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CHAPTER I 
 

 

INTRODUCTION 

 

As computer applications are becoming more complex, large and versatile; the 

advent of Complex Chip multiprocessor is ubiquitous. So, designing a complex core and 

other micro architectural parts of it in Register Transfer Level (RTL) are becoming 

cumbersome and time consuming. So, arrival of High Level Hardware Description 

Language (HDL), also called Electronic System Level (ESL) Language is welcomed and 

necessary.  This level of language abstracts long and detailed RTL descriptions and 

emphasis more on algorithmic problem. SystemC is an IEEE standard ESL which is now 

widely researched in Universities and Electronic Design Automation (EDA) industries. 

SystemC also offers high productivity by providing the opportunity of co designing 

hardware and software for earlier verification and trade-offs. Instruction Set Simulator 

(ISS) simulates Instruction Set Architecture (ISA), is faster while Cycle Accurate 

Simulator (CAS) is related to real architectural implementation. In this thesis a research 

based ISS designed in SystemC for MIPS architecture will be explored and testing 

method using benchmark will be discussed. Also, designing a cycle accurate ISS is a step 

forward to design a real processor. So, some future work for the implementation of this  
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design will be justified. This simulator is a part of a multicore computer architecture 

research, as SystemC is highly modular and portable, joining cores and caches will be 

easier and quicker than conventional programming or HDL languages. 

ISS is widely used for software verification in simulated hardware and computer 

architectural research. Popular ISS’s are SIMICS, Simplescalar, OVPSim etc. They are 

designed in higher level languages like C, C++ or Java and not cycle accurate. So, 

benchmark result on this simulators is not necessarily predicts real hardware simulation. 

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline Stages) is a 

Reduced Instruction Set Computer (RISC) ISA was developed by now obsolete MIPS 

Computer Systems (present day MIPS Technologies). MIPS is a result of Stanford 

University research group’s work led by Dr. by John L. Hennessy in 1981. The basic 

concept was to increase performance by using deep pipelining. CPUs are built up from a 

number of dedicated sub-units such as instruction fetch unit, decoders, Arithmetic and 

logic unit (ALU), load/store units and so on. In a traditional non-optimized design, a 

particular instruction in a program sequence must be executed before next instruction is 

fetched. But in a pipelined architecture, successive instructions can overlap in execution. 

MIPS is a very popular ISA for its simple design. It is taught almost everywhere as 

in Computer Architecture course as ISA. So, designing an ISS for MIPS should be 

comfortable for wide availability of information about its architecture. SystemC is a next 

generation ESL which provides outstanding opportunity for hardware and software 
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verification. As this ISS designed in SystemC is cycle accurate, it will provide more close 

hardware simulation. On the availability of high level synthesizer, this code can be easily 

modified for synthesisation. Simulation of multicore architecture in conventional HDL 

languages like Verilog or VHDL is very cumbersome and slow while in system level 

simulation with languages like C, C++ and Java is not good enough to provide 

standardization and simulate the real flow of the instructions. SystemC provides unique 

and unprecedented opportunity to design a complex hardware like multicore processor 

in more abstract level and standard way. To design a multicore system in SystemC is 

very suitable as it is highly modular and intuitive. This project is part of broader project 

where the novel micro-architectural design will be tested. So, designing a correct and 

efficient single core MIPS is the most important part.  

1.1 Research interest & Literature review:     Most of the MIPS ISA’s are designed for 

System On Chip (SOC) research [1-3], where RISC type cores are integrated with other 

hardware modules. But there are very few instances of MIPS core designed in SystemC 

for Computer Architecture Research. We designed a single core for MIPS I ISA and some 

part of MIPS IV ISA in a modular fashion so that we can declare instances for new cores 

and interface with other cores and other Micro-Architectural parts to make it a full 

multicore Simulator for our Computer Architecture Research at Oklahoma State 

University. 

SoC-Mobinet (System on Chip for Mobile Internet) [4] is a project of European 

Commission, addressing research training in microelectronics. This project has 
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developed a synthesizable MIPS processor in SystemC. It is also open-source and can be 

downloaded [5]. But it has no roadmap for multicore research. 

Yon Jun et al [6] have designed a MIPS processor in SystemC which is very similar 

to our work. But they have used Transaction Level Model (TLM) for passing instruction 

information among their modules and their design is not cycle accurate.  TLM is a high-

level approach in modeling digital systems where details of communication among 

modules are separated from the details of the implementation of functional units or of 

the communication architecture [7]. Transaction requests take place by calling interface 

functions of these channel models, which encapsulate low-level details of the 

information exchange. At the transaction level, the emphasis is more on the 

functionality of the data transfers - what data are transferred to and from what 

locations - and less on their actual implementation, which is, on the actual protocol used 

for data transfer. In our design, we have not used TLM explicitly, but we have transfer 

instruction objects among the modules in more like real hardware but not bitwise.  

Interestingly, their testing methodology is quite similar to us, as they made a 

binary file created from assembly codes in PERL where we used UNIX grep command. 

Our work is more significant in that sense; it is cycle accurate, more complete and 

extensible. 

MPARM [8] is a Multiprocessor simulator which uses RISC type ARM processor. 

Their simulator use C/C++ version of cycle accurate ISS for ARM processor but interfaces 

and other macro-architectural parts are designed in SystemC. SimSOC [1006] is full SOC 
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system simulator which uses SystemC for hardware modeling, SytemC/TLM for 

communications and ISS in C/C++. ISS used in SimSOC is not a conventional ISS, it uses a 

precompiled specialized instructions for speed up. 

Most common and popular full computer System simulators are SIMICS, 

Simplescalar, RSIM, etc [8]. These are written in C/C++, are not cycle accurate and, are 

not easily modifiable. Most importantly, they do not emulate real architecture of ISA. 

The advantage of our ISA as it is designed HDL like language SystemC, it is close to real 

processor emulation and will predict performance matrices more reliable and accurate 

then common Computer Architecture simulators. 

 

1.2 Thesis organization: The thesis is organized in four different sections. First section 

discusses the background related to MIPS ISS design in SystemC. The second section 

discusses design methodology of this MIPS ISS. The third section is covered with testing 

methodology. The fourth section discusses contribution of this ISS as a research and 

future work of multicore research and synthesis of this ISS.  
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CHAPTER II 
 

 

BACKGROUND 

2.1 SystemC: SystemC™ is a language built on top of standard C++ by extending the 

language with the use of new class libraries. SystemC addresses the need for a system 

design and verification language that entails both hardware and software. SystemC is 

developed and maintained by Open SystemC Initiative (OSCI) and has been approved by 

the IEEE Standards Association as IEEE 1666-2005, the SystemC Language Reference 

Manual (LRM). The language is particularly applicable to model system's partitioning, to 

evaluate and verify the assignment of blocks to either hardware or software 

implementations, and to architect and measure the interactions among functional 

blocks. Leading intellectual property (IP), EDA, semiconductor, electronic systems, and 

embedded software industries currently use SystemC for architectural exploration, for 

the purpose to deliver high-performance hardware blocks at various levels of 

abstraction and to develop virtual platforms for hardware/software co-design. [9] 

SystemC has similar semantic to VHDL and verilog, but it has syntactical 

overheads compared to these when used as a HDL. On the other hand, it offers a wider 

range of expression like object oriented design partitioning and template classes. 

Although strictly it is a C++ class library, SystemC is sometimes viewed as being a 

language in its own right. Source code can be compiled with the SystemC library which 
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includes a simulation kernel to give an executable. The performance of the OSCI open-

source implementation of current SystemC is typically less optimal than commercial 

VHDL/Verilog simulators when used for register transfer level simulation. But research is 

going on optimize at the synthesis.[10] 

Version 1 of SystemC had all the common hardware description language 

features such as structural hierarchy and connectivity, clock cycle accuracy, delta cycles, 

4-state logic (0, 1, X, Z), and bus resolution functions. From version 2 onward, the aim of 

SystemC has moved towards communication abstraction, TLM, and virtual platform 

modeling. This version included abstract ports, dynamic processes, and timed event 

notifications. 

