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CHAPTER I 
 
 

INTRODUCTION 

Information security is a current and heavily discussed topic. After all, this is the 
information age. Information is everywhere and at our fingertips. It needs to be protected 
from falling into the wrong hands. The Webster definition of the word “secure”, in its 
verb form is, “To relieve from exposure to danger; act to make safe against adverse 
contingencies” [1]. In other words, to secure information is to relieve it from exposure to 
danger. One method of doing just that is by changing the information beyond recognition. 
The act of changing or garbling a piece of information in a reversible fashion, (that is the 
message can be transferred back to its original form) is called encryption.  
 
Encryption is a form of disguising or garbling information in a way that it won’t be 
recognized by anybody without a conscious effort to decrypt it. In order to encrypt and/or 
decrypt a message two things are necessary: a method and a key. When using the same 
key to encrypt and decrypt, the type of encryption is called symmetric key encryption. 
When using different keys for encryption and decryption, the type of encryption is called 
asymmetric key encryption. The concept of asymmetric encryption, or having different 
keys for encryption and decryption, was introduced by Whitfield Diffie and Martin 
Hellman. This innovation set the stage for the RSA algorithm that became very popular 
and has been used widely ever since. RSA is an acronym taken from the last names of the 
people who invented it, Ronald Rivest, Adi Shamir and Leonard Adleman. The RSA 
algorithm, with its asymmetric key method, was invented in 1977. It was the first attempt 
to realize Public Key Cryptosystems (PKC), the novel concept invented by Diffie and 
Hellman. PKC is another name for asymmetric encryption.  
 
The task of studying and analyzing the RSA algorithm was the topic of my directed 
studies. While working on the material and finding good candidates for a small example, 
an interesting observation was made. There were cases in which after encrypting a 
message, the ciphertext would stay the same as the original message; as if, the encryption 
never occurred. This observation was the motivator for my thesis. In this thesis, these 
cases of plaintext equal ciphertext were researched and some other significant additional 
observations were made. These anomalies, the frequency of their occurrence, and their 
symmetrical behavior were characterized. Also, research was expanded to find out 
whether these cases are anomalies or regular occurrences. The result of the research 
shows that these cases are not anomalous and they occur no matter how large the 
numbers get.
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The topics covered in the remaining chapters of this thesis are: Chapter II, a general 
background to communication security, encryption and the RSA algorithm; Chapter III, 
explanation of the research method used in the quest for a simple example of asymmetric 
key encryption; Chapter IV, observations demonstrating anomalies in RSA encryption; 
Chapter V, a summary of anomalous RSA behavior and the resulting conclusions.
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CHAPTER II 
 
 

BACKGROUND 

2.0 Introduction 
Information security is a very broad topic. One subtopic is communication security. At 
any given moment information is either in use, in motion or in storage. The security of 
this information may be compromised at any of these fronts. Communication security is a 
look at data in motion and the methods that may be employed to keep this moving data 
secure. This chapter is an overview of communication security with an emphasis on 
encryption. 
 
2.1 Communication Security 
When two or more parties want to communicate, sometimes they need to keep their 
communication secure. As mentioned in chapter I, to secure information is to relieve it 
from exposure to danger. There are different elements used to describe the parts of a 
secure communication system such as, sender, receiver, transmission media, message, 
encrypted message, encryption method, key, storage, etc. Also, there are different roles 
for participants in a secure system such as: sender, receiver, key creator, unauthorized 
listener, imposter, etc. These different roles can be referred to by using nicknames such 
as Alice, Bob, Eve and so on. Related to communication security is the issue of long term 
versus short term security which corresponds to the life span of information. There are 
goals in securing communication such as, user authentication, content authentication, 
confidentiality, integrity and non-repudiation. Encryption is an underlying technology 
that can be used for communication security and as such, an essential topic in any 
security system. Encryption is part of the solution to a number of problems related to 
achieving the goals of communication security.  
 
2.1.1 Elements of a Secure Communication System 
To talk about the elements of a secure communication system one needs to first define 
what a secure system is. The word “system” has one meaning that fits this content best, 
“a group of units so combined as to form a whole and to operate in unison.”[1] The word 
“secure” in its adjective form means, “free from danger or risk of loss; safe”. [1] To 
secure a system is to protect it from danger; to make it safe. Danger or risk of loss can 
come from inside or outside a system. One step of securing a system is to control access 
to the system. When it comes to people or entities that have access to a system, they can 
be divided into at least two categories: authorized users and non-authorized users. The 
concepts of access and authorization are different concepts related to a system. Let’s first 
look at an example about access. When a customer goes to a supermarket and walks 
around, he has access to the commodities that are on the shelves. 
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If the door to the office of the manager is open and his computer is on, and he has 
forgotten to logout of the accounting system, the customer now has access to whatever 
the manager can access! On the other hand, in the same supermarket, people don’t have 
access to the things that are out of reach, very high on the shelves, things that are in the 
storage area or locked somewhere. So having access to something, includes being “able 
to do” something rather than with being “allowed to” do it. Now let’s look at the concept 
of authorization using the above example. Having access to the accounting system of a 
supermarket doesn’t make a person an authorized user. If the manager in the last example 
forgets the only key to his office at home, he temporarily doesn’t have access to his 
office, but that doesn’t make him un-authorized to enter that office.  
 
To give authorization to a user for doing a certain task is the job of an authority in a given 
system. There are different methods of authorization: There might be a list of authorized 
personnel or there might be some criteria that must be met in order to be authorized to do 
a task. Even the list system usually works based on some regulation that puts people on 
or off a list. Here are some scenarios regarding authorization and access. In the first 
scenario, Alice is authorized to buy a certain book 50% off only if she is one of the first 
one hundred applicants. Here, being one of the first one hundred applicants is the rule. 
The second scenario considers three situations. In an Online Classroom (OC) system, a 
teaching assistant (TA) Bob, is authorized to enter the grades for labs, tests, etc. by being 
assigned by the professor or the department as an authorized user. Bob doesn’t have 
access to the grades if he doesn’t have a computer or doesn’t remember his password. In 
comparing the concept of authorization and access in the same example consider a 
second situation. A teaching assistant isn’t authorized to see all the grades of a student for 
his other courses however, if a student leaves his OC account open and doesn’t logout, 
Bob (the TA!) will have access to all the grades but cannot change any of them! Now 
consider a third situation. If Charles who is a TA for another course, leaves his OC 
account logged on, Bob not only will have access to some grades, but would also be able 
to change them. For that matter anybody else, another student, a staff, a stranger can also 
go in and change the grades. The second and third situations demonstrate that Bob has 
access regardless of authorization.  
 
Many times there is more focus on outsider danger rather than on insider danger. A non-
trustworthy insider can bring a lot of serious damage to a system, worse than an outsider. 
The concept of walls or borders, being inside or outside a system, brings the idea of a key 
or a password to mind. Authentication means determining whether someone should be 
allowed inside. In a secure system, when the identity of a user is authenticated and he is 
found to be an authorized user, he is in. This is also called being “accepted”. So 
authenticating the identity of an authorized user means to let an authorized user in, 
“Accepting”, and keep the unauthorized user out, “Rejecting”.  There are four situations 
that can happen with a combination of “Authorized”, “Non-authorized”, “Accepted” and 
“Rejected”. The first combination is when an authorized person is accepted. This is a 
desirable outcome. The second combination is when a non-authorized person is accepted. 
This is a non-desirable and dangerous outcome. The third combination is when an 
authorized person is rejected. This is also a non-desirable outcome but rather than being 
dangerous it’s annoying. The final combination is when a non-authorized person is 
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rejected. This is something expected of a secure system; to keep the non-authorized 
people out. These four combinations are shown in Figure 2.1.   
 
 
 

Authorized user  
Accepted 
Desirable outcome 

Non-authorized user  
Accepted 
Non-desirable  
(dangerous) outcome 

Authorized user  
Rejected 
annoying outcome 

Non-authorized user  
Rejected 
Expected outcome 

Figure 2.1 Authorization and Access 
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Figure 2.2 Elements of a Secure Communication System 

 
After the brief look at the concepts of authorization and access in the context of security 
systems, let us consider the elements of a secure communication system. These elements 
include: Encrypted message, Decrypted message, Encryption method, Key(s), Key 
management, Message, sender, receiver, transmission media, non- authorized listener, 
Malicious imposter, Decryption method, encryption/decryption/key used for storage, 
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storage. Figure 2.2 shows the interrelation between these elements and shows where 
encryption may play a part in securing a communication system. There are three main 
areas in Figure 2.2 where encryption and decryption are shown: 1- On Sender side where 
a message is encrypted before it gets transmitted, 2- On Sender side where data is 
encrypted and decrypted in order to be safely stored and retrieved, 3- On Receiver side 
where the received message is decrypted and used. For each of these encryption or 
decryption methods there is a key involved. This key might be a shared secret key, which 
would be the same for sender and receiver or two different keys in case of asymmetric 
encryption. Key management is another element in a secure communication system. Keys 
need to be created and distributed according to the method used. In RSA, the public and 
the private key are both created by the receiver and the public key is publicly distributed 
to be used by any sender. The private key will stay at the receiving side, possibly stored 
in a storage unit using some sort of encryption. The private key will be used once a 
message is received and the decryption method will decrypt the message using the private 
key. At any part of the communication line there might be intruders, imposters or 
eavesdroppers. These are unauthorized entities who try to gain access to either the 
plaintext message, the ciphertext, to the key or any combination of these. The 
unauthorized entities goal is to passively or actively attack a secure system for different 
kinds of gain. 
 
2.1.2 Security Players: Alice, Bob, etc. 
In cryptography there has been a preference to use names instead of letters when 
describing different characters. For this reason instead of saying, “A sends the message m 
to B”, it is said: “Alice sends the message m to Bob”. So Alice and Bob were used 
instead of person A and person B. This effort throughout the years has resulted in a rather 
elaborate library of names representing different characters in cryptography and other 
fields that would benefit from this convention.  
 

 
Figure 2.3 Security Players Names and Roles 

 
Figure 2.3 shows a list of some of these names [2][3][4][5]. Alice and Bob are probably 
the most famous characters in this list. Alice sends Bob private encrypted messages. Eve 
is an observer who is not authorized to read Alice’s message. Eve is an eavesdropper who 
might do her job anywhere in the communication line. The encryption must be strong 
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enough that although Eve has intercepted the message, she cannot read it. Imelda wishes 
to send Bob a message as if the message is sent by Alice. Imelda is an imposter, someone 
who would pretend to be someone else. Mallory is a malicious character. The encryption 
system must be secure enough that Mallory’s active efforts to circumvent it will fail. 
Randy is a random stranger who has just happened to intercept the communication and is 
not necessarily a negative character. A weak encryption is sufficient to keep information 
protected from Randy. Figure 2.4 shows some of these characters in action. As Alice is 
requesting access to communicate with Bob, Eve is listening to the conversation. Malory 
and Randy also have tapped into the communication line. At the other end, the 
communication line has reached Bob. 

 
Figure 2.4 Security Players in Action 

 
 
2.1.3 Long Term versus Short Term Secure 
Securing information is a time dependant issue. The required strength and amount of 
effort applied to keep data secure depends on the sensitivity of the data as well as the 
duration in which that data needs to stay secure. An example from daily life is the 
requirement for encryption used for securing the data of a movie. The manufacturer needs 
to use a type of encryption that would be hard to break for the duration of the copyright. 
A copyright lasts at least 70 years [6]. The example of movie encryption is an example of 
long term security. For short term encryption let’s consider the case of bidding on stock, 
which is a time sensitive matter. If an attacker gains access to the data related to a biding 
process, during the process, this is dangerous. If the attacker gains access to the same data 
after the sale, this will pose no problem. The example about stock bidding was an 
example of short term security. Another example for short term security needed for very 
sensitive data is a president’s itinerary. There is a considerable amount of effort put into 
securing data regarding the whereabouts of a president. If an attacker can manage to 
break the code and gain access to the itinerary, before a president goes to a specific 
function, this would be considered a major security breech. On the other hand breaking 
the code after the president has attended that same function is not going to matter. This is 
the reason for considering the type of security in hand when determining the level of 
protection required. 
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2.1.4 Security Goals and Their Definitions 
There are a number of goals when considering security in communication. These goals 
are authentication, confidentiality, integrity and non-repudiation. Authentication applies 
to both the users and the message. Authentication of a user means checking whether he is 
who he claims to be. Authentication of a message means checking the message and its 
originator to be authentic. Confidentiality is about protecting information from 
unauthorized access. Information integrity means protecting information from change. 
Non-repudiation means making sure the users can not deny their involvement in the 
communication. Many tools are available to achieve these goals; encryption is one of 
them. 
 
 
2.1.5 Encryption or Cryptography in Context of Security 
Encryption is a solution to a number of problems that may arise in reaching security goals 
and as such, an essential topic in any security system. The security goals, mentioned in 
the previous section, can be met from time to time using encryption. Here, some of these 
problems are addressed and how their solution might include or be related to encryption. 
Let’s look at identity authentication as one of these goals. To authenticate whether a user 
is who he claims to be, his identity is checked. A user’s identity may be checked by 
“what he knows”, “what he has”, and “what he is”. Examples of “what he knows” are 
PIN (Personal Identification Number), DOB (Date of Birth) and SSN (Social Security 
Number). Examples of “what he has” are an identification card, a bank card or a physical 
key. Examples of biometric measures that show “what he is” include retina scan, voice 
print or fingerprint. The step of user identification depends upon encryption when the 
digital information of a user is stored or being transmitted and needs to be secure. For this 
encryption can be used. If the goal is authenticating a message, a hash from the user 
might be appended to the message. The hash value can be encrypted to prevent 
tampering. This is the basis for digital signatures. If the goal is confidentiality, hiding, or 
concealment then one of the methods used to achieve this goal is encryption. Information 
integrity, which is about protecting information from change, can be met using a hash 
function. One such hash process uses encryption to create an electronic signature. To 
meet the goal of non-repudiation and making sure the parties can not deny their 
involvement in the communication, digital signatures are used. Digital signature uses 
encryption.  
 
