
i

DESIGN OF A MIPS INSTRUCTION SET SIMULATOR FOR

MULTICORE PROCESSOR RESEARCH IN SYSTEMC

 By

 MOHAMMAD ABDUL QAYUM

Master of Science in Electrical Engineering

Oklahoma State University

Stillwater, Oklahoma

2010

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

July, 2010

ii

 DESIGN OF A MIPS INSTRUCTION SET SIMULATOR FOR

MULTICORE PROCESSOR RESEARCH IN SYSTEMC

 Thesis Approved:

Dr. Louis G. Johnson

 Thesis Adviser

 Dr. Chris Hutchens

Dr. Reza Abdolvand

Dr. A. Gordon Emslie

 Dean of the Graduate College

iii

ACKNOWLEDGMENTS

At first, I would like to express my sincere gratitude to my advisor, Dr. Louis G.

Johnson for his phenomenal guidance, continuous motivation and limitless inspiration

throughout my study at Oklahoma State University. From his teaching at Computer

Architecture course, I came to know about his research interest in designing an

Instruction Set Simulator (ISS) in new System Level Language, SystemC. It was a

wonderful experience to work in his research group and complete this thesis as a part. I

would also like to thank my parents for their blessings for my educational ambitions. It is

because of their dreams and sacrifices; I have been able to reach my current state. I also

like to thanks to my thesis committee members, Dr. Chris Hutchens and Dr. Reza

Abdolvand for their valuable comments and suggestions. I also like to thank Dr. James

Stine for his Yoda Warrior Compiler from where I got the idea of using Cross compiler

for testing this Instruction Set Simulator. Also, I am thankful to Dr Sohum Sohoni’s effort

to motivate me in reading papers in Advanced Computer Architecture course which help

a lot in writing this thesis. Finally, I feel privileged to study at the Department of

Electrical and Computer Engineering of Oklahoma State University which will be an

invaluable experience throughout my life.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Research interest & Literature review ...3

 1.2 Thesis organization ..5

II. BACKGROUND ...6

 2.1 SystemC ...6

 2.2 MIPS Architecture ...13

 2.3 Instruction Set Simulator ...14

 2.4 Pipelined MIPS ..17

 2.5 Benchmarks..21

III. DESIGN METHODOLOGY ...22

 3.1 Instruction Objects ...22

 3.2 Fetch Unit...24

 3.3 Decode Unit ...25

3.4 Execute Unit...27

3.5 DMEM Unit ...28

3.6 Write Back Unit ...29

3.7 Multiply-Divide Unit ...31

v

Chapter Page

 3.8 Floating Point Unit ...32

 3.9 Control Unit ...34

 3.10 Branch Unit ..34

3.11 Cpu Unit ...34

3.12 Register, Cache and Memory ...38

3.13 Multicore Processor Design ...38

IV. Testing Methodology ...40

 4.1 Individual Instruction test ..40

 4.2 Benchmark Testing ..41

 4.2 Testing limitation and Future Testing ..45

V. CONCLUSION ..46

 5.1 Findings and Future Work ...46

REFERENCES ..48

APPENDICES ...50

vi

LIST OF TABLES

Table Page

1 SystemC Architecture ………………………………….……………………… 7

2 Contents General Purpose Register after 57 instructions……………………… 41

vii

LIST OF FIGURES

Figure Page

1 SystemC Framework ...9

2. Graphical notations for modules, interfaces, ports, channels13

3. Design Flow Simulation ..14

4. Unpipelined MIPS architecture..17

5. 5 stage pipelined MIPS architecture ..18

6. Mul-div and Floating point unit in parallel with integer unit19

7. Inter-connection among memory, cache and cpu ..37

8. Top cpu module ...38

9. Multicore Processor module ..39

10. Test result ...41

11. Hex file Generation overview ...42

viii

LIST OF ABBREVIATIONS

Abbreviation Elaboration

1. MIPS Microprocessor without Interlocked Pipeline Stages

2. ISA .. Instruction Set Architecture

3. ISS ... Instruction Set Simulator

4. SOC ... System On Chip

5. RTL ... Resistor Transfer Level

6. HDL .. Hardware Description Language

7. ESL .. Electronic System Level

8. EDA ... Electronic Design Automation

9. CAS .. Cycle Accurate Simulator

10. OSCI ... Open SystemC Initiative

11. SCV ..SystemC Verification

12. STL .. Standard Template Libraries

13. LRM .. Language Reference Manual

14. TLM ... Transaction Level Module

15. IP .. Intellectual Property

16. DSP ... Digital Signal Processing

17. ASIC ... Application Specific Integrated Circuit

18. RISC .. Reduced Instruction Set Computer

19. CISC .. Complex Instruction Set Computer

ix

20. ALU ...Arithmatic Logic Unit

21. CPU ... Central Processing Unit

22. MUX .. Multiplexer

1. GPR .. General Purpose Resister

2. FPR .. Floating Point Resister

3. IPC .. Instruction Per Cycle

1

CHAPTER I

INTRODUCTION

As computer applications are becoming more complex, large and versatile; the

advent of Complex Chip multiprocessor is ubiquitous. So, designing a complex core and

other micro architectural parts of it in Register Transfer Level (RTL) are becoming

cumbersome and time consuming. So, arrival of High Level Hardware Description

Language (HDL), also called Electronic System Level (ESL) Language is welcomed and

necessary. This level of language abstracts long and detailed RTL descriptions and

emphasis more on algorithmic problem. SystemC is an IEEE standard ESL which is now

widely researched in Universities and Electronic Design Automation (EDA) industries.

SystemC also offers high productivity by providing the opportunity of co designing

hardware and software for earlier verification and trade-offs. Instruction Set Simulator

(ISS) simulates Instruction Set Architecture (ISA), is faster while Cycle Accurate

Simulator (CAS) is related to real architectural implementation. In this thesis a research

based ISS designed in SystemC for MIPS architecture will be explored and testing

method using benchmark will be discussed. Also, designing a cycle accurate ISS is a step

forward to design a real processor. So, some future work for the implementation of this

2

design will be justified. This simulator is a part of a multicore computer architecture

research, as SystemC is highly modular and portable, joining cores and caches will be

easier and quicker than conventional programming or HDL languages.

ISS is widely used for software verification in simulated hardware and computer

architectural research. Popular ISS’s are SIMICS, Simplescalar, OVPSim etc. They are

designed in higher level languages like C, C++ or Java and not cycle accurate. So,

benchmark result on this simulators is not necessarily predicts real hardware simulation.

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline Stages) is a

Reduced Instruction Set Computer (RISC) ISA was developed by now obsolete MIPS

Computer Systems (present day MIPS Technologies). MIPS is a result of Stanford

University research group’s work led by Dr. by John L. Hennessy in 1981. The basic

concept was to increase performance by using deep pipelining. CPUs are built up from a

number of dedicated sub-units such as instruction fetch unit, decoders, Arithmetic and

logic unit (ALU), load/store units and so on. In a traditional non-optimized design, a

particular instruction in a program sequence must be executed before next instruction is

fetched. But in a pipelined architecture, successive instructions can overlap in execution.

MIPS is a very popular ISA for its simple design. It is taught almost everywhere as

in Computer Architecture course as ISA. So, designing an ISS for MIPS should be

comfortable for wide availability of information about its architecture. SystemC is a next

generation ESL which provides outstanding opportunity for hardware and software

3

verification. As this ISS designed in SystemC is cycle accurate, it will provide more close

hardware simulation. On the availability of high level synthesizer, this code can be easily

modified for synthesisation. Simulation of multicore architecture in conventional HDL

languages like Verilog or VHDL is very cumbersome and slow while in system level

simulation with languages like C, C++ and Java is not good enough to provide

standardization and simulate the real flow of the instructions. SystemC provides unique

and unprecedented opportunity to design a complex hardware like multicore processor

in more abstract level and standard way. To design a multicore system in SystemC is

very suitable as it is highly modular and intuitive. This project is part of broader project

where the novel micro-architectural design will be tested. So, designing a correct and

efficient single core MIPS is the most important part.

1.1 Research interest & Literature review: Most of the MIPS ISA’s are designed for

System On Chip (SOC) research [1-3], where RISC type cores are integrated with other

hardware modules. But there are very few instances of MIPS core designed in SystemC

for Computer Architecture Research. We designed a single core for MIPS I ISA and some

part of MIPS IV ISA in a modular fashion so that we can declare instances for new cores

and interface with other cores and other Micro-Architectural parts to make it a full

multicore Simulator for our Computer Architecture Research at Oklahoma State

University.

