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CHAPTER I 
 
 

INTRODUCTION 

 

      Memory arrays account for large portions of most of the modern day CMOS chips. 

Large sizes of Random Access Memories (RAM) are essential for microprocessors 

manufactured these days to manage large amounts of data and instruction bits. Static 

random access memories (SRAM) are predominantly used on-chip for these 

microprocessors in the form of high speed caches or simply as scratch memories. Hence 

the design techniques for the SRAM have evolved continuously to match the increased 

speeds of microprocessor systems as well as to comply with the process technology 

scaling. The transistor density for modern sub-micron memories is extremely high and 

hence results in higher current densities in areas where memories are concentrated 

thereby raising the issues of parasitics affecting the reliability of operations.  

     The power dissipation in today’s CMOS chips is significantly contributed by the 

leakage power through the sub-micron devices which are primarily concentrated in the 

memory modules. It is hence a basic requirement of CMOS memories to achieve minimal 

power consumption and area overheads while striving for maximum possible speeds and 

yields. Hence the design complexities and the need to achieve stringent performance 

metrics, make the design of SRAM difficult, yet challenging.  
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     This work takes up the design of a high temperature SRAM capable of operating over 

a wide range of temperatures to meet the requirements of downhole drilling application 

rendered by a high temperature micro-controller. At these elevated temperatures, the 

leakage power dominates any other mechanisms of power dissipation and if proper care 

is not exercised, the functionality and performance may be lost in addition to incurring 

power wastage. 

 

1.1    Motivation 
 
     Although the applications requiring very high temperature operations of an electronic 

chip are less common, their need offers lot of opportunities that allow innovation and 

exploration of limits of technology. The design of such electronic systems intended to 

work over extreme temperature conditions have limitations in terms of achievable 

performance over these operating ranges, yet their need overrides the limitations. 

     This work is driven by the requirements of a high temperature micro-controller (OSU-

HC11) which needs a specified size of on-chip and off-chip Static RAMs to be operated 

upto 275C in a sub-micron SOI process. In addition to being a complex custom design 

procedure, the design of such high temperature SRAMs are further complicated by the 

design time involved in characterizing and testing the components involved the process. 

It would be a lot easier to have re-usable design structures for high temperature SRAMs 

just as a standard digital cell library, which could be utilized to design variants of an 

SRAM design with much lesser effort and reduced time. 

     Commercial solutions are available for generating SRAMs using memory compilers 

just as the usage of standard cell libraries for digital circuit designs. But they are 
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expensive and often do not include the extreme temperature requirements of certain 

applications as in this work. This led to the idea of providing a simpler solution to re-use 

components needed to design a high temperature SRAM, and to develop a methodology 

that could reduce the design time of SRAMs by simple partitioning into several critical 

sub-modules and characterizing them for performance across the design corners. This 

methodology could provide ready-to-use/simpler-to-redesign components of a high 

temperature SRAM. 

 

1.2    Thesis organization 
 
     This thesis is organized as 6 chapters, with the first chapter, being discussed here. 

Chapter 2 provides an overview of common types of memory architectures utilized to 

form an SRAM with its final section justifying the chosen architecture. An overview of 

various types of sense amplifiers, their performance characteristics and comparisons are 

discussed in chapter 3 while specifying the type of sense amplifier used in this work. This 

chapter also provides a quick insight into few address decoder design techniques with 

emphasis on usage of pre-decoders. Chapter 4 proposes the methodology of design time 

reduction for an SRAM where the memory system design is partitioned into several 

critical sub-modules. Chapter 5 discusses the implementation details of OSU-HC11 high 

temperature SRAM systems simultaneously developing on the methodology proposed in 

chapter 4. At the end of this chapter, various simulation and measurement results of the 

designed high temperature SRAM are presented. The summary of the design of high 

temperature SRAM and the future work in this direction is presented as the last chapter 6.
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CHAPTER II 
 
 

OVERVIEW OF MEMORY ARCHITECTURES 

 

     Judicious selection of architecture for SRAM can prove beneficial in terms of delay 

and power. A lot of architectures have been proposed in the literature in an effort to 

optimize the performance metrics of the memories. Most of these architectures utilize 

array partitioning to reduce word line and data path delays. Partitioning SRAM cell 

arrays also helps reduce bit line swings and active power.  This chapter presents the basic 

structure to realize an SRAM in the first section, with the following sections discussing 

few commonly used partitioning strategies, and their advantages over the basic structure. 

 

2.1    Conventional Array Architecture 
 
     This is an elementary architecture to realize an SRAM. As shown in Figure.2.1, it 

consists of a single array of memory cells with each memory cell being formed at the 

intersection of a word line and a bit line. It forms a matrix structure with 2m rows by 2n 

columns, where m + n forms the total number of address lines. 

     During a read/write only one out of 2m word lines is enabled and it drives all the cells 

connected to this word line. But then only one cell is selected for a read/write by the 

column multiplexer using the 2n lines of the column decoder. If a group of bits are to be 



5 
 

stored/read as a single entity such as a word (let us say an 8-bit word), then instead of 

selecting a single cell for each operation, the column multiplexer now selects all the cells 

corresponding to a word (in our case 8 cells). Each 8-cell group functions as a word, and 

accordingly the data bus is made 8-bit wide. 

        

2
m

D
a
ta
 I
/O

 
Figure.2.1   Conventional Array Architecture 

 
2.2     Divided Word-line Architecture 
 
    The basic SRAM architecture shown in previous section suffers from two serious 

drawbacks. First and foremost the RC delay associated with word lines and bit lines grow 

proportionately with more number of cells along the Columns and Rows respectively. 

The word line is loaded by the SRAM cell’s access/pass transistors (gate capacitances) 
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along the row and is proportional to the number of columns or bit lines. Similarly the Bit 

line is loaded by the diffusion capacitances of the SRAM cell pass transistors, and is 

proportional to the number of rows or word lines. Secondly the power dissipation on the 

bit lines and word lines increases linearly with capacitance. 

     These two drawbacks can be addressed by using an architecture called the divided 

word line architecture [1]. In this architecture, the single large memory array of the 

conventional architecture is broken down into several small sub-arrays called macros or 

banks. Each single macro can now generate its own word lines from the global word 

lines, by decoding them locally. Hence the RC delay of the global word lines is reduced 

because each single macro now presents only a small load compared to all the cells in a 

single row of the conventional architecture. Since the unused bit lines need not be 

enabled, it reduces the bit line power dissipation as opposed to the conventional 

architecture where all bit lines are enabled. Likewise the number of word lines may also 

be reduced and more macros may be added in vertical sense and using column 

multiplexing to access the word needed. This enables the delay on the bit lines to go 

down further. 

     The Divided word line architecture is shown in Figure.2.2. As shown in the figure, the 

structure has several sub-arrays forming the whole memory. Each sub-array has a certain 

specified number of Cells along its rows and columns. All the cells along the same row 

have a common word line. This common word line is derived from the global word line 

using a macro selector that runs vertically through the whole sub-array. Hence the 

capacitive load on the global word lines is considerably reduced because each 

macro/bank loads the global word line with just one gate. Also the word lines in each 
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macro have a reduced capacitance as the number of cells along the row is lesser. The 

macro/bank selector lines that run vertically along the columns are actually the output 

lines of the Column address decoder.  

 
 

Figure.2.2   Divided Word Line Architecture 
      

     This structure helps in the reduction of dynamic power dissipation owing to the fact 

that the unselected macros don’t switch. Bit lines of only the selected macro swing 

resulting in reduced power dissipation and often improved or reduced read delay.      

     The word line division procedure can be recursively followed on both the global and 

macro/block selector lines to achieve what is referred to as the Hierarchical Word 

Decoding (HWD) technique [2]. The number of hierarchies, in other words, the level of 
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word-line division, is determined by the total load capacitance of the word decoding path.  

HWD results in a tree type structure and as such may be optimized the same manner as 

clock trees or pad drivers, albeit considerably more complex. This method of sub-

dividing the SRAM array increases area overhead at the boundaries of the partitions [3]. 

Also the use of word line drivers for each macro adds to the area overhead. This increase 

in area has a minor impact on power dissipation, and its effect is acceptable when 

compared to the benefits achieved in delay and overall reduction in dynamic power. 

 

2.3     Divided Bit line Architecture 
 
     The division of column access lines of an SRAM array into several levels can also be 

applied in memory design. In other words the HWD technique can be applied to the 

column lines sub-dividing them into levels saving power and reducing delay in the 

SRAM data path. This idea of partitioning bit lines is referred to as Divided Bit Line 

(DBL) architecture [4], as shown below in Figure.2.3. 

 
 

                                 Figure.2.3   Divided Bit Line Architecture [4]  
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     The bit line capacitance is mainly composed of the drain to body capacitance of the 

pass transistors of the SRAM cell and metal capacitance of bit lines. The bit line 

capacitance is significantly reduced by reducing the number of pass transistors loading 

the bit lines. As shown in Figure.2.3, the divided bit line architecture has a global bit line 

running all the way through the SRAM array columns. It also has several sub bit lines 

that connect to a small group of SRAM cells vertically. These sub bit lines connect the 

global bit lines through a pass transistor, thus effectively reducing the number of pass 

transistors loading the global bit lines.  In the case shown above there are 4 SRAM cells 

combined together and connected via one pass transistor to the global bit line. 

     In high density memories, the number of sub bit lines will increase and even with 

divided bit line architecture, the bit line capacitance can be significant. This can be 

addressed by using Hierarchical Divided Bit line architecture (HDBL) [4]. Again this is a 

tree type structure and is readily optimized. In this architecture, the bit line is divided into 

more than two levels. Quite obviously, the number of hierarchies is then determined by 

the number of rows in the SRAM array. 

 

2.4     Folded Bit line Architecture 
 
    The folded bit line architecture [5] can be visualized as the structure formed by folding 

one SRAM array over the other. In this architecture, alternate SRAM cells along the 

column form a group, as shown in Figure.2.4. It can be seen from the figure that the bit 

line capacitance is reduced by half effectively. It can be thought of like splitting a bit line 

into two, and hence reducing the capacitive loading on each by half of the original. There 

is yet another advantage of this architecture. It is possible to activate two word lines 
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almost simultaneously since this structure has two separate bit lines. This can increase the 

data rate almost a factor of two. By using proper word line activation scheme, it is 

possible to reduce the size of the decoder. For example if we assume each group to have 

128 word lines in them, a 7-to-128 decoder would suffice, even though the total effective 

word lines in the whole array are 256. This can be achieved by introducing an effective 

delay between activation of word lines in two different groups. 