 
2.1.6 Summary of Communication Security 
Communication security revolves around securing data while in motion. In this section 
elements involved in a secure communication such as Sender, Receiver, Encrypted 
message, Decrypted message, Encryption method, Decryption method, Key(s), Key 
management, transmission media, storage, etc. were mentioned and the role of encryption 
in relation to these elements was considered. The security participants, their roles and a 
relatively new “nicknaming” system that has been used in communication and security 
literature recently, were glanced at. Securing information depends on the lifetime of that 
information and the sensitivity of it. The goals of securing a communication system and 
how encryption may be used in achieving some of these goals were explained.  
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2.2 Cryptography   
Cryptography is “The science and art of transforming messages to make them secure and 
immune to attacks,” [7]. A more formal definition by Man Young Rhee in his book, 
Cryptography and Secure Communication is, “Cryptography is the study of 
cryptosystems by which privacy (confidentiality) and authentication of data can be 
ensured.” [8] Cryptography includes the study of encryption or ciphers. Later in this 
section some classical ciphers are mentioned, followed by some modern ciphers which 
are in use today.  
 
2.2.1 Encryption an Old Ally or Foe? 
Encryption is not a modern concept. In the olden days a message sent by one ruler to 
another was usually vital information. If the message fell into the wrong hands the lives 
of many were at stake. But what if the message was intercepted? Encryption is an ancient 
method used to conceal information and delaying the unauthorized person from seeing 
the plaintext. The issue of data security is not a matter of preference but a matter of life 
and death. As time passed, more and more sophisticated ways of hiding the data were 
found and little by little more modern and newer technology was applied. The nations 
and rulers, who had the technology to make better ciphers, had a huge advantage over 
people who were not able to hide whatever big or small amount of vital information they 
had. That is why encryption could be your ally or your foe depending on which side of 
the fence you were sitting. These sentences are not an attempt to consider encryption in a 
moral or philosophical context but to emphasize the importance of it. As it is said in my 
culture if a thief comes in with a light he can be choosy in what he steals. A strong tool in 
the hands of a foe makes him even stronger and more dangerous. This is true of any tool, 
for a weapon or for an encryption method.     
 
2.2.2 Some Encryption Methods and Their Timeline 
There are a few ways of categorizing encryption methods. Encryption methods or ciphers 
may be classical or modern, symmetric or asymmetric and a block cipher or a stream 
cipher. Modern ciphers are conceptually based on the classical ciphers. There are three 
main types of classical ciphers: transposition, substitution and product ciphers. All of 
these ciphers are symmetric methods. A symmetric encryption method is one that uses 
the same key for encryption and decryption. The act of transposing, substituting or 
creating a mixture of transposition and substitution, which gives you the product cipher, 
may be done manually or using modern technology. Symmetric algorithms, whether 
classic or modern, are divided into two types: block cipher and stream cipher. In his 
book, “Applied Cryptography”, Bruce Schneier gives a simple definition for the block 
and stream ciphers: “Block ciphers operate on blocks of plaintext and ciphertext – usually 
of 64 bits but sometimes longer. Stream ciphers operate on streams of plaintext and 
ciphertext one bit or byte (sometimes even one 32-bit word) at a time. With a block 
cipher, the same plaintext block will always encrypt to the same ciphertext block, using 
the same key. With a stream cipher the same plaintext bit or byte will encrypt to a 
different bit or byte every time it is encrypted.” [3] According to Forouzan, in his book 
“Data Communications and Networking”, a transposition cipher is, “a character-level 
encryption method in which the position of the character changes.” [7] and Schneier says, 
“In a transposition cipher the plaintext remains the same but the order of characters is 
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shuffled around.” [3] The next classical category of ciphers is a substitution cipher which 
Schneier defines as, “A substitution cipher is one in which each character in the plaintext 
is substituted for another character in the ciphertext.” [3] There are different types of 
substitution cipher: monoalphabetic, homophonic, polyalphabetic and polygram which as 
the scope of this thesis is concerned, it will suffice to just mention their names. The next 
category of block ciphers is a product cipher. Rhee says, “A product cipher is a 
composition of two or more ciphers such that the ciphertext space of one cipher becomes 
the message plaintext space of the next. The combination of ciphers, called cascaded 
superencipherment, is done in such a manner that the final product is superior to either of 
its components.” [8] In other words, when a combination of transposition and substitution 
is applied to a plaintext, in a cascaded manner, the resulting cipher is called a product 
cipher.  
 
Here is a list of a few ciphers and their approximate dates and users. According to Rhee, 
“The oldest known transposition cipher is the Scytale cipher used by the ancient Greeks 
as early as 400 BC.” [8] So Scytale would be a classic, block, transposition cipher. For all 
the classic ciphers being symmetrical is a given. The Caesar cipher, the most well known 
cipher, is an example of a classic substitution cipher which was used by Julius Caesar. In 
this cipher every letter of the alphabet in the plaintext is encrypted as the third letter 
following it in the alphabet (D would substitute for A). So the word AND is encrypted as 
DQG. A few other substitution ciphers are Beale cipher from 1880’s, the Vigenère cipher 
from 16th century, the Rotor cipher from WWII and the one-time pad which is 
unbreakable. In 1917, the one-time pad was used for the first time in the Vernam cipher, 
designed by Gilbert Vernam. Two examples of product ciphers are the German ADFGVS 
cipher used in WWI and a modern product cipher is the famous Data Encryption 
Standard widely known as DES. Public Key Cryptosystems (PKC’s) are asymmetric 
ciphers, use two different keys and are in the modern category of ciphers. Some examples 
of public key cryptosystems are algorithms such as RSA, ElGamal, Rabin and Elliptic 
Curves.  
 
2.2.3 Symmetric versus Asymmetric Encryption 
Encryption methods in general are divided into two main categories, symmetric-key and 
asymmetric-key. In symmetric-key cryptography, the same key is used by the sender for 
encryption, and by the receiver for decryption.  
 
 

 

Figure 2.5 Symmetric-Key Cryptography 
 
The key is called a shared secret key since it is a secret only known by the transmitting 
parties. This key needs to be kept secret because whoever has the key can both encrypt 
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and decrypt the message. Due to the nature of this key, special care is used when 
delivering the key to the other party. Figure 2.5 shows a visual representation of 
symmetric key cryptography. Alice has a plaintext message to send to Bob. Alice uses the 
shared secret key to translate the plaintext to ciphertext. The ciphertext is now sent to 
Bob. Bob then uses the same secret key to decrypt the message and read the plaintext.  
The public key cryptosystems invented by Diffie and Hellman is a completely new 
system of cryptography. Until this point in history, all the encryption methods used one 
shared secret key. The public key cryptosystems introduced the idea of having two keys 
instead of one, hence the name asymmetric key encryption. Asymmetric-key 
cryptography, Figure 2.6, starts when a party wants to communicate with others and 
creates two keys. The first key will be publicly distributed; hence it is not a secret 
anymore and is called the public key. The second key is kept only by the initiator and is 
called a private key.  

 

 
Figure 2.6 Asymmetric-Key Cryptography 

 
Although anybody who has access to the public key can send encrypted messages, only 
those possessing the private key can decrypt these messages. For example, in Figure 2.7, 
Alice has a plaintext message to send to Bob. She needs a key. This key is a public key, 
created by Bob and broadcast to public. Alice uses Bob’s public key to translate the 
plaintext to ciphertext. The ciphertext is now sent to Bob. Bob then uses his private key 
to decrypt the message and read the plaintext. There are different methods for 
implementing asymmetric encryption. One of these methods is the RSA algorithm 
introduced by Rivest, Shamir and Adleman in 1978[2].  
 
2.3 RSA, an Asymmetric Encryption 
When it comes to asymmetric encryption methods, RSA is the most widely known. In 
this section the historical context in which RSA was born is shown. Next the terminology 
used in this thesis to represent the formulas and limitations in RSA are explained. Later, 
the process of message preparation, encryption, decryption and message retrieval and the 
order they are applied in RSA are presented.  
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Figure 2.7 RSA as an Asymmetric-Key Cryptosystem  

 
2.3.1 RSA: History 
It was the year 1977. In January, Jimmy Carter became the 39th president of the United 
States. In May, the first Star Wars movie was released. In July, the New York Blackout 
happened. In August, Elvis Presley died at the age of 42.  In April of this eventful year, 
three MIT students published a paper which changed the face of cryptography 
significantly. Their names were Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman 
and the title of their paper was “A method for Obtaining Digital Signatures and Public-
Key Cryptosystems”. Today more than 30 years later, RSA is still widely used for 
cryptography and although it was the first implementation of a public-key cryptosystem 
(PKC), it has not retired or become obsolete.  
 
2.3.2 RSA: Terms, Variables and, Limitations 
There are two sets of equations in RSA which are explained in detail in section 2.3.3:  

 
φ(n) =(p-1)(q-1) and enkd /))(1( Φ∗+=  for key generation and,  
c = me mod n, and m = cd mod n for encryption and decryption. 

 
The first set, top line, is used to create the keys for encryption and decryption and the 
second set, bottom line, is used to encrypt and decrypt the message. In Table 2.1 is the 
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list of variables used in this paper and their definitions. There are a few limitations on 
these terms that will be mentioned throughout the chapter. 
 

Table 2.1 Table of Terms, Definitions and Limitations  
m is the message or plaintext in numerical form,  
0 < m < n, me > n 
c is the encrypted message or ciphertext in numerical form 
p & q  are two prime numbers used to generate keys 
n is the product of p & q 
φ(n) is the totient function of n 
e is the public key in conjunction with n 
d is the private key in conjunction with n 
k is a positive integer used to generate d 
0 < m < n; me > n; 0 < c < n; cd > n  (Limitations) 

 
2.3.3 RSA: Message Preparation, Formulas and Message Retrieval  
RSA is a block cipher, which means the message is encrypted, one block at a time, using 
the same key. The message or plaintext is first prepared and then encrypted. This 
preparation includes encoding, blocking and padding. RSA keys are produced using a set 
of algebraic formulas and constraints. With the message prepared and the keys in hand, 
the RSA encryption and decryption formulas are ready to be applied. Decoding is done 
after decryption in order to retrieve the original message.  
 
Message preparation is a necessary step in RSA encryption. A plaintext goes through a 
number of steps before it is ready to be encrypted. RSA is an encryption method able to 
encrypt integers and integers only. The RSA formulas are based on modular arithmetic. 
Therefore, to use RSA one needs to apply it when the plaintext is in integer form or can 
be interpreted as such. Figure 2.8 is a diagram which includes the encoding, encrypting, 
decrypting and, decoding in it as four boxes and shows how the message changes as it 
passes through. The message preparation starts with turning or transforming the text into 
a number, a sequence of digits. This sequence of digits corresponds to a sequence of bits 
which will be divided into blocks and padded accordingly. There are different standards 
used for blocking and padding depending on where RSA is being used.[3] For example, 
Privacy Enhanced Mail (PEM) uses RSA. According to Schneier, “PEM is the Internet 
Privacy-Enhanced Mail Standard, adopted by the Internet Architecture Board (IAB) to 
provide secure electronic mail over the Internet,” and, “PEM also supports public-key 
certificates for key management, using the RSA algorithm (key length up to 1024 bits) 
and the X.509 standard for certificate structure.” [3] Pretty Good Privacy (PGP) is 
another security program which uses RSA (key length up to 2047 bits) for key 
management and digital signatures. The Public-Key Cryptography Standards (PKCS) are 
RSA Data Security, Inc.’s “attempt to provide an industry standard interface for public-
key cryptography.”[3] The combination of encoding, blocking and padding will make the 
message suitable for RSA encryption.  
 
Inside the computer, the original message which is in text form corresponds to an ASCII 
equivalent. Each letter of the text has an ASCII representation and an ASCII code. 
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Turning the whole text into its ASCII form is a way of encoding the text. The string of 
characters is now a string of bits which can be considered the representation of a very 
large integer. After the message is encoded, it needs to be turned to blocks. Blocking a 
message means cutting it into smaller blocks of a given size. Each block can be turned 
into an integer m less than n. After the blocking is done, there will usually be a left over 
number of digits which are not enough to form a complete block. This is where padding 
is done. Padding a message means adding enough bits to complete a block and reach a 
certain block size. In other words, if the leftover bits are not enough to make a complete 
block, an adequate number of bits will be added to them. Sometimes padding must be 
done in order to increase the value of m by a known amount to be able to satisfy the 
inequality me > n.  These padding schemes must be done according to the considerations 
of blocking and padding standards. Blocking and padding were mentioned here just to 
give the reader a general understanding of the process. The details and standards will not 
de discussed in this paper. Once the steps of message preparation are completed, the 
message is ready to be encrypted and then transmitted. 
 
 

 
Figure 2.8 Communication Block Diagram 

 
There are two sets of equations in RSA. The first set is used to create n, e and d, the keys 
to be used for encryption and decryption (equations 2.1 through 2.3). The second set is 
used to encrypt and decrypt the message (equations 2.4 and 2.5). RSA uses modular 
arithmetic in these calculations and the following steps to generate the public and the 
private keys: 
 
1. Choose two prime numbers, preferably large. These are called p and q. The reason for 
choosing large primes is explained in step 2.  
2. Calculate their product. This is n. The product of two large primes is a very large 
number. The reason for choosing p and q to be large is due to the difficulty of factoring 
large n. This is known as the factorization problem and as of yet does not have an easy 
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solution. Formally this problem has a complexity called np complete. This means as the 
problem size grows the time to solve the problem grows exponentially.  
 
