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CHAPTER I

INTRODUCTION

The security of a system is dependent upon the security of each of the
components. Subsystems for a distributed system include point of access,
communication link, authorizing agent, and delivery mechanism. These subsystems are
shown in Figure 1.1. In a distributed system, such as the Internet, bank ATMs, or credit
card gas pumps, there is limited control over the point of access. Independent of access,
the communication link must be secured. Therefore, the most commonly recognized
component of a secure system is the encryption algorithm. The most commonly

recognized problem in a secure communication system is encryption key management.

Point of access
Computer connect to internet,
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Figure 1.1: Subsystems of a distributed, secure system

An alternative to encryption for distributed systems is to fragment the data so that

interception of pieces is useless. Another alternative is steganography, which is



hiding the message within other information [1]. Other components and issues for
security systems are: hashing (for checking data integrity), identity authentication (for
allowing access), electronic signatures (for preventing revocation of legitimate
transactions), information labeling (for tracing location and times of transactions), and
monitors (for identifying potential attacks on the system). Each of the components
affects the overall security of the system. The weakest component limits the system’s
overall strength of security. There is a difficulty with automatic identity authentication in
distributed systems. The difficulty is in part due to the human interaction with the
system. Divulged passwords and stolen or lost credit cards present a human aspect that is
difficult to manage. Identity authentication systems can decrease susceptibility to a
security breach by adding extra dimensions or elements to the authentication of one’s
identity [2, 3]. One clear example of increasing strength by utilizing multiple elements of
authentication is a bank ATM system. At the ATM, two forms of authentication is
required, a debit card and a four digit pin number. By itself, a four digit pin number is a
very susceptible security measure, but when used in a multimodal authentication system,
it adds a significant level of security. Adding additional elements of identity
authentication to a distributed system adds to the strength of security of the system.

In distributed environments, system developers often have little or no control over
the point of access equipment utilized. The same information or system can be accessed
by multiple terminals. For instance, one may gain access to the same privileged
information on the internet via numerous terminals, i.e. cell phones, PDA, laptop, home,
school and work PC’s, etc. As distributed systems become more complex, protecting

them also has also added layers of complexity. One general and widely used method of



protecting distributed systems is by automatic identity authentication [4]. Identity
authentication systems determine whether an individual has been properly authorized to
access a system. There are three main elements in the methods of identity authentication;
what you know (example: password or login), what you have (example: debit card or
key) and what you are (biometrics) [3, 6-7]. What you know requires a user to input data
into a system to confirm that the user provided data matches previously supplied data.
The hardware used for authentication in a ‘what you know’ system is only required to
gather the data, how that data is gathered is not a concern for the system. An example is
in a login situation, where it does not matter if the data is transferred from user to system
via keypad or a 'speech recognition / conversion' system. As long as the data is submitted
correctly, the system can authorize access for that user. When utilizing the means of
‘what you have’ to authenticate one’s identity, the system is completely hardware
dependent. It is hardware dependent because the item ‘you have’ is hardware and the
device that authenticates the item’ you have’ also is hardware. A ‘what you have’ system
is a key-receptacle system. To be authenticated, the key and the receptacle must match.
One cannot enter into their hotel room by swiping a credit card into the door key reader.
One advantage of this system is that the system designer has control of both the key and
the key reader. They are designed to work together.

Biometrics is different. Biometrics is the actual measure of what you are or what
you do [5]. Instead of the user inputting data for comparison or furnishing an object for
purposes of authentication, biometric authentication is the actual measure of a feature of
the user. The measure of that feature is compared to an earlier measurement of the same

feature of the user to authenticate one’s identity. In the case of biometrics, the



measurement devices may have an effect on the actual measurement. For instance, a
simple biometric would be to measure one’s height. Assume that the height measurement
is recorded correctly when the person was being enrolled as an authorized user. At a later
date the user then attempts to gain access to the system. If the measurement device is one
half inch higher than when at first, the user could be falsely rejected from gaining system
access. In many distributed environment, the potential for measurement devices to vary
is great. Measurement variation can have a significant detrimental effect on an identity
authentication system.

This investigation is concerned with one particular biometric, the biometric of
voice. Speaker recognition systems use one’s voice as a metric to detect a specific
speaker [7]. For speaker recognition systems in a distributed environment, such as the
internet, microphones are certain to vary. Frequency response to various microphones
can vary widely. Two different microphones can produce two dissimilar signals for the
exact same recording. In a speaker recognition system microphone dissimilarity may
lead to, 1) a significant enough dissimilarity to cause the system to fail to recognize the
speaker, or 2) a dissimilarity not significant enough to affect the system’s ability to
recognize the speaker. The opposite is true for imposter speakers as well. Microphone
effects may be significant / insignificant enough to alter/not alter the imposter rejection
capability of the speaker recognition system. To discover whether or not the effects of
varying microphones has a significant detrimental effect on the ability of a speaker
recognition system perform identity authentication is the objective of this research. To

accomplish this objective, voice samples from a group of people, spoken into a set of



digital recording systems were submitted to a speaker recognition system and the error

rates of each system were analyzed and compared.



CHAPTER II

BACKGROUND

Section 1 — Identity Authentication

With an ever growing networked-world, where a large amount of sensitive data is
digitized and security is in high demand, identity authentication has come to play a vital
role in security. Multimodal systems have been given more credence to increase a
system’s security [8-10]. A recent trip to a popular amusement park in south Texas
affords a good example of a multimodal identity authentication system. Upon your first
gate entrance to the park, your ticket is presented with your name on it, identity is
verified via a driver’s license or other accepted identification document and a thumbprint
is scanned to enroll you into the amusement park database. Upon return trips, a
thumbprint is scanned, and the ticket presented. By requiring both an item that you have
and a verification of what you are, a significant increase in security is generated. The
amusement park has utilized two of the three main elements of identity authentication.
The elements of authentication are what you have, what you know and what you are [3,
6-7]. Many internet-based authentication systems only require one of the three
elements, what you know. A typical web-based security application may require a
username and password to gain access to certain information. Though the application

may require two separate sets of information, it is still only requiring one of the three



elements, what you know. Requiring two sets of information can be insufficient as the
author’s recent personal experience on an auction website has demonstrated. Others can,
by various means, learn what you know. A more secure system is a typical bank ATM
system. Here one is required to present a physical debit card, what you have, and a four
digit numerical pin, what you know. Though a four digit pin number is a weak security
measure, it adds significant strength to the overall authentication system when a physical
card is required. The card increases security as one must learn the “what you know” and
obtain the “what you have” in order to acquire access to the account. The addition of a
third element would secure access to a system even further. By adding extra elements to
an authentication system, one adds a significant degree of complexity to potential
intruders. In order for a system to be considered level 3 according to NIST document
800-63 at least 2 of the three elements must be utilized in the authentication system [2].
One may improve password strength by increasing password lengths or by adding a
secondary password [11]. By adding another authentication element to an authentication
system, an even greater improvement in system strength can be realized (see Figure 2.1).

The general increase in authentication system strength can be represented by the

equation,
Slolal :Sh.Sa.Sk’ (21)
And,
S <1, 2.2)
Where,

S = Susceptibility to system security breach: what you have
Sk = Susceptibility to system security breach: what you know
Sa = Susceptibility to system security breach: what you are
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Figure 2.1: Illustration of susceptibility with 1-3 elements of authentication. a) represents a one
element system, b) represents a two element system and c) represents a three element system.

Each axis in Figure 2.1 correlates to one of the three elements of identity
authentication (KNOW, HAVE, and ARE). When only one element is utilized, the other
two elements are 100% susceptible, because they are not utilized. By adding additional
elements, the overall volume, which is equivalent to the system’s susceptibility, is
reduced. The maximum susceptibility, or maximum volume in Figure 2.1, is then

Smax = 1. If one of the elements is impenetrable the susceptibility of the element and



subsequently the system, is S;= Sios = 0. If one of the three systems is non-existent then
it is equivalent to a completely susceptible breach of security, or S;=1. A system that
requires only a password may increase security of the system by adding additional
character requirements. In Figure 2.1a adding password characters is represented by a
one dimensional reduction, specifically a reduction in the Sy dimension. By adding a
physical token requirement, a second element is reduced, as is illustrated in Figure 2.1b.
Even a relatively poor secondary element generates significantly less susceptibility. To
equally reduce the susceptibility of the ‘password only’ system more and more characters
are needed. A longer password is harder to guess or crack. “Cracking” a password can
be done with software that repeatedly guesses at a password and keeps trying until access
is granted. A long password takes a long time to guess or crack, reducing susceptibility.
However, even valid users can forget or mistype long passwords. When a password
exceed a person’s ability to remember it, the person takes shortcuts. Consider that no
amount of additional characters will increase the system security when a person writes
their long password on a post-it note next to their terminal.

By adding a secondary or tertiary means of authentication, even a substandard
means, system security is increased. For instance a banking system that requires a couple
of items of knowledge can enhance their security by adding a required USB token that
must be connected to your computer prior to account access. Such devices limit intruders
to those with physical access to the token. What can be known is information. By
comparing submitted information to expected and/or stored information, identity
authentication can be accomplished. What one has is a physical device. Identity

authentication is accomplished in a ‘what you have’ system by comparing a user



possession, a physical device, to another physical device. Often a ‘what you have’
system is a key-receptacle type system. And “what one is” are their physical
characteristics. An intrinsic property of one’s physical characteristics is the difficulty in
transferring those characteristics to another. Information may be divulged, or a physical
device may transfer hands, but as a rule it is much more difficult to transmit one’s
attributes and/or features to another. Circumvention may be considered the cost to trick
or falsify a system, as in the cost of guessing an x-character password. The difficulty of
circumvention of a biometric is generally greater than that of the other two authentication
elements. For that reason, adding the biometric element of authentication to a secure

system generates a clear benefit.

Section 2 - Biometrics

Biometrics is a measure of what a person is or what a person does (produces).
The nature of biometrics makes it generally the least vulnerable to intentional
falsification of the three authentication elements. One may lose a credit card, or divulge
a pin number, but it is significantly more difficult to give away what you are. Attributes
can be mimicked. It is not impossible to lift a fingerprint, or replace your DNA sample
with that of others. As a general assumption it would require a significant increase in
effort to ‘fake’ what one is, as compared to the other two authentication elements.

There are two general types of biometric systems, static and dynamic. A static or
physiological system measures purely what you are, such as a retina scan or a fingerprint.
A dynamic, or behavioral, biometric measures your actions, such as facial expressions,

signatures, behavioral patterns or voice generation [5, 7]. Because of the requirement of
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an action in dynamic biometrics, intrapersonal changes in an individual or changes in an
environment play a role. A signature of an individual is never exactly the same and over
time may evolve in its primary, measurable attributes. How to deal with the problem of
intrapersonal variability is an issue and topic of research in dynamic biometrics,
including speaker authentication [12-13]. Intrapersonal variability is not a significant
issue in the relatively stable ‘static’ biometrics such as retina patterns or fingerprints,
which for most people remain substantially constant throughout the majority of life. A
user or set of users’ acceptability of a method may limit certain static biometrics. For
instance, in internet applications that require data to be digitized and sent over the net, a
fingerprint or DNA data may not be a comfortable fit with some users. A third parameter
may be access to technology. DNA analysis or fingerprint reading technology may not
be wide spread. In an internet application a dynamic sample, such as a handwriting
sample or voice sample, can be considered more acceptable to the user [14]. One
advantage of voice as the biometric as opposed to signatures of thumbprints is the
availability of the technology. In many applications, the sole mode of system access
and/or identity authentication for remote users is speech and it is often not considered
intrusive [15]. One example would be a telephone banking system. Speaker recognition
is generally an acceptable, low cost, widely available technology.

There is another broad division in biometrics: authentication (verification) versus
identification [15-19]. Identification asks “who is he?” where authentication asks, “Is he
who he says he is?”” The task of authentication is a much simpler matter as compared to
identification. It is a closed-set versus an open-set problem. Generally any system used

for identification could be utilized in an authentication application. The same cannot be
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said for authentication systems in identification applications. Authentication is utilized

for secure access in distributed systems.

Section 3 — Basics of Speaker Recognition

The specific biometric of interest in this thesis, is voice as measured by a speaker
recognition systems. Speaker recognition systems can be partitioned into one of two
groups, text-dependent and text-independent [15, 19-20]. A text-dependent system is one
in which the phrase or phrases that one speaks during enrollment are the same phrase or
phrases as used when requesting authentication for system access. These systems have
an advantage in accuracy due to common word usage, pronunciation, prosody (rhythm
and emphasis) and phone usage singularities in ones speech [7, 21]. Simple pattern
matching algorithms are used with some text-dependent systems to verify the proper
person is saying the proper phrase. The basis of what is being measured in text-
independent systems fundamentally differs from text-dependent systems. Text-
dependent systems attempt recognition by identifying how a user says a specific phrase.
Text-independent systems use fundamental voice data buried in voice signals to do
speaker recognition. Because text-independent systems analyze basic voice information
and not how a particular user says a particular phrase, the user is not required to speak
any certain word or phrase.

There are several voice attributes that can be analyzed to verify identity. These
attributes can be divided into two basic groups, low level and high level information.
The low-level information, uses small time segments of the voice signals and analyzes

the basic structure of one’s voice, i.e. signal spectrum, tone, frequency, etc [22]. Recent
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research has also shown the viability of high level information used in conjunction with
the more classic low level systems [22-27]. Some examples of high level information in
speech include accent, pronunciation, often used words or phrases. High-level data is
beginning to have a significant role in speaker recognition systems.

Figure 2.2 illustrates the classification of a low-level, text-independent speaker
recognition system within the framework of identity authentication systems. Each box
represents a possible classification at each step. The solid lines represent the decision
path used to decide upon a low-level, text-independent, speaker authentication system.

The bracketed items represent favorable attributes sought after in a biometric system

Authentication Systems

R LT — 1
: What You Have ! What You Know : What you Are
! (i.e. eredit card) ! (i.e. password) i (i.e. Biometric)
| A

Static Biometrics
(i.e. fingerprint, DNA)

Dynamic Biometrics
(i.e. Behavioral Patterns)

(“Some Favorable
Parameters
#Data Easily Obtained

| eDistinctive

< sRepeatable

*Low Cost
sLow time investment
+High User Acceptability

l

Biometric of Voice
(Speaker Recognition)

Speaker Identification
(Whois he?)

Speaker Authentication
(Is he who he says he is?)

Short-term, Low-level
Acoustic Information

Longer-term, High-Level,
Idiolectal Information

Figure 2.2: Classification of a short-term, text-independent, speaker authentication system
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in a distributed environment. The first decision to be made is which combination of the
three elements of identity authentication will be used in the system. If the combination of
authentication elements includes biometrics, then one must decide which type of system
to use, dynamic or static. The decision of which biometric to use is likely to be
influenced by the partial list of parameters found in the brackets in Figure 2.2. A more
complete list is found in Table 2.1. The characteristics used to evaluate and compare
different biometrics include: cost, time, universality, distinctiveness, permanence,
collectability, acceptability, circumvention, accuracy, repeatability, storage requirements,

and availability of technology [14].

Table 2.1: Evaluation of Characteristics for Biometrics

= %)
2 g g 3
« £ 5 2 3 & & £
a o
Characteristic Z g £ .% g % 2 g
[a)] £ = = > = = 5
=) = 051‘ °
& F 503
<
T =
Cost ® o
Time ® o+
Universality o+ ++ A+ ++
Distinctiveness ~ ++  ++ -
Permanence ++ -
Collectability ® -+t oo ®
Acceptability ® - + ++ ++ M ® M
Circumvention ++ ®
Accuracy ++ ®
Repeatability ++ ®
Storage ® @ + +t ++ T+
Requirements
Auvailability of ® * M+ ++ o+ - M
Technology
++ = Great (or cost is low, time is short; hard to circumvent) ; + = Good;
M = Medium; - = Bad; ®= Terrible (cost is high);

Blanks = no information

The cost parameter includes the money, time, equipment and expertise for the

implementation of the system and the collection of the measurements. The time
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characteristic is specific to the measurement collection and analysis time. That is, the
time from when an identity authentication request is made until the access is granted or
denied. Universality is a measure of the portion of the sample population that are able
to meet the requirements of the systems. For example, everyone has DNA, but not
everyone has hair. So a DNA test is universally applicable, while hair color is not
applicable to people without hair. Distinctiveness is a measure of how unique or
different the measurements for an individual will be from other individuals. Finger prints
are very distinct whereas weight is not. Permanence is a measure of intrapersonal
variations, the change in the biometric with the passage of time. Collectability is the
characteristic indicating how much effort is required to obtain samples for the biometric.
Acceptability is a subjective measure of how willing a person is to submit to the
biometric measurement. Most of us would not submit to a blood test just to enter a gas
station. On the other hand, we readily submit to height measurements for carnival rides
at the state fair. Circumvention is the ease or cost to trick or falsify the measurement.
Measuring weight is easy to falsify by carrying lead in one’s pockets. A falsified eye
scan is a bit more difficult. The accuracy of a biometric is the probability that an
individual will be properly authenticated. Specifically, it includes the probability of
properly authenticating the identity or access for authorized individuals and properly
rejecting the identity or access for unauthorized individuals. Repeatability is the variance
of the biometric measurement over repeated trials. The data storage requirement is
evaluated both for the individual measurement as well as the total database of each
individual measurement. The availability of the technology is a make or break decision

as well as a quantitative measure. A biometric is not an option for immediate deployment
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if it requires a technology that does not currently exists. However, even if the technology
exists, the ready availability of the technology is a factor. For example, many computers
and recording devices have the ability to capture a voice or a picture, but not many
people have ready access to DNA or fingerprint collection devices. The selection of a
biometric based upon these characteristics clearly involves many tradeoffs. How one
weighs each of these decision factors, is a function of the application. For many
applications, as indicated in Table 2.1, speaker recognition is the best candidate.

As stated previously, speaker recognition systems can also be divided by their
specific objective: identification or authentication. In speaker identification the system
identifies who a person is out of some set which may include all human beings. The
system asks ‘who is he/she?” In speaker authentication (or verification) a person’s
identity is checked against a claimed identity. In authentication, a system asks “Is he
who he says he is?” Speaker recognition systems, as well as all identity authentication
systems, have two basic phases, enrollment and testing [20, 28]. In the enrollment phase,
users train a system by providing an initial voice sample. The ‘training’ or enrollment
sample is compared to the later samples submitted for authentication. The purpose of the
enrollment phase of an identity authentication system is to generate a standard for the
individual, which he/she will be measured against in the testing phase. In the speaker
recognition system, a standard is generated by modeling a person’s voice. That model
will later be used to check that an individual’s voice is the voice of an authorized
individual. Models of a system provide an efficient method for comparison. During the
authentication or testing phase, a basic speaker recognition system collects the analog

voice signal, converts it to an analog electrical signal and then digitizes the signal. From
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the digital signal, some feature(s) of the voice signal is (are) extracted and measured.
When the enrollment utterance is provided, a statistical model is generated. The model is
later compared to features from the ‘test’ samples. After the two are compared a decision
must be made if the person requesting authentication matched or not. The main steps of
the described system are outlined in Figure 2.3. Additional processing enhancement
steps can often be found in speaker recognition systems, such as filtering and score

normalization.