User Libraries SCV Other IP 

Predefined Primitive Channels like Mutexes, FIFO and Signals 

SystemC Kernel Threads & Methods Channels 

&Interface 

Data types: 

Logic, 

Integer, 

Fixed Points 

etc 

 

Events, Sensitivity & 

Notification 

 

Modules & 

Hierarchy 

C++ STL 

Table1 : SystemC Architecture 
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The table 1 shows the overall SystemC architecture. SystemC consists of C++ 

libraries and Standard Template Libraries (STL). SystemC has a kernel which schedules 

SystemC processes and threads. Processes are defined as methods in SystemC and 

variable are sensitive to events that means when a method is waiting on event, when 

the event finishes it notify the process. STL defines standard SystemC data types. On the 

top, SystemC has some predefined Primitive Channels like Mutexes, FIFO and Signals. 

The SystemC has verification libraries (SCV) for system verification. Other user libraries 

and IPs from other parties can be used to develop a full system. 

SystemC enables design and verification at the system level, independent of any 

detailed hardware and software implementation, so as enabling co-verification with RTL 

design. This higher level of abstraction enables considerably faster, more productive 

architectural trade-off analysis, design, and redesign then is possible at the more 

detailed RTL. Furthermore, verification of system architecture and other system-level 

attributes is orders of magnitude faster than that at the pin-accurate, timing-accurate 

RT L.  

Following figure describes SystemC framework. SystemC modules can be 

interfaced with other hardware components designed in C/C++ or HDL, can run test 

benches or Software written C/C++. All hardware components written in SystemC and 

C/C++ are compiled in standard compiler to create executable (exe) file/files. By running 

exe file, simulations can be run with test benches. 
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Figure 1: SystemC framework 

Major SystemC components are: 

Modules: A module is a C++ class which simulates a hardware or software description. 

SystemC defines that any module has to be derived from the existing class sc_module. 

SystemC modules are similar to Verilog modules or VHDL entity (.h) and architecture 

(.cpp) pairs as they represent the basic building block of a hierarchical system. By 

definition, modules communicate with other modules through channels and via ports. 

Typically a module will contain numerous concurrent processes used to implement their 

required behavior. [11] The following code illustrates the creation of the simplest of 

module 

SC_MODULE(test_module) { //module 

SC_CTOR(test_module) { 

cout << “This is a test module” << endl; 
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 } 

 }; 

Ports: A port is an integral part of a SystemC module. Ports are used by modules to 

communicate to or from a module with the outside module say, another module. In a 

simple way, we can consider a port as pin of a hardware component.   

In HDLs such as VHDL or, Verilog ports are metaphorically like pins. But in 

SystemC ports are have substantially more general purposes and so, are designed in 

more sophisticated way and also, more versatile in use than its counterpart HDL 

languages. 

A simple SystemC port declaration can be defined as: 

sc_in <bool> test_input; 

The port has a name test_input and in this particular instance, it is of input mode 

since we used the sc_in<> port type. The last observation that we can make from this 

simple line of code is the use of the bool data type inside the <> of the sc_in port type. 

This data type refers to the kind of data that will be exchanged on that port. In other 

words, we are expecting to receive boolean values on the test_input port. 

Also, there exists numerous predefined port types in SystemC such as 

sc_in<Type>, sc_out<Type>, sc_inout<Type>, etc. Most of those ports are almost 
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identical to their counterpart HDL equivalent of VHDL or Verilog; they have a name, a 

type and a mode. Usually, these kinds of ports are commonly used in RTL design in 

SystemC. However, SystemC ports have much more flexibility than RTL like ports; 

because SystemC ports not only have a name and a type which define the access 

mechanisms that should be used on them. Actually, the access mechanisms are just a 

list of allowed messages that can be used on them. If we consider the sc_in<bool> port 

of the previous example, in that case SystemC defines that by read() function message 

can be read from it. So intuitively, an sc_out<> port would allow one to use write() 

function to write the message. The following code demonstrates the use of an 

sc_in<bool> and an sc_out<bool> ports. 

sc_in<bool> test_input; 

sc_out<bool> test_output; 

void simple() { 

if (test_input.read() == true)  

{ 

test_output.write(false); 

}  

else { 

test_output.write(true); 
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} 

} 

}; 

Channels and interface: SystemC channels are written by using C++ class interface 

principle. In this principle abstract base classes are constructed and common interfaces 

for related derived classes are also defined. These abstract base classes are used to 

define all the access methods that a channel should have. Consequently, a channel is 

written as a C++ class derived from an abstract base class and it implement the access 

methods defined inside its abstract base parent class. 

An abstract base class is written in C++ with the help of one or more pure virtual 

methods as part of that class. A pure virtual method is a method that is usually 

implemented inside a derived class from the abstract base class. The semantic of a pure 

C++ virtual method may look like:  

Virtual <return_type> function_name (args>)=0;  

For example, the following line of code uses a method called data_write that requires 

three input arguments and returns an integer type: 

virtual void data_write( int address, int Bytes, sc_lv<16> *data ) = 0; 
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The keyword ‘virtual’ and the ‘=0’ are the essential parts of this declaration as they 

represent to the compiler that ‘data_write’ is a pure virtual method and therefore, that 

the class containing this declaration can never be used into an object. Once one or a 

number of abstract base classes (interfaces) have been formulated, channels can be 

implemented by simply inheriting one or more of the base classes and implementing 

their virtual methods. The following figure describes all the basic components and their 

interconnections in standard graphical notation. 

 

Figure 2: (a) Graphical notations for modules, interfaces, ports, channels, and port-

channel binding (b) Example with two modules and a hierarchical channel [11] 

Abakus Library: OSU AbaKus is a SystemC like kernel developed by a former PhD 

student Aswin Ramachandran developed in C++ to develop hardware simulator in 

system level. Aswin et. al. argued [12] that their kernel is more accurate, flexible to use 
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and in some cases increase the simulation speed and also, It is flexible to adapt to any 

hardware description language. The design flow for different micro-architecture 

simulators is illustrated in Figure 3.  

 

 

Figure 3: Design Flow Simulation 

2.2 Instruction Set Simulator: ISS is a simulation model coded in a high-level 

programming language like C, C++ or Java, which emulates the behavior of a 

microprocessor by reading and decoding instructions and maintaining internal variables 

such as processor's registers accordingly. 

ISS is widely used for following possible reasons: 
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 To simulate the machine code of another hardware device or entire computer for 

upward compatibility -a full system simulator typically includes an instruction set 

simulator. 

  To improve the speed performance of simulations while verilog simulation is 

significantly slow for verification purpose. Sometimes ISS is co-simulated with other 

verilog micro-architectural parts. 

 To collect information for predicting or analyzing performance of novel architectural 

design. 

 To develop new software and applications earlier on future processor platform. 

Widely used ISS’s are SIMICS, Simplescalar, SimOS, GEMS etc. Some are full 

system simulator eg. Simics, SimOS which offers simulation of several types of ISA. Some 

are ISA specific (eg. WinMIPS64 is 64 bit mips ISA) and micro-architecture specific (eg. 

Dinero- a hierarchical cache simulator). 

2.3 MIPS architecture: MIPS is the most common RISC type ISA. Conventional Complex 

Instruction Set Architecture (CISC) takes many cycles to execute an instruction due to its 

complex addressing modes (eg. Intel Architecture-32 or, IA-32). It is argued that such 

functions would perform better by sequences of simpler instructions reducing the 

number of slow memory accesses. In RISC design, most instructions are of uniform 

length and similar structure, arithmetic operations are restricted to CPU registers and 

only separate load and store instructions access memory. These properties enable a 

http://en.wikipedia.org/wiki/Verilog
http://simos.stanford.edu/
http://www.cs.wisc.edu/gems/
http://www.computing.dcu.ie/~mike/winmips64.html
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better balancing of pipeline stages than before, making RISC pipelines significantly more 

efficient and allowing higher clock frequencies. The common features of MIPS 

instruction-set architecture are: 

 It is usually simple load-store architecture and uses general-purpose registers. 