SoC-Mobinet (System on Chip for Mobile Internet) [4] is a project of European

Commission, addressing research training in microelectronics. This project has

4

developed a synthesizable MIPS processor in SystemC. It is also open-source and can be

downloaded [5]. But it has no roadmap for multicore research.

Yon Jun et al [6] have designed a MIPS processor in SystemC which is very similar

to our work. But they have used Transaction Level Model (TLM) for passing instruction

information among their modules and their design is not cycle accurate. TLM is a high-

level approach in modeling digital systems where details of communication among

modules are separated from the details of the implementation of functional units or of

the communication architecture [7]. Transaction requests take place by calling interface

functions of these channel models, which encapsulate low-level details of the

information exchange. At the transaction level, the emphasis is more on the

functionality of the data transfers - what data are transferred to and from what

locations - and less on their actual implementation, which is, on the actual protocol used

for data transfer. In our design, we have not used TLM explicitly, but we have transfer

instruction objects among the modules in more like real hardware but not bitwise.

Interestingly, their testing methodology is quite similar to us, as they made a

binary file created from assembly codes in PERL where we used UNIX grep command.

Our work is more significant in that sense; it is cycle accurate, more complete and

extensible.

MPARM [8] is a Multiprocessor simulator which uses RISC type ARM processor.

Their simulator use C/C++ version of cycle accurate ISS for ARM processor but interfaces

and other macro-architectural parts are designed in SystemC. SimSOC [1006] is full SOC

5

system simulator which uses SystemC for hardware modeling, SytemC/TLM for

communications and ISS in C/C++. ISS used in SimSOC is not a conventional ISS, it uses a

precompiled specialized instructions for speed up.

Most common and popular full computer System simulators are SIMICS,

Simplescalar, RSIM, etc [8]. These are written in C/C++, are not cycle accurate and, are

not easily modifiable. Most importantly, they do not emulate real architecture of ISA.

The advantage of our ISA as it is designed HDL like language SystemC, it is close to real

processor emulation and will predict performance matrices more reliable and accurate

then common Computer Architecture simulators.

1.2 Thesis organization: The thesis is organized in four different sections. First section

discusses the background related to MIPS ISS design in SystemC. The second section

discusses design methodology of this MIPS ISS. The third section is covered with testing

methodology. The fourth section discusses contribution of this ISS as a research and

future work of multicore research and synthesis of this ISS.

6

CHAPTER II

BACKGROUND

2.1 SystemC: SystemC™ is a language built on top of standard C++ by extending the

language with the use of new class libraries. SystemC addresses the need for a system

design and verification language that entails both hardware and software. SystemC is

developed and maintained by Open SystemC Initiative (OSCI) and has been approved by

the IEEE Standards Association as IEEE 1666-2005, the SystemC Language Reference

Manual (LRM). The language is particularly applicable to model system's partitioning, to

evaluate and verify the assignment of blocks to either hardware or software

implementations, and to architect and measure the interactions among functional

blocks. Leading intellectual property (IP), EDA, semiconductor, electronic systems, and

embedded software industries currently use SystemC for architectural exploration, for

the purpose to deliver high-performance hardware blocks at various levels of

abstraction and to develop virtual platforms for hardware/software co-design. [9]

SystemC has similar semantic to VHDL and verilog, but it has syntactical

overheads compared to these when used as a HDL. On the other hand, it offers a wider

range of expression like object oriented design partitioning and template classes.

Although strictly it is a C++ class library, SystemC is sometimes viewed as being a

language in its own right. Source code can be compiled with the SystemC library which

7

includes a simulation kernel to give an executable. The performance of the OSCI open-

source implementation of current SystemC is typically less optimal than commercial

VHDL/Verilog simulators when used for register transfer level simulation. But research is

going on optimize at the synthesis.[10]

Version 1 of SystemC had all the common hardware description language

features such as structural hierarchy and connectivity, clock cycle accuracy, delta cycles,

4-state logic (0, 1, X, Z), and bus resolution functions. From version 2 onward, the aim of

SystemC has moved towards communication abstraction, TLM, and virtual platform

modeling. This version included abstract ports, dynamic processes, and timed event

notifications.

User Libraries SCV Other IP

Predefined Primitive Channels like Mutexes, FIFO and Signals

SystemC Kernel Threads & Methods Channels

&Interface

Data types:

Logic,

Integer,

Fixed Points

etc

Events, Sensitivity &

Notification

Modules &

Hierarchy

C++ STL

Table1 : SystemC Architecture

8

The table 1 shows the overall SystemC architecture. SystemC consists of C++

libraries and Standard Template Libraries (STL). SystemC has a kernel which schedules

SystemC processes and threads. Processes are defined as methods in SystemC and

variable are sensitive to events that means when a method is waiting on event, when

the event finishes it notify the process. STL defines standard SystemC data types. On the

top, SystemC has some predefined Primitive Channels like Mutexes, FIFO and Signals.

The SystemC has verification libraries (SCV) for system verification. Other user libraries

and IPs from other parties can be used to develop a full system.

SystemC enables design and verification at the system level, independent of any

detailed hardware and software implementation, so as enabling co-verification with RTL

design. This higher level of abstraction enables considerably faster, more productive

architectural trade-off analysis, design, and redesign then is possible at the more

detailed RTL. Furthermore, verification of system architecture and other system-level

attributes is orders of magnitude faster than that at the pin-accurate, timing-accurate

RT L.

Following figure describes SystemC framework. SystemC modules can be

interfaced with other hardware components designed in C/C++ or HDL, can run test

benches or Software written C/C++. All hardware components written in SystemC and

C/C++ are compiled in standard compiler to create executable (exe) file/files. By running

exe file, simulations can be run with test benches.

9

Figure 1: SystemC framework

Major SystemC components are:

Modules: A module is a C++ class which simulates a hardware or software description.

SystemC defines that any module has to be derived from the existing class sc_module.

SystemC modules are similar to Verilog modules or VHDL entity (.h) and architecture

(.cpp) pairs as they represent the basic building block of a hierarchical system. By

definition, modules communicate with other modules through channels and via ports.

Typically a module will contain numerous concurrent processes used to implement their

required behavior. [11] The following code illustrates the creation of the simplest of

module

SC_MODULE(test_module) { //module

SC_CTOR(test_module) {

cout << “This is a test module” << endl;

10

 }

 };

Ports: A port is an integral part of a SystemC module. Ports are used by modules to

communicate to or from a module with the outside module say, another module. In a

simple way, we can consider a port as pin of a hardware component.

In HDLs such as VHDL or, Verilog ports are metaphorically like pins. But in

SystemC ports are have substantially more general purposes and so, are designed in

more sophisticated way and also, more versatile in use than its counterpart HDL

languages.

A simple SystemC port declaration can be defined as:

sc_in <bool> test_input;

The port has a name test_input and in this particular instance, it is of input mode

since we used the sc_in<> port type. The last observation that we can make from this

simple line of code is the use of the bool data type inside the <> of the sc_in port type.

This data type refers to the kind of data that will be exchanged on that port. In other

words, we are expecting to receive boolean values on the test_input port.

Also, there exists numerous predefined port types in SystemC such as

sc_in<Type>, sc_out<Type>, sc_inout<Type>, etc. Most of those ports are almost

11

identical to their counterpart HDL equivalent of VHDL or Verilog; they have a name, a

type and a mode. Usually, these kinds of ports are commonly used in RTL design in

SystemC. However, SystemC ports have much more flexibility than RTL like ports;

because SystemC ports not only have a name and a type which define the access

mechanisms that should be used on them. Actually, the access mechanisms are just a

list of allowed messages that can be used on them. If we consider the sc_in<bool> port

of the previous example, in that case SystemC defines that by read() function message

can be read from it. So intuitively, an sc_out<> port would allow one to use write()

function to write the message. The following code demonstrates the use of an

sc_in<bool> and an sc_out<bool> ports.

sc_in<bool> test_input;

sc_out<bool> test_output;

void simple() {

if (test_input.read() == true)

{

test_output.write(false);

}

else {

test_output.write(true);

12

}

}

};

Channels and interface: SystemC channels are written by using C++ class interface

principle. In this principle abstract base classes are constructed and common interfaces

for related derived classes are also defined. These abstract base classes are used to

define all the access methods that a channel should have. Consequently, a channel is

written as a C++ class derived from an abstract base class and it implement the access

methods defined inside its abstract base parent class.

