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This thesis presents performance analysis for five matured Image Quality Assessment 

algorithms: VSNR, MAD, MSSIM, BLIINDS, and VIF. The performance parameter 

considered is execution time. First, we conduct hotspot analysis to find the most time 

consuming sections for the five algorithms. Second, Microarchitecural analysis is 

conducted to analyze the behavior of the algorithms for Intel’s sandy Bridge 

microarchitecture and find architectural bottlenecks. The current research for improving 

performance for IQA algorithms is based on advanced signal processing techniques. This 

research focuses on the behavior of IQA algorithms with underlying hardware and 

architecture. We study the behavior of these algorithms with the architectural resources 

and propose techniques to improve performance using coding techniques that exploit the 

hardware resources and consequently improve the execution time and computational 

performance. Along, with software tuning methods, we also propose a generic custom 

IQA hardware engine based on the microarchitectural analysis and the behavior of these 

5 IQA algorithms with the underlying microarchitectural resources.     
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CHAPTER I 

 

 

INTRODUCTION 

 

This research thesis is based on performance analysis of the Image Quality Assessment (IQA) algorithms. 

Image Quality Assessment is a technique to automatically judge visual quality of an image. IQA plays a 

very important role in numerous image processing applications. Currently, research in IQA spans two 

different domains. First, developing better IQA algorithms which agree more closely with the human 

visual system. Second, improving the computational performance and execution time for the current 

matured IQA algorithms.  This thesis research focuses on the later research area. 

 This chapter introduces several aspects of the research work, namely a brief background discussion on 

the Image Quality Assessment (IQA) algorithms, current state of research in IQA, objectives and goals 

for the research. Section 1.1 presents a brief introduction to IQA and current state of research in its realm. 

Further, Section 1.2 discusses the current signal processing techniques and methodologies used by 

researcher to improve computational performance and execution time for the various IQA algorithms. 

Section 1.3 discusses the key issues the research addresses. Finally, section 1.4 gives an overview of the 

experimental setup and methodology for performance profiling.  

1.1 Background on Image Quality Assessment Algorithms  

The visual quality of a digital image can degrade when they are captured, stored (compressed), 

transmitted or processed. Such degradation can change the appearance of an image, thus it is important to 

judge an image’s visual quality before it is displayed to or used by the consumer. Many algorithms have 

been developed since the origin of research on IQA. IQA algorithms aim to provide an automated means 

of judging image’s visual quality which is concurrent with human judgments of quality. Currently, IQA 

research is an active sub discipline of image processing and benefits a wide variety of applications 
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ranging from image compression (e.g., [1]–[3]), to denoising (e.g., [4]), to predicting intelligibility in sign 

language video [5].   

There are currently two categories of IQA algorithms. The first is full reference IQA algorithms, where a 

reference image has a good/acceptable visual quality and a subject image (distorted version) whose visual 

quality needs to be judged is used. The output of such algorithms is either a scalar value denoting the 

overall visual quality or a spatial map estimating the local quality of each image region (e.g., [6]–[34]). 

More recently, researchers have begun to develop a second category of IQA algorithms. These are no-

reference or reduced-reference algorithms. These algorithms estimate visual quality of an image without 

using a reference image or just use partial information about the reference image (no-reference IQA; e.g., 

[35]–[39]), (reduced-reference IQA; e.g., [40]–[45]).  

With consistent research in IQA, all three types of IQA algorithms have been able to predict the visual 

quality of an image efficiently which agrees with human judgments of an image’s visual quality. Some of 

the best-performing full-reference algorithms such as MS-SSIM [29], VIF [30], and MAD [34] estimate 

the visual quality of the image that highly correlates with human ratings of quality, typically yielding 

Spearman and Pearson correlation coefficients (measure of dependence between two variables reference 

and subject image in our case) in excess of 0.9. Research in no-reference and reduced-reference IQA is 

much less mature; but, recent methods such as DIIVINE [37], BRISQUE [38], and BLIINDS-II [39], 

yield quality estimates which also highly correlate with human ratings of quality.  

1.2 Signal Processing based methodologies and techniques for improving computational 

performance 

From a signal-processing viewpoint, it seems that the majority of computation and runtime are likely to 

occur in two key stages, employed by most IQA algorithms: (1) local frequency-based decompositions of 

the input image(s); and (2) local statistical computations on the frequency coefficients. The local 

frequency- based decomposition stage would require higher computation power and memory bandwidth 
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as well. Particularly, when a large number of frequency bands are analyzed, and when the decomposition 

must be applied to the image as a whole. On the other hand, the statistical computation on frequency 

coefficients would seem to require higher computation power, mainly when multiple statistical 

computations are computed for each local region of coefficients. For example, in MS-SSIM [29] an image 

is decomposed into different scales, and for each block of coefficients  local image statistics are computed 

(via a sliding window). In VIF [30], wavelet subband covariances can be computed via a block-based or 

overlapping block-based approach. In MAD [34], variances, skewnessness, and kurtoses of log-Gabor 

coefficients are also computed for overlapping blocks in each subband. These approaches mimic the 

cortical processing in the human visual system (HVS) for some aspects. The statistics of local responses 

of neurons in primary visual cortex (modeled as coefficients) are computed and compared in higher-level 

visual areas. But still unlike the HVS, most modern computing platforms lack dedicated hardware for 

computing the coefficients and their local statistics. 

The IQA algorithms are extensive used in image compression and computer vision. Consequently, a 

considerable amount of research focus has been on accelerating two-dimensional image transforms which 

provide local frequency-based decompositions which is one of the major operations in IQA that requires 

high computation power and memory bandwidth. For example, using variations of the same techniques 

used in the Fast Fourier Transform (FFT) the discrete cosine transform (DCT) has been accelerated at the 

algorithm level (e.g., [48]). Also, there has been significant improvement in performance by exploiting 

various algebraic and structural properties of the transform, e.g., via recursion [49], lifting [50], matrix 

factorization [51], cyclic convolution [52], and many other techniques (see [53] for a review). Along with 

techniques at the algorithm level, many techniques for hardware-based acceleration of the DCT have also 

been proposed using GPGPU-based and FPGA-based implementations (e.g., [54]–[57]). Examples for 

algorithm and hardware-based acceleration research for the discrete wavelet transform can be found in 

([58]–[60]) and for Gabor transform can be found in (e.g., [61]–[64]).  
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Furthermore, for computing the local statistics, research has been conducted to accelerate the computation 

of local statistics in images, but to a lesser extent in comparison with transforms. Techniques like integral 

images, originally developed in the context of computer graphics [65], is a popular approach for 

computing block-based sums of any two-dimensional matrix of values (e.g., a matrix of pixels or 

coefficients). The integral image, also known as the summed area table, computed a table which has the 

same dimensions as the input matrix; it stores the sum of all matrix values above and to the left of the 

current position. Thereafter, the sum of values within any block of the matrix can be rapidly computed via 

addition/subtraction of three values in the table. A similar technique can be used to compute higher-order 

moments such as the variance, skewness, and kurtosis (see, e.g., [66], [67]).  

Along with research for improving computational performance for the above two common operations for 

IQA algorithms, there has been research on techniques for accelerating specific IQA algorithms. For 

example, in [68], Gordon et al. investigated the acceleration of PSNR by using general-purpose-GPU 

(GPGPU) implementations in both CUDA and OpenGL. An investigation on how the application and 

system performance gets affected by utilizing GPGPU acceleration of PSNR in a model-based coding 

application (the primary bottleneck in model-based coding stems from the optimization procedure used to 

determine the model parameters from the input image) was made. From the analysis, they concluded that 

a non-GPGPU version of PSNR runs faster.  

Chen and Bovik present techniques to accelerate execution of SSIM and MS-SSIM in [69]. Techniques 

like integral images for calculating the luminance block have been employed. They also use an integer 

approximation for the Gaussian weighing window for SSIM. For Fast MS-SSIM, a further algorithm level 

modification of skipping the contrast and structure computations at the finest scale was proposed. 

Implementing the calculations of the contrast and structure components via Intel SSE2 (SIMD) 

instructions, they achieved speedups of approximately 5 times for Fast SSIM and 14 times for Fast MS-

SSIM. In addition, speedups of approximately 17 times for Fast SSIM and 50 times for Fast MS-SSIM 

were reported employing parallelization via a multithreaded implementation. In [70], Okarma and 
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Mazurek presented GPGPU techniques for accelerating SSIM, MS-SSIM, and CVQM (a video quality 

assessment algorithm developed previously by Okarma, which uses SSIM, MS-SSIM, and VIF to 

estimate quality). 

In [67], Phan et al. conduct performance analysis to find sections of code that consume maximum of the 

total execution time and present techniques for accelerating the MAD algorithm targeting these 

sections[34]. MAD has one of the best predictive performance but is also one of the slowest IQA 

algorithms, it requires over 55 seconds for a 512x512 image when tested on several modern computers 

(Intel Core 2 and Xeon CPUs; see [67]). The results for performance analysis show that the main 

bottleneck for MAD is the appearance-based stage, taking about 98% of the total runtime. Within the 

appearance-based stage, the computing the local statistical differences accounted for most of the runtime, 

and computation of the log-Gabor decomposition was the other major bottleneck. Phan et al. proposed 

four techniques of acceleration: (1) Using integral images for the local statistical computations; (2) using 

procedure expansion and strength reduction; (3) using a GPGPU implementation of the log-Gabor 

decomposition; and (4) precomputation and caching of the log-Gabor filters. The first two techniques lead 

to a boost 17x speedup over the original MAD implementation. The latter two resulted in an 

approximately 47x speedup over the original MAD implementation.  

Thus, we see that there are been significant research on improving performance using advance signal 

processing techniques. Very little or no research exists on the behavior of IQA algorithms with the 

computing platform and optimize/tune algorithms based on the hardware resource utilization of 

corresponding algorithms. This is a basis of the research objectives presented in the next section. 

1.3 Research Objectives 

Although these studies have successfully yielded more efficient versions of their respective algorithms, 

several larger questions remain unanswered. We will present a performance analysis for 5 matured IQA 
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algorithms VSNR, MAD, MS-SSIM, BLIINDS and VIF. This research is focused to answer the following 

questions and also present a framework for the mentioned 5 algorithms to further improve performance. 

1.3.1 To what extent are the bottlenecks attributable to computational complexity vs. limitations in 

memory bandwidth? 

As mentioned previously, there are two components to computational complexity with IQA algorithms. 

(1)Local frequency-based decompositions of the input image(s); and (2) local statistical computations on 

the frequency coefficients.  Along with the computational complexity of the algorithms, Image processing 

inherently requires a higher memory bandwidth. Thus, we conduct microarchitectural analysis to 

investigate, how the algorithms behave on a general computing platform and study the memory 

requirements and bottlenecks.  

1.3.2 Are there generic implementation techniques or microarchitectural modifications that can be 

used to accelerate all or at least several IQA algorithms?  

We wish to compare and contrast the 5 IQA algorithms based on their performance profiling. This 

analysis can be would be a foundation to propose generic software optimization techniques, as well as 

hardware specific techniques to improve computational performance. 

The research will provide important insights for (1) designing new IQA algorithms, which are likely to 

draw on multiple approaches used in several existing IQA algorithms; (2) efficiently implementing 

multiple IQA algorithms on a given hardware platform; (3) efficiently applying multiple IQA algorithms 

to specific applications; and (4) selecting and/or designing specific hardware which can efficiently 

execute multiple IQA algorithms.  
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1.4 Outline 

The outline of the thesis is as follows: 

 Chapter 2 provides a discussion on performance analysis and methodology along with a 

description of the profiling tool we use for the experiment: Intel Vtune Amplifier XE. 

 Chapters 3, 4, 5, 6, 7 give the summary of each specific IQA, followed by results and discussion 

on hotspot analysis and microarchitectural analysis for VSNR, BLIINDS, MS-SSIM, VIF and 

MAD respectively. 

 Chapter 8 discusses the results and answers the questions raised in section 1.3, and provides 

recommendations to improve performance. We also propose a hardware IQA engine framework 

which can be used to develop custom hardware for individual algorithms and a generic IQA 

engine. 
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CHAPTER II 

ANALYSIS METHODOLOGY 

For performance analysis and profiling we use the Intel Vtune Amplifier XE. The tool provides us with 

execution time of the algorithms along with execution time of the individual functions. With Vtune 

Amplifier XE we also conduct microarchitectural analysis, which provides details about the behavior of 

the code with the processor hardware. 

This chapter provides an overview of the performance profiling tool, Intel VTune Amplifier XE [71]. 

Section 2.1 discusses the analysis procedure and methodlogy along with the specification of the hardware 

platform used. Section 2.2 provides a brief discussion about the tool in general. In section 2.3, we discuss 

hotspot analysis with reference to Intel VTune amplifier XE and discuss the way the Intel VTune 

Amplifier XE samples data to provide profiling results. Finally in section 2.4, we discuss 

microarchitectural analysis, specifically general exploration analysis type, the metrics used for analysis, 

and the hardware based event sampling utilized to provide results for microarchitectural analysis. 

2.1 Experimental setup 

To begin to address the goals described in the previous chapter, we define an experimental framework for 

performance analysis designed to examine, compare, and contrast the performances of five popular IQA 

algorithms (VSNR [33], MAD [34], MS-SSIM [29], BLIINDS-II [39] and VIF [30]) on a typical desktop 

computing platform. To provide a common codebase, we implemented each of the algorithms in C++ 

based on the original MATLAB code provided by the authors of their respective algorithms. An initial 

code-level profiling was performed using Intel Vtune to identify and correct obvious inefficiencies in the 

baseline implementations. Next, we execute multiple trials of each of the five algorithms on 7 different 

images varying in image content.  We use 3 different distortion types AWGN, Blurring, and Jpeg 
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compression with 2 levels of distortion, making a total of 42 Images from the CSIQ image database [34]. 