 
 

Figure.2.4   Folded Bit line Architecture [5] 
 

2.5     Conclusion 
          
     The folded bit line architecture and the divided bit line architecture prove useful in 

conjunction with the divided word line architecture. The folded bit line architecture is 
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primarily used in DRAM. It requires interleaving of two separate cell arrays and can be 

complex from the layout perspective. The divided bit line architecture on the other hand 

has no interleaving, but with more hierarchies, it has more sub bit lines which can again 

affect the layout issues. Also the use of these methods can add more parasitic capacitance 

due to additional metal lines in the cell arrays running parallel to one another. They incur 

a small area penalty in order to compensate for the increase in parasitic capacitances. 

This increased area penalty, in addition to layout complexity may play a part in choosing 

these architectures over the standard array. The divided word line architecture on the 

other hand reduces the word line delay quite efficiently and with the optimal number of 

word lines in an array, it can generate more acceptable bit line loads, in view of the area 

considerations and aspect ratio. The trade-off between the performance and area; 

complexity will decide the right architecture for any design. In this work, the divided 

word line architecture is chosen considering the area limitations already incurred by high 

temperature leakage currents. 
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CHAPTER III 
 
 
 

OVERVIEW OF SENSE AMPLIFIERS & DECODERS 

      

     There is a tradeoff between performance and area in the SRAM cell arrays, in which 

mostly area (memory cell density) is the crucial factor for designers [6]. Hence the 

performance is traded for area as far as the cell arrays are concerned. In order to make up 

for the performance loss caused by cell arrays, the peripheral circuits have to be designed 

with efficiency and utmost care. The performance of peripheral circuits is primarily 

dominated by sense amplifier and address decoders. This chapter discusses these two 

circuits in detail, providing various commonly used implementations. Section 3.1 

provides a discussion of commonly used types of Sense Amplifiers, their speed vs. 

area/power analysis. This is followed by section 3.2 where various address decoding 

techniques are presented. 

 

3.1    Sense Amplifiers 
 
     Sense amplifiers are needed in the SRAM data path in order to insure a reliable read 

process. When reading an SRAM cell, the time required by the cell to charge the bit lines 

to their final values can be quite large. Also rail to rail signal swings are not desired in 

most cases in order to reduce read delay times. Hence some form of amplification and 
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data latching are required to ensure speed-up of the read process in SRAM. This is 

achieved by using the sense amplifiers. Sense amplifiers detect small voltage variations 

in the bit lines caused by the SRAM cell and present the data to the data bus.  

      There are certain key performance objectives to be considered while designing the 

sense amplifiers, like high sensitivity, high speed of operation, low power, low offset, and 

finally low area. It is hard to achieve all of these performance objectives simultaneously, 

and requires extensive design procedure. The choice of sense amplifier for a design 

depends on how well it meets all the above listed objectives. A number of sense 

amplifiers have been proposed in the literature. The following sections describe the 

functioning and performance of some of the most commonly used sense amplifiers, viz. 

Conventional Latch-type Sense amplifier, Linear Differential Sense Amplifier, Current 

Sense Amplifiers, and Voltage Latch-type Sense Amplifier. Each of these sense 

amplifiers are evaluated for the performance objectives listed before and finally the 

chosen architecture is justified. 

 

3.1.1    Conventional Latch-type Sense Amplifier 
 
     A simple cross coupled pair of inverters can function as a sense amplifier. An inverter 

has high gain in its transition region. This high gain can be used in conjunction with a 

positive feedback as in a latch to sense the bit lines. This idea is used in the latch-type 

sense amplifier as shown below in figure 3.1, where the cross coupled inverters function 

as a latch. In this sense amplifier, there is no isolation between the inputs and outputs 

which are cross-coupled and once the amplifier senses the bit, both the bit lines are 

eventually driven to full logic levels. The speed with which the bit lines are driven to full 
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logic levels is much faster than being driven by the memory cell, thereby providing a 

sense-amplifier action. 

 

Figure.3.1   Inverter Latch Sense Amplifier 

     In a typical read cycle, the latch is initialized to its high gain meta-stable state by 

equalizing the bit lines using signal EQ and pre-charging them in most cases to mid-rail. 

When the SRAM location to be read is activated, the bit stored in the SRAM cell starts 

driving appropriate voltage difference across the bit lines. After sufficient voltage 

difference is developed across the bit lines, the sense enable signal SE is raised to enable 

the sense amplifier. The latch inside the sense amplifier then settles the bit lines to their 

final values thus enabling logic detection. The transition to final logic voltages by the bit 

lines is quick owing to the positive feedback of the latch. The time delay equation of the 

latch type sense amplifier can be expressed in general as below in equation 3.1. In this 
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equation, the LBC  represents total capacitance at the bit lines and Gm refers to the 

transconductance of a single inverter in the sense amplifier.  0V∆  is the initial voltage 

difference across the bit lines just when the sense amplifier starts up. logicV∆  is the final 

voltage difference in logic levels of the bit lines. 

)V/Vln(  )/G( 0logicmL ∆∆×BCTd α                                            (3.1) 

         It can be seen from the equation 3.1 that the delay of the latch type sense amplifier 

is directly proportional to the total capacitance at the bit lines making it less attractive for 

higher bit line loads. The delay equation shown above does not include the time taken to 

charge the bitlines to initial value 0V∆  by the SRAM cell, and if the sense amplifier is 

enabled before this time, there is a risk of bit being detected incorrectly. The latch type 

sense amplifier is not the fastest, but given its small area advantage, it performs well 

enough to be used in low and medium speed SRAMs. But the offset in the switching 

threshold of the cross-coupled inverters considerably impacts the sensitivity. Also since 

the bit lines must swing full logic values during the sensing action, the latch-type sense 

amplifier suffers from considerable dynamic power dissipation. Hence low power SRAM 

designs typically use sense amplifiers which limit the bit line swings. 

 

3.1.2    Linear Differential Sense Amplifier 

     A differential amplifier takes in a small signal voltage difference across its inputs and 

provides an amplified signal at its output. A differential amplifier has high voltage gain, 

and good common mode noise rejection which is desirable in an SRAM design for 

sensing the bit lines which are differential in nature. Such a differential sense amplifier is 

linear in a sense that it simply provides an amplified version of input without driving the 
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outputs to full logic levels. Since in a linear amplifier, voltage gain and speed are 

inversely related, increasing the gain for a particular design results in relatively slowing 

down the read process. To overcome this issue, sense amplifier designs using linear 

amplifiers generate the full logic outputs by incorporating multiple stages [9]. A simple 

differential amplifier with an inverter as its output stage is shown in figure 3.2.  

 

Figure.3.2   Linear Differential Sense Amplifier [3] 

     The differential amplifier has good common mode rejection ratio (CMRR) as well as 

power supply rejection ratio (PSRR). CMRR is desirable in an SRAM because of the fact 

that bit lines of an SRAM inject common mode noise (via the row select lines) which 

differs across process. It is beneficial to have the bit lines decoupled from the outputs of 

the sense amplifier and reduce the voltage swings in the bit lines, thereby dissipating less 

dynamic power. But in most cases the linear differential amplifier requires a DC bias 

which causes some static power dissipation. If we assume the output impedance of the 

first stage amplifier as 1/ OG , where Go = Gdsn+ Gdsp, and its total output capacitance as  



17 
 

LC  (including the input capacitance of second stage), the delay contributed by the linear 

amplifier follows the relation 3.2. The total sense amplifier delay is the sum of delays of 

linear differential amplifier and the succeeding digital logic stages (significantly less) as 

given by equation 3.3. 

                                                  )/G(C      α     Td OLamp                                                          (3.2) 

                                                  Dig_stagesampSA Td  Td       Td +=                                               (3.3) 

     This type of sense amplifiers has good speed, good sensitivity and usually a low offset 

which comes at the expense of area. Since they consume biasing power and operate over 

limited supply voltages they are less preferred for low power and low voltage designs and 

are primarily used in high performance designs [3]. 

 

3.1.3    Current Sense Amplifiers 

     The bit-line capacitances will limit the speed of any sensing scheme that requires a 

voltage difference to be introduced on the bit lines to initiate sense amplifier operation. In 

the case of current mode sense amplifiers, the sensing nodes offer low impedance to the 

bit lines, and respond to current signals rather than voltage differences across the bit 

lines. There are several current mode sense amplifiers being used in SRAMs, one of the 

popular ones being the Clamped Bit Line Sense Amplifier (CBLSA) [7]. The clamped bit 

line sense amplifier is shown in figure 3.3. 
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Figure.3.3   Clamped Bit Line Sense Amplifier (CBLSA) [7] 

     The CBLSA has transistors M1-M4 forming conventional CMOS cross coupled 

inverter latch. Transistors M5 and M6 provide a low impedance path for the bit lines to 

the reference potential Vref. M5 and M6 are biased in linear region and the reference 

potential Vref can be as low as 0V. It is this clamping action of transistors M5 and M6 

that gives rise to the name Clamped Bit line Sense Amplifier. The sense amplifier is 

powered using large transistor M9. During the precharge phase, both the outputs of the 

sense amplifier are equalized using the transistor M8 and signal EQ. Also the bit lines are 

equalized using the transistor M7. At the end of precharge phase, transistors M7 and M8 

are switched off and SRAM cell is opened to the bit lines. This bit line current difference 

∆I flows through M5 and M6, which is sourced by M1 and M2 respectively. Transistors 

M1-M4 then latch the data due to high gain positive feedback. 
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     The delay equation governing the CBLSA can be approximated as shown in equation 

3.4. It takes the same form as in the latch-type sense amplifier, except that the bit line 

capacitance is replaced by LC , the internal capacitance of the cross-coupled inverter pair, 

which is significantly less. 0V∆  is initial voltage difference caused by the difference in 

current flowing through the and can be written as ( ∆ISense - IOS )×Gm , where IOS is the 

offset current of the sense amplifier, and Gm is the transconductance of the inverter pair. 

