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Chapter 1

Introduction

1.1 Motivation

In the engineering disciplines, especially in the United States, there exists a great need

to address the underrepresentation of various ethnic groups. As Figure 1.1 from [1]

clearly shows, ethnic groups such as Native Americans are severely underrepresented

in the engineering disciplines. There may be several contributing factors among which

Figure 1.1: a.) Undergraduate engineering enrollment, b.) Engineering enrollment
by ethnic group

may be cultural or economic. There exist many opportunities and organizations

which provide financial assistance to students that are in these groups. However,

many of these programs are designed to address such issues when students reach
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high school. What seems to be lacking are programs which introduce and motivate

younger students to the science, technology, engineering and mathematics (STEM)

areas in schools which may not have adequate funding or resources to provide these

tools. This need serves as motivation for creating the tools for such a program.

Robotics, particularly mobile robotics, has been used effectively as a teaching tool

for introducing students of all ages to science and engineering. This fact, together

with the fact that children today are quite sophisticated when it comes to electronic

devices and video games, motivates the development of a multi-vehicle mobile robotic

framework which uses interactive games to facilitate interest and discussion toward

engineering related topics. The developed framework, called Robotic Games, is de-

signed to be a flexible platform which uses commercial hardware and software that

may be transported to schools and presented to children. The games developed as

part of Robotic Games are motivated by the various sensors, capabilities, and appli-

cations of mobile robotics in hopes that the games themselves motivate additional

explanation, discussion, and discovery by young participants.

Research and development of the Robotic Games framework has itself motivated

additional research in the area of pursuit-evasion games which is also addressed in

this thesis. This research emerges from the children’s game Marco Polo developed

as part of Robotic Games which exhibits interesting interaction dynamics between a

pursuer and an evader through intermittent communication.

Pursuit-evasion game theory is a well established cross-disciplinary area of re-

search, including computer science and engineering, that has produced many impor-

tant results in its half century history. This research area investigates the emergent

interaction dynamics between agents or individuals who are attempting to evade cap-

ture and one or more pursuer agents who are attempting capture of evaders. These
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two classes of agents may be subject to varying degrees of sensing or motion con-

straints which produce interesting problems. This area deals with both pursuit and

evasion strategies of each class of agent or player given the constraints of each. Appli-

cations of pursuit-evasion game theory include predator and prey models in nature,

missile and target models in warfare, and search and rescue operations.

Marco Polo pursuit-evasion is a new problem in this area and may have application

to scenarios where a team of robots may need to cooperate with one another when

communications are available intermittently or when information about a target is

available intermittently.

A problem motivated by Marco Polo pursuit-evasion considers the use of multi-

ple mobile sensors to optimally cover an area such that intruders entering this area

may be detected, pursued, and captured. Because of the proliferation of reliable,

low-cost sensor networks and developments in autonomous vehicle technologies, ad-

vanced surveillance systems are being produced, where both the sensors and their

platforms are characterized by a high degree of functionality and reconfiguration.

Examples include landmine detection and identification by multiple and heteroge-

nous sensors installed on ground vehicles [2], [3], [4], sensor networks for monitoring

endangered species in their natural environment [5], robot-installed sensors to moni-

tor urban environments, production in manufacturing plants, and civil infrastructure,

high-confidence medical devices, and intruder and target detection systems. These

networks are expected to operate reliably in dynamic environments with little hu-

man intervention. However, coordinating such large heterogeneous sensor networks

is extremely difficult and requires the development of novel methods of communi-

cation, motion control, computation, proactive estimation and sensing, and power

management.
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One paradigm common to many sensing applications consists of one or more sen-

sors installed on robotic platforms that must move through an environment to obtain

measurements from multiple targets. A possible urban scenario is shown in Figure 1.2

in which heterogeneous sensors (e.g., static, mobile, ground, and aerial) work cooper-

atively in a dynamic target tracking mission that can be viewed as a sensing-pursuit

game.