The details for the subject images are highlighted in Table1. 

Number of Images varying in Content 7 

Types of Distortions 3 (AWGN, Blurring, Jpeg compression) 

Levels of Distortions 2 (Level 1 and Level 5) 

Total subject Images 42 

Image size 512x512 

Frames (loops for the Algorithm) 30 

Hotspot Analysis sample time [72] 1ms 

Microarchitecture code name Sandy Bridge [73] 

Microarchitectural Analysis Type General Exploration 

Table 1: Details of subject Images for performance profiling and microarchitectural analysis. 

2.2 Performance profiling methodology 

After the experimental setup is fixed, with define the performance analysis flow and methodology. This 

section discusses an overview of performance profiling flow and the sequential steps for the analysis. 

First, we identify sections of program that should be targeted for improving the computation performance 

[74]. Such target sections of the program are called “hotspots” [75].  The process of identifying hotspots 

and improving performance is termed “tuning” [76]. Once the top hotspot functions are known, we 

conduct microarchitecural analysis to observe the interaction of the algorithm with the processor and 

other microarchitectural sub-systems. Microarchitectural analysis is used to inspect the processor 

resources used by the algorithm, related hardware bottlenecks and its reason. We use the Intel VTune 

Amplifier XE performance profiling tool to conduct our experiment and use the top down process 

suggested in the Intel optimization manual [77] for analysis. The suggested top down process in discussed 

below. 
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2.2.1: System Tuning 

The first step for optimization/ tuning of an application is System Tuning [76]. Deciding the hardware 

that best suits the given algorithm is called system tuning. For example, if your program is multithreaded, 

a multicore multi-threaded processor is advisable. We chose the hardware specifications to match the 

modern general purpose PC. We use the 2
nd

 generation Intel core i5-2430M processor [78-79] clocked at 

2.4GHz and a system memory (RAM) of 4GB .The microarchitecture is Sandy Bridge. Further details 

about the caches and memory hierarchy can be found in Table 2 

Processor Intel® Core™ i5-2430M 

Frequency 2.4 GHz 

Microarchitecture Sandy Bridge 

System Memory (RAM) 4 GB 

L1 Instruction Cache 32KB per core 

L1 Data Cache 32KB per core 

L2 Cache (Unified Instruction and Data Cache) 256KB per core 

L3 Cache (Unified Instruction and Data Cache) 3MB shared  

Table 2: Hardware specifications for the performance analysis experiement. 

Since, the hardware specifications are fixed; we will focus our experiment on algorithmic and 

microarchitectural analysis. 

2.2.2: Algorithmic Analysis 

Once the hardware specifications are fixed, the next step for optimization/ tuning is Algorithmic/ Hotspot 

analysis and tuning the algorithm based on software inefficiencies. During the prototyping phase, the 

software techniques employed usually aim for more readable and easier to debug programs.  Such 

implementations are not optimized for a particular metric. The compiler does a tremendous amount of 

code optimization, but there are typically two situations where it cannot perform optimizations. First, 

when the inefficiency becomes apparent and occurs for only certain inputs that are not known at compile 

time, and second, when the inefficiency is at the algorithmic level. For example, for a sorting algorithm 

bubble sort has a computational complexity of O (n
2
) while quick sort has O (log (n)) computational 

complexity.  Thus using quick sort will have a better computational performance when compared to 
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bubble sort. We analyze the software for these inefficiencies that are beyond the scope of the compiler. 

While VTune cannot identify and recommend which sorting algorithm one must use, it does profile the 

code to point out sections of the code in which a majority of the execution time is spent. These sections of 

the code are the hotspots and can be targeted to improve performance. The algorithms can also be 

modified and a completely different implementation methodology can be used to improve performance 

[77].  During the Hotspot analysis phase of the experiment we note the total execution time for the 

algorithms, individual hotspots with their corresponding execution time and contribution to the total 

execution time.   

2.2.3: Microarchitectural Analysis 

For algorithmic/hotspot analysis, we do not take into consideration the hardware specifics like memory 

utilization, instruction stalls during execution for tuning or optimizing the code. Microarchitectural 

analysis inspects the program as it traverses through the different subsystems of a processor and provides 

information to find architectural bottlenecks. This method is applied after hotspot analysis. 

For microarchitectural analysis, we analyze the results to study the instruction throughput of the code as a 

whole and the instruction throughput of individual hotspot functions. The metric that we use is retired 

pipeline slots [72]. The retired pipeline slots metric is the number of instructions that exit the processor 

successfully, divided by the total number of clock cycles the hotspot utilized. The metric is normalized 

from 0 to 1. The Intel i5 2430M processor can generate and execute up to four instructions every clock 

cycle [78-79]. The instructions which do useful work are called retired [80]. Therefore, the retired 

pipeline slots metric gives us a measure of the number of instructions that exit the processor doing useful 

work. The ideal value for this metric is 1. However, the observed value is rarely equal to the ideal or 

maximum value. This can be due to several factors: some pipeline slots cannot be filled with useful work, 

either because the fetch and decode units of the processor could not fetch or decode instructions in time or 

because the execution units were overwhelmed and cannot accept more operations of a certain kind. This 

is called a structural hazard. Even if pipeline slots contain useful work it is possible that the instructions 

may not retire due to bad speculation like mispredicting a branch.  After considering the retired pipeline 
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slots and determining the computing efficiency, we inspect hotspot functions for microarchitectural sub-

system bottlenecks. A basic top down methodology for the complete tuning process is shown in Figure 1. 

                                                               

Figure 1: Top Down Tuning methodology for analysis and tuning 

The goal of the research is to identify and point out sections of individual algorithms which are 

computationally intensive and take higher execution time.. The hotspot analysis type in the Vtune 

Amplifier XE gives a list of hotspot functions and corresponding relevant details.  Using 

microarchitectural analysis, we analyze the behavior and interaction of such sections with the underlying 

hardware to find architectural bottlenecks. We conduct this microarchitectural analysis with the general 

exploration type of analysis in Vtune Amplifier XE.  After both the hotspot analysis and 

microarchitectural analysis wemap the hotspot functionsto specific execution blocks of the respective 

algorithm. Advanced software techniques along with microarchitectural consideration can be used to 

further improve computational performance. 

2.3 Intel Vtune Amplifier XE Overview 

The Intel VTune Amplifier XE is a performance profiling tool which provides information about the 

application’s execution on software basis as well as its interaction with different Intel hardware platforms 

[71]. Using the Intel VTune Amplifier XE, we can determine and locate hotspots, sections of code that 

have low instruction throughput and do not exploit hardware resources and related bottlenecks. For multi-

System  

Application (Hotspot 
analysis) 

Architecture 

(Microarchitectural 
Analysis) 
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threaded applications the tool can also provide information about thread activity and transitions. In the 

following sections we describe a brief overview of hotspot analysis followed by microarchitectural 

analysis.  Top features of the tool are highlighted in Table 3. More details about VTune Amplifier XE can 

be found at [71, 72, 76, and 77]. 

Hotspot Analysis 

Located most time consuming sections of the 

code in a sorted list of functions. 

Jump to source code 

Double click on the hotspot function in the 

results takes us directly to the source code. 

Lock and waits Analysis 

We can analyze locks and waits for parallel 

applications.  These are the major cause for 

slow multithreaded applications. 

Low overhead/High resolution Hardware 

profiling 

Lightweight hotspot analysis, using 

performance monitoring units (PMU). 

Predefined Hardware Events and thresholds 

for bottlenecks 

Advanced profiles like memory bandwidth 

analysis, memory access and branch 

mispredictions find tuning opportunities. 

Predefined thresholds for identifying 

bottlenecks. 

Table 3: Features of the performance profiling tool Intel Vtune XE Amplifier [71]. 

2.3.1: Hotspot Analysis: 

In this section, we first discuss hotspot analysis w.r.t Intel VTune Amplifier XE and then describe the 

associated result windows: summary window, bottom-up pane, top-down pane and the call stack pane 

along with sampling of data for hotspot analysis. As discussed previously, hotspots are the most time 

consuming units in the program. A generic methodology for hotspot analysis and tuning as described in 

[81] is shown below. 

 
Figure 2: Hotspot analysis methodology and the tuning process. 

Build Target 

Run Hotspot 
Analysis 

Interpret 
Results 

View Source 
for Hotspots 

Tune 
Algorithms 
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The process of tuning takes multiple iteration. It starts with building and compiling the application, run 

hotspot analysis and note the hotspots and corresponding execution time. Analyze the results and the 

calling functions and the source code for the hotspot function, make optimizations and build/compile the 

application again. This process is repeated till the target for optimization is achieved. 

When we run the hotspot analysis the Intel VTune Amplifier XE finalizes the results and opens up the 

hotspot view which has the summary of the hotspots and also has options to open the bottom-up, call 

stack pane and top-down tree windows. A screenshot for the summary window is shown below. 

 
Figure 3: Summary window hotspot analysis with top hotspot functions and corresponding execution 

time. 

The summary window shows the total execution time of the program along with individual execution 

time for top hotspot functions. As seen from the figure, the top hotspot function is gaborConvolve which 

takes around 10.139s.  The hotspot functions are arranged in a descending order in terms of their 

execution time. We can also navigate to bottom-up analysis or the top-down tree from the summary 

window. The bottom-up analysis next, then the top down tree and call stack pane. 

The bottom-up pane shows the top hotspot as the first entry by default.It presents analysis specific data 

starting from the function up to their calling functions and hence bottom-up analysis [72]. If multiple 

functions call the hotspot function, the calling sequence for all the instances is displayed. Refer to the 

figure 4 below. We see that the function cdft_2d_sub is called by cdft2d as well as rdft2d. 
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Figure 4: Bottom up pane, Hotspot analysis with a list of hotspot functions in a sorted order along with 

their complete calling sequence. 

The top-down tree pane presents analysis specific data starting from the application root (usually main () 

function) down to function callees [71]. It is used to explore the call sequence flow of the application and 

analyze the time spent in each function or program section and on its callees. The top down tree can be 

used to find the critical path to the hotspot function. Figure 5 shows the top-down tree pane. 

Figure 5 Top Down window for Hotspot analysis. It displays the traversal of the application along with 

the execution time of individual sections. 

 

As seen from figure 5, the application starts with the DoRun function and followed by the OnExecute 

function and so on down to the end of execution. Thus, the top down tree presents the functions in a 

sequence with which they traverse during the run time of the application.  

2.2.3: Microarchitectural Analysis 

 In this section, we discuss microarchitectural analysis, specifically general exploration type 

microarchitectural analysis,associated hardware metrics and discuss event based sampling for 
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microarchitectural analysis.   The microarchitectural analysis provides an insight on how the application 

interacts with the CPU and consequently provide information to find architectural bottlenecks. The Intel 

VTune Amplifier XE uses the processors performance monitoring units (PMU) to sample hardware 

events [72]. First, we discuss an abstract view to the processor design and categorize the instructions 

entering a processor into 4 categories.  1: Retired 2: cancelled 3: Front end bound and 4: back end bound. 

This categorization in based on Intel Vtune optimization guide [77]. 

Processors are divided into two sections: the front end which fetches instructions and decodes them into 

micro-operations (Uops) to feed them to the respective execution units. For the i5-2430M machine the 

front end generates upto four micro-operations maximum [78-79]. These micro operations are then fed to 

the respective execution unit which is called the back end of the processor. If the front end cannot fetch 

and decode then the instruction is called to be “Frontend bound” and if the back end is not able to accept 

operations then the instructions are said to be “Backend bound”. If the micro-operations exit the pipeline 

with doing useful work then these operations are said to be “retired” or else these operations are said to be 

“cancelled” [77]. The operations can get cancelled due to many reasons like branch misprediction or any 

other speculation done by the processor. The Intel®Vtune™ XE Amplifier classifies performance issues 

based on the pipeline slot the micro-operations can be in. The four categories and the corresponding 

hierarchy for the categories are shown in the figure 6 below. 

 
Figure 6: Categories of Pipeline slots an instruction entering the processor can be in. 

For microacrhitecturalanalysis, we first narrow down the bottlenecks into the above four categories and 

then highlight specific microarchitectural sub-systems which are bottlenecks for individual hotspot 

functions. 
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The VTune Amplifier XE provides a wide variety of microarchitectural analysis like general Exploarion, 

Bandwidth analysis, Cycles and Uops etc. More details about the different analysis types within 

microarchitectural analysis can be found in the VTune Amplifier XE help manual [71].  We use the 

general exploration type of analysis. It is an analysis which has a set of hardware metrics predefined. All 

the metrics for the analysis in general Exploration are highlighted in table 4.  

Pipeline Slot Category Specific Hardware Metric 

Frontend Bound Icache Misses 

Frontend Bound ITLB Overhead 

Frontend Bound DSB to MITE switch overhead 

Backend Bound LLC load miss (memory latency) 

Backend Bound LLC miss (memory latency) 

Backend Bound LLC hit (memory latency) 

Backend Bound DTLB overhead (memory latency) 

Backend Bound Contested Accesses (memory latency) 

Backend Bound Data Sharing (memory latency) 

Backend Bound L1 replacement (memory replacement) 

Backend Bound L2 replacement (memory replacement) 

Backend Bound LLC replacement(memory replacement) 

Backend Bound Loads block (memory reissue) 

Backend Bound Split Loads(memory reissue) 

Backend Bound Split Stores(memory reissue) 

Backend Bound 4k aliasing(memory reissue) 

Backend Bound DIV Active (Core bound) 

Backend Bound Merge flags(Core bound)  

Backend Bound Slow LEA overhead (Core bound) 

Retired Pipeline slot Assists 

Cancelled Pipeline slot Branch Mispredict 

Cancelled Pipeline slot Cancelled pipeline slots 

Table 4: General Exploration Hardware metrics with Pipeline slot categories and sub categories. 