) )) ) Training Utterance —» Analoé Transduceﬂ

i
&

[_A/D Conversion | —»{Feature Extraction |

Statistical Model

[ AID Conversion | »{Feature Extraction

) )) ) TESTING Utterance —» Analoé Transduceﬂ

N
&

Figure 2.3: Overview of main components in a speaker recognition system

Voice is produced by air being pushed up from the lungs through the glottal folds
(vocal folds) and then through the vocal tract and eventually out of the speakers mouth.
The vocal folds produce a base sound that is manipulated into specific phonetic events by
the vocal tract [29, 30]. Lip radiation, mouth geometry and other biological functions
also play minor roles in voice production. For simplicity, these will be lumped together

with the vocal tract in the following discussion. In voiced speech, vocal folds contract
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and relax creating a source of sound [30- 33]. The vocal fold sound is modified by the
vocal tract to create specific noises such as vowels, consonants, etc. Mathematically
speech can be modeled as a source-filter system [30, 31]. The air from the lungs being
pushed through the vocal folds would be the source. The vocal tract would act as a filter.
The source (vocal fold) and filter (vocal tract) would be convoluted together to generate
the final voice signal. The speech signal as a convolution of the two signals is illustrated

in Figure 2.4. The sound from the vocal folds is one of several features of a voice that

:G Vocal Tract

b |« B [ =] i

Vocal Folds Speech

Figure 2.4: Speech model as a source-filter convolution

humans use to identify an individual just by hearing one's speech. Other means, such as
the high level features spoken of, are used for ‘identification by ear’ as well. One method
of performing automatic, text-independent, speaker recognition is to take advantage of
the identifying properties of the vocal fold signal. How can the vocal fold sound be
analyzed independent of the vocal tract? One answer is, by deconvolution.
Deconvolution can be used because speech is a convolution of the vocal folds and vocal
tract. One method of deconvolution is by cepstral analysis. The cepstrum fundamentally
is the spectrum of the log of a spectrum, or alternatively, the cepstrum [34]. A cepstrum

is a technique used for deconvolution of a signal. The cepstrum is the inverse Fourier
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transform of the log-magnitude Fourier transform of the signal (see Equation (2.3)) [35].
The product property of logarithmic functions allows the spectrum of the voice spectrum
to be mathematically separated into the log magnitudes of the vocal fold and vocal tract
signals. Because of the relative difference in quefrencies (frequencies in the cepstrum
domain) of the vocal folds and vocal tracts, separating these signals can be accomplished
with a simple lifter [36]. A lifter is a filter in the cepstral domain [34]. One common
method to apply the lifter is by passing the log power spectrum of the signal through a
filterbank [20]. Common speaker recognition systems space filters in the filter bank on a
mel-spaced frequency scale, which closely resembles the auditory scale of the human ear.

C= i_]ilog Jx e dt e’ dw = F 7 (log‘S(x){) (2.3)

-

The mel-spaced scale emphasizes the lower frequencies while attenuating some of the
upper frequencies [16]. Passing a speech sample through the mel-scale filterbank allows
for the general isolation of the excitation signal of the vocal folds. The pseudo-code in

Figure 2.5 illustrates the process for deconvolution of the two voice signals via cepstral

analysis.

Vocal Tract*Vocal Fold = V¢V,= Voice Signal :Start with Voice Sample

log ] ﬁVf* Vo | :Take Log of FourierTransform(FT)
log ] TV FvV) | :FT of each signal portion

log] (Vo l : logl (V) [ :Additive properties of logrithm
Filterbank(logl (Vo ] o logl (V) |) Jfilterbank isolates vocal fold signal

Mel-Cepstrum = F . [MelFilter (log] F(Vy) ) - log} EZAA) |)] :Mel-Cepstrum of Voice

Mel-Cepstrum = T - [MelFilter (log } (Vo) i ] : Approximates Mel-Cepst. of vocal folds

Figure 2.5: Pseudo-code demonstrating the cepstrum deconvolution process
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In the implemented algorithm, the Inverse Discrete Fourier Transform (IDFT) of
the filtered log-spectrum is taken [20, 37-39]. The IDFT gives N number of cepstral
coefficients on the Mel-scale, called Mel-Frequency Cepstral Coefficients (MFCC) [35].
The MFCC’s of the entire utterance broken up into 20ms segments of speech are
obtained. In the enrollment phase, the MFCC’s are the features that are obtained that will

later act as a measure of one’s voice, and thus one’s identity.

Original Speech Signal

................ -

A 20ms segmentation

........................................

Zero-padded signal

!
'l.\\, , H"' The log |FFT(V,)| of the segmented signal

‘ Final step is to take FFT*

Obtaining a cepstrum from a voice sample

Figure 2.6: Visual step-by-step of the short-term cepstrum of a voice signal
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The purpose of the enrollment phase of an identity authentication system is to
generate a standard for the individual, which he/she will be measured against in the
testing phase. In the speaker recognition system, standard generation is done by
modeling a person’s voice. That model will later be used to measure the identity of an
individual’s voice. What are being modeled in the speaker recognition system are the

MFCC vectors (X,). The feature vectors are modeled using a tool called a Gaussian

Mixture Model (GMM) [40]. A GMM is the combination of D-Variate Gaussians added
piece-wise. The component probability densities are given by Equation (2.4). The GMM

itself is a sum of the weighted densities, show in Equation (2.5) [40, 41].

(2.4)

Gszgh;g@» 2.5)

i

N-number of MFCC’s are taken every 20 milliseconds. For just a few seconds of
sample speech, the amount of data for just one vector can occupy several thousand words
of memory. A specific system will have a number (N) of feature vectors, containing
Lx/.002s length data and modeled by D number of Gaussians, where Ly is the length of
the voice signal. Other methods of metric creation were utilized prior to the application

of GMM’s to speaker recognition. Earlier methods include Hidden Markov Models

21



(HMM) and vector quantization (VQ) [15, 42]. Both HMM and VQ have proven to be
more computational intensive with no, or only modest error rate improvements [21].

The selection of the number of Gaussians (D) has an effect on performance [40].
A uni- or bi-variate Gaussian mixture is not likely to describe a feature’s distribution very
well. On the other end of the spectrum, as the number of Gaussians increase, the amount
of information about the signal that each adds will decrease. In fact, too detailed a model
which contains information about background noise, or environmental acoustics can be
detrimental to error rates [40]. Figure 2.7 shows the resulting GMM of the same speech
signal feature distribution for various values of D. As the number of Gaussians is
increased, the model matches ever more closely to the actual feature distribution. Figure
2.7a uses a single variate Gaussian, giving a very loose approximation. In Figure 2.7b
the 3-variate GMM models the voice feature distribution’s basic contour well. The 3-
variate GMM represents a significant increase in accuracy over the 1-variate system.
Figure 2.7¢c, a 10-variate GMM also models this feature contour well. Additionally the
10-variate system picks up some singularities that could potentially distinguish an
authenticated user from an imposter. Figure 2.7d adds even more detail. Figure 2.7d
shows the voice feature as modeled by a 64-variate GMM. The 64-variate model picks
up some of the same singularities as the 10-variate system. It also models minor
idiosyncrasies in the feature distribution, which are most likely singular to the particular

environment where the sample was taken or to the particular phrase that was spoken.
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Figure 2.7: a) 1-variate GMM, b) two-variate GMM, c) 10-variate GMM, d) 64-
variate GMM

Figure 2.8 illustrates differences in voice feature distributions. Each of the four
graphs represents the 2" MFCC vector of sample utterances. Figures 2.8a, 2.8b and 2.8¢
are three different voice samples from the same speaker. Figure 2.8d is from a different
speaker. Figures 2.8a and 2.8b came from the same microphone. The distributions in
Figure 2.8a — 2.8c¢ are similar in shape, but contain significant differences in detail.
Because of the differences in detail, there is a limit to the efficacy of adding Gaussians to
a GMM model. Research has shown that minimal error rate improvement is realized by
adding more than about 32 component Gaussians to a GMM [40]. In fact, adding too

many component Gaussians can have a detrimental effect on error rates [40].

23



e £ o £ o
Rk B = B

Feature Vector Distribution %
o
3
&

! ! . . ! \ .
Feature Vector Distribution %

4

0.05F

5 o s 5
Cepstral Feature Value DCepslral Featue Value

a) b)

Feature Vector Distribution %
\ . . I I
Feature Vector Distribution %

51

“Eepstral Feature Value
¢) d)
Figure 2.8: 2" cepstral coefficients GMM. a)-c) are the same speaker saying different phrases. d) is
a different speaker on system #2 saying same phrase as c).

. °
Cepstral Feature Value

With the enrollment model in the system, a voice sample being tested for
authentication can then be compared and scored against the model of the enrollment
speech signal. The task of authentication is to determine if the speaker is who he/she
claims to be. Basically, the task is a hypothesis test. The hypothesis is ‘the speech
sample Yy is from the modeled speaker Yy’ [43]. The hypothesis test can produce one of
4 results [3, 14, 44]. A true accept (TA) occurs when the system correctly authenticates
an authorized individual. A true reject (TR) occurs when the system correctly rejects an
unauthorized individual. Error types I & II can also occur from the hypothesis. A Type I
error occurs when the authorized individual is falsely rejected (FR). A Type II error
occurs when an unauthorized individual is falsely accepted (FA). The four possible

results are listed in Table 2.2 [14].
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There is a tradeoff in the FR and FA rates. NIST provides a detection cost model

for measurement of speaker detection performance. It is given by Equation (2.6) [45]:

CDet = CFR X P(FR\YO:YM) X P(YM) + CFA X P(FA|Y0¢YM) X (1 - P(YM ))

(2.6)

In Bayesian decision theory, an optimal decision is found at the minimum of Equation

(2.6) [46]. C,, and C,, are the costs of a FR and FA respectively. P( FRY,=v,,) and

By, .y, are, respectively, the probability of a FR given the real user and FA given an

imposter. The a priori probability of the specified speaker Yy is P(YM) . Minimizing the

cost model equation can generate the Bayesian optimal decision rule [46]:

P(Y,|Y,) > 6, Accept
Py, Y. ) <0, Reject

Table 2.2: Four possible results of identity authentication
IDENTITY AUTHENTICATION POSSIBILITES

Measured data
matches expected
value

Measured data does
not match expected
value

Authorized
Individual
requests access

Unauthorized
Individual
requests access

True Accept
Access
correctly granted

(TA)

False Accept
Access incorreetly
granted
Type Il error

(FA)
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False Reject
Access incorrectly
denied

Type I error

(FR)

True reject
Access
correctly denied

(TR)

(2.7)



The numerator is simply Ao, where Ay is the likelihood that Y is from Yu. The
denominator is A, where A, is the likelihood that Y is not from the modeled speaker Y.
Thus the overall likelihood, A, equals A¢/A; [20]. In this thesis, the log of the likelihood
ratio (LR) is used because it is less computationally intensive. The likelihood of Ly

observations compared to a single component of the mixture model is given by (2.8).

L(ﬂ)=( 1 : JLX exp(— 2;2 i(x,- —#)2] (2.8)

2o i=1

Taking the log of the likelihood gives:

log[L(x)]= —LTX-log(mez)— 2;2 >i(x, —u) (2.9)

The model used to determine A is simply the Gaussian mixture model developed in the
enrollment phase. The model used to determine A; is not as clear. The difficulty is in
modeling who a person is not. The difficulty in an open set application leaves an
unbounded set of possible speakers, which can be difficult to model. The approach that
has been used in much literature is the universal background model (UBM). The UBM is
a voice feature model generated from a collection of other speakers [47].

The process of tuning the detection threshold (0) is one of the more difficult tasks
in designing a speaker recognition system. In part, the difficulty is due to the tradeoff
between false accept and false reject rates and the need of the particular application. A
system requiring high security may weight the cost of a false accept much greater than
the cost of a false reject. Higher false reject rates with lower false accept rates may be an

inconvenience to user’s who are more often falsely rejected, but allows fewer
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unauthorized individuals from gaining access to the system [14]. The high security
system described works great for a nuclear arms facility but may be less effective for a
system that allows fast food workers access to the freezer, which requires regular and
speedy entrances. To assist in threshold setting, a detection error tradeoff (DET) curve
can be developed [48]. A DET curve plots the FR and FA error rates as a function of the
threshold level. In this thesis, as A approaches zero, the more likely the voice sample Y
is from speaker model Yy. Therefore, when the threshold is a large negative number,
many FA can be expected. As the threshold tightness is increased (6—0), less and less
false accepts are expected and more false rejects would be expected. At 6 =0, all users,
including authorized ones would be rejected making the FR rate = 1. In Figure 2.9, when

0 is -4, the FR rate 1s 100% while the FA rate is 0%. Increasing 0 to -16 yields a FR rate
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Figure 2.9: An example Detection Error Tradeoff (DET) curve
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of 13.3% and a FA rate of 5%. The threshold was loosened, allowing a few people to be
falsely accepted. The same threshold loosening reduces the amount of Type I errors
(FR). With an even looser threshold of -23, the FA rate is up to 85% and the FR is at 0%.
In review, the task of speaker recognition can be split into two phases, enrollment
and testing. The basic setup of a speaker recognition system includes speech signal
collection, feature extraction, feature modeling, signal comparison and decision making.
Other common tasks in speaker recognition systems include pre-emphasis to mimic the
outer ear, pre-signal filtering to mitigate background noise, cepstral domain filtering for
removal of static channel effects (such as cepstral mean subtraction and RASTA
filtering), and score normalization for mitigation of intra-speaker variations, handset

enrollment/testing mismatches and other environmental variations [49-54].

Section 4 — Historical Review of Speaker Recognition

The modern system described in Section 3 is an accumulation of advancements
made over the last 50 years. Today’s automatic speaker recognition systems verify user
access rights, identifying personnel in a group, and they even have some use in forensic
applications. Early research in speaker recognition was in the realm of human abilities.
War time research in the 1940’s allowed for significant advances, producing a tool to
allow visual inspection of voice. Advances in signal processing techniques and the rise
of the computer permitted true automated systems to be developed. The first automated
system was created in the 1970’s. From that point forward, the main thrust of research

has been in independent speaker recognition. Today’s speaker recognition research
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focuses on lowering error rates, capabilities in identification and creating systems robust
in the presence of environmental variations.

The problem of recognizing an individual by their voice is an age old issue. The
book of Genesis records Isaac’s dilemma in speaker identification when Jacob acts as an
imposter to Esau. Isaac’s confusion was with contradictory results from two different
biometrics. “The voice is Jacob’s voice, but the hands are the hands of Esau.” Jacob
trusted tactility over auditory “and he discerned him not” [55]. The problem of
recognizing an individual by their voice arose throughout history and even appears in a
recorded judicial case as early as 1660 [56]. It was much later before academic research
would begin a scholarly investigation of this topic.

In March of 1932, Charles and Anne Lindbergh’s baby boy was abducted and
subsequently killed. The investigation led to a clandestine payoff in a cemetery where a
Lindbergh operative met with an anonymous male claiming to be the kidnapper. Charles
Lindbergh sat in a nearby car. Lindbergh overheard the anonymous man say “Hey
Doctor, Over here, over here”. The event was the second time Charles Lindberg had
heard the man’s voice without seeing his face. Two and a half years later at the trial of
the accused kidnapper, Bruno Hauptmann, Lindberg claimed to be able to identify
Hauptmann’s voice as the same voice heard in the cemetery [56].

The Lindberg claim spurred Frances McGehee to initiate the first academic
research of reliability of earwitnesses. Her research led to the publication of two
significant articles on the topic [57, 58]. Since McGehee, research into speaker
recognition has been continuous in forensics and psychology. The later development of

the automatic speaker recognition system can also trace its roots to the work of McGehee.

29



In 1962 the first article on an automated (semi-automated) method for speaker
recognition was published in Nature by a Bell Laboratories Physicist, Lawrence G.
Kersta. The paper was entitled “Voiceprint Identification” [59]. Two years previous,
Bell Laboratories had been approached by law enforcement agencies about the possibility
of identifying callers who had made several verbal bomb threats over telephone lines
[60]. The task was given to Kersta. After the two years of research he claimed he had a
method to identify individuals with very high success rates. His method utilized earlier
work on speaker recognition performed by three other Bell Laboratories’ scientists,
Potter, Kopp and Green who were working on voice identification for military
applications during World War II. They had developed a visual representation of speech
called a spectrogram. A spectrogram records the frequency and intensity of a speech
signal with respect to time. Kersta’s claims of identifying speech via spectrograms
sparked several research projects over the next year. In fact, his article sparked an entire
field of research. There were several dissenting views in the next few years and it
seemed no other researcher was able to duplicate the high claims Kersta had made [60].

To help settle the matter, a substantial research project was undertaken by Oscar
Tosi, a professor at Michigan State University who had doubts about Kersta’s so called
“voiceprint”. In conjunction with the Michigan State Police and sponsored by the
Federal Department of Justice, Tosi’s research yielded promising results. Tosi’s results
tended to support Kersta and lent validity to the field. Tosi’s results were refuted by Bolt
a year later as he illustrated holes in the Tosi experimental methodology [60]. Tosi’s
experiment lacked scientific basis in practical applications. The FBI, being interested in

the forensic application of speaker identification, requested another study be performed
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by the National Academy of Sciences. The results from the study showed that the
technical uncertainties in forensic applications were substantial enough to claim the use
of voiceprints were unreliable in real applications. However, voiceprints are still useful
in certain circumstances. In fact the FBI has utilized a form of Kersta’s spectrographic
analysis as late as 2002 [60].

The Kersta method is an aural-visual method. From a voice sample a
spectrograph is produced. The spectrogram is then inspected visually for pattern
matching and scored by the interpreter. Success rates with the Kersta, spectrogram
method, given an expert interpreter and proper environmental circumstances, can be very
high. Despite success, the Kersta method requires human interaction, limiting its use in
automated security applications. Also, “the good performance reported in Kersta’s paper
has not been observed in subsequent evaluations simulating real-life conditions” [7].

Though the Kersta method is still utilized in some forensic applications, such as
with the FBI, it has not materialized into a practical autonomous speaker recognition
system. The reasons are many, human interpretation being a major factor. Other
techniques have since been employed allowing for low computing costs with high
success rates.