Surveillance

Figure 1.2: Aerial and ground sensors working together in detecting and intercepting
dynamic targets (e.g., intruders, evaders) in an urban environment.

1.2 Contributions

This thesis documents a number of innovative and practical contributions to the ar-

eas of engineering education, multi-vehicle cooperation, pursuit-evasion games, and

sensor networks. In the areas of engineering education and multi-vehicle cooperation,

this thesis presents a framework designed to facilitate the development of educational

programs and games which use multiple robots and supporting user interaction de-

vices. Although the framework consists of a variety of off-the-shelf hardware and

software components, we have integrated these components in a manner which has
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not previously existed. By bringing these various pieces together, the emergent frame-

work displays remarkable flexibility. In addition to the framework, we present several

multi-robot games — collectively known as “Robotic Games” — that incorporate and

demonstrate various aspects of autonomous mobile robotics.

In the area of pursuit-evasion games and sensor networks, this thesis makes the

contribution of introducing and formally defining a pursuit-evasion game with inter-

mittent communication or cooperation which is based on the children’s game Marco

Polo. The Marco Polo problem is a new type of pursuit-evasion problem that has

not been previously addressed in the literature. Because Marco Polo is part of the

Robotic Games, we present an implementation of the game in addition to the formal

definition. Additionally, we present a particular application of the problem in which

multiple mobile sensors are coordinated for detection and pursuit. The main contri-

bution here is the control strategy for performing the pursuit maneuver as well as the

adaptation and implementation of the application in both simulation and hardware.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. We begin by discussing relevant

related work in the areas of multi-vehicle platforms, robotics education, and pursuit-

evasion games in Chapter 2.

In Chapter 3, we present the Robotic Games framework for educational robotics.

The chapter begins with sections which describe each of the major components of the

framework including the off-the-shelf hardware and both open source and commercial

software libraries which are integrated. The chapter continues by describing the

software architecture that is adopted to aid in the development, maintenance, and
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presentation of the educational program. Finally, the chapter provides a discussion

of several of the games which make up the Robotic Games Library and demonstrate

various aspects of robotics interaction and research.

Chapter 4 presents a case study including formal problem formulation and imple-

mentation of the children’s game Marco Polo as it pertains to the pursuit-evasion and

robotics problem that it motivates. The description of the implementation of this

game on the platform discusses the specific algorithms used including visual simulta-

neous localization and mapping (vSLAMTM) as well as the wireless communications

scheme.

Chapter 5 presents a particular application of the Marco Polo problem which

has motivated the development of a methodology for coordinating multiple mobile

sensors to detect and pursue targets which are constrained to straight line motion.

This chapter summarizes the application scenario and the multi-objective optimiza-

tion methodology and pursuit strategy. The chapter concludes by presenting several

simulation scenarios and hardware implementation of the methodology.

Finally, Chapter 6 discusses conclusions and suggests future work.
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Chapter 2

Related Work

The area of educational and socially assistive robotics has garnered much attention

in recent years. Many researchers are actively working in the area of educational

robotics, which focuses on motivating and encouraging students to become more

involved with and chose careers in the science, technology, engineering, and math-

ematics (STEM) fields. Researchers have used robotics and developed materials to

introduce engineering in general to elementary and secondary students [6]. Addi-

tionally, several researchers have successfully participated in competitions such as

RoboCup and RoboFlag, which involve robots playing various games including soc-

cer and capture-the-flag [7, 8, 9].