 
(∆ISense - IOS)×Gm = 0V∆  

 
                                                 )V/Vln(  )/G( 0logicmL ∆∆×CTd α                                   (3.4)                                    

     In this sense amplifier the bit line capacitance is taken to a node within the amplifier 

such that it has minimal effect on the performance of the circuit. The signal current from 

the memory cell can now be injected directly into the sense amplifier due to the fact that 

sensing node presents low impedance to the memory cell while reading and it has to be 

ensured that this signal current is greater than offset current IOS. As a result the sense 

amplifier has minimal dependency on the bit line capacitance, and is only sensitive to the 

difference in current flowing through the bit lines. If the memory cells are designed to 

produce at least the minimum required current difference through the bit lines, the current 

sense amplifiers operate almost independent of bit line capacitances. Since the sense 

amplifier’s operation does not require the bit line capacitances to swing full logic values, 

the power consumption is reduced significantly during the read process. 

     Current-sense amplifiers in general provide increased speed and low power dissipation 

at moderate area overhead. They also provide fairly constant delays over a range of bit 

line capacitances, making them easier to reuse for different size memory arrays. But their 

use is justified primarily in high performance memory systems owing to their complexity. 
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3.1.4    Voltage Latch-type Sense Amplifier 

     The Voltage Latch-type sense amplifier [12] is similar to the Inverter latch sense 

amplifier presented in section 3.1.1, except that the bit lines are separated from the 

outputs of the sense amplifier. The voltage latch-type sense amplifier or the Alpha latch 

[10] looks as shown below in figure 3.4. It can be seen from the figure that the bit line 

inputs to the sense amplifier are terminated at the gates of the transistors M5 and M6, 

thus isolating them from sense amplifier’s outputs. The functioning of the amplifier is 

similar to the Inverter Latch sense amplifier. A sufficient voltage is allowed to develop 

across the bit line inputs before the Sense Amplifier is enabled using the signal SE. The 

transistors M5 and M6 then act as transconductors and the differential current flowing 

through them enables the cross coupled inverters to latch  the data. Outputs are obtained 

from the inverters placed at the cross-coupled nodes of the latch.  

 

Figure.3.4   Voltage Latch-type Sense Amplifier [12] 



21 
 

          The advantage of this circuit over the Inverter Latch sense amplifier is that the 

isolation of inputs and outputs will reduce the signal swings on the bit lines and also 

sense amplifier’s delay becomes less dependent on the bit line capacitance. However the 

addition of an input pair in series with the inverter latch slows down the circuit a little bit 

unless they are made very large relative to the cross coupled devices. The equation 

governing the delay of the sense amplifier can be written as the sum of two components, 

as shown in equation 3.5.  

                                                                 latchd ttt += 0                                                             (3.5) 

     In the above equation, 0t  refers to the time taken to start the regeneration by the cross-

coupled inverter latch, which can be written as below in equation 3.6, where LC  is the 

load capacitance of the cross-coupled inverter pair and I is the current through the input 

transistors when the sense amplifier is enabled. The second term in equation 3.5 [8] is the 

latching delay which can be written as in equation 3.7 just as in the conventional latch-

type amplifier. 

                                                             IvCt tpL /0 ∆=                                                           (3.6) 

                                                   )V/Vln(  )/G( 0logicmL ∆∆×= Ctlatch                                        (3.7) 

          The linear amplifier type sense amplifiers (differential amplifiers in the first stage) 

and current mode sense amplifiers are used typically in high performance systems. When 

acceptable speeds are needed at lesser complexity and power, latch type sense amplifiers 

are preferred.  A comparison of sense amplifiers discussed so far are shown in table 3.1. 

Table 3.1 shows the general expressions for delay of each of the above discussed sense 

amplifier, while table 3.2 gives a general perspective into the performance metrics of the 

sense amplifiers. 
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Table 3.1    General delay expressions for various sense amplifiers     

Sense Amplifier Delay Expression 

Inverter Latch SA )V/Vln(  )/G( 0logicmL ∆∆×BC  

Linear Differential SA Dig_stagesOL Td  )/G(C α + , where 

Go = Gdsn+Gdsp 

Current Sense Amplifier )V/Vln(  )/G( 0logicmL ∆∆×C ,where 

0V∆  = (∆ISense - IOS)×Gm 

Voltage Latch-type SA )V/Vln(  )/G(/ 0logicmL ∆∆×+∆ CIvC tpL  

 

 

 

 

 

Table 3.2    General Comparison of performance between various sense amplifiers 

Sense Amplifier Speed Vos/Ios 

 
Power Complexity 

Inverter Latch SA 
Big CBL 

fastest to 
slowest 

lowest – 2 pairs Moderate/High Easier 
Analysis 

Linear Differential 
Sense Amp 

Moderate 
to 

slowest 

Lowest– 2 pairs  Moderate/High Straight forward 
Analysis 

Current Sense 
Amplifier 

fastest Highest– 3 pairs Low/Moderate Somewhat more 
Analysis 

Voltage Latch-type 
SA 

Moderate 
to fastest 

lowest/Highest 
– 2 or 3 pairs  

Low/Moderate Straight forward 
Analysis 
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     In this work, the speed requirement for sense amplifier is modest and hence the 

current mode sense amplifiers or linear amplifiers were not chosen. The alpha latch was 

preferred over the conventional Inverter latch sense amplifier due to its input/output 

isolation. But as mentioned just before, the addition of input pair in series with inverter 

latch makes the circuit little slower than the Inverter Latch sense amplifier. In this work, 

a variant of Alpha Latch is used where the cross coupled inverter pair is replaced by a 

cross coupled PMOS pair to compensate for added input transistors. 

     The circuit schematic for the modified alpha latch sense amplifier also known as the 

Cross Coupled Sense Amplifier used in this work is shown below in figure 3.5. The 

PMOS transistors M3 and M4 can be sized appropriately to achieve enough positive 

feedback gain. Both the output nodes Vout+ and Vout- are charged up to VDD when SE 

signal is not active. This will reset the latch every time a new read operation is initiated. 

The outputs of the sense amplifier can be applied to a D-latch to obtain full logic outputs. 

 

Figure.3.5   Cross Coupled Sense Amplifier 
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3.2    Address Decoders 

     Address decoders constitute the major portion of word line delay in selecting the 

appropriate memory word. In any design fast low power decoders are desired, such that 

the total memory access times are optimized with consideration to decoder energy 

expenditure. One other primary concern while designing decoders is the area spent. For 

larger memories, the decoder area becomes significant, next only to SRAM cell array. 

Hence smaller decoders are preferable keeping in mind that the decoders be pitch-

matched to the cell array so that additional wiring area can be minimized. Pitch-matching 

not only helps reduce the area, but also prevents wiring delay from rising up.  

     There are two main categories of decoders that are commonly used; CMOS decoders, 

and Tree decoders. Conceptually in a CMOS decoder, an n:2n decoder consists of 2n n-

input AND gates, one for each row of memory. The AND gates are made out of NAND 

or NOR gates. But for n larger than 4, the decoder becomes slower and hence there is a 

need to use either multiple fewer input gates to make the larger input gates or break the 

decoder into two or more levels. For example, a 4-input AND gate can be generated from 

three 2-input NAND gates. But this method results in tremendous increase in number of 

gates used, as the decoder’s size becomes larger and also power & area becomes a 

concern. Often, predecoders [11] are used in the first level followed by 2n final AND 

gates. The primary advantage of predecoding is that it does not change the path effort, but 

at the same time takes up lesser number of gates thereby reducing the area and power 

dissipation. A simple way to illustrate this issue is shown in figure 3.6a and 3.6b. 
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Figure.3.6a   A simple 4-16 Decoder [11] 

 

 

 

Figure.3.6b   4-16 Decoder with two 2-4 predecoders [11] 
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     It can be analyzed from the figure that the number of 2-input NAND gates used in the 

ordinary decoder circuit is 32 while the predecoded circuit uses only 8. This considerably 

reduces area and power. But as the decoder size increases, there needs to be more 

buffering added internally to reduce the fan-out of gates. In spite of this additional 

buffering, the use of pre-decoder proves beneficial over normal CMOS decoders. 

     There is another prominent type of decoder used in memories, known as the Tree 

decoders. The area occupied by CMOS decoders is considerably high, even after using 

the predecoders. To reduce the layout area further, a pass-transistor based decoder 

structure can be used as shown in the figure 3.7. 
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Figure.3.7   A 3-to-8 Tree Decoder [13] 

     It can be seen from the figure above that, the 3-to-8 tree decoder implementation 

results in use of minimum number of transistors. But the structure shown above suffers 
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from two problems. The non-selected outputs float and NMOS pass-transistors do not 

pass valid high efficiently, the effect of which can be mitigated by using buffers every 3 

or 4 gates resulting in an optimal delay tree structure. Both these issues can also be 

addressed by using a simple circuit that pulls the outputs of the decoder low, when they 

are not selected, as well as using a skewed inverter to maximize the noise margins. Tree 

decoder structures are predominantly used in n-to-1 column multiplexers. This reduces 

the area of column multiplexer considerably. 
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CHAPTER IV 
 
 

METHODOLOGY FOR REDUCED TIME SRAM SYNTHESIS 

 

     Designing an SRAM includes some critical tasks like SRAM cell design & stability 

analysis; simulation of word line activation delay, data path delay; control signals 

generation & timing analysis. Most of these tasks are done manually since automatic 

synthesis, place & route algorithms cannot be directly applied to memory design. When it 

comes to laying out the memory, the task becomes even more difficult and each sub-

module historically has to be laid out by hand. This chapter proposes a methodology 

adopted in this work to reduce the design time and layout effort by partitioning the 

memory into several critical modules and setting up a test bench for characterization of 

each critical module. For each of these modules, repeatability in layout is also analyzed 

and this factor is tapped to simply array them out as required.  

     There are two perspectives to be considered for finding out the critical modules: 

simulation (for functionality and timing characterization), and layout. The individual 

modules should facilitate timing simulations, and also be repeatable in layout. Once the 

critical modules are found out, it would be a lot easier for the designer if all the test 

benches required to characterize these modules are available at hand and that the designer 

only needs to replace modules for each design to meet the requirements. This idea is 
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utilized here in this work, and also the layouts for most modules are done by hand, and 

depending on the size of the memory, they are simply arrayed out as required. The 

critical modules identified in this work are listed below: 

� SRAM cell 2×2 Block 

� Sense Amplifier & Column Read/Write Logic 

� Bank Control circuitry & Row Drivers 

� SRAM Bank 

� Global Control circuitry 

� Global Address Decoders 

The following sections discuss these modules in detail, with a concluding section 

summarizing the methodology 

 

4.1    SRAM cell 2×2 Block 
 
     The very basic module involved in a Static RAM is the SRAM cell which forms the 

most part of the layout. It has to be designed such that a read process does not flip the bit 

stored inside the cell, while the write operation reliably writes a value into the cell. Also 

the SRAM core consists of identical SRAM cells arrayed out in a regular fashion 

according to the memory size. Hence in this work due to the layout considerations, the 

SRAM cell module was chosen to be of size 2×2, i.e. a total of 4 cells, 2 cells each along 

the row as well as the column.  