An abstract base class is written in C++ with the help of one or more pure virtual

methods as part of that class. A pure virtual method is a method that is usually

implemented inside a derived class from the abstract base class. The semantic of a pure

C++ virtual method may look like:

Virtual <return_type> function_name (args>)=0;

For example, the following line of code uses a method called data_write that requires

three input arguments and returns an integer type:

virtual void data_write(int address, int Bytes, sc_lv<16> *data) = 0;

13

The keyword ‘virtual’ and the ‘=0’ are the essential parts of this declaration as they

represent to the compiler that ‘data_write’ is a pure virtual method and therefore, that

the class containing this declaration can never be used into an object. Once one or a

number of abstract base classes (interfaces) have been formulated, channels can be

implemented by simply inheriting one or more of the base classes and implementing

their virtual methods. The following figure describes all the basic components and their

interconnections in standard graphical notation.

Figure 2: (a) Graphical notations for modules, interfaces, ports, channels, and port-

channel binding (b) Example with two modules and a hierarchical channel [11]

Abakus Library: OSU AbaKus is a SystemC like kernel developed by a former PhD

student Aswin Ramachandran developed in C++ to develop hardware simulator in

system level. Aswin et. al. argued [12] that their kernel is more accurate, flexible to use

14

and in some cases increase the simulation speed and also, It is flexible to adapt to any

hardware description language. The design flow for different micro-architecture

simulators is illustrated in Figure 3.

Figure 3: Design Flow Simulation

2.2 Instruction Set Simulator: ISS is a simulation model coded in a high-level

programming language like C, C++ or Java, which emulates the behavior of a

microprocessor by reading and decoding instructions and maintaining internal variables

such as processor's registers accordingly.

ISS is widely used for following possible reasons:

15

 To simulate the machine code of another hardware device or entire computer for

upward compatibility -a full system simulator typically includes an instruction set

simulator.

 To improve the speed performance of simulations while verilog simulation is

significantly slow for verification purpose. Sometimes ISS is co-simulated with other

verilog micro-architectural parts.

 To collect information for predicting or analyzing performance of novel architectural

design.

 To develop new software and applications earlier on future processor platform.

Widely used ISS’s are SIMICS, Simplescalar, SimOS, GEMS etc. Some are full

system simulator eg. Simics, SimOS which offers simulation of several types of ISA. Some

are ISA specific (eg. WinMIPS64 is 64 bit mips ISA) and micro-architecture specific (eg.

Dinero- a hierarchical cache simulator).

2.3 MIPS architecture: MIPS is the most common RISC type ISA. Conventional Complex

Instruction Set Architecture (CISC) takes many cycles to execute an instruction due to its

complex addressing modes (eg. Intel Architecture-32 or, IA-32). It is argued that such

functions would perform better by sequences of simpler instructions reducing the

number of slow memory accesses. In RISC design, most instructions are of uniform

length and similar structure, arithmetic operations are restricted to CPU registers and

only separate load and store instructions access memory. These properties enable a

http://en.wikipedia.org/wiki/Verilog
http://simos.stanford.edu/
http://www.cs.wisc.edu/gems/
http://www.computing.dcu.ie/~mike/winmips64.html

16

better balancing of pipeline stages than before, making RISC pipelines significantly more

efficient and allowing higher clock frequencies. The common features of MIPS

instruction-set architecture are:

 It is usually simple load-store architecture and uses general-purpose registers.

 It has only two addressing modes, displacement and immediate, but can be

formulated to other important modes from them.

 It supports 8-, 16-, 32-, and 64-bit integers, and 32- and 64-bit IEEE 754 floating-

point numbers.

 It has an orthogonal set of instructions to manipulate these data types.

 It has separate comparison and branching instructions. MIPS has thirty-two 32-

bit general-purpose registers (GPR), named R0, R1,… , R31. R0 always contains 0

with another value has no effect).

 It has 32 floating-point registers (FPR), which can hold either Single Precision (32-

bit) or double-precision (64-bit) values.

 It 32 bit floating point status and control register which is used for floating point

comparison and branching.

 It has several co-processors. In earlier version (eg. MIPS I) co-processor one is

used as floating point unit (FPU). Other co-processors are for control support.

Later version (eg. MIPS R3000) FPUs are used as integral part.

17

Figure 4: Un-pipelined MIPS architecture [13]

2.3 Pipeline MIPS Architecture: The problem with the unpipelined design is that each

instruction must finish before another instruction can start. The hardware, for example,

the ALU is only used when none of other hardware is used. The basic idea of pipelining

is to utilize of the unused time of the CPU components so that more than one

instruction is can be processed simultaneously; i.e other instructions can go through

without waiting for the previous instruction to finish.

The following figure shows a 5 stage pipelined MIPS architecture:

18

Figure: 5 stage pipelined MIPS architecture [13]

Our MIPS design has pipe stages- fetch, decode, execute, memory access and write

back. Here, the description of following stages of MIPS:

 IF/ID: this stage controls the passing of rs, rd, and rt fields of the

instruction with the opcode and funct fields, to the control other circuitry

according to the instruction.

19

 ID/EX: this stage buffers control for the EX, MEM, and WB stages, while

executing control for the EX stage. Control also dictates what operands

will be inputs to the ALU, what ALU operation should be performed, and

whether or not a branch is to be taken based on the ALU Zero output.

 EX/MEM: this stage buffers control for the MEM and WB stages, while

executing control for the MEM stage. The control lines are executed for

memory read or write, and also for data selection for memory write. This

stage of control also maintains the branch control logic.

 MEM/WB: this stage buffers and executes control for the WB stage, and

selects the value to be written into the register file.

We have separate multiply-divide (mul-div) unit and floating point unit (FPU)

which work parallel with integer unit to perform multiply-divide and floating point

arithmetic instructions respectively as shown in figure 6

Figure 6: Mul-div and Floating point unit in parallel with integer unit

20

Control unit provide necessary control signals to each stage to synchronize all

the functions of an instruction. There is a separate branch unit which calculate

necessary branch conditions and calculate the address to jump.

There are three basic types of integer instructions:

R-type instructions refer to register type instructions. Of the three formats, the R-type is

the most complex. This is the format of the R-type instruction, when it is encoded in

machine code.

B31-26 B25-21 B20-16 B15-11 B10-6 B5-0

opcode register rs register rt register rd shift amount function

I-type is short for "immediate type". The format of an I-type instruction looks like:

B31-26 B25-21 B20-16 B15-0

opcode register rs register rt immediate

J-type is short for "jump type". The format of a J-type instruction looks like:

B31-26 B25-0

opcode Target

There are two basic types of floating point instructions: FR-type instructions refer to

floating point register type instructions.

21

B31-26 B25-21 B20-16 B15-11 B10-6 B5-0

opcode register fmt register ft register fs register fd function

FI-type is short for "Floating Point immediate type". The format of an FI-type instruction

looks like:

B31-26 B25-21 B20-16 B15-0

opcode register fmt register ft immediate

2.4 Benchmarks: A benchmark is a standard test or a set of standard tests written in

programming languages to measure the relative performance of a system. It is used in

Computer Architecture research to assess the comparative performance of a hardware

say, floating point performance of a CPU, or cache miss rate of a particular cache

hierarchy. Benchmarks include versatile tests so that they can trial exhaustedly the

different relative performance of hardware. For example, a benchmark written for

testing a particular cache hierarchy will be memory intensive while a benchmark written

for testing CPU speed will be computation intensive. There are other types of

benchmarks called test benches which are used for validation of small hardware or

software parts. Most common benchmarks in computer architecture are SPEC,

SPLASH, Mediabench etc.

http://www.cs.ucla.edu/~leec/mediabench/

22

CHAPTER III

Design Methodology

We have used fusion of C++, SystemC version 2.0 and Abakus library for our

design. As a compiler we used GCC version 4.11 and our host machine is tesla1 which is

a Intel Server machine with Linux 64 bit operating system. Our top module is cpu. Inside

cpu other lower modules have instances and interconnections. To test our simulator we

used cpu_test.cpp file which uses cpu as Design Under Test (DUT). Each unit has a

header file (.h) which defines all the ports, local channels, local modules and

constructors. In cpp file all the local ports, channels and modules are initialized. All local

modules connections are defined through ports and channels. And also, the main

module function also declared and finally, a dump function is called for image of all the

registers in that cpp file.

