given set and needs to be called in case of a hit/miss to update

the controller accordingly.

MemoryRead – This function is called from the queue in case of a miss and is used

tofetch missed blocks from the next level in the hierarchy and fill up the cache. Once data

is read from the next level (using the nextlevelobject) it calls updateway to find the block

that needs to be replaced and then wirtes the new data there.

writebank – This function writes (copies) a specified number of words (upto the number

of blocks) from the passed data buffer. In case the specified word is missing it queues a

memory read followed by a cachewrite.

70

writebyte & writehalfword – These are specializations of the writebank function that

can write a selected byte(8 bits) or half word(16 bits). It initially reads the entire word

using readbank modifies the byte and then writes the whole word back using writebank.

MemoryWrite – A function that writes a whole cache block to the next level of memory.

VITA

Ranganathan Sridharan

Candidate for the Degree of

Master of Science

Thesis: CACHE MEMORY MODEL FOR CYCLE ACCURATE SIMULATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Srirangam, Trichy, India on the 24th of December, 1981 the

son of Sridharan Vasudevan and Vanaja Sridharan

Education: Completed the requirements for the Master of Science in Electrical

Engineering at Oklahoma State University, Stillwater, Oklahoma in

December, 2007.

 Bachelor of Engineering, Electronics and Communication

Engineering, Madras University, Chennai, India, May 2003.

Experience: Aug 2005 – June 2007 Research Assistant, MSVLSI Labs, OSU, OK

 July 2007 – Sep 2007 Intern, Halliburton Energy Services,Houston,TX

Professional Memberships: IEEE

ADVISER’S APPROVAL: Dr. Louis G. Johnson

Name: Ranganathan Sridharan Date of Degree: December, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: CACHE MEMORY MODEL FOR CYCLE ACCURATE SIMULATION

Pages in Study: 70 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: High level cycle accurate simulation of different cache

architectures for with an out-of-order processor with variable supply and fetch width. The

modeling of cache was done in C++ using STL. Different cache hierarchies for both the

instruction and data Cache along with different replacement and write policies were

implemented. Several levels and organizations for the instruction cache were simulated,

various performance metrics measured and results verified.

Findings and Conclusions:

A cycle accurate cache model has been developed and tested as an instruction cache with

both a linear pipeline as well as an out-of-order multi-instruction issue superscalar

processor. Since all the internal states of a cache controller were not modeled but

effectively mimicked them using variable latency event queue, this model was very fast

and efficient when compared to other similar cache models. A new model that uses just

the event queue to replace the cache state machine, the prefetch queue and performance

monitor, the MSHR file and write buffer is proposed.

