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CHAPTER |

INTRODUCTION

Information security is a current and heavily discussed topic. Aftehal is the
information age. Information is everywhere and at our fingertips. It needs to betpdot
from falling into the wrong hands. The Webster definition of the word “securey in it
verb form is, “To relieve from exposure to danger; act to make safe agdueste
contingencies” [1]. In other words, to secure information is to relieve it éqmosure to
danger. One method of doing just that is by changing the information beyond rnecognit
The act of changing or garbling a piece of information in a reversible fasthahiq the
message can be transferred back to its original form) is called encryption.

Encryption is a form of disguising or garbling information in a way thabit't\be
recognized by anybody without a conscious effort to decrypt it. In ordexctygp and/or
decrypt a message two things are necessary: a method and a key. When using the sa
key to encrypt and decrypt, the type of encryption is called symmetric keypganr

When using different keys for encryption and decryption, the type of encryption  calle
asymmetric key encryption. The concept of asymmetric encryption, or havinguiffe
keys for encryption and decryption, was introduced by Whitfield Diffie aadiN

Hellman. This innovation set the stage for the RSA algorithm that becagnpogarlar

and has been used widely ever since. RSA is an acronym taken from the last naees of
people who invented it, Ronald Rivest, Adi Shamir and Leonard Adleman. The RSA
algorithm, with its asymmetric key method, was invented in 1977. It was thatfempt

to realize Public Key Cryptosystems (PKC), the novel concept invented bg xiidi
Hellman. PKC is another name for asymmetric encryption.

The task of studying and analyzing the RSA algorithm was the topic ofrecteti
studies. While working on the material and finding good candidates for a smaflexam
an interesting observation was made. There were cases in whichnaftgoting a
message, the ciphertext would stay the same as the original messgdbgancryption
never occurred. This observation was the motivator for my thesis. In this thess, thes
cases of plaintext equal ciphertext were researched and some otHerasigadditional
observations were made. These anomalies, the frequency of their occlanehitesir
symmetrical behavior were characterized. Also, research was expandetidatfi
whether these cases are anomalies or regular occurrences. The tbsuteséarch
shows that these cases are not anomalous and they occur no matter how large the
numbers get.



The topics covered in the remaining chapters of this thesis are: Chaptgetieral
background to communication security, encryption and the RSA algorithm; Chépter Il
explanation of the research method used in the quest for a simple example oéagymm
key encryption; Chapter 1V, observations demonstrating anomalies in R8/4t0i;
Chapter V, a summary of anomalous RSA behavior and the resulting conclusions.



CHAPTER Il

BACKGROUND

2.0 Introduction

Information security is a very broad topic. One subtopic is communicationtgegur

any given moment information is either in use, in motion or in storage. The sedurity
this information may be compromised at any of these fronts. Communicationysecarit
look at data in motion and the methods that may be employed to keep this moving data
secure. This chapter is an overview of communication security with an eémphas
encryption.

2.1 Communication Security

When two or more parties want to communicate, sometimes they need to keep their
communication secure. As mentioned in chapter I, to secure information is ve relie
from exposure to danger. There are different elements used to descpbetshef a
secure communication system such as, sender, receiver, transmission mesgigemes
encrypted message, encryption method, key, storage, etc. Also, theréezemtibles

for participants in a secure system such as: sender, receiverekéy cunauthorized
listener, imposter, etc. These different roles can be referred to lgynaiskmames such
as Alice, Bob, Eve and so on. Related to communication security is the issue efiong t
versus short term security which corresponds to the life span of informatiere are
goals in securing communication such as, user authentication, content aattoentic
confidentiality, integrity and non-repudiation. Encryption is an underlying tecgyol
that can be used for communication security and as such, an essential topic in any
security system. Encryption is part of the solution to a number of problenesdiriat
achieving the goals of communication security.

2.1.1 Elements of a Secure Communication System

To talk about the elements of a secure communication system one needs tariest def
what a secure system is. The word “system” has one meaning thasfitsiiént best,

“a group of units so combined as to form a whole and to operate in unison.”[1] The word
“secure” in its adjective form means, “free from danger or risk of lo$s’.$a] To

secure a system is to protect it from danger; to make it safe. Dangs of loss can

come from inside or outside a system. One step of securing a system is to coag®l ac
to the system. When it comes to people or entities that have access to a bgstean t

be divided into at least two categories: authorized users and non-authorized users. The
concepts of access and authorization are different concepts related to a kgstefinst

look at an example about access. When a customer goes to a supermarket and walks
around, he has access to the commodities that are on the shelves.



If the door to the office of the manager is open and his computer is on, and he has
forgotten to logout of the accounting system, the customer now has access to whatever
the manager can access! On the other hand, in the same supermarket, people don’t have
access to the things that are out of reach, very high on the shelves, things thtiere i
storage area or locked somewhere. So having access to something, includesdbeing “

to do” something rather than with being “allowed to” do it. Now let’s look at the concept

of authorization using the above example. Having access to the accounting system of a
supermarket doesn’t make a person an authorized user. If the manager inekentgee
forgets the only key to his office at home, he temporarily doesn’t have access to hi

office, but that doesn’t make him un-authorized to enter that office.

To give authorization to a user for doing a certain task is the job of an authaigiven
system. There are different methods of authorization: There might be a lishofized
personnel or there might be some criteria that must be met in order to be autlwodized t

a task. Even the list system usually works based on some regulation that puts people on
or off a list. Here are some scenarios regarding authorization and dndessfirst

scenario, Alice is authorized to buy a certain book 50% off only if she is one of the first
one hundred applicants. Here, being one of the first one hundred applicants is the rule.
The second scenario considers three situations. In an Online Classroosy$@@), a
teaching assistant (TA) Bob, is authorized to enter the grades for lahsetiedty being
assigned by the professor or the department as an authorized user. Bob doesn’t have
access to the grades if he doesn’t have a computer or doesn’t remember hosdodssw
comparing the concept of authorization and access in the same example consider a
second situation. A teaching assistant isn’t authorized to see all the gradssdsTd for

his other courses however, if a student leaves his OC account open and doesn’t logout,
Bob (the TA!) will have access to all the grades but cannot change any of them! Now
consider a third situation. If Charles who is a TA for another course, leav@€his

account logged on, Bob not only will have access to some grades, but would also be able
to change them. For that matter anybody else, another student, a staffgarstan also

go in and change the grades. The second and third situations demonstrate tizgt Bob
access regardless of authorization.

Many times there is more focus on outsider danger rather than on insider danger. A non-
trustworthy insider can bring a lot of serious damage to a system, worse thaisider.

The concept of walls or borders, being inside or outside a system, brings theadezyof

or a password to mind. Authentication means determining whether someone should be
allowed inside. In a secure system, when the identity of a user is authensicdtee is

found to be an authorized user, he is in. This is also called being “accepted”. So
authenticating the identity of an authorized user means to let an authorizad user i
“Accepting”, and keep the unauthorized user out, “Rejecting”. There are foaiiits

that can happen with a combination of “Authorized”, “Non-authorized”, “Accepted” and
“Rejected”. The first combination is when an authorized person is accepteds @his i
desirable outcome. The second combination is when a non-authorized person is accepted.
This is a non-desirable and dangerous outcome. The third combination is when an
authorized person is rejected. This is also a non-desirable outcome but rathemfan bei
dangerous it's annoying. The final combination is when a non-authorized person is



rejected. This is something expected of a secure system; to keep thethonzed
people out. These four combinations are shown in Figure 2.1.

Authorized user Non-authorized user

Accepted Accepted

Desirable outcome Non-desirable
(dangerous) outcome

Authorized user Non-authorized user

Rejected Rejected

annoying outcome Expected outcome

Figure 2.1 Authorization and Access
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Figure 2.2 Elements of a Secure Communication Syste

After the brief look at the concepts of authorization and access in the contesuiritiyse
systems, let us consider the elements of a secure communication systesmelements
include: Encrypted message, Decrypted message, Encryption method, Key(s

management, Message, sender, receiver, transmission media, non- authceized list
Malicious imposter, Decryption method, encryption/decryption/key used for storag



storage. Figure 2.2 shows the interrelation between these elements and sh@awvs wher
encryption may play a part in securing a communication system. Thehzegartain

areas in Figure 2.2 where encryption and decryption are shown: 1- On Sender s&de whe
a message is encrypted before it gets transmitted, 2- On Sender sidalathas

encrypted and decrypted in order to be safely stored and retrieved, 3- On Radeive
where the received message is decrypted and used. For each of these encryption or
decryption methods there is a key involved. This key might be a shared secret key, which
would be the same for sender and receiver or two different keys in casenofietsic
encryption. Key management is another element in a secure communicatem.dgeys

need to be created and distributed according to the method used. In RSA, the public and
the private key are both created by the receiver and the public key is pdidtalyuted

to be used by any sender. The private key will stay at the receiving sidé&)ysssied

in a storage unit using some sort of encryption. The private key will be used once a
message is received and the decryption method will decrypt the message ugmgthe

key. At any part of the communication line there might be intruders, impaster
eavesdroppers. These are unauthorized entities who try to gain access toeithe

plaintext message, the ciphertext, to the key or any combination of these. The
unauthorized entities goal is to passively or actively attack a secteendys different

kinds of gain.

2.1.2 Security Players: Alice, Bob, etc.

In cryptography there has been a preference to use names insteadsofvietter
describing different characters. For this reason instead of sayingntls s#ge message m
to B”, it is said: “Alice sends the message m to Bob”. So Alice and Bob wette use
instead of person A and person B. This effort throughout the years has resaltedher
elaborate library of names representing different characters in crgptogand other
fields that would benefit from this convention.

Letter Role Name = Picture
A Sender Alice *\
B keycremor | B
E Eavesdropper Eve
I Imposter Imelda *\
M Malicious Mallory ’*(
R Random Randy ’*‘

Figure 2.3 Security Players Names and Roles

Figure 2.3 shows a list of some of these names [2][3][4][5]. Alice and Boprabably

the most famous characters in this list. Alice sends Bob private encryptsageesEve

is an observer who is not authorized to read Alice’s message. Eve is an eavesdnopper
might do her job anywhere in the communication line. The encryption must be strong



enough that although Eve has intercepted the message, she cannot read it. Ihe&la wis

to send Bob a message as if the message is sent by Alice. Imelda is aerinspostone

who would pretend to be someone else. Mallory is a malicious character. The encrypti
system must be secure enough that Mallory’s active efforts to circuntwell fail.

Randy is a random stranger who has just happened to intercept the communication and is
not necessarily a negative character. A weak encryption is sufficigaep information
protected from Randy. Figure 2.4 shows some of these characters in actiorceds Ali
requesting access to communicate with Bob, Eve is listening to the conversatiory M

and Randy also have tapped into the communication line. At the other end, the
communication line has reached Bob.

The Security Players

Intemnet

lAccess|
R equestefl?)
[

e

TS

Mallory Bob

Alice B

Figure 2.4 Security Players in Action

2.1.3 Long Term versus Short Term Secure

Securing information is a time dependant issue. The required strength and amount of
effort applied to keep data secure depends on the sensitivity of the dathasthvel
duration in which that data needs to stay secure. An example from daily life is the
requirement for encryption used for securing the data of a movie. The marefaeeds

to use a type of encryption that would be hard to break for the duration of the copyright.
A copyright lasts at least 70 years [6]. The example of movie encryp@nasample of
long term security. For short term encryption let’'s consider the case ofigpioiistock,
which is a time sensitive matter. If an attacker gains access tatheelated to a biding
process, during the process, this is dangerous. If the attacker gains@atbessame data
after the sale, this will pose no problem. The example about stock bidding was an
example of short term security. Another example for short term secueitieddor very
sensitive data is a president’s itinerary. There is a considerable amoftfottghu into
securing data regarding the whereabouts of a president. If an attatkeaicage to

break the code and gain access to the itinerary, before a president goes tiica speci
function, this would be considered a major security breech. On the other hand breaking
the code after the president has attended that same function is not going toTinistisr

the reason for considering the type of security in hand when determining thefleve
protection required.



2.1.4 Security Goals and Their Definitions

There are a number of goals when considering security in communicatice. Jdeds

are authentication, confidentiality, integrity and non-repudiation. Autheiaticapplies

to both the users and the message. Authentication of a user means checkinghehsthe
who he claims to be. Authentication of a message means checking the madsége a
originator to be authentic. Confidentiality is about protecting information from
unauthorized access. Information integrity means protecting informationdhange.
Non-repudiation means making sure the users can not deny their involvement in the
communication. Many tools are available to achieve these goals; eonrigtine of

them.

2.1.5 Encryption or Cryptography in Context of Security

Encryption is a solution to a number of problems that may arise in reachiniysgoals
and as such, an essential topic in any security system. The secustyngeationed in

the previous section, can be met from time to time using encryption. Here, some of these
problems are addressed and how their solution might include or be related to encrypti
Let's look at identity authentication as one of these goals. To authentivetieer a user

is who he claims to be, his identity is checked. A user’s identity mayduoketh by

“what he knows”, “what he has”, and “what he is”. Examples of “what he knows” are
PIN (Personal Identification Number), DOB (Date of Birth) and SSd¢igh Security
Number). Examples of “what he has” are an identification card, a bank caphgsiaal
key. Examples of biometric measures that show “what he is” include retinavssce

print or fingerprint. The step of user identification depends upon encryption when the
digital information of a user is stored or being transmitted and needs to be secuhas
encryption can be used. If the goal is authenticating a message, a hatefusar

might be appended to the message. The hash value can be encrypted to prevent
tampering. This is the basis for digital signatures. If the goal is @nifaity, hiding, or
concealment then one of the methods used to achieve this goal is encryptioratinform
integrity, which is about protecting information from change, can be met asiagh
function. One such hash process uses encryption to create an electronic sigoature. T
meet the goal of non-repudiation and making sure the parties can not deny their
involvement in the communication, digital signatures are used. Digital signstes
encryption.