3. Calculate the totient of p and q. Totient of a semiprime number by definition is:  
 
 φ(n) =(p-1)(q-1)  2.1 
 
4. Choose a number e less than n that is coprime with the totient and satisfies the 
relation me > n. To be coprime with another number means the two numbers have no 
common factors other than 1. For example 38 is coprime with 15 because they have no 
common factors other than 1.  
 
5. Find a number d such that e and d can be multiplicative inverses in modulus n. This 
means that the product of d and e in modulus n must be 1. Another way of saying this is, 
there exists an integer k where d and e satisfy the equation: 
 
 enkd /))(1( Φ∗+=   2.2 
or  
 1≡∗ed  ))((mod nΦ  2.3 
 
Encryption and decryption formulas are the second set of formulas used in RSA. These 
formulas are equation 2.4 and 2.5. When Alice wants to transmit a message M to Bob, 
her message will pass through five conceptual blocks before it reaches Bob (Figure 2.8). 
She first encodes M, which is a text, and turns it into m which is an integer. Then, she 
uses the public key (e, n) to encrypt the message m, transmits the encrypted message c. 
She uses 2.4 for encryption. 
 
 c = me mod n, 2.4 
 
When Bob receives the ciphertext, c, he uses the private key (d, n) to decrypt the 
ciphertext and get the original message m back.  
 
 m = cd mod n 2.5 
 
The encoded message m can in turn be decoded back to M. This process is illustrated in 
the Communication Block Diagram, Figure 2.8. 
 
Decoding happens at the other end of the communication block. After the steps of 
message preparation are done, the result is a set of integers, m1, m2, m3,… all less than n. 
These integers will be encrypted one by one into their counterparts c1, c2, c3, … . This 
set of encrypted integers will be transmitted and reach the receiving side. At the receiving 
side, they will be decrypted and decoded. Decoding, the reverse of encoding, is the act of 
turning the decrypted message which is in an encoded form into text form. In this way, 
the receiver will use decryption and decoding to reverse what was done on the sender 
side and gets back the original message.  
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2.3.4 RSA: Comments 
RSA claims that due to the difficulty of factoring large n breaking the RSA code is 
infeasible. The size of n required to support this claim depend on the computational 
power available at any given time. The higher the computational power, the larger is the 
value of n necessary to withstand attacks. There are two places in the original RSA paper 
where the authors ask the readers to break their method. The First place is in “Computing 
D in some other way” where “The reader is challenged to find a way to “break’” their 
method. The second place is in conclusion where “The reader is urged to find a way to 
‘break’ the system”.  
 
There have been a few attacks on the RSA algorithm. One is called “The timing attack” 
and is based on the fact that the algorithm takes different amounts of time to decrypt 
different inputs. This can be used by Eve the eavesdropper and give her an idea about the 
key. This depends on the attacker, Eve, having access to c, the encrypted message. This 
attack is based on finding the private key bit by bit and the fact that finding the entire key 
may start with bit 0 of it and repeating the same procedure until the key is completely 
found.  
 
2.4 Chapter II Summary 
The broad topic of Information Security includes protecting data in use, in motion and in 
storage. Communication security is the security of data in motion. The use for encryption 
emphasized in this thesis is as a tool used in communication security. The background for 
this thesis is different types and uses for encryption. The two primary types of encryption 
used for communication are the symmetric key and the asymmetric key encryption. 
Symmetric Key encryption uses the same key for encryption and decryption whereas in 
Asymmetric encryption there are two keys involved: a public key and a private key. One 
of the most popular asymmetric encryption methods is RSA. In this chapter RSA, as an 
example of asymmetric encryption, was explained and message preparation, key 
generation, encryption and decryption formulas were overviewed.   
 
RSA is an encryption method used in the digital age. Before Diffie and Hellman 
introduced Public Key Cryptosystems and the idea of having two keys for an encryption 
method, this was either unheard of or, not been put in practice. It was a group of young 
MIT students who took the challenge upon themselves to find the correct set of algebraic 
functions that would do the job. This is how RSA was born. Table 2.2 is a chart which is 
an attempt to put all of the formulas used for key generation, encryption and decryption 
in one place. Some definitions, usages, conditions and limitations are also included. The 
Summary of RSA Terms and Formulas table, Table 2.2, contains the terms and variables 
used in this paper as well as some definitions, formulas and limitations. In different 
literature, different letters are used for the keys, the message, the ciphertext, etc. So 
although the letters used might be different in different literature, the names and 
definitions are consistent. The condition / limitation column is either the range of validity 
for a given term or the formulas that needs to be satisfied and impose a restriction on that 
term. The terms and variables for RSA formulas are: A semiprime number also referred 
to as 2-almost-prime is the product of two primes. [9] Two numbers are coprime when 
they have no common factors other than one. The variables p and q are two prime 



 17

numbers used in key generation. The variable n is the product of p and q and hence a 
semiprime number. The variable n is used in RSA as the modulus for encryption and 
decryption. The function phi of n or totient of n, φ(n), is the Euler’s totient of n . The 
Euler’s totient of n by definition is the number of integers less than n and coprime with it. 
[9] For a semiprime number, n, this is, φ(n) =(p-1)(q-1) . The ordered pair (e, n) is the 
public key which is used for encryption. The variable k is a positive integer that evenly 
divides (d * e) – 1. The ordered pair (d, n), is the private key which is used for decryption. 
The relationship between the public and the private key is that they are both coprime with 
n and their product in modulus φ(n) is 1.  

 
Table 2.2 Summary of RSA Terms and Formulas 

Letter Name Definition / Use / Formula Condition / Limitation 
 semiprime product of two primes 

also called 2-almost-prime 
 

 coprime two numbers with no 
common factors other than 
one 

 

p, q  key generation prime numbers 
n  a semiprime number,  

modulus for encryption and 
decryption 
n = p * q 

should be large enough to 
make factorization difficult 

φ(n) totient of n Euler’s Totient function: 
Number of integers less 
than n and coprime with it. 
For a semiprime number n: 
φ(n) =(p-1)(q-1) 
modulus for key generation 

 

( )ne,  public key encryption key both e and d are coprime 
with n;  
e, d, k and φ(n) satisfy: 

enkd /))(1( Φ∗+=  
or  1≡∗ed  (mod φ(n)) 

( )nd,  private key decryption key 

k  divisor of (d * e) – 1 

m message  cleartext or plaintext 0 < m < n, 
 me > n 

c ciphertext  encrypted message or 
cryptotext 
c = me mod n. 

0 < c < n, 
cd > n 

mxg decrypted 
message 

mxg = cd mod n ideally mxg = m 

 
Another way of saying this is: there exists a positive integer k, which divides one less 
than the product of the two keys, evenly. The variable m is the message, or plaintext. It 
has to be an integer smaller than n . The variable c is the ciphertext, also known as 
encrypted message or cryptotext. The formula for encryption is c = me mod n. mxg is the 
decrypted message and is calculated as: mxg = cd mod n. The decrypted message is 
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ideally, exactly equal to the original message. Both m and c have to be smaller than n for 
the modular arithmetic to work properly in the context of encryption. Specifically, if m > 
n then multiple message values encrypt to the same ciphertext value c. There are two 
inequalities that need to be satisfied as well:  
me > n and cd > n. If me < n then no encryption is done. The description of the RSA 
asymmetric algorithm may not present an intuitive understanding of the process without 
an example. For students a good example of RSA encryption is very instructive. The next 
chapter describes a search for a good example. 
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CHAPTER III 

RESEARCH: Quest for a Simple Example 

3.0 Introduction  
Teaching about the RSA algorithm is enhanced by using a simple example. As described 
in chapter II, the RSA algorithm is a mathematically difficult concept. RSA works with 
modular arithmetic and exponentiation. Both of these concepts are easier to grasp using 
smaller examples. Searching the literature disclosed that even the smallest published 
examples were too large for simple hand calculations. This research started as a search 
for a small example. During the search some unexpected results were observed. 
Additional tools were developed to spot the unexpected results. In the process of 
research, a few tables were developed to be used as tools. These tools can be used as 
lookup tables, both for key generation and for encryption and decryption. At the end of 
the chapter, two simple small examples will be presented using these look up tables. 
These examples can help a student of the RSA algorithm to learn and analyze it.  
 
3.1 Mechanics of the Simple Example: Why a Simple Example?  
Studying and making observations on a mathematical concept calls for using simple 
examples; examples that are simple enough that they can be done either manually or 
using standard computational tools. However, the examples must be large or complex 
enough to avoid being trivial. The RSA algorithm uses exponentiation and modular 
arithmetic. Integer exponentiation creates numbers that are very large. This means it is 
even more important to use very small, double-digit values for p and q. The original RSA 
paper [2], uses the primes 47 and 59 for p and q. The public and private keys used are (e, 
n) = (17, 2773) and (d, n) = (157, 2773) respectively. The totient is 2668. This n is 
relatively large for hand calculation. This research however, started searching for RSA 
encryption examples with primes less than 20 for p and q and then, extended to include 
primes between 20 and 30. The main reason for extending the domain to include numbers 
between 20 and 30 was interesting observations which will be explained later in chapter 
IV. 
 
3.1.1 The First Set of Key Generation and Encryption Tools 
The first step in the search for a small example was to develop a chart to be used as a tool 
to calculate and display a simple RSA encryption/decryption set of messages. Next, a 
chart was created as a tool to generate keys, small public and private keys, to be used in 
RSA encryption. These first two charts, developed with my advisor, were the first set of 
tools and the starting point of this research. The Tiny Key Encryption Calculator was the 
first tool developed. The Tiny Key Encryption Table, Table 3.1, is a picture of the Tiny 
Key Encryption Calculator. 
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This encryption calculator encrypts and decrypts values of m between two and n – 1, 
inclusive, for any given e, n and their corresponding d. The imposed limitation on m,  
(1 < m < n) is due to the properties of modular arithmetic as described in chapter II.  
 

Table 3.1 Tiny Key Encryption Table 
e  = 11 n  = 15 d  = 3 

cleartext  ciphertext  
decrypted 

text  
m m̂ 2 mod(n) c ĉ 2mod(n) mxg  
2 4 8 4 2  
3 9 12 9 3  
4 1 4 1 4  
5 10 5 10 5  
6 6 6 6 6  
7 4 13 4 7  
8 4 2 4 8  
9 6 9 6 9  
10 10 10 10 10  
11 1 11 1 11  
12 9 3 9 12  
13 4 7 4 13  
14 1 14 1 14  

 
In the top row portion of Table 3.1 there is a row of information regarding the public and 
private keys used for a particular instance of the Tiny Key Encryption Calculator. In this 
case the public key is (e, n) = (11, 15) and the private key is (d, n) = (3, 15). Below the 
row including e, n and d values is a table of five columns. The five columns correspond 
to the original cleartext, an intermediate calculation for encryption, the ciphertext, an 
intermediate calculation for decryption and the decrypted message. The two intermediate 
calculation columns were either hidden or omitted in later encryption calculators. The 
horizontally shaded areas in Table 3.1 are rows of calculation and each line identifies a 
case where the plaintext equals the ciphertext. For example, one of these shaded rows 
corresponds to a cleartext m equal to 4. When cleartext is 4, the ciphertext is also 
calculated to be 4. The decryption of 4 is also equal to 4. In Table 3.1, such cases of 
cleartext equal to ciphertext is true for values of m equal to: 4, 5, 6, 9, 10, 11 and 14. 
Each of these values of m will produce values of c, equal to m respectively. When the 
encryption of a message m produces an equal value of c, a hole has occurred. This 
doesn’t mean that, the value of m is a hole but a hole happens at that m, as if that value 
falls through without getting encrypted. The last row of this chart, m = n-1, always 
corresponds to a hole. Since this happens regardless of the value of n, this row is omitted 
in later encryption calculators. For explanation on the limits of m, see chapter II. The 
suspected cause for these holes was that this was just a bad example. Therefore the search 
for a small example needed to be extended. 
 
The second step in the search for a small example was to develop a chart to be used as a 
tool to generate and display the keys for different values of n, e and k. This resulted in the 
creation of the Tiny Samples Key Generator. The Tiny Samples Key Table, Table 3.2, is 
a picture of the Tiny Samples Key Generator. Table 3.2, is a collection of tiny p and q 
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values with their corresponding n and totient calculated. For every p and q combination, 
different values of e were considered and corresponding d values, were calculated and 
displayed.  
 