3.1 Instruction Objects: We designed our ISA in SystemC more like ASIC design

procedures which use HDL languages like Verilog or VHDL. But we have some significant

differences. We defined instructions as objects which have pointers to them. The object

has several pointers to sub-object (eg. itype, r.rs, r.rt) which contains register’s address,

offset value, opcodes etc. The pointer to main instruction object is passes through each

stage and other units e.g. control, calculation or changes are done on the sub-objects.

23

For instruction object we have a separate module which describes functionality of the

instruction object on respective stages. For example, in the following “add” instruction

r.rs pointer points to a sub-object this is the address of a GPR register, so as r.rt and r.rd.

These three rnum_t function is executed in decode stage. The execute_func function

does the “add” arithmetic task at the execute stage. This “add” instruction has no

activity at memory access stage but has a default activity (write the result to the

destination register) in the write back stage. Following is an example which shows how

add instruction is implemented.

struct add_t : alu_r_t {

add_t() {};

virtual rnum_t get_ra(instruction* inst) { return inst->r.rs; }

virtual rnum_t get_rb(instruction* inst) { return inst->r.rt; }

virtual rnum_t get_rd(instruction* inst) { return inst->r.rd; }

virtual void execute_func(instruction *inst,

 data_t a_data,

 data_t b_data,

 data_t &data)

 { data = a_data + b_data; }

} add;

The Instruction implemented above is a very convenient way to add a new

instruction. We can implement any new instruction of any new architecture for MIPS or

even totally new architecture like PowerPC RISC type ISA in this fashion.

24

3.3 Fetch Unit: In the simple fetch stage icode (instruction object) is fetched according

to pc_value object (PC) from the I-cache. It is initially stored IF/ID pipeline and in next

clock cycle it passes to the decode unit. Following is an example of fetch unit codes

fetch::fetch() {}

fetch::fetch(sc_module_name name) : sc_module(name),

 //initialize ports

 pc("pc"),

 pc_next("pc_next"),

 pc_inst("pc_inst"),

 br_addr("br_addr"),

 br_cond("br_cond"),

 i_mem("i_mem")

{}

void fetch::evaluate() {

 instruction *inst = pc_inst->read();

 addr_t pc_value = pc->read();

 //read instruction

 inst->iaddr = pc_value;

 i_mem->read(pc_value, inst->icode);

 inst->decode(); //set correct fields here, hardware does it in

next stage

25

 //get next pc

 if (br_cond->read())

 pc_next->write(br_addr->read());

 else

 pc_next->write(pc_value + sizeof(icode_t));

}

void fetch::dump(ostream &out) const {

 out << endl << name() << endl;

}

3.3 Decode Unit: An instruction is deciphered in the decode stage to 6 bit opcode and 6

bit funct code for the control purpose of the instruction. The Registers (rs, rt, rd, fmt, ft,

fs, fd) are also read in this stage. Note that the first source register’s identifier (rt/ft) in

every instruction is at bit positions *25:21+ and second source register’s identifier (rs/fs)

is at bit positions [20:16]. The destination register’s identifier is either at bit positions

[15:11] (for R-type) or at [20:16]. The correct destination register’s identifier is identified

via multiplexer controlled by the control signal RegDst [Fig. 4].

In our design, when instruction object is in decode stage, it calls a decode

function. In the decode functions all the opcode, funct code and other register values

are read and pointed by the some sub pointers of the instruction object. This sub

26

pointer and instruction object then pass to the next pipelines and units. Following is a

sample code for decode function:

void instruction::decode() {

 icode_t opcode = icode >> 26;

 itype = dectab[opcode];

 if (itype->op == FUNCREG) {

 opcode = icode & 0x3f;

 itype = regdectab[opcode];

 }

 switch(itype->format) {

 case R:

 r.rs = (icode >> 21) & 0x1f;

 r.rt = (icode >> 16) & 0x1f;

 r.rd = (icode >> 11) & 0x1f;

 r.shamt = (icode >> 6) & 0x1f;

 break;

 case I:

 i.rs = (icode >> 21) & 0x1f;

 i.rt = (icode >> 16) & 0x1f;

 register short immh = icode & 0xffff;

 i.imm = (int) immh; //sign extended

 break;

 case J:

27

 j.addr = (iaddr + 4) & 0xf0000000 | ((icode &

0x03ffffff) << 2);

 break;

 }

}

3.4 Execute Unit: In conventional MIPS architecture, execute stage includes generally

ALU and other parts. In our case, we have three modules in parallel- integer unit

(execute unit), Mul-div unit and floating point unit. In integer unit, a “evaluate” function

is called which do basic arithmetic functions on the instruction object and results are

given as return value which is passed to next EX/MEM pipeline. Similarly in mul-div unit

and floating point unit, the evaluate function does necessary manipulation in the

instructions and return a result through a sub-pointer.

In mul-div unit we have “ab-pipe” type mul-div-pipe pipeline register which

simulate the arbitrary super-pipeline requirement due to the long calculation for

multiply and divide. That means, multiply and divide instructions require several stages

(clock cycles) to produce result. Similarly, we can simulate different number of super-

pipeline requirement for different type of floating point instructions.

Normally, in RISC architecture an integer instruction takes one cycle. But the

combinational logic of divide and some floating point instruction can have long delay

which can be equal to several cycles. For that we have defined delay variable

“divide_delay” which can simulate delay in clock time periods. Similarly, we have

28

different floating_point_delay for different type of floating point instructions. Following

piece of code shows implementation of execute unit.

void execute::evaluate() {

 instruction* inst = id_ex_inst->read();

 data_t data_;

 data_t b_data_ = b_data->read();

 inst->itype->execute_func(inst, a_data->read(), b_data_,

data_);

 data->write(data_);

 st_data->write(b_data_);

 if (inst->itype->op == FUNCFP) {

 data_t fdata_;

 d_data_t fb_data_;

 inst->itype->execute_func_f(inst, a_data->read(), fb_data_,

fdata_);

 data->write(fdata_);

 st_fdata->write(fb_data_);

 }

}

3.5 DMEM Unit (Memory Access Unit): In DMEM unit, register values are loaded from

or store to the memory. This unit exclusively used for load/store type of instructions.

Other integer instructions do nothing in this stage. Following piece of code shows an

example of DMEM-

29

void d_mem::evaluate() {

 register instruction* inst = ex_mem_inst->read();

 data_t data;

 inst->itype->d_mem_func(inst, &mem, ex_mem_st_d->read(),

 (addr_t) ex_mem_reg_d->read(), data);

 mem_wb_reg_d->write(data);

 if (inst->itype->op == FUNCFP) {

 d_data_t f_data; //fp

 inst->itype->d_mem_func_f(inst, &mem, ex_mem_st_fd->read(),

(addr_t)

ex_mem_reg_d->read(), f_data); //fp reading address should be

int

 mem_wb_reg_fd->write(f_data); //fp

 }

}

3.6 Write Back Unit: In write back stage result of arithmetic operation is written to

register (GPR or FPR) according to destination address in the instruction (eg. rs/rd/fd).

We implemented write back stage in this unit. This unit is connected to integer, mul-div

and floating point unit. Though three units are connected to this unit, but our design

works in sequential way. That means an instruction wait or stalled in this unit until its

result come from mul-div or floating point unit. Following is a sample code for write

back unit:

void wr_back::evaluate() {

30

 //write register

 instruction* inst = mem_wb_inst->read();

 wb_src_t wb_src;

 inst->itype->wr_back_func(inst, wb_src);

 data_t wb_src_data;

 d_data_t wb_src_fdata;

 switch(wb_src) {

 case MFGPR:

 wb_src_data = mem_wb_reg_d->read();

 break;

 case MFHI:

 wb_src_data = hi_reg_d->read();

 break;

 case MFLO:

 wb_src_data = lo_reg_d->read();

 break;

 case MFFPR:

 wb_src_fdata = f_reg_d->read();

 break;

 case FPR:

 wb_src_fdata = mem_wb_reg_fd->read();

 break;

 }

 reg_d->write(inst->itype->get_rd(inst), wb_src_data);

 reg_fd->write(inst->itype->get_fd(inst), wb_src_fdata);

31

 /* maintain $r0 semantics */

 reg_d->write(REG_ZERO, 0);