2.1.6 Summary of Communication Security

Communication security revolves around securing data while in motion. In th@nsect
elements involved in a secure communication such as Sender, Receiver, Encrypted
message, Decrypted message, Encryption method, Decryption method, Key(s), Key
management, transmission media, storage, etc. were mentioned and themclymtion
in relation to these elements was considered. The security participamtgldseand a
relatively new “nicknaming” system that has been used in communication aniysecur
literature recently, were glanced at. Securing information depends bifetinee of that
information and the sensitivity of it. The goals of securing a communicatitensysd
how encryption may be used in achieving some of these goals were explained.



2.2 Cryptography

Cryptography is “The science and art of transforming messages to maksdbere and
immune to attacks,” [7]. A more formal definition by Man Young Rhee in his book,
Cryptography and Secure Communication is, “Cryptography is the study of
cryptosystems by which privacy (confidentiality) and authentication ofcdetde
ensured.” [8] Cryptography includes the study of encryption or cipherg.ihatas
section some classical ciphers are mentioned, followed by some modeins eipian
are in use today.

2.2.1 Encryption an Old Ally or Foe?

Encryption is not a modern concept. In the olden days a message sent by ope ruler t
another was usually vital information. If the message fell into thegvwands the lives

of many were at stake. But what if the message was interceptedptincry an ancient
method used to conceal information and delaying the unauthorized person from seeing
the plaintext. The issue of data security is not a matter of preference bueaahkie

and death. As time passed, more and more sophisticated ways of hiding the data were
found and little by little more modern and newer technology was applied. Thasati

and rulers, who had the technology to make better ciphers, had a huge advantage over
people who were not able to hide whatever big or small amount of vital informatjon the
had. That is why encryption could be your ally or your foe depending on which side of
the fence you were sitting. These sentences are not an attempt to consigeiognicr a
moral or philosophical context but to emphasize the importance of it. As it is sayd in m
culture if a thief comes in with a light he can be choosy in what he stedlang sool in

the hands of a foe makes him even stronger and more dangerous. This is true of any tool,
for a weapon or for an encryption method.

2.2.2 Some Encryption Methods and Their Timeline

There are a few ways of categorizing encryption methods. Encryption methagsers
may be classical or modern, symmetric or asymmetric and a block ciphstream
cipher. Modern ciphers are conceptually based on the classical ciphers. Thiereeare
main types of classical ciphers: transposition, substitution and product cipherfs. Al
these ciphers are symmetric methods. A symmetric encryption methodtisabnees

the same key for encryption and decryption. The act of transposing, substituting or
creating a mixture of transposition and substitution, which gives you the p@plher,
may be done manually or using modern technology. Symmetric algorithms, whether
classic or modern, are divided into two types: block cipher and stream cipher. In his
book, “Applied Cryptography”, Bruce Schneier gives a simple definition for the block
and stream ciphers: “Block ciphers operate on blocks of plaintext and ciphetsxally
of 64 bits but sometimes longer. Stream ciphers operate on streams of p&aidtext
ciphertext one bit or byte (sometimes even one 32-bit word) at a time. Withka bloc
cipher, the same plaintext block will always encrypt to the same cighblbek, using
the same key. With a stream cipher the same plaintext bit or di/enaiypt to a
different bit or byte every time it is encrypted.” [3] According todtaan, in his book
“Data Communications and Networking”, a transposition cipher is, “a chatavtd
encryption method in which the position of the character changes.” [7] and Sdaysier
“In a transposition cipher the plaintext remains the same but the order of eharsct



shuffled around.” [3] The next classical category of ciphers is a sulastittipher which
Schneier defines as, “A substitution cipher is one in which each character initbexpla

is substituted for another character in the ciphertext.” [3] There areetiffeypes of
substitution cipher: monoalphabetic, homophonic, polyalphabetic and polygram which as
the scope of this thesis is concerned, it will suffice to just mention theirsndine next
category of block ciphers is a product cipher. Rhee says, “A product cipher is a
composition of two or more ciphers such that the ciphertext space of one cipher becomes
the message plaintext space of the next. The combination of ciphers, calstedasc
superencipherment, is done in such a manner that the final product is superior to either of
its components.” [8] In other words, when a combination of transposition and substitution
is applied to a plaintext, in a cascaded manner, the resulting cipheedaaltoduct

cipher.

Here is a list of a few ciphers and their approximate dates and Aseosding to Rhee,
“The oldest known transposition cipher is the Scytale cipher used by the ancidwg Gree
as early as 400 BC.” [8] So Scytale would be a classic, block, transpositian.dror all

the classic ciphers being symmetrical is a given. The Caesar,diphenost well known
cipher, is an example of a classic substitution cipher which was used by Jukas. @ae
this cipher every letter of the alphabet in the plaintext is encrypted dsrtheetter

following it in the alphabet (D would substitute for A). So the word AND is encdyase
DQG. A few other substitution ciphers are Beale cipher from 1880’s, the Vegeipder
from 16" century, the Rotor cipher from WWII and the one-time pad which is
unbreakable. In 1917, the one-time pad was used for the first time in the Vernam cipher,
designed by Gilbert Vernam. Two examples of product ciphers are the Germ&VADF
cipher used in WWI and a modern product cipher is the famous Data Encryption
Standard widely known as DES. Public Key Cryptosystems (PKC’s) are asgmmme
ciphers, use two different keys and are in the modern category of ciphers. Sormpisxam
of public key cryptosystems are algorithms such as RSA, EIGamal, Rabin anid Ellipt
Curves.

2.2.3 Symmetric versus Asymmetric Encryption

Encryption methods in general are divided into two main categories, symmetiacitey
asymmetric-key. In symmetric-key cryptography, the same key tshysthe sender for
encryption, and by the receiver for decryption.

Shared secret key

Bob
-
s~ T w

=

Alice

plaintext plaintext

Encryption > Decryption
ciphertext

Figure 2.5 Symmetric-Key Cryptography

The key is called a shared secret key since it is a secret only known by dmeitiiag
parties. This key needs to be kept secret because whoever has the key can both encrypt
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and decrypt the message. Due to the nature of this key, special care is used when
delivering the key to the other party. Figure 2.5 shows a visual representation of
symmetric key cryptography. Alice has a plaintext message to send to Bmbusés the
shared secret key to translate the plaintext to ciphertext. The ciphentext sent to

Bob. Bob then uses the same secret key to decrypt the message and read thie plaintex
The public key cryptosystems invented by Diffie and Hellman is a completely ne
system of cryptography. Until this point in history, all the encryption aulused one
shared secret key. The public key cryptosystems introduced the idea of havinggwo key
instead of one, hence the name asymmetric key encryption. Asymmetric-ke
cryptography, Figure 2.6, starts when a party wants to communicate with attlers a
creates two keys. The first key will be publicly distributed; hence it is natratse

anymore and is called the public key. The second key is kept only by the initiatsr and i
called a private key.

To the public

‘ - -
) //// Bob's private
Alice
Encryption 5 | Decryption
plaintext ciphertext plaintext

Figure 2.6 Asymmetric-Key Cryptography

Although anybody who has access to the public key can send encrypted messages, only
those possessing the private key can decrypt these messages. For exangpies R Fi

Alice has a plaintext message to send to Bob. She needs a key. This key is a public key,
created by Bob and broadcast to public. Alice uses Bob’s public key to translate the
plaintext to ciphertext. The ciphertext is now sent to Bob. Bob then uses his private key
to decrypt the message and read the plaintext. There are different methods for
implementing asymmetric encryption. One of these methods is the RSA algorithm
introduced by Rivest, Shamir and Adleman in 1978[2].

2.3 RSA, an Asymmetric Encryption

When it comes to asymmetric encryption methods, RSA is the most widely known. In
this section the historical context in which RSA was born is shown. Next the tesgynol
used in this thesis to represent the formulas and limitations in RSA are edplaater,

the process of message preparation, encryption, decryption and message asilidval
order they are applied in RSA are presented.
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To the public

Malory

-~ \!
"~ ~Bob’s public}
- (en)
7 /
/// /
P / Bob’s private §
P - - '."f r{d' n)
Alice ,f
r /
Eve
plaintext Encryption | Decryption

e =m" mod n - m=cimod n -

ciphertext plaintext

Figure 2.7 RSA as an Asymmetric-Key Cryptosystem

2.3.1 RSA: History

It was the year 1977. In January, Jimmy Carter became ther@sident of the United
States. In May, the first Star Wars movie was released. In July, théy didvBlackout
happened. In August, Elvis Presley died at the age of 42. In April of thi@dwesr,
three MIT students published a paper which changed the face of cryptography
significantly. Their names were Ronald L. Rivest, Adi Shamir, and LeonarddMnran
and the title of their paper was “A method for Obtaining Digital Signatures anatPubl
Key Cryptosystems”. Today more than 30 years later, RSA is still ywickeld for
cryptography and although it was the first implementation of a public-kpyosystem
(PKC), it has not retired or become obsolete.

2.3.2 RSA: Terms, Variables and, Limitations
There are two sets of equations in RSA which are explained in detail in section 2.3.3:

o(n) =(p-1)(g-1) andd = (L+ k*d(n))/ e for key generation and,
¢ = m® mod n, and m =%mod nfor encryption and decryption.

The first set, top line, is used to create the keys for encryption and decryptititea
second set, bottom line, is used to encrypt and decrypt the message. In Table 2.1 is the
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list of variables used in this paper and their definitions. There are a feations on
these terms that will be mentioned throughout the chapter.

Table 2.1 Table of Terms, Definitions and Limitatios
mis the message or plaintext in numerical form,
O<m<n,ni>n
c is the encrypted message or ciphertext in numerical form
p & q are two prime numbers used to generate keys
nis the product op & q
p(n)is the totient function of
e is the public key in conjunction with
d is the private key in conjunction with
kis a positive integer used to generdte
0O<m<n;nf>n;0<c<n;>n (Limitations)

2.3.3 RSA: Message Preparation, Formulas and Message Retrieval

RSA is a block cipher, which means the message is encrypted, one block at a time, using
the same key. The message or plaintext is first prepared and then encriggted. T
preparation includes encoding, blocking and padding. RSA keys are produced using a set
of algebraic formulas and constraints. With the message prepared and threhaay,

the RSA encryption and decryption formulas are ready to be applied. Decodmggi

after decryption in order to retrieve the original message.

Message preparation is a necessary step in RSA encryption. A plaintextrgogsh a
number of steps before it is ready to be encrypted. RSA is an encryption rabtbool
encrypt integers and integers only. The RSA formulas are based on modulartarithme
Therefore, to use RSA one needs to apply it when the plaintext is in integesrfoam

be interpreted as such. Figure 2.8 is a diagram which includes the encoding, egcrypti
decrypting and, decoding in it as four boxes and shows how the message changes as it
passes through. The message preparation starts with turning or transféwertiext into

a number, a sequence of digits. This sequence of digits corresponds to a sequence of bits
which will be divided into blocks and padded accordingly. There are different standards
used for blocking and padding depending on where RSA is being used.[3] For example,
Privacy Enhanced Mail (PEM) uses RSA. According to Schneier, “PEM sttt ét
Privacy-Enhanced Mail Standard, adopted by the Internet Architecture @aB)do

provide secure electronic mail over the Internet,” and, “PEM also supports puplic-ke
certificates for key management, using the RSA algorithm (key length up to 164 bit
and the X.509 standard for certificate structure.” [3] Pretty Good Privacy)(BGP

another security program which uses RSA (key length up to 2047 bits) for key
management and digital signatures. The Public-Key Cryptography Standa@is)(&e

RSA Data Security, Inc.’s “attempt to provide an industry standard intddapeblic-

key cryptography.”[3] The combination of encoding, blocking and padding will make the
message suitable for RSA encryption.

Inside the computer, the original message which is in text form corresponds to An ASC
equivalent. Each letter of the text has an ASCII representation and an ASCII code
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Turning the whole text into its ASCII form is a way of encoding the . string of
characters is now a string of bits which can be considered the representationyof a ve
large integer. After the message is encoded, it needs to be turned to blocksd3a
message means cutting it into smaller blocks of a given size. Each blocktcandae

into an integemless tham. After the blocking is done, there will usually be a left over
number of digits which are not enough to form a complete block. This is where padding
is done. Padding a message means adding enough bits to complete a block and reach a
certain block size. In other words, if the leftover bits are not enough to make atompl
block, an adequate number of bits will be added to them. Sometimes padding must be
done in order to increase the value of m by a known amount to be able to satisfy the
inequalitym® > n. These padding schemes must be done according to the considerations
of blocking and padding standards. Blocking and padding were mentioned here just to
give the reader a general understanding of the process. The detailsndaddstavill not

de discussed in this paper. Once the steps of message preparation are caimpleted
message is ready to be encrypted and then transmitted.