Table 3.2. Tiny Samples Key Table 

p 2 2 2 2 3 3 3 5 5 

q 3 5 7 11 5 7 11 7 11 

n 6 10 14 22 15 21 33 35 55 

totient 2 4 6 10 8 12 20 24 40 

e 3 3 5 3 3 5 3 5 3 
k 1 2 4 2 4 2 1 1 2 
d 1 3 5 7 11 5 7 5 27 
e 5 5 7 7 5 7 7 7 7 
k 2 1 8 2 3 4 8 2 4 
d 1 1 7 3 5 7 23 7 23 
e 7 7 11 11 7 11 11 11 11 
k 3 5 9 1 6 10 6 5 3 
d 1 3 5 1 7 11 11 11 11 

e 11 11 13 13 11 13 13 13 13 

k 5 8 2 9 4 1 11 7 12 

d 1 3 1 7 3 1 17 13 37 

 
In this table, the horizontal shading of e values is done to separate each group of e, k, d, 
from the next group. On rows one and two, tiny primes were chosen and on rows three 
and four, the product of p and q, n, as well as their totient was calculated. There are 
groups of three rows under the top four rows. These sets of rows contain values for e and 
their corresponding d using a specific k. The leading e, is normally 3 as the first prime to 
consider. Then the list of primes greater than 3, whose values were coprime with the 
totient were considered and displayed in the column below. The reason for not starting 
with 2 as the first prime candidate for e is that the totient of n, which is a semiprime 
number, is always even and not coprime with 2. Let’s look at an example from Table 3.2 
and consider the case for p and q being 3 and 5, respectively. This example is the 
vertically shaded area and some cells in that column are in bold for emphasis. For p and q 
values of 3 and 5, n is 15 and totient is 8, all in bold. So e can start with 3 and continue 
with 5, 7 and 11. Here, you may see if e is chosen to be 11, for a value of k equals to 4, d 
is calculated to be 3. The e, k, d combination of 11, 4, 3 is in bold in the bottom of that 
column. The public key is (e, n) = (11, 15) and the private key is (d, n) = (3, 15). This set 
of keys is the set that was used in Table 3.1. 
 
3.1.2. Developing the Small Exhaustive Encryption Chart: Holes! 
The Small Key Encryption Calculator is a tool for encrypting message m under a given 
set of values for p, q, k and e. Table 3.3, the Small Exhaustive Encryption Chart, is an 
instance of the Small Key Encryption Calculator with p, q, k and e being 2, 19, 12 and 7. 
This new Encryption Calculator is an improved version of the Tiny Key Encryption 
Calculator. On the top, instead of showing only n, e, & d, all of the following values are 
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displayed: p, q, n, φ(n), e, k and d. Out of the above seven values, four are inputs to this 
excel worksheet and three are calculated based on them. In other words, given p, q, e and 
k, the values of n, φ(n) and d are calculated. Here, the idea of introducing a vector which 
would contain all of these values, an ordered septuple, came to mind. The seven 
parameters for RSA which are: p, q, n, φ, e, k and d, can be kept in order and be treated as 
an ordered septuple or a vector of dimension seven. In this way, they can be referred to as 
a single vector (p, q, n, φ, e, k, d). Some of the elements of this vector are dependant on 
the other elements. For example a vector for the primes 11 and 13, with e being 23 and k 
being 9 can be calculated and shown as (11, 13, 143, 120, 23, 9, 47).  
 

Table 3.3 Small Exhaustive Encryption Chart 
Totient= 18 p= 2

k= 12 q= 19
e = 7 n= 38 d= 31

Original 
Message

Encrypted 
Message

Decrypted 
Message

Msg c mxg
2 14 2  
3 21 3  
4 6 4  
5 35 5  
6 28 6  
7 7 7 not good
8 8 8 not good
9 23 9  
10 34 10  
11 11 11 not good
12 12 12 not good
13 29 13  

14 22 14  
15 13 15  
16 36 16  
17 5 17  
18 18 18 not good
19 19 19 not good
20 20 20 not good
21 33 21  
22 2 22  
23 25 23  
24 16 24  
25 9 25  
26 26 26 not good
27 27 27 not good
28 4 28  
29 15 29  
30 30 30 not good
31 31 31 not good
32 10 32  
33 3 33  
34 32 34  
35 17 35  
36 24 36   

 
The Small Key Encryption Calculator has two main sections. The top portion of it has the 
information of a given septuple (p, q, n, φ, e, k, d). Below that is a table of encrypted and 
decrypted values of a range of messages, m, between 2 and n-2. The Table 3.3 is an 
instance of the Small Key Encryption Calculator, for a specific septuple (2, 19, 38, 18, 7, 
12, 31). The top portion contains information of a septuple and this information is used 
for the calculation of the ciphertext and the decrypted messages. 
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The description for the three columns of data follows: The leftmost column under the 
heading, “Original Message” or “Msg” is an exhaustive list of all values of m between 2 
and n-2, inclusive. The column under the heading “Encrypted Message” or “c” is the 
encrypted values for each message. For example in Table 3.3 the septuple (2, 19, 38, 18, 
7, 12, 31) results in the values 14, 15 and 16 to be encrypted as 22, 13 and 36 
respectively, as shown in the shaded area. The column under the heading “Decrypted 
Message” or mxg is the calculated decryption of column “c” using the decryption key, d. 
These numbers are calculated to show that after encrypting and decrypting a message, the 
end result is equal to the original message. In Table 3.3, the values 14, 15 and 16, which 
were encrypted as 22, 13 and 36 respectively, are decrypted to 14, 15 and 16; the 
decrypted message is equal to the original message, as shown in the shaded area. The 
rightmost column is a column of labels or markers. Looking at the rows which are 
labeled, “not good” shows that in these rows, the encrypted value of a message is equal to 
the original value of that message. Or to put it in another way, ciphertext equals cleartext. 
These are examples of where the RSA encryption algorithm has failed to encrypt. For 
example, when the value of message is 11, the encrypted value is also 11 and the row is 
marked: not good. The Small Exhaustive Encryption Chart, Table 3.3, is an instance of 
the Small Exhaustive Encryption Calculator for a given septuple, (2, 19, 38, 18, 7, 12, 
31). 
 
3.1.3 Developing the Message Calculator 
In order to compare encrypted messages from various different septuples, the Message 
Calculator was developed. Figure 3.1, is a screenshot of the Message Calculator. The 
Message Calculator is an Excel workbook that has three portions. These portions are 
called: 1) Parameters, 2) Encryption Calculator and, 3) Comparison Tables. The 
Parameters portion is located in a worksheet called, “Parameters”, and it takes values of 
p, q, e and k to calculate the corresponding values of n, totient and d in return. This is 
shown in Part A, of Figure 3.1. The Encryption Calculator, which is in a hidden area, 
inputs a septuple from Parameters and calculates the encrypted values of m. These 
encrypted values will be displayed in a row right below their corresponding plaintext 
values. In this row the encrypted values are ready to be harvested and pasted where 
needed. A portion of this row is blown up in Figure 3.1, part D. Here you can see the 
encryption of m = 36 is c = 484, under a septuple (47, 59, 2773, 17, 1, 157). The values of 
the septuple are shown in Figure 3.1 part A. The Comparison Tables portion is a set of 
tables where these encrypted values are placed. Each individual Comparison Table 
contains information related to the same value of n; what changes within that table is e 
and m. There are two rows for each e value, the bottom row is a collection of encrypted 
values and the top row is a marker for the holes. Anywhere there is a hole, a label “1,” 
marks it. These 1’s are added to be used for calculation of the total number of holes per 
case. If there are two or more septuples or vectors that create the same encrypted values, 
their corresponding e values are written together in the column for e. For example: in 
Figure 3.1 Part C, for n = 33, e = 7 and e = 17 create the same encrypted values. Part B of 
Figure 3.1 shows a blown up version of the row headings of the comparison table for n = 
38. For a value of n = 38 and e = 7, there are 11 holes. This number of holes is 31 percent 
of the total number of encrypted messages and for e = 13, there are 11 holes as well. 
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Part A : Parameters 

 

 
Part B: Hole Counts 

 

            
Part C: Multiple e values    Part D: Encryption Calculator’sOutput 

 

 
Part E: Part of a Comparison Table 

 
Part F: A Comparison Table 

Figure 3.1 Screenshot of Message Calculator
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The encrypted values for different e are kept together to form a table, one table for each 
n. Figure 3.1, part F, shows the table for n = 38. In part E, the view is zoomed even 
further. This way of displaying the results makes a visual comparison possible. The 
number of holes and the percentage of them per septuple is also calculated and written in 
the table, Figure 3.1 part B. 

 

 
         

 
Figure 3.2 Symmetry of Holes 

 
Symmetry is an interesting aspect of visual observation. In Figure 3.2, Symmetry of 
Holes, a view of the Message Calculator is shown for n = 143. The markers for holes are 
shaded. Also, the holes which are common to all cases within a comparison table are 
outlined. A larger view of the center of the sub-table shows how the holes are equidistant 
from an axis of symmetry. The manual search for holes continued using these tools. For 
all the values of n that were studied, no matter how large, there are still some holes and 
the symmetry continued. The Large Numbers Encryption Calculator was developed to 
help study larger values. 
 
3.1.4 The Large Numbers Encryption Calculator 
The Large Numbers Encryption Calculator which is shown partially in Figure 3.3 was the 
next Excel worksheet developed in this series of tools. The Message Calculator, although 
a great tool in showing visual symmetry of holes, was limited by the number of columns 
in Excel. The Message Calculator can only be used for values of n less than 255. For 
larger values of n, a different tool had to be developed.  
 

e = 19; c � 

e = 17; c � 

e = 13; c � 

e = 11; c � 

e = 23; c � 

e = 37; c � 

e = 43; c � 

e =   7; c � 

e = 47; c � 
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The Large Numbers Encryption Calculator is the tool developed for larger n. This tool is 
a giant calculator which is used to find encrypted values of m, when n is larger than 255. 
In Figure 3.3, a portion of the calculator is shown as a screenshot where it has calculated 
encrypted messages for the septuple (47, 59, 2773, 2668, 17, 1, 157). This septuple is 
based on the values used in an example in the original RSA paper [2].  

 

 
Figure 3.3 Calculator Screenshot 

 
Most of the rows of data have been hidden in order to make the chart more readable. If a 
student would like to use this calculator as a look up table to find encrypted values for 2, 
472 and 2771, they may read these values as, 741, 471 and 2032 respectively. The values 
where the holes occur are shaded and marked by a marker “1” on the side. The total 
number of holes is calculated and written on the last row of the table. An attempt to read 
this chart to find the total number of holes and the message values corresponding to them, 
for the RSA paper’s septuple, shows that there are holes at m = 235, 236, 471, 2302, 2537 
and 2538, and the total number of holes is six. Even for this relatively large value of n, 
there are still 6 holes present. At this stage, in order to investigate the occurrence of 
holes, it was necessary to gather more information and extend the domain of the research. 
The domain of the values of p and q was increased to include values between 20 and 30 
and all acceptable values of e less than the totient were considered. To do such a big 
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range of calculations using a programming language is more practical than using Excel. 
The results from a program can be used by Excel to be manipulated and formatted if 
necessary. 
 
3.1.5 The Large Numbers Key Generator 
The search for a simple RSA example continued, yet it had spawned an additional 
investigation about the cases where the plaintext equals ciphertext. To organize the 
search, the idea of using a seven element vector, or a septuple was presented, in section 
3.1.2. An ordered septuple would represent a unique combination of p, q, e, and k as well 
as values that are calculated using them i.e. n, phi or φ and d. Each vector has seven 
elements in this order: p, q, n, φ, e, k and d. In order to organize the investigation of holes 
further, the hole count was associated with each septuple.  
 

 
Figure 3.4 Chart of Hole Counts 

 
The Large Numbers Key Generator is a matrix of more than 2000 rows. Each row 
corresponds to a septuple and its associated hole count. The “more than 2000 values” is 
due to ranging p and q over all the primes under 30 while varying e from 3 to phi. This 
calculator doesn’t generate the primes. It uses the list of primes entered manually, to 
calculate the product, and the totient. Then, as the values of e, (3 ≤ e < phi), are checked 
for coprimality and entered to the calculator, it will find the d that corresponds to each 
value of e. The value of k has also been manually entered because it needs to be a k that 
divides e. The value of d is calculated based on phi, e and k. Finally, the hole count or the 
“# of holes” was calculated using a Perl program, the Hole Finder, and was manually 
entered as the last column of data in the Large Numbers Key Generator. The Chart of 
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Hole Counts, Figure 3.4, is a screenshot of the Large Numbers Key Generator with a lot 
of its rows hidden. An attempt to read the chart in order to see the effect of changing e on 
the number of holes can show that in rows 763, 764 and 765 of this chart, choosing e as 
253, 257 and 261 respectively has produced 84, 12 and 52 number of holes. This may be 
an indicator that the septuple corresponding to e = 257 is the best choice since it creates 
the least number of holes among these three cases. Also this chart may be used to find the 
private key corresponding to a given public key. For example, if the original primes used 
are p = 11 and q = 29, for e = 257, d = 73. A listing of the “Hole Finder” Perl program, 
the partial list of entries in the Large Numbers Key Generator and a list of septuples, hole 
counts and their corresponding list of holes may be found in the Appendices. 
 
 
3.2 Two Simple Examples 
Simple examples enhance teaching and make observation of interesting results easier. 
The original RSA paper used the septuple (47, 59, 2773, 2668, 17, 1, 157). These 
calculations are too cumbersome to serve as a demonstration example for a simple lesson 
or lecture. Following are two simple examples of encryption using smaller primes for p 
and q. The first example is encrypting a number and the second is encrypting a short 
sentence. Both examples use the same public and private keys. 
 
 
3.2.1 Simple Example #1: Encrypting/Decrypting a Number 
Using relatively smaller primes, a simple example is created which can be used later to 
make some observations regarding the RSA algorithm. The first step is generating the 
keys. For this, the five steps to generate the private and public keys introduced in section 
2.3.3 will be used as follows,   
 
 

1. Choose two prime numbers, p and q. 
 
p = 11, q = 13. 

 
2. Calculate their product, n. 
 

n = p . q = 11 x 13 = 143.  
 

3. Calculate the totient of 143. 
 

φ(n) = (p-1)(q-1), 
φ(143) = (11 - 1) (13 - 1), 
φ(143) = 120. 
 