More details about the specific metrics, the related hardware issues and designs are discussed in the 

microarchitectural analysis section for individual algorithms when they are found to be bottlenecks.  
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CHAPTER III 

VSNR 

This chapter provides a brief description of the VSNR algorithm in Section 3.1. Section 3.2 provides an 

insight into the implementation details of the code and specific methods used. The performance profiling 

and hotspot analysis is discussed in Section 3.3 and finally, microarchitectural analysis with 

corresponding hardware bottlenecks mapped to the specific algorithmic block presented in Section 3.4. 

3.1. Overview 

The VSNR algorithm [33] provides an estimation of  the visual perception of distortions in natural 

images. The strategy for VSNR is to compute the root-meansquared (RMS) contrast by calculating the 

contrast thresholds for detection of distortions, the perceived contrast of the distortions and the extent to 

which the distortion affects global precedence, to degrade the image’s structure. The block diagram for 

the algorithm is shown in figure 7.  

 

Figure 7: Block Diagram for VSNR. 

An efficient metric for quantifying the visual fidelity of natural images is the visual signal-to-noise ratio 

(VSNR). The metric is based on near-threshold and suprathreshold properties of human vision. The 

algorithm is divided into 2 stages. During the first stage, contrast thresholds for detection of distortions in 
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the presence of natural images are calculated. These thresholds are computed via wavelet-based models of 

visual masking and visual summation. The thresholds determine if the distortions are directly visible. If 

the distortions are below the threshold of detection then the distortions are not visible and the distorted 

image is considered to be of perfect visual quality with VSNR = infinity and the algorithm halts without 

conducting any further estimation of visual quality. But if the distortions cross the threshold; further 

processing is done which operates based on the low-level visual property of perceived contrast, and the 

mid-level visual property of global precedence. These two properties are then modeled as Euclidean 

distances in distortion-contrast space of multiscale wavelet decomposition, and VSNR is computed based 

on sum of these Euclidean  distances. 

3.2 Implementation Details and specifics 

The original C++ code of VSNR is obtained from author’s website [82] and is optimized to remove 

obvious inefficiencies and have less execution time. As shown in Figure 11, the reference image and 

distorted image are loaded and stored in 2-D float arrays. The DWT decomposition step is implemented 

with five-level two-dimension wavelet transform based on lifting scheme using the default Cohen-

Daubechies-Feauveau 9/7 wavelet [83]. In the second step, in order to have the contrast, we need to 

calculate the average luminance of the image. In this function, the original C++ code uses 512 × 512 

power operation, multiplication and addition. We modify this part using look up table technique to have a 

faster implementation which uses these operations only 256 times. In step 3, the global-precedence-

preserving contrast signal-to-noise ratio, is computed using bisection search with index of visibility in the 

range of [0, 1].  

3.3 Hotspot Analysis 

As described in section 2.1, the process of finding critical sections of the program which consume higher 

execution time is called hotspot analysis. For our experiment, we find the hotspots for all the algorithms 

based on their contribution to the total execution time.  
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 For the hotspot analysis for VNSR, we first find the total execution time for the algorithm. The  average 

execution time for VSNR is 0.700s.After the finding the average execution time we observe the analysis 

results for hotspot functions to find the most time consuming sections of the code. The results for hotspot 

analysis are shown in table 5. 

Function/block Average individual execution time(S) % of total execution 

All 0.724 100.00% 

1D DWT-Columns 0.236 32.61% 

Variance 0.119 16.45% 

1D DWT-Rows 0.099 13.68% 

Others 0.270 37.28% 

Table 5: Average execution time for the Hotspot function, also expressed as percentage of total execution 

time. 

We find that the top hotspot or the most time consuming block/function for VSNR is 1D DWT-Columns. 

It takes about 32% of the total execution time an average of 236ms. As mentioned previously, the 1D 

DWT-Columns function computes a 1-D Discrete Wavelet Transform (DWT) across the columns of the 

original (distortion less) and the subject (Distorted image). 

The next hotspot function/block is the variance block.  It takes about 17% of the total execution time and 

119 ms at an average. The variance function/block calculates variance for contrast and threshold 

detection. It is used for the image statistics.  

Following the 1D DWT-Columns block the next hotspot function/block is1D DWT-Rows. The 1D DWT- 

Rows block consumes about 14% of the total execution time and 99 ms at an average. The 1D DWT-

Rows function similar to 1D DWT-Columns calculates the DWT coefficients but across the rows on the 

reference as well as the subject image. Finally, all the other functions add up to 38% of the total execution 
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time and an average of 270ms.The results are plotted in figure 8, figure 9, and figure 10. 

 

Figure 8: Individual execution time for all the hotspot functions and all the test images stacked to add up 

to the total execution time for a loop of 30 frames. 

The figure shows that there is not a very high variation in the across the different test images with a few 

exceptions. To gather further insight into the variations, we plot the average execution of the different 

subject images across variation in distortions, figure 9 and across variation in image content, figure 10. 

 

Figure 9: Average execution time of the hotspot functions varied across the 6 different distortions. 

The plot shows the execution time of different images averaged across the different distortion levels. As 

seen from the graph, we find that there is no significant variation in the total execution time of the 

program as well across the different hotspot functions.  
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Figure 10: shows the average execution time of all the hotspot functions varied across 7 different image 

contents. 

 

As seen from figure 10, we find that similar to variation across different distortions there is  less variation 

in execution time of the complete program as well as individual hotspot functions with an  except for orig 

4 images. The orig 4 images have a higher execution time. Because the hotspot functions do not change 

ranks, the sequence/priority of the functions remains the same for optimization. As discussed in the 

methodology section, after the hotspot analysis we conduct microarchitectural analysis to analyze the 

behavior of the code with the underlying hardware. The results are discussed in the next section. 

3.4 Microarchitectural Analysis: 

After the hotspot analysis, we conduct microarchitectural analysis to inspect the utilization of 

architectural resources. The goal is to identify what microarchitectural resources the hotspot functions 

need, and to find microarchitectural bottlenecks. First, we analyze the results to study the instruction 

throughput of the code as a whole and the individual hotspot functions. The metric that we use is retired 

pipeline slots. We observe that there are bottlenecks related to the memory sub-systems and thus, briefly 

discuss the memory hierarchy design of the processor to create a platform for our discussions on specific 

bottlenecks, than associate these bottlenecks with the algorithmic blocks. 
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The main memory or the RAM is fairly slow and takes about 100 clock cycles to deliver operands to the 

processor. So, to deliver operands to the processor every clock cycle a fast and small cache memory is 

placed between the processor and system memory. The cache memory closest to the processor is Level 1 

cache or L1 cache. It is the fastest and smallest cache in the hierarchy. The next level of the cache 

memory is bigger and slower called the L2 cache. Usually, the L1 and L2 cache have 2 categories, First, 

Instruction cache where the instructions of the code are stored. The instruction cache aids to deliver the 

instructions to the processor every clock cycle and second, Data cache where operands and resultants for 

the instruction are stored. The level 3 or L3 is the last level cache which is the biggest and slowest. It is 

called the Last Level cache (LLC). Now, after knowing about the memory hierarchy we associate these 

memory sub-systems to the hotspot functions/blocks. More details about cache memories and memory 

hierarchy can be found in [80]. 

The results for the microarchitectural analysis, the hardware bottlenecks and associated blocks are shown 

in table 6 

Results Summary: 

Function/Block Image Type 

Pipeline Slot 

Category 

Backend Slot 

Category 

Retired 

Pipeline slot 

Hardware 

Bottlenecks 

1D DWT-

Columns All Backend Memory 0.100 

L1,L2 

replacement 

and LLC hits 

Variance All None None 0.383 None 

1D DWT-Rows 

All except 

jpeg-5 Backend Memory 0.350 4k aliasing 

1D DWT-Rows Jpeg-5 Backend Memory 0.221 

Machine 

clears 

Table 6: Microarchitectural analysis for VSNR with hotspot functions and associated bottlenecks. 

L1D- Level 1 Data Cache, L2D- Level 2 Data Cache, LLC – Last level Cache. 

Observing the hotspot analysis in the previous section, we find that 1D DWT-Columns block/function is 

the top hotspot. As mentioned, it is employed to do take a DWT across the columns of the subject image 

and the reference image. Conducting microarchitectural analysis, we find that the retire pipeline slot 
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metric for the block is around 0.1 for all the images. Typically, if the metric is above 0.6, the section of 

the program is considered to be efficient. [76]. Thus, 1D DWT-Columns is highly inefficient. Upon 

further investigation we find that 1D DWT-Columns is backend bound memory bound. The major penalty 

is due to LLC hits which mean the program has to access the last level cache frequently. The LLC takes 

about 26-31 clock cycles [78-79] for a single memory access, which is very costly. Consequently, 1D 

DWT-Columns is the top hotspot.  Along with LLC accesses as a bottleneck, we find that there are 

penalties due to data replacement in L1D and L2D caches. Since accessing the LLC requires high number 

of clock cycles, optimization should be made so that the processor doesn’t have to access the LLC 

frequently. This can be done by reducing the L1D and L2D replacement and the L1D and L2D misses. 

We discuss the techniques to improve the cache performance in the later part of this section. 

Followed by 1D DWT-Columns the next hotspot function is the 1D DWT-Rows which is similar to 1D 

DWT-Columns except that it is used to calculate DWT coefficients for rows. We investigate the retired 

pipeline slot metric to determine the efficiency of the block. We find that the retired pipeline slot metric is 

0.35 which means that the function is inefficient. After investigating the architectural reasons we find that 

the block is backend memory bound and specifically there are memory reissues because of 4k aliasing.  

To understand 4k aliasing, we need to look at how modern processors handle loads and stores. Load 

instructions refer to the transfer of data from memory to a CPU register. Stores do the opposite, i.e. write 

to a memory location from a CPU register [80]. A typical hardware optimization is to give priority to 

loads over stores, because loads are typically followed by arithmetic-type instructions that use the value 

that was loaded, and if a load is delayed, it stalls the subsequent use. Out-of-order execution is another 

common feature of modern processors, where instructions are executed out of the program order to make 

efficient use of hardware resources, but are retired in the correct program order [80].  Both the 

optimizations described above can give rise to a situation where a store instruction writes to the same 

memory location that subsequent loads read from, but the load instruction is actually processed before the 

store. This would yield a stale or incorrect value to be loaded from that memory location. This requires 
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checking the memory address that every load instruction gets its data from, with the target address for all 

pending store instructions. However, the pending stores might not have their effective addresses 

generated yet, and the load instruction could be delayed until at least all the store instructions have 

addresses that can be compared with the current load. This is not usually done, and the load is allowed to 

proceed. It is important to understand why modern architectures proceed with a speculative load in such a 

situation. As mentioned above, there could be instructions that depend on the load instruction. There are 

often several instructions that depend on a load, and delaying the load limits the options for the 

instruction scheduler for out-of-order processing. Furthermore, a load might miss in the first level cache, 

and might require several clock cycles to be serviced from the lower levels of the memory hierarchy (as 

seen above with the LLC accesses). Thus, it is important to issue the load without waiting for all the 

subsequent stores to have their addresses ready. 

As this operation could require several comparisons, instead of comparing the entire 32-bit or 64-bit 

address, only the last 12 bits are typically compared. If these addresses are 4K bytes (2
12

) or multiple of 

4096 bytes apart then a false hazard is detected. This is called 4k aliasing and the load has to be reissued. 

Consequently, because of 4k aliasing the processor has to perform loads again and the throughput goes 

down.  

A possible solution to this problem from the hardware side is to check all 32/64 bits of the address instead 

of just 12. On the other hand, if most applications do not show the 4k aliasing to be a bottleneck, 

hardware designers are likely to check only 12 bits to save on hardware complexity, chip space, and 

power consumption. 

There are some interesting solutions on the software side. One can investigate why there are so many 4k 

aliasing problems for this algorithm, and align data to 32 Bytes. Change offsets between input and output 

buffers if possible. Use 16-Byte memory accesses on memory which is not 32-Byte aligned. More details 

on solving 4k aliasing can be found in Intel optimization manual [77]. 
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Also, as seen for jpeg images there are micro operations that get cancelled due to machine clears. 

Machine clears are typically caused by memory ordering violations or loads to illegal memory range. 

Based on the previous finding of 4k aliasing, we can conclude that the machine clears here are due to 

memory ordering violations, and are in fact caused by false positives from the 12-bit comparisons. Load 

and store instructions do not exit the processor until it is validated that there is no memory ordering 

violation in the actual order of execution that was used. Stores do not get sent to memory until they are 

ready to be retired. If the processor detects a memory ordering violation, it discards all unretired 

operations (including the offending memory operation) and restarts execution at the oldest unretired 

instruction. This is because the load might be speculative as described above, and all the instructions that 

depend on that load are also marked as speculative. After the comparison with the stores, if there is not 

violation detected, then the instructions are deemed good and are retired. If a violation is detected (either 

because there was a violation or because of the false sharing), then the load has to be reissued, and all the 

dependent instructions are also cleared and reissued. 