}

3.8 Mul-div Unit: In the mul-div unit, multiply and divide instruction takes place.

Actually MIPS I is 32 bit machine, but result of two 32 bit numbers is 64 bit. So, in MIPS

there are two special instructions- move from low (MFLO) and move from high (MFHI)

for transferring 64 bit result to two 32 bit GPR register. In our design, result is stored in

two register called “HI” and “LO” in case of multiply or divide instruction. The contents

of HI/LO is transferred on immediate MFLO/MFHI instruction. Instruction mul-div type

instruction objects usually pass to write back stage but stalled until the result are

available. The following code shows that “mul_div_func” function takes the instruction

object and return HI/LO values and store to ‘hi’ and ‘lo’ register. It also shows how stalls

are implemented.

void mul_div::evaluate() {

 //data

 instruction* ex_inst = mul_div_start_reg.qout->read();

 ex_inst->r.rs_data = a_data->read();

 ex_inst->r.rt_data = b_data->read();

 instruction* inst = mul_div_pipe.qout->read();

 data_t data_hi;

 data_t data_lo;

 inst->itype->mul_div_func(inst, data_hi, data_lo);

 hi->write(data_hi);

32

 lo->write(data_lo);

 //control

 op_t op = inst->itype->op;

 stall_hi_lo_chan.write((op != MUL) && (op != DIV));

 //div stalls

 if (ex_inst->itype->op == DIV) {

 div_delay_chan.write(1);

 cout << "starting divide delay\n";

 div_delay.write(0);

 }

}

3.8 Floating Point Unit: In the floating point unit, all the floating point arithmatic

instructions are taken place. Actually MIPS I is 32 bit machine, but result of two 32 bit

numbers is 64 bit. But as FPR contains 64 bit registers, so we do not have same problem

as mul-div unit. In that case, result is stored in “f_data” and directly transferred to the

write back stage. As different FP instructions have different cycle delays and multiple

stages to do calculation, we have the option for pipelines and delays which can be

arbitrarily defined. There are some floating point instruction like Move to Coprocessor

one (MTC1), where co-processor is floating point unit and Move from Coprocessor one

(MFC1) which transfer values between GPR and FPR. For this, we require some

connections between integer unit and floating point unit which are implemented in the

33

“cpu” unit. Following piece of code shows that “float_unit_func” takes instruction object

and return the result.

void float_unit::evaluate() {

 //data

 instruction* ex_inst = float_unit_start_reg.qout->read();

 ex_inst->fr.fs_data = fa_data->read();

 ex_inst->fr.ft_data = fb_data->read();

 instruction* inst = float_unit_pipe.qout->read();

 d_data_t data_reg;

 inst->itype->float_unit_func (inst, data_reg);

 f_reg->write(data_reg);

 //control

 op_t op = inst->itype->op;

 stall_f_reg_chan.write(op != FP);

 //div stalls

 if (ex_inst->itype->op == FP) {

 float_delay_chan.write(1);

 cout << "starting float delay\n";

 float_delay.write(0);

 }

}

34

3.9 Control Unit: The control unit dictates the flow of the instruction through stalling

the pipelines when required. It is connected to all the pipeline registers, mul-div unit

and floating point unit. It takes instruction object in deferent stages, look for control

hazards and calculate stall logics which stall the required pipeline registers.

3.11 Branch Unit: Branch unit includes a “branch_func” which takes instruction object

and caculate the branch address to be taken and branch condition- true or false. The

following code shows a simple branch unit implementation.

void branch::evaluate() {

 instruction *inst = if_id_inst->read();

 addr_t br_addr_;

 bool br_cond_;

 inst->itype->branch_func(inst,

 reg_a_data->read(),

 reg_b_data->read(),

 br_addr_,

 br_cond_);

 br_addr->write(br_addr_);

 br_cond->write(br_cond_);

}

3.12 Cpu Unit: This is the top hierarchical module which includes all the lower module

instances. It is like a top module in HDL language, which is declared in the test bench as

35

DUT. In this module all the connections and sequences are described. Following piece of

code shows instances are called

 fetch if_stage;

 decode id_stage;

 execute ex_stage;

 d_mem mem_stage;

 wr_back wb_stage;

 regfile<data_t, 32, 2, 1> gpr;

 control controller;

The remaining codes shows the basic interconnection of the major modules where each

pipeline register (eg. pc, id_ex_reg_a) are connected with clock signal, stall signal from

controller. Stall is required for the synchronization of the instruction flow.

//local module connection (data path)

 pc.clk(clk);

 pc.stall(controller.stall_if);

 id_ex_reg_a.clk(clk);

 id_ex_reg_a.stall(controller.stall_ex);

 id_ex_reg_fa.clk(clk); //fp

 id_ex_reg_fa.stall(controller.stall_ex); //fp

 id_ex_reg_b.clk(clk);

 id_ex_reg_b.stall(controller.stall_ex);

 id_ex_reg_fb.clk(clk); //fp

 id_ex_reg_fb.stall(controller.stall_ex); //fp

36

 ex_mem_reg_d.clk(clk);

 ex_mem_reg_d.stall(controller.stall_d_mem);

 ex_mem_st_d.clk(clk);

 ex_mem_st_d.stall(controller.stall_d_mem);

 ex_mem_st_fd.clk(clk); //fp

 ex_mem_st_fd.stall(controller.stall_d_mem); //fp

 mem_wb_reg_d.clk(clk);

 mem_wb_reg_d.stall(controller.stall_wr_back);

 mem_wb_reg_fd.clk(clk); //fp

 mem_wb_reg_fd.stall(controller.stall_wr_back); //fp

 hi.clk(clk);

 hi.stall(mul_div_unit.stall_hi_lo);

 lo.clk(clk);

 lo.stall(mul_div_unit.stall_hi_lo);

 f_reg.clk(clk); //fp

 f_reg.stall(float_point_unit.stall_f_reg); //fp

 if_stage.pc(pc.qout);

 if_stage.pc_next(pc.din);

 if_stage.pc_inst(controller.pc_inst);

 if_stage.br_addr(br_addr);

37

 if_stage.br_cond(br_cond);

 if_stage.i_mem(inst_mem);

 id_stage.if_id_inst(controller.if_id_inst);

 id_stage.reg_a(gpr.rd_export[0]);

 id_stage.reg_b(gpr.rd_export[1]);

 id_stage.id_ex_reg_a(id_reg_a);

 id_stage.id_ex_reg_b(id_reg_b);

 id_stage.reg_fa(fpr.rd_export[0]); //fp

 id_stage.reg_fb(fpr.rd_export[1]); //fp

 id_stage.id_ex_reg_fa(id_reg_fa); //fp

 id_stage.id_ex_reg_fb(id_reg_fb); //fp

Following figure shows the cpu module where instances of other modules are called and

their interconnections are also shown. Due to complexity of control and branch

connections to other units, it is not shown.

Figure 7: Top ‘cpu module’ which contains other modules

38

3.12 Registers, Cache and Memory: Register file, cache and memory are designed in

way that it can contain 32 bit data. We use template for storing different type of data

like-bool, char, int, float and double. So, we can call any register with any data size. For

our GPR we used 32 bit integer and FPR 64 bit double. Our cache and memory are also

scalable. Cache has all the common placement and replacement policies. Following

figure shows the a simple interconnection configuration among cpu, cache, and

memory.

Figure 8: Inter-connection among memory, cache and cpu

3.13 Multicore Processor Design: In a multicore processor design, same cores will be

instantiated within a processor where core includes cpu and cache. Cores may share

higher level of caches (L2). Further, processors can be instantiated along with shared

memory and system bus in the top multicore processor module. But we need to design

some cache coherency and consistency protocols for multicore processor. Note that, we

have not implemented this multicore model, but the goal behind this project is to

39

facilitate a multicore processor design. With our single core module, we can easily

implement the processor part but some significant work will be required for shared cache

and system bus. Following figure shows how 4 cores can be implemented to form a

multicore processor.

Figure 9: Multicore processor module

40

CHAPTER IV

Testing Methodology

Testing and debugging an ISS is a really complex task. We tested our instruction both

individually and with simple benchmark written in C. We plan to run standard

benchmark like SPEC 2006 but for that we need a loader. We are designing loader as

part of multicore research.

4.1 Individual Instruction test: For testing individual instruction, we have written some

C code to make a file which contains individual instruction in hexadecimal format. We

manually calculated the GPR image for each cycle and compare with GPR image created

by simulation. It gives us error if the image is different than the expected one. Following

figure shows a GPR image after 57 instructions. Our ISS correctly executed 57 integer

instructions and give some information as shown in figure. It took 63 cycles to execute

57 instructions. Some instructions like MUL, DIV take several cycles, so beforehand we

know the the cycle numbers too.