     A test bench was developed to characterize the SRAM cell module for its functionality 

as well as the read/write delays. To emulate the real bit line loads, a generic capacitance 

was used on the bit lines, which requires the user input of number of words(W) and bit 
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line capacitance per unit cell(Cunit). The testbench then computes the total capacitance on 

the bit lines and uses it in the simulations. The testbench uses initial conditions on the 

internal nodes of the SRAM cells so that when the write operation begins, it has to 

overwrite the SRAM cell, ensuring the functionality of write process. Also during the 

read process, the bit lines are precharged to a user specified value Vpre. The user also 

needs to input the clock frequency F_CLK. Figure 4.1 shows the SRAM cell module used 

in the testbench for characterizing the performance and functionality of 6-T SRAM cell.  

 

Figure.4.1   SRAM 2×2 Cell Module used in Test Bench 

     It can be seen from the figure that the bit lines have been loaded with capacitors. As 

mentioned before the value of this capacitance is calculated during the simulation from 

the inputs given by the user. The testbench has output expressions to calculate the write 

time, read time, voltage fluctuations in the SRAM internal nodes named Q & Qb. These 

expressions present the user with various timing parameter values without having to 
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manually measure the delays on the waveform window. When it comes to the layout, the 

SRAM cell is flipped along vertical as well as horizontal directions and abutted to form a 

compact and efficient module, which can then be arrayed easily. 

 

4.2     Sense Amplifier & Column Read/Write Logic 
 
     The sense amplifier along with its associated read logic is the most critical part of the 

SRAM peripheral circuitry. The tradeoff in performance for area of the SRAM cell in the 

core has to be regained by the efficient design of read circuitry. Sense amplifier stands at 

the top of the read circuitry in terms of contributing to the speed of read process. Hence it 

is necessary to design and characterize the sense amplifier to get the required 

performance across all worst case design corners. 

     Even though the write process is less complex than the read process, the write logic 

has to be validated to ensure reliability across corners along with timing characterization. 

Hence in this work the sense amplifier and read/write logic have been grouped as a one 

module forming the column logic. The block diagram of the column logic module along 

with its sense amplifier is shown below in Figure. 4.2. As shown in the figure the column 

logic consists of read and write data paths. The read data path includes a cascade of sense 

amplifier, D-Latch and a 3-state Buffer. The inputs to the read path, Bit & Bit_b are 

received from the SRAM cell array column. 
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Figure.4.2   Sense-Amp & Column Logic Module 

     The write logic gets the data input and when enabled, it writes the appropriate values 

onto the Bit and Bit_b lines which in turn get written into the selected SRAM cell. This 

column logic structure is repeated across each column of the SRAM cell array and hence 

gains significance in layout. 

     Now that the column logic is defined, it can be easily characterized by a test bench for 

read and write access times along with variation across process corners and different 

loading conditions of the data bus and bit line capacitances. A comprehensive test bench 
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is developed which includes two column logic modules and parameterized capacitors 

being used at each block’s outputs to account for variation across different loads 

capacitances. The testbench taps the outputs of each block in the column logic module 

thus enabling the characterization individually. This is primarily helpful in testing the 

sense amplifier. 

     The testbench for column logic gets the inputs COL and COL_b from two sources, 

viz. the SRAM cell and external voltage sources. The purpose of providing SRAM cell is 

to trigger the Column logic’s read path involving sense amplifier so as to mimic the real 

behavior of SRAM read process. But when it is essential to characterize across different 

sensitizing voltage inputs, an external voltage source is used thereby making testbench 

more generic. For the better understanding of the reader the testbench structure is shown 

in figure 4.3. As shown in the figure, the testbench has two identical column logic 

modules, and when row select RS is selected, the SRAM cell drives the bit lines for a 

read process, otherwise, external voltages are used for read time characterization. 

 

Figure.4.3   Column Logic Module Testbench 
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4.3     Bank Control circuitry & Row Drivers 
 
     SRAM arrays are commonly divided into several sub-arrays called banks as discussed 

in chapter 2. Each of these banks uses several common control signals for handling 

read/write process. But at a given read/write cycle only one bank is enabled while the rest 

are idle, thereby reducing the switching power dissipation. This is usually achieved with 

the help of unique bank select signals for each bank generated from column decoder. 

Additionally, the row drivers needed for each SRAM cell array bank is also gated using 

these bank select signals. 

     The bank control circuitry is a regular repeatable structure used for each bank and its 

characterization is essential to validate the timing of the control signals against the data 

path. Since the bank control circuits are entirely built from standard digital gates, this 

process can be automated completely using a standard cell library and with the help of 

synthesis & place/route tools.  

     The row drivers for each SRAM bank, being a part of bank control circuits can be 

synthesized for appropriate capacitive loading provided by each bank’s SRAM cell array. 

Since the row drivers are identical for all the row select signals, the layout of these 

drivers can be done by simply arraying them out by hand. But it must be remembered that 

the row drivers need to be pitch matched in layout area to the SRAM cell in order to 

achieve efficient area utilization.  

     For simplicity, it is easier to use a pitch-matched standard cell library for both the row 

drivers and other bank control circuits. Basic 2 input and 3 input logic gates along with 

tapered inverters or buffers would suffice for the standard cell library. Once all of the 

required control signals for the SRAM bank are synthesized, the module is then validated 
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across various temperature and process corners, in conjunction with consideration given 

to variations in load capacitances. This is achieved using a testbench developed in 

Cadence Analog Design Environment for more realistic timing analysis. 

 

4.4     SRAM Bank 
 
    An SRAM bank can be considered as a miniature version of the whole memory in a 

sense that it has all basic circuits needed to read and store data, including the control 

signals. It is common for an SRAM bank to have an array of SRAM cells, associated row 

select signals, column logic circuits for each bit column, and required control signals for 

the column logic. The structure of an SRAM bank used in this work is shown in 

figure.4.4. Once the functionality of this regular, repeatable structure is ensured, it then 

just becomes a job of arraying the banks in a regular fashion to achieve the required size 

of memory. Thus it is essential to characterize an SRAM bank module precisely to 

predict overall performance of the SRAM. 

 

Figure.4.4   SRAM Bank 
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     As shown in figure.4.4, the SRAM bank is essentially formed from other critical 

modules discussed in sections 4.1 to 4.3. The column logic array shown in the figure 

corresponds to a group of identical column logic blocks, the total number being set by the 

number of bits in the cell array. Since all of these modules will have to be characterized 

prior to forming a bank type structure, a firsthand performance of the SRAM bank can be 

predicted easily from their timing information. But the timing relations of the controlling 

signals are very crucial to maintain the functionality of the read/write cycles. Hence a 

comprehensive testing procedure was developed to ensure the reliability of operation and 

to measure the read and write access times across various corners with due consideration 

for variation of capacitive loads at data bus and internal bit lines.  

     Let us now consider the task of laying out an SRAM bank. Since the SRAM array is 

just a regular structure, it can be replicated in layout with ease, either manually or using 

automation tools. Similarly automatic layout tools can be applied for bank control 

circuitry, while row drivers can simply be arrayed out by hand since they are pitch-

matched with the cell array. But the layout of Column logic decides the additional area 

overhead and in most cases it has to be done manually to get efficiency in area. Since the 

column logic includes sense amplifier which is a quasi-analog circuit, it has to be laid out 

by hand. But once the column logic is laid out completely with corresponding routing 

lines, it then becomes a single block which can be parameterized and treated as a standard 

cell for place and route. All of these sub-blocks constituting the bank can now be grouped 

together in layout to form an SRAM bank. 
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4.5     Global Control Circuitry 
 
     We have discussed earlier about the control signals utilized in a single bank. But these 

bank control signals are actually the gated & buffered version of global control signals 

running across all the banks. The global control signals are generated from input clocks 

and read/write signal provided to the memory. Global control circuitry is responsible for 

controlling the read/write or idle state of the whole memory block. It is a complete digital 

circuitry and hence it can be synthesized automatically and placed & routed as a block. 

     The design of global control circuitry is straightforward and can be accomplished 

either manually or using synthesis tools. One important issue to be taken care of is the 

buffering required to drive all the banks of the memory. Since the final place & route of 

the whole memory is going to be done with the help of individual critical modules, 

buffering the control signals automatically is not straightforward. It is hence easier to 

buffer the control signals manually after an estimation of the number of banks that are to 

be driven, with due consideration given to parasitic capacitances arising out of long 

routing metal lines. 

     The characterization of global control circuitry is best done using a testbench that 

automatically measures the various timing parameters of control signals. Hence a 

testbench was developed that allows the designer to measure pulse widths, delays, 

rise/fall times of all output signals with ease and to characterize their variations across 

different loads and corners. 
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4.6     Global Address Decoders 
 

     Address decoders control the accessing time of memory locations and set a limit on 

minimum overall read/write access times. Global address decoders are prioritized in 

importance along with sense amplifiers because of their role in providing reliable access 

to all the memory locations. Hence it is essential to efficiently design and accurately 

characterize the performance of address decoders. Address decoders can be classified 

considering to the dimensions of SRAM cell array into Row Address decoders and 

Column Address Decoders. Row address decoders send the decoded row select lines 

across the whole SRAM cell array, which are then decoded locally at each bank using a 

column decoder to enable the cells located in a particular bank. 

     The design of address decoders can be done using HDL, and then synthesized using a 

standard cell library, thereby saving considerable design time. Also, there are many 

architectures available for the designer to optimize area, speed and power, requiring 

meticulous design process which is simplified via the HDL synthesis process. But the 

task becomes even more difficult in laying out the decoders because, the output stage 

must be pitch-matched to SRAM cell to minimize routing problems and maximize 

efficient area usage. Hence a standard cell library with pitch-matched layouts is 

preferable for the synthesis and place & route using automatic tools. Use of standard cells 

for the design also allows coarse estimation of the delays of critical paths of the decoder. 