From the hotspot analysis we notice that even though the DWT functions do exactly the same 

computation 1D DWT-Columns calculates the DWT coefficients across the columns and while 1D DWT-

Rows across the rows of the reference and the subject image, there is a significant difference in the 

execution time for both the functions. To investigate the reason behind this we describe the design of the 

caches and how the data is brought and replaced in a cache. 

The caches are design on the principle of locality of reference. It is based on the fact that the programs 

usually access the same or nearby memory locations repeatedly and frequently. Usage of same memory 

location repeatedly falls is called temporal locality while access of nearby memory locations is spatial 

locality [80]. An example for temporal locality would be instructions executed in a loop. These 

instructions are executed again and again and the processor fetches the instructions from the same 

memory location. For spatial locality, arrays serve as a great example. An image is basically a 2 

dimensional array of pixels. Usually if a pixel is accessed, the next pixel or a nearby pixel is also 



   

27 
 

accessed. Based on the concept of locality, the cache controller brings a complete block of data and not 

just the operand that is required by the processor at that instant. The cache block for the Sandy bridge 

microarchitecture is 64bytes [78-79]. Thus, we can say the caches operate at a granularity of 64bytes. All 

the blocks brought into and removed from the cache are 64 bytes in size.  

Now, we analyze how the image data is brought into the cache and correlate it with difference in 

execution time for calculating the DWT coefficients across columns and rows of an image. Figure 11 

shows how image data is mapped to memory locations in an L1 cache.  

 

Figure 11: L1 cache with a cache line of 64bytes along with mapping of image data to memory locations 

As seen from the figure the image pixels are brought in the cache row wise. A section of the image row is 

brought into the cache, when a block of data is stored in the cache. Specifically 8 pixels with double data 

type are brought into the cache. The calculations are shown below: 

1 block of cache = 64bytes (cache line width)/ 8 bytes (double data type size) = 8 pixels. 
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Thus, for getting a complete row of pixels in an image we require 64 blocks. Thus, a new column pixel is 

resides in the cache after every 64 cache line blocks.  Therefore, in terms of memory every column pixel 

resides after 64x64 bytes= 4096 bytes or 4kb. Hence for a total cache size of 32k, if the cache is assumed 

to be only filled with image pixels, there can be only 8 column pixels. Whereas the number of row pixels 

that can reside into the cache is 4088. Thus, it is seen that the number of row pixels brought into the cache 

is much higher than the number of column pixels brought into the cache. Consequently, the hit rate for 

row pixels is higher, the processor has to go to the next level of cache less frequently to fetch pixels as 

more pixels can reside and the execution time is less. 

Also, the other way to look at this problem is that for every block brought inside the cache all memory 

locations for that particular block are utilized by the 1D DWT-Rows functions (spatial locality) but for 

every block brought inside the cache there can be only one column pixel. Consequently, more blocks have 

to be brought and more current blocks residing inside the cache have to be replaced to make room for 

newer blocks. For this reason, the 1D DWT-Columns function has a higher L1D and L2D replacement 

penalty and has higher execution time. 

A basic solution to cache memory replacement and cache misses problem is to use a chipset with larger 

cache size. This will lead more data to fit in the cache and increase the hit rate to improve performance. 

Another software technique to improve cache performance is called Loop tiling or loop Blocking. Loop 

tiling or loop blocking. As the title suggests, loop tiling or blocking is a mechanism in which the loops are 

broken into smaller chunks, to ensure that the data used by the loop fits in the cache and does not cause a 

miss. When we partition loop iteration (large array into smaller blocks), the accessed array elements fit 

into cache size, enhancing cache reuse and eliminating cache size requirements. Loop blocking allows 

reuse of the arrays by transforming the loops such that the transformed loops manipulate array strips that 

fit into the cache. In effect, a blocked loop uses array elements in sections that are optimally sized to fit in 

the cache.  An example for loop blocking and how it improves cache utilization is presented in section 

8.1. 
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Followed by the wavelet block the next hotspot function is variance. The retired pipeline slot metric is 

averages to 0.4 which means that the function is executed inefficiently but has a throughput better than 

the DWT functions. From the microarchitectural analysis we find that there are no hardware bottlenecks. 

This means that the function has complex instructions which take multiple clock cycles to execute. As 

mentioned, the variance function is used to calculate the variance for threshold and contrast detection. 

Calculation of variance is a floating point operation. Operating on floating point numbers is inherently 

slow, thus the function takes more time to execute. The analysis doesn’t show a bottleneck because none 

of the floating point execution unit is overwhelmed and causes any stalls in processor.  

After analysis of the hotspot functions and highlighting their corresponding bottlenecks we map these 

hotspot functions to algorithmic blocks so that the bottlenecks can be associated with the algorithm rather 

than specific code implementations and functions. The red sections in figure 12 show the hotspot blocks.  

 

Figure 12: Block diagram of VNSR with top hotspots mapped to corresponding algorithmic blocks and 

their corresponding bottlenecks. 

The DWT-Rows and the DWT-cols functions belong to the DWT block with L1D, L2D replacements and 

LLC hits as bottlenecks for DWT cols and 4k aliasing a bottleneck for DWT rows. The variance function 

belongs to the contrast detection and distortion contrast block. It suffers from no hardware bottleneck. 



   

30 
 

CHAPTER IV 

MAD 

This chapter provides a brief description of the algorithm in section 4.1. Section 4.2 provides an insight 

into the implementation details of the code and specific methods used. The performance profiling and 

hotspot analysis is discussed in section 4.3 and finally, microarchitectural analysis and corresponding 

hardware bottlenecks mapped to the specific algorithmic blocks is presented in section 4.4. 

4.1 Overview 

MAD is one of the algorithms which has high estimation accuracy for visual quality of an image. Most of 

the IQA algorithms focus on the most dominating strategy used by the Human Visual System (HVS) 

while MAD uses multiple strategies to determine image quality of an image [34]. For images with near 

threshold distortions, the algorithm uses detection based strategy. While, the appearance-based strategy is 

used when the images containing clearly visible distortions. The diagram of MAD algorithm is shown in 

Figure 13. Using the input images: the reference image and the distorted/ subject image, the MAD index 

is computed via two main stages, the detection-based stage and appearance-based stage. Using the 

detection-based strategy, the detection-based difference map, the difference between the original and 

distorted images is computed. For the appearance-based strategy, the appearance-based difference map is 

computed using mean, variance, skewness and kurtosis for all local blocks of the log-Gabor filtered 

images. The detection-based difference and appearance-based difference maps combined to get the high-

quality and low-quality index. Weighted geometric mean of the indexes is computed. The final MAD 

index is computed using the weighted mean and a specific weight determined based on the amount of 

distortion. 
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Figure 13: Block Diagram for MAD. 

4.2 Implementation details and specifics 

The MAD code is ported to C++ from the Matlab version, which is publically available to download [71]. 

The input images are stored in 2-D double precision arrays using GBuffer image library. In the detection-

based stage, the images are taken to the luminance domain using look-up table. The Ooura’s 

mathematical software packages [72] are employed for calculating Fast Fourier Transform and inverse 

FFT. This Ooura’s library is also used in the log-Gabor decomposition in the appearance-based step. The 

statistical difference map is calculated using integral images for higher orders, detail can be found in our 

previous paper [67]. 

For each 512×512 image, MAD needs memory space for two input images, two luminance images, one 

for the error image, one for the CSF filter, four for the Ooura FFT computations, five for the masking and 

contrast maps, and around 80 images for the log-Gabor filter along with Ooura FFT, and statistical 

difference maps.  
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4.3 Hotspot Analysis 

In this section, we discuss the top hotspot and their corresponding execution time for MAD. From the 

hotspot analysis we find that MAD has a very high execution time. The average total execution time and 

average execution time for individual hotspots, along with their % contribution to the total execution time 

is tabulated below. 

Function/Block Average total execution time(s) % of total execution time 

All 41.970 100% 

Gabor Convolve 10.195 24.29% 

Low index 4.061 9.67% 

High index 2.827 6.73% 

DFT 2.906 6.92% 

Other 21.982 52.38% 

Table 7: Average execution time for the Hotspot function, also expressed as percentage of total execution 

time. 

As seen from the table, the top hotspot functions contribute about 50% of the total execution time and the 

other functions add up to the remaining 50%. So, to significantly remove performance or the total 

execution time all the top hotspot functions have to be targeted for optimizations. The top hotspot 

function is the Gaborconvolve function. It is used to calculate the appearance based difference map [34]. 

The function uses 5 scales and 4 different orientations to yield a total of 20 images for the original 

(reference) and the distorted (subject) image each.  The function takes about 25% of the total execution 

time. Next is the Low Index function. It calculated the statistical difference map using variance, skew and 

kurtosis of the gabor filtered images [34]. The low index function takes about 10% of the total execution 

time.  After the Lowindex function, the next hotspot is the High index function. It calculates the detection 

based map. The detection based map is calculated by finding the luminance of the reference and the 

distorted image, calculating the luminance error image and then applying a contrast sensitivity function to 

the DFT of the reference and the error image [34].  The final hotspot function is the DFT function; it 

converts the 2 input images into the Fourier domain. For the DFT function we use the Ooura’s 



   

33 
 

mathematical software packages [72]. The high index and DFT function take about 7% of the total 

execution time. We plot the individual execution time for all the subject images in figure 14. 

 

Figure 14: Individual execution time for all the hotspot functions and all the test images stacked to add up 

to the total execution time for a loop of 30 frames. 

As seen from the figure MAD has very minimal variation in total execution time for the different subject 

images. Also, we analyze MAD to investigate if there are any variations in execution with change in 

Image content or the type of distortion of the subject Image. The results plotted and discussed below. 

Figure 15 shows the variation of average execution time of the hotspots w.r.t change in the Image 

contents. While, figure 16 shows the variation of average execution time for the hotspots w.r.t change in 

the type and level of distortion. 
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Figure 15: shows the average execution time of all the hotspot functions varied across 7 different image 

contents 

 

Figure 16: Average execution time of the hotspot functions varied across the 6 different distortions. 

As seen from both the plot, we find the algorithm is stable across changes in the image content as well as 

across changes in the type of distortion. Thus, all the hotspots can be targeted directly for optimization, 

without any consideration of the image content or the type of distortion. No Image specific or distortion 

specific techniques or hotspot optimization are required for MAD. The optimizations made would be 

universal. 

4.4 Microarchitectural Analysis 

From the Hotspot analysis we find that the execution time for the execution time for MAD is very high. 

The execution time for individual hotspot functions is also high. We investigate the microarchitectural 
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sub-systems to find the reasons and bottleneck for higher execution time and analyze the behavior of the 

algorithm and its interaction with the underlying hardware.  The results are shown in table 8. 

Results Summary: 

Function/Block 

Image 

Type 

Pipeline slot 

category 

Backend slot 

category 

Retired pipeline 

slot 

Hardware 

bottlenecks 

Gabor 

Convolve All Backend Memory 0.221 DTLB 

Low index All Backend Memory 0.475 DTLB 

High index All Backend Memory 0.374 

L1D replacement, 

LLC Misses 

DFT All Backend Memory 0.225 

L1D, L2D 

replacement, LLC 

misses 

Table 8Microarchitectural Analysis for MAD, with hotspot functions and associated bottlenecks 

The top hotspot function is gaborconvolve. As mentioned previously, it is used to calculate the 

appearance based difference map [34] and produces an output of a total of 40 images with double 

precision floating point number data type.   It has a retired pipeline slow metric of 0.221.The retired 

pipeline metric indicates that the block is inefficient and has a low instruction throughput. Investigating 

the microarchitectural resources utilized by the block, we find that the block is backend memory bound 

with DTLB overheads causing penalty and higher computational time. Along with major penalty from 

DTLB we find that there is penalty due to L1D, L2D replacement and LLC hits and misses. 

To understand DTLB overhead, we first discuss a virtual memory system used in multiuser and 

multitasking environment and then discuss the use of DTLB in the virtual memory system [84]. 

Virtual memory separates the programmer’s view of the main memory from the actual physical placement 

of blocks in the memory. This scheme creates an illusion that all virtually addressable memory is present 

in the physical memory and can be accessed by the program without any restrictions. Thus, the 

programmer can write his code at an abstract level without any consideration of memory size and 

knowledge of actual physical memory layout. Without virtual addressing, the programmer has to 

explicitly manage physical memory resources shared among multiple programs and multiple users. For 



   

36 
 

example, a program would have to explicitly load and unload sections of the code that correspond to 

different phases of the program execution, because loading the entire program and the corresponding 

working data set would overwhelm the physical memory and consequently, other concurrent programs 

would starve for memory.   

When the data is fetched from the main memory or stored back into the memory by the processor, it 

requires actual physical addresses. Thus, a translation from virtual address to physical address is required. 

This is done by a mapping table called the page table [80]. The page table is stored in the main memory. 

For the processor to get the physical address would take 100s of clock cycles because fetching data from 

the main memory is slow. So, to have a faster translation which is compatible with the speed of the 

processor, a cache is used. This cache is called the Translation Lookaside Buffer (TLB). A TLB stores a 

sub-set of the page table and provides mapping at a faster rate to the processor [80].  Since, the TLB 

stores only a subset to the page table, there might be cases where the mapping in not resident in the page 

table, this is called a TLB miss. When there is a miss in the TLB the mapping has to be brought in the 

TLB from the memory. This can take 100s of clock cycles. Frequent TLB misses can lead to a very high 

penalty and this is called the TLB overhead.   