Other researchers have developed robotic presentations such as the Robotics Road-

show Program presented in [10] as shown in Figure 2.1, which is designed to reach

out to underserved, rural schools in the state of Kansas. The researchers who devel-

oped this program have created a set of simple games which involve elementary and

secondary students with robots to stimulate interest in science and technology. Re-

sults from this program indicate that robots are an effective means of accomplishing

the program goals of providing additional learning resources and motivating students

in the direction of science and engineering. Other recent focus given to the area of

educational robotics are in [11]. Although this program focuses on teaching robot de-
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sign to university undergraduate students, it is yet another example of how robotics

is being used in engineering education. Additionally, several groups have recently

Figure 2.1: The Robotics Roadshow “Escape the Circle” demonstration. [10]

developed multi-vehicle platforms for research. At the Marhes laboratory, we have

created a rugged outdoor platform based on the Tamiya TXT-1 monster truck [12].

A similar platform, the Multiple Autonomous Robots testbed, has been developed at

the University of Pennsylvania [13]. Other groups have introduced frameworks based

on small hovercraft vehicles such as the Caltech multi-vehicle wireless testbed [14] and

the HoTDeC [15], developed at the University of Illinois. Still others feature ground

as well as unmanned aerial vehicles (UAVs) such as MIT’s multi-vehicle testbed [16].

A great deal of work has also been done related to pursuit-evasion and target

tracking. The authors in [17] discuss basic motion planning and control strategies

for multi-robot systems. The Marco Polo game has motivated a multi-robot localiza-

tion problem introduced in [18]. In [19], the authors develop a decentralized motion

coordination algorithm for tracking groups of dynamic targets. Strategies to search

for moving targets in a two-dimensional plane are considered in [20, 21]. In [22] the

authors show that a pursuer can detect an arbitrarily fast evader using a randomized
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strategy. The evader can be captured by two pursuers solving a lion and man prob-

lem assuming that at least one pursuer is as fast as the evader. Figure 2.2 depicts

the lion’s strategy for capturing the man given alternating moves of unit length in

the single pursuer, single evader case. A variety of optimization techniques [23] have

Figure 2.2: The Lion’s strategy of the lion and man problem. [22]

been applied to the coordination of robotic networks engaged in distributed sensing

tasks [24]. Optimal motion planning for multiple robots is considered in [25, 26].

Distributed motion planning approaches are discussed in [27]. In [28] the authors

study optimal sensor placement for mobile sensor networks. Another relevant work

is described in [29]. In this reference, the authors propose a motion control algorithm

for a mobile sensor agent operating in a nonconvex polygonal environment such that

the area of the region visible to the sensor is maximized. In [30], the authors discuss

the use of a sensor network and motion planning for observing features of interest in

an environment.

Cooperative pursuit strategies to detect, intercept, and capture intelligent evaders

9



in cluttered environments are described in [31]. However, the difficulty of solving

pursuit-evasion games and obtaining closed-form solutions of the underlying opti-

mization problem has motivated an intensive research aimed at developing algorith-

mic approaches.

The problem of finding the configuration of a network with multiple sensors that

optimizes the number of tracks intercepted is considered in [32]. A Bayesian network

(BN) approach is used to develop an automated computer player for CLUE in [33].

In other related work [19] the authors develop a decentralized motion coordination

algorithm for tracking tasks of dynamic targets. Strategies to search for moving

targets in a two-dimensional plane are considered in [20, 21]. Motion coordination

strategies of multiple vehicles visiting targets generated by a stochastic process are

proposed in [34]. In [35], multiple sensors are used to search an environment for a

hidden target. Optimal strategies for locating the target are investigated in order

to maximize the probability of detection in some amount of time. Also, in [36], the

motion planning problem of coordinating a limited number of mobile sensor agents to

observe a larger number of targets in an environment is investigated. This problem

is viewed as an optimization problem where the quantity to minimize is the time

between target observations. In [37], the authors present a method for planning the

motions of a limited number of sensor resources for searching for and detecting elusive

targets. Motion is planned based upon the terrain and probability estimates.