 It has only two addressing modes, displacement and immediate, but can be 

formulated to other important modes from them. 

 It supports 8-, 16-, 32-, and 64-bit integers, and 32- and 64-bit IEEE 754 floating-

point numbers. 

 It has an orthogonal set of instructions to manipulate these data types.  

 It has separate comparison and branching instructions. MIPS has thirty-two 32-

bit general-purpose registers (GPR), named R0, R1,… , R31. R0 always contains 0 

with another value has no effect). 

 It has 32 floating-point registers (FPR), which can hold either Single Precision (32-

bit) or double-precision (64-bit) values.  

 It 32 bit floating point status and control register which is used for floating point 

comparison and branching.  

 It has several co-processors. In earlier version (eg. MIPS I) co-processor one is 

used as floating point unit (FPU). Other co-processors are for control support. 

Later version (eg. MIPS R3000) FPUs are used as integral part. 
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Figure 4: Un-pipelined MIPS architecture [13] 

2.3 Pipeline MIPS Architecture: The problem with the unpipelined design is that each 

instruction must finish before another instruction can start. The hardware, for example, 

the ALU is only used when none of other hardware is used. The basic idea of pipelining 

is to utilize of the unused time of the CPU components so that more than one 

instruction is can be processed simultaneously; i.e other instructions can go through 

without waiting for the previous instruction to finish. 

The following figure shows a 5 stage pipelined MIPS architecture: 
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Figure: 5 stage pipelined MIPS architecture [13] 

Our MIPS design has pipe stages- fetch, decode, execute, memory access and write 

back. Here, the description of following stages of MIPS:  

 IF/ID: this stage controls the passing of rs, rd, and rt fields of the 

instruction with the opcode and funct fields, to the control other circuitry 

according to the instruction.  
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 ID/EX: this stage buffers control for the EX, MEM, and WB stages, while 

executing control for the EX stage. Control also dictates what operands 

will be inputs to the ALU, what ALU operation should be performed, and 

whether or not a branch is to be taken based on the ALU Zero output.  

 EX/MEM: this stage buffers control for the MEM and WB stages, while 

executing control for the MEM stage. The control lines are executed for 

memory read or write, and also for data selection for memory write. This 

stage of control also maintains the branch control logic.  

 MEM/WB: this stage buffers and executes control for the WB stage, and 

selects the value to be written into the register file. 

We have separate multiply-divide (mul-div) unit and floating point unit (FPU) 

which work parallel with integer unit to perform multiply-divide and floating point 

arithmetic instructions respectively as shown in figure 6 

 

 

Figure 6:  Mul-div and Floating point unit in parallel with integer unit 
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Control unit provide necessary control signals to each stage to synchronize all 

the functions of an instruction. There is a separate branch unit which calculate 

necessary branch conditions and calculate the address to jump. 

There are three basic types of integer instructions: 

R-type instructions refer to register type instructions. Of the three formats, the R-type is 

the most complex. This is the format of the R-type instruction, when it is encoded in 

machine code.  

B31-26 B25-21 B20-16 B15-11 B10-6 B5-0 

opcode register  rs register  rt register  rd shift  amount function 

I-type is short for "immediate type". The format of an I-type instruction looks like: 

B31-26 B25-21 B20-16 B15-0 

opcode register  rs register  rt immediate 

 

J-type is short for "jump type". The format of a J-type instruction looks like:  

B31-26 B25-0 

opcode Target 

 

There are two basic types of floating point instructions: FR-type instructions refer to 

floating point register type instructions.  
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B31-26 B25-21 B20-16 B15-11 B10-6 B5-0 

opcode register  fmt register  ft register  fs register  fd function 

 

FI-type is short for "Floating Point immediate type". The format of an FI-type instruction 

looks like: 

B31-26 B25-21 B20-16 B15-0 

opcode register  fmt register  ft immediate 

 

2.4 Benchmarks: A benchmark is a standard test or a set of standard tests written in 

programming languages to measure the relative performance of a system. It is used in 

Computer Architecture research to assess the comparative performance of a hardware 

say, floating point performance of a CPU, or cache miss rate of a particular cache 

hierarchy. Benchmarks include versatile tests so that they can trial exhaustedly the 

different relative performance of hardware. For example, a benchmark written for 

testing a particular cache hierarchy will be memory intensive while a benchmark written 

for testing CPU speed will be computation intensive. There are other types of 

benchmarks called test benches which are used for validation of small hardware or 

software parts. Most common benchmarks in computer architecture are SPEC, 

SPLASH, Mediabench etc. 

http://www.cs.ucla.edu/~leec/mediabench/
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CHAPTER III 
 

 

Design Methodology 

We have used fusion of C++, SystemC version 2.0 and Abakus library for our 

design. As a compiler we used GCC version 4.11 and our host machine is tesla1 which is 

a Intel Server machine with Linux 64 bit operating system. Our top module is cpu. Inside 

cpu other lower modules have instances and interconnections. To test our simulator we 

used cpu_test.cpp file which uses cpu as Design Under Test (DUT). Each unit has a 

header file (.h) which defines all the ports, local channels, local modules and 

constructors. In cpp file all the local ports, channels and modules are initialized. All local 

modules connections are defined through ports and channels. And also, the main 

module function also declared and finally, a dump function is called for image of all the 

registers in that cpp file. 

 

3.1 Instruction Objects: We designed our ISA in SystemC more like ASIC design 

procedures which use HDL languages like Verilog or VHDL. But we have some significant 

differences. We defined instructions as objects which have pointers to them. The object 

has several pointers to sub-object (eg. itype, r.rs, r.rt) which contains register’s address, 

offset value, opcodes etc. The pointer to main instruction object is passes through each 

stage and other units e.g. control, calculation or changes are done on the sub-objects. 
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For instruction object we have a separate module which describes functionality of the 

instruction object on respective stages. For example, in the following “add” instruction 

r.rs pointer points to a sub-object this is the address of a GPR register, so as r.rt and r.rd. 

These three rnum_t function is executed in decode stage. The execute_func function 

does the “add” arithmetic task at the execute stage. This “add” instruction has no 

activity at memory access stage but has a default activity (write the result to the 

destination register) in the write back stage. Following is an example which shows how 

add instruction is implemented. 

struct add_t : alu_r_t { 

add_t() {}; 

virtual rnum_t get_ra(instruction* inst) { return inst->r.rs; } 

virtual rnum_t get_rb(instruction* inst) { return inst->r.rt; } 

virtual rnum_t get_rd(instruction* inst) { return inst->r.rd; } 

virtual void execute_func(instruction *inst, 

        data_t a_data, 

        data_t b_data, 

        data_t &data)  

    { data = a_data + b_data; } 

} add; 

The Instruction implemented above is a very convenient way to add a new 

instruction. We can implement any new instruction of any new architecture for MIPS or 

even totally new architecture like PowerPC RISC type ISA in this fashion.  
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3.3 Fetch Unit:  In the simple fetch stage icode (instruction object) is fetched according 

to pc_value object (PC) from the I-cache. It is initially stored IF/ID pipeline and in next 

clock cycle it passes to the decode unit.  Following is an example of fetch unit codes  

 

fetch::fetch() {} 

fetch::fetch(sc_module_name name) : sc_module(name),  

    //initialize ports 

    pc("pc"), 

    pc_next("pc_next"), 

    pc_inst("pc_inst"), 

    br_addr("br_addr"), 

    br_cond("br_cond"), 

    i_mem("i_mem") 

{} 

void fetch::evaluate() { 

   instruction *inst = pc_inst->read(); 

   addr_t pc_value = pc->read(); 

    //read instruction 

   inst->iaddr = pc_value; 

   i_mem->read(pc_value, inst->icode); 

   inst->decode(); //set correct fields here, hardware does it in 

next stage 
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    //get next pc 

    if ( br_cond->read() ) 

 pc_next->write( br_addr->read() ); 

    else 

 pc_next->write(pc_value + sizeof(icode_t)); 

} 

 

void fetch::dump(ostream &out) const { 

    out << endl << name() << endl; 

} 

3.3 Decode Unit: An instruction is deciphered in the decode stage to 6 bit opcode and 6 

bit funct code for the control purpose of the instruction. The Registers (rs, rt, rd, fmt, ft, 

fs, fd) are also read in this stage. Note that the first source register’s identifier (rt/ft) in 

every instruction is at bit positions *25:21+ and second source register’s identifier (rs/fs) 

is at bit positions [20:16].  The destination register’s identifier is either at bit positions 

[15:11] (for R-type) or at [20:16]. The correct destination register’s identifier is identified 

via multiplexer controlled by the control signal RegDst [Fig. 4].   