' QOriginal Encoded i
: MessageM Encode Messagan Encrypt :
o (text) é (ntegen) > 1 ;

Encrypted Encrypted

Message Transmit Message

(integer) > (Integer)

i Decrypted Decoded
E > Decrypt Messagenxg | Decode M):
i (integer) (text) ;

Figure 2.8 Communication Block Diagram

There are two sets of equations in RSA. The first set is used to mreaedd, the keys

to be used for encryption and decryption (equations 2.1 through 2.3). The second set is
used to encrypt and decrypt the message (equations 2.4 and 2.5). RSA uses modular
arithmetic in these calculations and the following steps to genergpelthie and the

private keys:

1. Choose two prime numbers, preferably large. These are padledq. The reason for
choosing large primes is explained in step 2.

2. Calculate their product. This s The product of two large primes is a very large
number. The reason for choosipgndq to be large is due to the difficulty of factoring
large n. This is known as the factorization problem and as of yet does not have an easy

14



solution. Formally this problem has a complexity called np complete. This metoes as
problem size grows the time to solve the problem grows exponentially.

3. Calculate the totient qf andq. Totient of a semiprime number by definition is:

¢(n) =(p-1)(g-1) 2.1

4. Choose a numberless tham that is coprime with the totient and satisfies the
relationm® > n. To be coprime with another number means the two numbers have no
common factors other than 1. For example 38 is coprime with 15 because they have no
common factors other than 1.

5. Find a numbed such that andd can be multiplicative inverses in modulusThis
means that the product dfande in modulusn must be 1. Another way of saying this is,
there exists an integkwhered ande satisfy the equation:

d=(@1+k*d(n))/e 2.2
or
d+xe=1 (modd(n)) 2.3

Encryption and decryption formulas are the second set of formulas used in RSA. These
formulas are equation 2.4 and 2.5. When Alice wants to transmit a message M to Bob,
her message will pass through five conceptual blocks before it reaches Gaie (EB).

She first encodes M, which is a text, and turns it mtwhich is an integer. Then, she

uses the public key( n)to encrypt the message m, transmits the encrypted message c.
She uses 2.4 for encryption.

c=nt modn, 2.4

When Bob receives the ciphertext, ¢, he uses the privatelkeyt¢ decrypt the
ciphertext and get the original messagback.

m=cdmodn 25

The encoded messagecan in turn be decoded back to M. This process is illustrated in
the Communication Block Diagram, Figure 2.8.

Decoding happens at the other end of the communication block. After the steps of
message preparation are done, the result is a set of inteders2, m3,. all less tham.

These integers will be encrypted one by one into their countegdant®, c3, ... This

set of encrypted integers will be transmitted and reach the receiving sithe. i&ceiving

side, they will be decrypted and decoded. Decoding, the reverse of encoding, is the act of
turning the decrypted message which is in an encoded form into text form. In this way

the receiver will use decryption and decoding to reverse what was done on the sender
side and gets back the original message.
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2.3.4 RSA: Comments

RSA claims that due to the difficulty of factoring langbreaking the RSA code is
infeasible. The size af required to support this claim depend on the computational
power available at any given time. The higher the computational power, theisaito
value ofn necessary to withstand attacks. There are two places in the origingddR8A
where the authors ask the readers to break their method. The First place is in f@@mput
D in some other way” where “The reader is challenged to find a way to “break’™ their
method. The second place is in conclusion where “The reader is urged to find a way to
‘break’ the system”.

There have been a few attacks on the RSA algorithm. One is called “Thg &ttack”
and is based on the fact that the algorithm takes different amounts of time to decrypt
different inputs. This can be used by Eve the eavesdropper and give her dvoiddba
key. This depends on the attacker, Eve, having accesth encrypted message. This
attack is based on finding the private key bit by bit and the fact that finding thekemytire
may start with bit O of it and repeating the same procedure until the key is calynplet
found.

2.4 Chapter Il Summary

The broad topic of Information Security includes protecting data in use, in motion and in
storage. Communication security is the security of data in motion. The use fqutencry
emphasized in this thesis is as a tool used in communication security. The background f
this thesis is different types and uses for encryption. The two primary typesrgbt&on

used for communication are the symmetric key and the asymmetric kgptent

Symmetric Key encryption uses the same key for encryption and decryptiosas/er
Asymmetric encryption there are two keys involved: a public key and a privat®hke

of the most popular asymmetric encryption methods is RSA. In this chapter RS$A, as a
example of asymmetric encryption, was explained and message prep&etion,
generation, encryption and decryption formulas were overviewed.

RSA is an encryption method used in the digital age. Before Diffie and Hellman
introduced Public Key Cryptosystems and the idea of having two keys for an emtrypti
method, this was either unheard of or, not been put in practice. It was a group of young
MIT students who took the challenge upon themselves to find the correct set of algebraic
functions that would do the job. This is how RSA was born. Table 2.2 is a chart which is
an attempt to put all of the formulas used for key generation, encryption and decryption
in one place. Some definitions, usages, conditions and limitations are also included. The
Summary of RSA Terms and Formulas table, Table 2.2, contains the terms and variables
used in this paper as well as some definitions, formulas and limitations. Inmtiffere
literature, different letters are used for the keys, the messagéphleetext, etc. So

although the letters used might be different in different literature, the reamdes

definitions are consistent. The condition / limitation column is either the rangédifyva

for a given term or the formulas that needs to be satisfied and impose aoastndhat

term. The terms and variables for RSA formulas are: A semiprime nunsbereéérred

to as 2-almost-prime is the product of two primes. [9] Two numbers are coprime when
they have no common factors other than one. The variplaledq are two prime
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numbers used in key generation. The variabkthe product op andg and hence a
semiprime number. The variabias used in RSA as the modulus for encryption and
decryption. The function phi of or totient ofn, ¢(n), is the Euler’s totient afi . The
Euler’s totient oin by definition is the number of integers less thand coprime with it.
[9] For a semiprime numbem, this is,p(n) =(p-1)(g-1). The ordered paie( n is the
public key which is used for encryption. The varidbls a positive integer that evenly

divides(d - €) — 1 The ordered paid( n), is the private key which is used for decryption.
The relationship between the public and the private key is that they are both cophime wit

n and their product in modulugn) is 1.

Table 2.2 Summary of RSA Terms and Formulas

Letter Name Definition / Use / Formula  Condition / Limitation
semiprime product of two primes
also called 2-almost-prime
coprime two numbers with no
common factors other than
one
P, g key generation prime numbers
n a semiprime number, should be large enough to
modulus for encryption angdmake factorization difficult
decryption
n=p-9g
o(n) totient ofn | Euler’s Totient function:
Number of integers less
than n and coprime with it|
For a semiprime number
¢(n) =(p-1)(9-1)
modulus for key generation
(e,n) public key | encryption key bothandd are coprime
d,n rivate key | decryption ke with ; _
I£ ) P Y divisoyrpof(d - e)y_ 1 e, d, kandg(n) satisfy:
d=@A+k=xd(n))/e
or d+*e=1 (modgp(n))
m message cleartext or plaintext 0<m<n,
m’ > n
C ciphertext encrypted message or O0<c<n,
cryptotext cd>n
¢ =m"mod n.
mxg decrypted | mxg=¢'mod n ideallymxg =m
message

Another way of saying this is: there exists a pesiintegerk, which divides one less
than the product of the two keys, evenly. The \@e&an is the message, or plaintext. It
has to be an integer smaller thmnThe variable is the ciphertext, also known as
encrypted message or cryptotext. The formula ferygtion isc = m® mod n. mxgs the
decrypted message and is calculatedras; = ¢ mod n The decrypted message is
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ideally, exactly equal to the original message hBotandc have to be smaller thamfor
the modular arithmetic to work properly in the axitof encryption. Specifically, ih >

n then multiple message values encrypt to the sgphertext valuee. There are two
inequalities that need to be satisfied as well:

m® > n and € > n. If n < n then no encryption is done. The description ofRISA
asymmetric algorithm may not present an intuitimeerstanding of the process without
an example. For students a good example of RSAy/ptan is very instructive. The next
chapter describes a search for a good example.
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CHAPTER Il
RESEARCH: Quest for a Simple Example

3.0 Introduction

Teaching about the RSA algorithm is enhanced hyguasisimple example. As described
in chapter Il, the RSA algorithm is a mathematicdifficult concept. RSA works with
modular arithmetic and exponentiation. Both of ¢hesncepts are easier to grasp using
smaller examples. Searching the literature disditisat even the smallest published
examples were too large for simple hand calculatidinis research started as a search
for a small example. During the search some unéggdeesults were observed.
Additional tools were developed to spot the unetgubeesults. In the process of
research, a few tables were developed to be ustalas These tools can be used as
lookup tables, both for key generation and for @piton and decryption. At the end of
the chapter, two simple small examples will be @nésd using these look up tables.
These examples can help a student of the RSA #igotb learn and analyze it.

3.1 Mechanics of the Simple Example: Why a Simple Example?

Studying and making observations on a mathemataratept calls for using simple
examples; examples that are simple enough thatcreype done either manually or
using standard computational tools. However, tlergtes must be large or complex
enough to avoid being trivial. The RSA algorithnesi€xponentiation and modular
arithmetic. Integer exponentiation creates numtiesare very large. This means it is
even more important to use very small, double-digities fop andg. The original RSA
paper [2], uses the primes 47 and 59fandqg. The public and private keys used ae (
n) = (17, 2773) andd n) = (157, 2773) respectively. The totient is 266Bis n is
relatively large for hand calculation. This reséanowever, started searching for RSA
encryption examples with primes less than 2Qpfandqg and then, extended to include
primes between 20 and 30. The main reason for dixtgrthe domain to include numbers
between 20 and 30 was interesting observationshwiit be explained later in chapter
V.

3.1.1 The First Set of Key Generation and Encryption Tools

The first step in the search for a small example twadevelop a chart to be used as a tool
to calculate and display a simple RSA encryptiocrggtion set of messages. Next, a
chart was created as a tool to generate keys, puiaic and private keys, to be used in
RSA encryption. These first two charts, develop@t wy advisor, were the first set of
tools and the starting point of this research. Timy Key Encryption Calculator was the
first tool developed. The Tiny Key Encryption Tabl@able 3.1, is a picture of the Tiny
Key Encryption Calculator.
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This encryption calculator encrypts and decryptsesof m between two amd- 1,
inclusive, for any giver, n and their correspondird) The imposed limitation om,
(1 <m<n) is due to the properties of modular arithmetidescribed in chapter Il.

Table 3.1 Tiny Key Encryption Table

e= 11 n= 15 d= 3
decrypted

cleartext ciphertex text

m n'2 modf) c c2modf) mxg

2 4 8 4 2

3 9 12 9 3

4 1 4 1 4

5 10 5 10 5

6 6 6 6 6

7 4 13 4 7

8 4 2 4 8

9 6 9 6 9

10 10 10 10 10

11 1 11 1 11

12 9 3 9 12

13 4 7 4 13

14 1 14 1 14

In the top row portion of Table 3.1 there is a @wnformation regarding the public and
private keys used for a particular instance ofTtimy Key Encryption Calculator. In this
case the public key ig,(n) = (11, 15) and the private key @& () = (3, 15). Below the

row includinge, n andd values is a table of five columns. The five colgneorrespond

to the original cleartext, an intermediate caldalafor encryption, the ciphertext, an
intermediate calculation for decryption and thergpted message. The two intermediate
calculation columns were either hidden or omittethter encryption calculators. The
horizontally shaded areas in Table 3.1 are rowealgiulation and each line identifies a
case where the plaintext equals the ciphertextekample, one of these shaded rows
corresponds to a cleartaxtequal to 4. When cleartext is 4, the ciphertexts®
calculated to be 4. The decryption of 4 is alsca¢tpu4. In Table 3.1, such cases of
cleartext equal to ciphertext is true for valuesnaqual to: 4, 5, 6, 9, 10, 11 and 14.
Each of these values ofwill produce values of, equal tam respectively. When the
encryption of a messageproduces an equal value®fa hole has occurred. This
doesn’t mean that, the valuerofis a hole but a hole happens at thaas if that value
falls through without getting encrypted. The laswrof this chartm = n-1, always
corresponds to a hole. Since this happens regardfdke value of, this row is omitted

in later encryption calculators. For explanatiortloa limits ofm, see chapter Il. The
suspected cause for these holes was that thisustaa pad example. Therefore the search
for a small example needed to be extended.

The second step in the search for a small examg@detavdevelop a chart to be used as a
tool to generate and display the keys for differalties oin, e andk. This resulted in the
creation of the Tiny Samples Key Generator. They Hamples Key Table, Table 3.2, is
a picture of the Tiny Samples Key Generator. T8¢ is a collection of tinp andq
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values with their correspondimgand totient calculated. For eveyyandq combination,
different values oé were considered and correspondiivplues, were calculated and
displayed.