As TLB is very small in size, in order of a few bytes, and thus cannot store all the mappings. Now, as we 

see that the gaborconvolve function generates a total of 40 images, which is 512x512x4x40 bytes= 

41.943MB. The TLB cannot store mapping for such a huge memory size, so there are high numbers of 

misses in the TLB. The penalty for a TLB miss is 7 clock cycles [77], assuming that the mapping is found 

in the next level of TLB.  If the mapping is not found in the next level then the mapping has to be fetched 

in the main memory, which can be even more costly about 100s of clock cycles. 

Followed by the gaborconvolve the next hotspot block is the Low index function which has a retired 

pipeline slot metric of 0.475. The low index function calculates the statistical difference using the 

variance, skew and kurtosis for the gabor filtered images [34]. The metric indicates that the block has an 
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acceptable throughput but is not really efficient or close to the typical value. The computestatistic block 

like the gabor convolve block is also backend memory bound and has penalties due to DTLB overhead. 

As we see that the statistics are calculated for all the 40 gabor filtered images, the data set is still very 

huge and the mappings miss the TLB and thus cause a miss in the TLB and function suffers penalty. 

To reduce the DTLB overhead, we recommend using “Super pages”.  The Operating systems assign a 

virtual address space for a program at the granularity of a page size. Usually the page size by default is 

4Kb. Super pages are pages with a page size larger than 4Kb. The intel sandy Bridge microarchitecture 

has support for page size of 2MB/4MB or 1GB [76]. Larger page sizes mean that a TLB cache of the 

same size can keep track of larger amounts of memory, which avoids the costly TLB misses. More details 

about the support for larger page size or super pages for intel architectures can be found in [76].    

The high index function calculates the detection based map. The retired pipeline slot metric for the 

Highindex is 0.220. The block suffers from LLC misses which can cause very high penalties. As 

mentioned previously, the input data set for the function is input images, Luminance images and followed 

by Images in Fourier domain, all the levels of caches cannot fit all these images at one time and so the 

function suffers from LLC misses and the data or pixels have to be fetched from the main memory. 

Finally, the DFT function has a retired pipeline slot metric of 0.4 and is also backend memory bound. We 

find that there are misses from all the levels of cache. The algorithm uses the DFT from the ooura 

mathematical library [72]. We take the DFT for the input images. The output of the DFT operation is a 

1024x1024 pixel image (Imaginary part + real part). These images use the double precision floating point 

representation and hence each pixel is 64 bits. Total data set for the function is  

2*512 *512*8 bytes = 4MB. 

 As we see, the total data set is larger than the size of all the data caches so the images do not fit into the 

cache and the memory controller has to go to the main memory too fetch the operand or pixels. 
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A brief description of the memory hierarchy and caches along with techniques like cache blocking that 

improves performance are provided in section 3.3.  

Now, after studying the hotspot functions and the associated hardware bottlenecks, we map these 

functions to the algorithmic blocks in the block diagram. This gives a better idea to at an algorithm and 

generic level about the operations which are time consuming and can be a target for optimization. The 

mapping is shown in figure 17. 

 
Figure 17: Hotspot function mapped with algorithmic blocks with Log-Gabor filter having the hotspot 

function gaborconvolve and DFT & IDFT block has DFT function from ooura library and low index 

function is a part of statistical difference maps block.  

 
As we see from the figure, all the hotspot blocks are memory bound. The Gaborconvolve function 

belongs to the log Gabor block for appearance based stage. The DFT function is from the DFT & Inverser 

DFT block and the low index function performs the statistical analysis on the images and belongs to the 

statistical difference map block. 
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CHAPTER V 

MS-SIM 

This chapter provides a brief description of the algorithm in Section 5.1. Section 5.2 provides an insight 

into the implementation details of the code and specific methods used. The performance profiling and 

hotspot analysis is discussed in section 5.3 and finally, microarchitectural analysis and corresponding 

hardware bottlenecks mapped to the specific algorithmic block presented in section 5.4. 

5.1 Overview 

MS-SSIM [29] is based on the concept of SSIM [85] algorithm. The SSIM algorithm is based on a single 

scale while MS-SIM  operates by applying and combining SSIM for multi-scales. The concept behind 

using multiple scales is the fact that the right scale depends on the viewing conditions.. SSIM is derived 

by considering hypothetically what constitutes a loss in signal structure. The algorithm is based on the 

hypothesis that distortions in an image due to variations in lighting, such as contrast or brightness 

changes, are nonstructural distortions, and should be considered and treated differently from structural 

ones, and that one could capture image quality with three aspects of information loss that are 

complementary to each other: correlation distortion, contrast distortion, and luminance distortion. 

 

Figure 18: Block Diagram for MS-SIM. 
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5.2 Implementation Details and specifics 

The C++ code implementation of the algorithm is basically ported from its Matlab version, which is 

publically available on LIVE website [77]. The input images are loaded to memory into 2-D double 

arrays using GBuffer library. In particular, the code uses five scales. To have smaller scales, a low-pass 

filter and down sampling operation are used. The image is filtered with the filter’s size 2×2 and then 

down-sampled with a factor of two. For each scale, the SSIM is calculated starting with a Gaussian low-

pass filter. The filter has the size 11×11 in Matlab version, now in C++ version we convolute the image 

twice with two one-dimension kernels. By convoluting separately, we reduce the number of callings to 

multiplication for one 512 × 512 image from 512×512×11×11 to 512×512×11×2. For the multi-scale, we 

need memory space for two input images and five scales of them. To store a 512×512 double precision 

image in memory, we need 2MB; thus, the algorithm needs approximately 50MB total in RAM. 

5.3 Hotspot Analysis 

Similar to the previous algorithms, we perform hotspot analysis to find the average total execution time 

and the most time consuming functions/blocks in the program. The top hotspot functions with their 

average execution time and their percentage contribution to the total execution time are shown in table 9. 

Function/Block Average Execution time % of total Execution 

All 2.513 100.00% 

filter2_valid_11 1.431 56.95% 

ssim_index 0.432 17.20% 

operator_to_means 0.166 6.58% 

Others 0.484 19.27% 

Table 9: Average execution time for the Hotspot function, also expressed as percentage of total execution 

time. 

As seen from the table, about 75% of the execution time is consumed by the top 2 hotspot functions 

filter2_valid_11 and the ssim_index. The filter function is an implementation of an 11x11 Gaussian low 

pass filter on reference and the subject image as well as their 5 scaled versions [29]. The average 
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execution time is 1.431s which is about 56% of the total execution time. The next hotspot functions is the 

ssim_index_new function calculates the SSIM index for all the 5 scales using the luminance, contrast and 

the structure images [29]. Average execution time for SSIM_index_new function is about 0.432s which is 

17% of the total execution time. Followed by these functions, the next hotspot is the operator_to_means 

finctions which calculates the luminance and the contrast images [29].  The block takes about 6% of the 

total execution time with 0.166s as the average execution time. We plot the individual total execution 

time along with the corresponding execution time for the hotspot functions for all the subject images in 

figure 19. 

 

Figure 19: Individual execution time for all the hotspot functions and all the test images stacked to add up 

to the total execution time for a loop of 30 frames. 

From the plot, we find that the algorithm does not have a very high variation in the total execution time 

for all the test images. We observe that the average execution for all the hotspot functions across the 

image content and different distortions is also stable. The graph for average execution time for the 

Hotspot functions across different Image contents is plotted in figure 20 and the plot across different 

Image distortion is shown in figure 21. 
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Figure 20: shows the average execution time of all the hotspot functions varied across 7 different image 

contents 

 

Figure 21: Average execution time of the hotspot functions varied across the 6 different distortions. 

From the plots, we find that the algorithm is stable in terms of execution time for different Image contents 

as well as for different Image distortions. Thus, the hotspot functions can be directly targeted for 

optimization without any consideration of Image content or the type of distortion. The optimization can 

be universal, with the filter function as the first target for optimization. 
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5.4 Microarchitectural Analysis 

After knowing the blocks/functions of the algorithm which take higher execution time we perform 

microarchitectural analysis to gain an insight into the hardware bottlenecks and see how the instructions 

traverse through the processor. The results are shown in table 10. 

Results Summary: 

Function/block 

Image 

type 

Pipeline Slot 

category 

Backend 

Bound slot 

category 

Retired 

Pipeline 

slot  Hardware Bottlenecks 

Filter2_valid_11 All 

Backend 

bound 

 

Memory 0.620 L1D,L2D replacement 

Ssim_index_new All 

Backend 

bound and 

Retired 

Memory 

and core 0.350 

L1D, L2D replacement, 

LLC miss. 

Assists (Retired) 

Operator_tomeans All 

Backend 

bound 

Memory 

and core 

bound 0.277 

L2D replacement, LLC 

miss, DTLB overhead. 

Floating point Divide 

Table 10: Microarchitectural analysis for MS-SSIM. DTLB – Data Translation look-aside Buffer. 

  

The Filter2_valid_11 function is an implementation of a Gaussian low pass filter. This filter is applied to 

5 scales of the reference image and the distorted image [29]. From the microarchitectural analysis, we 

find that the retired pipeline slot metric for the filter functions is 0.62. The metric shows that the function 

has a decent throughput but still can be targeted to improve performance. The associated bottlenecks are 

backend memory bound [72] because of the penalties due to L1D and L2D replacements [80]. 

As mentioned, the filter is applied to 5 different scales, which means that the input data set for the filter 

function is big and all the data cannot fit into the caches at a time. The filter is applied and then the 

filtered image is downsampled to calculate the next scale and then the down sampled image is again filter. 

We see that the result is utilized for the filter operation. Thus, from the hardware or caches point of view, 

once the block of data is brought in the cache it is utilized efficiently before it has to be evicted. So 

because of the larger data set we have replacements in L1D and L2D cache but once the data is brought 

into the cache all the required processing is done on it. So it is in the streaming mode for a certain period 



   

44 
 

and then when a pixel is not found in the cache a miss occurs and data is brought in the cache from the 

next level. This replacement causes penalty and higher execution time and the utilization of a block 

already resident in the cache leads to an acceptable throughput. We present the technique to optimize 

cache utilization later in this section.  

Following the filter block, the next hotspot block is Ssim_index_new. The SSIM index function 

calculates the SSIM index for each scale of the reference as well as the subject image [29]. As mentioned 

previously, a total of 5 scales are used. The input data set for each scale is a set of 3 512x512 double 

precision floating point images. Luminance image, contrast image and structure image. The retired 

pipeline slot value for the Ssim_index_new function is 0.35. The instruction throughput is low. The 

microarchitectural analysis indicates that the architectural bottlenecks for the blocks are in two categories 

backend bound and retired pipeline slots [tutorial]. First, the block is backend bound due to memory 

issues. We find that there is penalty due to L1D replacement, L2D replacement and LLC miss. As we see 

that the input dataset for the calculation of the SSIM index is very high 10 images. This big data set 

cannot fit into the caches. Thus, there are misses in all levels of cache. The penalty to satisfy LLC miss is 

very high and is typically 100s of clock cycle because the data is fetched off chip from the system 

memory. Thus, the block suffers many clocks cycles just with memory accesses and has a low instruction 

throughput. 

To improve cache performance we suggest using cache blocking. Details of cache blocking are provided 

in section 3.3 and other techniques to improve cache utilization can be found in [86]  

The second category of the bottlenecks for the SSIM function is the pipeline slot is retired instructions 

[72]. As mentioned previously, retired slots instructions are the ones which do useful work but the 

number of clock cycle to perform a task can be significantly high. There are instructions in the block 

which cannot be directly executed by the processor. Thus, these instructions are converted to a stream of 

microcode that can be executed by the processor. This micro code can be 100s of instructions long. Thus, 
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the latency of executing these instructions can turn out to be very high. Since this micro code assists 

operations which cannot be directly handled by the processor, this code is called micro assist code. [76]  

For calculating the SSIM index, luminance, contrast and structure are used to calculate the SSIM index 

[29, 85] for all the 5 scales. The formula to calculate the SSIM index is: 

    (   )   (   )   (   )   (   )  

Calculation of the SSIM index for each scale requires floating point operations. The IEEE 754 [87] 

standard is used for implementation for floating point operations but if the floating point numbers are very 

small and don’t fall in the IEEE 754 standard, they cannot be directly executed by the processor. Thus, 

these floating point operations are converted in a stream of micro code and then inserted in the pipeline of 

the processor. This micro code has about 100s of instructions as mentioned. Thus, micro assists have a 

higher latency and are a bottleneck.  

To remove micro assist overhead, we suggest to use single precision floating point numbers in place of 

double precision numbers wherever possible. Single precision computation is faster than double precision 

computation. Also, wherever possible use integers. Fast float to int routines can be used.  We can use 

instructions in SSE2 or SSE3 [77] instructions. One another optimization method would be to use the 

intel compiler [88] which can generate instructions which exploit data level parallelism. 

The next hotspot function is operator_tomeans. It is used to calculate the luminance and contrast for 

reference and the subject image and all the corresponding 5 scales. The function has a retired pipeline slot 

value of 0.277.  The block is backend bound and bottlenecks are both the memory bound and core bound. 

For the memory bound the bottlenecks are the L2D replacement and LLC misses. Since, the input data set 

is 10 images with double precision floating point representation of pixels, it cannot fit in the cache and 

consequently the pixels or images are not resident in the cache and causes misses in all levels of cache. As 

discussed previously the LLC misses have a very high penalty on the instruction. Also, there is some 

penalty due to DTLB overhead. As described in section 4.3 the DTLB is used to store a subset of virtual 
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address to physical address mapping page store in the main memory (RAM) to provide faster translation 

of virtual to physical address. If the virtual address is not found in the DTLB, then like the cache 

hierarchy the processor accesses the next level of TLB called the Second level Data translation look-aside 

buffer (STLB) [77] which has higher latency to provide physical address.  