In our design, when instruction object is in decode stage, it calls a decode 

function. In the decode functions all the opcode, funct code and other register values 

are read and pointed by the some sub pointers of the instruction object. This sub 
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pointer and instruction object then pass to the next pipelines and units. Following is a 

sample code for decode function: 

void instruction::decode() { 

    icode_t opcode = icode >> 26; 

    itype = dectab[opcode]; 

    if (itype->op == FUNCREG) { 

              opcode = icode & 0x3f; 

              itype = regdectab[opcode]; 

    } 

    switch(itype->format) { 

      case R: 

        r.rs = (icode >> 21) & 0x1f; 

        r.rt = (icode >> 16) & 0x1f; 

        r.rd = (icode >> 11) & 0x1f; 

        r.shamt = (icode >> 6) & 0x1f; 

              break; 

      case I: 

        i.rs = (icode >> 21) & 0x1f; 

        i.rt = (icode >> 16) & 0x1f; 

        register short immh = icode & 0xffff; 

        i.imm = (int) immh;  //sign extended 

              break; 

      case J: 
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              j.addr = (iaddr + 4) & 0xf0000000 | ((icode & 

0x03ffffff) << 2); 

              break; 

    } 

} 

3.4 Execute Unit: In conventional MIPS architecture, execute stage includes generally 

ALU and other parts. In our case, we have three modules in parallel- integer unit 

(execute unit), Mul-div unit and floating point unit. In integer unit, a “evaluate” function 

is called which do basic arithmetic functions on the instruction object and results are 

given as return value which is passed to next EX/MEM pipeline. Similarly in mul-div unit 

and floating point unit, the evaluate function does necessary manipulation in the 

instructions and return a result through a sub-pointer. 

In mul-div unit we have “ab-pipe” type mul-div-pipe pipeline register which 

simulate the arbitrary super-pipeline requirement due to the long calculation for 

multiply and divide. That means, multiply and divide instructions require several stages 

(clock cycles) to produce result. Similarly, we can simulate different number of super-

pipeline requirement for different type of floating point instructions. 

Normally, in RISC architecture an integer instruction takes one cycle. But the 

combinational logic of divide and some floating point instruction can have long delay 

which can be equal to several cycles. For that we have defined delay variable 

“divide_delay” which can simulate delay in clock time periods. Similarly, we have 
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different floating_point_delay for different type of floating point instructions. Following 

piece of code shows implementation of execute unit.  

void execute::evaluate() { 

    instruction* inst = id_ex_inst->read(); 

    data_t data_; 

    data_t b_data_ = b_data->read(); 

    inst->itype->execute_func(inst, a_data->read(), b_data_, 

data_); 

    data->write(data_); 

    st_data->write(b_data_); 

    if (inst->itype->op == FUNCFP)   { 

    data_t fdata_; 

    d_data_t fb_data_; 

    inst->itype->execute_func_f(inst, a_data->read(), fb_data_, 

fdata_); 

    data->write(fdata_); 

    st_fdata->write(fb_data_); 

    } 

} 

3.5 DMEM Unit (Memory Access Unit): In DMEM unit, register values are loaded from 

or store to the memory. This unit exclusively used for load/store type of instructions. 

Other integer instructions do nothing in this stage. Following piece of code shows an 

example of DMEM- 
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void d_mem::evaluate() { 

    register instruction* inst = ex_mem_inst->read(); 

    data_t data; 

    inst->itype->d_mem_func(inst, &mem, ex_mem_st_d->read(),  

 (addr_t) ex_mem_reg_d->read(), data); 

    mem_wb_reg_d->write(data); 

    if (inst->itype->op == FUNCFP) {    

    d_data_t f_data; //fp 

    inst->itype->d_mem_func_f(inst, &mem, ex_mem_st_fd->read(), 

(addr_t)  

ex_mem_reg_d->read(), f_data);  //fp reading address should be 

int 

    mem_wb_reg_fd->write(f_data); //fp 

    }     

} 

3.6 Write Back Unit: In write back stage result of arithmetic operation is written to 

register (GPR or FPR) according to destination address in the instruction (eg. rs/rd/fd). 

We implemented write back stage in this unit. This unit is connected to integer, mul-div 

and floating point unit. Though three units are connected to this unit, but our design 

works in sequential way. That means an instruction wait or stalled in this unit until its 

result come from mul-div or floating point unit. Following is a sample code for write 

back unit: 

void wr_back::evaluate() { 
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    //write register  

    instruction* inst = mem_wb_inst->read(); 

    wb_src_t wb_src; 

    inst->itype->wr_back_func(inst, wb_src); 

    data_t wb_src_data; 

    d_data_t wb_src_fdata; 

    switch( wb_src ) { 

      case MFGPR:  

 wb_src_data = mem_wb_reg_d->read(); 

 break; 

      case MFHI:  

 wb_src_data = hi_reg_d->read(); 

 break; 

      case MFLO:  

 wb_src_data = lo_reg_d->read(); 

 break; 

      case MFFPR: 

        wb_src_fdata = f_reg_d->read(); 

        break; 

      case FPR: 

        wb_src_fdata = mem_wb_reg_fd->read(); 

        break; 

    } 

    reg_d->write( inst->itype->get_rd(inst), wb_src_data ); 

    reg_fd->write( inst->itype->get_fd(inst), wb_src_fdata ); 
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    /* maintain $r0 semantics */ 

    reg_d->write(REG_ZERO, 0); 

} 

3.8 Mul-div Unit: In the mul-div unit, multiply and divide instruction takes place. 

Actually MIPS I is 32 bit machine, but result of two 32 bit numbers is 64 bit. So, in MIPS 

there are two special instructions- move from low (MFLO) and move from high (MFHI) 

for transferring 64 bit result to two 32 bit GPR register. In our design, result is stored in 

two register called “HI” and “LO” in case of multiply or divide instruction. The contents 

of HI/LO is transferred on immediate MFLO/MFHI instruction. Instruction mul-div type 

instruction objects usually pass to write back stage but stalled until the result are 

available. The following code shows that “mul_div_func” function takes the instruction 

object and return HI/LO values and store to ‘hi’ and ‘lo’ register. It also shows how stalls 

are implemented. 

void mul_div::evaluate() { 

    //data 

    instruction* ex_inst = mul_div_start_reg.qout->read(); 

    ex_inst->r.rs_data = a_data->read(); 

    ex_inst->r.rt_data = b_data->read(); 

    instruction* inst = mul_div_pipe.qout->read(); 

    data_t data_hi; 

    data_t data_lo; 

    inst->itype->mul_div_func(inst, data_hi, data_lo); 

    hi->write(data_hi); 
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    lo->write(data_lo); 

 

    //control 

    op_t op = inst->itype->op; 

    stall_hi_lo_chan.write( (op != MUL) && (op != DIV) ); 

    //div stalls 

    if (ex_inst->itype->op == DIV) { 

        div_delay_chan.write(1); 

        cout << "starting divide delay\n"; 

        div_delay.write(0); 

    } 

} 

3.8 Floating Point Unit: In the floating point unit, all the floating point arithmatic 

instructions are taken place. Actually MIPS I is 32 bit machine, but result of two 32 bit 

numbers is 64 bit. But as FPR contains 64 bit registers, so we do not have same problem 

as mul-div unit. In that case, result is stored in “f_data” and directly transferred to the 

write back stage. As different FP instructions have different cycle delays and multiple 

stages to do calculation, we have the option for pipelines and delays which can be 

arbitrarily defined. There are some floating point instruction like Move to Coprocessor 

one (MTC1), where co-processor is floating point unit and  Move from Coprocessor one 

(MFC1) which transfer values between GPR and FPR. For this, we require some 

connections between integer unit and floating point unit which are implemented in the 
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“cpu” unit. Following piece of code shows that “float_unit_func” takes instruction object 

and return the result. 