Most of the research relating sensor measurements to robot motion planning has

focused on the effects that the uncertainty in the geometric models of the environment

has on the motion strategies of the robot [38], [39], [40], [41], [42]. Hence, considerable

progress has been made toward integrating sensor measurements in topological maps

[43], and on planning strategies based only on partial or nondeterministic knowledge

10



of the workspace [44], [45]. Another line of research has investigated the extension of

motion planning techniques to the problem of sensor placement for achieving coverage

of unstructured environments [46], or of a desired visibility space [47]. For instance,

probabilistic roadmap planners that were originally developed for placing milestones

in targeted regions of the free space [48], such as, in narrow passages [49] or near ob-

stacles [50], have been effectively modified to place milestones near regions of interest

identified by means of sensor measurements [51].

The following chapter, Chapter 3, builds upon some of the related ideas summa-

rized here. It describes the Robotic Games framework and its role as an educational

and socially assistive tool to facilitate learning and interest in science and engineering.

Furthermore, Chapter 5 integrates some of the work described above and presents a

methodology for using mobile sensor networks in the detection, tracking, and pursuit

of intruders.
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Chapter 3

Robotic Games

3.1 The Robotic Games Framework

The primary hardware components of the platform include an Evolution Robotics

Scorpion Robot and a Toshiba M400 Tablet PC. The architecture also makes use of

desktop computers and other common devices such as a wireless access point and

a handheld computer or personal digital assistant (PDA). Figure 3.1 illustrates the

major components of the framework which we describe in detail in the following

sections.

Figure 3.1: The Robotic Games Framework.
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The Scorpion Robot

The robotic platform used to implement this framework is the Scorpion Robot from

Evolution Robotics [52] shown in Figure 3.2(a). The robot features a variety of simple

sensors for gathering information about the environment including 20 infrared range-

finding sensors, a contact-sensing bumper, a camera with a wide angle lens, and

high-resolution optical encoders on the two motors. All sensors except for the camera

connect to a central controller called the Robot Control Module (RCM). A servo

controlled differential drive system, which is also controlled using the RCM, provides

locomotion. High-level control is accomplished by a Tablet PC that is mounted on

the robot and connects to the RCM and camera by USB. Other USB devices such as

a wireless joystick or other USB sensors may be connected to the Tablet PC as well.

(a) (b)

Figure 3.2: a.) The Scorpion Robot and b.) The Evolution Robotics Software Plat-
form [53].

A Tablet PC Computer

A Toshiba M400 Tablet PC is mounted on the Scorpion Robot to provide high-

level processing and control functions. Though the Scorpion may be used with any

suitable notebook computer, a Tablet PC has features that are particularly useful on

13



a platform designed for education. Because the screen rotates, the display is visible

while the robot is running such that a 3D face that displays emotions and reacts to

the environment might be rendered on the screen as shown in Figure 3.3. This feature

allows the robot to interact with humans in a more natural way, which enhances its

capabilities as a educational tool. Also, the Tablet PC supports pen input, which

provides another method for interacting with the robot.

Figure 3.3: The two major hardware components of this framework – the Evolution
Robotics Scorpion Robot and a Tablet PC.

Other Hardware

Many applications of this framework benefit from other common devices. Specifically,

the games that we have developed use desktop computers, wireless joysticks, a wireless

access point, and a PDA. The access point allows for centralized communication and

enables the robots to communicate with desktops for user input. In some games,

desktops are not needed but a mechanism to coordinate all of the robots (start,

stop, pause the game, etc.) is required. In these instances, a PDA with wireless

communication capabilities works well.

14



3.1.1 Software Components

This framework combines the powerful robotics processing and control algorithms

available in the Evolution Robotics Software Platform (ERSP) with the Trolltech Qt

application framework. These two libraries are integrated using an architecture that

allows developers to easily create new games and demonstrations.

The ERSP Library

The ERSP library is an extensive software platform for developing high-level con-

trollers while abstracting the developer from the underlying hardware. The platform

consists of an advanced API for the C++ programming language. The API is avail-

able for both the Microsoft Windows and Linux platforms. We have chosen to use

the Windows version for development of the Robotic Games.