It was in the 1960°s when several developments made autonomous automatic
speech recognition possible. These developments covered a broad range of disciplines
and for the most part were independent of speaker recognition research. For instance,
Gunnar Fant produced the first physiological model of human speech production in 1960
[29]. This and similar research that followed, became the basis for understanding how to

analyze speech for both speaker recognition as well as automatic speech recognition. It
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led to the understanding of voice as a linear source-filter model, which allowed for a
better understanding of identifiable characteristics in an individual’s voice.

As computers became more accessible to more scientists, problems of
implementation of continuous-domain mathematical solutions in a discrete machine arose
more and more often. The issue was critical to digital signal processing. In 1965 Cooley
and Tukey published their method of digital implementation for the Fourier transform. It
is now known as the Cooley-Tukey Fast Fourier Transform (FFT) [61]. The FFT gave
scientists an efficient method of frequency analysis in computer based systems. It was a
major advance and it coincided with other investigations at the time. Two years earlier in
1963 Bogert, Healy and Tukey had published a study on echo detection in seismic signals
titled “The Quefrency Analysis of the Time Series for Echoes: Cepstrum, Pseudo-Auto-
Covariance, Cross-Cepstrum, and Saphe Cracking” [34]. The oddly titled paper
described a method of echo detection by taking the “spectrum” of a log-magnitude
spectrum. During the same period, Oppenheim’s research into homomorphic signal
separation, such as decovolution, led to him defining the complex cepstrum, which is the
Fourier transform of the log spectrum, i.e. a spectrum of the spectrum [62]. The
cepstrum is described in section 3 of this chapter. The complex cepstrum has become a
standard method used in speaker recognition systems.

In another completely unrelated study in the late 1960°s Leonard E. Baum and
others developed a stochastic model for Markov processes. The process attempts to
determine hidden parameters of a statistical model from observable features in the model
and is called the Hidden Markov Model (HMM) [63]. The HMM statistical model would

find broader application in the parallel studies of speech recognition. The HMM also has
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a smaller role in speaker recognition.

The fortuitous developments of the 1960’s have become the basis for modern
speaker recognition systems. It was also during this period that parallel investigations
into automatic speaker recognition system began. For instance, Pruzansky, a Bell
Laboratories Engineer, investigated early systems for automatic speaker recognition
utilizing spectral pattern matching techniques [64, 65]. The spectral pattern matching
systems had a measure of success. However, the first completely autonomous speaker
recognition system was a multimodal system which utilized voice and signature analysis.
It was developed by a team led by George Doddington at Texas Instruments in 1977 [21,
64]. The Doddington system used digital filter banks to do spectral analysis. It was a
text-dependent system that prompts the user for the correct verification phrase. The
output vector of a 14-channel filter bank is used in a ‘Euclidian distance’ based algorithm
to make a verification decision [7]. Over many years, the Doddington system had a false
rejection rate of less than 1% and a false acceptance rate of less than 1% [7].

The early recognition features used as measures included spectral resonance, filter
banks vectors and linear predictive coefficients. As shown above, these features had a
good level of success. The early successful systems were all text-dependent. Since that
time research has been able to improve on the early text-dependent successes.
Investigations into text-independent methods since those early days have continued.
Today, text-independent research constitutes the brunt of the speaker recognition
research. Text-independent research differs from the text-dependent research as
scientists look for underlying indentifying attributes, as opposed to spectral pattern

matching or phonetic event measurements. Text-independent research is more frequently
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applied to speaker identification, as opposed to the simpler task of verification.

The application of Bogert and company’s brainchild, the cepstrum, to speaker
recognition gave a marked improvement in recognition systems. Cepstrum based
features have now become standard in recognition systems [21]. Modern recognition
systems use the homomorphic deconvolution capabilities of the cepstrum to separate the
vocal fold attributes from the vocal tract attributes in the linear source-filter model of
human speech production. As of today, the cepstrum and cepstrum coefficients play an
integral role in speaker recognition.

As important to an accurate recognition system as voice feature selection /
extraction is, the pattern matching and decision making algorithm is equally important.
The Hidden Markov Model, developed in the late 1960’s, was employed widely in
speech and speaker recognition systems during the 1980’s. Also, a method of vector
quantization (VQ), compressing a speaker feature vectors down to a small set, also had
some success in modeling voice features. However, later research showed that with
enough enrollment data the HMM and the VQ was about as effective as the less
computationally demanding Gaussian Mixture Model (GMM) [21, 40]. Though the
HMM has wide application in speech recognition, it is found less often in low-level
speaker recognition systems.

The field of speaker recognition study has also made significant improvement
from the simple Euclidian distance method found in the TI system. The system that has
evolved throughout the early years of recognition research includes a few basic tasks.
These tasks are, feature extraction, feature modeling and classification or decision

making. The feature matching algorithm which computes the likelihood that one user’s
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voice sample matches the modeled enrollment samples. The classification methods have
also made significant improvement from the simple Euclidian distance method. A fairly
straightforward, simple decision algorithm may be a likelihood test of the Gaussian
Mixture Model of cepstrum features. Though there are many enhancements to the simple
authentication system as described, several other methods are being investigated. The
basic system presented represents a wide range of modern speaker recognition systems.

Several advances have been realized in the system detailed above. For instance,
squaring the log-magnitude spectrum prior to taking the cepstrum can magnify the voice
signal while mitigating the effect of background noise. One major area of interest has
been score-normalization [20]. Any given speaker has a measure of variability between
his own samples. Intrapersonal variations are due to many factors including, emotional
state, throat illnesses, phonetic content and background noise. One objective of score-
normalization is to mitigate the intra-speaker variability effect. Another objective is to
mitigate channel and other environmental effects. Throughout the 1990°s and 2000’s a
significant amount of speaker recognition system research has been focused on score-
normalization [20].

Score normalization research has largely been based on the work of Li and Porter
which presented a method of using imposter score normalization [53]. Their research led
to the UBM or “world-model” approach a few years later where a model, often derived
from a cohort of imposters is used in the statistical model of the speaker’s enrollment
model. The log-likelihood between the speaker and world models error rates are
measured against a threshold in order to make an authentication decision. The way these

models are derived have advanced throughout the last few years and have led to advanced
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world-models and score normalizations.

Research continues in various fields today. One topic in speaker recognition
research is the continued research into feature selection. Notably, Reynolds, Campbell
and others have undertaken the collaborative investigation into the usage of high level
information [22-23, 26-27]. Use of multimodal biometric and multimodal user
authentication , obtaining confidence levels in a specific systems recognition accuracy

and identification applications are all current topics in literature [8, 10, 25, 37, 43].

Section 5 — Outstanding Issues in Speaker Authentication Systems

One specific area of research continues to be environmental variability, such as
background noise, intrapersonal variations and handset variability. Environmental
concerns become a major factor in applications where unknown conditions exist, such as
in distributed systems. With the advent of the internet and security applications over the
internet, such as internet banking, security needs in unknown conditions have become
more and more relevant. Therefore, research into environmental concerns has gained an
increased focus in speaker recognition [66]. There have several compensation techniques
presented that have had success in filtering environmental noise. Background noise has
been dealt with primarily through filtering [20]. Current research seeks to improve these
methods [67, 68].

Handset mismatches refers to differences in the voice capture system used in the
enrollment phase verses the system used in testing for authentication phase. When a user

is enrolled with one system and attempts recognition with another, it gives significant
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error rates. Early on Doddington discovered that such mismatches could produce errors
in the range of 50% [7]. Differing transducers can affect a voice spectrum by changing
spectral characteristics such as band-limiting and shaping [15, 69]. Much has been done
to attempt to mitigate the enrollment / testing mismatch obstacle. Cepstral mean
subtraction, RASTA filtering, and use of delta coefficients have all been used in attempts
to mitigate handset mismatch effect. Each of the listed methods have had a degree of
success. However, they need to be greatly improved. It has been proposed on several
occasions that more research into the effect of microphone variation is needed [15, 20,
66]. Some research has been conducted to understand the mismatched condition [70-73].
Some attempts at solutions have also been made [70, 71]. One shortcoming of these
studies has been their focus on telephone systems. Today, the need for a variety of
networked systems is required. This thesis approaches the problem of a mismatched
condition from a distributed environment standpoint. Also, little or no research has been
performed to understand general performance of microphones compared to one another
in similar environments. Another objective of this thesis is to investigate the effect of

microphone selection on speaker recognition performance.
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CHAPTER III

MEASURING EFFECTS ON SPEAKER RECOGNITION

Section 1 — Objective of the Experiment

The objective of the experiment is to determine the effect of equipment variations
on error rates in speaker recognition systems. The first effect that is analyzed is the
degradation or improvement of FA / FR rates when enrollment microphones and testing
microphones are mismatched. The mismatch effect has been assumed in the past [70].
This study attempts to quantify that the enrollment / training mismatch has a specific
effect on speaker recognition FA and FR rates. The second effect that is analyzed is the
change in FA and FR rates from one system to the next in similar environments. The
analysis of the second effect includes direct comparisons between each system’s
performance under matched and mismatched conditions in varying background noise
levels. The comparison would indicate, in a given environment, that 1) some
microphones perform better than most others, 2) some microphones perform worse than
most others, 3) all microphones perform about equal or, 4) microphone performance is
distributed with some performing better than most, others performing worse than most
and some in-between. The characteristics of the performance distribution would indicate,
in each environment, the sensitivity of a system’s performance to the variation in

recording equipment. Further, these distributions in each environment will be compared
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to determine if a particular microphone(s) is (are) generally better suited for the task of

speaker recognition.

Section 2 — Experimental Setup

Ten system setups were investigated, including seven different microphones.

Each microphone is a common, real world, device. The selected systems represent a

small sampling of typical home and office equipment that is currently available on the

market. The focus of the study is security in distributed systems such as the internet.

Therefore, microphone selection was based on was on common equipment likely to be

used in distributed systems. The selection includes several PC interfacing microphones

as well as handheld devices. The full list is found in Table 3.1.

Table 3.1: List of microphones used in the experiment

System# Short Description Setup Manuf. Model#
1 Desktop Microphone 1" from Speaker
2 "Quick Cam" Webcam 1" from Speaker Logitech 960-000247
3 "Quick Cam" Webcam 12" from Speaker Logitech 960-000247
4 Hands free Microphone 1" from Ear GE
5 Hands free Microphone On Ear as Designed GE
6 Logitech Gaming headset | On Head as Designed Logitech
7 Digital Voice Recorder 1" from mouth Olympus WS-100
sys#4 Plugged into
8 Sys#4 / Sys#7 Sys#7 GE/Olympus WS-100
Same model, different
9 Digital Voice Recorder unit as System #7 Olympus WS-100
10 MP3 Player 1" from Speaker

Five speakers were selected, 3 male, 2 female. Each spoke three phrases (See Appendix

E) into each of the ten systems. The process was repeated in three various background

noise levels. A fourth phrase was spoken into all ten systems by all five users on a

different date. The systems are the items under investigation, not the speakers. The
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number of users is not statistically significant for investigation into speaker discrepancies
but is designed to give a variety for the testing of the equipment. Likewise the phrase
usage is not for understanding phrase discrepancies, but rather to give a variety for the
testing of the equipment. Utilizing various individuals and phrases throughout the

experiment mitigates how various users or specific phrases affect the results.

Table 3.2: List of controlled variables in the experiment

Parameters Quantity Description

Systems 10 systems (7 Microphones) | See Appendix

Speakers 5 users 3 male, s female
Background Noise Zonel (<45dB), Zone2 (55-65dB),

Levels 3 Zone3s (80-95dB)
Phrase1 (~3sec), Phrase2 (~3sec),

Phrases 4 Phrase3 ((9§ec),)Phrase4 (E 3:(3)sec))

Decision Algorithm 2

The phrase used for enrollment, was Phrase 3 in each case. The data from the enrollment
phrase was put into the recognition system developed for MATLAB. The components of
the implemented speaker recognition system, as illustrated in Figure 3.1 include feature
extraction via mel-cepstrum MFCCs, feature modeling with a GMM that utilizes an
expectation maximization algorithm [41], a likelihood comparison, and then a decision
algorithm. There are two decision algorithms used in the experiment. The first is a
‘Nearest-To’, or shortest distance algorithm. The person with the log-likelihood closest
to zero is accepted and everyone else rejected. The second algorithm is the threshold
decision algorithm. The threshold algorithm sets an initial threshold 0. Which side of the
0 the log-likelihood score falls determines whether one is accepted or rejected. If A <0
then Y is hypothesized to come from Yy and the speaker is accepted. Else, if A > 6 then

the speaker is rejected. In the algorithm the threshold 0 is varied over an appropriate
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range. As 0 is varied FA and FR rates are recorded. The outcomes of the two algorithms
are described in Chapter IV. To determine how error rates are affected, each system is
evaluated with the enrollment and testing systems matching and mismatching. An
individual system is enrolled and then tested against each of the ten systems. Resulting

error rates are evaluated for both matched and mismatched enrollment/testing conditions.

TEXT-INDEPENDENT

))) ) Training Utterance —» | Analog Transducer

[PCM 44.1kHz, 16bit—{ MEL-CEPSTRUM |\

logLR
&

[PCM 44.1kHz, 16bit—»{ MEL-CEPSTRUM |

~'Nearest-to'

))) ) TESTING Utterance —» |Analog Transducer

Figure 3.1: Outline of speaker recognition system used in experiment

The background noise levels were controlled within the specified decibel ranges.
In Zonel, as measured at the microphone at the beginning of each session, the
background noise level was less than 45dB. Zone 2 static noise was added and decibel
level was controlled between 55-65dB. Zone 3 had an increase in static noise. Zone 3

also had an addition of dynamically changing, non-voice noise. The Zone 3 background
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noise was controlled in a range of 80-95dB. The frequency range of the background

noise was not controlled.

Section 3 — Description of Recording Environment

The physical environment was an isolated area with precautions made to mitigate
outside noise. In Zonel (<45dB), precaution was taken to mitigate sound by isolating the
PC and turning off all other devices in the room (such as the air conditioner). Zone?2 (55-
65dB) the noise was increased by turning on fans, the air conditioner, having the PC near
the recording area and having low magnitude level static from a radio at a given distance
from the recording area. Zone3 (80-95dB) was the same as Zone2 with an increase in the
radio static and the addition of a given portion of the first movement of Beethoven’s fifth
symphony. Background noise levels were taken at the beginning of each user’s session
(a session includes one speaker uttering a set of three phrases into 10 systems on the first
day and one phrase into 10 systems on the second day). The background noise level was
recorded with RadioShack’s “7-range Analog Display Sound Level Meter”.
Measurements were taken within a few inches of the user’s mouth. The database
generated in this research is specific to common distributed systems. Devices and
background levels were selected for a distributed system. The database varies from

available commercial voice sample databases.

Section 4 — General Discussion of Results

A total of 500 voice samples were collected. Average file size was 840kB. All
voice samples were saved as .wav files in a PCM Stereo format at a 44.1KHz sample rate

and a 16 bit AD conversion. Voice samples taken with both handheld voice recorders
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(items 7&38) as well as the MP3 player (item 9) save their data files in an MP3 format. In
order to stay consistent and to analyze these files in the MATLAB speaker recognition
system, the MP3 files were converted to WAV files with formatting consistent with the
rest of the experiment. Research into the effects of speech compression algorithms on
speaker recognition has been conducted [74]. Results from the research indicated that
these algorithms had little to no effect on the error rates of the system. Phrases 1-3 were
recorded 113 days prior to Phrase 4. Phrase 4 was not uttered in Zones 2 or 3. Voice
samples were analyzed via a speaker recognition program developed for MATLAB. The
decision algorithms were coded in VBA. A flow chart for the MATLAB portion is found
in the appendices.

Table 3.3 gives a time domain representation of each speaker’s voice as they say
Phrase 3 in each zone as they spoke into System 1. Table 3.4 shows the frequency
domain of the same samples. Table 3.5 is Table 3.6 except the y-axes are adjusted to
illustrate the spectrum shape. Zone 3 noise is readily seen. Zone 2 noise is not as
apparent unless viewed with the adjusted y-axes. The voice sample from Speaker 1 in
Zone 2 was low magnitude at all frequencies. Noise was low as well. The low noise
level could be due to user variability such as the direction of the microphone in relation to
the speaker and noise sources. It could also be due to equipment malfunctions such as a
loose microphone connection. The entire recording session with Speaker 1 in Zone 2 on
System 1 had attenuated amplitudes. This appears to be an anomaly as it was not noted

in other sessions.
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Table 3.3: Time domain of voice signals — System 1 Phrase 1

Lone 1 ZLZone 2 Zone 3
1 1 1
Speaker 1 0 0 o
-1
u] 2 4 B
Sec
1
Speaker 2 0
-1
u] 2 4 B
Sec
1
Speaker 3 1]
-1
0 2 4 B
Sec
1
Speaker 4 0
1 -1 -1
0 2 4 B 0 2 4 6 u] 2 4 B
Sec Sec Sec
1 1 1
Speaker 5 o W (1) 0
-1 -1 -1
0 2 4 G 0 2 4 5 0 2 4 B
Sec Sec Sec
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Speaker 1

Speaker 2

Speaker 3

Speaker 4

Speaker 5

Table 3.4: Frequency domain of voice signals — System 1 Phrase 1

Zone 1 Zone 2 Zone 3
0.02 0.02 0.02
D‘I 0 o
i} 1000 1500 2000 0 500 1000 1500 2000 o 500 1000 1500 2000
Hz Hz Hz
002 0.02 0.02 r
0o 00 0.m ‘I
0l= pll-m 0
0 1000 1500 2000 0 500 1000 1500 2000 i) 500 1000 1500 2000
Hz Hz Hz
0oz 0.02 0.02
0o EI.CI1I 0.01
0 0 QU= -
0 1000 1500 2000 0 500 1000 1500 2000 0 £00 1000 1500 2000
Hz Hz Hz
n.o2 0,02 0.02
0o 0.01 0.01
ul - ) . 0
0 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hz Hz Hz
0.02 0.02 0.02
0.01 0.0 0.01
ol DL—% 0
0 1000 1500 2000 0 500 1000 1500 2000 o 500 1000 1500 2000
Hz Hz Hz
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Speaker 1

Speaker 2

Speaker 3

Speaker 4

Speaker 3

Table 3.5: Scale shifted frequency domain of voice signal — System 1 Phrase 1

Zone 1 Zone 2 Zone 3
3 -5
¥ 10 x 10
1 ¥ T ¥ 4 T i T 02
05 | 2 |L 01
0 0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hz Hz Hz
0 0
2] ‘ym — 001
1 1 0.005
0 0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hz Hz Hz
10 10
1 21} 02
0.5 1 0.1
0 0 o
0 500 1000 1500 2000 ] 500 1000 1500 2000 0 500 1000 1500 2000
Hz Hz Hz
-3 -3
¥ 10 x 10
2 1 1
1 0.5 05
0 . 0 u]
0 500 1000 1500 2000 ] 500 1000 1500 2000 0 500 1000 1500 2000
Hz Hz Hz
3 -3
¥ 10 x 10
1 2 2
05 1 1
0 0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hz Hz Hz
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CHAPTER IV

RESULTS AND ANALYSIS

Section 1 — Description of Analysis Techniques

The four possible results for identity authentication are a true accept (TA), a true
reject (TR), a false accept (FA) and a false reject (FR). The FA and FR rates will be used
for analysis. The FR rate is defined as the number of individuals falsely rejected divided
by the total number of people who should be accepted. Likewise, the FA rate is defined
as the number of individuals falsely accepted divided by the total number of people who
should be rejected. By plotting these two rates as a function of the threshold, a DET
curve is developed. The point at which the FR rate and the FA rate cross is called the
equal error rate (EER) [20]. The EER holds information about a system’s susceptibility
to a security breach as well as information about a system’s usability. Though the equal
error rate is not associated to any specific threshold setting, it can be used as a
comparative measure of performance between systems. The EER is an arbitrary point
which is used to indicate a system’s ability to authenticate authorized individuals and
decline imposters. The EER is not necessarily the minimum error point. It has
traditionally been used as a relative measure between systems. The EER would be a good
relative measure between systems if the FA slope and FR slopes of each system was

identical. For identical slopes, a linear shift in 6 would not indicate a change in the
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system’s performance. A high threshold value would be just as valid as a low threshold
value as long as the EER was sufficiently low. However, in real systems an EER at a
higher threshold can be an indication of a poorly performing system. A system that can
properly classify voice signals, in respect to the speaker, with a high level of success will
naturally have a A close to zero for a TA and a significantly more negative A for a TR.
With a large disparity in the average A for the cases of TA and TR, error rates can be
mitigated. It is proposed that a dead-band could be injected into the decision algorithm.
The decision algorithm output for the dead-band would supplement the ‘accept’ and
‘reject’ possibilities by a third ‘undetermined’ value. What is done in a system when an
undetermined is found would be subject to system design. The system could prompt the
user to re-enter a voice sample or in multimodal systems, a separate identity

authentication method could be used to further verify authorization.