 

void float_unit::evaluate() { 

    //data 

    instruction* ex_inst = float_unit_start_reg.qout->read(); 

    ex_inst->fr.fs_data = fa_data->read(); 

    ex_inst->fr.ft_data = fb_data->read(); 

    instruction* inst = float_unit_pipe.qout->read(); 

    d_data_t data_reg; 

    inst->itype->float_unit_func (inst, data_reg); 

    f_reg->write(data_reg); 

    

    //control 

    op_t op = inst->itype->op; 

    stall_f_reg_chan.write(op != FP); 

  

    //div stalls 

    if (ex_inst->itype->op == FP) { 

        float_delay_chan.write(1); 

        cout << "starting float delay\n"; 

        float_delay.write(0); 

    } 

} 
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3.9 Control Unit: The control unit dictates the flow of the instruction through stalling 

the pipelines when required. It is connected to all the pipeline registers, mul-div unit 

and floating point unit. It takes instruction object in deferent stages, look for control 

hazards and calculate stall logics which stall the required pipeline registers.  

3.11 Branch Unit: Branch unit includes a “branch_func” which takes instruction object 

and caculate the branch address to be taken and branch condition- true or false. The 

following code shows a simple branch unit implementation. 

void branch::evaluate() { 

    instruction *inst = if_id_inst->read(); 

    addr_t br_addr_; 

    bool br_cond_; 

    inst->itype->branch_func(inst,  

 reg_a_data->read(), 

 reg_b_data->read(), 

 br_addr_, 

 br_cond_); 

    br_addr->write(br_addr_); 

    br_cond->write(br_cond_); 

} 

3.12 Cpu Unit: This is the top hierarchical module which includes all the lower module 

instances. It is like a top module in HDL language, which is declared in the test bench as 
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DUT. In this module all the connections and sequences are described. Following piece of 

code shows instances are called 

    fetch if_stage; 

    decode id_stage; 

    execute ex_stage; 

    d_mem mem_stage; 

    wr_back wb_stage; 

    regfile<data_t, 32, 2, 1> gpr; 

    control controller; 

The remaining codes shows the basic interconnection of the major modules where each 

pipeline register (eg. pc,  id_ex_reg_a) are connected with clock signal, stall signal from 

controller. Stall is required for the synchronization of the instruction flow. 

//local module connection (data path) 

    pc.clk(clk); 

    pc.stall(controller.stall_if); 

    id_ex_reg_a.clk(clk); 

    id_ex_reg_a.stall(controller.stall_ex);    

    id_ex_reg_fa.clk(clk); //fp 

    id_ex_reg_fa.stall(controller.stall_ex); //fp   

   

    id_ex_reg_b.clk(clk); 

    id_ex_reg_b.stall(controller.stall_ex);     

    id_ex_reg_fb.clk(clk);  //fp 

    id_ex_reg_fb.stall(controller.stall_ex); //fp 
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    ex_mem_reg_d.clk(clk); 

    ex_mem_reg_d.stall(controller.stall_d_mem); 

     

    ex_mem_st_d.clk(clk); 

    ex_mem_st_d.stall(controller.stall_d_mem); 

    ex_mem_st_fd.clk(clk);  //fp 

    ex_mem_st_fd.stall(controller.stall_d_mem);  //fp 

 

    mem_wb_reg_d.clk(clk); 

    mem_wb_reg_d.stall(controller.stall_wr_back); 

    mem_wb_reg_fd.clk(clk);   //fp 

    mem_wb_reg_fd.stall(controller.stall_wr_back); //fp 

 

    hi.clk(clk); 

    hi.stall(mul_div_unit.stall_hi_lo); 

    lo.clk(clk); 

    lo.stall(mul_div_unit.stall_hi_lo); 

     

    f_reg.clk(clk); //fp 

    f_reg.stall(float_point_unit.stall_f_reg); //fp 

     

    if_stage.pc(pc.qout); 

    if_stage.pc_next(pc.din); 

    if_stage.pc_inst(controller.pc_inst); 

    if_stage.br_addr(br_addr); 
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    if_stage.br_cond(br_cond); 

    if_stage.i_mem(inst_mem); 

     

    id_stage.if_id_inst(controller.if_id_inst); 

    id_stage.reg_a(gpr.rd_export[0]); 

    id_stage.reg_b(gpr.rd_export[1]); 

    id_stage.id_ex_reg_a(id_reg_a); 

    id_stage.id_ex_reg_b(id_reg_b); 

     

    id_stage.reg_fa(fpr.rd_export[0]); //fp 

    id_stage.reg_fb(fpr.rd_export[1]);  //fp 

    id_stage.id_ex_reg_fa(id_reg_fa);  //fp 

    id_stage.id_ex_reg_fb(id_reg_fb);  //fp 

Following figure shows the cpu module where instances of other modules are called and 

their interconnections are also shown. Due to complexity of control and branch 

connections to other units, it is not shown. 

 

Figure 7: Top ‘cpu module’ which contains other modules 
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3.12 Registers, Cache and Memory: Register file, cache and memory are designed in 

way that it can contain 32 bit data. We use template for storing different type of data 

like-bool, char, int, float and double. So, we can call any register with any data size. For 

our GPR we used 32 bit integer and FPR 64 bit double. Our cache and memory are also 

scalable. Cache has all the common placement and replacement policies. Following 

figure shows the a simple interconnection configuration among cpu, cache, and 

memory. 

 

Figure 8: Inter-connection among memory, cache and cpu 

 

 

3.13 Multicore Processor Design: In a multicore processor design, same cores will be 

instantiated within a processor where core includes cpu and cache. Cores may share 

higher level of caches (L2). Further, processors can be instantiated along with shared 

memory and system bus in the top multicore processor module. But we need to design 

some cache coherency and consistency protocols for multicore processor. Note that, we 

have not implemented this multicore model, but the goal behind this project is to 
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facilitate a multicore processor design. With our single core module, we can easily 

implement the processor part but some significant work will be required for shared cache 

and system bus. Following figure shows how 4 cores can be implemented to form a 

multicore processor. 

 

 
Figure 9: Multicore processor module 
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CHAPTER IV 
 

 

Testing Methodology 

 

Testing and debugging an ISS is a really complex task. We tested our instruction both 

individually and with simple benchmark written in C. We plan to run standard 

benchmark like SPEC 2006 but for that we need a loader. We are designing loader as 

part of multicore research.  

 

4.1 Individual Instruction test: For testing individual instruction, we have written some 

C code to make a file which contains individual instruction in hexadecimal format. We 

manually calculated the GPR image for each cycle and compare with GPR image created 

by simulation. It gives us error if the image is different than the expected one. Following 

figure shows a GPR image after 57 instructions. Our ISS correctly executed 57 integer 

instructions and give some information as shown in figure. It took 63 cycles to execute 

57 instructions. Some instructions like MUL, DIV take several cycles, so beforehand we 

know the the cycle numbers too. 

By using “dump” function we can see current value of any register at any instance. 

So, we put dump function whenever we have to test a pipeline register.  But checking 
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the GPR image in each cycle is a very convincing way to test the accuracy of an 

individual instruction. 