Table 3.2. Tiny Samples Key Table

p 2 2 2 3 3 3 5 5
q 3 5 7 11 5 7 11 11
n 6 10 14 22 15 21 33 35 55
totient 2 4 6 10 8 12 20 24 40
= 3 | 3 | S | 3 | 3 ... S| S I 3 .
ko S 22N D S N 2 4 | 2 1.1 | ...2_
d 1 3 5 7 11 5 7 5 27
e | S| S | [ LA S| LA A A 7.
ko 2 .1 1 8 | - 2 3 | 4 | 8 |...2 . 4._
d 1 1 7 3 5 7 23 7 23
e | LA AN S 11 | [ 11 ) 11 1 11 | 11
ko 3 | S 1.9 | O 6 | 10 | . 6 |5 ] _.: 3
d 1 3 5 1 7 11 11 11 11
e |11 | 11 ) 13 | 13 1. 1 | 13| .. 3. 13 ). 13 .
ko S .8 1.2 | .9 [ 4 | N I S LA 12
d 3 1 17 13 37

In this table, the horizontal shadingex¥alues is done to separate each group kfd,
from the next group. On rows one and two, tiny @smwvere chosen and on rows three
and four, the product @f andg, n, as well as their totient was calculated. Theee ar
groups of three rows under the top four rows. Ttsete of rows contain values ®and
their corresponding using a specifi&. The leadingg, is normally 3 as the first prime to
consider. Then the list of primes greater thant®se values were coprime with the
totient were considered and displayed in the colbelow. The reason for not starting
with 2 as the first prime candidate #®rs that the totient afi, which is a semiprime
number, is always even and not coprime with 2.4 bk at an example from Table 3.2
and consider the case foandq being 3 and 5, respectively. This example is the
vertically shaded area and some cells in that colara in bold for emphasis. Foandq
values of 3 and 5)is 15 and totient is 8, all in bold. 8zan start with 3 and continue
with 5, 7 and 11. Here, you may see i§ chosen to be 11, for a valuekaéquals to 4d

is calculated to be 3. Theek, d combination of 11, 4, 3 is in bold in the bottofrilwat
column. The public key ise(n) = (11, 15) and the private key @& () = (3, 15). This set
of keys is the set that was used in Table 3.1.

3.1.2. Developing the Small Exhaustive Encryption Chart: Holes!

The Small Key Encryption Calculator is a tool foiceypting message under a given
set of values fop, g, k ande. Table 3.3, the Small Exhaustive Encryption Charan
instance of the Small Key Encryption Calculatorhyat g, k and e being 2, 19, 12 and 7.
This new Encryption Calculator is an improved vaensof the Tiny Key Encryption
Calculator. On the top, instead of showing amlg, & d, all of the following values are
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displayedp, g, n,p(n), e, kandd. Out of the above seven values, four are inputSiso
excel worksheet and three are calculated baseldeom. in other words, givem g, e and

k, the values of, ¢(n) andd are calculated. Here, the idea of introducing @arewhich
would contain all of these values, an ordered sgpicame to mind. The seven
parameters for RSA which ane; q, n,p, e, kandd, can be kept in order and be treated as
an ordered septuple or a vector of dimension sdwehis way, they can be referred to as
a single vectorg, g, n,p, €, k, . Some of the elements of this vector are depdratan

the other elements. For example a vector for timge 11 and 13, wite being 23 and
being 9 can be calculated and shown as (11, 13,1248 23, 9, 47).

Table 3.3 Small Exhaustive Encryption Chart

Totient= 18 p=|2
k=12 q=[19
e=|7 n= 38 d= 31
Original Encrypted Decrypted
Message Message Message

Msg C mxg
2 14 2
3 21 3
4 6 4
5 35 5
6 28 6
7 7 7 not good
8 8 8 not good
9 23 9

10 34 10

11 11 11 not good
12 12 12 not good
13 29 13

14 22 14

15 13 15

16 36 16

17 5 17

18 18 18 not good
19 19 19 not good
20 20 20 not good
21 33 21

22 2 22

23 25 23

24 16 24

25 9 25
26 26 26 not good
27 27 27 not good
28 4 28
29 15 29
30 30 30 not good
31 31 31 not good
32 10 32
33 3 33
34 32 34
35 17 35
36 24 36

The Small Key Encryption Calculator has two maictises. The top portion of it has the
information of a given septuple,(d, n,p, e, k, d. Below that is a table of encrypted and
decrypted values of a range of message$fetween 2 and-2. The Table 3.3 is an
instance of the Small Key Encryption Calculator,dspecific septuple (2, 19, 38, 18, 7,
12, 31). The top portion contains information afegtuple and this information is used
for the calculation of the ciphertext and the dpteg messages.
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The description for the three columns of data fefioThe leftmost column under the
heading, “Original Message” or “Msg” is an exhawustiist of all values o between 2
andn-2, inclusive. The column under the heading “EnteggMessage” orc” is the
encrypted values for each message. For examplalile B.3 the septuple (2, 19, 38, 18,
7,12, 31) results in the values 14, 15 and l&terxrypted as 22, 13 and 36
respectively, as shown in the shaded area. Thentolinder the heading “Decrypted
Message” omxgis the calculated decryption of columet tising the decryption keyl.
These numbers are calculated to show that afteyjgtireg and decrypting a message, the
end result is equal to the original message. Inerals, the values 14, 15 and 16, which
were encrypted as 22, 13 and 36 respectively,erey/pted to 14, 15 and 16; the
decrypted message is equal to the original messagdown in the shaded area. The
rightmost column is a column of labels or markémoking at the rows which are

labeled, “not good” shows that in these rows, thergpted value of a message is equal to
the original value of that message. Or to put @mother way, ciphertext equals cleartext.
These are examples of where the RSA encryptiorriligo has failed to encrypt. For
example, when the value of message is 11, the piectyalue is also 11 and the row is
marked: not good. The Small Exhaustive Encryptitiar€ Table 3.3, is an instance of
the Small Exhaustive Encryption Calculator for eegi septuple, (2, 19, 38, 18, 7, 12,
31).

3.1.3 Developing the Message Calculator

In order to compare encrypted messages from vadibigsent septuples, the Message
Calculator was developed. Figure 3.1, is a scre#raflthe Message Calculator. The
Message Calculator is an Excel workbook that heethortions. These portions are
called: 1) Parameters, 2) Encryption Calculator, @@ omparison Tables. The
Parameters portion is located in a worksheet cdlfearameters”, and it takes values of
p, g, e andk to calculate the corresponding valuesi,abtient andl in return. This is
shown in Part A, of Figure 3.1. The Encryption @é&tor, which is in a hidden area,
inputs a septuple from Parameters and calculagesrtbrypted values of. These
encrypted values will be displayed in a row rigatdw their corresponding plaintext
values. In this row the encrypted values are readhye harvested and pasted where
needed. A portion of this row is blown up in Fig@.&, part D. Here you can see the
encryption ofm = 36 isc = 484, under a septuple (47, 59, 2773, 17, 1,.18% values of
the septuple are shown in Figure 3.1 part A. Then@arison Tables portion is a set of
tables where these encrypted values are placed.iB@iwidual Comparison Table
contains information related to the same value; @fhat changes within that tableds
andm. There are two rows for eaetvalue, the bottom row is a collection of encrypted
values and the top row is a marker for the holesmere there is a hole, a label “1,”
marks it. These 1's are added to be used for @lounl of the total number of holes per
case. If there are two or more septuples or vethatscreate the same encrypted values,
their corresponding values are written together in the columndoFor example: in
Figure 3.1 Part C, fan = 33,e = 7 ande = 17 create the same encrypted values. Part B of
Figure 3.1 shows a blown up version of the row megglof the comparison table for=
38. For a value af = 38 ance = 7, there are 11 holes. This number of holed ip&cent
of the total number of encrypted messages and ot 3, there are 11 holes as well.
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Part F: A Comparison Table

Figure 3.1 Screenshot of Message Calculator
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The encrypted values for differemtire kept together to form a table, one table &ohe

n. Figure 3.1, part F, shows the tablerior 38. In part E, the view is zoomed even
further. This way of displaying the results makegsaial comparison possible. The
number of holes and the percentage of them peuslept also calculated and written in
the table, Figure 3.1 part B.

B3 Microsoft Excel - Message Calculator.xls: 1

Elii] Fle Edit View Insert Format Tools Dats Window Help
NEE 2GR TR % B K98 M 2% @ fimesteronan o0 o B 7 v = =[EEE % 0 588

IF(E122=E548.1,")

e= 7, c= 127 2 103% 89 29 108 60 1241 19 83 35 114 54 78] 40 141 16
1

e=11;:c> 9 65 66| 111 35 36 125 115| 28 18 107 108 32| 77

11 | 1

—» e=13;c> 10 65 66 107 82 31 136| 7 112 61 36 76| 77
11 1

e=17;c>/ 17 65 66| 45 139 75 5 80| 63 138 68 4 98] 77

11 1

e=19;c 65 66| 89 94 4 47 20| 123 96 139 49 54 77

11 1

—» e=23;c>\14 65 66@ 74 49 86 37| 106 57 94 e 32| 77
11 | 1

e=37;c>1 65 66| 67 29 108 5 58| 85 138 35 114 76| 77

e=43: ¢ 101 65 66| 89 107 82 86 59| 84 57 61 36 54 77
11 1
e=47:¢c> 17 123 103N 111 139 75 60 102| 41 83 68 4 32 78] 40 20 126

_/

Figure 3.2 Symmetry of Holes

Symmetry is an interesting aspect of visual obgemwaln Figure 3.2, Symmetry of
Holes, a view of the Message Calculator is showmfe 143. The markers for holes are
shaded. Also, the holes which are common to a#sasthin a comparison table are
outlined. A larger view of the center of the sublktashows how the holes are equidistant
from an axis of symmetry. The manual search foes©iabntinued using these tools. For
all the values oh that were studied, no matter how large, therestliesome holes and

the symmetry continued. The Large Numbers Encryp@lalculator was developed to
help study larger values.

3.1.4 The Large Numbers Encryption Calculator

The Large Numbers Encryption Calculator which igveh partially in Figure 3.3 was the
next Excel worksheet developed in this series olstolhe Message Calculator, although
a great tool in showing visual symmetry of holeaswmited by the number of columns
in Excel. The Message Calculator can only be useddlues oh less than 255. For
larger values of, a different tool had to be developed.
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The Large Numbers Encryption Calculator is the tteleloped for largar. This tool is

a giant calculator which is used to find encryptatlies ofm, whenn is larger than 255.

In Figure 3.3, a portion of the calculator is shaagna screenshot where it has calculated
encrypted messages for the septuple (47, 59, 2668, 17, 1, 157). This septuple is
based on the values used in an example in thenaliBiSA paper [2].

r -
ABCD E [H 6 H1|JKL MN
1 |p q n Totient e k d
2 |47, 59, 2773, 2668, 17, 1, 157))
474 470 2209
475 a1 an |
476 472|177
2305 2301 2596
2306 2302 2302 [N
2307 2303 564
2540 2536/ 58
2541 2537 2537-
2542 2538 2538
2774 2770 1220
2775 2771/ 2032
2776| Total number of holes: 6 3
W 4 » M} Vector ) Encryption Chart / | S|

Ready

Figure 3.3 Calculator Screenshot

Most of the rows of data have been hidden in oralenake the chart more readable. If a
student would like to use this calculator as a lopkable to find encrypted values for 2,
472 and 2771, they may read these values as, 741grtl 2032 respectively. The values
where the holes occur are shaded and marked bykenta” on the side. The total
number of holes is calculated and written on tisédaw of the table. An attempt to read
this chart to find the total number of holes anel tiiessage values corresponding to them,
for the RSA paper’s septuple, shows that therdales aim = 235, 236, 471, 2302, 2537
and 2538, and the total number of holes is sixnHeethis relatively large value of

there are still 6 holes present. At this stagerder to investigate the occurrence of
holes, it was necessary to gather more informatrahextend the domain of the research.
The domain of the values pfandqg was increased to include values between 20 and 30
and all acceptable values®less than the totient were considered. To do auualy
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range of calculations using a programming langusgeore practical than using Excel.
The results from a program can be used by Exde¢ tmanipulated and formatted if
necessary.

3.1.5 The Large Numbers Key Generator

The search for a simple RSA example continuedit yetd spawned an additional
investigation about the cases where the plaintgxals ciphertext. To organize the
search, the idea of using a seven element veatarseptuple was presented, in section
3.1.2. An ordered septuple would represent a uneguebination op, g, e, andk as well

as values that are calculated using themnj.phi orgp andd. Each vector has seven
elements in this ordep, q, n,p, e, kandd. In order to organize the investigation of holes
further, the hole count was associated with eaptupée.

| Large Numbers Key Generator.xls

# of holes

Lofle o wiw|o
—xa.h.mcnm—x:a-

762 |11/29 319 280 251(225 251
7631129 319 280 253|178 197| 84
764 (1129 319 280 257| 67 73| 12
76511129319 280 261|206 221]| 52
766 |11/29 319 280 263|232 247 6
2020|123 29 667 616 603|371 379] 42
2021|123 29 667 616 607 (472 479] 6
2022|2329 667 616 611[122 123| 6
2023|123 29 667 616 613(204 205 12 |~
W 4 » M pqunder 30, Shee|< >

Rei

Figure 3.4 Chart of Hole Counts

The Large Numbers Key Generator is a matrix of ntlea@ 2000 rows. Each row
corresponds to a septuple and its associated bolg.cThe “more than 2000 values” is
due to ranging andq over all the primes under 30 while varyi@from 3 to phi. This
calculator doesn’t generate the primes. It use$ighef primes entered manually, to
calculate the product, and the totient. Then, as/gues o, (3< e < phi), are checked
for coprimality and entered to the calculator, il find the d that corresponds to each
value ofe. The value ok has also been manually entered because it neddsaothat
dividese. The value ofl is calculated based on pkiandk. Finally, the hole count or the
“# of holes” was calculated using a Perl progrdm, ole Finder, and was manually
entered as the last column of data in the Large idusnKey Generator. The Chart of
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Hole Counts, Figure 3.4, is a screenshot of thge&umbers Key Generator with a lot
of its rows hidden. An attempt to read the chaxrither to see the effect of changmgn

the number of holes can show that in rows 763,af@# 765 of this chart, choosiegs

253, 257 and 261 respectively has produced 84nd%2a number of holes. This may be
an indicator that the septuple corresponding+a257 is the best choice since it creates
the least number of holes among these three calsesthis chart may be used to find the
private key corresponding to a given public key. &mample, if the original primes used
arep = 11 andy = 29, fore= 257,d = 73. A listing of the “Hole Finder” Perl program,
the partial list of entries in the Large Numbers/K&enerator and a list of septuples, hole
counts and their corresponding list of holes majolbied in the Appendices.