To improve performance and cache utilization, a cache blocking can be used. We have discussed cache 

blocking in section 3.3. For improving performance relevant to DTLB, using super pages would be 

helpful. Using super pages can get cover sparsely spaced memory, which is usually the cause for DTLB 

overhead. 

For the core bound category, the hardware bottleneck is the floating point divide unit. As already 

mentioned, the function calculates the luminance and the contrast. The luminance is calculated using the 

mean while contrast is calculated using the variance. More details about the luminance and the contrast 

function can be found in [29].  The calculation of luminance and contrast is a complex floating point 

operation. The floating point operations inherently are long latency operations and because of the 

continuous feed of floating point operations for every pixel and a total of 10 images, we find that the 

floating point divide unit is overwhelmed and is a bottleneck and we have a structural hazard [80]. 

For improving the Floating point Divide overhead we recommend to use the logarithmic number systems 

to do operation. The Floating point divide would turn in a subtract instruction. The subtract instruction 

would take less number of clock cycles than floating point divide operation. The only overhead is the 

conversion of the numbers into a logarithmic number system and then takes an anti-log. Since we are 

doing a very high number of floating point operations the overhead is acceptable. Also, If possible 

floating point operations should be converted into integer operations to inherently make the operations 

faster. 

Now, after studying the hotspot functions and the associated hardware bottlenecks, we map these 

functions to the algorithmic blocks in the block diagram. This gives a better idea to at an algorithm and 
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generic level about the operations which are time consuming and can be a target for optimization. The 

mapping is shown in figure 22. 

 

Figure 22: MS-SSIM block diagram with hotspot functions mapped to algorithmic blocks. The filter2_11 

function belongs to Low pass filter block, the SSIM index and the operator to_means function belong to 

the comparison block. 

The hotspot functions belong to 2 blocks. The filter functions belong to the low pass filter block and the 

remaining functions the SSIM_index and the operator_to_means function belong to the comparison 

blocks. The blocks suffer mainly due the memory bottlenecks.  
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CHAPTER VI 

BLIINDS 

This chapter provides a brief description of the algorithm in section 6.1. Section 6.2 provides an insight 

into the implementation details of the code and specific methods used. The performance profiling and 

hotspot analysis is discussed in section 6.3 and finally, microarchitectural analysis and corresponding 

hardware bottlenecks mapped to the specific algorithmic block presented in section 6.4. 

6.1 Overview 

The BLIIND-II algorithm [39] is a no reference algorithm. It uses the idea that the DCT statistics are 

symmetrically distributed but the distribution features are neither Gaussian nor laplacian. The generalized 

natural scene statistic based mode of local DCT coefficients is used and parameters are transformed into 

features.  The block diagram of the algorithm is show in Figure below. The input image, is the first scale, 

it is low-pass filtered followed by a two times downsampling process to generate two more scales. During 

the first stage, all three scales (input image, 2 downsampled versions) are operated by taking a  2-D DCT-

transform with the block size 5×5 and two pixels overlapping within two neighboring blocks. In the 

second stage, a generalized Gaussian density model is applied to each block of DCT coefficients, and 

specific partitions within each DCT block. In the third stage, which is the feature extraction process, the 

features are derived from these model parameters.Finally, BLIIND index is calculated by applying a 

simple Bayesian model, but the parameters need to be trained. The block diagram for Bliinds is shown in 

figure 23. 
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Figure 23: Block Diagram for Bliinds. 

6.2 Implementation Details and specifics 

The Matlab code was obtained from first author of BLIINDS-II via email in early 2012, and is confirmed 

to be the newest version available. The C++ code is ported from Matlab version with some optimizations. 

As shown in Figure (3), the input image is loaded to memory as a 2-D float precision array using GBuffer 

library. In the low-pass filter and down sample step of Matlab code, the image is convoluted with a 

Gaussian kernel size 3 × 3, and then down-sampled by factor of two. In the C++ version, we optimize this 

step by using separable convolution. We convolute the image with two 1-D kernels separately, each of the 

size 3 × 1 instead of 3 × 3. After this step, we have three scales. With each scale, the 2-D DCT 

coefficients are calculated locally for the blocks of the size 5 × 5 with 2 pixels overlapping between 

neighboring blocks. This step is also optimized using look up table for 25 values of cosine function. 

In the Generalize Gaussian modeling step of Matlab version, function is calculated over and over for each 

block. In our C++ code, this function is pre-calculated once out of the loop. In this step, fitting process of 

DCT data histogram in each frequency bands to the model (12) is implemented as a line search procedure 

in 9970 values of  in the range of [0 − 10]. In the features extraction step, the algorithm needs to sort 

algorithm to take 10
th
 and 100th percentile. Finally, the BLIINDS index is then calculated from the 

extracted features by some simple point-point multiplications. The first C++ code needs about the same 

running time as the Matlab code. By combining these above optimizations, we have a version that is 300 

times faster. The new code needs less than 0.3 second to work with a 512 image while the original code 
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needs more than 100 seconds. We need 1MB in memory to store a 512 image in float precision. The C++ 

version needs to store seven arrays of gamma, frequency, energy and rho features for three orientations 

with each scale, thus makes approximately 14MB of memory total. 

6.3 Hotspot Analysis 

We conduct hotspot analysis to find the total average execution time for Bliinds. Followed by calculation 

of the average execution time we find the top hotspots in the algorithm, along with their individual 

execution time and their percentage contribution to the total execution time. The results are shown in 

table 11. 

As seen from table 11, the average total execution time for BLIINDS is about 8s.The most time 

consuming function/block is the dct block with approximately 48% of the total execution time. The block 

has an average execution time of 3.81s. As mentioned previously, the block calculates the DCT 

coefficients of the subject image and the 2 different scale images (down sampled).The window size of the 

DCT transform is 5x5.  Followed by the DCT block is the gama_dct block. The block basically maps the 

rho values to Gaussian. It is basically Gaussian curve fitting function.  As seen from the table, the block 

consumes about 23% of the total execution time and at an average the execution time for the block is 

1.88s.  Consequently, we find that the DCT and gama DCT block/function takes about 70% of the total 

execution time. 

Function/block Average Execution Time % of total Execution time 

All 8.0327 100% 

dct2_55_fast 3.811 47.44% 

gama_dct 1.882 23.44% 

rho_sorted 0.297 3.69% 

convolve 0.292 3.64% 

Other 1.750 21.79% 

Table 11: Average execution time for the Hotspot function, also expressed as percentage of total 

execution time. 
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Following the DCT blocks, the next hotspot function is the rho_sorted function/block. The function is 

basically a sorting function and after sorting the array it takes the 10
th
 percentile of the array. The 

rho_sorted function is used for feature extraction. It is employed for multiple features and thus is called 

multiple times in the code. More details can be found in [29]. From the table we find that the execution 

time for the block is 0.296s at an average, which is about 4% of the total execution time. Also, the 

convolve function/block has the close average execution time to rho_sorted about 0.292s and consumes 

about 4% of the total execution time. The block performs convolution across the subject image and is 

employed as a low pass filter. Finally, all the other functions add up to 22% of the total execution time 

and have an average time of about 1.75s.The individual execution time for all the subject images in 

plotted in figure 24.  

 

Figure 24: Individual execution time for all the hotspot functions and all the test images stacked to add up 

to the total execution time for a loop of 30 frames. 

As seen from the figure 24, we see that the individual execution time varies from Image to image and for 

some images the variation is high. Thus, to study the variation we plot the average execution time for the 

hotspot functions varying across different distortions and across image content. These graphs are shown 

in figure 25 and figure 26. 
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Figure 25: shows the average execution time of all the hotspot functions varied across 7 different image 

contents 

 

Figure 26: Average execution time of the hotspot functions varied across the 6 different distortions. 

As seen from the plot, we find that there is significant variation in the total execution time based on the 

distortion of the subject image. As observed the images with distortion jpeg-5, have a higher execution 

time. We find that the gama dct block in the jpeg-5 images takes more time to execute and this is the 

reason for higher total execution time of the program. Similarly, the gama dct function takes higher 

execution time for AWGN-5 and jpeg-1 images. We find that the variation/increase for the gama dct 

function for the AWGN-5 and Jpeg-1 is not as large as jpeg-5 images. Thus, the execution time doesn’t 

increase significantly as compared to jpeg-5 images.  From the plots we infer that, if the subject Image is 
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a jpeg image or an image with high white Gaussian noise the initial target for optimization should be the 

gama_dct block followed by the dct2_55 block.  

6.3 Microarchitectural Analysis 

After the hotspot analysis and knowing the blocks which take higher execution time we conduct 

microachitectural analysis to have a deeper insight into the architectural bottlenecks. The algorithmic 

blocks along with the corresponding hardware bottlenecks are listed in table 12.   

Results Summary: 

Function/block Image type 

Pipeline Slot 

category 

Backend Bound 

slot category 

Retired 

pipeline 

slots 

Hardware 

Bottlenecks 

Dct2_55 All Backend bound None 0.65 None 

Gama_dct 

All except 

jpeg-5 Backend bound None 0.70 None 

Gama_dct Jpeg-5 Backend bound 

 

Memory 0.50 

L1D 

replacement 

Convolution All Backend bound 

 

 

Memory 0.487 

L1D,L2D 

replacement, 

LLC Hit 

Rho_percentile All None None 0.244 None 

Table 12: Results for BLIINDS. 

Conducting the hotspot analysis we find that the top hotspot function is Dct2_55 function/block. For 

microarchitectural analysis, we use the retired pipeline slot metric to measure the throughput of a 

particular function and investigate if the function traverses the pipeline efficiently. Table3 shows that the 

retired pipeline slot metric value for the dct block which calculates the DCT coefficients averages to 0.65, 

which means that the hardware resources are being used optimally (0.6 is the typical value that is 

considered to be good and acceptable). When we investigate the behavior of the block with reference to 

microarchitectural sub-systems, we find that there are no architectural bottlenecks.  

We describe in details the implementation of the DCT function to an insight about the throughput of the 

function. As mentioned in the implementation specifics section, the DCT function/block uses a look up 
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table to store the cosine values. Since Cosine functions are expensive, precalculation of the cosine 

function saves computation. Along with using the lookup table, we use single loops for first row and 

column and a nested loop for the remaining pixels. As mentioned, the cosine operation is expensive but it 

is eliminated using the look up table, all the other functions are not very expensive so the throughput is 

acceptable. Consequently, number of stalls is not very high and the block/function has no hardware 

bottlenecks. 

The next hotspot function is gama_dct function/block. It also has an acceptable retired pipeline slot value 

of 0.70 for all the images except jpeg-5. The function is a Gaussian curve fitting function. It maps rho 

values to Gaussian. [39].From the microarachitectural analysis we find that there are no hardware 

bottlenecks for the function except for jpeg-5 images. For Jpeg-5 images the gama_dct block has a retired 

pipeline slot value of 0.5 and takes maximum execution time to become the top hotspot. The associated 

hardware bottleneck is backend memory bound. Specifically the data is replaced in the L1D cache which 

means the processor fetches data from L2 cache. The L2 cache has higher latency.   

As mentioned in the implementation section, the gama_dct function maps rho values to Gaussian. During 

the process it traverses an array of 9970 values. If there is a match the traversal stops. We observe that for 

Jpeg-5 images, the function has to traverse more indexes to map the rho values. The array contains 

floating point double precision values.  

Array dataset= 9970*8= 79.76 Kb. 

From table 1, the Level 1 data cache is just 32Kb and cannot hold all the data.  Therefore, some of the 

values in the array are stored in the next level of cache. Consequently, for jpeg-5 images the functions has 

to go to the next level of cache to fetch the data. This causes higher latency and higher execution time for 

gama_dct function. To improve the performance for the gama_dct function, we suggest traversing the 

array based on the input image’s profile. For jpeg-5 images, traversing the array from the end would map 

the Gaussian value in fewer indexes and improve performance. 
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Followed by the DCT blocks the next hotspot is the convolution/function block. From the 

microarchitecutral analysis, the convolution block has a retired pipeline slot value of 0.5 at an average and 

is backend memory bound. We find that there are L1D as well as L2D replacement penalties and the 

processor also has to access the LLC for some operands. As mentioned, the LLC has a large latency of 

about 26-31 clock cycles and is the cause for the function to be slow [77]. We discuss the memory 

hierarchy sub-system section 3.4 and in [80].   

Finally, the rho_percentile block has a retired pipeline slot value of 0.2 but the microarchitecural analysis 

does not show bottleneck which means that the block inherently has complex computation which take 

higher clock cycles. 

Along with the top hotspot functions, we find some common bottlenecks for all the images for other 

functions. The floating point divide unit is a bottleneck for bloc_procexpnd and calculating the square 

root for statistical analysis. 

 

Figure 27 : Block diagram for BLIINDS with hotspots functions mapped to algorithmic blocks. The DCT 

function maps to Block-based DCT coefficient, Gama-DCT function maps to generalized Gaussian 

modeling block and filter function maps to the Low pass filter block. 
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CHAPTER VII 

VIF 

This chapter provides a brief description of the algorithm in section 7.1. Section 7.2 provides an insight 

into the implementation details of the code and specific methods used. The performance profiling and 

hotspot analysis is discussed in section 7.3 and finally, microarchitectural analysis and corresponding 

hardware bottlenecks mapped to the specific algorithmic block presented in section 7.4. 