0 17ffb 10004 10004 0 0 0 0 

0 0 20002000 110011 40022000 22004 0 0 

1c 0 0 0 20002000 20011000 40022000 22004 

0 0 0 0 0 0 0 30 

Table 2: Contents General Purpose Register after 57 instructions 

 

In process: cpu_test.process @ 63 ns 

finished sc_start 

total clock cycles: 63 

instruction count: 57 

completed: 57 

correct: 57 

errors: 0 

grade:100 

instructions/cycle (IPC): 0.904762 

Figure 10: Test result 

 

4.2 Benchmark test:  Here we will discuss an easy but convincing way of testing our 

MIPS ISS. A benchmark written in higher level language (C, C++) is compiled for MIPS 
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ISA. It is then to converted executable binary file (.hex) by using unix “grep” command.  

Upon simulation an output file (test.out) is generated with memory contents. From the 

memory snapshot in test.out, final memory location is checked for result of the 

benchmark. Following flowchart describes how executable binary file (.hex) is 

generated. 

 

Figure 11: Hex file design flow 

The trick is that a final address is provided in the code. Also, code is written in a 

versatile way so that compilation of it includes as more as Instructions possible, long 

calculation and variety of higher level language. If final result of this long exhaustive 

manipulation is found in the addresss defined in the code, it can be said- it is well 

tested. However, individual instruction is tested with one or two lines of machine code 

thoroughly. So, hundreds lines of machine codes generated by compiler will be well 
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equipped to test the correctness of the simulator.  The following is a sample code used 

for testing where final result is stored in the address 0x160c and location of SP, FP and 

GP is also defined so that compiler does not use out -bound addresses. 

 

 

//test.c  

asm("addi $29, $0, 0x1000"); 

asm("addi $28, $0, 0x1200"); 

asm("addi $30, $0, 0x1400"); 

int main() { 

int x, y, a, b, c, d, *q; 

x=0; y=1; 

a=20;   

b=30;  

c=10; 

q=0x160c; //final result address 

d = b-a; 

while(y) 

{ 

if (x<20) 
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 {d = d+c; 

x++;} 

if (x==20) 

 y=0;         

} 

d = calculate(d); 

 *q= for_loop(d); 

return 0; 

} 

int calculate(int p) 

{ 

p = p+3; 

p = p+100; 

p = p+45; 

return p; 

} 

int for_loop (int r) 

{ 

int i; 

for (i=0; i<20; i++) 

r=r+5; 
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return r; 

} 

4.3 Testing limitation and Future testing: We tested individual floating point 

instructions by looking at the image of FPR and GPR in each cycle. But for floating point, 

we could not test with C test benches as it requires data type to be filled into data 

cache. We are still developing loader which will load both instructions and data into 

respective caches. Then we can write test benches in C with floating point operations 

and can test cohesiveness of the full ISS. 

 

We individually tested correctness of cache and memory. But the correctness of 

full ISS requires testing with full hierarchy of cache and memory. But the scope of thesis 

is limited to the full work of a single core simulator. We have designed cache, separately 

tested it. But it requires a loader and boot loading functions for mapping Virtual 

Memory concept, placement and replacement policies. Currently, the loader is in testing 

case. When a working loader will be available, we will integrate the cache and test with 

more complex benchmarks. Our final target is to run standard benchmark like SPEC 

2006.  
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CHAPTER V 
 

Conclusion 

5.1 Findings and Future Work: As we are going towards multiple cores and 

complex architectural design, ESL like SystemC is an obvious choice. Designing an ISS 

SystemC is more real to hardware than conventional ISS as it is cycle accurate. We 

cannot say about speed, as we have not yet tested with any standard benchmark. The 

most advantage of ISS design in SystemC is that it is modular, interface-able and 

standardized. It can also be synthesizable with some modification. Some companies like 

Sysnopsis, Metor Graphics, Forte Design System have already claimed that their 

synthesizer can synthesize SystemC codes. With fully tested single core ISS, we can go 

further design multicore architectural research. As designing a multicore simulator is a 

long exhaustive task with limited workforce, it is not possible in a single thesis. But as 

multicore will be just instances of single cores and top module is required only for 

interconnection. But to control coherency and consistency among shared cache for 

multicores is also going to be big task. But single accurate MIPS ISS core is first but 

important step of the whole research. 

 

The future work will be the design of a loader which can load real benchmark like 

SPEC. Then we can test Instruction Per Cycle (IPC), runtime and other matrices for our 

whole ISS. We hope that our ISS will be faster in runtime than conventional ISS as it uses 
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optimized and standardized SystemC and Abakus Kernel [12]. Also, runtime is the 

biggest bottleneck of computer architecture research.  As SystemC is maturing as HDL 

and ESL, novel macro and micro architectural exploration will be easier than common 

ISS available. 

. 
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APPPENDICES 
Appendix A: Instruction description  

This table lists all MIPS instructions with their opcode, assembler format, and semantics. 

A.1 Control instructions:  

J: Jump to absolute address.  
Opcode: 0x01  
Format: J target  
Semantics: PC = nPC; nPC = (PC & 
0xf0000000) | (target << 2)  
 
JAL: Jump to absolute address and link.  
Opcode: 0x03  
Format: JAL target  
$31 = PC + 8 (or nPC + 4); PC = nPC;  
nPC = (PC & 0xf0000000) | (target << 2)  
 
JR: Jump to register address.  
Opcode: 0x00  
Funccode: 0x08  
Format: JR rs  
Semantics: PC = nPC; nPC = $s;  
 
JALR: Jump to register address and link.  
Opcode: 0x00  
Funccode: 0x09  
Format: JALR rs  
Semantics: $31 = PC + 8 (or nPC + 4); PC 
= nPC; nPC = $s;  
 
BEQ: Branch if equal.  
Opcode: 0x04  
Format: BEQ rs,rt,offset  
Semantics: if $s == $t advance_pc 
(offset << 2)); else advance_pc (4);  
 
BNE: Branch if not equal.  
Opcode: 0x05  

Format: BEQ rs,rt,offset  
Semantics: if $s != $t advance_pc (offset 
<< 2)); else advance_pc (4);  
 
BLEZ: Branch if less than or equal to 
zero.  
Opcode: 0x06  
Format: BLEZ rs,offset  
Semantics: if $s <= 0 advance_pc (offset 
<< 
2)); else advance_pc (4); 

BGTZ: Branch if greater than zero.  
Opcode: 0x07  
Format: BGTZ rs,offsetSemantics: if $s > 
0 advance_pc (offset << 2)); else 
advance_pc (4); bgtz $s, offset;  
 
BLTZ: Branch if less than zero.  
Opcode: 0x01  
Format: BLTZ rs,offset  
Semantics: if $s < 0 advance_pc (offset 
<< 2)); else advance_pc (4);  
 
BGEZ: Branch if greater than or equal to 
zero.  
Opcode: 0x01  
Format: BGEZ rs,offset  
Semantics: if $s >= 0 advance_pc (offset 
<< 2)); else advance_pc (4);  
 
A.2 Load/store instructions  
 
LW: Load word, indexed addressing.  
Opcode: 0x23  
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Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
LHW: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
LB: Load half word, indexed addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
LUI: Load half word, indexed addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
LWC1: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
LDC1: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
SW: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  

 
SHW: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
SB: Load half word, indexed addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
SWC1: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
SDC1: Load half word, indexed 
addressing.  
Opcode: 0x23  
Format: lw $t, offset($s)  
Semantics: $t = MEM[$s + offset]; 
advance_pc (4);  
 
 
A.3 Integer instructions  
 
ADD: Add signed (with overflow check).  
Opcode: 0x00  
Funccode:0x20  
Format: ADD rd,rs,rt  
Semantics: $d = $s + $t; advance_pc (4);  
 