3.2 Two Simple Examples

Simple examples enhance teaching and make obsemddtinteresting results easier.
The original RSA paper used the septuple (47, 39322668, 17, 1, 157). These
calculations are too cumbersome to serve as a dgratian example for a simple lesson
or lecture. Following are two simple examples afrgption using smaller primes for
andq. The first example is encrypting a number andstieond is encrypting a short
sentence. Both examples use the same public avat@keys.

3.2.1 Simple Example #1: Encrypting/Decrypting a Number

Using relatively smaller primes, a simple examplereated which can be used later to
make some observations regarding the RSA algoriftiva first step is generating the
keys. For this, the five steps to generate theapgiand public keys introduced in section
2.3.3 will be used as follows,

1. Choose two prime numbersandg.
p=11,9=13.

2. Calculate their produch.
n=p.gq=11x 13 = 143.

3. Calculate the totient df43

o(n) = (p-1)(9-1),
0(143 = (11 - 1) (13 - 1),
0(143 = 120.

4. Choose a numberless than 143 that is coprime with 126: 23 is a valid
candidate since 120 and 23 have no common factors.
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5. Find a numbed such that andd can be multiplicative inverses in modulus
arithmetic. A valid value fod is 47 (fork = 9) since it satisfies equation 2.2:

d=@A+k*d(n))/e
d =1+ (9+*120)/23
d =1081/23= 47
d=47

or,
d+*e=1  (modd(n))
23%x47=1 (modl20)

Using the above five steps Bob created his RSA.Kégb kept ¢, n) = (47, 143) for
himself and posted his public keys 1f) = (23, 143) on his website. Since the keysd

d are calculated, the process of encrypting andygéog can be performed. Let’s choose
the message to be the number 7.

Alice wants to send the number 7 to Bob, therefore7:

¢ = mod n =7° mod 143 = 27368747340080916343 mod 143 = 2

After Bob receives the encrypted message, “2”,sesdi= 47 to decrypt it:

m = & mod n =2*" mod 143 = 140737488355328 mod 143 =7

In summary, Bob did the five steps to generatek#ys and announced the public key on
his website. Alice used the public key to encryxet nessage which was the number 7.
The resulting encryption was the number 2. Alicat $ee number 2 to Bob. Bob used the
private key and decrypted the ciphertext, numbeofing up with the number 7. Of
course, many times Alice might want to send aitestead of a number to Bob. The next
section describes applying RSA to a message tlaatest.

3.2.2 Simple Example #2: Encrypting /Decrypting a Short Sentence

Encryption is used to conceal information from uhatzed users and reveal
information to the intended recipient. In the Siemgixample #2, a sample text: “I loVe
cRyptoGraphy! ;-)” is encrypted using the publiyKe, 0 = (23, 143) and decrypted
using the private keyd( n) = (47, 143). These are the same public and grikays
calculated in Simple Example #1. Let the text WéocRyptoGraphy! ;-)” be a message
Alice is trying to send to Bob. The encryption atetryption is done using the Message
Calculator as a lookup table. The first step facéls to encode the message from text to
numbers. The block size used here is one lettérats. It is important to notice that
current cryptography uses larger key sizes of 7&8and higher. So the block size
needed will be slightly smaller than the key simaq less tham). When these large
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block sizes are used, the text, “I loVe cRyptoGsaph)” will correspond to one large
integer: 2141294133693196113628712253627526495845@90377. Coming back to
our example, this conversion to ASCII is the flisk in the Communication Block
Diagram, Figure 2.8 in chapter Il. In Table 3.4cleketter is turned into its decimal

ASCII code:

Table 3.4. ASCII Equivalents of a Text

() () () [0)

° ° ° °

o o o o

) ) ) )

g|ofe | oflle|oc [&|o

g1ele |23 |2 |32
| 73 32 o| 111} y|121
32 c|l 99| G 71 'l 33
|]108ff R| 82 r{ 114 32
o|111}ff vy |121 a 97 ;| 59
v| 86| pl112ff p| 112f - 45
e| 101 t] 116 h| 104 )| 41

I Il o V e cR' y p t o G r ap h y ! )

73 32 10811186 101 32 99 821211¥mm 71 11497 112 104 121 33 32’59 45

The next step for Alice is to encrypt the encodiedhks. This is the second box in Figure
2.8. The line of data in the bottom of Table 3.4 set of 24 integers, the encoded version
of the message (seven bits per character) Alisensling Bob. For the public keg, (0 =

(23, 143), the correspondings 47. The septuple used for this encryption is (B, 143,
120, 23, 9, 47). Using the above message, the Iiges3alculator (Section 3.1.3) and this
septuple, the cipher text can be calculated as showable 3.5:

Tablg 3.5 Table of Encrypted Values

2 5 5 2
= | 3 = | 3 = | 3 = | 3
O N O N O 4 O 4
2 |z 2 |2 2 |z 2 |z
> | g 2 | 8 > | g > | g
P lsciz 8 |53z |8 |29/ [§ |53 2
$ 528 s 528 ||S |52|8 | |52
73 57|19 32 76| L 111 67| C 121 88| X
32 76| L 99 44 | 71 37| % 33| 132] oor
108 36| % 82| 114|r 114] 108|1 32 76| L
111 67| C 121 88| X 97| 102|f 59| 119|w
86| 135|oor|f 112| 96| 112 96 | 45 89|Y
101 30| RS ||| 116] 51|3 104 26| Subs|| 41 72| H

57 76 36 67 135 30 76 44 114 88 51 67 37 108102 96 26 88 13
$ C oor RS L :

9 L

X

3 C

% |

f  Subs X oor

119 89 72
L w Y H
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The line at the bottom of the Table 3.5 is thedidetters corresponding to the encrypted
message if decoded without decryption: “9L$CodrRR& 3C%lf SubsKoorL wYH”. The
underlined characters are special characters vanehot even letters. The third step is to
transmit the ciphertext. This is the middle boxraure 2.8. So encoding and encryption
is happening on Alice’s side. What Alice is sendiodBob is a stream of 24 integers. The
only person who is able to decrypt the stream t&gers is Bob, the owner of the one and
only private key, in this casd,= 47, @ was generated in Simple Example #1). The
fourth step is decrypting the ciphertext receivexht Alice. This is the fourth box of
Figure 2.8. Once Bob the receiver, gets this strebP4 integers, he will decrypt each
integer. The fifth step is decoding the decryptesage. This is the fifth and last box of
Figure 2.8. Bob will find the corresponding lettérgshe ASCII code table and decode
the numbers into text. Here in Table 3.6, the Mgs<@alculator was used as a lookup
table for decryption:

Table 3.6 Table of Decrypted Code

o| o c| o c| o c| o

N N 0 0 0 0 0 0

< < < < < < < <
8o |29 8o |29 8o |29 8o |29
Se 18|z 58|28 s [58 | 28 s [|58|258 s
S |82 |2 22|82 |E 22|88 |5 [[2828| 82 | &
w= o=z | 4 w= o= | 4 w= o= | 4 w= o= | 4

57 73| 1 76 32 67| 111|o0 88| 121|y

76 32 44 9| c 37 71| G 132 33!

36| 1081 114 82| R 108| 114 |r 76 32

67| 111|o 88| 121|y 102 97| a 119 591;
135| 86|V 96| 112]p 96| 112]p 89| 45]-

30| 101]e 51| 116/t 26| 104| h 72 41 1)

After placing these letters side by side the oagtext will be revealed:
| loVe cRyptoGraphy! ;-)

Table 3.7 displays all of the steps for Simple Egka#2.

Table 3.7 Sample Message Transformation Table

Original Plaintext | Il o V e c Ry p t oG r a h y ! ;-

Encoded (ASCIl) 73 32 108 11186 101 32 99 82 12111111 71 114 97 112 10412133 32 B89 41
Encrypted (ASCII)57 76 36 67135 30 76 44 11488 36 67 37 108102 96 26 88132 76 189 72
Ciphertext 9 L $ CoorRS L , r X° 3 C % | f ° Subs¥or L w Y H
Received (ASCIl) 57 76 36 67135 30 76 44 11488 B 67 37 108102 96 26 88132 76 18® 72
Decrypted (ASCI)73 32 108 11186 101 32 99 82121112116 71 114 97 112104 121 33 32 59 445
Decoded Message | Il o V e c Ry p t oG r a h y ! ; )
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3.3 Chapter lll Summary

Many difficult concepts can be better explainechggEmall simple examples. The RSA
algorithm is an asymmetric key encryption methodcwiuses modular arithmetic and
exponentiation for encrypting a number. During¢barse of exponentiation, small
numbers grow to become very large numbers and rapdtithmetic cuts them short
again. It can be hard to work with these largermeliate numbers. Having lookup
tables to find encrypted values of small messagbsmeficial. That is the underlying
reason for developing a few lookup tables. Sontaede lookup tables would be used for
encryption and others for analysis. A glance affitiselookup table was enough to
realize there is an interesting observation to bdenEncryption with small numbers
seemed to fail. Specifically, the failure was ttiet encrypted value was equal to the
unencrypted message value. One observation leaabtber and gradually tables were
developed to look up slightly bigger values to $¢lee observations are still true. These
observations will be fully explained in the nexapker. In this chapter, a few tools were
described which would become lookup tables forsihgle examples or help in
observations. The Tiny Key Encryption Calculatosweaeated, to encrypt and decrypt an
exhaustive list of values of m using tiny keys. Tihiey Samples Key Generator was
made to help see all different e and d combinatibhe Small Key Encryption
Calculator was created to serve as a calculatweisas being a lookup table for
encryption under a given set of then called pararsethis lead to the introduction of
ordered septuplep(q, n,p , €, k, d. This septuple is very useful for organizing the
results and communicating example observations Mémsage Calculator was the next
tool developed to help see the holes and alsdaskap table for encryption and
decryption. The Large Numbers Encryption Calculatas developed to be a lookup
table for values of larger than 255. This lead to the creation ofltheye Numbers Key
Generator. Each row of this chart would includettital number of holes for a given
septuple.

Finally, in this chapter two simple small examp¢fRSA encryption and decryption
were presented. The first small example was theyption and decryption of number 7
under the septuple (11, 13, 143, 23, 9, 47). Therskexample was the encryption and
decryption of the short sentence, “I loVe cRyptgtbrd ;-)” step by step. Here the
intention was to show the elements of encodingdmubding as well as encryption and
decryption. The same septuple was used for thendesroall example. The main tool
used for these two examples was the Message dalculdhile developing these tools, a
number of interesting observations were made whielpresented in Chapter V.
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CHAPTER IV

OBSERVATIONS

4.0 Introduction

Observations are the result of watching an objgehitly. In science, observations are the
stepping stones for further research. In ordeibseove well, sometimes you need to look
closer and sometimes you need to step back anchlothle object in a panoramic view.
This is a chapter on observations made while shgpie RSA algorithm. The first
observation shows that there are cases whereghertext becomes equal to the
plaintext. Mathematically, this means that thee\alues ofm, wherec = m° mod n =

m. In this paper, these specific valuesmére said to have caused or created a hole, or a
hole occurred at tha. The second observation is that, for all septupsesd in this

study, there were holes. In other words, in thectegpace of this thesis, holes are always
there. The third observation is that there is téepatof symmetry for the holes. The fourth
observation is that for a givenand different values a there are some valuesrof

where a hole will occur repeatedly and changimiges not save that from producing a
hole. The fifth observation is that there is a mmam number of holes detected in this
study and that minimum is greater than zero. Formpdhe minimum number of holes is
six. The sixth observation is that there are siefi@vhich keep occurring for all values of
g, for a givem. These holes are the same as the six minimum.hidkese holes are

called the principal holes. In the rest of thispiea, these observations will be visited and
explained using examples.

Note:

1. The public key i in conjunction withn and the private key @in conjunction
with n. To simplify the following discussion, hereaftwill be called the public
key andd, the private key. Specific mentionwfs a part of the keys will not be
made.

2. Before proceeding with these observations, it igdrtant to notice that although
n can theoretically be even, for all practical pugs it is always an odd number.
An evenn shows that one of the two prime factorsa$ 2 and the other prime is
half of n. Whenever the values pfq ande are known, anyone can easily
calculate the private kayand decrypt any message.

4.1 Observation 1: There are Holes

Encrypting a message is supposed to make that geebaad to read. If a message is
encrypted and the result is the same message,dtimdihas failed to encrypt.

The first time this anomaly was detected was inl@8hbl. The shaded area showed that
for a few values ofm such as 4, 5 and 6, the ciphertext was the sartie ateartext.
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This was first considered a problem due to usingllsm Holes were the name chosen for
cases where = m° mod n = m This means whem is encrypted, the encrypted message
C, is equal to the original messageln other words, encrypting does not change it. A
messagen = 7 is encrypted using a public key; 6 = (7, 38) and the ciphertext is
calculated as = m" mod n =7” mod 38 = 823543 mod 38 = 7. This valuergproducing

a hole is illustrated in Figure 4.1. Some exampliéisshow the concept of holes.