 

4. Choose a number e less than 143 that is coprime with 120. e = 23 is a valid 
candidate since 120 and 23 have no common factors.   
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5. Find a number d such that e and d can be multiplicative inverses in modulus n 
arithmetic. A valid value for d is 47 (for k = 9) since it satisfies equation 2.2: 

 
enkd /))(1( Φ∗+=    
23/))1209(1( ∗+=d   

4723/1081 ==d   
47=d   

or, 
1≡∗ed       ))((mod nΦ  

14723 ≡∗     )120(mod  
 
 
Using the above five steps Bob created his RSA keys. Bob kept (d, n) = (47, 143) for 
himself and posted his public keys (e, n) = (23, 143) on his website. Since the keys e and 
d are calculated, the process of encrypting and decrypting can be performed. Let’s choose 
the message to be the number 7. 
 
 
Alice wants to send the number 7 to Bob, therefore m = 7: 
 

c = me mod n = 723 mod 143 = 27368747340080916343 mod 143 = 2 
 
 
After Bob receives the encrypted message, “2”, he uses d = 47 to decrypt it:  

 
m = cd mod n = 247 mod 143 = 140737488355328 mod 143 = 7 

 

 
In summary, Bob did the five steps to generate the keys and announced the public key on 
his website. Alice used the public key to encrypt the message which was the number 7. 
The resulting encryption was the number 2. Alice sent the number 2 to Bob. Bob used the 
private key and decrypted the ciphertext, number 2, coming up with the number 7. Of 
course, many times Alice might want to send a text instead of a number to Bob. The next 
section describes applying RSA to a message that is a text.  
 

3.2.2 Simple Example #2: Encrypting /Decrypting a Short Sentence 
Encryption is used to conceal information from unauthorized users and reveal 
information to the intended recipient. In the Simple Example #2, a sample text: “I loVe 
cRyptoGraphy! ;-)” is encrypted using the public key (e, n) = (23, 143) and decrypted 
using the private key (d, n) = (47, 143). These are the same public and private keys 
calculated in Simple Example #1. Let the text “I loVe cRyptoGraphy! ;-)” be a message 
Alice is trying to send to Bob. The encryption and decryption is done using the Message 
Calculator as a lookup table. The first step for Alice is to encode the message from text to 
numbers. The block size used here is one letter or 7 bits. It is important to notice that 
current cryptography uses larger key sizes of 768 bits and higher. So the block size 
needed will be slightly smaller than the key size (m is less than n). When these large 
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block sizes are used, the text, “I loVe cRyptoGraphy! ;-)” will correspond to one large 
integer: 214129413369319611362871225362752649574569917470377. Coming back to 
our example, this conversion to ASCII is the first box in the Communication Block 
Diagram, Figure 2.8 in chapter II. In Table 3.4, each letter is turned into its decimal 
ASCII code:  
 

Table 3.4. ASCII Equivalents of a Text 
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The next step for Alice is to encrypt the encoded blocks. This is the second box in Figure 
2.8. The line of data in the bottom of Table 3.4 is a set of 24 integers, the encoded version 
of the message (seven bits per character) Alice is sending Bob. For the public key (e, n) = 
(23, 143), the corresponding d is 47. The septuple used for this encryption is (11, 13, 143, 
120, 23, 9, 47). Using the above message, the Message Calculator (Section 3.1.3) and this 
septuple, the cipher text can be calculated as shown in Table 3.5: 
  

Table 3.5 Table of Encrypted Values 
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The line at the bottom of the Table 3.5 is the list of letters corresponding to the encrypted 
message if decoded without decryption: “9L$CoorRSL,rX`3C%lf`SubsXoorLwYH”. The 
underlined characters are special characters which are not even letters. The third step is to 
transmit the ciphertext. This is the middle box of Figure 2.8. So encoding and encryption 
is happening on Alice’s side. What Alice is sending to Bob is a stream of 24 integers. The 
only person who is able to decrypt the stream of integers is Bob, the owner of the one and 
only private key, in this case, d = 47, (d was generated in Simple Example #1). The 
fourth step is decrypting the ciphertext received from Alice. This is the fourth box of 
Figure 2.8. Once Bob the receiver, gets this stream of 24 integers, he will decrypt each 
integer. The fifth step is decoding the decrypted message. This is the fifth and last box of 
Figure 2.8. Bob will find the corresponding letters in the ASCII code table and decode 
the numbers into text. Here in Table 3.6, the Message Calculator was used as a lookup 
table for decryption: 
 
 

Table 3.6 Table of Decrypted Code 
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After placing these letters side by side the original text will be revealed: 
 

I loVe cRyptoGraphy! ;-)  
 
Table 3.7 displays all of the steps for Simple Example #2.  

 
 

Table 3.7 Sample Message Transformation Table 
Original Plaintext      I             l     o    V     e           c     R    y     p      t     o    G      r     a      p     h     y     !             ;      -      ) 
Encoded (ASCII)    73   32  108 111 86  101  32   99   82 121 112 116 111  71   114  97  112 104 121 33   32   59    45   41 
Encrypted (ASCII)  57   76   36   67 135  30   76   44  114 88   96   51   67   37   108 102  96   26   88 132  76  119   89   72 
Ciphertext                 9     L     $    C  oor  RS    L    ,      r    X     `      3    C    %     l      f      `   Subs X   oor   L    w     Y    H 
Received (ASCII)    57   76   36   67 135  30   76   44  114 88   96   51   67   37   108 102  96   26   88 132  76  119   89  72 
Decrypted (ASCII)  73   32  108 111 86  101  32   99   82 121 112 116 111  71   114  97  112 104 121 33   32   59    45  41 
Decoded Message      I             l     o    V     e          c     R    y     p      t     o    G      r     a      p     h     y     !             ;      -      ) 
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3.3 Chapter III Summary 
Many difficult concepts can be better explained using small simple examples. The RSA 
algorithm is an asymmetric key encryption method which uses modular arithmetic and 
exponentiation for encrypting a number.  During the course of exponentiation, small 
numbers grow to become very large numbers and modular arithmetic cuts them short 
again. It can be hard to work with these large intermediate numbers. Having lookup 
tables to find encrypted values of small messages is beneficial. That is the underlying 
reason for developing a few lookup tables. Some of these lookup tables would be used for 
encryption and others for analysis. A glance at the first lookup table was enough to 
realize there is an interesting observation to be made. Encryption with small numbers 
seemed to fail. Specifically, the failure was that the encrypted value was equal to the 
unencrypted message value. One observation lead to another and gradually tables were 
developed to look up slightly bigger values to see if the observations are still true. These 
observations will be fully explained in the next chapter. In this chapter, a few tools were 
described which would become lookup tables for the simple examples or help in 
observations. The Tiny Key Encryption Calculator was created, to encrypt and decrypt an 
exhaustive list of values of m using tiny keys. The Tiny Samples Key Generator was 
made to help see all different e and d combinations. The Small Key Encryption 
Calculator was created to serve as a calculator as well as being a lookup table for 
encryption under a given set of then called parameters. This lead to the introduction of 
ordered septuple, (p, q, n, φ , e, k, d). This septuple is very useful for organizing the 
results and communicating example observations. The Message Calculator was the next 
tool developed to help see the holes and also as a lookup table for encryption and 
decryption. The Large Numbers Encryption Calculator was developed to be a lookup 
table for values of n larger than 255. This lead to the creation of the Large Numbers Key 
Generator. Each row of this chart would include the total number of holes for a given 
septuple.  
 
Finally, in this chapter two simple small examples of RSA encryption and decryption 
were presented. The first small example was the encryption and decryption of number 7 
under the septuple (11, 13, 143, 23, 9, 47). The second example was the encryption and 
decryption of the short sentence, “I loVe cRyptoGraphy! ;-)” step by step. Here the 
intention was to show the elements of encoding and decoding as well as encryption and 
decryption. The same septuple was used for the second small example. The main tool 
used for these two examples was the Message calculator. While developing these tools, a 
number of interesting observations were made which are presented in Chapter IV.  
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CHAPTER IV 
 
 

OBSERVATIONS 

4.0 Introduction 
Observations are the result of watching an object intently. In science, observations are the 
stepping stones for further research. In order to observe well, sometimes you need to look 
closer and sometimes you need to step back and look at the object in a panoramic view. 
This is a chapter on observations made while studying the RSA algorithm. The first 
observation shows that there are cases where the ciphertext becomes equal to the 
plaintext. Mathematically, this means that there are values of m, where c = me mod n = 
m. In this paper, these specific values of m are said to have caused or created a hole, or a 
hole occurred at that m. The second observation is that, for all septuples used in this 
study, there were holes. In other words, in the search space of this thesis, holes are always 
there. The third observation is that there is a pattern of symmetry for the holes. The fourth 
observation is that for a given n and different values of e, there are some values of m 
where a hole will occur repeatedly and changing e does not save that m from producing a 
hole. The fifth observation is that there is a minimum number of holes detected in this 
study and that minimum is greater than zero. For odd n, the minimum number of holes is 
six. The sixth observation is that there are six holes which keep occurring for all values of 
e, for a given n. These holes are the same as the six minimum holes. These holes are 
called the principal holes. In the rest of this chapter, these observations will be visited and 
explained using examples.  
 
Note:  

1. The public key is e in conjunction with n and the private key is d in conjunction 
with n.  To simplify the following discussion, hereafter e will be called the public 
key and d, the private key. Specific mention of n as a part of the keys will not be 
made. 

2. Before proceeding with these observations, it is important to notice that although 
n can theoretically be even, for all practical purposes, it is always an odd number. 
An even n shows that one of the two prime factors of n is 2 and the other prime is 
half of n. Whenever the values of p, q and e are known, anyone can easily 
calculate the private key d and decrypt any message. 

 
4.1 Observation 1: There are Holes 
Encrypting a message is supposed to make that message hard to read. If a message is 
encrypted and the result is the same message, the method has failed to encrypt.  
The first time this anomaly was detected was in Table 3.1. The shaded area showed that 
for a few values of m such as 4, 5 and 6, the ciphertext was the same as the cleartext. 
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This was first considered a problem due to using small n. Holes were the name chosen for 
cases where c = me mod n = m. This means when m is encrypted, the encrypted message 
c, is equal to the original message m. In other words, encrypting m does not change it. A 
message m = 7 is encrypted using a public key (e, n) = (7, 38) and the ciphertext is 
calculated as c = me mod n = 77 mod 38 = 823543 mod 38 = 7. This value of m producing 
a hole is illustrated in Figure 4.1. Some examples will show the concept of holes. 
 

Observation One 
Used Septuple: 

(2,19,38,18,7,12,31) 
m c 
2 14 
3 21 
… … 
6 28 
7 7 
… … 
35 17 
36 24 

Figure 4.1 There Are Holes 
 
Example 4.1.1 Consider the case for the septuple: (p, q, n, φ, e, k, d) = (11, 13, 143, 120, 
23, 9, 47). This is the same septuple that was used in the simple examples in chapter III. 
Encrypting all possible values of m ranging from 2 to 141, reveals six cases where c = m. 
These holes occur at: m = 12, 65, 66, 77, 78, 131. These six holes are out of 140 total 
possible values of m.  
 
Let’s look at the encryption of m = 12 under n = 143 and e = 23: 
 

c = me mod n = 1223 mod 143 = 6624737266949237011120128 mod 143 = 12 = m 
 
There is a hole at m = 12 because for this value of m, c = m = 12.  

 
Example 4.1.2 Let p = 47 and q = 59. These are the two primes used in the original RSA 
paper. Using the same procedure as in Simple Example #1, n and φ(n) can be calculated 
and choosing a valid e , d can be calculated. For (p, q, e) = (47, 59, 17) 

 
n = 2773,  
φ(n) = φ(2773)= 2668 
for e = 17 and k = 1, 
d = 157  
 

So the corresponding septuple for the RSA small example is: 
(p, q, n, φ, e, k, d) = (47, 59, 2773, 2668, 17, 1, 157). 
Here is an excerpt from section VIII of the original RSA paper, “A small example”: 

For this value of m, 
the message and the 
ciphertext are equal, 
m = c. There is a hole 
here.   
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“With n = 2773 we can encode two letters per block, substituting a two-digit 

number for each letter: blank = 00, A = 01, B = 02, . . . , Z = 26. Thus the message 

ITS ALL GREEK TO ME 

(Julius Caesar, I, ii, 288, paraphrased) is encoded: 

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500 

Since e = 10001 in binary, the first block (M = 920) is enciphered: 

M17 = (((((1)2 . M)2)2)2)2 . M = 948 (mod 2773). 

The whole message is enciphered as: 

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655. 

The reader can check that deciphering works: 948157 ≡ 920 (mod 2773), etc.” 

Let’s look at the case for m = 235 for the septuple formed by the example in the RSA 
paper. The septuple is (47, 59, 2773, 2668, 17, 1, 157) and for m =235: 
 
c = me mod n = 23517 mod 2773 = 235 = m 
 
The rest of the holes for the RSA septuple are at m = 236, 471, 2302, 2537 and, 2538. 
These six holes are out of 2770 total possible values of m. 
 
4.2 Observation 2: Holes are Always there 
In the study space of this research, for all septuples used, every case had holes. This 
observation was made also in 1979 by Blakely and Borosh in their paper, “Rivest-
Shamir-Adleman Public Key Cryptosystems Do Not Always Conceal Messages,” [10]. In 
this research, the observation of the holes being always there is made on two parts of the 
study space. One part is produced using Excel and is exhaustive. These septuples are 
more than 2000 combinations of (p, q, e) where: p ≠ q; 3 ≤ p < 30; 3 ≤ q < 30; 3 ≤ e < 
φ(n) and e is coprime with φ(n). The other part of the study space is the results of a Perl 
hole counter which so far has covered p, q, n, φ, and e values where the highest value for 
p is 5009, for q is 9029, for n is 45172087, for phi is 45158056 and for e is 89. (d is 
calculated based on e.) The highest number of holes observed, so far, is 6886.  
 