ADDI: Add immediate signed (with 
overflow check).  
Opcode: 0x08  
Format: ADDI rd,rs,rt  
Semantics: addi $t, $s, imm;  
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ADDU: Add unsigned (no overflow 
check).  
Opcode: 0x00  
Funccode:0x21  
Format: ADDU rd,rs,rt  
Semantics: $d = $s + $t; advance_pc (4); 

ADDIU: Add immediate unsigned (no 
overflow check).x  
Opcode: 0x09  
Format: ADDIU rd,rs,rt  
Semantics: $t = $s + imm; advance_pc 
(4);  
 
SUB: Subtract signed (with underflow 
check).  
Opcode: 0x00  
Funccode:0x22  
Format: SUB rd,rs,rt  
Semantics: $d = $s - $t; advance_pc (4);  
 
SUBU: Subtract unsigned (without 
underflow check).  
Opcode: 0x00  
Funccode:0x23  
Format: SUBU rd,rs,rt  
Semantics: $d = $s - $t; advance_pc (4);  
 
MULT: Multiply signed.  
Opcode: 0x00  
Funccode: 0x18  
Format: MULT rs,rt  
Semantics: $LO = $s * $t; advance_pc 
(4);  
 
MULTU: Multiply unsigned.  
Opcode: 0x00  
Funccode: 0x19  
Format: MULTU rs,rt;  
Semantics: $LO = $s * $t; advance_pc 
(4);  

 
MUL_DIV: Divide signed.  
Opcode: 0x00  
Funccode: 0x1A  
Format: DIV rs,rt  
Semantics: $LO = $s / $t; $HI = $s % $t; 
advance_pc (4);  
 
MFHI: Move from HI register.  
Opcode: 0x00  
 
Funccode: 0x10  
Format: MFHI rd  
Semantics: $d = $HI; advance_pc (4);  
 
MFLO: Move from LO register.  
Opcode: 0x00  
Funccode: 0x12  
Format: MFLO rd  
Semantics: 4d = $LO; advance_pc (4);  

AND: Logical AND.  
Opcode: 0x00  
Funccode :0x14  
Format: AND rd,rs,rt  
Semantics: $d = $s & $t; advance_pc (4);  
 
ANDI: Logical AND immediate.  
Opcode: 0x12  
Format: ANDI rd,rt,imm  
Semantics: $d = $s & imm; advance_pc 
(4);  
 
OR: Logical OR.  
Opcode: 0x00  
Funccode: 0x15  
Format: OR rd,rs,rt  
Semantics: $d = $s | $t; advance_pc (4);  
ORI: Logical OR immediate.  
Opcode: 0x0d  
Format: ORI rd,rt,imm  
Semantics: $s | imm;  
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advance_pc (4);  
 
XOR: Logical XOR.  
Opcode: 0x00  
Funccode: 0x16  
Format: XOR rd,rs,rt  
Semantics: $d = $s^$t;  
advance_pc (4);  
 
XORI: Logical XOR immediate.  
Opcode: 0x0e  
Format: ORI rd,rt,imm  
Semantics: : $d = $s^imm;  
advance_pc (4);  
 
SLL: Shift left logical.  
Opcode: 0x00  
Funccode:0x00  
Format: SLL rd,rt,shamt  
Semantics: $d = $t << h; advance_pc (4);  
 
SLLV: Shift left logical variable.  
Opcode: 0x00  
Funccode: 0x04  
Format: SLLV rd,rt,rs  
Semantics: $d = $t << $s; advance_pc 
(4);  
 
SRL: Shift right logical.  
Opcode: 0x00  
Funccode: 0x02  
Format: SRL rd,rt,shamt  
Semantics: $d = $t >> h; advance_pc (4);  

SRLV: Shift right logical variable.  
Opcode: 0x00  
Funccode: 0x06  
Format: SRLV rd,rt,rs  
Semantics$d = $t >> $s; advance_pc (4);  
 
SRA: Shift right arithmetic.  
Opcode: 0x00  

Funccode: 0x03  
Format: SRA rd,rt,shamt  
Semantics: $d = $t >> h; advance_pc (4);  
SLT: Set register if less than.  
Opcode: 0x00  
Funccode: 0x1a  
Format: SLT rd,rs,rt  
Semantics: if $s < $t $d = 1; advance_pc 
(4); else $d = 0; advance_pc (4);  
 
SLTI: Set register if less than immediate.  
Opcode: 0x0a  
Format: SLTI rd,rs,imm  
Semantics: if $s < imm $t = 1; 

advance_pc (4); else $t = 0; advance_pc 

(4);  

SLTU: Set register if less than unsigned.  
Opcode: 0x00  
Funccode: 0x1b  
Format: SLTU rd,rs,rt  
Semantics: if $s < $t $d = 1; advance_pc 
(4); else $d = 0; advance_pc (4);  
 
SLTIU: Set register if less than unsigned 
immediate.  
Opcode: 0x0b  
Format: SLTIU rd,rs,imm  
Semantics: if $s < imm $t = 1; 
advance_pc (4); else $t = 0; advance_pc 
(4);  
 
A.3 Floating Point Instruction 
 
BCLT: Branch on FP condition true.  
Opcode: 0x11  
Fmtcode: 0x08  
Format: BCLT fmt, offset  
Semantics: if (FPcond)advance_pc 
(offset << 2)); else advance_pc (4);  
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BCLF: Branch on FP condition true.  
Opcode: 0x11  
Fmtcode: 0x08  
Format: BCLF fmt, offset  
Semantics: if (!FPcond) advance_pc 
(offset << 2)); else advance_pc (4);  
 
C.EQ.S: FP Compare Single Precision.  
Opcode: 0x11  
Fmtcode: 0x10 
Funccode: 0x32 
Format: C.EQ.S fs, ft  
Semantics: FPcond=(F[fs]==F[ft])? 1 : 0 
advance_pc (4); 
 
 C.EQ.D: FP Compare Double Precision.  
Opcode: 0x11  
Fmtcode: 0x11 
Funccode: 0x32 
Format: C.EQ.D fs, ft  
Semantics: FPcond=({F[fs], 
F[fs+1]}==F{[ft]), F[ft+1]}? 1 : 0 
advance_pc (4); 
 
C.LT.S: FP Compare Single Precision.  
Opcode: 0x11  
Fmtcode: 0x10 
Funccode: 0x3c 
Format: C.LT.S fs, ft  
Semantics: FPcond=(F[fs]<F[ft])? 1 : 0 
advance_pc (4); 
 
 C.LT.D: FP Compare Double Precision.  
Opcode: 0x11  
Fmtcode: 0x11 
Funccode: 0x3c 
Format: C.LT.D fs, ft  
Semantics: FPcond=({F[fs], 
F[fs+1]}<F{[ft]), F[ft+1]}? 1 : 0 
advance_pc (4); 
 
C.LE.S: FP Compare Single Precision.  

Opcode: 0x11  
Fmtcode: 0x10 
Funccode: 0x3e 
Format: C.LE.S fs, ft  
Semantics: FPcond=(F[fs]<=F[ft])? 1 : 0 
advance_pc (4); 
 
 C.LE.D: FP Compare Double Precision.  
Opcode: 0x11  
Fmtcode: 0x11 
Funccode: 0x3c 
Format: C.LE.D fs, ft  
Semantics: FPcond=({F[fs], 
F[fs+1]}<=F{[ft]), F[ft+1]}? 1 : 0 
advance_pc (4); 
 
ADD.S: Add single precision FP numbers  
Opcode: 0x11 
Fmtcode: 0x10  
Funccode:0x00  
Format: ADD fd,fs,ft  
Semantics: F[fd] = F[fs] + F[t];  
advance_pc (4);  
 
ADD.D: Add double precision FP 
numbers  
Opcode: 0x11 
Fmtcode: 0x11  
Funccode:0x00  
Format: ADD.D fd,fs,ft  
Semantics: {F[fd], F[fd+1]} = {F[fs], 
F[fs+1]} + {F[ft], F[ft+1]};   
advance_pc (4);  
 