Observation One
Used Septuple:

(2,19,38,18,7,12,31
m, c
2 14
321 For this value ofn,
the message and the
6 | 28 ciphertext are equal,
77 m=c. There is a hole
here.
35| 17
36| 24

Figure 4.1 There Are Holes

Example 4.1.1Consider the case for the septupge:d, n,p, e, k, d = (11, 13, 143, 120,
23,9, 47). This is the same septuple that was st simple examples in chapter Il
Encrypting all possible values ofranging from 2 to 141, reveals six cases wiceran.
These holes occur ati = 12, 65, 66, 77, 78, 131. These six holes ar@bi0 total
possible values ah.

Let’s look at the encryption oh= 12 unden = 143 ance = 23:
¢ = nf mod n =12 mod 143 = 6624737266949237011120128 mod 143 =rft2 =

There is a hole ah = 12 because for this valuemmfc=m=12.
Example 4.1.2Letp = 47 andy = 59. These are the two primes used in the oflidtsA
paper. Using the same procedure as in Simple Exafiiph andg(n) can be calculated
and choosing a valid, d can be calculated. Fap,(q, § = (47, 59, 17)

n=2773,

p(n) = p(2773)F 2668

fore=17 andk =1,

d=157
So the corresponding septuple for the RSA smalingtai is:

(p, g, N, e, k, d= (47,59, 2773, 2668, 17, 1, 157).
Here is an excerpt from section VIl of the oridiRSA paper, “A small example”:
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“With n= 2773 we can encode two letters per block, sitisiy a two-digit

number for each letter: blank = 00, A =01, B =02,, Z = 26. Thus the message

ITS ALL GREEK TO ME

(Julius Caesar, |, ii, 288, paraphrased) is encoded

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500

Since e = 10001 in binary, the first block (M = 9&0enciphered:

MY = (((((AF . MDDH?. M = 948 (mod 2773).

The whole message is enciphered as:

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655.

The reader can check that deciphering works*348920 (mod 2773), etc.”
Let’s look at the case fan = 235 for the septuple formed by the example &RISA
paper. The septuple is (47, 59, 2773, 2668, 1¥51) and for m =235:
¢ = m’ mod n =235" mod 2773 = 235 m

The rest of the holes for the RSA septuple ara at236, 471, 2302, 2537 and, 2538.
These six holes are out of 2770 total possibleesabfm.

4.2 Observation 2: Holes are Always there

In the study space of this research, for all sdptupsed, every case had holes. This
observation was made also in 1979 by Blakely and&oin their paper, “Rivest-
Shamir-Adleman Public Key Cryptosystems Do Not Alg&onceal Messages,” [10]. In
this research, the observation of the holes bdingys there is made on two parts of the
study space. One part is produced using Excelsaaghaustive. These septuples are
more than 2000 combinations @f, 0, § where:xp#q; 3<p<30; 3<q<30; 3<e<

@(n) ande is coprime withp(n). The other part of the study space is the restiléssPerl
hole counter which so far has coveped, n, ¢, ande values where the highest value for
p is 5009, forg is 9029, fom is 45172087, for phi is 45158056 and éas 89. (I is
calculated based am) The highest number of holes observed, so f&3&6.

4.3 Observation 3: Holes Occur Symmetrically

The values of holes are symmetrically distributmhadg. For all oddh, the pointg

falls between two integers on the numbers axis.g_éie called the “point of symmetry”.

For every hole on one side of the point of symmetgre is a corresponding hole on the
L . n

opposite side exactly at the same distance frorpcbhﬁz. These two holes are named

“complementary holes” in this thesis. The additadrm (orc) values at two
complimentary holes is always equahto
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Proof:
Consider any two messages and m, . These messages are chosen to be equidistant

from the pointg. If d, is the distance betwean, andg whend, is the distance

betweeng andml’. If d, =d, then

N mem P
p M=M=

LS
22mlm“

Som 4 ml' =n.
If m, and ml' are defined as complementary holes, and thisfisetkif and only if
d, =d,, then the addition of two complimentary holeslvgays equal ton.

Observation Three

Used Septuple:
(5, 11, 55, 40,234, 7)

e=23
m C
2 8
3 27
20 25
21 21
22 33
- - dl dl:d2
26 31
n 27 48
2 28 7
29 24
. .. dy
33 22
34 34
35 30
52 28
53 47

Figure 4.2 Symmetrical Locations of Holes
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Holes come in pairs which are equidistant from 'mtp;e. Another way of saying this is

that there is an even number of holes for eachiplaby (e, n) and every hole is paired

with a complimentary hole. The two complimentaryesoare equidistant from the point
of symmetry. This symmetry can be best observeahiaxample. For this example,is
chosen to be 55.

Let (p,q) = (511) = n=55,¢(n) = ¢(55) = 40.

For e=23andk = 4, the corresponding septuple is
(p,q,n,p,ek,d) = (511554023,4,7) . There are two complimentary holesnat 21 and

m = 34. These holes are equidistant fregm: 27.5:

2— m, = dlzml’ —g; 27.5-21=6.5=34-27.5. This example istlated in Figure
4.2.

4.4 Observation 4: Some Holes Are Repeated For Different Values ef

When there is a hole that occurs for a given coatlwin ofn ande, changinge might not
save thatn from producing a hole. In other words, witltonstant aneé varied, there are
somem values where a hole will occur repeatedly. Theeseaen a few values af that
for a constanh, no matter what the value efsuchmwill keep producing holes. This
was first observed when working with the messagd¢mutator. In Figure 3.2, Symmetry
of Holes, the comparison table that is magnifiedesponds tm = 143. On the side of
the magnified portion asis varied, some values of, for examplem = 65 and 66, keep
producing a hole. On the other handrat 67, a hole occurs at= 13, and changingto

e = 23 will producec = 111 which is not equal to 67 and as such, matle. In Figure 4.3
the following two different encryption keys are ds&/ithn = 55, the two keys ame=13
ande =23. Atm = 10, both keys create a hole, howevanat 12,e = 13 does create a
hole ande = 23 does not.

4.5 Observation 5: The Minimum Number of Holes is 6

Observation two mentioned that in the study spadars there have always been some
holes. Observation four showed how some holesegreated and some are noeas
varied. Since there were different number of halesociated with different septuples, it
was interesting to find out what is the minimum fo@mof holes that occur. The research
so far has shown that the minimum is six. For ndithere is no septuple in the study
space that has less than 6 holes. This analysshwias initially based o # q;
3<p<30; 35q< 30; 3<e<p(n) andeis coprime withp(n). The analysis has been
extended to include extreme values such asp 3 5009, 3 q< 9029,n < 45172087,

phi < 45158056 and < 89. The minimum number of holes being six wias &erified
using largep, g ande using Perl programs. For the Simple Example séptie

minimum of 6 is out of 140, for the RSA examplets@pte the minimum of 6 is out of
2770, and for a very large such as is used in practice today, the minimu isfout of
2"%8 possible values. There are six holes per septhptanot only are the least number of
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holes but have another interesting property.

4.6 Observation 6: The Principal Holes

For a givemn, there are six cases of ciphertext equal plairdgegurring at ang. Ase

varies and the number of holes changes accorditigyonly six holes that are always
there for a constamtare the same holes that create the set of sixmamiholes. These
are called the “principal holes”. For exampleffior 55, four keys have been used for
encryption in Figure 4.4. All four keys have endggthe list of messages 10, 11, 21, 34,
44 and 45 as holes. Since these holes occuralabs ofe, they are the principal holes.
Form = 26, there is a hole at= 11 but there is no hole at other values tifat were

used for encryption. So the holenat= 26 is not a principal hole.

Observation Four
Used Septuples:
(5, 11, 55, 40, 1312, 37)
(5, 11, 55, 40, 234, 7)

e=13 | e=23
12 6

holes | holes
m Cc c
2 52 8
3 38 27
8 28 17
9 14 14 This hole is repeated
10 10 10 |— for both e values
11 11 11
12 12 23 This hole
13 8 52 occurs fore =13
and not fore = 23
52 17 28
53 3 47

Figure 4.3 Repeated and Unrepeated Holes
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Observation Six
Used Septuples:
(5, 11, 55, 40, 32, 27) (5, 11, 55, 40, 2B7)
(5,11, 55, 40, 113, 11) (5, 11, 55, 40, 132, 37)

e=3 | e=23 | e=11| e=13
6 6 30 12
holes | holes | holes | holes
m C C C C
2 8 8 13 52
3 27 27 47 38
9 14 14 9 14
12 23 23 23 12
20 25 25 20 25
22 33 33 33 22
Some holos
that are not 26 /:«3;//31» 26 31
principal  [~_27 48 48 38 37 The Six
holes B+ 7 17 18 Principal
29 22~ 22> 29 24 Holes
33 22 22 2o»[ 33
35 30 30 35 30
43 32 32 32 43
46 41 41 46 41
52 28 28 8 17
53 47 47 42 3

Figure 4.4 Principal Holes
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4.7 Chapter IV Summary

Unexpected observations such as a ciphertext ¢gital plaintext are interesting and
intriguing. One observation leads to another andrapilation of all of these interesting
observations may lead to future discovery by timeesperson or another. As the quest for
a simple example for the RSA algorithm started ettgving new tools and arranging the
data in different ways and platforms lead to mabgeovations. At times, observation
was a lot easier than explanation; however, sciezm@res an observer to explain the
observations accurately as well as the methodsefareh.

The existence of a ciphertext equal to the origmetssage is an anomalous behavior for
an encryption method. According to the study spddhis thesis, holex(=m) are
always present. They occur in pairs and the twoptementary holes of a pair are

. . n
equidistant from a point of symmetry Iocatedéat80me holes occur at the saméor a

givenn even when the value efis changed. There are a minimum of 6 holes in our
study space. Finally, these six holes were givemtime, the principal holes, and one of
their properties is that the principal holes sh@airuevery septuple with the sameThe
likelihood of one of the minimum 6 occurring fovary largen such as is used today is
infinitesimal.

There are still more observations being made amdebearch goes on. | had to wrap up
this chapter and land this plane. One intereshimgtabout observations is that the
observer needs to constrain herself not to jungatty conclusions. There is a funny
story about a man who decided to study the heafifiges. He gathered his pen and
paper and sat in a room. He captured the firgbdigsing by and kept it in his fist without
squeezing it. When he was ready to make the firsevation, he released the fly on the
table and said, “Fly, fly!” Obviously the fly toakff. He wrote, “Observation one: when
the fly is asked to fly in a mild tone of voiceflies.” Then he got up, captured the fly
again and came back to his seat. He removed aife @fings of the fly and repeated the
same command, “Fly, fly!” This time the fly didrfly. He repeated the command with a
louder voice and the fly, jumped and landed a stigtance away. He recorded the
second and third observations: “Observation twi@raémoving one of the wings, when
the fly is asked to fly in a mild tone of voicepiused. After repeating the command
with a louder voice, it flew.” “Observation threghis time the distance flown was
shorter.” He stretched his hand and captured tbe @ae-winged fly and removed the
other wing. He repeated the command, “Fly, fly.” &dion. He raised his tone of voice
and he repeated a second time; still no actiors fiitme he got even louder. He shouted,
“FLY, FLY! Still, no flying was done. He recordduis observations and his conclusion
as follows: “When the fly was commanded to flyeafbne wing was removed, it took a
louder tone to make it fly. After the removal ofthavings, no attempt was successful in
making the fly respond to the command. We concthdeafter the removal of one wing,
the fly’'s hearing got impaired and once both wingse removed, the fly became deaf.
Conclusion: the ears of a fly are attached to higs:” The moral of the story is that
observations can be very intriguing and they mmgh you to make conclusions that are
wrong! In this chapter | have refrained from makaupclusions that are sweeping and
general because the study is still going on. The cleapter is a summary of this thesis,
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from the study of RSA and the quest for a simple-triivial example to the land of holes,
where an encryption method fails to encrypt.
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CHAPTER V

SUMMARY & CONCLUSION

The RSA algorithm is the most widely used encryptizethod yet there is lack when it
comes to finding a good simple example. RSA issymanetric encryption method
which means it uses two different keys for enciyptnd decryption. These keys are
generated by the receiver of the message to ehabt®rrespondents communicate with
him securely. The receiver chooses two preferaslyd prime numbersandqg. He finds
the product and callsiit He calculates the totient using the formp(a) =(p-1)(g-1).

Then he chooses an integdhat is coprime witlp and less than. The variables in
conjunction withn will be called the public key. The receiver therdt another integet
that would satisfy the equatidn= (1+ k * ¢@)/e. The variablel in conjunction withn will

be called the private key. The private key willdistributed to the correspondents of the
creator of the keys. Now that the keys are readyessagen from a sender Alice can be
sent to a receiver Bob securely using RSA encrgp#dice will use the formula

¢ = m" mod nto calculate the ciphertegt She then transmits the message to the creator
of the key, Bob. Bob uses the formuate= ¢'mod nto decrypt the message and read the
plaintext that Alice sent him. This is the RSA algjom in a nutshell. In answer to a need
for a good example for RSA a search started. A go@ainple would use the smallest
possible values gf andq and the best candidate #®to encrypt and decrypt a short
sentence. The search for a geptead to observing some anomalies in the RSA
algorithm. Before considering these anomalies,tnavas introduced to help refer to
different sets of values used in RSA. There aresealues involved in the RSA
formulas. These values greq, n ¢, e, kandd; some are given and some are calculated.
An ordered septuple containing all of these valas introducedq q, n,p, €, k, d.