7.1 Overview 

VIF [30] is a full reference IQA algorithm. The algorithm uses the Natural scene statistics based on 

information fidelity. VIF considers distortion of an image as loss of information. It explores the 

relationship between image information and the amount of information shared between a reference and a 

distorted image and its impact on visual quality. Along with this, VIF quantifies the information content 

of the reference image as being the mutual information between the input and output of the HVS channel. 

The information gained is the amount of information the human brain could extract from the reference 

image. Similar processing is done for the distorted image to yield the information that the brain could 

extract from the distorted image. These two information measures one from the reference image and the 

other from the distorted image are then combined to form VIF index which gives the measure of the 

visual quality. 

 

Figure 28: Block diagram for VIF. 
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7.2 Implementation details and specifics 

The C++ version of VIF algorithm is ported from Matlab code which is publically available in LIVE’s 

website [75]. The VIF algorithm uses Steerable Pyramid toolbox [74] in Matlab, when ported to C++, it 

uses the Steerable Pyramid C library of the same author. The block diagram is shown in Figure 28. First, 

both reference and distorted image are loaded to 2-D double arrays using GBuffer library, then both of 

them are decomposed via Steerable Pyramid with four levels. In the Matlab version, the algorithm use 

Steerable Pyramid with six orientations for each level, thus 24 times calling to the filter, but VIF uses two 

orientations only. In C++ version, we modified the Steerable Pyramid library to filter only those 

orientations which VIF uses latter. This modification reduces the number callings to the filter from 24 to 

8. From the reference subbands, the parameters of the reference channel are calculated, then the reference 

image information. Both distorted and reference subbands are used to compute the parameters of distorted 

channel, and then, from the parameters of both reference and distorted channel are evolved to compute the 

distorted image information, as in equations (8) and (9). To calculate the eigenvalues of CU, we employ 

the Newmat C++ matrix library [76]. There is the conversion between data type here, but the speed does 

not change much because the CU matrix is small, 9 × 9. 

From the image information of both reference and distorted image, the VIF index of two input images is 

the rate of distorted image information over reference image information. The more VIF index closes to 

one, the better distorted image comparing with the reference image. 

For input images with size 512 × 512, we need 2MB for each image in double precision. The code needs 

eight pairs of filtered subbands, one high band and one low band for Steerable Pyramid, eight images for 

G, V , S with different sizes and eight images for CU with 9 × 9, that makes approximately 20MB in 

memory. 
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7.3 Hotspot Analysis 

Following the same procedure, we find the total average execution time for the algorithm, the hotspot 

functions and their average contribution to the total execution time. The results are shown in table 13. 

Functions/block Individual Execution time % of total Execution 

All 12.121 100.00% 

internal_filter 3.693 30.47% 

internal_reduce 2.839 23.42% 

refparams_vecgsm 2.147 17.72% 

other 3.444 28.41% 

Table 13: Average execution time for the Hotspot function, also expressed as percentage of total 

execution time. 

From the table, we see that the top hotspot functions contribute about 70% to the total execution time, 

with the top hotspot internal_filter taking about 30% of the total execution time at an average. The 

internal_filter function.The individual execution time for all the subject images and the hotspots is shown 

in figure 29. We find that there is not a very high variation in total execution time for Images. To 

investigate the variation of hotspots with change in Image content and types of distortions we plot the 

average execution time for all the hotspot functions varying across the Image content as well as types of 

distortion. The results are plotted in figure 30 and figure 31. 

 

Figure 29: Individual execution time for all the hotspot functions and all the test images stacked to add up 

to the total execution time for a loop of 30 frames. 
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Now, we investigate the variation for the execution time with change in Image contents and types of 

distortion.  

 

Figure 30: shows the average execution time of all the hotspot functions varied across 7 different image 

contents 

As seen from the plot, the algorithm and all the hotspot functions are very stable with change in image 

content.  The variation is minimal across the image contents. We now investigate the variation of the 

execution time with change in types of distortions for the subject Image. The results are plotted in figure 

31. 

 

Figure 31: Average execution time of the hotspot functions varied across the 6 different distortions. 

Similar to the changes in Image content plot, we find that the variation of the execution time for the 

hotspot functions with types of distortions is also stable. Thus, from all the plots we find that the 
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algorithm doesn’t have any variation with reference to different distortion levels as well as Images 

contents. Thus, the hotspots can be target for optimizations directly without any consideration of any 

parameters. 

7.4 Microarchitectural Analysis 

As per the procedure for the above 3 algorithms, after hotspot analysis we conduct microarchitectural 

analysis, study the retired pipeline metric determine efficiency and throughput of the block. Once the 

throughput is determined, we find the associated architectural bottlenecks. The function blocks and 

associated bottlenecks are shown in table 14. 

Results Summary: 

Function/block 

Image 

type 

Pipeline Slot 

category 

Backend Bound 

slot category CPI 

Hardware 

Bottlenecks 

Internal_filter All Backend bound Core  Slow LEA Stalls 

Internal_reduce All Backend bound 

Memory and Core 

bound  

L1D replacement. 

Slow LEA Stalls 

Refparams_vcgsm All Backend bound 

 

Memory  

L1D, L2D 

replacement, LLC 

hit, LLC miss, 

DTLB overhead. 

Table 14: Microarchitectural analysis for VIF.  LEA- Load effective Address 

As mentioned in the hotspot analysis, the top hotspot is the Internal_filter block. The block operates as a 

filter function on the image as mentioned in the previous section. We study the microarchitectural 

analysis to find that the block has a retired pipeline slot value which is 0.632.   This implies that the block 

is close to the typical value of the metric and has a good throughput. The block is backend core bound. 

We study architectural resources utilized by the block to find that there is a minor penalty due to slow 

LEA instructions which have higher latency.  

The Load effective address or the LEA instruction is an assembly instruction. As the name suggests 

calculates the effective address and places it in a register. These instructions can be very useful when 
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performing an operation using the same address again and again. These instructions prevent the 

calculation of the address again.  

Example: 

Add.w $1, ($2, $3), A0;    

This is an add instruction where the effective address for an operand is values $1+$2+$3. So if the 

operation is being used multiple times then a better way to do this operation is  

Lea $1, ($2, $3), A5; 

Add.w (A5), A0; 

 Thus, as seen Lea instruction is a powerful tool to prevent the calculation of an address again and again. 

For the Intel Sandy Bridge microarchitecture, these instructions are fed to the execution core via port 1 

and port 5 [77]. But this is applicable only if the operands for the lea instructions are just one or two. For 

lea instructions with three operands as the one in the above example, these instructions can only be 

dispatched or fed to the execution core through port 1 only [77]. These instructions have a longer latency 

of 3 clock cycles [77].  

Also, there are some other special cases, where the Lea instructions can take 3 clock cycles to execute 

even with 2 operands. The details about these cases can be found in [77]. We find that the LEA 

instruction where generated by the compiler for the index access variable in the loop. 

Next, we analyze the second hotspot function, Internal_reduce. The block has a retired pipeline slot 

metric value of 0.62. This implies that the block has a good throughput similar to the above internal_filter 

block. The microarachitectural analysis for the blocks shows that the block is backend memory bound as 

well as core bound. There are minor penalties with L1D replacement and a few stalls due to LEA 

instructions. 
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The top third hotspot after the filter block is the refparams_vecgsm block. Using the microarchitectural 

analysis we find that the block has a low retired pipeline slot metric of 0.22. Consequently, the throughput 

for the block is low. Further investigating, we find that the block is backend memory bound and suffers 

major penalty due to LLC miss and LLC hits. The processor has to fetch data from the LLC or the DRAM 

(main memory). As mentioned previously, the penalty for accessing the LLC is about 26-31 clock cycles. 

 

Figure 32: Block diagram for VIF with hotspots functions mapped to algorithmic blocks. 

As seen from the figure, the major bottleneck for the algorithm is the generation of the LEA instructions 

by the compiler. We also find memory bottlenecks due to data replacement in the caches and the DTLB 

overhead. 
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CHAPTER VIII 

DISCUSSIONS AND RECOMMENDATIONS 

This chapter we discuss the outcome of the analysis as a whole. Along with a discussion on the 

bottlenecks for various algorithms we recommendation techniques to reduce penalty from these 

bottlenecks and improve performance. Section 8.1 discusses the memory bottlenecks and various 

techniques to improve performance by optimizing cache usage and reducing DTLB overhead. Section 8.2 

provides a brief discussion about the tool in general. In section 8.3, we discuss the bottlenecks in the 

processor core and finally in section 8.4 we proposed a custom hardware engine for IQA algorithms. 

8.1 Memory Bottlenecks: 

From the microarchitectural analysis, we find that all the algorithms have a backend bound memory 

bottleneck but the penalty suffered by individual algorithms varies highly. When there is a memory 

bottleneck mostly, what this means is that the hotspot functions are trying to read from or write to 

memory locations, and the access patterns of these reads and writes are such that there are misses in the 

CPU caches. These cache misses have to be serviced from lower levels of the memory hierarchy, which 

are slower to access, which is why we see the programs spending more time in these functions. Thus, the 

large amount of data generated while transforming these images into other domains (insert algorithms that 

do this), creating extra images (MAD and add any other algorithms that do that) and stepping through 

these multidimensional arrays many times causes most of the performance bottlenecks for IQA 

algorithms. If we observe the results, the penalty suffered varies from algorithm to algorithm. For 

example, all the hotspot functions in MAD suffer penalty from being backend memory bound while VIF 

has a memory bottleneck for the refparam_vcgsm function. It should be noted that the refparams_vcgsm 

function is the last hotspot for VIF. Thus, its impact on the performance of the algorithm is not high as 

other functions which are not memory bound. Thus, from the discussion we infer that even if all the 



   

64 
 

algorithms at some point have a memory bottleneck its impact and severity of the penalty on the complete 

algorithm depends on the rank of the hotspot, which consequently would decide the priority for 

optimization.   

Another observation from the analysis is that even though at an abstract level all the algorithms show 

memory as a bottleneck, the actual physical microarchitectural bottleneck are different for different 

algorithms. For example, the top 2 hotspot functions in MAD have poor performance because of the 

DTLB overhead, while the top 2 hotspot for MS-SSIM have a higher execution time because of the L1D, 

L2D replacement and LLC misses.  

Apart from issues with the usual suspects in the memory hierarchy (CPU caches at different levels), there 

are hotspot functions which show penalties associated with shared memory issues and violations which 

cause machine clears and 4k aliasing as in case of VSNR. Thus, our analysis reveals some interesting 

performance bottlenecks that would otherwise have gone undetected. One of the contributions of this 

paper is that it brings these issues to light, and discusses ways to resolve them through software 

techniques and through microarchitectural and hardware techniques. 

Thus, we can infer that even if in broader sense, memory is an issue due to which the algorithms suffer a 

loss of performance, the actual bottlenecks as well as the impact on the performance is specific to each 

particular algorithm. Different microarchitecutral resources are overwhelmed by different functions and 

algorithms. 

Let us first look at the most common aspect of performance loss due to the backend memory: data 

replacement in the cache (cache misses). Thus, we first discuss techniques to reduce cache misses and 

improve cache utilization. 

1: System Tuning: As mentioned in section 2.2.1, choosing the best hardware which suits the application 

is called system tuning. Thus, if it is possible to change the hardware platform for IQA we suggest using a 
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processor with a larger cache. This will reduce the number of cache misses, replacements and 

consequently improve performance.  

2: Exploit locality: Locality of reference is the tendency of the programs of access same (temporal 

locality) or nearby (spatial locality) memory locations repeatedly and frequently [80]. Thus, caching these 

memory locations can reduce misses. Writing a code which exploits locality can significantly improve 

performance. 

To explain how exploiting locality and improve performance we take an example of the following codes. 

SAMPLE CODE 1 SAMPLE CODE 2 

float sum_array ( int a[M][N]) 

{  

Int I, j, sum =0; 

for (i = 0; i<M; i++) 

{ 

                     for (j=0; j<N; j++) 

{ 

        Sum += a[i][j]; 

} 

                } 

 return sum; 

}  

 

float sum_array ( int a[M][N]) 

{  

Int I, j, sum =0; 

for (j = 0; j<N; j++) 

{ 

                     for (i=0; i<M; i++) 

{ 

        Sum += a[i][j]; 

} 

                } 

 return sum; 

}  

 

Table 15: Sample codes to understand the concept of locality. Code 1 is a basic nested loop while code 2 

is optimized to exploit caches. 

Now, we walk through the process in which data is brought in the cache for CODE 1. Initially, the cache 

is empty so we have a cache miss for a[0][0]. When data is brought in the cache it is brought at the 

granularity at the size of a block. Assuming that the block size is 32 bytes, along with a[0][0] a[0][1], 

a[0][2], a[0][3] are also brought in the cache (Data is brought in the cache row wise). So until j=3 in the 

inner loop we experience a cache hit. This process repeats and we can say the miss rate is ¼.  

Doing similar analysis for the CODE 2, Initially there is a miss for a[0][0]. So along with a[0][0] a[0][1], 

a[0][2] and a[0][3] are brought into the cache. But according to the loop the processor requires a[1][0] so 

the cache suffers a miss and a[1][0], a[1][1], a[1][2], a[1][3] are brought into the cache.  During the 
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second iteration of the inner loop i.e i=2, j=0, the processor requires a[2][0], It is not in the cache and 

there is a miss again. Doing similar analysis we can conclude that if the array cannot fit completely in the 

cache all the accesses to a[i][j] will cause a miss and the data is to be fetched from the next level of cache 

which has higher latency. 