By using “dump” function we can see current value of any register at any instance.

So, we put dump function whenever we have to test a pipeline register. But checking

41

the GPR image in each cycle is a very convincing way to test the accuracy of an

individual instruction.

0 17ffb 10004 10004 0 0 0 0

0 0 20002000 110011 40022000 22004 0 0

1c 0 0 0 20002000 20011000 40022000 22004

0 0 0 0 0 0 0 30

Table 2: Contents General Purpose Register after 57 instructions

In process: cpu_test.process @ 63 ns

finished sc_start

total clock cycles: 63

instruction count: 57

completed: 57

correct: 57

errors: 0

grade:100

instructions/cycle (IPC): 0.904762

Figure 10: Test result

4.2 Benchmark test: Here we will discuss an easy but convincing way of testing our

MIPS ISS. A benchmark written in higher level language (C, C++) is compiled for MIPS

42

ISA. It is then to converted executable binary file (.hex) by using unix “grep” command.

Upon simulation an output file (test.out) is generated with memory contents. From the

memory snapshot in test.out, final memory location is checked for result of the

benchmark. Following flowchart describes how executable binary file (.hex) is

generated.

Figure 11: Hex file design flow

The trick is that a final address is provided in the code. Also, code is written in a

versatile way so that compilation of it includes as more as Instructions possible, long

calculation and variety of higher level language. If final result of this long exhaustive

manipulation is found in the addresss defined in the code, it can be said- it is well

tested. However, individual instruction is tested with one or two lines of machine code

thoroughly. So, hundreds lines of machine codes generated by compiler will be well

43

equipped to test the correctness of the simulator. The following is a sample code used

for testing where final result is stored in the address 0x160c and location of SP, FP and

GP is also defined so that compiler does not use out -bound addresses.

//test.c

asm("addi $29, $0, 0x1000");

asm("addi $28, $0, 0x1200");

asm("addi $30, $0, 0x1400");

int main() {

int x, y, a, b, c, d, *q;

x=0; y=1;

a=20;

b=30;

c=10;

q=0x160c; //final result address

d = b-a;

while(y)

{

if (x<20)

44

 {d = d+c;

x++;}

if (x==20)

 y=0;

}

d = calculate(d);

 *q= for_loop(d);

return 0;

}

int calculate(int p)

{

p = p+3;

p = p+100;

p = p+45;

return p;

}

int for_loop (int r)

{

int i;

for (i=0; i<20; i++)

r=r+5;

45

return r;

}

4.3 Testing limitation and Future testing: We tested individual floating point

instructions by looking at the image of FPR and GPR in each cycle. But for floating point,

we could not test with C test benches as it requires data type to be filled into data

cache. We are still developing loader which will load both instructions and data into

respective caches. Then we can write test benches in C with floating point operations

and can test cohesiveness of the full ISS.

We individually tested correctness of cache and memory. But the correctness of

full ISS requires testing with full hierarchy of cache and memory. But the scope of thesis

is limited to the full work of a single core simulator. We have designed cache, separately

tested it. But it requires a loader and boot loading functions for mapping Virtual

Memory concept, placement and replacement policies. Currently, the loader is in testing

case. When a working loader will be available, we will integrate the cache and test with

more complex benchmarks. Our final target is to run standard benchmark like SPEC

2006.

46

CHAPTER V

Conclusion

5.1 Findings and Future Work: As we are going towards multiple cores and

complex architectural design, ESL like SystemC is an obvious choice. Designing an ISS

SystemC is more real to hardware than conventional ISS as it is cycle accurate. We

cannot say about speed, as we have not yet tested with any standard benchmark. The

most advantage of ISS design in SystemC is that it is modular, interface-able and

standardized. It can also be synthesizable with some modification. Some companies like

Sysnopsis, Metor Graphics, Forte Design System have already claimed that their

synthesizer can synthesize SystemC codes. With fully tested single core ISS, we can go

further design multicore architectural research. As designing a multicore simulator is a

long exhaustive task with limited workforce, it is not possible in a single thesis. But as

multicore will be just instances of single cores and top module is required only for

interconnection. But to control coherency and consistency among shared cache for

multicores is also going to be big task. But single accurate MIPS ISS core is first but

important step of the whole research.

The future work will be the design of a loader which can load real benchmark like

SPEC. Then we can test Instruction Per Cycle (IPC), runtime and other matrices for our

whole ISS. We hope that our ISS will be faster in runtime than conventional ISS as it uses

47

optimized and standardized SystemC and Abakus Kernel [12]. Also, runtime is the

biggest bottleneck of computer architecture research. As SystemC is maturing as HDL

and ESL, novel macro and micro architectural exploration will be easier than common

ISS available.

.

48

REFERENCES

[1] David Chih-Wei Chang, I-Tao Liao, Jenq-Kuen Lee, Wen-Feng Chen, Shau-Yin Tseng,

and Chein-Wei Jen, “Applying ESL in A Dual-Core SoC Platform Designing, Computer

Design,” Proceedings. International Conference, IEEE, 17-20, pp. 335 – 342. September

2000.

[2] Chien-Chang Wang, “A Dual RISC Core SoC Platform,” The Master Thesis of

Department of electrical engineering, National Cheng-Kung University, Taiwan, June

2004.

[3] Yu-Liang Chou, “A Superscalar Dual Core Architecture for ARM9 ISA,” The Master

Thesis of Department of Electrical Engineering, National Sun Yat-Sen University, Taiwan,

July 2005.

 [4] J. Nurmi, J. Madsen, E. Ofner, J. Isoaho and H. Tenhunen: The SoC-Mobinet Model in

System-on-Chip Education, Proc. IEEE Int. Conf. on Microelectronic Systems Education

(MSE’05), 2005, pp. 71-72.

*5+ “A MIPS R2000 Core” *Online+. Available: http://www2.imm.dtu.dk/SoC-

Mobinet/elements/index.htm [Accessed: Dec. 3, 2003].

[6] Yon Jun Shin and Sofiène Tahar et al. A SystemC Transaction Level Model for the

MIPS R3000 Processor, 4th International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications March 25-29, 2007 – TUNISIA

 [9] Open SystemC Initiative. The SystemC Library, Website, 2006. www.systemc.org/

http://www.systemc.org/

49

 [10] Open SystemC Initiative, “Forte Design Systems Announces SystemC Synthesis

Success with Fujitsu Microelectronics Europe,” [Online]. Available:

http://www.systemc.org/news/pr/view?item_key=5cc7fb8a687cba91873e783919a8c94

9531e055f. [Accessed: July. 7, 2010].

*11+ T. Gro¨ tker, S. Liao, G. Martin, and S. Swan, “System Design with SystemC.” Kluwer

Academic, 2002.

*12+ Ramachandran, A.; Johnson, L.G.; “Advanced microarchitecture simulator for

design, verification and synthesis.” Circuits and Systems, 2007. MWSCAS 2007.

*13+ Hennessy and D.A. Patterson, “Computer Organization and design” Morgan

Kaufmann Publishers, 4th Edition, 2009

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4488711&queryText%3DOSU+abakus%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4488711&queryText%3DOSU+abakus%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4483493

50

APPPENDICES
Appendix A: Instruction description

This table lists all MIPS instructions with their opcode, assembler format, and semantics.