Since different values & produced different number of anomalies for theesapa good
septuple would contain smallandg and create the least number of anomalies. This
septuple was found to be

(p, 9, N, €, k, d =(11, 13, 143, 120, 23, 9, 47) The short sememcrypted was “I

loVe cRyptoGraphy! ;-)” and was encrypted as “9LHERI_,rX 3C%lf SubsKoor

LwYH”, where the underlined characters are spesharacters which are not letters. The
mission to find a small nontrivial example for R8&s accomplished. What about the
anomalies?
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During the search for a simple example for RSA na@lous behavior was observed. In
RSA for some values of messagewhenm s encrypted using the formuta= m® mod

n, the ciphertext is equal to the original messageA “hole” was defined to have
occurred at a message value wheren’ mod n = mThe existence of holes was the
first observation. In our original study space ¢éheere more than 2000 septuples and all
of them created holes. Even when the search spasextended to include largeandq

as high as 523 fqu, 709 forg and 89 fore, there were always some holes present. The
hole values displayed some symmetry. Specificallyes come in pairs that are

equidistant from a poilal;zl. When there is a hole that occurs for a given(egy),

changinge might not save thah from producing a hole. The minimum number of holes
found in the study space is six. For any gimethere are six holes that occur for any key
(e, n); changinge doesn’t get rid of these holes. These are the $aes as the minimum
six holes. These were named the principal holes.

Existence of holes is an important phenomenon.peneentage of holes among all
possible messages gets smaller and smallegass larger (for a 768 hit 6 out of 2
possibilities), however, it is still true that theyist. Future work on them may include:
Finding relationships between a set of holes esflgthe principal holes such that if and
when a hole is found, the other holes may be predii¢-inding a relationship between
holes and the values of their respective septupleusing these relationships in
factorizingn; Studying the holes further more in order to inygrthe RSA and avoiding
bade values as reference mentions [10]. Even a simg@eple can be used for
understanding RSA and seeing these holes.
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APPENDICES
A-1: The Extensive Table of Holes

The extensive table of holes contains a colleadfoseptuples and their corresponding
holes. The original excel sheet containing thisrmfation has above 28,000 entries
which is an equivalent of a 3,153 page documerthEaw of data contains a septuple,
number of holes for that septuple, left holes aghtholes. The left and right holes are
the message values to the left or to the righbefgoint of symmetry on the number axis

where a hole has occurred. The point of symmeitrglfcodd n is ag— The septuples

used in this thesis are highlighted in the tabée tbllows. The upper and lower limits on
p, g and e for the original excel sheet are:

p#q,3<p<233, 55 q< 251, 3<e< phior 89, and e coprime with phi.

Since the collection presented here, is taken tl@rexhaustive search above, the
selected septuples will also satisfy the above itiomd.

(p,q,n,Phi,e,k,d) #tholes Left holes Right holes
3,5,15,8,3,1,3 6 456 91011
3,5,15,8,5,3,5 12 234567 8910111213
3,5,15,8,7,6,7 6 456 91011
3,5,15,8,11,4,3 6 456 91011 ©
3,5,15,8,13,8,5 12 234567 8910111213
5,11,55,40,3,2,27 6 101121 34 44 45
5,11,55,40,7,4,23 6 101121 34 44 45
5,11,55,40,11,3,11 30 | 456910111415 | 293031343536

16 19 20 21 24 25 394041 44 45 46

26 49 50 51

5,11,55,40,13,12,37 12 101112212223 | 323334434445
5,11,55,40,17,14,33 12 101112212223 323334434445
5,11,55,40,19,9,19 6 101121 34 44 45
5,11,55,40,23,4,7 6 101121 3444 45 ©
5,11,55,40,29,21,29 12 101112212223 323334434445
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(p,q,n,Phi,e,k,d) #holes Left holes Right holes
5,11,55,40,31,24,31 30 456910111415 | 293031343536
161920212425 | 394041444546
26 49 50 51
5,11,55,40,37,12,13 12 101112212223 323334434445
5,11,55,40,41,42,41 52 2345678910 282930313233
111213141516 | 343536373839
1718192021 22 404142434445
2324252627 46 47 48 49 50 51
5253
5,11,55,40,43,29,27 6 101121 3444 45
5,11,55,40,47,27,23 6 101121 34 44 45
5,11,55,40,53,49,37 12 101112212223 323334434445
11,13,143,120,7,6,103 18 101222234355 77 78 87 88 100
56 65 66 120121131133
11,13,143,120,11,1,11 30 12 13 14 2526 27 777879909192
383940515253 103 104 105 116
64 65 66 117 118 129130
131
11,13,143,120,13,4,37 36 101112212223 7677 78 87 88 89
323334434445 | 9899 100109 110
54 55 56 65 66 67 111120121122
131132 133
11,13,143,120,17,16,113 12 122134446566 77 7899 109 122
131
11,13,143,120,19,3,19 18 101222234355 77 78 87 88 100
56 65 66 120121131133
11,13,143,120,23,9,47 6 12 65 66 77 78 131
11,13,143,120,29,7,29 12 122134446566 77 7899 109 122
131
11,13,143,120,31,8,31 74 34910121314 | 747577787981
161722232526 | 828788909192
272930353638 | 9495100101 103
394042434849 104 105 107 108
515253555661 113114 116 117
62 64 65 66 68 69 118120121126
127 129130131
133134 139 140
11,13,143,120,37,4,13 36 101112212223 7677 78 87 88 89

323334434445
54 55 56 65 66 67

9899100109 110
111120121122
131132133
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(p,q,n,Phi,e,k,d) #holes Left holes Right holes
11,13,143,120,41,14,41 52 581213141821 | 737778798386
252627313438 90919296 99
394044475152 103 104 105 109
5357 60 64 65 66 112116117 118
70 122 125129130
131135138
11,13,143,120,43,24,67 18 101222234355 77 78 87 88 100
56 65 66 120121131133
11,13,143,120,47,9,23 6 12 65 66 7778 131
11,13,143,120,53,34,77 12 122134446566 | 777899109 122
131
11,13,143,120,59,29,59 6 12 65 66 7778 131
11,13,143,120,61,31,61 140 2345678910 727374757677
111213141516 | 787980818283
171819202122 | 848586878889
232425262728 | 909192939495
293031323334 96 97 98 99 100
353637383940 101 102 103 104
4142434445 46 105 106 107 108
47 48 495051 52 109110111112
535455565758 113114 115 116
59 60 61 62 63 64 117 118 119120
65 66 67 68 69 70 121122123124
71 125126 127 128
129130131132
133134 135136
137 138 139 140
141
11,13,143,120,67,24,43 18 101222234355 77 78 87 88 100
56 65 66 120121131133
11,13,143,120,71,42,71 30 121314252627 | 777879909192
383940515253 103 104 105 116
64 65 66 117 118 129130
131
11,13,143,120,73,59,97 36 101112212223 7677 78 87 88 89
323334434445 | 9899 100109 110
54 55 56 65 66 67 111120121122
131132 133
11,13,143,120,79,52,79 18 101222234355 77 78 87 88 100
56 65 66 120121131133
11,13,143,120,83,74,107 6 12 65 66 7778 131
11,13,143,120,89,66,89 12 122134446566 77 7899 109 122
131
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53,83,4399,4264,19,7,1571

582 1908 1909

2490 2491 3817

53,83,4399,4264,23,5,927

582 1908 1909

2490 2491 3817

(p,q,n,Phi,e,k,d) #tholes Left holes Right holes
47,59,2773,2668,3,2,1779 6 235236 471 2302 2537 2538
47,59,2773,2668,5,3,1601 6 235236 471 2302 2537 2538
47,59,2773,2668,7,6,2287 6 235236 471 2302 2537 2538
47,59,2773,2668,11,9,2183 6 235236 471 2302 2537 2538
47,59,2773,2668,13,4,821 6 235 236 471 2302 2537 2538
47,59,2773,2668,17,1,157 6 235 236 471 2302 2537 2538
47,59,2773,2668,19,7,983 6 235236 471 2302 2537 2538
47,59,2773,2668,31,15,1291 6 235236 471 2302 2537 2538
47,59,2773,2668,37,9,649 6 235236 471 2302 2537 2538
47,59,2773,2668,41,27,1757 6 235236 471 2302 2537 2538
47,59,2773,2668,43,21,1303 6 235236 471 2302 2537 2538
47,59,2773,2668,53,50,2517 6 235236 471 2302 2537 2538
47,59,2773,2668,61,42,1837 6 235236 471 2302 2537 2538
47,59,2773,2668,67,28,1115 6 235236 471 2302 2537 2538
47,59,2773,2668,71,45,1691 6 235236 471 2302 2537 2538
47,59,2773,2668,73,31,1133 6 235236 471 2302 2537 2538
47,59,2773,2668,79,22,743 6 235236 471 2302 2537 2538
47,59,2773,2668,83,76,2443 6 235236 471 2302 2537 2538
47,59,2773,2668,89,45,1349 6 235236 471 2302 2537 2538
47,67,3149,3036,5,4,2429 6 469 470939 22102679 2680
47,67,3149,3036,17,5,893 6 469 470939 22102679 2680
47,67,3149,3036,29,13,1361 6 469 470939 22102679 2680
47,67,3149,3036,41,20,1481 6 469 470939 22102679 2680
47,67,3149,3036,53,7,401 6 469 470 939 22102679 2680
47,67,3149,3036,59,24,1235 6 469 470939 22102679 2680
47,67,3149,3036,71,46,1967 6 469 470939 22102679 2680
47,67,3149,3036,83,19,695 6 469 470939 22102679 2680
53,83,4399,4264,3,2,2843 6 582 1908 1909 2490 2491 3817
53,83,4399,4264,7,6,3655 6 582 1908 1909 2490 2491 3817
53,83,4399,4264,11,3,1163 6 582 1908 1909 2490 2491 3817

6

6

6

6

6

6

6

6

53,83,4399,4264,31,20,2751 582 1908 1909 2490 2491 3817
53,83,4399,4264,43,6,595 582 1908 1909 2490 2491 3817
53,83,4399,4264,47,29,2631 582 1908 1909 2490 2491 3817
53,83,4399,4264,59,11,795 582 1908 1909 2490 2491 3817
53,83,4399,4264,67,14,891 582 1908 1909 2490 2491 3817
53,83,4399,4264,71,53,3183 582 1908 1909 2490 2491 3817
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(p,q,n,Phi,e,k,d) #holes Left holes Right holes
97,109,10573,10368,7,6,8887 46 326 327 546 872 6367 6694 7239
8739351199 7240 7566 7567
1200 1262 1745 7893 8112 8438
1807 1808 2072 8439 8501 8765
2134 2135 2461 8766 8828 9311
2680 3006 3007 9373 9374 9638
333333343879 9700 9701 10027
4206 10246 10247
97,109,10573,10368,11,9,8483 6 872 873 1745 8828 9700 9701
101,103,10403,10200,7,6,8743 18 102 2322 2323 5252 5253 7473
2425 2827 2828 7575 7576 7978
29305150 5151 8080 8081 10301
101,103,10403,10200,11,7,6491 30 102 309 721 825 5252 5253 5460
926 1854 3297 5561 5872 5973
3398 4326 4430 6077 7005 7106
4531 4842 4943 8549 9477 9578
51505151 9682 10094 10301
101,103,10403,10200,13,8,6277 32 102 515 1808 5252 5253 5666
23132322 2323 5767 7060 7473
2425 2827 2828 7565 7575 7576
2838 2930 3343 7978 8080 8081
4636 4737 5150 8090 8595 9888
5151 10301
101,103,10403,10200,19,13,6979 18 102 2322 2323 5252 5253 7473
2425 2827 2828 7575 7576 7978
293051505151 8080 8081 10301
101,103,10403,10200,23,2,887 6 102 5150 5151 5252 5253 10301
101,103,10403,10200,29,11,3869 12 102 515 4636 5252 5253 5666