4.3 Observation 3: Holes Occur Symmetrically 

The values of holes are symmetrically distributed around
2

n
. For all oddn , the point 

2

n
 

falls between two integers on the numbers axis. Let 
2

n
 be called the “point of symmetry”. 

For every hole on one side of the point of symmetry, there is a corresponding hole on the 

opposite side exactly at the same distance from the point
2

n
. These two holes are named 

“complementary holes” in this thesis. The addition of m  (orc ) values at two 
complimentary holes is always equal ton .  
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Proof: 

Consider any two messages 1m  and ′
1m . These messages are chosen to be equidistant 

from the point
2

n
. If 1d  is the distance between 1m  and 

2

n
 when 2d is the distance 

between 
2

n
 and ′

1m .  If 21 dd =  then  

22 11

n
mm

n
−
′

=− ,  

1122
mm

nn
+
′

=+  ,  

nmm =
′

+∴ 11 . 

If 1m  and ′
1m  are defined as complementary holes, and this is defined if and only if 

21 dd = , then the addition of two complimentary holes is always equal to n . 
 

Observation Three 
Used Septuple: 

(5, 11, 55, 40, 23, 4, 7) 
 

   e = 23 

m c 
2 8 
3 27 
… … 
20 25 

21 21 

22 33 
… … 
26 31 
27 48 

28 7 

29 24 

… … 
33 22 

34 34 

35 30 
… … 
52 28 
53 47 

Figure 4.2 Symmetrical Locations of Holes 

d1 = d2
 d1 

d2 

2

n
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Holes come in pairs which are equidistant from a point
2

n
. Another way of saying this is 

that there is an even number of holes for each public key ( )ne,  and every hole is paired 
with a complimentary hole. The two complimentary holes are equidistant from the point 
of symmetry. This symmetry can be best observed in an example. For this example, n  is 
chosen to be 55. 

 
Let ( )qp,  = ( )11,5 ⇒ ( ) ( ) .4055,55 === ϕϕ nn   

 
For 23=e and 4=k , the corresponding septuple is  
( )dkenqp ,,,,,, ϕ  = ( )7,4,23,40,55,11,5 . There are two complimentary holes at m = 21 and 

m = 34. These holes are equidistant from 
2

n
 = 27.5:   

12
m

n
−  = 1d =

21

n
m −
′ ; 27.5 – 21 = 6.5 = 34 – 27.5. This example is illustrated in Figure 

4.2.  
 
4.4 Observation 4: Some Holes Are Repeated For Different Values of e 
When there is a hole that occurs for a given combination of n and e, changing e might not 
save that m from producing a hole. In other words, with n constant and e varied, there are 
some m values where a hole will occur repeatedly. There are even a few values of m that 
for a constant n, no matter what the value of e, such m will keep producing holes. This 
was first observed when working with the message calculator. In Figure 3.2, Symmetry 
of Holes, the comparison table that is magnified corresponds to n = 143. On the side of 
the magnified portion as e is varied, some values of m, for example m = 65 and 66, keep 
producing a hole. On the other hand at m = 67, a hole occurs at e = 13, and changing e to 
e = 23 will produce c = 111 which is not equal to 67 and as such, not a hole. In Figure 4.3 
the following two different encryption keys are used. With n = 55, the two keys are e =13 
and e =23. At m = 10, both keys create a hole, however at m = 12, e = 13 does create a 
hole and e = 23 does not.  
 
4.5 Observation 5: The Minimum Number of Holes is 6  
Observation two mentioned that in the study space so far, there have always been some 
holes. Observation four showed how some holes are repeated and some are not as e is 
varied. Since there were different number of holes associated with different septuples, it 
was interesting to find out what is the minimum number of holes that occur. The research 
so far has shown that the minimum is six. For odd n, there is no septuple in the study 
space that has less than 6 holes. This analysis which was initially based on: p ≠ q;  
3 ≤ p < 30; 3 ≤ q < 30; 3 ≤ e < φ(n) and e is coprime with φ(n). The analysis has been 
extended to include extreme values such as: 3 ≤ p < 5009, 3 ≤ q < 9029, n < 45172087, 
phi < 45158056 and e < 89.  The minimum number of holes being six was also verified 
using larger p, q and e using Perl programs. For the Simple Example septuple the 
minimum of 6 is out of 140, for the RSA example septuple the minimum of 6 is out of 
2770, and for a very large n, such as is used in practice today, the minimum of 6 is out of 
2768 possible values. There are six holes per septuple that not only are the least number of 
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holes but have another interesting property. 
 
4.6 Observation 6: The Principal Holes 
For a given n, there are six cases of ciphertext equal plaintext occurring at any e. As e 
varies and the number of holes changes accordingly, the only six holes that are always 
there for a constant n are the same holes that create the set of six minimum holes. These 
are called the “principal holes”.  For example for n = 55, four keys have been used for 
encryption in Figure 4.4. All four keys have encrypted the list of messages 10, 11, 21, 34, 
44 and 45 as holes. Since these holes occur at all values of e, they are the principal holes. 
For m = 26, there is a hole at e = 11 but there is no hole at other values of e that were 
used for encryption. So the hole at m = 26 is not a principal hole.   
 
 

Observation Four 
Used Septuples: 

(5, 11, 55, 40, 13, 12, 37) 
(5, 11, 55, 40, 23, 4, 7) 

 
   e = 13 e = 23 

 12 
holes 

6  
holes 

m c c 
2 52 8 
3 38 27 
… … … 
8 28 17 

9 14 14 

10 10 10 

11 11 11 

12 12 23 

13 8 52 
… … … 
52 17 28 
53 3 47 

Figure 4.3 Repeated and Unrepeated Holes 
 

This hole  
occurs for e = 13  
and not for e = 23 

This hole is repeated 
for both e values 
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 Observation Six 
Used Septuples: 

(5, 11, 55, 40, 3, 2, 27)   (5, 11, 55, 40, 23,4,7) 
(5, 11, 55, 40, 11, 3, 11)    (5, 11, 55, 40, 13, 12, 37) 

 
   e = 3 e = 23 e = 11 e =13 

 6 
 holes 

6  
holes 

30 
holes 

12 
holes 

m c c c c 
2 8 8 13 52 
3 27 27 47 38 
… … … … … 
9 14 14 9 14 

10 10 10 10 10 

11 11 11 11 11 
12 23 23 23 12 

… … … … … 

20 25 25 20 25 

21 21 21 21 21 
22 33 33 33 22 

… … … … … 

26 31 31 26 31 

27 48 48 38 37 
28 7 7 17 18 

29 24 24 29 24 

… … … … … 

33 22 22 22 33 

34 34 34 34 34 
35 30 30 35 30 
… … … … … 
43 32 32 32 43 
44 44 44 44 44 
45 45 45 45 45 
46 41 41 46 41 
… … … … … 
52 28 28 8 17 
53 47 47 42 3 

Figure 4.4 Principal Holes 
 

Some holes 
that are not 
principal 
holes 

The Six 
Principal 

Holes 
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4.7 Chapter IV Summary 
Unexpected observations such as a ciphertext equal to its plaintext are interesting and 
intriguing. One observation leads to another and a compilation of all of these interesting 
observations may lead to future discovery by the same person or another. As the quest for 
a simple example for the RSA algorithm started, developing new tools and arranging the 
data in different ways and platforms lead to many observations. At times, observation 
was a lot easier than explanation; however, science requires an observer to explain the 
observations accurately as well as the method of research.  
 
The existence of a ciphertext equal to the original message is an anomalous behavior for 
an encryption method. According to the study space of this thesis, holes (c = m) are 
always present. They occur in pairs and the two complementary holes of a pair are 

equidistant from a point of symmetry located at 
2

n
. Some holes occur at the same m for a 

given n even when the value of e is changed. There are a minimum of 6 holes in our 
study space. Finally, these six holes were given the name, the principal holes, and one of 
their properties is that the principal holes show up in every septuple with the same n. The 
likelihood of one of the minimum 6 occurring for a very large n such as is used today is 
infinitesimal. 
 
There are still more observations being made and the research goes on. I had to wrap up 
this chapter and land this plane. One interesting thing about observations is that the 
observer needs to constrain herself not to jump to early conclusions. There is a funny 
story about a man who decided to study the hearing of flies. He gathered his pen and 
paper and sat in a room. He captured the first fly passing by and kept it in his fist without 
squeezing it. When he was ready to make the first observation, he released the fly on the 
table and said, “Fly, fly!” Obviously the fly took off. He wrote, “Observation one: when 
the fly is asked to fly in a mild tone of voice, it flies.” Then he got up, captured the fly 
again and came back to his seat. He removed one of the wings of the fly and repeated the 
same command, “Fly, fly!” This time the fly didn’t fly. He repeated the command with a 
louder voice and the fly, jumped and landed a short distance away. He recorded the 
second and third observations: “Observation two: after removing one of the wings, when 
the fly is asked to fly in a mild tone of voice, it paused. After repeating the command 
with a louder voice, it flew.” “Observation three: This time the distance flown was 
shorter.” He stretched his hand and captured the poor one-winged fly and removed the 
other wing. He repeated the command, “Fly, fly.” No action. He raised his tone of voice 
and he repeated a second time; still no action. This time he got even louder. He shouted, 
“FLY, FLY!” Still, no flying was done. He recorded his observations and his conclusion 
as follows: “When the fly was commanded to fly, after one wing was removed, it took a 
louder tone to make it fly. After the removal of both wings, no attempt was successful in 
making the fly respond to the command. We conclude that after the removal of one wing, 
the fly’s hearing got impaired and once both wings were removed, the fly became deaf. 
Conclusion: the ears of a fly are attached to his wings.” The moral of the story is that 
observations can be very intriguing and they might push you to make conclusions that are 
wrong! In this chapter I have refrained from making conclusions that are sweeping and 
general because the study is still going on. The next chapter is a summary of this thesis, 
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from the study of RSA and the quest for a simple non-trivial example to the land of holes, 
where an encryption method fails to encrypt.  
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CHAPTER V 
 
 

SUMMARY & CONCLUSION 

The RSA algorithm is the most widely used encryption method yet there is lack when it 
comes to finding a good simple example. RSA is an asymmetric encryption method 
which means it uses two different keys for encryption and decryption. These keys are 
generated by the receiver of the message to enable his correspondents communicate with 
him securely. The receiver chooses two preferably large prime numbers p and q. He finds 
the product and calls it n. He calculates the totient using the formula φ(n) =(p-1)(q-1). 
Then he chooses an integer e that is coprime with φ and less than n. The variable e in 
conjunction with n will be called the public key. The receiver then finds another integer d 
that would satisfy the equation ekd /)1( ϕ∗+= . The variable d in conjunction with n will 
be called the private key. The private key will be distributed to the correspondents of the 
creator of the keys. Now that the keys are ready, a message m from a sender Alice can be 
sent to a receiver Bob securely using RSA encryption. Alice will use the formula  
c = me mod n to calculate the ciphertext c. She then transmits the message to the creator 
of the key, Bob. Bob uses the formula m = cd mod n to decrypt the message and read the 
plaintext that Alice sent him. This is the RSA algorithm in a nutshell. In answer to a need 
for a good example for RSA a search started. A good example would use the smallest 
possible values of p and q and the best candidate for e to encrypt and decrypt a short 
sentence. The search for a good e, lead to observing some anomalies in the RSA 
algorithm. Before considering these anomalies, a notion was introduced to help refer to 
different sets of values used in RSA. There are seven values involved in the RSA 
formulas. These values are p, q, n, φ, e, k and d; some are given and some are calculated. 
An ordered septuple containing all of these values was introduced (p, q, n, φ, e, k, d). 
Since different values of e produced different number of anomalies for the same n, a good 
septuple would contain small p and q and create the least number of anomalies. This 
septuple was found to be  
(p, q, n, φ, e, k, d) = (11, 13, 143, 120, 23, 9, 47) The short sentence encrypted was “I 
loVe cRyptoGraphy! ;-)” and was encrypted as “9L$CoorRSL,rX`3C%lf`SubsXoor 
LwYH”, where the underlined characters are special characters which are not letters. The 
mission to find a small nontrivial example for RSA was accomplished. What about the 
anomalies? 
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During the search for a simple example for RSA, anomalous behavior was observed. In 
RSA for some values of message m, when m is encrypted using the formula c = me mod 
n, the ciphertext c is equal to the original message m. A “hole” was defined to have 
occurred at a message value where c = me mod n = m. The existence of holes was the 
first observation. In our original study space there were more than 2000 septuples and all 
of them created holes. Even when the search space was extended to include larger p and q 
as high as 523 for p, 709 for q and 89 for e, there were always some holes present. The 
hole values displayed some symmetry. Specifically, holes come in pairs that are 

equidistant from a point
2

n
. When there is a hole that occurs for a given key (e, n), 

changing e might not save that m from producing a hole. The minimum number of holes 
found in the study space is six. For any given n, there are six holes that occur for any key 
(e, n); changing e doesn’t get rid of these holes. These are the same holes as the minimum 
six holes. These were named the principal holes.   
 