A 26,, Accept
0,> A, = 0y, undetermined (4.1)
Ay <6z, Reject

P |Yy) _,
Pl 1) ™

When analyzing speaker recognition systems, traditionally, the DET curves are
used as design tools and the EER is a loose method of comparing performance. The
DET curves give more information than the point at which the two error rates cross. For
instance, the slope of the curve in the region of concern is a measure of the system’s
robustness to changes in the threshold (0). To illustrate this point, examine Figure 4.1.
Systems 1 and 2 in the graph have the same EER. However, these are two distinct

systems that do not behave similarly. System 1 has few false rejects except at the most
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stringent thresholds. The EER is 5% at 0 =-5. By loosening the threshold to -7, the FA

rate increases up to 35% while the FR rate is down to 1%. A slight change in thresholds

generates a significant change in error rates for both error types.

100%

Mo mm

o ~p R

DET of Example Systems with Same EER
7

= = SYSTEM#1-FR
!
!

SYSTEM #1-FA
SYSTEM #2 - FR \ i

Bo%

SYSTEM #2-FA
I
I
1
[]

4o%

10%

20 k:
Threshold 8

Figure 4.1: A DET curve of 2 systems with equivalent EER

For System 2, a slight change is not as detrimental to either rate. The EER is

again at 5%. The threshold 0 is -16. A threshold change of -2 in this case leads to a FA

rate of 13% and a FR rate near 0%. This example demonstrates the robustness to changes

in 0. Further studies are needed to evaluate if the slope of the DET curve could be an

indicator of system robustness to environmental changes as well, such as background

noise, channel effects and equipment variations. In this study, performance is measured

with the standard EER and the accompanying threshold level. The EER as well as the
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EER threshold level will be used in comparing systems in the analysis of the experiment
utilizing the threshold decision algorithm.

The ‘Nearest-To’ Algorithm designates the speaker in a test set with the A nearest
to zero as the ‘Accepted’ user. All other speakers in the test set are rejected. For the
‘Nearest-To’ Algorithm, a test set is defined as testing each speaker in the group once (all
in the same zone with the same microphone saying the same phrase). Each test set
produces likelihood ratios A; for each speaker in the set. From each test set, the A that is
closest to 0 will be accepted while all others will be rejected. The ‘Nearest-To’ decision
process utilizes a specific case of the DET curve. When the correct speaker is accepted,
all others are rejected. Thus, in the ‘Nearest-To’ algorithm, with the correct speaker
accepted, FA = FR = 0%. If an imposter is accepted and all others are rejected, those
being rejected will include the correct speaker. Therefore a false accept equals a false
reject, FA = FR = 100%. For example, if the speaker model, Yy, came from Speaker 1
while Speaker 5 speech sample Ys had the greatest likelithood of coming from Y, then
Speaker 5 is accepted and all other speakers, including Speaker 1, is rejected. Thus the
FA rate equals the FR rate in every case. For simplicity, the error rate used is where

error rate = FA = FR.

Section 2 — Results from ‘Nearest-To’ Decision Algorithm

Table 4.1 gives the overall average results of the ‘Nearest-To’ decision algorithm
experiments grouped by systems. It is a brief summary of Appendix A. One result made
clear in Table 4.1 is the wide disparity in error rates of matched systems versus miss-

matched systems.
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Table 4.1: Breakdown by System of 'Nearest-To' results

AVE Matched | Mismatched
System #1 54% 13% 58%
System #2 66% 11% 72%
System #3 66% 27% 71%
System #4 62% 18% 67%
System #5 68% 20% 73%
System #6 61% 11% 66%
System #7 48% 16% 51%
System #8 50% 2% 55%
System #9 51% 4% 56%
System #10 74% 18% 80%
AVE 60% 14% 65%

The Chart in Figure 4.2 shows how much of a role the miss-matched systems have in

System performance.
o .
100% Zone 1 (Quiet)
90% B Ave. Zone 1 & 2 (Noise
Present)
80%

1 70%

* 60%
0

T 50%

40%

a30%

t
e 20%

10%

0%

Ave Matched Ave Mismatched

Figure 4.2: 'Nearest-To' match / mismatch comparison chart

Variation in error rates per speakers increased with the background noise level (see Table
4.2). Error rate variation as dependent on phrase was negligible. The average of the

standard deviation of error rates per phrase per zone was 0.024.  Table 4.3 gives an
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overall summary of the results of the ‘Nearest-To’ algorithm experiment.

Table 4.2: Standard deviation of scores per speaker per Zone

c
Zone 1 .042
Zone 2 .093
Zone 3 173

Table 4.3: Summary of 'Nearest-To' algorithm results

Zonel Zone2 Zone3

Total Ave 53% 62% 65% 60%

Ave Matched 1% 28% 13% 14%

Ave Mismatched 59% 66% 71% 65%

In a low-noise environment, the matched system error rate was one percent. In
the same environment the mismatched error rate was 58% higher. In both Systems noise
had an effect. From Zone 1 to Zone 3 a total error rate increase of 12% was observed.

The noise effect was insignificant when compared to the mismatched system error rates.

Section 3 — Results from Threshold Decision Algorithm

This section gives the threshold decision algorithm results. Each System in each

zone has 2 DET curves (see Appendix C for all DET curves). One curve is for matched
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Systems and the other for mismatched Systems. Figure 4.3 shows a baseline

measurement of the speaker recognition system enrolled on System 5. Figure 4.3

includes voice samples from all three background noise levels, all speakers, and from all

microphones. The graph is an example of what a system’s results would be in a system

without controls or constraints on the testing phase.

Error Rate

manner the DET curves are summarized by discussing the equal error rate (EER). The
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Figure 4.3: DET curves for System #5 with no constraints in the testing phase

In order to review system error rates of the ten systems in a comprehensive

graph in Figure 4.4 is a summary of all of the EER for each System in matched

conditions. Each point represents the EER of 5 speakers uttering 4 phrases in a single
zone and on a single system. They are grouped by system. Each system has three points.

The points represent the error rates in the three background noise-level zones. In all but
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one case, the point furthest to the left (most negative) is the Zone 3 EER. The exception

is System 1 where the Zone 2 point (center point) is further to the left. Furthest to the

right is Zone 1 in each case except System 6. System 6 has the Zone 2 furthest to the

right. The Zone 2 EER in 7 of 10 systems is the highest of the three system values.

Further discussion of the EER behavior is found in Section 4 of this chapter.
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Figure 4.4: EER for all Systems in all zones under matched conditions

Of note in Figure 4.4, the EER generally increases as the threshold point of the

EER becomes more negative. Recall that if each system had the exact same curve that a

shift along the x-axis would be insignificant and that the EER alone would be sufficient

to rate a system’s capability. However, in real systems, when a threshold is relatively

large, the EER is likely to increase. The EER increase is illustrated more clearly in
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Figure 4.5, which shows the general EER threshold decrease with EER increase by
displaying a linear trend line for data sets in each zone. In a system that produces a A

close to zero for a TA and a A much more negative for a TR (a system that can

EER Grouped together by Zone
60%

- - I\
50% A -~ — ~— = N |
— 0
- .
- .
-
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0, = L
40% -
-—y
=4
= 30%
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A
4 Zone3
0% — | e Linear (Zone 1)
——Linear (Zone 2) .
= =| inear (Zone 3)
0% T T T T T T ‘ T
-180 -160 -140 -120 -100 -80 -60 -40 -20 0
Threshold

Figure 4.5: EER and linear trends for Zones 1-3

distinguish well between an imposter and an authorized individual) the point at which the
FA and FR meet will be low. Ideally, as the threshold is loosened (becomes more
negative) the FR rate will be zero before the FA rate curve can begin to increase, leaving
an EER of zero. The same scenario, where A is close to zero for TAs and much more
negative for TRs, indicates that a FA will not occur until 8 is much more negative.
Likewise, false rejects will not occur until the likelihood is near zero. The increase of FR

as the likelihood approaches zero is because of the system’s ability to detect an
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authorized individual at a A close to zero. Therefore, as 6 increases along the x-axis, the
EER increases along with it. In Figure 4.4, the best performing system are in the lower
right corner (close to zero on both the x- and y-axis) and the worst performing system are
in the upper left portion of the graph. Most systems’ equal error rates ranged between
30-45%. However, the range of System 1 was well below most systems at 7-28% and
System 10 was well above most systems at 50-55%.

For systems with a mismatched condition, EER were greater. The distribution of
EER from the mismatched systems was for the most part tighter with the exception of
System 10 (See Figure 4.6). System 10’s threshold level for Zone 1 was -75, for Zone 2

was -77 and Zone 3 was -325, with EERs of 0.511, 0.495, and 0.540 respectively. All

EER Rates For Mismatched Systems 1-10

in Three Levels of Background Noise
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Figure 4.6: EER for all Systems in all zones under mismatched conditions
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other threshold levels were between 0.395 and 0.504. Performance change due to noise
was greatest when the background noise level was increased from Zone 1 to Zone 2.
From Zone 2 to Zone 3, performance variations were less with some performance

improving.

Section 4 — Discussion

The results of the ‘Nearest-To’ decision algorithm further validates the notion that
the condition of mismatched enrollment and testing microphones has a major effect on
speaker recognition system performance [70-72]. Noise had an effect on the error rates.
When the noise level increased from <45dB in Zone 1 to 55-65dB in Zone 2, the EER
generally increased and the threshold level generally became more negative. This EER /
threshold relationship was true for both the matched and mismatched systems when
moving from Zone 1 to Zone 2. The relationship held true as well for the mismatched
systems moving from Zone 2 to Zone 3. However, a different phenomenon was observed
in the matched systems when increasing the noise from Zone 2 to Zone 3. In these cases,
0 continued to increase, however, the EER decreased in 80% of the cases (see Figure 4.4

and Table 4.4). Recall that it was stated that the EER would generally increase as the

Table 4.4: Percent of Systems with EER & 0 Looseness Increases with Increased Noise

MISMATCHED CONDITION MATCHED CONDITION
THRESHOLD 0 EER THRESHOLD 0 EER
Zonel to Zone2 60% 1 70% 1 90% 1 90% 1
Zone2 to Zone3 90% T 80% T 90% T 20% T
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threshold increased. The increase did not occur when going from Zone 2 to Zone 3 with
matched conditions. One explanation for this is that the FA / FR ratio changes. As the
noise increases to a loud level, the FR rate will naturally increase (the curve will move
left) as it is harder to isolate and extract clean voice features. However, the increase in
noise also makes it hard for an imposter to match the voice sample Yy The imposter’s
inability to be falsely accepted moves the FA curve left. The change in ratio explains an
increased 0 even with a decreased EER. It is not that the system improved, just that the
ratio of errors was altered. The lower EER with higher thresholds illustrate the idea that
0 is required to describe system performance. It is important to note that the EER is not a
design point but a point of simple comparisons on the DET curves.

Even in the presence of noise, the mismatched condition was the variable in this
study that had the most prominent effect on system performance. This effect is further
illustrated in the threshold decision experiment. The probability distributions are plotted
in Figure 4.7. The dotted lines represent the mismatched zone. Note that in each case the
mean EER of the mismatched condition is significantly higher than the matched
condition. Also of note is the variances of the matched cases are significantly larger than
that of the mismatched cases. The difference in variance denotes a shift in system
performance of a few systems. The EER in mismatched conditions never approach the
low rates seen in the matched condition. However, on the high error rate end of both

conditions, the EERs are relatively close in value.
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Figure 4.7: Zones 1-3 for matched and mismatched conditions - Probability
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By overlaying the graph in Figure 4.4 with the graph in Figure 4.6, as is done in
Figure 4.8, the shift in EER and threshold can be seen. The mismatched condition equal
error points had a tighter distribution than the matched condition. The average threshold
level shifts up 28.1% and the EER has a 22.5% increase when a system goes from
matched to mismatched conditions. It is clear that the mismatched condition has a

significant effect on system performance.
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EER Rates For Both Matched and Mismatched Systems 1-10

in Three Levels of Background Noise
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Figure 4.8: Overlay of matched and mismatched EERs

The second objective was to compare each system against each other to determine
if some recording systems perform better than others in speaker recognition systems. The
comparison between systems is illustrated in Figure 4.4 and 4.6. The graph in Figure 4.9
shows the EER of each zone stacked on top of one another. The stacked plots allow one
to look at each system in each zone and compare. The stacked plots represent the sum of
EERs in the three zones and illustrates overall relative performance. When under
mismatched conditions, systems had a summed EER of 1.25 to 1.55. This range
broadened to 0.5-1.54 for matched conditions. Several systems performed notably better
in matched condition, especially when in Zone 1. System 1 in Zone 1 had an EER of 7%.
Even in its worst performing zone (Zone 2) System 1 had an EER of 28%. System 1

performed better that other systems given matched conditions. It is also of note that
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Systems 7 and 9, which were the same model microphone, performed similarly in most
cases. By reviewing Figures 4.4, 4.6 and 4.10, it can be seen that System 10 was by far

the worst performing system in all cases. System 10 was one of the four systems that
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Figure 4.9: EER Summary

required a file format change. However, the format change did not appear to play a major
role as Systems 7, 8 and 9 also had format changes and were among the top performers.
In matched conditions it is clear that some systems are significantly better suited for
speaker recognition than others. In the mismatched condition, it is not as clear how much
performance depends on the recording system. System 10 still performed significantly
worse (see Figure 4.6), however the rest of the systems had a significantly smaller
deviation from the norm. In matched conditions, the microphone plays a significant role
in speaker performance. Choosing the proper microphone for the authentication system
is important. Or in the case of uncontrolled microphone usage, such as in many
distributed systems, it would be important to consider the recording system and design
accordingly. One such method for design may include utilizing a proper score
normalization technique. A method of evaluating microphone error rates, such as the

method used in this thesis, would be useful in making system design decisions.
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CHAPTER V

CONCLUSIONS

Section 1 — Summary

In distributed systems automatic identity authentication is a difficult aspect to
control. Often identity authentication systems can decrease susceptibility to a security
breach by adding extra elements to the authentication of one’s identity. There are three
main divisions in the methods of identity authentication; what you know (example:
password or login), what you have (example: debit card or key) and what you are
(biometrics). Biometrics is a measure of what you are or what you do. Speaker
recognition, the biometric of voice, utilizes one’s voice as a metric to detect a specific
speaker.

Over the past five decades great strides toward wide-spread commercial speaker
recognition systems have been made. Early research in speaker recognition was in the
realm of human abilities. Later war time research allowed for significant advances,
producing a tool to allow visual inspection of voice. Advances in signal processing
techniques and the rise of the computer permitted true automated recognition systems to
be developed. Early systems such as Doddington’s text-dependent system found
measures of success spurring on the research for automatic text-independent systems.

One of the outstanding issues in the field of speaker recognition is handling
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environmental variations such as channel effects, background noise, intrapersonal
variation and microphone variability. Much progress has been made in these areas. Yet,
environmental variations remain as one significant dilemma to real world speaker
recognition, especially in distributed systems.

For speaker recognition systems in a distributed application microphones are apt
to vary. Frequency response to different microphone transducers can vary widely.
Microphone variation can produce two non-matching signals for the exact same
recording. The objective of the research was to discover whether or not the varying of
microphones has an effect on the ability of a speaker recognition system to perform
identity authentication.

The task of speaker recognition is divided into two phases, enrollment and testing.
An enrollment voice sample was taken, features extracted, and a model generated.
During the testing phase a voice sample was taken, features extracted, the extracted
features were measured against the model and a decision was made, accept or reject. The
system used in this research used the common feature of MFCCs and common modeling
method of GMM. A log-likelihood ratio comparison was used in the decision process.
There were two decision algorithms used in the experiment. The first was a ‘Nearest-To’
algorithm where the person with the log-likelihood ratio closest to zero was accepted and
everyone else rejected. The second algorithm was a threshold algorithm. The FA and FR
rates were measured as the threshold 6 was varied. Which side of the 0 the log-likelihood
score fell on determined if one was accepted or rejected. The specific objective of the
research was to determine how error rates vary with respect to a variation in

microphones. Two types of microphone variation were investigated. The first type of

63



variation study was to understand effects on system performance when the microphone
differs from the enrollment to the testing phase. The second type of variation study was
to understand how a system performs in relation to other microphones when in similar

environments and setups.

Section 2 — Conclusions

The research in this thesis demonstrated and utilized a method of evaluating
microphones for use in speaker recognition systems via error rates. The experimental
results show the effect that microphone variability has on the error rates of speaker
recognition systems. Two types of microphone variation that alter the error rates of a
speaker recognition system are illustrated in the results. The first type of variation
analyzed was when the enrollment and testing microphones were different. This is
referred to as a mismatched condition. The second type of variation analyzed was how
different microphone error rates vary without regard to environmental conditions such as
matched and mismatched conditions. First, mismatched systems are responsible for
significantly higher FA & FR rates. The mismatched-transducer effect has been seen as
well in past studies, though the past studies have focused on telephone applications. The
research presented in this study concurs with previous assumptions, that the mismatch
condition has a significant effect on speaker recognition error rates. Noise affected error
rates as well. However, the noise effect was insignificant when compared to the effect of
a mismatched condition.