Nevertheless, precise decoder delays are required to estimate the maximum speed of the 

memory, thereby mandating the need for a testbench which can characterize the decoder 

across variations in loads and process corners. 
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     Functionality of the decoder can be verified and critical paths can be identified easily 

using HDL simulation tools. This way the simulation and optimization times of device 

level simulations can be reduced drastically, especially when the decoder input size 

becomes larger. Once the critical paths are identified, their delays can be more 

realistically characterized using a custom-built testbench in a device level simulator such 

as spectre. Hence in this work a testbench was developed in cadence to characterize the 

delays of identified critical paths across a wide range of temperatures and process 

corners. The delays are also measured across variations in load capacitances of each 

output. 

     The final task in the Global Address Decoders module is that of laying them out pitch-

matched to the SRAM cell array. It is necessary for the decoder output buffer stage to be 

pitch-matched to the cell array, but the internal decoder logic leading to the output lines 

may be laid without stringent area rules. Even though the layout of decoders can be done 

automatically using place & route tools thereby saving time in complex routing, to 

achieve the best of area efficiency, the layout has to be meticulously done manually. 

 

4.7     Conclusion 
 
     This section summarizes the methodology employed in this work to reduce the design 

time of an SRAM. The idea is to efficiently partition the SRAM into several critical 

modules identified based on functionality and repeatability in layout; then develop 

generic comprehensive testbenches; use the test benches to design the critical modules 

until desired performance specifications are met; then lay them out in a way easier to 

array them out if required. Adopting this methodology, six most critical modules have 
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been identified in this work, viz. SRAM cell, Sense Amp & Column Logic, Bank Control 

Circuitry, SRAM bank, Global Control Circuitry, and Global Address Decoders. After 

careful consideration to all the necessary specifications, the testbenches needed to 

characterize these critical modules have been developed. It is with the help these 

testbenches and pitched-matched cell libraries that the design time of the critical modules 

will be reduced. This is because whenever a change in the existing design is desired or a 

new design is developed, it is beneficial to use the generic testbenches with minimal or 

no changes in these testbenches. Once the design is validated across all possible PVT 

corners, the layout of the whole memory can be done with relatively lesser effort by using 

the individual critical module layouts to array them out wherever required. Once the 

critical module designs and their base testbenches are formed, design of larger size 

memories or their variants can be accomplished with lesser effort, and reduced time.
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CHAPTER V 

 

HIGH TEMPERATURE SRAM DESIGN EXAMPLE 

 

     It is expected of an SRAM to have high reliability over its operating range and desired 

to have lesser power consumption with minimum possible area overhead. SRAM is 

primarily used for on-chip memory access needed for a microprocessor or a 

microcontroller. Memory systems account for about 50% of die area in modern day 

microprocessors. Hence it becomes necessary to limit the area occupied by memory on a 

die, simultaneously providing high reliability across its specified operating range. In 

addition to these common factors, the style of SRAM design is governed by the 

application requirements and process limitations. All these factors make the design of an 

SRAM a true custom design specific to a process and application. 

     Previous chapters discussed the various architectures of SRAM and the circuit 

techniques for its constituting modules. The methodology of design time reduction has 

been introduced in chapter IV. This chapter builds on the concepts of previous chapters 

and presents the design of a high temperature standard 6-T cell based SRAM. The design 

of SRAM in this work is driven by the requirements of a high temperature 

microcontroller (OSU-HC11) which needs a 32k-bit on-chip RAM and 32k-bit off-chip 
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RAM being accessed with the help of an SPI controller, each of 8-bit wide data bus. The 

read and write timing diagrams of On-chip OSU-HC11 SRAM is shown in figure 5.1. 

 

 

Figure.5.1 (a)    On-Chip OSU-HC11 SRAM Write timing 

 

 

Figure.5.1 (b)    On-Chip OSU-HC11 SRAM Read timing 
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     The SRAM write and read timings are shown in figure 5.1(a) and 5.1(b) respectively, 

where the signals E and Phi1 stand for the clock signals of frequency 2MHz. Phi1 is the 

delayed version of the system clock E and R/W stands for read/write signal which 

specifying a read or write memory cycle. The addressing scheme used in OSU-HC11 

microcontroller is memory-mapped addressing in which each module has unique address 

by which it gets selected and new address is provided every negative edge of E clock. 

The R/W signal is synchronized with respect to Phi1 clock and during a write cycle, the 

input data from the databus is latched into the memory during the rising edge of Phi1 

which allows 125ns for the data value to be written into the SRAM cells. During a read 

cycle, the bitlines are first precharged for 125ns from falling edge of Phi1 until the rising 

edge of E clock, and then the read data is latched onto the databus during the falling of E. 

The additional signals shown in the read timing of figure 5.1(b) are generated internally 

in the SRAM to effectively control the read process.  

     OSU-HC11 is an 8-bit microcontroller with 16-bit addressing capability. As discussed 

earlier, two versions of SRAMs are accessed by the micro-controller, on-chip and SPI 

SRAMs. The timing diagrams of figure 5.1 represent the on-chip SRAM and are almost 

the same for SPI SRAM except for Phi1 clock being by the internal SPI clock. The basic 

design specifications for the two versions of SRAMs are same and are as shown below in 

table 5.1. 
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Table 5.1    Design Specifications for OSU-HC11 SRAM 

Specification Value/Range 

Memory Size 4k bytes (32k-bit) 

Temp. Range 0C-275C 

Frequency of Operation 2 MHz 

Power Supply Range 2.2V-3.3V 

Process 3.3V, 0.5um Peregrine SOS (Silicon on Sapphire) 

 

     As seen from the table 5.1, the temperature range specified is quite wide. Even though 

the speed of operation is significantly lower for an SRAM, the design is still complicated 

by the fact that the temperature range should be met reliably. Hence in this chapter before 

proceeding to the actual design of SRAM, general considerations for high temperature 

design and device geometry selection for these elevated temperatures are discussed as the 

first section, followed by the discussion on the digital standard cell libraries custom built 

for applicable circuitry in the SRAM. The digital standard cell libraries will be primarily 

used for the design, synthesis and layout of row and column decoders, and for circuits 

used in the generation of control signals to coordinate the read/write cycles. 

    Following these general requirements for any SRAM design, the actual 

implementation of various critical modules identified previously in chapter 4 will be 

discussed in detail in succeeding sections. Following are the critical modules identified in 

this work: SRAM cell 2×2 block; Sense amplifier & Column read/write logic; Bank 

control circuitry & row drivers; SRAM bank; Global control circuitry; and Global 

address decoders. Each of these critical modules emphasizes the design, creation of the 
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testbenches wherever applicable, simulation, and finally the layout, thereby providing all 

the necessary steps involved in generating these modules. The last section presents the 

simulation results and measurement results to validate the design. 

 
 
5.1    General considerations & device geometry selection 
 
     The semiconductor process used in this work is an SOI process (Silicon-on-Sapphire, 

or SOS) from peregrine semiconductor corporation of minimum channel length 0.5um 

and power supply of 3.3V. The key technology parameters of this process are 

summarized in table 5.2. 

Table 5.2    Typical model parameters of 0.5um Peregrine SOS process at 27C 

Parameter PMOS NMOS Unit 

Vth0 -0.654 0.755 V 

Tox 95 95 Å 

Cgso 3.44 2.9 10-10 F/m 

Cgdo 3.44 2.9 10-10 F/m 

Lmin 0.5 0.5 10-6 m 

Wmin 1.2 1.2 10-6 m 

      

     The minimum length and width numbers as seen from the table are good starting 

points for consideration into the digital cell library. From the designated bus load it is 

possible to choose a device length and width satisfying the drive strength required. But 

this kind of minimum length design is not suitable for a wide range of temperature, and 

lot of leakage and reliability issues arise at elevated temperature ranges. The threshold 
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voltage reduction and mobility degradation have to be measured for these increased 

temperature ranges to meet the design specifications. 

     To a first order, the operation of a transistor at the high temperature is affected by drop 

in threshold voltage of the device, degradation in mobility, and significant sub-threshold 

leakage current mechanism, which is enhanced by the reduction in threshold voltage. It is 

necessary to consider two factors for a high temperature design – the operating current to 

leakage current ratio and maximum leakage current in the device. The first factor is the 

Ion/Ioff ratio which is a good figure of merit for the performance of a transistor in digital 

circuits. Ion/Ioff ratio which is defined as the ratio of accepted minimum operating 

current when the transistor is ‘ON’ to the maximum leakage current when the transistor is 

‘OFF’, indicates the reliability of transistor operation. The second factor which is the 

maximum leakage current through the transistor will be crucial to estimate the power 

wasted through leakage. Since modern day chips constitute millions of transistors, it 

becomes almost mandatory to monitor the leakage current mechanism in a process to 

enable reduced leakage power design.  

     All of the above mentioned factors in conjunction with the drive strengths required at 

a given frequency of operation have to be considered in choosing the device geometries 

for any digital design to reliably satisfy the wide temperature range. Hence in this work, 

the device length selection process involved obtaining Ion/Ioff ratio and Ileak 

measurement results for channel lengths varying from Lmin to 3×Lmin for temperatures 

ranging from 27C to 275C and then choosing a value based on above considerations. 

Once the lengths for PMOS and NMOS were chosen, their widths for a 1X load value 

were easily calculated, and used to build the standard cell library. 
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5.2    Row & Column Cell Libraries 
 
     The use of a standard cell library for synthesizing and laying out the digital circuitry 

needed in the SRAM simplifies the design process and helps reduce the time involved in 

functionality & timing validation, and generating layouts. It is easily seen that the 

standard cells could be used in critical modules such as global address decoders, global 

control circuitry, bank control circuitry and row drivers. But the type of standard cells 

and their cell layout heights may be dependent on whether they needed to be pitch-

matched with the SRAM cell’s row height or column width. In addition to different cell 

heights, the standard cells may be oriented horizontally or vertically in their layouts to 

make efficient use of area. This is especially true in cases of row decoder, and column 

logic & its control, where the cells may be horizontally and vertically oriented 

respectively, to simplify routing. Hence to make the design process more flexible, two 

standard cell libraries were developed in this work: the row cell library and the column 

cell library, which primarily differ in cell heights, layout orientation style – horizontal or 

vertical, and buffer drive strengths.  

     The first task in developing the cell libraries was to select the device geometries for 

PMOS and NMOS transistors required to create a 1X inverter. Since the frequency of 

operation of the SRAM is 2MHz, which is quite low, the channel length selection is 

influenced primarily by the area limitation, the Ion/Ioff ratio at high temperatures and the 

maximum leakage currents through the devices at these temperatures. Hence the 

transistor Ion/Ioff ratio and Ileak measurement results for temperatures ranging from 27C 

to 275C were utilized to select the channel lengths of PMOS and NMOS transistors. A 

length of 0.8um for a PMOS device and 1.4um for an NMOS device was chosen. The 



48 
 

corresponding Ion/Ioff ratios for these devices at different temperatures are shown in 

table 5.3, while the maximum leakage currents are shown in table 5.4. 