Existence of holes is an important phenomenon. The percentage of holes among all 
possible messages gets smaller and smaller as n gets larger (for a 768 bit n: 6 out of 2768 

possibilities), however, it is still true that they exist. Future work on them may include: 
Finding relationships between a set of holes especially the principal holes such that if and 
when a hole is found, the other holes may be predicted; Finding a relationship between 
holes and the values of their respective septuple and using these relationships in 
factorizing n; Studying the holes further more in order to improve the RSA and avoiding 
bad e values as reference mentions [10]. Even a simple example can be used for 
understanding RSA and seeing these holes.  
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APPENDICES 

A-1: The Extensive Table of Holes 

The extensive table of holes contains a collection of septuples and their corresponding 
holes. The original excel sheet containing this information has above 28,000 entries 
which is an equivalent of a 3,153 page document. Each row of data contains a septuple, 
number of holes for that septuple, left holes and right holes. The left and right holes are 
the message values to the left or to the right of the point of symmetry on the number axis 

where a hole has occurred. The point of symmetry for all odd n is at
2

n
. The septuples 

used in this thesis are highlighted in the table that follows. The upper and lower limits on 
p, q and e for the original excel sheet are:   
 
p ≠ q, 3 ≤ p ≤ 233, 5 ≤ q ≤ 251, 3 ≤ e ≤ phi or 89, and e coprime with phi.  
 
Since the collection presented here, is taken from the exhaustive search above, the 
selected septuples will also satisfy the above conditions.  

 

(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

3,5,15,8,3,1,3  6 4 5 6    9 10 11     

3,5,15,8,5,3,5  12 2 3 4 5 6 7    8 9 10 11 12 13     

3,5,15,8,7,6,7  6 4 5 6    9 10 11     

3,5,15,8,11,4,3  6 4 5 6    9 10 11    ☺ 

3,5,15,8,13,8,5  12 2 3 4 5 6 7    8 9 10 11 12 13     

5,11,55,40,3,2,27  6 10 11 21    34 44 45     

5,11,55,40,7,4,23  6 10 11 21    34 44 45     

5,11,55,40,11,3,11  30 4 5 6 9 10 11 14 15 

16 19 20 21 24 25 

26   

 29 30 31 34 35 36 

39 40 41 44 45 46 

49 50 51     

5,11,55,40,13,12,37  12 10 11 12 21 22 23    32 33 34 43 44 45    

5,11,55,40,17,14,33  12 10 11 12 21 22 23    32 33 34 43 44 45    

5,11,55,40,19,9,19  6 10 11 21    34 44 45     

5,11,55,40,23,4,7  6 10 11 21    34 44 45    ☺ 

5,11,55,40,29,21,29  12 10 11 12 21 22 23    32 33 34 43 44 45    
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

5,11,55,40,31,24,31  30 4 5 6 9 10 11 14 15 

16 19 20 21 24 25 

26   

 29 30 31 34 35 36 

39 40 41 44 45 46 

49 50 51     

5,11,55,40,37,12,13  12 10 11 12 21 22 23    32 33 34 43 44 45    

5,11,55,40,41,42,41  52 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 

17 18 19 20 21 22 

23 24 25 26 27   

 28 29 30 31 32 33 

34 35 36 37 38 39 

40 41 42 43 44 45 

46 47 48 49 50 51 

52 53     

5,11,55,40,43,29,27  6 10 11 21    34 44 45     

5,11,55,40,47,27,23  6 10 11 21    34 44 45     

5,11,55,40,53,49,37  12 10 11 12 21 22 23    32 33 34 43 44 45    

11,13,143,120,7,6,103  18 10 12 22 23 43 55 

56 65 66   

 77 78 87 88 100 

120 121 131 133     

11,13,143,120,11,1,11  30 12 13 14 25 26 27 

38 39 40 51 52 53 

64 65 66   

 77 78 79 90 91 92 

103 104 105 116 

117 118 129 130 

131     

11,13,143,120,13,4,37  36 10 11 12 21 22 23 

32 33 34 43 44 45 

54 55 56 65 66 67   

 76 77 78 87 88 89 

98 99 100 109 110 

111 120 121 122 

131 132 133     

11,13,143,120,17,16,113  12 12 21 34 44 65 66    77 78 99 109 122 

131     

11,13,143,120,19,3,19  18 10 12 22 23 43 55 

56 65 66   

 77 78 87 88 100 

120 121 131 133     

11,13,143,120,23,9,47  6 12 65 66    77 78 131    ☺ 

11,13,143,120,29,7,29  12 12 21 34 44 65 66    77 78 99 109 122 

131     

11,13,143,120,31,8,31  74 3 4 9 10 12 13 14 

16 17 22 23 25 26 

27 29 30 35 36 38 

39 40 42 43 48 49 

51 52 53 55 56 61 

62 64 65 66 68 69   

 74 75 77 78 79 81 

82 87 88 90 91 92 

94 95 100 101 103 

104 105 107 108 

113 114 116 117 

118 120 121 126 

127 129 130 131 

133 134 139 140     

11,13,143,120,37,4,13  36 10 11 12 21 22 23 

32 33 34 43 44 45 

54 55 56 65 66 67   

 76 77 78 87 88 89 

98 99 100 109 110 

111 120 121 122 

131 132 133     
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

11,13,143,120,41,14,41  52 5 8 12 13 14 18 21 

25 26 27 31 34 38 

39 40 44 47 51 52 

53 57 60 64 65 66 

70   

 73 77 78 79 83 86 

90 91 92 96 99 

103 104 105 109 

112 116 117 118 

122 125 129 130 

131 135 138     

11,13,143,120,43,24,67  18 10 12 22 23 43 55 

56 65 66   

 77 78 87 88 100 

120 121 131 133     

11,13,143,120,47,9,23  6 12 65 66    77 78 131     

11,13,143,120,53,34,77  12 12 21 34 44 65 66    77 78 99 109 122 

131     

11,13,143,120,59,29,59  6 12 65 66    77 78 131     

11,13,143,120,61,31,61  140 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 

17 18 19 20 21 22 

23 24 25 26 27 28 

29 30 31 32 33 34 

35 36 37 38 39 40 

41 42 43 44 45 46 

47 48 49 50 51 52 

53 54 55 56 57 58 

59 60 61 62 63 64 

65 66 67 68 69 70 

71   

 72 73 74 75 76 77 

78 79 80 81 82 83 

84 85 86 87 88 89 

90 91 92 93 94 95 

96 97 98 99 100 

101 102 103 104 

105 106 107 108 

109 110 111 112 

113 114 115 116 

117 118 119 120 

121 122 123 124 

125 126 127 128 

129 130 131 132 

133 134 135 136 

137 138 139 140 

141     

11,13,143,120,67,24,43  18 10 12 22 23 43 55 

56 65 66   

 77 78 87 88 100 

120 121 131 133     

11,13,143,120,71,42,71  30 12 13 14 25 26 27 

38 39 40 51 52 53 

64 65 66   

 77 78 79 90 91 92 

103 104 105 116 

117 118 129 130 

131     

11,13,143,120,73,59,97  36 10 11 12 21 22 23 

32 33 34 43 44 45 

54 55 56 65 66 67   

 76 77 78 87 88 89 

98 99 100 109 110 

111 120 121 122 

131 132 133     

11,13,143,120,79,52,79  18 10 12 22 23 43 55 

56 65 66   

 77 78 87 88 100 

120 121 131 133     

11,13,143,120,83,74,107  6 12 65 66    77 78 131     

11,13,143,120,89,66,89  12 12 21 34 44 65 66    77 78 99 109 122 

131     
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

47,59,2773,2668,3,2,1779  6 235 236 471    2302 2537 2538     

47,59,2773,2668,5,3,1601  6 235 236 471    2302 2537 2538     

47,59,2773,2668,7,6,2287  6 235 236 471    2302 2537 2538     

47,59,2773,2668,11,9,2183  6 235 236 471    2302 2537 2538     

47,59,2773,2668,13,4,821  6 235 236 471    2302 2537 2538     

47,59,2773,2668,17,1,157  6 235 236 471    2302 2537 2538    ☺ 

47,59,2773,2668,19,7,983  6 235 236 471    2302 2537 2538     

47,59,2773,2668,31,15,1291  6 235 236 471    2302 2537 2538     

47,59,2773,2668,37,9,649  6 235 236 471    2302 2537 2538     

47,59,2773,2668,41,27,1757  6 235 236 471    2302 2537 2538     

47,59,2773,2668,43,21,1303  6 235 236 471    2302 2537 2538     

47,59,2773,2668,53,50,2517  6 235 236 471    2302 2537 2538    

47,59,2773,2668,61,42,1837  6 235 236 471    2302 2537 2538    

47,59,2773,2668,67,28,1115  6 235 236 471    2302 2537 2538    

47,59,2773,2668,71,45,1691  6 235 236 471    2302 2537 2538    

47,59,2773,2668,73,31,1133  6 235 236 471    2302 2537 2538    

47,59,2773,2668,79,22,743  6 235 236 471    2302 2537 2538    

47,59,2773,2668,83,76,2443  6 235 236 471    2302 2537 2538    

47,59,2773,2668,89,45,1349  6 235 236 471    2302 2537 2538    

47,67,3149,3036,5,4,2429  6 469 470 939    2210 2679 2680    

47,67,3149,3036,17,5,893  6 469 470 939    2210 2679 2680    

47,67,3149,3036,29,13,1361  6 469 470 939    2210 2679 2680    

47,67,3149,3036,41,20,1481  6 469 470 939    2210 2679 2680    

47,67,3149,3036,53,7,401  6 469 470 939    2210 2679 2680    

47,67,3149,3036,59,24,1235  6 469 470 939    2210 2679 2680    

47,67,3149,3036,71,46,1967  6 469 470 939    2210 2679 2680    

47,67,3149,3036,83,19,695  6 469 470 939    2210 2679 2680    

53,83,4399,4264,3,2,2843  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,7,6,3655  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,11,3,1163  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,19,7,1571  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,23,5,927  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,31,20,2751  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,43,6,595  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,47,29,2631  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,59,11,795  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,67,14,891  6 582 1908 1909    2490 2491 3817    

53,83,4399,4264,71,53,3183  6 582 1908 1909    2490 2491 3817    
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

97,109,10573,10368,7,6,8887  46 326 327 546 872 

873 935 1199 

1200 1262 1745 

1807 1808 2072 

2134 2135 2461 

2680 3006 3007 

3333 3334 3879 

4206   

 6367 6694 7239 

7240 7566 7567 

7893 8112 8438 

8439 8501 8765 

8766 8828 9311 

9373 9374 9638 

9700 9701 10027 

10246 10247    

97,109,10573,10368,11,9,8483  6 872 873 1745    8828 9700 9701    

101,103,10403,10200,7,6,8743  18 102 2322 2323 

2425 2827 2828 

2930 5150 5151   

 5252 5253 7473 

7575 7576 7978 

8080 8081 10301    
 

101,103,10403,10200,11,7,6491  30 102 309 721 825 

926 1854 3297 

3398 4326 4430 

4531 4842 4943 

5150 5151   

 5252 5253 5460 

5561 5872 5973 

6077 7005 7106 

8549 9477 9578 

9682 10094 10301   
 

101,103,10403,10200,13,8,6277  32 102 515 1808 

2313 2322 2323 

2425 2827 2828 

2838 2930 3343 

4636 4737 5150 

5151   

 5252 5253 5666 

5767 7060 7473 

7565 7575 7576 

7978 8080 8081 

8090 8595 9888 

10301    
 

101,103,10403,10200,19,13,6979  18 102 2322 2323 

2425 2827 2828 

2930 5150 5151   

 5252 5253 7473 

7575 7576 7978 

8080 8081 10301    
 

101,103,10403,10200,23,2,887  6 102 5150 5151    5252 5253 10301    

 

101,103,10403,10200,29,11,3869  12 102 515 4636 

4737 5150 5151   

 5252 5253 5666 

5767 9888 10301    
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

101,103,10403,10200,31,30,9871  74 102 309 469 721 

825 926 974 1498 

1602 1854 2003 

2014 2107 2322 

2323 2425 2519 

2632 2827 2828 

2930 3044 3137 

3249 3297 3398 

3549 3754 4177 

4326 4430 4531 

4682 4842 4943 

5150 5151   

 5252 5253 5460 

5561 5721 5872 

5973 6077 6226 

6649 6854 7005 

7106 7154 7266 

7359 7473 7575 

7576 7771 7884 

7978 8080 8081 

8296 8389 8400 

8549 8801 8905 

9429 9477 9578 

9682 9934 10094 

10301    

 

101,103,10403,10200,37,34,9373  32 102 515 1808 

2313 2322 2323 

2425 2827 2828 

2838 2930 3343 

4636 4737 5150 

5151   

 5252 5253 5666 

5767 7060 7473 

7565 7575 7576 

7978 8080 8081 

8090 8595 9888 

10301    
 

101,103,10403,10200,41,32,7961  60 102 309 515 721 

825 926 1648 

1854 1958 2059 

2061 2162 2266 

2885 2986 3090 

3193 3297 3398 

3503 3604 4326 

4430 4531 4636 

4737 4842 4943 

5150 5151   

 5252 5253 5460 

5561 5666 5767 

5872 5973 6077 

6799 6900 7005 

7106 7210 7313 

7417 7518 8137 

8241 8342 8344 

8445 8549 8755 

9477 9578 9682 

9888 10094 

10301     

101,103,10403,10200,43,19,4507  18 102 2322 2323 

2425 2827 2828 

2930 5150 5151   

 5252 5253 7473 

7575 7576 7978 

8080 8081 10301     

101,103,10403,10200,47,46,9983  6 102 5150 5151    5252 5253 10301   
 

101,103,10403,10200,53,11,2117  12 102 515 4636 

4737 5150 5151   

 5252 5253 5666 

5767 9888 10301     

101,103,10403,10200,59,17,2939  6 102 5150 5151    5252 5253 10301   
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