Thus, from the example we can see how exploiting locality, in the above case spatial locality improve 

performance.  

3: Cache blocking: It is a technique that can help improve the temporal locality of the code [89]. The idea 

behind blocking is to divide the data structure in our case the image array in smaller blocks in a way that 

the complete block/chunk of the image array can fit into the cache and once it is brought in the cache all 

the processing, reading writing from/to the locations is done and then the next block is brought to the 

cache. When we partition loop iteration (large array into smaller blocks), the accessed array elements fit 

into cache size, enhancing cache reuse and eliminating cache size requirements. Loop blocking allows 

reuse of the arrays by transforming the loops such that the transformed loops manipulate array strips that 

fit into the cache. In effect, a blocked loop uses array elements in sections that are optimally sized to fit in 

the cache. To understand how the tiling process can help we take an example of accessing an image or a 

2-d array we compare the basic nested method for accessing the image and the loop blocking technique. 

We also present the access pattern of the array elements. 
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Example code for loop blocking 

Array Access without Blocking Array access with Blocking 

for (i=0; I < columns; i++) { 
      for(j=0;j<rows; j++) { 
            process array 
} 
      } 
 

for (i=0; I < columns i+=block_size) { 
       for(j=0; j< rows; j++) { 
             for(k=0; k<block_size; k++) { 
                   process array 
}  
       } 
              }  
Access Pattern 

Figure 33: Code example for loop blocking and the array access patern for normal loops and loop 

blocking 

The original loop iteration space is columns by rows. When columns and rows are too large and the cache 

size of the machine is too small, the accessed array elements in one loop iteration (for example, i = 1, j = 

1 to rows) may cross cache lines, causing cache misses. But with blocking technique the large row is 

broken into a smaller chunk and can fit in the cache preventing misses.  The block_size is decided based 

on the granularity with which the cache operates (cache line).  

4: Software Pre-fetching for accesses to main memory: As describes earlier, access to the main memory is 

very expensive about 100s of clock cycles. So for instances where the bottlenecks are due to LLC miss it 

is recommended to use software instructions that can pre-fetch the data into the caches from the main 

memory for processing. Pre-fetching the data effectively would mask the memory latency to utilize 

memory bandwidth at the maximum [77]. The pre-fetch instructions are just a hint to the special prefetch 

hardware indicating to fetch data in advance [77]. It is recommended to use pre-fetch instructions in the 

following cases. 

  Memory accesses are predictable. 

  Time consuming inner loops. 

Access Pattern 
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 When there are CPU stalls for data being unavailable for processing. 

More details about hardware and software prefetchers along with optimizing cache usage can be found in 

the Intel optimization manual [77]. Some other compiler optimization techniques like loop fusion, data 

alignment and data transposition can also be integrated in the code to improve cache performance. 

Now, we discuss the techniques to improve DTLB overhead. The TLB is a small cache which stores a 

section of the page table. When the working data set is high as in case of MAD, the TLB is not able to fit 

all the mappings and there is a DTLB miss. To solve this problem we recommend using a larger page 

sizes. With a larger page size a TLB cache of the same size can keep track of larger amounts of memory, 

which avoids the costly TLB misses, reducing the pressure on the TLB cache. 

Now, we discuss techniques to improve 4k aliasing. We have already discussed 4k aliasing in section 3.x. 

4k aliasing memory aliasing occurs when the code stores to one memory location and shortly after that it 

loads from a different memory location with a 4-KByte offset between them. 

The Intel optimization manual [77] recommends the following methods to reduce 4k aliasing.  

 Align data to 32 Bytes. 

 Change offsets between input and output buffers if possible. 

 Use 16-Byte memory accesses on memory which is not 32-Byte aligned. 

8.2 Core Bottlenecks 

Now we discuss the bottlenecks that are core bound. Combing all the algorithms there are 3 different core 

bound bottlenecks. 

1: The Floating Point unit. 

2: Higher latency due to Assists. 
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3: Slow LEA instructions. 

First, we discuss the floating point unit bottleneck and some techniques to improve performance of the 

floating point unit. As mentioned previously floating point operations inherently have a longer latency.  

Some generic guidelines to improve performance for floating point units are: 

1. Use Single precision floating point numbers in place of double precision whenever possible. Also 

if possible use integers. Using the single precision floating point number can be done by setting 

the precision control (PC) field in the x87 FPU control word to single precision [77]. This allows 

single precision (32-bit) computation to complete faster on some operations (for example, 

divides would take less clock cycle to execute). 

2. The operations should remain in range.  Denormal values and underflow can cause very high 

penalties. 

3. Use fast data type conversion instructions (SSE2 or SSE3 instructions). The streaming mode 

SIMD instructions can save many uops. These instructions avoid changing the rounding mode of 

the floating point numbers.  It is recommended that the data to be operated is aligned because the 

SIMD instructions operate on 16 byte aligned data [77]. 

4. Also, use of logarithmic number system can improve performance. Example: A floating point 

divide operation would change to a subtraction operation. Using the logarithmic number system 

can be found in [90] 

5. Remove data dependencies.  

X=A+C; 

Y=X+D; 

Z=G+H;  

This sequence of code can be changed to  
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X=A+C; 

Z=G+H; 

Y=X+D; 

Just switching the dependent instruction can eliminate stalls and improve performance. For 

floating point operations the improvement can be significant because the latency for individual 

operations is high. 

6. The division operation takes the maximum number of clock cycles and from the analysis we find 

that there are instances where the divide unit is a bottleneck. If dividing by a constant, it is 

recommended to replace the divide by a product of the inverse of the constant. Also, if the 

denominator is an integer it is recommended to test if a right shift operation can be useful. 

Now, we discuss the techniques to remove the generation slow LEA instructions and improve 

performance.  As mentioned in section 7.4, LEA instruction is an assembly instruction. The assembly is 

generated during the compile time. Since, the compiler generates these instructions; one solution is to use 

an Intel compiler. Since the LEA instructions were generated for the index access in the loop, if the index 

access is reduced it will decrease the number of LEA instructions to be executed and consequently, 

reduce the overhead. 

Now we discuss the techniques to resolve overheads due to generations of micro assists. Assists are a 

stream of instructions introduced in the processor to execute a function/instruction which cannot be 

directly executed by the processor. From the analysis we find that the bottleneck is due to the floating 

point assists. The code generates results which are denormals. These cannot be executed by the processor 

directly and therefore they are executed by inserting a stream of instructions. The execution of this stream 

takes more clock cycles and thus there is a bottleneck.  To improve performance for such a situation, it is 

recommended to write the code in such a way that denormals are not generated.  Another way to improve 

performance is to improve performance is to enable the Flush –TO-Zero (FTZ) and Denormals are Zero 

(DAZ) mode [91]. Since denormals are values that are very close to zero these modes approximate 
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denormal values to zero. There is a significant improvement in performance when FTZ and DAZ modes 

are enabled for codes that generate denormals.  Note that the FTZ and DAZ modes are only applicable for 

SSE instructions [91].  

FTZ mode should be enabled when there is an underflow. It means that whenever the result of an 

operation is denormal floating point number, FTZ mode is enabled. DAZ mode is enabled when the 

source operands for an operation are denormals. 

These modes can be enabled by masking the bits of the MXSCR register [78-79, 91]. The bits required to 

be masked and the corresponding modes are shown in table 16. 

FTZ mode (Bit 15) Underflow Mask (Bit 11) Operation/ Effect 

1 1 Output zero, Precision and underflow flags are set 

0 1 Output precise, precision and underflow flags set. 

1 0 Software Exception, Underflow flag set 

0 0 Software Exception, underflow flag set 

DAZ Mode (bit 6) Denormal mask (Bit 8) Operation/ Effect 

1 1 Output zero, No flags set 

0 1 Output Precise, Denormal flag set 

1  0 Output Zero, No flags Set 

0 0 Software Exception, Denormal flag set. 

Table 16: Mask bits for FTZ and DAZ modes along with the effects or the operation that is performed by 

individual mask combination 

Along with SSIM instructions, denormals can be handled in the X87 instructions also. The details of 

handling the denormals in the X87 Floating point assists along with sample code to set the FTZ and DAZ 

modes for both the x87 Floating point assists and the SSE floating point assists are given [91]. 

8.3: Custom Image Quality Assessment Hardware Engine 

First we list all the major bottlenecks and discuss their characteristics to help define a generic IQA 

hardware engine. We start with the memory bottlenecks the most common bottleneck category and then 

the core/ execution unit bottlenecks.  If we take an insight into these 2 categories of bottlenecks, it is said 

that the memory operations are “supporting operation”, the memory operations only bring data into the 
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processor for a particular operation. On the other side the core operation can be considered as “Real” 

operation. These are the operations where the data is actually processed.  

1. L1D, L2D replacement and LLC misses: As per our discussions in the microarchitectural 

analysis and in the previous sections in this chapter the data set for the algorithms causing the 

L1D, L2D replacement and LLC miss is high. Thus, having caches or fast memories with larger 

size is recommended. It is also recommended to have a larger register file to save the local 

operands directly ready for processing. A suitable size for the caches and its configuration along 

with defining a memory hierarchy can be decided by performing a cache simulation with various 

sizes and configurations. A configuration that surpasses a predefined threshold for hit/miss rates 

should be developed. Creating models for a cache configuration that best suits the performance, 

cost and other requirements are beyond the scope of this document. 

2. DTLB Overhead: As mentioned in the previous sections, DTLB is specific cache which stores a 

sub-set of translations from virtual memory to physical memory. For a specific IQA engine there 

is no requirement of a virtual memory system.  Hence this eliminates the requirement of using a 

TLB.   

3. 4k aliasing: If we take an insight into 4k aliasing, it is caused due to out of order execution of 

memory instructions in the processor. If we define the Hardware engine which is In-order, we 

eliminate the possibility of 4k aliasing.  

4. Machine clears: The cause of machine clears is memory violations. These are caused because of 

the shared memory between processes and processors.  Since, the engine is specific for IQA and 

not a general purpose computing platform we eliminate the performance degradation due to 

machine clears also. 

Now we analyze the execution or core bottlenecks. These are the bottlenecks related to actual 

processing. If we observe the IQA algorithms in general we find that there are 3 common operations 

that are carried out. First, an image transform. For example, the image is transformed to wavelet 
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domain in VSNR.  Second, the filter operation.  Most of the algorithms use a low pass filter and the 

final common function that these algorithms perform is the calculation of image statistics. So, a 

generic IQA engine would have an Image transform engine, a filter engine and an engine to calculate 

image statistic.  Now we discuss the core bottlenecks to understand how they can be integrated into 

the custom hardware to achieve an optimal design.  

1. Floating Point Unit:  If we see the above three operations i.e. the Image transform, filtering, 

calculation of image statistics, all these operations require floating point operations and 

consequently a floating point execution unit.  Thus we can infer that the floating point unit is 

a critical hardware sub-system. Since all the operations are floating point and it is a critical 

bottleneck, it is advisable to design a hardware which operates on a logarithmic number 

system. The overhead for converting to log domain and then transforming back is negligible. 

As mentioned, the multiply and divide operations change to add and subtract operations.  

The add and subtract operations are less expensive and can save many clock cycles.  If cost, 

chip area and power can be comprised to an extent, it is advisable to have multiple floating 

point units to exploit parallelism. Also, it is advisable to pipeline the unit to hide/overlap the 

latency of the supporting instructions for getting data to the IQA execution engine. 

2. Slow LEA instructions: These instructions are an outcome of the complex addressing mode 

of the CISC Intel architecture [78-79]. So, if the memory control hardware is design simple 

to be like the RISC architecture with just a load store model, the performance degradation 

due to these instructions is automatically eliminated. Also, the custom engine proposed is 

hardcoded which eliminates issues due to generation of such instructions by the compiler. 

3. Micro Assists: Floating point micro assists occur because the operands or results of an 

operation are/is a denormal. If precision can be compromised these denormals can be directly 

converted to zero and if precision is required, a custom hardware just to process denormals 
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can be designed. A special port can be designated to dispatch the denormals to this unit. If 

there are no denormals this unit can work as a normal Floating point unit. 

A block diagram for a general IQA hardware engine is shown in figure 34. 

 

Figure 34: Blocks for custom IQA engine. It has 3 basic blocks the Image transform Engine, the filter 

banks and the image statistics engine. 

As seen from the figure, we have a secondary storage to save a data base for the image. The images to be 

assessed along with the reference image (for a reference based algorithm) are brought into the fast 

memory the caches. From the caches the images act as operands to one or more of the three engines 

depending on the sequence of operations to be performed by the specific IQA algorithm.  Also, there are 

instances where an operation is performed multiple times. Such an interconnection network helps to feed 

data directly to the respective engine. This also leads to reuse of the existing hardware and save chip area 

and cost.  

The different executions engines are design as follows: 

1:  The transform block can be general purpose floating point unit or a transform specific custom design 

like a DWT unit in VSNR. 
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2:  The filter blocks can be implemented as a general purpose filter if multiple filter banks are used or can 

be a specific implementation. For example, a log gabor filter unit in MAD. 

3: The image statistics block similarly can be implemented as a general purpose engine or a custom 

engine. But if we observe the algorithms, they comprise of multiple statistical computations. Thus, 

creating an engine for all is not recommended. Rather a general purpose floating point unit can be used. 

Control signals can be generated to define which operation needs to be performs. 

It is suggested to pipeline these engines. Pipelining would hide some latency for accessing memory. Also, 

it would improve the throughput of the hardware. More details about pipelining, tradeoffs for a pipeline 

and designing a pipelined hardware can be found in [80].      
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