4737 5150 5151

5767 9888 10301
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‘ (p,q,n,Phi,e,k,d) #holes Left holes Right holes
101,103,10403,10200,31,30,9871 74 102 309 469 721 5252 5253 5460
825926974 1498 | 556157215872
1602 1854 2003 5973 6077 6226
2014 2107 2322 6649 6854 7005
2323 2425 2519 7106 7154 7266
2632 2827 2828 7359 7473 7575
29303044 3137 7576 7771 7884
3249 3297 3398 7978 8080 8081
3549 3754 4177 8296 8389 8400
4326 4430 4531 8549 8801 8905
4682 4842 4943 9429 9477 9578
51505151 9682 9934 10094
10301
101,103,10403,10200,37,34,9373 32 102 515 1808 5252 5253 5666
23132322 2323 5767 7060 7473
2425 2827 2828 7565 7575 7576
28382930 3343 7978 8080 8081
4636 4737 5150 8090 8595 9888
5151 10301
101,103,10403,10200,41,32,7961 60 102 309 515 721 5252 5253 5460
825926 1648 5561 5666 5767
1854 1958 2059 5872 5973 6077
2061 2162 2266 6799 6900 7005
2885 2986 3090 7106 72107313
3193 3297 3398 7417 7518 8137
3503 3604 4326 8241 8342 8344
4430 4531 4636 8445 8549 8755
4737 4842 4943 9477 9578 9682
51505151 9888 10094
10301
101,103,10403,10200,43,19,4507 18 102 2322 2323 5252 5253 7473
2425 2827 2828 7575 7576 7978
29305150 5151 8080 8081 10301
101,103,10403,10200,47,46,9983 6 102 51505151 5252 5253 10301
101,103,10403,10200,53,11,2117 12 102 515 4636 5252 5253 5666
4737 5150 5151 5767 9888 10301
101,103,10403,10200,59,17,2939 6 102 51505151 5252 5253 10301
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‘ (p,q,n,Phi,e,k,d) #holes Left holes Right holes
101,103,10403,10200,61,14,2341 144 57 102 262 309 5252 5253 5309
365 469 515 562 5413 5460 5516
675721767 825 5561 5666 5721
8709269741180 | 5767 5814 5872
1498 1602 1648 5918 5927 5973
1808 1854 1958 6021 6077 6226
2003 2014 2059 6432 6649 6799
2061 2107 2162 6854 6900 7005
2266 2313 2322 7060 7106 7154
2323 2425 2519 72107266 7313
2632 2827 2828 7359 7417 7473
2838 2885 2930 7518 7565 7575
2986 3044 3090 7576 7771 7884
3137 3193 3249 7978 8080 8081
3297 3343 3398 8090 8137 8241
3503 3549 3604 8296 8342 8344
3754 3971 4177 8389 8400 8445
4326 4382 4430 8549 8595 8755
4476 4485 4531 8801 8905 9223
4589 4636 4682 9429 9477 9533
4737 4842 4887 9578 9636 9682
4943 4990 5094 9728 9841 9888
51505151 9934 10038
10094 10141
10301 10346
101,103,10403,10200,67,46,7003 18 102 2322 2323 5252 5253 7473
24252827 2828 7575 7576 7978
293051505151 | 80808081 10301
101,103,10403,10200,71,3,431 30 102 309 721 825 5252 5253 5460
926 1854 3297 5561 5872 5973
3398 4326 4430 6077 7005 7106
45314842 4943 8549 9477 9578
51505151 9682 10094
10301
101,103,10403,10200,73,11,1537 32 102 515 1808 5252 5253 5666
23132322 2323 5767 7060 7473
2425 2827 2828 7565 7575 7576
283829303343 7978 8080 8081
4636 4737 5150 8090 8595 9888
5151 10301
101,103,10403,10200,79,35,4519 18 102 2322 2323 5252 5253 7473
2425 2827 2828 7575 7576 7978
293051505151 | 8080 8081 10301
101,103,10403,10200,83,37,4547 6 102 5150 5151 5252 5253 10301
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‘ (p,q,n,Phi,e,k,d) #holes Left holes Right holes
101,103,10403,10200,89,28,3209 12 102 515 4636 5252 5253 5666
4737 51505151 | 5767 9888 10301
233,251,58483,58000,73,48,38137 24 1254 2008 3262 31125 34387
3263 5270 6525 35894 37649
16065 19327 39156 42418
20834 22589 51958 53213
24096 27358 5522055221
56475 57229
233,251,58483,58000,79,62,45519 6 3262 3263 6525 51958 55220
55221
233,251,58483,58000,83,44,30747 6 3262 3263 6525 51958 55220
55221
233,251,58483,58000,89,35,22809 24 1254 2008 3262 31125 34387
3263 52706525 35894 37649
16065 19327 39156 42418
20834 22589 51958 53213
24096 27358 5522055221

56475 57229

End of Key Generation.
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A-2 The Perl Program Listing

Here is a listing of the Perl program used in tesearch. This program will find the
holes for a list of triples (p, g, €) and encryp ASCII equivalent of the message
“ABoV;-)" which is 32, 65, 66, 111, 86, 59, 45,4%ing each of these 10 encryption
keys. In each of these 10 iterations, the holestdtal number of holes and the
percentage of holes are found and printed.

#
# RSA encryption check for cleartext
# File name: HoleFinder2329FromList.pl

# Original Author: ~ John M Acken

# Current Author:  Behnaz Sadr

# Revision history: initial version 20 May 2010

# Current version 21 May 2011

#

# Description: This program checks for holes in RSA

# That means looping through integers comparingldsrtext

# to the ciphertext.

#

# ## A hole has been found when the cleartext squighertext. ##

#

# This program requires a list of p's, g's an@e'mput.

# The output is the list of plaintexts that aredsdior a given ordered triple (p, g, €)
#

HHHHHHHHH
# ...~Desktop\perl> bin\perl HoleFinder2329From2ipt > t4holes23_?.txt
HHHHHHHH
#

# First the list of p and g values are enteredvasarrays.

# There are 10 values of e, each one used witbaime two prime factors p and g.
# In other words this program will encrypt 8 valwésn using 10 different keys with
# a common n.

#

# Each key is e in conjunction with n: (e, n)

#

# In this program p = 23 and g = 29.

@listOfp = (

23, 23, 23, 23, 23,
23, 23, 23, 23, 23

);
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@listOfq = (

29, 29, 29, 29, 29,
29, 29, 29, 29, 29

);

# Values of e are chosen such that they are: adigen 3 and phi, and they are coprime
# with phi. In this example phi is 22x28. The fastor phi are: 2, 7 & 11. These

# are invalid candidates for e.

#

# Another rule of thumb for choosing e is even tffoahoosing the values of p or g for e
# is admissible since they might be odd and copwitie phi, they usually create a lot

# of holes. This program demonstrates this faclyelsas being an example.

# So as you may notice, two of the e values aran2i329.

@listOfe = (

3, 5, 13, 17, 19,
23, 29, 31, 37, 41

);

# After the three arrays @listofp, @listOfq and €#flife are defined and filled
# with values, the ASCII values for a Test messagBoV;-)" is kept in @message
# and will be printed on top of the output file.

@message = ( 32, 65, 66, 111, 86, 59, 45, 41);
print STDOUT "\n Test message = @message  \n";

print STDOUT * \n",;
print STDOUT "\n \n";

# Next, an outer for loop is formed to be exec#edanany times as the number of e
# values which in this case is 10. The outer fopls counter is $example.

# The counter is incremented one at a time.

# In each iteration of the outer for loop the valoép, q and e are taken from their
# respective place in their array and n, n/2 angphcalculated.

# The number of holes is initialized to zero.

for ($example = 0; $example < 10; $example++) Ketginning of the outer for loop

$p = $listOfp[Sexample]; # put the next elemetistofp in $p
$q = $listOfg[$example];

$n = $p * $q;

$midpoint = $n / 2; # midpoint is defined as n/2
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$phi=($p - 1) * ($q - 1); # phi is defined #81)(q-1)
$e = $listOfe[Sexample];
$holes = 0; # initialize the number of holezéwo

# Next comes the information that will be printad tor each value of e:
# Values of p, g, n and e are printed.

print STDOUT " "
print STDOUT "For example $example p = $p; q =8¢, p*q = $n; e = $e \n";

# This for loop goes through the 8 elements ofdmaessage array one by one
#

#
for ($BN = 0; $BN < 8; $BN++ ) { # beginnind the first inner for loop
$m = $message[$BN];
$c = ($m * $m) % $n; #c=m*mmodn,
# to find ¢, m will be
# multiplied by it self e times
for ($BN2 = 2; $BN2 < $e; $BN2++ ) {
# beginning of innermost for loop
$c = ($m * $¢) % $n; # each time npliting the last found
# product by m and take modulus n
# eventually c = m”e mod n
} # end if innermost for loop
print STDOUT " $m => $c ||"; # print the messagkie m and
# its corresponding ciphertext c
# separate from the next m,c, by "||"
} # end of the first inner for loop
#

# At this stage we will have a list of all 8 m vedufrom the list @message as well as
# their encryptions.
#
#
print STDOUT "\n \n List ofds: \n";

#

# The following nested for loops and their correxting if statements will encrypt m

# and compare the encrypted value ¢ with m. Wharteigencrypted value becomes
# equal to mi.e. ¢ = m, two things are done: fils¢ number of holes is incremented,
# second the value of m creating the hole is pdifddowed or preceded by a pipe ‘|

# character.

# The position of the pipe is chosen in such a thiaythere will be two pipe characters
# representing the midpoint. At the end of thisosekinner for loop the total number of
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# holes for a given e value is calculated and ednHaving the total number of holes by
# now, the total number of holes as well as thegregage of holes are printed.

for (m =2; $m <$n - 1; $m++){ # beginning bktsecond inner for loop

$c = ($m * $m) % $n;
for ($BN2 = 2; $BN2 < $e; $BN2++ ) {
# beginning of the™ innermost for loop

$c = ($m * $c) % $n;
} # end of second innermost for loop
# the previous three lines are exactly
# the same as the for loop used on top.

if ($m == $c) { # if there is a hole
$holes++; # There will be a "|" after holesdvef
# reaching the midpoint n/2
# when there is a hole after the midpoint
# the "|" is printed before the hole.
# In this way there will be a double pipe
# in the middle, representing the midpoint.

if ($m > $midpoint) {print STDOUT "|";}
# if the hole happened where m > n/2,
# print "["
print STDOUT " $m";
# Now print m
if ($m < $midpoint) {print STDOUT "|";}
# if the hole happened where m < n/2,
# print "["
} # end of if statement
} # end of the second inner for loop
$percent = int(10000 * $holes / $n) / 100;
# percentage of holes are calculated
print STDOUT "\n number of holes = $holes  pefkent %\n";
# number of holes and percentage
# of holes are printed.
print STDOUT " \n";
# This line shows the end of one
# iteration of e.
} # end of the outer for loop
# Printing the next line shows the end of
# the program that ran for a given list of e
# in our case, 10 e values.
print STDOUT "\n All Done. \n";

exit; # end of program.
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A-3: Simple Example in RSA

There are two simple examples in chapter threes@'bgamples use the septuple, (11,
13, 143, 120, 23, 9, 47). The text used in exar2pée “I loVe cRyptoGraphy! ;-)” The
block size is one letter. This text is turned iatlarge integer using its ASCII code:

I Il o V e cR 'y p t o G r ap h y ! o)
73 32 10811186 101 32 99 82121 1®um 71114 97 112104121 33 32 59 46

In order to encrypt the plaintext message aboweTHble A-3.1 is used.

Table A-3.1 Encryption Table for Septuple (11, 13143, 120, 23, 9, 47)

m C m C m C m C m C
31 47 61 29 91 [ 104 ] 121 | 88
2 85 32 76 62 | 134 | 92 53 | 122 | 34
3 126 | 33 | 132 | 63 6 93 59 123 | 63
4 75 34 [ 122 | 64 25 94 [ 139 ] 124 | 93
5 125 |1 35 | 107 | 65 65 95 [ 101 ] 125 | 31
6 128 | 36 82 66 66 96 | 138 | 126 | 81
7 2 37 97 67 | 111 | 97 [ 102 ]| 127 | 95
8 83 38 [ 103 | 68 74 98 54 | 128 | 123
9 3 39 [ 117 ] 69 49 99 44 | 129 | 116
10 43 40 79 70 86 | 100 | 133 ] 130 | 91
11 | 110 | 41 72 71 37 1101 | 30 | 131 | 131
12 12 42 1113 | 72 [ 106 | 102 | 71 | 132 | 33
13 52 43 10 73 57 1103 | 64 | 133 | 100
14 27 44 99 74 94 1104 | 26 | 134 | 140
15 20 45 89 75 69 | 105 | 40 | 135 | 60
16 48 46 41 76 32 ] 106 | 46 | 136 | 141
17 62 47 5 77 77 1107 | 61 | 137 | 15
18 | 112 | 48 42 78 78 | 108 | 36 | 138 | 18
19 50 49 4 79 |1 118 | 109 [ 21 | 139 | 68
20 80 50 84 80 [ 137 | 110 | 11 | 140 | 17
21 [ 109 ] 51 90 81 9 111 | 67 | 141 | 58
22 55 52 39 82 | 114 | 112 | 96
23 56 53 14 83 73 | 113 | 16
24 19 54 98 84 24 | 114 | 108
25 38 55 22 85 28 | 115 | 136
26 | 130 | 56 23 86 | 135 | 116 | 51
27 92 57 8 87 | 120 | 117 | 13
28 7 58 [ 115 | 88 | 121 | 118 | 105
29 35 59 [ 119 ] 89 45 ] 119 | 124
30 | 127 | 60 70 90 | 129 | 120 | 87
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The large integer is encrypted as:

57 76 36 67 135 30 76 44 114 88 9663137 108 102 96 26 88 132 76 119 89 7

This integer if it was converted to text would reesd
“OL$Co0orR.,rX 3C%lf'Subs<oorLwYH” where the underlined characters are special
characters which are not letters.

Table 3.7 is reprinted here to summarize the stepsg in encrypting and decrypting the
simple example, “I loVe cRyptoGraphy! ;-)".

Table 3.7 Sample Message Transformation Table

Original Plaintext | Il o V e c Ry p t oG r a h y ! ;-

Encoded (ASCIl) 73 32 10811186 101 32 99 82 12111@111 71 33 32 89 41
Encrypted (ASCII)57 76 36 67135 30 76 44 11488 B6 67 37
Ciphertext 9 L $ CoorRS L , r X 3 C %
Received (ASCIl) 57 76 36 67135 30 76 44 11488 %6 67 37

Decrypted (ASCI)73 32 108 11186 101 32 99 82121 11211671 114 97 112 104 121 33 32 59 445

Decoded Message | Il o V e c Ry p t o G

114 97 112104 121
108 102 96 26 88132 76 18® 72
| f = Subs¥or L w Y H
108 102 96 26 88132 76 18® 72

r ap h y ! o= )
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