 

Table 5.3    Measured Ion/Ioff Ratios per 1µm width of 0.8um PMOS and 1.4um NMOS 

Temperature 27C 200C 275C 

PMOS 2.36×106 7827 1613 

NMOS 84000 600 155 

 

Table 5.4    Measured Maximum Leakage currents per 1µm width of 0.8um PMOS and 

1.4um NMOS 

Temperature 27C 200C 275C 

PMOS 7.014×10-12 A 1.14×10-9 A 7.94×10-9 A 

NMOS 458×10-12 A 10.6×10-9 A 46.1×10-9 A 

 

     Now that the channel lengths are fixed, the given 1X load of 12fF was used to 

determine the widths of a beta-matched 1X inverter. Once the geometries of beta-

matched 1X inverter are chosen, the task then simplifies to matching the drive strengths 

for all other necessary logic gates and developing the required buffer drivers.  

     The SRAM cell was designed, laid-out and its layout dimensions were made available 

beforehand, so as to enable the layouts of the standard cells. The list of cells included in 

each library differs slightly in addition to the cell layout heights. The following two 

sections 5.2.1 and 5.2.2 discuss the row cell library and column cell library respectively 

from a closer perspective. 
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5.2.1    Row Cell Library 
 
     The row cell library was developed primarily to facilitate the synthesis and layout of 

global row address decoder which needs to be pitch-matched in layout to the SRAM 

cell’s height. In addition to the global row address decoder, the global row buffers, the 

local decoder and its associated buffers also need to use the pitch-matched cells from the 

row cell library.  

     The standard cells needed to meet the requirements of all these circuits primarily 

include basic 2 and 3 input NAND, AND, NOR, OR and inverter buffers. Hence a total 

of 15 logic gates were built including inverters of various drive strengths. The transistor 

level schematics of all these gates were characterized using Cadence Signal-Storm tool 

across different capacitive loads and input signal slew rates. Once the characterization of 

these gates was accomplished, all the cells were laid out satisfying the required cell 

height criterion imposed by the SRAM row pitch, and the laid-out cells were abstracted 

to help the place & route tool in using these standard cells for auto-layout of any circuit. 

The layout orientation style is horizontal for all the cells in this library and as an example, 

the layouts of 1X inverter and 2-input NAND gate are shown below in figure 5.2. 

      

(a) (b) 

Figure.5.2   Layouts of row cell library (a) 1X Inverter (b) 2-input NAND gate 
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5.2.2    Column Cell Library 
 
     The column cell library is used by bank column control circuits, column read/write 

logic and global control circuits. The device lengths for PMOS and NMOS devices and 

geometries for basic gates in the column cell library are the same as used for the row cell 

library, with the differences being addition of D-latch and tri-state buffers of various 

drive strengths needed for the column read/write logic and the layout style being vertical 

for many standard cells. In the column cell library there are certain cells including the D-

latch and tri-state buffers, which need to be pitch-matched to the SRAM cell’s width. In 

addition to being pitch-matched in layout, these cells have to be laid out in a vertical 

fashion so as to efficiently utilize the column logic area. This is exemplified by the 

layouts of D-latch and 3X tri-state buffer as shown in figure 5.3. 

                        

(a) (b) 

Figure.5.3   Layouts of Column cell library (a) D-Latch (b) 3-state Buffer (1X) 

     As it can be seen from the figure, the metal used for power rails is different than that 

of the cell in row cell library. This does not come as a surprise since the horizontal and 
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vertical routing of metals are usually accomplished using different metal layers. In 

addition to these pitch-matched and vertically laid-out cells, other standard cells using 

less stringent cell heights are also included in the column cell library to synthesize the 

control circuitry. All the cells in the library are yet again passed through the process of 

characterization and abstraction to facilitate synthesis and automatic place & route of 

digital circuits using this cell library. 

 

5.3    SRAM cell 2×2 Module 
 
     The design of SRAM was partitioned into several critical modules as discussed in the 

previous chapter. In this section, the first and foremost component, the SRAM cell 

module is discussed in detail in terms of its design, testbench creation & simulation, and 

the layout. The terminology 2×2 refers to the layout structure in which 4 SRAM cells, 2 

in a row and 2 in a column, are used in a flipped fashion along its two dimensions to 

minimize the layout area. This same structure of 4 SRAM cells is used in the schematic 

module so that the entity as a whole can be interpreted as a standard cell, along with its 

characterization testbench for the benefit of the designer. In the following sub-sections, 

the design procedure of the SRAM cell used in this work, with the 3.3V 0.5um SOS 

peregrine process is discussed followed by its testbench creation & characterization 

finally culminating at the layout of the SRAM cell module. 

 

5.3.1    Standard 6-T SRAM cell Design 

     The design of an SRAM cell is the most important aspect of the entire SRAM module 

in terms of functionality, performance and reliability. Majority of the die area is occupied 
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by the SRAM cell array and its building block is the single SRAM cell storage element. It 

is thus mandatory to design the SRAM cell to provide not just the functionality, but also 

reliability and performance characteristics such as low operating & leakage power, 

minimal area across various process, voltage and temperature corners.  

     In this work, a standard 6-Transistor SRAM cell was used as shown in figure 5.3, with 

PMOS pass transistors. The reason for choosing the PMOS transistors as the access 

transistors is that the P-devices have less leakage currents for significantly smaller 

channel lengths in the peregrine 0.5um SOS process than the N-devices, especially at 

high temperatures. The reduced leakage currents through the access transistors M5 and 

M6 of figure 5.4, ensures reliable SRAM cell data retention at high temperatures and also 

helps reduce significant power dissipation through the entire cell array. 

 

Figure.5.4   Circuit Schematic of 6-T SRAM cell with PMOS access transistors 

     The actual design of transistor geometries started off with the selection of channel 

lengths for the NMOS and PMOS devices to be used in the identical cross-coupled 

inverter. Using the help of measured results for transistor threshold voltage variations and 

leakage performance at high temperatures, the length of NMOS transistors used in the 

cross-coupled inverters was chosen to be 1.4um while that of the PMOS is set at 0.8um. 
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     There are two aspects involved with the sizing of transistors in the SRAM cell – 

prevention of read upset errors when reading a cell and the ability to overwrite the stored 

bit during write process. With the help of transistor currents flowing into and out of the 

SRAM cell, the sizing ratios can be determined for all the transistors in the cell. For 

example, assuming that the bit lines are precharged to VBL, the design equations in 

general governing the sizing of the transistors in the SRAM cell of figure.5.3 to ensure 

reliable read operation when the pass transistors are enabled are shown by equations 5.1 

and 5.2, where  stands for the maximum change in internal node voltages of the cell. 

 

 

     In the above equations,  and L  refer to the geometries of pull-up PMOS,  

and L  refer to NMOS pull-down of the inverter and  and L  refer to that of 

the pass transistor. It has to be ensured that the internal node voltages of the SRAM cell 

do not exceed the threshold voltages of the cross-coupled inverter pair by sizing the 

transistors with the help of equations as shown above, thereby preventing read upset 

errors. Similarly design equations have to be used to size the transistors for writing a 

value into the cell, in which case the SRAM cell has to be designed such that it can be 

overwritten reliably during the write process. Usually reading from the cell is more 
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difficult to design for than writing into the cell and care must be taken to design the cell 

robust to variations in process, temperature and supplies. 

     By following the above mentioned design procedure the 6-T SRAM cell was designed 

to work with a bitline precharge voltage of VDD/2 and simulated to verify the 

performance and functionality across corners using a comprehensive simulation testbench 

which is discussed in the next sub-section. The final device geometries achieved to work 

over all the worst case corners are shown below – 

 

 

 

 

5.3.2    SRAM cell module Testbench 

     After firsthand device geometries are calculated using the design equations, it is 

essential to verify the design procedure’s validity by simulations and also to gauge its 

performance across all possible corners along with load changes. This necessitates a 

series of simulations to verify its functionality, measurement of noise margins, and 

read/write delays. The simulation results can be interpreted to fine-tune the geometries 

and achieve the required performance. Hence a testbench was developed as a part of 

SRAM 2×2 module which could characterize the SRAM cell for all the necessary 

performance metrics in Cadence Analog Design Environment as shown in figure 5.5. 
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Figure.5.5   Circuit Schematic of SRAM cell 2×2 Testbench 

     As shown in the figure, there are 4 SRAM cells equally organized along the two rows 

and columns, representing a miniature cell array. The internal nodes Q and Qb of each 

cell are pulled out as pins to monitor their voltage fluctuations during a read process and 

also to measure the write delays. The COL and COL_BAR pins are connected to bitlines 

named as COL and COL_b respectively, while RS represents the row select. The COL 

and COL_b lines have been loaded with capacitors whose values are determined by the 

total number of words which will be given as an input to the testbench. The internal 

nodes Q and Qb are also loaded with negligible capacitances (1fF in this case) to act as 

termination as well as help in setting initial bit values to the SRAM cells, thereby 

allowing the SRAM write test in transient simulation.  

     The Cadence Analog Design Environment window of the SRAM cell module 

testbench is shown in figure 5.6. As shown in the testbench, there are two analyses 
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performed on the testbench circuit – DC analysis and Transient analysis. DC analysis is 

used to find the cross-coupled inverter pair’s switching thresholds. The transient analysis 

is utilized to find the maximum internal node voltage variations inside the SRAM cell. 

From these measurements the noise margins of the SRAM cell are calculated and 

provided to the designer. In addition to the noise margins, the write delay and read delay 

are measured for a specific voltage difference developed across the bitlines. Using the 

help of simulation states and design variables, the testbench is made generic to allow 

user’s input of number of word lines and bitlines and also the process variations in 

conjunction with the temperature, thus helping the designer in measuring performance 

metrics of any SRAM cell with little effort. 

 

 

Figure.5.6   Cadence ADE window of SRAM cell 2×2 Testbench 
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5.3.3    SRAM cell Module Layout 

     The layout of SRAM cell module is organized as a 2×2 array, where 4 SRAM cells 

are laid-out along the two rows and two columns flipped in layout both horizontally and 

vertically, to save power rail routing space. The layout of the SRAM cell 2×2 module is 

shown in figure 5.7. As shown below, the dimensions of the layout structure are 

23.4µm×19.6µm. for 4 SRAM cells, making each SRAM cell area as 11.7µm×9.8µm. 