A.1 Control instructions:

J: Jump to absolute address.
Opcode: 0x01
Format: J target
Semantics: PC = nPC; nPC = (PC &
0xf0000000) | (target << 2)

JAL: Jump to absolute address and link.
Opcode: 0x03
Format: JAL target
$31 = PC + 8 (or nPC + 4); PC = nPC;
nPC = (PC & 0xf0000000) | (target << 2)

JR: Jump to register address.
Opcode: 0x00
Funccode: 0x08
Format: JR rs
Semantics: PC = nPC; nPC = $s;

JALR: Jump to register address and link.
Opcode: 0x00
Funccode: 0x09
Format: JALR rs
Semantics: $31 = PC + 8 (or nPC + 4); PC
= nPC; nPC = $s;

BEQ: Branch if equal.
Opcode: 0x04
Format: BEQ rs,rt,offset
Semantics: if $s == $t advance_pc
(offset << 2)); else advance_pc (4);

BNE: Branch if not equal.
Opcode: 0x05

Format: BEQ rs,rt,offset
Semantics: if $s != $t advance_pc (offset
<< 2)); else advance_pc (4);

BLEZ: Branch if less than or equal to
zero.
Opcode: 0x06
Format: BLEZ rs,offset
Semantics: if $s <= 0 advance_pc (offset
<<
2)); else advance_pc (4);

BGTZ: Branch if greater than zero.
Opcode: 0x07
Format: BGTZ rs,offsetSemantics: if $s >
0 advance_pc (offset << 2)); else
advance_pc (4); bgtz $s, offset;

BLTZ: Branch if less than zero.
Opcode: 0x01
Format: BLTZ rs,offset
Semantics: if $s < 0 advance_pc (offset
<< 2)); else advance_pc (4);

BGEZ: Branch if greater than or equal to
zero.
Opcode: 0x01
Format: BGEZ rs,offset
Semantics: if $s >= 0 advance_pc (offset
<< 2)); else advance_pc (4);

A.2 Load/store instructions

LW: Load word, indexed addressing.
Opcode: 0x23

51

Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

LHW: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);
LB: Load half word, indexed addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

LUI: Load half word, indexed addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

LWC1: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

LDC1: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

SW: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

SHW: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

SB: Load half word, indexed addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

SWC1: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

SDC1: Load half word, indexed
addressing.
Opcode: 0x23
Format: lw $t, offset($s)
Semantics: $t = MEM[$s + offset];
advance_pc (4);

A.3 Integer instructions

ADD: Add signed (with overflow check).
Opcode: 0x00
Funccode:0x20
Format: ADD rd,rs,rt
Semantics: $d = $s + $t; advance_pc (4);

ADDI: Add immediate signed (with
overflow check).
Opcode: 0x08
Format: ADDI rd,rs,rt
Semantics: addi $t, $s, imm;

52

ADDU: Add unsigned (no overflow
check).
Opcode: 0x00
Funccode:0x21
Format: ADDU rd,rs,rt
Semantics: $d = $s + $t; advance_pc (4);

ADDIU: Add immediate unsigned (no
overflow check).x
Opcode: 0x09
Format: ADDIU rd,rs,rt
Semantics: $t = $s + imm; advance_pc
(4);

SUB: Subtract signed (with underflow
check).
Opcode: 0x00
Funccode:0x22
Format: SUB rd,rs,rt
Semantics: $d = $s - $t; advance_pc (4);

SUBU: Subtract unsigned (without
underflow check).
Opcode: 0x00
Funccode:0x23
Format: SUBU rd,rs,rt
Semantics: $d = $s - $t; advance_pc (4);

MULT: Multiply signed.
Opcode: 0x00
Funccode: 0x18
Format: MULT rs,rt
Semantics: $LO = $s * $t; advance_pc
(4);

MULTU: Multiply unsigned.
Opcode: 0x00
Funccode: 0x19
Format: MULTU rs,rt;
Semantics: $LO = $s * $t; advance_pc
(4);

MUL_DIV: Divide signed.
Opcode: 0x00
Funccode: 0x1A
Format: DIV rs,rt
Semantics: $LO = $s / $t; $HI = $s % $t;
advance_pc (4);

MFHI: Move from HI register.
Opcode: 0x00

Funccode: 0x10
Format: MFHI rd
Semantics: $d = $HI; advance_pc (4);

MFLO: Move from LO register.
Opcode: 0x00
Funccode: 0x12
Format: MFLO rd
Semantics: 4d = $LO; advance_pc (4);

AND: Logical AND.
Opcode: 0x00
Funccode :0x14
Format: AND rd,rs,rt
Semantics: $d = $s & $t; advance_pc (4);

ANDI: Logical AND immediate.
Opcode: 0x12
Format: ANDI rd,rt,imm
Semantics: $d = $s & imm; advance_pc
(4);

OR: Logical OR.
Opcode: 0x00
Funccode: 0x15
Format: OR rd,rs,rt
Semantics: $d = $s | $t; advance_pc (4);
ORI: Logical OR immediate.
Opcode: 0x0d
Format: ORI rd,rt,imm
Semantics: $s | imm;

53

advance_pc (4);

XOR: Logical XOR.
Opcode: 0x00
Funccode: 0x16
Format: XOR rd,rs,rt
Semantics: $d = $s^$t;
advance_pc (4);

XORI: Logical XOR immediate.
Opcode: 0x0e
Format: ORI rd,rt,imm
Semantics: : $d = $s^imm;
advance_pc (4);

SLL: Shift left logical.
Opcode: 0x00
Funccode:0x00
Format: SLL rd,rt,shamt
Semantics: $d = $t << h; advance_pc (4);

SLLV: Shift left logical variable.
Opcode: 0x00
Funccode: 0x04
Format: SLLV rd,rt,rs
Semantics: $d = $t << $s; advance_pc
(4);

SRL: Shift right logical.
Opcode: 0x00
Funccode: 0x02
Format: SRL rd,rt,shamt
Semantics: $d = $t >> h; advance_pc (4);

SRLV: Shift right logical variable.
Opcode: 0x00
Funccode: 0x06
Format: SRLV rd,rt,rs
Semantics$d = $t >> $s; advance_pc (4);

SRA: Shift right arithmetic.
Opcode: 0x00

Funccode: 0x03
Format: SRA rd,rt,shamt
Semantics: $d = $t >> h; advance_pc (4);
SLT: Set register if less than.
Opcode: 0x00
Funccode: 0x1a
Format: SLT rd,rs,rt
Semantics: if $s < $t $d = 1; advance_pc
(4); else $d = 0; advance_pc (4);

SLTI: Set register if less than immediate.
Opcode: 0x0a
Format: SLTI rd,rs,imm
Semantics: if $s < imm $t = 1;

advance_pc (4); else $t = 0; advance_pc

(4);

SLTU: Set register if less than unsigned.
Opcode: 0x00
Funccode: 0x1b
Format: SLTU rd,rs,rt
Semantics: if $s < $t $d = 1; advance_pc
(4); else $d = 0; advance_pc (4);

SLTIU: Set register if less than unsigned
immediate.
Opcode: 0x0b
Format: SLTIU rd,rs,imm
Semantics: if $s < imm $t = 1;
advance_pc (4); else $t = 0; advance_pc
(4);

A.3 Floating Point Instruction

BCLT: Branch on FP condition true.
Opcode: 0x11
Fmtcode: 0x08
Format: BCLT fmt, offset
Semantics: if (FPcond)advance_pc
(offset << 2)); else advance_pc (4);

54

BCLF: Branch on FP condition true.
Opcode: 0x11
Fmtcode: 0x08
Format: BCLF fmt, offset
Semantics: if (!FPcond) advance_pc
(offset << 2)); else advance_pc (4);

C.EQ.S: FP Compare Single Precision.
Opcode: 0x11
Fmtcode: 0x10
Funccode: 0x32
Format: C.EQ.S fs, ft
Semantics: FPcond=(F[fs]==F[ft])? 1 : 0
advance_pc (4);

 C.EQ.D: FP Compare Double Precision.
Opcode: 0x11
Fmtcode: 0x11
Funccode: 0x32
Format: C.EQ.D fs, ft
Semantics: FPcond=({F[fs],
F[fs+1]}==F{[ft]), F[ft+1]}? 1 : 0
advance_pc (4);

C.LT.S: FP Compare Single Precision.
Opcode: 0x11
Fmtcode: 0x10
Funccode: 0x3c
Format: C.LT.S fs, ft
Semantics: FPcond=(F[fs]<F[ft])? 1 : 0
advance_pc (4);

 C.LT.D: FP Compare Double Precision.
Opcode: 0x11
Fmtcode: 0x11
Funccode: 0x3c
Format: C.LT.D fs, ft
Semantics: FPcond=({F[fs],
F[fs+1]}<F{[ft]), F[ft+1]}? 1 : 0
advance_pc (4);

C.LE.S: FP Compare Single Precision.