The second analysis showed that some microphones had better speaker

recognition error rates than other microphones. The EER for System #1 had lower error
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rates with more stringent thresholds. System #10 error rates are significantly higher than
the majority of systems and are more than 40% higher than System #1. The rate
variations illustrate that speaker recognition system design must account for microphone
variability in order to be viable in distributed environments.

A method of evaluating microphones for use in speaker recognition systems was
successfully demonstrated and utilized. In the case that a false accept has a higher
associated cost the method can be used to assist in threshold setting. If a false reject is
more important, the method is just as useful for threshold setting. Further studies are
needed to evaluate if the slope of the DET curve can be used as an indicator of system
robustness to environmental variations. The system utilized in the research had typical
classifications of accept or reject. A future study ought to be undertaken to evaluate error

rates in systems with a third ‘undetermined’ classification.
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APPENDIX A

Error Rates for ‘Nearest-To’ Algorithm

Appendix A provides a table of results from the *‘Nearest-To’ decision algorithm. Rows
of the table dictate the system used for enrollment. In the top portion of the table the
columns of the table indicate which system was tested and in which zone. Each cell’s
percentage rate is the percentage rate of 15 samples including all 5 speakers saying
Phrases 1-3. The bottom section of the table is a summary of the top portion. This
includes matched (same microphone used in enrollment and testing phases) and
mismatched conditions (microphone used in enrollment phase is differnet than
microphone used in testing phase) for each of the zones, total error rates and total error

rates for each zone and both conditions. This graph is further summarized in Table 4.2.
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APPENDIX B

False Accept and False Reject Rates

Appendix B provides includes a sample table utilized for calculating and plotting DET
curves and EER in the threshold algorithm. The FR and FA rates are shown for both the
matched (same microphone used in enroliment and testing phases) and mismatched
condition (microphone used in enrollment phase is differnet than microphone used in
testing phase) for all users saying Phrases 1-3 on a particular enrollment system in a

specific zone. The entire data set may be supplied upon request.
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QUITE ZONE - 9 SEC

System

Maize Level

0

Enrallment Sample

Threshold FR match FA match FR match FA match PR nenfd FA nonfd PR nonfd FA nonbd
1 15 a 1 a 135 a 1 a
2 15 a 1 a 135 a 1 a
3 15 a 1 a 135 a 1 a
4 15 a 1 a 154 0 03326 a
5 15 a 1 a 130 a 0363 a
& 15 a 1 a 123 1 08556 0.00135
T 15 a 1 a 126 2 08333 00037
-] 15 a 1 a 126 703 00236
3 15 a 1 a 121 12 05363 002222

10 15 a 1 a 120 23 05553 004253
1 15 a 1 a 120 34 05553 006236
12 15 a 1 a 120 40 05553 0.07407
13 15 a 1 a 120 45 08583 005333
14 15 a 1 a 120 43 05553 003074
15 15 a 1 a 120 56 05563 01057
16 15 a 1 a 120 55 08553 010741
17 15 a 1 a 120 55 08553 010741
18 15 a 1 a 120 60 0E553 o111
13 15 a 1 a 120 60 05553 a1
20 15 a 1 a 120 B0 Q&S5 04111
21 15 a 1 a 120 60 05553 a1
22 15 a 1 a 120 B0 0E553 041111
23 15 a 1 a 120 60 05553 a1
24 15 a 1 a 120 60 05553 241111
25 15 a 1 a 120 60 05553 a1
26 15 a 1 a 120 60 05553 a1
27 15 a 1 a 120 60 05553 a1
25 15 a 1 a 113 60 05315 a1
23 15 a 1 a 13 60 05515 o111
30 15 a 1 a 13 61 0574 011236
3 15 a 1 a 1t 65 08667 012057
32 15 a 1 a 17 67 05667 042407
33 15 a 1 a 117 65 0EBEET 012533
34 15 a 1 a 116 ™ 08533 042363
38 15 a 1 a 116 ™ 08533 043143
36 15 a 1 a 114 T2 05444 043353
3T 15 a 1 a 114 6 05444 044074
G 15 a 1 a 13 I 0537 014253
iz 14 1 03335 06T 12 G4 05236 015556
40 13 1 08667  OQU0IGT m a0 0Ez2e2 06667
41 13 3 05667 .08 il 6 0222 0TS
42 13 3 0.866T 0.05 104 o4 0TT0d 013253
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APPENDIX C

Detection Error Tradeoff Curves

This Appendix provides detection error tradeoff (DET) curves for each enrollment
system. Each DET curve represents all speakers saying Phrases 1-3 in a specific zone.
The dashed lines represent false accept (FA) rates and the solid lines represent false reject

(FR) rates. The X-axis in the DET curves are the log likelihood ratio, abbreviated LR.
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Error Rate

Error Rate

DET Curves - Matched vs. Unmatched
System 3, <45dB, g sec Enrollment
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Error Rale

Error Kale

DET Curves - Matched vs. Unmatched
System 5, <45dB, 9 sec Enrollment
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Error Rate

Error Kale

DET Curves - Matched vs. Unmatched
System 7, <45dB, g sec Enrollment
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Error Hate

DET Curves - Matched vs. Unmatched
Svstem g, <45dB, 9 sec Enrollment
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Error Rate

Error Rale

DET Curves - Matched vs. Unmatched
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APPENDIX D

Distribution of Speaker Likelihoods for True Accepts (TA) and True Rejects (TR)

Appendix D plots the distribution models of the likelihood scores of Systems for
true accepts, true rejects and a sample of matching a true accept with a true reject

in a matched condition.

B3

Distributions of Log Likelihood for True Accepts (TA) in Zone 1 for
Systems 1-10 (Match and Mismatch condition)
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i

Distributions of Log-Likelihood for True Reject (TR) in Zone 1 (for
Systems 1-10 (Match and Mismatch condition)
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APPENDIX E

Phrases 1-4 Used For VVoice Samples

Appendix E contains a list of the phrases used in the voice sample collection stage of the
thesis. Phrase 1-3 were utilized during sample collection on October 18" 2008. Phrase 4
was utilized during sample collection on February 8" 2009. Phrase 4 was only spoken in

Zone 1. Phrases 1-3 were spoken in each zone.

Phrase 1:

“Hello my name is (user states first and last name)”

Typical time duration: ~2-3 seconds

Phrase 2:
“Can you tell me how to get to Sesame Street?”

Typical time duration: ~3 seconds

Phrase 3:
“A Winston Churchill Quote: I like pigs. Cats look down on us, dogs look up to us, but
pigs, they treat us as equals.”

Typical time duration: ~9 seconds
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Phrase 4:
“ I, Nephi, having been born of goodly parents, therefore | was taught somewhat in all
the learning of my father; and having seen many afflictions in the course of my days,
nevertheless, having been highly favored of the Lord in all my days; yea, having had a
great knowledge of the goodness and the mysteries of God, therefore 1 make a record of
my proceedings in my days. Yea, | make a record in the language of my father, which
consists of the learning of the Jews and the language of the Egyptians.”

Typical time duration: ~28-33 seconds

Quote from 1 Nephi 1:1-2 in “The Book of Mormon”
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APPENDIX F

Program Listings

Appendix F contains the program listings for all customized programs utilized throughout
the thesis. The first section is the MATLAB portion of the speaker recognition. The

second section includes MSExcel VBA programming. The VBA code is the two decision

algorithms, “nearest to’ and threshold.

I.-l
Aeo

A M

WAVREAD

Trmmeny_duin Tors domae spasch dats

mealcepst

T Peatuen. Tong wecion of 12 MFCCa

Emim_estimate

S, fiegml_Hien, ©_ W g, B, Sed was i mach contabunig plukiee o sach NFOC weois

Imultigauss

TYLE 19 i th bigiabbsset of e lmtuow smcios

The svmmige log bbmiacd of mich pomd = o leetues wciores e GV o 1hall ftues secto
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dispi* o H
dispi" Spezioery pecomiition Penoe'jz

dispi'A siwpile demwenstration of spesirer Mecomuition using NFOCs and GIE'):
disp"Speech Processing and Biesetrics Gromp -IT5, EPFL"):

dispi* ol

iProgren edived by Clark Sheawer tasilered te specific resesrch ohjectives.
HWizin progian Lo CHEIpATE BENY Sewples in one SeISicH
310 Detober 2009

Bo_of Gamssians=32; Sdefine 2ll the inwsrisnts
for trainer = 1:9

switch trainer
case L
[trzining dstal,Falr]=-wevread( "E:\Thesisilic sauples Files\Vaice
Sapp les\TEST :ER FebBth_200305ec_Leujia] seleveNElainsiNic] _deskooy_1inchii0e3104.wew") -
[m:m_mz Fszr]swevreadi'E:\ThesisilMic ssmples FilesiVoice
Seuples\TEST_SEVZ_Febbth_ 200t 3Sec_Lovileiselevel\CazolmiNicl deskvop_linch) Wceilod, war'):
[mnnlq.m,mr.]mmt 'E:\ThesisiMic semples FilesVoiCe
Sanples\TEST_SET2 FebSth 20094 305ec_Loullai selevel\Clark\Micl desktop Llinchi30cs3104.war");
[ua:m:q_ﬂa&,?s&z]m{'t'\ngm.sm: sanples Files\Veice
Sanyles\TEST SET2_Fsbfth 2000%305ec_Loulleiselevel\TaiwieiNicl desktop Llinch\30ji5L04.wav");
[u:annnq_“as FeSrj=wevread ("E:\ Thesi s\Mic cemples Files)Vaice
Sapples\TEST_SEVE _Febbth 2009\ 305ec_Loujle] selevel\PonnieiNicl_deskomp linch\d0r3l04.wev" )
caze Z
[Trsining mhﬁh]ml'ﬁﬂmﬂﬂic sapler Files\¥oice
Saaples\TEST _SET2 FebBth 200%, 30Sec_Loulled selevel\BlaineiNics guichcen Linch) 3003804 wav' i
[treining_detaz, Fs2r]=-vevresd | 'L: A Thesisi¥ic ssples FilesiVoise
Seaples\TEST ! Eﬂ FebBth 2000, 305ec_Louwiled selevel\CavalymiMic? epiciocan 1inch\30cal2048. wav' ) ;
[m:mq_ms Feir]=wevresd [ "E:\Thesis\Mic sawples Files)Yoick
Seaples\TEST SETZ FebBch 2005, 305ec Louilod selevel\Clark\NicZ guickcan LinchlI0csXZ04.wav");
[m:m deied, FRarl=wevread ("B \Thesis\Hic ssuples Files\Vojoe
Seaples\TEST_SET2_FebSth_20094305ec_Louiled selevelVWaimie\Nic2 gquickcan 1inch 3033204.wav" )
[mm:ua; deral, MtJWI'&IMSWC seples Files\¥oice
mr@rg SETZ_Febbrh 200, 300ec_Lowied seleveli\RormieiNick guickhean Lineh J0eiiid. wav'];
case
[traiwing d@stal Felr]=wevreasd ("E:\ThesisiMic semples FilesiVedce
Seuples\TEST_SETZ_Febfth 200054 MicSec_Loufeiselevel\Blaine\NicZ_muickeen lZinch) b4, wav'):
[l::am:mq_mz m:]m('i’\MEuﬁz Seam Lles F!.ll:s".\'m.oe
Sapples\TEST_SEVE _Febfth 200 30S5ec_Loujlel selevel W CarolmiNics mmm - H
[traiming @sta3, Fsdr)=vevresd ("E:\ Thesis\Mic semples Files
Fauples \TEST_3ETE_Tebtth_200%, 3icSec_LovliglseleveNCLatiaNics W L2inch) Wos g, wpr')
[traininy_dered, Fedr)=eeeread ("E:\Thesi=\Mic samples Files\Valce
Seuples\TEST _SETZ_Febfth 205, 3¢Sec_Lowlieizelevel\JaiwieiNice_owickeem 12inch 033304, war'):
[m:m!q_ms,m:]m('!:'\mﬂlfm semp les Files\Veice
Seuples\TEST_SETZ_Febfth 200054 3ictec_Louflel selevel\Romie\ NicZ_smickoen LZinch) riid. wav')

case 4
[training datal Fslrl=wevread("E:\Thesis\Mic sesaples Files\Vaice
Faaples \TEST_SETE_Tebbth_200H 3icec_LovllelseleveNBlalmgiNics mm_umxmwn
[traininy_dera?, Felr)=eeeread ("E:\Thesi=\Mic samples Files\Vaice
Seaples\TEST _SETZ Febfth 200034 3ec_Loullelselevel\Carolymilics esrpiece linch)Mcedd04. wav') :
[tralning derss,Fsir]=vevresd ("E:\Thesis\Mic seamples Files\Voice
SauplesiTEST_SETZ_Febfrh _200e, 3ictec_Loullel seleveliClarkiNicy_earplece_Lingi Alics340d. wav') 7
[m:m:q_ﬂa&,ﬁh]m('i’\mguﬁz Saaples Files\Veice
Seuples \TEST_SETZ_Tebfth_20ks, 30cec_Louled selevelyJaiwieiNicy esvplece linchy 303404 wav' ]
[tzaiuinq_ms Fsiz]m('t'\m’m semples Files\Vaioce
Seaples\TEST_3ETZ FebBrh_200ish 3iSec_Louled selevel\RonnmieANics_esvplece_linch 3heistd. wev' )
case §
[Traiwing_detal, Falr]-wevresd ("E:\Thesis\lNic sewples Files\Voice
Senples\TEST_SET2 Fehbth 20004 305ec_Laullaiselevel\El aiwet Mic3_eerpiece_on Eer\30L3504.usmr'):
[mnmu dataZ, Fs2r]-wevread|"E:\Thesis\Mic seuples Files\Vaice
Sanples\TEST _SET2_FebSth 2009, 305ec_Loulleiselevel \CarolymiMics_ssrpiece en Eeri3OceS504.waw ) :
[mmmu @ata’, Feir]=vevread("E:i ThesisilMic ssuples Files)Voice
Seaples\TEST mz Feblth 200, 305ec_Louiled selevel\ClarkiNicT_earpiece on Ear’ J0csI504.wav');
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[traiming detad, Fedr=vevresd('E:\ Thesis\lfic samples FilesiVeice
Saaples\TEST_SETZ Feb8th 2000 305ec_Loulod selevel\Jaimie\Mics esrpiece on Esx\3073304.war")
[training_dsta$,FsSr]svaveesd( 'E:\Thesis\Mic sawples FilesiVaice
Saples\TEST_SETZ Febsth 200M.305ec_Loulod selevel\RomileAMics escpiece i Eo\30r3508.waar) 7
case &
[training detal ,Fslv]=sevread| E:\ Thesis\Mic samples Filesi¥aice
SaplesiTEST SETZ Febfth 200%, 3¥fec LovliolzeleveliBlaineillicd bleinchesdzet, Hb3604.wav'):
[ dera?, Feir |=weveead ("E:\ Thesis\Mic samples FilesiVaice
Samsles\TEST_SETZ Febith RIS\ 30Sec_Lowlol seleveliCarolmiificd bleinchesdser) Hce3fld. wev')
[traiwing_detes, Fedv)=uevresd ('E=\ Thesis\lic swples FilesiVoice
Faples \TEST_SETZ Febdth 20008 30Zec LowlolseleveliClaviilicd blaireheadset Mesi6id. war ')
[t:am;ng_m-ﬁ E—h]m('iﬂm&a’\ﬁc smplez Files\ ¥aice
Zamples \TEST_SETZ Febdvh 2009 305ec_Loulol selevelidaiwieilicd bleincheadseri J0i3604.war'y;
[traiming detal,Fsir]=weveead [ "E:\ Thesis\Nic samples Files\ Vaice
Samples\TEST_SETZ2_FehSth 2000 305ec_Louliod selevel \Ramvie\Micd hlsincheadsec) 30r3804. waer'§ 2
case T
[training datal,Foly]-wgvresd('E:\Thesis\Mic zamples FilesiVedce
Sewples \TEST_SETZ_FebSth_200%\ 30Sec_Louloi selevelLlBlaine\Mich_clerkVoiceRecorder_Linchi 30p3704. ugv

L}
lf
[Tradwing_delal, Feir]=vevieed (" \Thesis\Nic 2amples FilemiVoice
Famples\TEST_SETZ Feb@th BOIS 30Sec_LowlolzeleveliCamplmiMict cleckVolceBerorder Linch)30caiikd.w
av']:
[traiwing_deral,Fsir]=usviead ("E:\Thesis\fic samsples FilesiVedce
Saples\TEST_SETZ_FebSth 2009 305ec_Lovlbizelevel\ClakiNicé clerkVoiceRecsnder Linch,30cs3T04. uev

Il'

[traiming_deed, Feiy =wgviee] ("B ThesifANIc samples Filed\ Voioe
Famples \TEST_SETZ_Febfrh 20IH30Zec_LowlolseleveliJaiwieiMich_clarkVeiceRecorder Linchi 313704, wav
'¥:

[traiwing deral Fsir]suaveeed ('E:\Thesis\Mic samples FilesiVodce
Faples\TEST_SETZ m 20y 3rSeg_Lovioizelevel\RemnieiNict_clatkVelceRerordey Linchi Fivns. vy
I!'

cage §

[traiwing decal Folv]=wevread('E:\Thesis\Mic samples Files\¥eice
Faples \TEST_SET Fepdth_200%, 305ee_Lowlnizeleve \BlaineANics_clerkVoiceReoardeMITH sarpiecs (ies
c b0 v ) 2

[Tradwing_delel, Feir]=vevieed ("B \Thesis\Nic 2amples FilemiVoice
ZFamples\TEST_SETZ Mmm Louliol seleveliCarolm\Mict_clerkVolceBerorderWITH eaplece_one
A\ Hoa s, vav') ¢

[traiwing_deral,Fsir]=usviead ("E:\Thesis\fic samsples FilesiVedce
Smmles \TEST_SETZ Febith 2%\ 305ec_LowlolpeleveliClarkiNich_clatkVolceRecorderiITH eerpiece onear
\mw;,

[craiming_deied, Fedy | =wgvies] "B\ ThesifANic saples Filem\ Voice
Saaples\TEST_SETZ Feb8th 2000.305ec_Lowlvlselevel\lzime\Mics clasrk¥elceBecorderiiITH earpiece onea
My ) ;

[traiming dera’$,Felr]=weviead [ "E:\Thesis\Mic semples Files)¥oaice
Smnles\TEST_SETZ FebSth_20M%\ 305ec_Lowlolpelevel\RemrieiNics_clerkVeiceRerorderlilTH sarpiere mnes
nmmmw;.