The SRAM cell module is now complete with all the required components for an SRAM 

array design, from its initial design and timing characterization to the layout of the array. 

 

 

Figure.5.7   Layout of SRAM cell 2×2 Module 
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5.4    Sense Amplifier & Column Read/Write Logic 
 
     As discussed earlier, the sense amplifier is grouped with column read/write logic to 

form a single entity in which except for the sense amplifier, other components of the 

column logic are digital blocks which can be formed from the column standard cell 

library developed before. This single entity can be handled easily in the layout as well as 

characterized for read and write delays. This section deals with the design, simulation and 

layout of the blocks involved in forming the column logic.  

 

5.4.1    Sense Amplifier and Column read/write circuit Design 

     The sense amplifier used in this work is a variation of alpha latch sense amplifier 

discussed in chapter 3. It is a clocked regenerative sense amplifier with differential input 

stage and cross-coupled PMOS loads as shown in figure 5.8. In the figure, the transistor 

network M1-M9 forms the actual amplifier with transistors M10-M12 being used for 

precharging and equalizing the bitlines. Transistors M1&M3 and M2&M4 act as single 

stacked transistor pair used to prevent the kink effect. The sense amplifier is clocked 

using the sense enable signal SE which controls the NMOS transistor M7. 

     A typical read cycle starts by precharging the bitlines to a voltage, which is VDD/2 in 

this case and then enabling the SRAM cell to develop a voltage difference across the 

bitlines COL and COL_BAR which are the inputs to the sense amplifier. When sufficient 

voltage is developed across the sense amplifier, the sense enable signal SE is raised, 

thereby starting the sensing action. The input differential pair produces a corresponding 

current difference through its legs which enables the cross-coupled PMOS pair to quickly 

settle the output values to final logic values. The outputs of the sense amplifier are fed to 
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a D-latch which then latches the data onto the databus through a tri-state buffer. When the 

sense amplifier is not used, the outputs are pulled high using transistors M8-M9. 

 

Figure.5.8   Schematic of Sense amplifier for OSUHC11 SRAM 

      

    Since the frequency of operation of the SRAM is low (2MHz), the geometries of the 

sense amplifier are not too critical, and are primarily decided by the input offset voltage 

and the sensitivity required. The input differential pair was designed to provide less than 

5mV of offset, and the pellgrom numbers of the process are used to estimate the device 

area assuming a channel of 1.4um for the input NMOS pair which satisfies the offset 

criterion. The input pair M1 and M2 has W/L = 2×10µm/1.4µm. The PMOS loads are 

beta-matched to the NMOS pair and has W/L = 2×13µm/0.8µm. The offset estimations 

of these geometries from the pellgrom coefficients are as shown below: 
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     The sensitivity required is assumed to be 6σ which comes to approximately 20mV. 

Hence this is the minimum voltage required by the sense amplifier to reliably sense the 

bit. The sense enable signal SE should be enabled only after at least this voltage 

difference is developed at the input. After worst case estimation of bit line capacitance, 

the time taken by the SRAM cell to develop this voltage difference across the bitline 

capacitances at the worst case corner is simulated and the SE signal is triggered 

sufficiently after this time delay. The designed sense amplifier is simulated for 

functionality and performance across corners and the worst case sensing delay was found 

to be about 7ns. 

     In addition to the sense amplifier, the column logic module has a D-latch and tri-state 

buffer driving the databus as a part of read circuitry. Likewise the write drivers and its 

logic form the write circuitry and are being included in the column logic. As discussed 

earlier, the D-latch and tri-state buffer are pulled off from the column cell library and 

integrated with the sense amplifier to complete the SRAM column read path. The write 

logic and corresponding drivers are designed such that the bitlines are pulled high to 

VDD whenever the SRAM cell is not being accessed and drive data values on the bitlines 

during the write cycle. The write drivers have been sized such that they provide sufficient 

currents required for a write process while minimizing the leakage when not used. 
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 5.4.2    Column Logic Simulation 

     The testbench developed for the characterization of column logic involves simulating 

sense amplifier as a standalone entity in addition to the simulation of the entire data path, 

thereby allowing a single testbench circuit to characterize both the analog and digital 

portions of the column data path. The sense amplifier input voltage difference is fed to 

the testbench by the user, using which the delay contributed by the sense amplifier alone 

is measured and displayed to the user. This is essential to characterize the delay of the 

sense amplifier as a function of its input voltage difference. Similarly the whole column 

logic is connected to an SRAM cell to measure the data write times of the column logic 

into the cell. This way of using an SRAM cell to provide the data values across the 

bitlines helps in measuring realistic delays of the whole read path including the D-latch 

and tri-state buffer. The sense amplifier enable signal SE should be triggered 

appropriately as to allocate enough time for the SRAM cell to develop a voltage 

difference across the bitlines. This is achieved by specifying a time delay value to the 

design variable in the testbench to care of the sense enable timing. 

     The simulation artist window is shown in figure 5.9 to illustrate the significance of 

using design variables and cadence functions to automatically measure the timing 

parameters of the output waveforms and display them for user’s benefit. As seen from the 

artist window, various propagation delays are computed by the testbench which provide 

the overall time taken for the read process upto the databus as well upto each stage in the 

data read path. 
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Figure.5.9   Cadence ADE window of Column logic testbench 

 

5.4.3    Column Logic Layout 

     There are four components in the column logic module, the sense amplifier, D-latch, 

tri-state buffer and write logic. In forming the layout of column logic module, the D-latch 

and tri-state buffer layouts are pulled off the column cell library while the sense amplifier 

and write logic are laid-out manually to accommodate additional routing lines in the form 

of bitlines which cease at the inputs of the sense amplifier. All the control signals are 

routed horizontally across the column logic. The module has two identical column logic 

layouts flipped vertically and abutted to make efficient usage of the area. The final 

dimensions of layout for the column logic are 330µm × 9.8µm, where 9.8µm corresponds 

to the horizontal pitch of the SRAM cell. 
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5.5    Bank control circuits & local row drivers 

     The column logic and SRAM cell module discussed in previous sections need control 

signals to organize their timing for read and write operations. Since the SRAM cell arrays 

will be organized as distinct banks in this work, only one of them can be active at any 

given read or write cycle which can be achieved by controlling the column logic and cell 

array using gated control signals. These bank control circuits are generated from the  

local control circuitry which is just a repetitive circuitry used by each bank, having 

common input signals and gated by unique bank select (BS) signal arriving from the 

column address decoder.  

     The design of this local control circuit is simple and may be accomplished by using 

HDL and synthesized using a standard cell library or manually by using schematic 

capture tools. The column cell library discussed earlier is used to design the local control 

circuits with sufficient buffers needed by each control signal to drive the load presented 

by the column logic and SRAM cell array. The bank select signal which gates these 

signals also need heavy buffering as it virtually drives all the gates in the local control 

circuitry. Figure 5.10 shows a glimpse of local control signals in the cadence schematic 

capture tool. Though its design is quite simple, it is essential to verify the timing 

relationship within these control signals across all corners to ensure the functionality of 

the read/write process. Hence the control circuitry was simulated in cadence spectre and 

its timing parameters were verified, in addition to the functional verification done with 

the help of HDL tools. 
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Figure.5.10   Schematic of Local Control Signals 

 

5.6    SRAM Bank 

     The divided word line architecture utilized in this SRAM required the number of 

banks as 16 for generating a memory of 4k bytes, where each bank is of 256 words and 8-

bit wide. The SRAM bank is constructed from the modules discussed so far. It has an 

array of SRAM cells, in this case 256×8; 8 column logic circuits, one for each bit; bank 

or local control circuitry and finally the 256 row drivers corresponding to 256 words.     

The number of words per bank is decided to be 256 based on the layout dimension of 

each bank, which in turn depends on the layout dimension of each SRAM cell, and total 

capacitance on the bitlines which affects the read delays. The design of SRAM cell and 

column logic is carried out by estimating the bitline capacitance offered by 256 words of 
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the SRAM cell array. The bank control signals are buffered appropriately to drive the 8 

column logic blocks needed to access 8-bit data from the array. Similarly the 256 local 

row drivers are identical circuits which are buffered to drive the access transistors of all 

the 8 SRAM cells organized in a single row. Since all the necessary components needed 

to form the SRAM bank are built beforehand, it just becomes the job of grouping them 

together, both in schematic and layout. 

     Since the SRAM bank can be considered as a miniature version of the entire memory 

except for the address decoder delay, the timing characterization of an SRAM bank 

reveals close to actual read/write access times of the memory. Additionally the switching 

power dissipation contributed by a single bank will be roughly the same for entire 

memory with the exception of decoder and global control circuitry power dissipation 

because of the fact that only one SRAM bank is “on” at a given read/write cycle.  

     Once the SRAM bank schematic was built, the simulation was carried out in two 

ways, one with complete SRAM bank schematic and other one with the cell array being 

reduced in size down to a few bytes to decrease the simulation run time. The bitline 

capacitance was modeled in the testbench schematic using an ideal capacitance whose 

value is set by the user during the simulation and the timing parameters like signal 

rise/fall times, write/ read access times and average switching power dissipation are 

calculated by the testbench automatically using built-in functions. 

     When it comes to laying out the SRAM bank, the cell array needs to be laid-out first 

from the SRAM cell 2×2 module by simply instantiating multiple copies of the 2×2 cell 

layout block in rows and columns as required. Once the cell array is formed it is 

connected to the pitch-matched column logic module, pitch-matched row drivers and 



66 
 

local control circuitry to from the SRAM bank as shown in figure 5.8. The figure is split 

in two owing to its skinny dimensions. Figure 5.11(a) shows the local control circuitry 

connected to the column logic module and figure 5.11(b) shows a small section of SRAM 

array in conjunction with its pitch-matched row drivers.  

                        

Figure 5.11     Layout of SRAM Bank (a) Column logic and control circuitry (b) small 

section of SRAM cell array along with its row drivers  

  

5.7    Global Control Circuitry 

     The global control circuitry is the overall controller of memory operations and is 

responsible for generating signals which control timing of read and write cycles of all the 

SRAM banks and address decoders. These global control signals run all over the memory 

and drive the local control circuitry which distributes the buffered control signals to the 

selected bank. The inputs to the global control circuitry are the memory input pins 

including, but not limited to, the clock signal (CLK), Read/Write (RW) signal and chip 
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select (CS). In this work, since two slightly different SRAMs were developed, one for on-

chip HC11 RAM and the other off-chip SPI RAM, the global control circuitry was 

slightly different for these two memories. Except for a few control logic signals, 

everything else is exactly the same for these two versions of SRAM.  