Opcode: 0x11
Fmtcode: 0x10
Funccode: 0x3e
Format: C.LE.S fs, ft
Semantics: FPcond=(F[fs]<=F[ft])? 1 : 0
advance_pc (4);

 C.LE.D: FP Compare Double Precision.
Opcode: 0x11
Fmtcode: 0x11
Funccode: 0x3c
Format: C.LE.D fs, ft
Semantics: FPcond=({F[fs],
F[fs+1]}<=F{[ft]), F[ft+1]}? 1 : 0
advance_pc (4);

ADD.S: Add single precision FP numbers
Opcode: 0x11
Fmtcode: 0x10
Funccode:0x00
Format: ADD fd,fs,ft
Semantics: F[fd] = F[fs] + F[t];
advance_pc (4);

ADD.D: Add double precision FP
numbers
Opcode: 0x11
Fmtcode: 0x11
Funccode:0x00
Format: ADD.D fd,fs,ft
Semantics: {F[fd], F[fd+1]} = {F[fs],
F[fs+1]} + {F[ft], F[ft+1]};
advance_pc (4);

SUB.S: Subtract single precision FP
numbers
Opcode: 0x11
Fmtcode: 0x10
Funccode:0x01
Format: SUB.S fd,fs,ft
Semantics: F[fd] = F[fs] - F[t];
advance_pc (4);

55

SUB.D: Subtract double precision FP
numbers
Opcode: 0x11
Fmtcode: 0x11
Funccode:0x00
Format: SUB.D fd,fs,ft
Semantics: {F[fd], F[fd+1]} = {F[fs],
F[fs+1]} - {F[ft], F[ft+1]}; advance_pc
(4);

MUL.S: Multiply single precision FP
numbers
Opcode: 0x11
Fmtcode: 0x10
Funccode:0x02
Format: MUL.S fd,fs,ft
Semantics: F[fd] = F[fs] * F[t];
advance_pc (4);

MUL.D: Multiply double precision FP
numbers
Opcode: 0x11
Fmtcode: 0x11
Funccode:0x00
Format: MUL.D fd,fs,ft
Semantics: {F[fd], F[fd+1]} = {F[fs],
F[fs+1]} * {F[ft], F[ft+1]}; advance_pc
(4);

DIV.S: Divide single precision FP
numbers
Opcode: 0x11
Fmtcode: 0x10
Funccode:0x01
Format: DIV.S fd,fs,ft
Semantics: F[fd] = F[fs] / F[t];
advance_pc (4);

DIV.D: Divide double precision FP
numbers
Opcode: 0x11

Fmtcode: 0x11
Funccode:0x00
Format: DIV.D fd,fs,ft
Semantics: {F[fd], F[fd+1]} = {F[fs],
F[fs+1]}
/{F[ft], F[ft+1]}; advance_pc (4);

CVT.S.W: Convert Integer to single
precison FP number
Opcode: 0x11
Fmtcode: 0x14
Funccode:0x20
Format: CVT.S.W fd, fs
Semantics: fd

convert_and_round(fs) advance_pc
(4);

CVT.D.W: Convert Integer to double
precison FP number
Opcode: 0x11
Fmtcode: 0x14
Funccode:0x20
Format: CVT.S.W fd, fs
Semantics: fd

convert_and_round(fs) advance_pc
(4);

CVT.W.S: Convert single precision FP
number to integer
Opcode: 0x11
Fmtcode: 0x14
Funccode:0x20
Format: CVT.S.W fd, fs
Semantics: fd

convert_and_round(fs) advance_pc
(4);

CVT.D.S: Convert single to double
precision FP number
Opcode: 0x11
Fmtcode: 0x14

56

Funccode:0x20
Format: CVT.S.W fd, fs
Semantics: fd

convert_and_round(fs) advance_pc
(4);

CVT.S.D: Convert single precision FP
number to integer
Opcode: 0x11
Fmtcode: 0x14
Funccode:0x20
Format: CVT.S.W fd, fs
Semantics: fd

convert_and_round(fs) advance_pc
(4);

CVT.S.D: Convert single to double
precision FP number
Opcode: 0x11
Fmtcode: 0x14
Funccode:0x20
Format: CVT.S.W fd, fs
Semantics: fd

convert_and_round(fs) advance_pc
(4);

A.3 Other instructions

Syscall: Call OS routine
Opcode: 0x00
Funccode: 0x0c
Format: syscall
Semantics: advance_pc (4);
NOOP: No operation
Opcode: 0x00
Funccode: 0x00
Format: No operation

57

Appendix B: A Makefile sample for creating simulator executable

SHELL = /usr/bin/tcsh -f

PUBLIC = /x/lgjohn/public

COPY_DIR = /x/lgjohn/public/src/cpumips

#DEBUG = -ggdb

DEBUG =

C_FILES = cpu_test.cpp cpu.cpp fetch.cpp decode.cpp execute.cpp

d_mem.cpp wr_back.cpp control.cpp forwd_mux.cpp branch.cpp mul_div.cpp

buffer.cpp float_unit.cpp

H_FILES = cpu.h fetch.h decode.h execute.h d_mem.h wr_back.h\

 control.h forwd_mux.h branch.h mul_div.h\

 buffer.h float_unit.h

O_FILES = cpu_test.o cpu.o fetch.o decode.o execute.o d_mem.o wr_back.o

control.o forwd_mux.o branch.o mul_div.o float_unit.o

A_FILES = $(HOME)/lib/libmips.a $(HOME)/lib/libabakus.a\

 $(HOME)/lib/libsystemc.a $(HOME)/lib/libmem.a

BINARY = cpu

LIBS = -L$(HOME)/lib -L$(PUBLIC)/lib -lsystemc -labakus -lmips -lmem

-lm

IFLAGS = -I$(HOME)/include -I$(PUBLIC)/include

#CFLAGS = -Wall -DSC_INCLUDE_FX -O3 $(DEBUG)

CFLAGS = -Wall -O3 $(DEBUG)

CC = g++

58

$(BINARY): $(O_FILES) $(A_FILES)

 $(CC) $(CFLAGS) $(IFLAGS) -o $(BINARY) $(O_FILES) $(LIBS)

.cpp.o:

 $(CC) $(CFLAGS) $(IFLAGS) -c $<

$(O_FILES): $(H_FILES)

install:

 cd memory; make

 cd memory; make install

 cd instruction; make

 cd instruction; make install

 cd regfile; make install

 make

copy:

 if ! -d $(COPY_DIR) mkdir $(COPY_DIR)

 cp Makefile $(COPY_DIR)

 cp prog.hex $(COPY_DIR)

 cp $(C_FILES) $(COPY_DIR)

 cp $(H_FILES) $(COPY_DIR)

 cd instruction; make copy

 cd memory; make copy

 cd regfile; make copy

59

Appendix C: A Makefile sample for creating instruction hex file

Tell where various comiler exists

#export PATH=$PATH:/home/maqayum/gnu-mips-installer/install/bin

CC = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-gcc

AS = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-as

LD = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-ld

DUMP = /home/maqayum/gnu-mips-installer/install/bin/mips-elf-

objdump

Where the source directories are

BLD = ../build

SRC = ./Desktop

INCLUDEFILES =

Build all of the main programs in the src folder

all: test.hex

This line prevents make from automatically deleting these files

as temporary

.PRECIOUS: %.dat %.dump %.out %.o %.s %.asm

%.asm: %.c

 $(CC) $(CFLAGS) -S -c $< -o $@

%.o: %.asm

 $(AS) -c $< -o $@

60

%.dump: %.o

 $(DUMP) -d --disassemble-zeroes $< > $@

%.hex: %.dump

 cat $< | grep --only-matching "^ *[0-9a-fA-F]\+:[^0-9a-fA-

F]*[0-9a-fA-F]\+" | tr -d " " | grep --only-matching "[0-9a-fA-

F]\{8\}" > $@

clean:

 rm *.o *.dump

61

Appendix D: A Test code in hexadecimal format

2001fffc

20020008

221820

ac430100

8c420100

10400003

8000002

20217fff

3e00008

c000007

2010001c

2000009

3c0a1000

214a1000

3c0b0011

216b0011

14b0018

6012

6810

aa040

154a82a

16a0000a

cb040

db840

62

196a82a

12a00002

22ed0001

800001d

22ed0000

22cc0000

228a0000

8000013

1aa001a

a812

0

0

0

c

0

VITA

Mohammad Abdul Qayum

Candidate for the Degree of

Master of Science

Thesis: DESIGN OF A MIPS INSTRUCTION SET SIMULATOR FOR MULTICORE

PROCESSOR RESEARCH IN SYSTEMC

Major Field: Electrical Engineering

Biographical:

 Personal Data: Born in Brahmanbaria, Bangladesh on January 29, 1982

Education:

Bachelors: Earned Bachelor of Science in Electrical and Electronic Engineering at

Bangladesh University of Engineering and Technology, Dhaka on July

2005.

Masters: Completed the requirements for the Master of Science in Electrical

Engineering at Oklahoma State University, Stillwater, Oklahoma in July,

2010.