[tmn]ng decal Fslr]-wevread( "E:\ Thesis\Mic semples Files\Veice
Famples \TEST_SETZ Febfth 2oy 30Zec_LowlolselevelifilaineiMicT DAckenVoiceRecorder linchipibho04,w
av'):

[Tradwing_detel, Feir]-wevieed ("B \Thesis\Mic saapler Filem Voice
Saaples\TEST SETZ m L2000 3085ec_Lowliol selevel\Caralym\MicT DRAckeifoiceReconder Llinch) 30ca3904

B

[training_ detas,Fsir]=sevread ("E:\ Thesis\Mic samples Filesi¥aice
Faples\TEST_JETZ Febdth 20 3iZec_lLoviolselevelwllarkiNic? DRAckewiolceResorder Llinch30cziold,w
avll -

[Traiwing_detad, Fedr]=waveeed ('E:\Thesis\e pamples FilesiVodce
Semples\TEST_SETZ_Febdth 2009 305ec_Lowlioi selevel\laimie\NicT IRhckentoiceRecorder_lincii 3073904, w
&'

[traiming dera$,Felr]=weviead [ "E:\Thesis\Mic semples Files)¥oaice
Faples\TEST_SET Febdth_2000%: 3ifec_Lowiiolselevel\Remiie\NicT_DRAckenVoioeRecorder linchi30riotd, w
“l] -
end

disp{"Compleved reading vraining data’):
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[Training_dscad, Fedr|-weveesd ('E:\Thesis\Mic zamples FilesiVoice
Saaples\TEST SEIZ Feb3th 2000 305ec_Lowliod selevel) Jaiwie\Nic3 esrpiece on Esc\303504.warr"] 2
ltmm data’s, Fesr jsuevread ('E:\ Thesis\Mic samples TilesiVaice
Sauples\TEST ! sr:lz FebSth 2009 305ec_Louliol selevel \Rowiiet MicS_esrpiece_on Esc)30r3508. war') :
case &
[Craiming_dera) Fslr)-wevresd('E:\ Thesis\Mic sssples Filesh\¥aice
Saples\TEST_SETZ Febith 2009\ 30Sec_LovliolseleveliBlaineiNicd bleincheadseri\30b3604, vav'):
mm]wi-rxmmﬁc s‘plﬂ mmm
Saplesi\TEST_SETZ Febdth 20M0\30Sec_Lovlbol seleveliCarolym\Micd bleincheadseti Jca3tid. wev') 2
[tradwing_detas, Fsivl=vevpesd (A Thesis\Wic swples FilesiVoice
SaplesiTEST_SETZ _Febdth 2005 305ec_Lowlod seleveliflakilicd blainehesdseti 30cs3604.waw ')
[tzam:ng dedad MJMI'I'EM zauplez FilestVaice
Saaples\TEST SEI’Z Fehdrh 2009 305ec_Lovliol selevelidaiuieiMisd blaincheadsert 203604, war 'y
[ _deral, FSSr ) =wvevresd {"E\ Thesis\Nic samples Files\ ¥aice
Samples\TEST | SETZ | _Feh@th 2000 305ec_Lovlod seleveliRBowvielMicd hlsincheadseci30e3804. var' )
case T
[training_datal, Fely]-wevreatd("E:}\ Thesis\Mic samples Filesi¥Veice
Samples\TEST sn‘e Febfuh_2009, 30Sec_Lowlodseleve I\BlaineAMich_cletiVoiceRecordey Linchh 5093704, ugv

"1:

[nraiming_detas Feiv]=weveesd "B\ Thesis\Wic 2amples FilesiVoice
FamplesATEST_SETZ Feb@rh 2009, 305ec_Lewlol seleveliCamplm\Mict cleiVolceBecorder Linch)30celiid.w
av'}:

[traiwing daral, Felr]=usvresd("E:\Thesis\Mic sawples Filesh\Vadce
Saples\TEST_SETZ Fab8th_200% 305ec_Louloi selevel\ ClarkiMics_clerk¥aiceRecorder_limcid S0c53704. uav
Ij:

[Traiming _deted Feiv]=wevpef"ENThesisa\Nic swples FilefmVoios
SamplesiTEST_SETZ Febdrh 20009 305ec_LewlolseleveliJaimieiMict_clerkVeiceRecorder lLinchh HI3704.wav
"1z

[rraiming _deral, Fsir]swaveesd('Ex\Thesis\Nic samples FilesiVoice
Sanles\TEST ! SETZ | . _Febith_20M% 3Sec_Loviol selevel\Remieilict_cletkVeloeReoorder Linchy Sivod, uav
Il'

case §

[craiwing decal Fslv]=wevread("E:%Thesis\Mic samples Filesh¥oice
Samples\TEST_SET2_FebSth_2009.305ec_Lovloiseleve\BlainsAlich_clerk¥oiceReonrder¥iTH_satpicce_ones
e b0 vt ) 2

[trainine_deraz, Feir|=wvesd("E:\Thesis\Nic samples FilesiVeice
:LHM\'!ESI' Sﬂ?- MMW Lowliol seleveliCamlm\Mict_clerkVolceBerorderVITH earplece one

[t:a:mng ms SJFelr]=uavread ("E:\Thesis\Mic samples Files\Voice
SaaplesiTEST_SETZ _Febdth 20009 305ec_Lowlol seleveliClarkiNich _clarkVeiceRecorderiITH esxpiece _onear
\mw;,

[Trainming _deled, Feirl=wevresd ("B Thesis\Nic saples Filef\Voijoe
Sauples\TEST_SETZ Febdth 2000 305ec_Lowlol selevel\Jzimie\Mics clerkVeiceBecorderITH earpiece onea
EAIO R0 ' ) 5

[coaiming derel,FsSr]=mevread ("E:\Thesis\Nic semples Files\ ¥aice
Saaples\TEST_SEVZ Febsth 2009 3Sec_Louloiselevel\RemneiNice_clarkVelceRecorderliITH earpiece tnes
NS vt § s

case ¥

[craiwing decal Fslv]=wevread("E:\Thesis\Mic samples FileshVoice
FamplesiTEST_SETZ Febfth 2009 3%ec_Lowlol seleveliBlaineiMicT_DRAckenVolceRecorder linchii0bo0d. w
&?l] -

[Lraining mz.m::wrmmmﬁs pawples Filer\Veice
Sanples\TEST ! SEI:Z Febdth 2009, 305ec_Lowliol selevel\ Carolyn\HicT DRAckenVeiceReconder Linch)30ca3n0d

wll'

[traiming_detas,Fsir]=wevread ("E:\Thesis\Wic ssmples Filesh\¥aice
SaaplesiTEST_SETZ Febdth 20003\ 305ec_Lowlol seleveliClarkilic? DRACkeYWolceRecorder Linchi30csFold. w
av'j:

[traiwing_detad, Feér |-vevpesd ("E:\ Thesis\Wic zamples Files\¥alce
Samples\TEST _SETZ Feb8th 2000 305ec Lowiolselevel\daiwieANicT DRicken¥oiceRecomder Linchd30313204.w
aw'):

[coaiming derel, FsSr]=mevread ("E:\Thesis\Nic sewples Files)\ ¥aice
SapleshTEST_SETZ Febdth 2000 3iSec_Lovioizelevel\Remiie\NicT_DRAckhenVoliceRecorder linchiiirisnd. w
av'y:
end

digp"Completved reading training data’):
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Saples\TEST_SETL 0ol m_mmmmw FicZ_duickca ) iwch)uds0Z vev’):
[Testing ders6, Fste |=usrread| 'Ex\Thesis\Mic zamples FileriVoice

Semples\TEST SETL bcrlbth 2080llederatcibiseleveliblains’\ Micl gquickoms Linchiuhle03. vav']
[vesting face?, Fe¥s |=vewreadi E:\Thesis\Mic swples FilesiVoice

S Les\TEST_SETL _Ocrl Brh 2066 Maderatelal seleve 1\l aine! Micd_quichess 12iRchi b0l wvav']
[vesving daesd, Fobs |=werread] "E\Thesis\Mic samples Files\Veire

SampiesV TEST SETL Gcul Brh 2068\ Mederatcioiselevelthlaine ficd_gquickcean 1Zirch\ubiB0Z. wev' |2
Ii:esl;mq_hﬁ!,?sk |-wawread] 'E:\Thesis'Mic semples Files\Woice

SewnlesyTEST SETL BotlBth 20 HederateBoiseleveliblains’ Mcl oquickoan 12inciiub0803.wav'];
Imag_m-l.ll mmm "B \Thesis\ic samples Files\Wadce

SamplesATEST_SETL Dorloth 2000\ Hederetelolselevellblalns\ Mich_cagpiecs linchied 00l wev')
[vesTing dstall Fells}=ssvread('E: \Thesis\Mic sanples Files\Walce

S les\TEST SETL_Ocrl Brh 206\ ederateioiseleveitnlaine! Mics esuplecs lincid sl W0z wew"
Im%mﬂz ?-ﬁ-h}-wrlmﬂ "B \ThesisAiie saaples Files\Woice

Sawales 3 TEST _SETL Octl Sun 206 Mederatelinl selevelin] sins! Fici_esquier: linchimbl203.uvev’);
[westing dstal 3 Fellds=wawead|"E: \Thesis\ific sanples FilesiVoice

S les\TEST _SETL Octl 5rh 206\ aderatcfoiselervellnl ainet Mics esepiecs an Esv\mhISOL.wew'
[vesTing Gstalq,FElel=usvread|'E: \Thesis\Mic sanples Files\Valce

SamplesiTEST SETL Borlleh Z000AMederztelni seleveliblains’ Micd esqpiecs on Eariubla0Z.wew'};
It:stinq datal 5, Fal s j=wramead | "E: \Thesis\¥ic sanples Filesl¥adice

Sawp les\TEST_FETL_Dcvl3th 200\ Medereteloiseleve\bl4ins Mic3_corpiecs_on Barabli03.wev' [
Ian&ﬁlir?ﬂﬁWmﬂ 'E: \Thesis\ific samples Files\Vaice

Sea les TEST _SETL_Ocrlbth ZieH\iederavelioiseleveiihlsine’ Mfied Elxivehesdserinbd 600 .wav' iz
[resting | daeal? [Pl s j=wmaread|"E: \Thesis\Mic sanples Files\Vaice

Samples\TEST _SEVL Octlbul 2006\ ihedersteliolselevelinlaine Hicd Elainehsatseciuhl M02.wav" ) 7
[vesting datal 3, Felis]=wanead|"E: \Thesis\lfic sanples FilesiVadce

SepiesiTEST SETL_OctlBeh Zi@\lhederatefiselevelihlaine’ icd BlxincheadsecinblB03..wav' i
[zesting futaZ3, Fe2ss)=wavread('E: \Thesis\ic saqples Files\Vaice

Samales\ TEST_SETL OctlSth Z0eEhedersteloiseleve il aine! MIcE_Cuctish¥p larer linchinhl SN0 WET")
[vescing sfaesZ?, Fs2%s j=wavread| "E: \Thesis\ific sanples Filesl¥odlce

Samples \TEST _SETL_0cel el _Z0ed\Hoderateliselevel il wing' KICH_Cuctisi¥iu lumey _LinChALbgols War )2
[rescing dsradl Fedls|=ssvread( E: \Thesis\fic saaples Files\Valce

See lesTEST _SETL OcrlSrh 206 Hederateloiselevelthlaine Mied Cuctisllploser LinchinkZ IS WAT")
[resting | daeald H_Qu]:mﬂl "E:\Thesis\Mic sanples FileslW¥adce

Famples\TEST _SETL 0CTLBE 20000 ederateliol seleve i mlins! 06 _clatkVoroeRecerder LinciimbZall. wer'|
[vesting dste2 FeZis)=wranresd|"E: \Thesis\ific sanples FilesiVadce

SemalesiTEST SETL Gorl Bk 2086 Hederatelbi selevelih] sins’ Hict_clarkVeicefecarder 1inchinh@I0Z. wer'l;
[esting #ste2l, Falls)-wavzead('E: \Thesis\iic saples Files\Vaice

S lesm\TEST_SETL Octlidel 2060\ Mederateloiseleve bl aine! Mich_clatkVWaceRecorder Linch\ubhZa83. v’ s
[vesting_datsZ2, FsZls j=ranread( "E: | Thesis\Mic sanples Files\Vsice

SampleTEST_SETL_ocvl oy _20ehHederatsiolsclevel blaans' Kich_clatkVoiorRecorde il TH_commicet _oneet ibd

SOL.wev'):
[vestring dute?3 FeZlsj=wavresd|"E: \Thesis\lfic sanples FilesiVoice

Semles\TEST _SETL _bcrlith 208\ lederatelviselevelthl sine' Mics_clarkVolceRecorderiITH earyiece oneacyubi

602. v | ;
[vesting dsrs2d, Fs24s|=wavrend| "E: \Thesis\fic sanples FllesiVaice

Sews e\ TEST_SETL_OcrlSrh 2006 Hederatelnl seleve I\l sine' Mief_clarkVaiceRecorderiiTH esryiece sneariubi

703.wev' ) ;
[Testing dstaldl, Felisl=wavrend("E: \Thesis\ i saaples Files\¥aice

Sews les\ TEST_SETL _Oeel Brh_ 2006 Hederartelbi seleve L\l sinet Mie? Dikcheslolcelierarder_Lincinnk@enl.wav' )2
Itgstln.g m:!i Fﬂis]:mnﬂ "E: tThesisAMNic mnp.l.:: Filesl\¥oice

Samples TEST_FETL _0cvlptd 200N\ Medetatehol seleveltblqin! KcT_PRAChenTel colecorder _LIvCinalZPol. waer”) 7
[vesting dsta??, Fe2¥s]=wanresd('E: \Thesis\Mic sanples Files\Vaice

FemplestTEST_SETL_UctlBth Z00W\llederateloiselevellnlains’ Me? Difckenfelcclecorder_LinchalF@ii.war');

case Z

[vesting datal ,Fslz j=ssrread] "E1iThesis \Mic samples Flles\Voice

Sample TEST_SETL_Porl e 0 Hederatdliselevel i papolyniiiel ek top_LinchiuoaQloL. wev' |
Imﬂng_w,m J=werread] ‘Es\Thesis\Mic samples Filesr\Voive

SamalesTEST_SETL_Ocrl k2066 lederatelplselevelicaralymiMicl _deskrep linchimcalzil.wvav']:
Itﬂtinq_m,ﬁk]w 'E:\ThesisiMic ssmnles Files\Veice

Samples W TEST _SETL_borlboh 208 Hedsratdiolselevel i capolyniiinel _deshton_Linchhusa0303. wev' 1
[vesting dered, Fsde j-wsrread] 'E:\Thesis \Mic samples Filez\Veice
TEST SETL Gorl 3th 2066 Mederateloiseleve lcaralwniihice: gquickean linchimca0d1L.wer' ) ;
[zesting detas,Fsls |=verread] "Ex\Thesis\Mic samples Filer\Voine

Samp e\ TEST_SETL Dorlsth 2085 Mederatelolselevellcavcl mVic _grickos linch\uce0S02. ey ) 2
[vesting dsteb,Fsbe |=werread] 'E:Thesis \Mic samples Filem\Voioe

Sapples\TEST_SETL_BcrlBrh_ 2008 Mederatsioiseleve Loerol yriiic _gquickesn liReh\nca0sD3. war’ ]2
[testing deta?, Fols |=werread] 'Ex\Thesis\Mic samples Filer\Woice

Famales\TEST_SETL_Ccrl Svh_20ei ederatelolselevelirarolm\iic_guickea I1ZIrciviucalfol. wvav') ;
[westing | Fuees »Fols |=werreald| 'EziThesi=\Mic samples Files\Voice
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TEST_SET] _Derléch 2005iMbderarslinl selevelirarnlm e quickean Finciiaca(8n2. wer') 2
[u-su:ig_amﬂ ?.lis]ﬂwmn[ EsiThezizilfic saupd ez Files\Yoice

SanplesATEST_SETL _Octldth 0 ivderaceiiolselevelt ramlp M2 prickean [ Zinch\ncaliid. war' ) -
[resring @avull, Fslsj-wawrsad] "E: TIesisiic semples Files\Waice

Seeples\TEST SETL Octlfth 2008\Mpdecatstibiselevel\capolmniMficl empisce livchiecalDOl.sew’ | ;
[testing devsll Folis]l=vevread] 'E: {Thesisilic saples FilesiWoice

Senpd e2ATEST _SETL Detl@th PO0filpdesaczliol sebeveltram i IRel tovpioce linchhacel M0E.wae |2
[usr:l:q darzl #, Feife j-wswread] "E: iThezisilic seples Filesilaice

Fasples \TEST_FETL_Ocnledh_300sNoderatstiol sebevel L CaDolw IR _sampieve_iinehiace L 205.ma" 1 2
[muq_mu,mazw "Er TTecsisA e samples TilesiWaice
TEST_SET] Octléch 200RMbdecavalinisebevelicaralpm el earpisce sn Eaviacallol.wsr'):
[tli-s &nu.maz-nma 'E: {ThesisiNic saaples Files\Toice

Sanpl e\ TEST ! 0eELETh_Z00suipderacetinl sebeve W ramnlm \ Nes _sapiece_wn Ear\acelanl. var')
[resring davals, Fslisi-wawread] "E: TTesis\ic samples Files\Waice

Seeples\TEST SETL Dexl@th 2D Npderarsini selevel icaralym el _earpisce_en Esriscs 150G, wear')
[testing_datal. Fal6s]=wavread] 'E: \ThwsisiNic smples FilesWWoice

FaaplesATEST _SETL Octldth _EO0Euinberaceiing sebevellramlmiMed Blanchesisetincalfll uayr)
[ust:l:lg darzl 7, Fal T l=wavoead] "E: {Thesisilic sappiles FilesiVeice

Sepples\TEST SETL Dctléth 20\Nedecatetisiselevelicsrolm ol Blalreheadeetincal TOZ wasr'l
[tﬁﬂ‘ﬂ_‘ﬂﬂ,ﬁlﬂ}w "E: TTecsisA e samples TilesiWalce

MBT SET1 Mlﬂ mmml\nmlp‘!ﬂ Flaxivshendsstinea LB war)
[testing m,ma:wm 'E: TineRisilic saapies FilesiVeice

SapnlesATEST *'II OCELEh_Z00sNoderaneliol seleve 1\ Camo I IRGT Dt 2siFiplamey_ Linchiecal 0L, W@y 32
[restimg doviZS, Fsifsl-wavreadi E: TTesisiec samples FilesiWaice
TEST SETL Octl&th 2wm;m\mm?l‘ﬁﬁ T iz U¥iplaver linciooca208l. 01 iz
[muq_m,f.ﬁ&}mdi B \Thesiailic saples FilesyWoics