SUB.S: Subtract single precision FP 
numbers  
Opcode: 0x11 
Fmtcode: 0x10  
Funccode:0x01 
Format: SUB.S fd,fs,ft  
Semantics: F[fd] = F[fs] - F[t];  
advance_pc (4);  
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SUB.D: Subtract double precision FP 
numbers  
Opcode: 0x11 
Fmtcode: 0x11  
Funccode:0x00  
Format: SUB.D fd,fs,ft  
Semantics: {F[fd], F[fd+1]} = {F[fs], 
F[fs+1]} - {F[ft], F[ft+1]};  advance_pc 
(4);  
 
MUL.S: Multiply single precision FP 
numbers  
Opcode: 0x11 
Fmtcode: 0x10  
Funccode:0x02 
Format: MUL.S fd,fs,ft  
Semantics: F[fd] = F[fs] * F[t];  
advance_pc (4);  
 
MUL.D: Multiply double precision FP 
numbers  
Opcode: 0x11 
Fmtcode: 0x11  
Funccode:0x00  
Format: MUL.D fd,fs,ft  
Semantics: {F[fd], F[fd+1]} = {F[fs], 
F[fs+1]} * {F[ft], F[ft+1]};  advance_pc 
(4);  
 
DIV.S: Divide single precision FP 
numbers  
Opcode: 0x11 
Fmtcode: 0x10  
Funccode:0x01 
Format: DIV.S fd,fs,ft  
Semantics: F[fd] = F[fs] / F[t];  
advance_pc (4);  
 
DIV.D: Divide double precision FP 
numbers  
Opcode: 0x11 

Fmtcode: 0x11  
Funccode:0x00  
Format: DIV.D fd,fs,ft  
Semantics: {F[fd], F[fd+1]} = {F[fs], 
F[fs+1]} 
/{F[ft], F[ft+1]};  advance_pc (4);  
 
CVT.S.W: Convert Integer to single 
precison FP number  
Opcode: 0x11 
Fmtcode: 0x14  
Funccode:0x20  
Format: CVT.S.W fd, fs   
Semantics: fd 

convert_and_round(fs)  advance_pc 
(4);  
 
CVT.D.W: Convert Integer to double 
precison FP number  
Opcode: 0x11 
Fmtcode: 0x14  
Funccode:0x20  
Format: CVT.S.W fd, fs   
Semantics: fd 

convert_and_round(fs)  advance_pc 
(4);  
 
CVT.W.S: Convert single precision FP 
number to integer 
Opcode: 0x11 
Fmtcode: 0x14  
Funccode:0x20  
Format: CVT.S.W fd, fs   
Semantics: fd 

convert_and_round(fs)  advance_pc 
(4);  
 
CVT.D.S: Convert single to double 
precision FP number  
Opcode: 0x11 
Fmtcode: 0x14  
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Funccode:0x20  
Format: CVT.S.W fd, fs   
Semantics: fd 

convert_and_round(fs)  advance_pc 
(4);  
 
CVT.S.D: Convert single precision FP 
number to integer 
Opcode: 0x11 
Fmtcode: 0x14  
Funccode:0x20  
Format: CVT.S.W fd, fs   
Semantics: fd 

convert_and_round(fs)  advance_pc 
(4);  
 
CVT.S.D: Convert single to double 
precision FP number  
Opcode: 0x11 
Fmtcode: 0x14  
Funccode:0x20  
Format: CVT.S.W fd, fs   
Semantics: fd 

convert_and_round(fs)  advance_pc 
(4);  
 
A.3 Other instructions  
 
Syscall: Call OS routine  
Opcode: 0x00  
Funccode: 0x0c  
Format: syscall  
Semantics: advance_pc (4);  
NOOP: No operation  
Opcode: 0x00  
Funccode: 0x00  
Format: No operation  
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Appendix B: A Makefile sample for creating simulator executable  
 

SHELL = /usr/bin/tcsh -f 

PUBLIC = /x/lgjohn/public 

COPY_DIR = /x/lgjohn/public/src/cpumips 

 

#DEBUG = -ggdb 

DEBUG = 

 

C_FILES = cpu_test.cpp cpu.cpp fetch.cpp decode.cpp execute.cpp 

d_mem.cpp wr_back.cpp control.cpp forwd_mux.cpp branch.cpp mul_div.cpp   

buffer.cpp float_unit.cpp 

 

H_FILES = cpu.h fetch.h decode.h execute.h d_mem.h wr_back.h\ 

   control.h forwd_mux.h branch.h mul_div.h\ 

   buffer.h float_unit.h 

 

O_FILES = cpu_test.o cpu.o fetch.o decode.o execute.o d_mem.o wr_back.o 

control.o forwd_mux.o branch.o mul_div.o float_unit.o 

 

A_FILES = $(HOME)/lib/libmips.a $(HOME)/lib/libabakus.a\ 

          $(HOME)/lib/libsystemc.a $(HOME)/lib/libmem.a 

BINARY = cpu 

LIBS    = -L$(HOME)/lib -L$(PUBLIC)/lib -lsystemc -labakus -lmips -lmem 

-lm 

 

IFLAGS  = -I$(HOME)/include -I$(PUBLIC)/include 

#CFLAGS  = -Wall -DSC_INCLUDE_FX -O3 $(DEBUG) 

CFLAGS  = -Wall -O3 $(DEBUG) 

CC      = g++ 
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$(BINARY):      $(O_FILES) $(A_FILES) 

 $(CC) $(CFLAGS) $(IFLAGS) -o $(BINARY) $(O_FILES) $(LIBS) 

.cpp.o: 

 $(CC) $(CFLAGS) $(IFLAGS) -c $< 

 

$(O_FILES):     $(H_FILES) 

 

install: 

 cd memory; make 

 cd memory; make install 

 cd instruction; make 

 cd instruction; make install 

 cd regfile; make install 

 make 

 

copy: 

 if ! -d $(COPY_DIR) mkdir $(COPY_DIR) 

 cp Makefile $(COPY_DIR) 

 cp prog.hex $(COPY_DIR) 

 cp $(C_FILES) $(COPY_DIR) 

 cp $(H_FILES) $(COPY_DIR) 

 cd instruction; make copy 

 cd memory; make copy 

 cd regfile; make copy 
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Appendix C: A Makefile sample for creating instruction hex file  

# Tell where various comiler exists 

#export PATH=$PATH:/home/maqayum/gnu-mips-installer/install/bin 

CC = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-gcc 

AS = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-as 

LD = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-ld 

DUMP = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-

objdump 

 

# Where the source directories are 

BLD = ../build 

SRC = ./Desktop 

INCLUDEFILES = 

 

# Build all of the main programs in the src folder 

all: test.hex  

 

# This line prevents make from automatically deleting these files 

as temporary 

.PRECIOUS: %.dat %.dump %.out %.o %.s %.asm 

%.asm: %.c 

 $(CC) $(CFLAGS) -S -c $< -o $@ 

 

%.o: %.asm 

 $(AS) -c $< -o $@ 
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%.dump: %.o 

 $(DUMP) -d --disassemble-zeroes $< > $@ 

 

%.hex: %.dump 

 cat $< | grep --only-matching "^ *[0-9a-fA-F]\+:[^0-9a-fA-

F]*[0-9a-fA-F ]\+" | tr -d " " | grep --only-matching "[0-9a-fA-

F]\{8\}" > $@ 

         

 

clean: 

    

 rm *.o *.dump 
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Appendix D: A Test code in hexadecimal format 

2001fffc 

20020008 

221820 

ac430100 

8c420100 

10400003 

8000002 

20217fff 

3e00008 

c000007 

2010001c 

2000009 

3c0a1000 

214a1000 

3c0b0011 

216b0011 

14b0018 

6012 

6810 

aa040 

154a82a 

16a0000a 

cb040 

db840 
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196a82a 

12a00002 

22ed0001 

800001d 

22ed0000 

22cc0000 

228a0000 

8000013 

1aa001a 

a812 

0 

0 

0 

c 

0  
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