     The design of the global control logic was accomplished using HDL and the standard 

cell library developed earlier. The critical part involved in its design is the buffering of all 

the control signals needed to drive appropriate bank control logic, as well as buffering the 

clocks to synchronize the address decoders. The capacitive loading on each of these 

global control signals are estimated first and then tapered buffers are used. The timing 

relations of the generated control signals are analyzed using a dedicated simulation 

testbench and verified across all temperature and process corners. The layout of the final 

control circuitry was done by utilizing the standard cell layouts of column cell library. 

 

5.8    Global Address Decoders 

     There are two global address decoders used in this SRAM: the row address decoder 

and the column address decoder. Since the total number of words in each bank is 256, an 

8-to-256 row decoder is necessary to select one word out of 256 words of an SRAM 

bank. Likewise, a 4-to-16 column decoder is necessary to provide 16 Bank Select signals 

for the 16 SRAM banks where only one is activated for any given address, thus making 

the total number of words to be 256×16 or 4k, with a word being 8-bit wide. Hence a 

total of 12 address bits are needed to access all the 4096 words. But the address bus width 

of OSU HC11 micro-controller is 16, and hence the extra 4 bits are used to enable or 

disable the memory from accessing the common databus of the micro-controller. 
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     The design of 4-to-16 column decoder is straightforward and was accomplished using 

pre-decoding the 4 address inputs as two 2-to-4 decoders. The two pre-decoders generate 

4 output lines each, which when ANDed two lines at a time generate a total of 16 output 

lines. This way of pre-decoding reduces number of logic gates required to design the 

decoder, as well as reduces area and power. But internal lines may need buffers which are 

usually very small in number when compared to the design without pre-decoding. The 

actual schematic of the designed 4-to-16 column decoder is shown in figure 5.12. As it 

can be seen from the figure, the 4 inputs are pre-decoded to generate 8 lines which are 

then utilized to generate 16 output lines. All the decoder output lines are buffered 

appropriately to account for the loading. The design was implemented using structural 

verilog code and was laid-out using the column standard cell library developed earlier. 

     The 8-to-256 row decoder was designed using two 4-to-16 pre-decoders and its design 

became much simpler once the 4-to-16 decoder was developed for the column decoder, 

as the same design can be re-used with very few changes to internal buffering and the 

addition of final stage comprising of 256 buffered AND gates. The row decoder however 

has to be laid-out using the row cell library whose standard cells are pitch-matched in 

layout to the SRAM cell. 

     Both the decoders were functionally verified using verilog before being subjected to 

realistic simulations using spectre. The 8-to-256 row decoder was simulated across the 

worst case corners and its delay was measured to be 7ns at the high temperature corner, 

which is well faster than the allocated 125ns decoding time. The layout of the decoder 

was carried out by hand, even though it can be accomplished with the help of automatic 

place & route tools, to save a lot of layout area. After meticulous hand-layout process, the 
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final dimensions for the pitch-matched row decoder were 3.3mm × 0.4mm, indicating a 

skinny decoder. 

 

Figure 5.12     Schematic of 4-to-16 column decoder using 2-input pre-decoding 

      

     Once all the modules have been characterized individually, they can be grouped 

together as a library and can be used to construct a complete SRAM with flexibility of 

changes to existing modules and verifying them using the corresponding testbenches. 

This procedure was followed to build the complete 4k bytes of SRAM by combining all 

these block individual blocks and the final layout looks as shown in figure 5.13. The 

dimensions of the SRAM are 2.2 mm by 3.7 mm or 8.14 mm2. 
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Figure 5.13    Layout of 4k SRAM for OSU-HC11 

 

5.9    Results & Waveforms 

     This section presents the results for various performance parameters of the designed 

SRAM. The section starts off with a summary of design characteristics and then presents 

the simulated results for timing parameters and waveforms for SRAM cell and sense 

amplifier as well as the results for read and write access times. Finally the measured 
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results for SPI SRAM are presented. A summary of characteristics for the designed 

SRAM according to simulations are shown below in table 5.5. 

 

Table 5.5    Design Summary for OSU-HC11 SRAM 

Specification Value/Range 

Memory Size 4k bytes (32k-bit) 

16 Banks (1 Bank=256×8bits) 

Temp. Range 0C-275C 

Frequency of Operation 2 MHz 

Power Supply Range 2.2V-3.3V 

Simulated Read time 

(Decoder + Read data path) 

44ns 

Simulated Write time 

(Decoder + Write data path) 

31ns 

Layout Dimensions 2.2mm × 3.7mm (8.14 mm2) 

 

 

     The simulated waveforms of read and write operations for the SRAM cell are shown 

below in figures 5.14 and 5.15, where Q0 and Qb0 represent the internal nodes of the 

cell, COL0 and COL0_b represent the bitlines and RS0 stands for the row select signal. 

The worst case fluctuations of the internal nodes of the SRAM cell are kept under 0.5V 

so that they are lesser than the threshold voltages of the transistors used in the cross-

coupled inverters of the cell. 
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Figure 5.14     Simulated waveforms of SRAM cell read operation  

 

 

 

 

Figure 5.15     Simulated waveforms of SRAM cell write operation 

     



73 
 

      The following table 5.6 summarizes the SRAM cell timing parameters and noise 

margins for worst case corner of slow process, and 275C. 

 

Table 5.6    SRAM cell timing parameters & cell noise margins 

Parameter Value/Range 

Cell voltage Read Fluctuations 0.49V (fall) 

0.18V(rise) 

Read Noise margin 1.01V 

Write Noise margin 0.9V 

Read delay (100mV) 4.56n 

Write Delay 5.4n 

      

      

     The sense amplifier and column logic read timing waveform is shown in figure 5.16, 

where SA_D0 and SA_Dbar0 are the outputs of the sense amplifier and Qout0 is the 

output of the D-latch in the column logic, where the total read access time can be 

measured. The signals COL0 and COL0_b refer to the bitlines and SE is the active high 

sense enable signal. The design characteristics of the sense amplifier are summarized in 

table 5.7 for worst case corner of slow process and 275C temperature. 
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Figure 5.16     Simulated waveforms of Sense amplifier & column logic read cycle 

 

 

 

Table 5.7   Simulated Sense amplifier & column logic timing characteristics 

Parameter Value/Range 

Sense amplifier Read delay 7ns 

Word line to Dout read delay 24ns 

Word line to Write delay 11ns 

Average Sense amplifier 

power/cycle 

55µW 
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     One bank of SRAM was padded out separately to verify its functionality and measure 

the performance across the range of temperatures designed for. Various test vectors were 

applied to verify the functionality, which include, writing all ‘00’ and ‘FF’ on  a 

background of ‘FF’ and ‘00’ respectively to all the SRAM cell locations to verify the 

write test. The written values are then confirmed by reading back the corresponding 

locations. Similarly the sequences of ‘AA’ and ‘55’ were also tested to verify the impact 

of opposite bit patterns on alternate locations. Figure 5.17 shows a snapshot of the SRAM 

read waveforms for one bank as seen in the Logic Analyzer for reading the sequence 0-

255 stored in 256 locations sequentially ,where Do stands for the Data being read out, E 

is the clock signal, PC stands for the precharge signal and RW is the read/write signal. 

 

Figure 5.17    Logic Analyzer waveform of one SRAM Bank read operation 
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     Similarly tests were conducted on the fabricated SPI SRAM of 4k bytes and the 

design was verified for functionality across higher temperature ranges. Table 5.8 

summarizes the testing results of SPI SRAM. 

 

Table 5.8   Summary of measured characteristics of SPI SRAM  

Parameter Value/Range 

Maximum operating frequency 8MHz 

Temperature Range 27C-275C 

Maximum Power Dissipation 

(at 275C) 

26mW 

Power Supply Range 2.0V – 3.6V 

 

 

5.9    Conclusion 

     There were two different SRAM memories designed for the OSU-HC11 system 

where one was on-chip and other one was off-chip communicating to the controller 

through an SPI. Once the on-chip SRAM was designed, methodology discussed in 

chapter 4 was implemented for designing SPI SRAM where the critical modules that had 

been characterized earlier were used. The two designs differed in some control signals 

and clocks used, in addition to providing a dedicated pin for standby operation in the on-

chip SRAM. The fabricated SPI SRAM was tested and verified for functionality and the 

performance metrics were measured for the desired temperature ranges. 
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CHAPTER VI 
 
 

Conclusion & Future Work 

 

     This work was concentrated on implementing a high temperature SRAM to be used in 

a high temperature micro-controller system for the application of Downhole oil drilling. 

Importance of reliability concerns caused due to the leakage currents at these higher 

temperatures formed the basis for designing the standard 6-T SRAM cell geometries and 

the considerations for choosing the geometries were discussed in the last chapter. Divided 

word-line architecture was utilized in this work to reduce the delays caused by switching 

large capacitances of the array, thereby increasing word line activation speeds and 

lowering the dynamic power dissipation across these large capacitances. 

     A methodology was proposed and adopted to reduce the design time of high 

temperature SRAMs by judicious partitioning of SRAM into modules that can be 

organized and characterized easily using cadence design suite. These individual critical 

modules can be considered as analogous to the standard cells of digital cell library in a 

sense that they are characterized for timing parameters and functionality as well as has 

individual layouts that can be used to form the layout of a complete SRAM. Additionally 

these critical modules offer flexibility to the memory designer by providing access to 

generic testbenches that are used to characterize these modules in cadence. 
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     The methodology of design time reduction was adopted for the SPI SRAM after 

designing the on-chip SRAM. The designed SRAM was fabricated as an SPI SRAM and 

was tested & verified for its functionality and performance across the specified 

temperature ranges of 27C-275C. 

     As a future work, the partitioned SRAM modules and their testbenches can be used as 

starting points for designing a high temperature SRAM compiler in which the testbenches 

and simulation process can be done automatically after developing meticulous skill code 

routines. Adding automatic design capability for SRAM cell and sense amplifier by 

optimizing the device geometries for a given circuit topology will be hard to achieve, yet 

provides flexibility to the design process. 
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