Sanpd eATEST_SETL_Octldvh 200 ivderatelioisebevel v ramlm el _Caristifiplarer_linchincaZli. i@y )2
(mu‘q @erel®, Fel P l=uavread [ "E: VTesisific samples FilesiWaice

Seoples\TEST_SETL OctlSth 2008 MpdeTat=thisebevelicsnolm \Nc6_clarkVeiceBecomder linchincsZail.wewi;
[vesting deva20, Fa2ls]-wavccadi 'E: Thwsin\Bic saples Files\Weics

Teanpdes i TEST_SETL Deelich ZO0iiNpdesacalind sebeveliramlp\Wef clakisiceRecorder 1inchioca2 302w §2
[res cimy d:t,‘zl..m]sjﬂm.[ "E: {Tnesisiliic semples Yﬂls'tﬁy:-e

Sapnl e TEST ! I'II Deelevh_T00snderatetiol sebevel A e rnl v i ee _clankWiceResonder_linth ace2dii.ver' )
[restimg dor3ZR, FsEls]=wavceadi "E: TTesis\ e samples TllesWWaice

Teoples\TEST_SETL Octl@th ZO0FHrderareini sebevelicavolmiifcot clarkVeiceBecorderTITH earpiece omacinrsZS Lvay ')z
[estiny dotald, Felse]=wavrend] 'E: \Tesiailic smples FilesiFoice

Senpd eFATEST_SETL_Octlovh_ 200 iviecateliolselovel v snonl\icl _clakWiceBecordsctlIT_cagpiett_onsat\nralil 2. var ');
[mu‘q @ere? 4, Fe? de j=uavread [ "E: TTesisiliic samples FilesiWeice

Seeples\TEST_SETL Octléth 200NpéeTat=ihni sebevelicsoalm iNcé_clarkVeic BeconlerVITH_esrpiece_oimacimsa2i . var ')
[testing deva2s, Faifel-vavreadi 'E: {Thesia\Bic samples Files\Weice

Tenpdes\TEST_SETL Detl@ch IofdiNpderarczlisd sebeveltiramm iy \We? FRackento vocbeosrder [incktocsidil .ueyv' b
[tesring darzde, Pei€e l=wavread] "E: {Thesisilic semples FilesiVeice

Fapnles A TEST ! snI Deeleuh_T00sMederatetiol sebevel A Ca tol IR eT _PRACe 0 IoeRetirier_Linchacaiind ey 13
[oestimg @o3Z7, Fsllsl=wavceadi "E; TTesis\ e samples TllesWWalce

mm‘r_m_mus &_I oS Hpierarslinl sebave i rapalyml sﬂ_mjm_lmm e B

case 3

[wesring darsl  Fsls |=vavsead] "Ez\Thesis\Wic saasies Flles\Veice

Senpl ez TEST SETL Octl@th 200E\Mpderarsiind selevelicladiflici desitep |incinlollil ez
[westing detel, Fods J=vavoeadl "Es\Thezisilis sagdes FilesiV

SenplesATEST_SETL_Octldth _ZOouinderarsiiolsebovelyrlaiuiiicl deskup_LinthianlclEil ww* )z
[Tesring dara®, Fals J=vavsead( "Ex\Thesiz\lic samies FllesiVeoics

Fanples TEST_FETL_Oceléd_ 3008 \Noderatstiol selevel\ clartWicl desktop | inchiulcoiGls eew' )
[tesvimg doced, Fods J=uavreadi "Ex\Thesis\Wir sapdes Files\Yoice
TEST_SET] Octléch 00 Mbdecaveliniseleveliclead\ilice guickcean linchinlefg8l.wewr'])2z
[mu.!g_&as Fx;:]w:wd[ "ExiThesizilic sewples FilesiToice

Sanpd s ATEST _SETL_Oczlivh_ 00 \Noderatetiol selevel\ claxkUhc2_yuichcem Liat\aladili, wav');
[wesring dowsf, Fofs =vaveead| "Ex\Thesis\Wic smples FilesiVeice
TEST_SETL Octlé#th 00fpdeavsiini seleve i rladilic? guickcan lincyinlc0eld.wer’ 1z
[testing date?, Fals J=eavroeald "B\ Thezisilfic sapdes Filed\Yoire

FaplesATEST_SETL Ocvldth EO0underacsinlsebovel W Rl aiuiicZ_yalcioram L2 Ovchimlol il way”)
[mu:ng #ared, Fsls J=wavoued| "E1yThesis\Wic sawples Files\Vedce

SapplestTEST_SETL_OctlEth 00 \NpderacetiviseleveliclakMic?_guickcan 12 imchialcdill wesr') ;
[testing dote?, Frds J=ewrceadi "Ex Y Thesis\Mir sapdes Files\Voice

Fanples\TEST_SETL musa ZO0E\Npiecarelini selbeve |\ clenk\ 1 oZ spaichcam 12 tnchinloBll.wav') ;
[u-sl-:mg dtalﬂ,&llh}ﬂmﬂ.[ YE: iThesisilic seplexs Filesi¥hice

Fanples i TEST ! 211 Deeluh_T00snMederateliol sebevel\ CLark WL CI_saudecs_Liati\nleldh ], wav' )
[munq_mu.muzﬂmﬂ "E: TTesis\HLe samples Filesi\Waice
TEST_SET] _Octléch 200Mbdesavelini sebeve i cladlick saymece lincrinlcliZ.wer’):
[testing wetal, Felisl-vavomad] 'E: TwsiaAlic sapled Files\Woice

FeaupdeATEST_SETL_Octléth_Z00suiisdesaceiiol sebeve L EIaRMTICS campiecs LiwcOinlcl23, wav' )
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[tezviny densd i, Fal 3n]=savoead( 'E: (ThezisiNic samples Tilsz Veice
SasplesiTEST SETL doclich 2008\ Noderateiled selomeliclaritiifticd sarpiece on Esmialoidil.oes);
[testing danal &, Folds]-vovoead] 'E: \ThesisiBic sanples Files\Waive
FamplesiTEST _SET1 Oerlivh Z005\Rederatefiod seleveliclariiflicy esrpiece on EsriniclA02.wan) ;
[mtm‘hi,ﬁlh}ﬂm‘ﬁ iThes:s\lic seaples Tiles\Vaice
Samples \TEST_SET1_Octifvh 005 Noderateiolselavel iclarsilics_eamieve_on Eainlelilwav');
[resting datalf, Folés]=savoeadi ‘E: TThes15AMic >amples FllesiWolcs
Saupies\TEST _SET1 Detl m_zmmuuﬁm_smm SR
[testing datal T, Fal Tx]=vavoeadi ‘E: "Thesizilic saples Files\Woice
Famples\TEST _SET1 Ocrlfth ZO06yNedcrateiolscreveliclariilict: Blaiveleisetinl CLFRE. wav |7
[tesring deteld, Fxl &s]j=savoead( 'E: {Ther1sillic semples FilesiVoice
Samples\TEST_SET1_Gorlfth 2008 Moderateini selevelyClarayitiod B lsireiesdsetinl olEd. war' i 7
[tﬁtiq_w fﬂ&}-mﬂ E:'ThesisiBic M‘s Flles\Wice
SaplesATEST _SETL_fcrilfvh I005\Nedcraneiio seleveliclariiifics Dureislifiplayer linchialel SOL WAV ] 2
[urst.mq_m t2l=wavoead| ‘E: {Thes1ziMic :-;m Filsz\Vaice
Sapples\TEST_SET1_Octlfvl_ 3005\ Noderateliol seleve LV clar\lice_CurtizNiinlaverlinchinle2 02, MAV" ]
[resting datail, Feils]=vavread(‘E: \Thesls\Wic Famples Files'\Woics
Saplesi\TEST _SET_Octléth 008 Joderalelng sesewe ] CLard ol CarcasiiPipl ayer Jiwchinled DI B 2
[testing_daval?, Felssj=asvoead| 'E: {Thesisiliic sanples Files|Yojce
Samples\TEST _SET1 _Ocrifth 005y Nederatefiol selevel\cLars\Iice_c larkVeiceRecondey Iinch'mic220l. wav" )
[re=ring daeedll, Feils}=gavread | 'E: {TheslsiMic nl!s FileziWoice
Samples\TEST _SET] Ocrléch 2008\ Noderatelisl selevel\clara\iice clarkVeicileconder [incinmicd S02.mer' ]2
[tesl:tlLMZl mls}—-mq‘r ez Bic m.les Filea\Wgice
Sarples\TEST _SET1 ferdfvd 2005 Hederateilon seleve el ottt ¢ larbVeiceRoconder inch'imicRa05. vt ) 2
[uslmg dmiati, Fellizl=vsvoend( 'E: {Thez:zilic saaples FilewiVoice
Fapple\TEST SETL OcTLdth JU0\Noderateliog seeve L CcLotsuice cLarkVodceReoonderWITA eaipiece o \Blca L. w2
[resting dsts?] Felzjevavread E: TThemsilic samplss FllesiWaics
Iq_t.u\‘lm SET] Derlith mmm‘.cuﬂm & LVl pell poardeyWITA an:‘nue ansarin Lo AE0E . w2
[u-;tnq_aupls M&!}-umui.[‘t‘ iThesrai¥ic .a-;m Files\Vaice
Samples\TEST _SEM_Ocrifnh F00Sy Nederatelnd selevel\clars\itics o larkVolocRerondeeRIT earpiece _amwarinledigs. wmw ) -
[resting datsls Fslfsl=savoeadi'E: Thesisilic samples FilesiWsics
}]‘!ﬁ"ﬂﬂ mm_zwmwu&mﬂ_nmm_}mmw 3
[testing atedt, Faadsl-vivreadl B "Thesis\lic saples Files\Woice
Sﬂm\ﬂ?ﬁ' SETL mmmmmmwmummm lihinleZN2 w7
(_dadms, Fa2lzl=sevoead| 'E: (Ther:2iMic seaples FilesiWoice
nniw\'llﬁi‘ 2!1 Dol feh 200 Noderatallad seemliclaa\iic? MckanSuiceleconder_Linchialeddi.ve'i;

case 4

[resting datel ,Fsls Jswavresd] 'E: {Thesiz\Mic samples Files\Veice

Samples\VEST_SET1_Octifnh 3005\ Hoderateloiselovel) jaimic\ific]_dehcop_lincmljll0l wav");
[vesving danel Txis J=wavresd] 'E:\Thesis\Wic smples Flles\Vedce

s@&s\m SETT _Berléch 2008\ Noderaellnl selevel’ jaiuieiic] deshoop lincvinl j0a0d.eer');
[tesving_satas Frse |=vavseed] 'E: \Thesis i saplis Files\Veiee

Samples\TEST SET1_Ocvlfth ZO05% Hoderateiod selewel) jaimieiiicl deshoop_iinthmljlonl.eer");
[tesviny_derad Fsds |=wvay resd] 'R \Thesiz Wic saples FllezVedce

SasplesiTEST SETL doclich 2008\ Moderateiled selavel) juiniel Rcl gwidkcan linchialjidil.ees);
[resving dates ,T3%e J=varreed] ‘B \Theris \Mic saples Files"Veice

Samples\TEST_SET1 Octlévh 05\ Nederavefiod setevel) jaiaie\ el apickeas 1 inckAnipIsiz. wav’)
[tes iny dﬂ:ﬁ.l’ﬁs]w:ﬂl B iThesizific samples FiiesiVeice

SRples \TEST _SET1_Oewldvh 300 iodtraseiol seievel) jaimie\ et eidesan Lindnislinel. vwav') ;
[resving_datel F57s J=wasread] 'E: \Thezis \Wic sasples FileshWedce

Samples i\ TEST_SETI_Derléth Z008iHoderatseiiol seievel’ jaimeiiic yrdkcas 13nchiol JA0L.weer ]
[testing Sotes, Febe J=wavresd] 'E: \Thesis i samples FLiss Woice

Sapples\TEST _SETL_Octlfth OO Toderatefiol seoewell Jatulediiicl_padocan 12inchial OS50 w1 ;
[resring dated  Felc |=vavresd] "B \Thesiz\Wic samples FIles\Weice

Sammies\TEST SET1 Octifth zmmms}nmamz _widkcan | 13dvechl 003w 1
[vesting gatall, Frl(sl=snwrendi 'E: {Themisilic saples Filesi\Woics

Sap les\TEST _SETI _Oerlfch 0083 Nederatelio selovel) jaiaielic] empiece I incRAnk) 0001 meer’)
[vesring dmed i, Fel ix]evavoeed | 'E: {Thes1silic samples FilexiVoice

Sapples\TEST_SETL_Octifnh 005\ Nodevateliod selewell jainlel\Re]_eapiece linciialillle waw');
[resving_dovall, Pul Ss]=vavoead(‘E: TThesls\Wic Zaaples Files\Waies

quzﬂ!ﬂi’ SET1 Oerlivh 2003y Holeratolol selowel !ﬁ.!\ﬁe!_a.qiuz'l'[ﬂ\ﬂjﬂﬂ_mﬂ:
[mtmg_hi Fall 3z)=vavoead| ‘E: 1&.2\;.:: sanples Files\Veice

Samples\TEST _SET1_Octlévh_ 3003 Noderatelod selevel) joivielMicl_eapiece on Exx'aljl Ml w="];
[mzmg daved &, Fel &g ]=oavsead 'E: TThesIsiWic sonplos FilesiVeies

SaamlesiTEST SET1 Oetlith mem‘.}tm\ﬁri _e@rpiece Gn Esrial 11902 wear 12
[testing datels, Frl Selevavsead] ‘B T nillic saples Files\¥oics

Saeples\TEST _SET1 ferldvd T009 Hederateion selevell jataietlic] sarpiece on Eorial]l 503 war']:
[tezviny dersdf, Fol €2 ]=sav-ead| 'E: (ThoptsiMic sanples FilesiWeice

Samplen\VEST_SETL_Ocrifvh 00\ Noderateliod selevel) jatuilel iy Rlatwhesdret mlLO00 et ) 2
lm:m_mamm-mq E:"Theris\Fie Famples Fllex\Waio:
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m\'ﬂjl' EI:I. et m;m‘\m}m ﬂnmglmz.m 1z
[mm_w,mas}:m "E:VTesiniiie saples FilesiVodce
Suq:u:\‘lﬂl’ !itl_ Ocrlbnt ZOMNHedsratslini seleve ) Jalwie) Mot Blrinchestssoin | L3035 waer' ) !
Fadids [EiTesisnilic sjamples FilesiVaice
Smlﬁ‘-‘[ﬁ' Bctlinh_200RHedcratclolschove |\ Jaimie\ Mick_ Darti S¥Piplager_linchial) FN0L. WY1 5
[ dzr5id, Fs2%s =wavveed "E: \Thesisiilie smples FilesiVeice
Samles\TEST_SETL_Octlinh 2009 Hoderateliol selavel\ Fainie\ Mok _Oartialilip laver _linchial 200 any 1 ;
[esting &2l Fe0s Jvwreed] "B \Tinsia\ihc smples FllesiVeice
Senples ATEST_SETL Octidti H0éHHederatelioi selevelljainielMics CorvisiFipleyer linchinl) 2103, 885" i ;
[testing_Swald, Frld: joravoead] "B \Thesisilfic samples Files\Vaice
Saqﬂ.e\‘lﬂ'l EI'_I_ D:tl.!& mexjamam clsvkVolceRoonr oy lmﬂ_:[m Ry
0, Fedis | ["E:{Tassisiliic zaanles FilesiVaice
Sﬂlﬁ‘-% m&mmnﬁmm_um foeRecrder Livthd plj2302. wav'i;
dsted 1, Fr2ls fwarceed] "L {Teriniilic smples Filesilaice
Sanples i TEST _ ML 200U rate il sebeve I\ i e\ Mce_clank Vo loeResorder_Linthi alida0s. v i
[resrimy Sswal?, Fe27:)=trasresd] "B \TeesisUt o smples Filas\Usice
Sewples \TEST 3ETI1 Mctidth m;m‘\m%m Lk Foice Reoemr derill TA m erearinl YEROL a= s
[Testing_Sxell, Fo2d: jowaveead) "B \Thesisiific samples Files\Vaice
Bample=\TEST _SET]_Dceliek 200N Hndsratslisl selevelljaluie) Mick_clekVoirsRoonr dorWITH earpiece enesc\ol JROO2 . v )2
(Sesting_dateld, Frids l=varveed | "B \insinAilic saplesr Files\Voice
Sanples \TEST_SETL_Derlith Z0MRMederatelini selbeve\ Jalwie\ Mick_clakVolceReonr derNITH carpiece tntscial JIM5. v~ )2
[reztivy dursd§, FrZs jawresd "D (Thesiniilc smnles Filesieice
Sapples\TEST_ -'.E‘I:I. LAt 200 UeER rate il sebeve 1\ T i e\ MuC?_DRACkenVud CeRecender_1inchia i ZRL. wer' ) ;
[ Axnaif, Fo28: j=varoead "D \Tesis\iie smnles Files\Weice
Sapples A TEST ; _Bctifth 209\edz vateliniscleveljaipia\ fic? [Rickarfocefecender Linchinliditd. waes' ) 5
[ vesting_datel?, Fe27s |=wavpend | "E: \Tiwsisf\MLc saples Tiles\Vaice
Sanples A TEST_SETL_Octlith 20N Hsdsrarslini seleveliFainiel Mic? IRackerVal celeconder 1imchinl J 3005, weer' ) 2

case §

[testing dstad  Fslslwermesd] "E:iThesas\lic seaples FilesiVedoe

Sauplss W TEST_SETL_ulinh 2005 e ratsliel sebove psmnb e\ Vel _ dedesr_Livwiie o0l Lwer' )
[resrinyg dsval Fs2s) i "E2\Thesis\Wic samplzs Flles\Vabos

Saanles\TEST_SET]_Qotidul_ 2097\ edaratetion seleve |\ Teanis\ Mol |_desitey_limchlu vl weer' i
[ resting_datas , Feds)=wavresd "E:\ThezisiWic sasples Files\Weite

SawplesiTEST _SET1_Ocrldti 2066Msdsrateliol seleveiinoymiel Micl _desktey_inchin lv03E . weer' 17
(veoting daved, Fede)=vartesdi 'Es\Thezigilic saaples Files\Toime

SewpleshTEST SETL Ocrlifch Z00nHsfzraviliol sebevelirommdelMic? smickoen 1inchiole@all waw® )
[nu-mq_ﬂux; [Fedz] Af "Ez4T 12i¥ic seaples FilesiTedoe