101,103,10403,10200,61,14,2341  144 57 102 262 309 

365 469 515 562 

675 721 767 825 

870 926 974 1180 

1498 1602 1648 

1808 1854 1958 

2003 2014 2059 

2061 2107 2162 

2266 2313 2322 

2323 2425 2519 

2632 2827 2828 

2838 2885 2930 

2986 3044 3090 

3137 3193 3249 

3297 3343 3398 

3503 3549 3604 

3754 3971 4177 

4326 4382 4430 

4476 4485 4531 

4589 4636 4682 

4737 4842 4887 

4943 4990 5094 

5150 5151   

 5252 5253 5309 

5413 5460 5516 

5561 5666 5721 

5767 5814 5872 

5918 5927 5973 

6021 6077 6226 

6432 6649 6799 

6854 6900 7005 

7060 7106 7154 

7210 7266 7313 

7359 7417 7473 

7518 7565 7575 

7576 7771 7884 

7978 8080 8081 

8090 8137 8241 

8296 8342 8344 

8389 8400 8445 

8549 8595 8755 

8801 8905 9223 

9429 9477 9533 

9578 9636 9682 

9728 9841 9888 

9934 10038 

10094 10141 

10301 10346     

101,103,10403,10200,67,46,7003  18 102 2322 2323 

2425 2827 2828 

2930 5150 5151   

 5252 5253 7473 

7575 7576 7978 

8080 8081 10301    
 

101,103,10403,10200,71,3,431  30 102 309 721 825 

926 1854 3297 

3398 4326 4430 

4531 4842 4943 

5150 5151   

 5252 5253 5460 

5561 5872 5973 

6077 7005 7106 

8549 9477 9578 

9682 10094 

10301     

101,103,10403,10200,73,11,1537  32 102 515 1808 

2313 2322 2323 

2425 2827 2828 

2838 2930 3343 

4636 4737 5150 

5151   

 5252 5253 5666 

5767 7060 7473 

7565 7575 7576 

7978 8080 8081 

8090 8595 9888 

10301     

101,103,10403,10200,79,35,4519  18 102 2322 2323 

2425 2827 2828 

2930 5150 5151   

 5252 5253 7473 

7575 7576 7978 

8080 8081 10301    
 

101,103,10403,10200,83,37,4547  6 102 5150 5151    5252 5253 10301   
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(p,q,n,Phi,e,k,d) #holes   Left holes   Right holes   

101,103,10403,10200,89,28,3209  12 102 515 4636 

4737 5150 5151   

 5252 5253 5666 

5767 9888 10301     

233,251,58483,58000,73,48,38137  24 1254 2008 3262 

3263 5270 6525 

16065 19327 

20834 22589 

24096 27358   

 31125 34387 

35894 37649 

39156 42418 

51958 53213 

55220 55221 

56475 57229    

233,251,58483,58000,79,62,45519  6 3262 3263 6525    51958 55220 

55221    

233,251,58483,58000,83,44,30747  6 3262 3263 6525    51958 55220 

55221    

233,251,58483,58000,89,35,22809  24 1254 2008 3262 

3263 5270 6525 

16065 19327 

20834 22589 

24096 27358   

 31125 34387 

35894 37649 

39156 42418 

51958 53213 

55220 55221 

56475 57229    

____   End of Key Generation.  ____        
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A-2 The Perl Program Listing 

Here is a listing of the Perl program used in this research. This program will find the 
holes for a list of triples (p, q, e) and encrypt the ASCII equivalent of the message 
“ABoV;-)” which is 32, 65, 66, 111, 86, 59, 45,41 using each of these 10 encryption 
keys. In each of these 10 iterations, the holes, the total number of holes and the 
percentage of holes are found and printed. 
 
#  
# RSA encryption check for cleartext 
#      File name:  HoleFinder2329FromList.pl 
# Original Author:  John M Acken 
#   Current Author:  Behnaz Sadr 
# Revision history: initial version 20 May 2010 
#     Current version 21 May 2011 
# 
# Description: This program checks for holes in RSA.  
# That means looping through integers comparing the cleartext  
# to the ciphertext.  
# 
# ## A hole has been found when the cleartext equals ciphertext. ## 
# 
# This program requires a list of p's, q's and e's as input. 
# The output is the list of plaintexts that are holes for a given ordered triple (p, q, e) 
# 
######################################################################## 
# ...~Desktop\perl> bin\perl HoleFinder2329FromList2.pl > t4holes23_?.txt 
########################################################################  
# 
# First the list of p and q values are entered as two arrays. 
# There are 10 values of e, each one used with the same two prime factors p and q. 
# In other words this program will encrypt 8 values of m using 10 different keys with  
# a common n. 
#  
# Each key is e in conjunction with n: (e, n) 
#  
# In this program p = 23 and q = 29. 
 
@listOfp = (     
 
23, 23, 23, 23, 23,  
23, 23, 23, 23, 23 
 
); 
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@listOfq = (   
 
29, 29, 29, 29, 29,  
29, 29, 29, 29, 29 
 
); 
 
# Values of e are chosen such that they are: odd, between 3 and phi, and they are coprime 
# with phi. In this example phi is 22x28. The factors for phi are: 2, 7 & 11. These  
# are invalid candidates for e. 
#  
# Another rule of thumb for choosing e is even though choosing the values of p or q for e 
# is admissible since they might be odd and coprime with phi, they usually create a lot 
# of holes. This program demonstrates this fact, as well as being an example. 
# So as you may notice, two of the e values are 23 and 29. 
 
@listOfe = (  
 
3, 5, 13, 17, 19,  
23, 29,  31, 37, 41 
 
); 
 
# After the three arrays @listofp, @listOfq and @listOfe are defined and filled 
# with values, the ASCII values for a Test message " ABoV;-)" is kept in @message 
# and will be printed on top of the output file. 
     
@message = ( 32, 65, 66, 111, 86, 59, 45, 41); 
 
print STDOUT "\n Test message  = @message      \n"; 
print STDOUT " _________________________________________\n"; 
print STDOUT "\n____________________________________________________\n"; 
 
 
# Next, an outer for loop is formed to be executed as many times as the number of e 
# values which in this case is 10. The outer for loop's counter is $example. 
# The counter is incremented one at a time.  
# In each iteration of the outer for loop the values of p, q and e are taken from their  
# respective place in their array and n, n/2 and phi are calculated. 
# The number of holes is initialized to zero.  
 
for ($example = 0; $example < 10; $example++)  { # beginning of the outer for loop 
 $p = $listOfp[$example];  # put the next element of listofp in $p 
 $q = $listOfq[$example];   
 $n = $p * $q;     
 $midpoint = $n / 2;   # midpoint is defined as n/2  
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 $phi = ($p - 1) * ($q - 1);  # phi is defined as (p-1)(q-1) 
 $e = $listOfe[$example];   
 $holes = 0;    # initialize the number of holes to zero 
 
# Next comes the information that will be printed out for each value of e: 
# Values of p, q, n and e are printed.  
 
 print STDOUT "___________________________________";    
 print STDOUT "For example $example p = $p; q = $q; n = p*q = $n; e = $e \n"; 
 
# This for loop goes through the 8 elements of the @message array one by one 
# 
# 
 for ($BN = 0; $BN < 8; $BN++ ) {     # beginning of the first inner for loop  
  $m = $message[$BN];   
  $c  = ($m * $m) % $n;  # c = m*m mod n ,  

# to find c, m will be 
       # multiplied by it self e times  
 
  for ($BN2 = 2; $BN2 < $e; $BN2++ ) {   

# beginning of innermost for loop 
        
   $c = ($m * $c) % $n;           # each time multiplying the last found 
       # product by m and take modulus n 
       # eventually c = m^e mod n 
  }     # end if innermost for loop 
  print STDOUT " $m => $c ||"; # print the message value m and  
       # its corresponding ciphertext c  
       # separate from the next m,c, by "||" 
 
 }      # end of the first inner for loop 
# 
# At this stage we will have a list of all 8 m values from the list @message as well as 
# their encryptions.  
# 
# 
 print STDOUT "\n ____________________ \n List of holes: \n"; 
# 
# The following nested for loops and their corresponding if statements will encrypt m 
# and compare the encrypted value c with m. Whenever this encrypted value becomes  
# equal to m i.e. c = m, two things are done: first, the number of holes is incremented, 
# second the value of m creating the hole is printed followed or preceded by a pipe '|'  
# character. 
# The position of the pipe is chosen in such a way that there will be two pipe characters 
# representing the midpoint. At the end of this second inner for loop the total number of  
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# holes for a given e value is calculated and printed. Having the total number of holes by 
# now, the total number of holes as well as the percentage of holes are printed. 
 
 for ($m = 2; $m < $n - 1; $m++) { # beginning of the second inner for loop  
        
  $c  = ($m * $m) % $n;     
  for ($BN2 = 2; $BN2 < $e; $BN2++ ) {   

# beginning of the 2nd innermost for loop 
 
   $c = ($m * $c) % $n;    
  }    # end of second innermost for loop 
      # the previous three lines are exactly  
      # the same as the for loop used on top. 
         
  if ($m == $c) {  # if there is a hole 
   $holes++;  # There will be a "|" after holes before 
      # reaching the midpoint n/2 
      # when there is a hole after the midpoint 
      # the "|" is printed before the hole. 
      # In this way there will be a double pipe  
      # in the middle, representing the midpoint. 
 
   if ($m > $midpoint) {print STDOUT "|";}  

# if the hole happened where m > n/2,  
# print "|" 

   print STDOUT " $m";    
# Now print m 

   if ($m < $midpoint) {print STDOUT "|";}  
# if the hole happened where m < n/2,  
# print "|" 

  }     # end of if statement 
 }      # end of the second inner for loop 
 $percent = int(10000 * $holes / $n) / 100;    

# percentage of holes are calculated  
 print STDOUT "\n number of holes = $holes      = $percent %\n";  

# number of holes and percentage  
      # of holes are printed. 
 print STDOUT "_________________________________________________\n"; 
      # This line shows the end of one  
      # iteration of e. 
}       # end of the outer for loop 
      # Printing the next line shows the end of 
      # the program that ran for a given list of e 
      # in our case, 10 e values. 
print STDOUT "\n _____________________  All Done. _____________________\n"; 
exit;      # end of program. 
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A-3: Simple Example in RSA 

There are two simple examples in chapter three. These examples use the septuple, (11, 
13, 143, 120, 23, 9, 47).  The text used in example 2 is: “I loVe cRyptoGraphy! ;-)”   The 
block size is one letter. This text is turned into a large integer using its ASCII code: 
 
   I             l     o    V     e            c     R    y     p      t     o     G     r     a      p     h     y     !            ;     -      ) 
73    32   108 111 86  101  32   99   82 121 112 116 111   71 114  97   112 104 121  33   32  59   45   41 

 
In order to encrypt the plaintext message above, the Table A-3.1 is used.  
 

Table A-3.1 Encryption Table for Septuple (11, 13, 143, 120, 23, 9, 47) 

m c m c m c m c m c 
    31 47 61 29 91 104 121 88 
2 85 32 76 62 134 92 53 122 34 
3 126 33 132 63 6 93 59 123 63 
4 75 34 122 64 25 94 139 124 93 
5 125 35 107 65 65 95 101 125 31 
6 128 36 82 66 66 96 138 126 81 
7 2 37 97 67 111 97 102 127 95 
8 83 38 103 68 74 98 54 128 123 
9 3 39 117 69 49 99 44 129 116 

10 43 40 79 70 86 100 133 130 91 
11 110 41 72 71 37 101 30 131 131 
12 12 42 113 72 106 102 71 132 33 
13 52 43 10 73 57 103 64 133 100 
14 27 44 99 74 94 104 26 134 140 
15 20 45 89 75 69 105 40 135 60 
16 48 46 41 76 32 106 46 136 141 
17 62 47 5 77 77 107 61 137 15 
18 112 48 42 78 78 108 36 138 18 
19 50 49 4 79 118 109 21 139 68 
20 80 50 84 80 137 110 11 140 17 
21 109 51 90 81 9 111 67 141 58 
22 55 52 39 82 114 112 96     
23 56 53 14 83 73 113 16     
24 19 54 98 84 24 114 108     
25 38 55 22 85 28 115 136     
26 130 56 23 86 135 116 51     
27 92 57 8 87 120 117 13     
28 7 58 115 88 121 118 105     
29 35 59 119 89 45 119 124     
30 127 60 70 90 129 120 87     
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The large integer is encrypted as: 
 
  57  76  36  67  135   30  76  44  114  88  96  51  67  37  108  102  96  26  88  132  76  119  89  72 
 
 
This integer if it was converted to text would read as: 
“9L$CoorRSL,rX`3C%lf`SubsXoorLwYH” where the underlined characters are special 
characters which are not letters. 
 
Table 3.7 is reprinted here to summarize the steps done in encrypting and decrypting the 
simple example, “I loVe cRyptoGraphy! ;-)”. 
 

Table 3.7 Sample Message Transformation Table 
Original Plaintext      I             l     o    V     e           c     R    y     p      t     o    G      r     a      p     h     y     !             ;      -      ) 
Encoded (ASCII)    73   32  108 111 86  101  32   99   82 121 112 116 111  71   114  97  112 104 121 33   32   59    45   41 
Encrypted (ASCII)  57   76   36   67 135  30   76   44  114 88   96   51   67   37   108 102  96   26   88 132  76  119   89   72 
Ciphertext                 9     L     $    C  oor  RS    L    ,      r    X     `      3    C    %     l      f      `   Subs X   oor   L    w     Y    H 
Received (ASCII)    57   76   36   67 135  30   76   44  114 88   96   51   67   37   108 102  96   26   88 132  76  119   89  72 
Decrypted (ASCII)  73   32  108 111 86  101  32   99   82 121 112 116 111  71   114  97  112 104 121 33   32   59    45  41 
Decoded Message      I             l     o    V     e          c     R    y     p      t     o    G      r     a      p     h     y     !             ;      -      ) 
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