Sapples\TEST_SETL_Mcridnh Z00Medsratelilselevel\poomie\ MicE_guickcmm linchialu®in?, wew"):
[vestivy dseas  Feée)-wearread] "Ez\Thesis\Bic saaples FllesiVeidrce

Sapples \TEST_SETL_Octlivhy d00nHeds retelinl seleve l \voomie\ Ticd_ewickean linchvoled§0i.mav");
[ﬂ:st;h!q_m WS]WI'L\W'&M sapplss FllesiWeice

Sewples\TEST SET1 Octiith 2060 Hsdsratsliol selsveiiommiei e yockeen IZinch nlvl 7l wew' |2
[wmq_h& Fods J=vartesil ‘Es\ThesisiBic seaples Files\Poice

Sawples\TEET SETL Douldnn 200NHedsreteliol sebevelinommie Mics quickesn lZiscimla08Xi.vaw' |2
[tnzl:m{_-:m;l l'ﬂﬂx i "Ez{T ixiBic seaplss FilesiVedos

SanplesiTEST BT Dovldnh 2000Mvdsratctiol scbove Dinonmi e\ Mic?_gickem I Zechinled M war' )

dzrali Pslﬂs]-mul FE: \Thwwi st e s-P]s Files Yaice

Sapples \TEST_SETL_OGctlith, 2000 Heds catelini selove L izoania\ Micd_eompiece_linchialel00l.wav");
[vesring dxval L, Fells j=wrprread] "D iTwsis\iie smmles Files\laice

SaupleryTEST_SETL Bcrléch 206N Heds rateliol selaveliiromiel Micd_esghece_linchialriliZ.war’);
[wmw,m:hmd s ATeEi AN mlﬁ Files\Yoice

Sawples\TEST_SET1 Dcwlivh 200RHedsrotslinl selevel\nmmlel Mict_sarpioce linchinlri20T.uaw!):
[ ﬁma,mm "E:iThesisilic samples FilesiVaice

S&ph:‘.tﬂ Jerlith 200 rateiol seleve Linormie\ MicT_eapioce_om Eaxialel33l.was |2

dutal 4, Fsids f=wvsreed | "D \Theslnriilic smnles FilesiVaice

SapplesATEST_SETL_Octlivh 2005 Mods ratliol selevel\izoonia\ Mics_sampisve_on fax alclddi.wew' |5
[restiny dsval 5, Fslis-wawceed "B WTwsislilie sumples Filesi¥eice

Sempies \TEST SET] Octidvh 2060 edsretsiinl seloveiirorniei Ticd esrpiece on Ewrmir iS00 v |7
[testing_Fatalf, Fol: jowercead ] "E: \Timsisiifc saples Files)\Vaice

Sqﬂ.z\‘lﬂl’ II'J_ Derlink mxm‘\mm Blyiwehesisorin YIS0 waer')
[wmq_m?,mnm £ yTesiaiiic samples " FilestYaice

Sanples W TEST Sﬂ, crlith 20Nz ratetinl sebeve L ool e A e _Flainchesicecin t 1 2. wawr' ) ;
[ dstel §,Fslis f=vsresd "E: {Thesisiilic smnles FilesiVaice

Sauyls W TEST _ITLA 20V ulris vatetivl sebeve LA Dorwi e\ Med_Blainshesletin el var' ) ;
[ iwy dsmali, Fs28s j=ravveed "B \ThesisAific smples Files\Veice

Semplez ATEST_SETL_Octifith 208R\Hodsvateliol seleve I \xoomiel Nack Dartisiiipleyer Diechizle i1l 883"
[vesting_S30al?, Fr2%: -waveeed) 'L \TinsiAAle saples Files\Vaice

Sawple=\TEST _SET] Dcwldch 20dNHsdsvarsiisl selevel\novsie\ Mick Darel sEPSplager linchiele 2002, BBV 2
(vesTing datash, Fails j=varoeed | 'E: \Tiseisiific smples Fiies\Viice

SauplesWTEST -';Bﬂ, LPetLinh 200Nz ratiliol selbeve L ommie\ ik DartiskPiplager linchialy ZL0G. BBV :
[ dsral®, FslSs frowvoeed] "E: {Thesisiilie smples FilesiVeice

Sannles\TEST mm_mmmnmm ClakVoiotRecorder_L v aloid0l. war'i;

[Testing_dstall,Fs2ls j-oarend] "E: \esiniiic smnles MlesiWice
Sanples A TEST_SETL_Octlith 20N Hsdsravslini selevel\ronmiel Mick_clarkVoiceReonrder 1wl plrB40f smv®j:
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Teesriny darzid. Fells oranvesd "E: \Thepizilie mmaples Fllesi\Veice
WTES'I Sﬂi Dol oth 2000 Msderatativl selewe A rommic L MG _clatkioePecordaalITH ssrpiets sneoriml 2300 wav')
darePl Fed 3z oravvesd | "Er \Theori s\Mie saplu Filss\Veice
m‘t&m SET]_Oetlith Z08d\Mederatelinisslevell .ﬁ.l:‘ clerkPeiceBecor derdl T _earpiece snew-inlrZell.vay’ )
1muq_m24,mae}=unm B \ThecisAlic Bwus Fileshi¥oice
m\]ﬁ‘f !E[l. el B Imxmnmg\nu T lsrEVaice Reoar dori ITH m anes-inl TR, uwy" )2
1mm254m53m "B AThesisilie ﬂ;tlﬁ Files\Vgicq
SeaplesATEST_SET1 OctlBth INSF\Heder at+iisl seleve 1\ nopmd 2\ McT? WRAckesbar cofiponder Lincitaleanl. e )
[rtestiny darzi6, Falfr ewwresd "D (Thezinile raaples FilesiF¥oice
mw_m_mmzmmmnmm_mm foder LmcPialcii:. e
IH%MT,MFSMZ'E“MM emnples FilesiVeice
FamplesiTEST_SET] Octlith Z088\Hoderatelinlselevel)osmie\MicT MlAckesWoc celeconder _[inciiale S006. wer') 5

end

ilﬁl'ﬂ'lﬂlm eley W wme'ls

m e el eapet werag_dewal. Telvl s

werting_fevtwresd-pelospet{verting davel, Fals)z
teruing featveesi-meiceper| testing datad, Felsz

m 5

Testing featuresS-melospet/resting datal, Fets)y
esting fealtipest-pelcepst! testing dated, Fets) s

m@ Wﬁmm W,fﬁ-ﬂ;

f#ﬂ-

§
i
i
i

]
i
IEI
i

I‘

m

TNy
TRsTing

m

E
X!
;
H
?

mﬂ.mlm(m ML,BBSH
mmlm(mme SFeldsl:
Seaturesl J=we L oepes. (Resting datall Fsiis)
Ry _festures] d=ueloopst (tesiing dutald, Faldsl:
featyre sl f=me Lotpst (Cesting_datald Felisls
resTing feariaws] fxmeloepsy (vestivy durels Frifs):
Ry featvresl T=me loopst (bestivg detalT FalT3);
Seaturesl S=me Loapst. (esving datald, FsI183) 2
esung_featvamsl f=ne Lot (besting dately Fsl®s);
featuresit=me Loepss (vestiog dota2d Fads)
esving_ fearians? l=mel oeet (restivg dutall Fs2ls)z
testing_featuresli=mel oot (vesting detadl Fellsis
featuresZi=me | pepes (oot iy dota23 FrZ3s):
featiae =2 d=me 1 oepst. [vestivy derefd Fs24s):
feaane R s lognt ess o daradd  Fedisl s
feaiee s2d=ne L peped [best iy datali Fsl¥s):
esting_featiess? T=nelogeet (testing datsl? Felfs);
featuresid=pe Lowpss [vesting donall  Fe2ls)s
feaiyere 2 %=ne | pepst [testing datelé Feis):
testing_featuresii=nelogst (vestovg detadd Fedls):

digy'Compdeved fearnre SWLERCTION for The Tepving darz'):

B

m
m
ety
testing

i

3 —ERSTINY SNATARY THS TRRIY BATS———-mmemmee e
saganet the first wodel

[IT, 1V ] =1ls iingnezs costing featweol’, b troind Sigee traiel.c teemi):

Bil 1)=nemy) 1Y) 2

[, 1Y) =lmlCigauss| testing featiwes?’ , B trsinl siges Irsinl.C Crsinl):

Az, )y=mean) 1Y) 2

[lmnm{tmq_m » BW m,m ml._.z rmlyz

Ai3 1)=apem) iV} -

[178, 1Y) =lmm diganees | vesting feavuresd’, mwn trainl siges treinl,s trsEnl)s

A4 ) )=memn 1Y) 7

[LTH, 1V ) =1wicigmess| cesting feamress’ , i troind Sigea trainl.c tremi)s

RS ) )=neen) 1Y) 2

[, 1Y) =lwmligauss| vesting_featagess , o trainl,sliewe trsinl.c_trsial)s

&6, 1)=nran) IT) 2

[1TH, 1Y jsdm lvigamss | testieg featnres? , ou_lrainl xigea trainl,c Trsnl)s

&i7 1 )=aven) iV} &

[190, 1Y) =lm i panes  testing featnress’ , wn_trainl.zigea woainl,s trzml)s

A b y=uveni kY) 7

[LT, 1V ] =luedvismuss| vesting feanuresd , o tesinl Sigee nosinl,c teeml)s

By, 1)=uean 1Y) 7

[0 1Y) =1wmlcigaussi terting featawesl0”, e Srainl,sisms Crsinl,c trainl):

ALLD, 1) =peam {ET)

[ AT =lwmlG genss | Lesting features)l” . w_trainl,saps_Wasal,c_taaml):

Biil))=meamiiT) >

[I‘!,].Y]-j.-lt:im[milg'mmsn', -_m.inl,si’.l_uﬁlj,:_ml];
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Frivate Sup CommendButconl CLick()

Dim 1 &= Integer, winocol As Integer, bigogest s Dowhle, gz &=
Ohject

bim crrRatebevice(9, 4), crrRatePerson(5) #is Integer

Pim RealBwe Ais Integer, Jysihum is Integer, y &5 Integer

Dim tewp A= Integer, falseliccept ks Dowble, falseReject is Dowble
Dim FAH &= Double, FREH As Double, FAMM Az Pouwlrle, FREM A= Doeilxle
Pim SysHatchifum As Integer, uwserliatchifue is Integer

"THITIALIZATION ROUTIRE
"Fet fall Calc Hatricies o zero

Set gz = Sheets{Y"WINEBERS [generie) ™)

i=1

Pe Until i > S
fcrRatePersonii) = 0
i=1i+1

Loop

errRatePhrase = Array(0, O, 0}

j=20
Po Until F > 4
i=0

Do Yntil i > 9
errRatebevice(i, 1) = 0
i=i+1

Loap

i=3+1

Loap

temp = 1 ' cewmp is the threshold level
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'MAIN LOOP
'PERFORM EITHER DECISION ALGORITHR
"BLGORITHI SET ON SPREADSHEET

Do Until temp = 90

Pl i o ol e ke e e e e ol ke ke e ek e e e
"mitiglize inner loop

L R
falsefceept=0
falseReject=0

FAM=0

FREA =0

FANM =0

FRHIt =0
userfdatchum=5
SyshiatchMum=1

j=8 'jistherow#
y=1

P e e e e sk e e ke ke e ke ke e ke ke ke e e e

Do Until j > 157
biggest = -10000 "limit thresholdlevel

P ke e e e e e ke e ke ke ke e ke ke ek

'Determine recording systemnumber 1-10 {Systduan)
‘Determing which user{useriatchums}
Realum= {j -8} Mod 30
If Egalium rod 2 =9 Then Syshum = $ysNum + 1
if Realbum =0 Then
Syshum=1
usarhdatchivum = userhdatchinum = 1
End if

i userfdatchidinn =6 Then
wseridatchidum =1
Syshtatchium = Syshtatchium = 1
End if

Wl e e ol e ke e e e e e ke ke e e e e e e
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‘Determing which dacision Algorithm
if qz.Cells(7, 20) = 1 Then "This isthe threshold setting{openset})
if j =3 Then GoTo firstRunSkip
If §j - 8) Mod 30 =8 Theny =y + 1 'count to seewhere we change users
ify=6Theny=1
firstRunskip:
i=1"is the column number {speakers 1-5)

thddkdkddbbdbkibhktkkdik

P e e e e e e e e ek

"SIMPLETHRESHOLD ALGORITHIM

ol s e ke ke ek ik Rkl Btk Rk

DouUntili >5
if gz.Calls{j, i+ 2} >-1 * {tamp}and qz.Cells(j. i+ 2) <-0.5Then'is pure threshold

Ify =iThen f the column (i} = the y'th userthenis a true match
qz.Cellsfj, i+ Zhintarior. Color=65258
Else
If Sy shiuan = Syshyatchidum Then
FAM=FAM+ 1
Else
FARM=FANM-1
End if
falseAccept =falseAccept+1
gz Cellsf), i+ ZhImerior. Color= 255
End if
Else
ify =1and gz.Celis{). i+ 2} <-0.5 Then
If Systéun = Syshiatchisum Then

FRIM =FRM + 1
Else
FRNEY=FRNM + 1
End if
falseRejeci=falseRegect + 1
End If
2. Calis{), i+ 2).Interior.Color = 18777215
Endif
i=i+l
Loop
GoTo OpensetThreshold

End If 'This is the end of the threshald setting {openset}

P ke ke e ke ke e e ke e e e e e ke ke e e i R
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iafffrdddddfishetddAins
"HEAREST-TD" ALGIRITHET
ihfdss i AAdAd Adda4A &aE
IRAETTEEARERNSTENSARS
'initialize
iRbdsrddAddtddetadans
i=1
Do Uncil i > 5
If gqe.Cellsil, & + Z) > biggest Then 'biggest 12 best watch
biggest = ge.Cells{), 1 + 2}

wincol = i
End If
i=3i+1l

Loop
ChAnASEAAARAAR R dA A AAE

It bilggest <> 0 Then
Select Cese j 'select statement displsy's false pass and true pass

Case Is < 38
If wincol = 1 Thea
. gz.Cells(}, wincol + 2).Interior.Colox = 65280
ise
gz.Cellslj, wincol + 2).Interioe.Color = 255
errRatePersan(li = exrRavePersenil) + 1
errRacebevice(Sysiun - 1, @) = errRaceDevice(Syshiane - 1, @) + 1
If {7 - 1) Mol 3 = 1 Then
errRatePhirsse (§) = srrRarvefhrase(0) + 1
ElseIf (j - Ly Hed 3 = 2 Then
errBstePhragse(l) = erxRatePhrese(l) + I
Else
errRavePhirsse (Z) = errRavefnrase(Z) + 1L
End If

End If
Case Is < 638
If wincel = 2 Thea
gz.Cellsly, wincol + Z).Interior.Colexr = 65250
Elze
gz.0ells(}, wincel + Z).Interior.Colexr = 258
crxRatePersmn(2l = errRavefersonii) + 1
erxRatebevice(Sysium - 1, 1) = errBateDevice(Sysion - 1, 1) + 1
If {y - 1)y Hod 3 = 1 Then
errRacvePFhirase (8] = errRatefurase(0) + 1L
ElselIf (7 - 1y Hed 3 = 2 Then
errRatePlirase (1) = srrRavefarase(l) + L
Else
ecrrRatePhiraze [(2) = errRatePhrese(Z) + 1L
End If
End If
Case Is < 98
If wincel = 3 Thea
qe.Cells(}, wincel + Z).Interior.Colcy = 65280
Elze
4z.Cells(}, wincol + Z).Interior.Colox = 255
errRateFerson(>l = errRatePersoni3) + 1
exrRarebevice(Sysliun - 1, Z) = errBacedevice(Sysiion - 1, 2) + 1
If (7 - 1) a2 3 = 1 Then
errRatePhrage (@) = srrRatefhrase(0) + [
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Elself {3 = 1) Hod 5 = 2 Then
erxRatePhrase(l) = errRateFhyrsse(l) + 1
Else
erzRatePhrase (2) = errRateFhrase(Z) + L
End I
End If
Case Is < 128
If wincel = 4 Then
gz.Cellsiy, wincpl + Z).Incerier.Color = G3Z§0
Else
gz.Cellsiy, wincol + 2).Invericr.Color = 255
exyRatePersen(4] = erxBatefersenid) & 1
errRateDevice[Syshm - 1, 3] = errBatelevice[Syshm - I, 3) + 1
IT (¥ - iy B 3 = 1 Theh
erxRatePhrase (0) = errBRateFhrase(d) + L
ElseIf i3 - 1) Hod 3 = 2 Then
errBatelPhrase (1) = axxrBRateFhrese(l) + L
Else
eryfatePhrase (2) = etrRatefhrase(2) + 1
End If
End If
Case Is < 156
If wincel = 5 Then
gz.Cell=(j, wincol + 2).Intericr.Coler = &5250
Else
gz.Cells(}, wincel + Z).Interier.Coler = 85
criRatePerseni®) = erzRatefersenis) + 1
exrBateDevice [SysEun - 1, 4) = ervBatelevice|Syslom - 1, 8 + 1
If iy - iy Bk 3 = 1 Then
exrRatePhrase (1) = errRateFhrase(l) + I
ElselIf [j - 1) Hod 3 = 2 Then
exxRacePhrase (1) = errBaceFhrase(l) + L
Else
erzRatePhrase (2) = errRateFhrgse(Z) + [
End If
End If
End Select
End IE

DpsnserThresholar
ij=3+1
Loop

ITERERTEREE

‘TUT PATA INTO SFREADSHEET

ITEXRRTTRER

tenp 'teEp is the thresheld level #

gz, Cellsicemy + 1, 2J) =
gz.Cellsicenp + 1, 26) = falzeReject
gz.Cells(tewp + 1, 27) = Ealsedccept
gz, Cells (Tepg + 2, 33) = temp
gz.Cellsitewp + 2, 39 = FRR
gz.Cells(ceup + 2, 3%) = FAI
gz.Cellsiteny + Z, 3§) = FREN
gz.Cellscewp + Z, 39) = FADN

terp = temy + 1

IXEXRELTT XY
Loop
|
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If g=.Cella(7, 20} = 1 Then 2oTe cndmeooage

Fat Sommery Gote Indg Spreadshees

i=1
Do Until 1 > &
gz, Cells{? + i, 10) = eccRatefersonii)

1=1i+1

Loop

i=20

Do Uneil i > 2
gz. Cellsi® + 1, 11) = ercRetefhraseil)
i=314+1

Loop

=10

Do ntil 3 > &

i=20

Do Uncil i > S

o2, Cells (25 + 1, 13 + 3) = exxRatedevice(i, 3t 7 3
i=31i+1

Loop

i=3+1

Loop

L}

endmessage:
MsgBox “Calse AcCeEpt = * & Calseiceoeprt & Che[l3) & "Calse reject = “ ¢ [alseRelect

End 3Fub
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