The strength of the ERSP system is derived from the three layers which comprise

the architecture of the system which is depicted in Figure 3.2(b). These layers are

the Task Execution Layer (TEL), the Behavior Execution Layer (BEL), and the

Hardware Abstraction Layer (HAL). At the bottom layer, the HAL is responsible for

providing a common interface to the underlying robot hardware for the rest of the

system. In other words, any robot may be used with ERSP as long as drivers that

implement the required interfaces are provided. The BEL facilitates the development

of simple, modular robotic abilities which are referred to as behaviors within the

ERSP architecture. These behaviors may be connected together using a graphical

utility to create a block diagram called a behavior network such as the very simple

one shown in Figure 3.4. The network can then be executed and the robot performs

the actions specified within the network. Finally, the Task Execution Layer (TEL)

provides services for developing the highest level components in the software, known

15



Figure 3.4: A simple ERSP behavior network.

as tasks. While behaviors are designed to have tight control loops in order to be

highly reactive to situations in the environment, tasks are designed to coordinate the

communication and synchronization of multiple behaviors, which may be connected

either sequentially or in parallel.

The ERSP API includes a comprehensive set of advanced algorithms particularly

for vision and navigation. At the center of the vision module is the ViPRTM (Visual

Pattern Recognition) algorithm. Among other things, this algorithm provides behav-

iors which handle object recognition, motion flow, and color segmentation which are

useful for detecting objects and their pose, movement, and skin color. The most sig-

nificant component of the navigation module is the implementation of the vSLAMTM

(Visual Simultaneous Localization and Mapping) algorithm [54]. This algorithm uses

input from the wheel encoders and camera to accomplish the simultaneous localiza-

tion and mapping function. The navigation module also contains support for path

planning, obstacle avoidance, exploration, and population of an occupancy grid map.
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The Qt Application Framework

Qt is an open-source, C++ application framework that is produced by Trolltech and

is available under the GNU Public License for research and non-commericial use.

The library supports several platforms including Windows, Linux, and MacOS and

provides a rich set of classes for application development. For example, the Qt library

contains object models for XML processing, multi-threading, networking, GUI design,

and plug-in development. Qt also allows window based GUIs to be developed easily.

Classes for common window interface controls such as menus and buttons may be

combined to create advanced, event-driven interfaces.

The Robotic Games Library

The Robotic Games library consists of a set of software applications that are designed

to manage games which conform to the Robotic Games software architecture. To

conform to the software architecture, games must be designed using C++ with the

support of the Qt and ERSP libraries. The architecture uses Qt’s plug-in capabilities

to manage the games. Thus, new games must also implement a plug-in interface which

includes a set of common methods (start, stop, pause, etc.) The software architecture

defines and manages two categories of hardware: Displays (desktop computers) and

Robots (Scorpion and Tablet PC). As part of the plug-in interface, each game must

specify the number of displays and robots that are required.

The Robotic Games library consists of two software components: the Game Man-

ager and the Coordinator. A block diagram of the system architecture is shown in

Figure 3.5. The Game Manager runs on robots and displays. This application is able

to load and configure games that conform to the plug-in interface described above.

The Coordinator application runs on a Dell Axim X50v handheld computer running
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Windows Mobile 2003 and is written in C# with the .NET Compact Framework.

This application is used by game referees to manage the games. Communication be-

tween the Coordinator and Game Managers is accomplished by a simple text message

based protocol which is sent on top of the standard UDP/IP and TCP/IP networking

protocols.

Upon execution and at the referee’s request, the Coordinator queries the network

using the UDP protocol for robot and display client discovery. Clients running the

Game Manager listen for these discovery queries and respond by broadcasting their

presence on the network also using UDP. The Coordinator receives these responses

and registers each robotic node in an internal database. Using the Coordinator ap-

plication, the referee may select a game for the system to run. The Coordinator then

queries the game’s plug-in for a list of configuration parameters and dynamically cre-

ates forms to configure the game. Finally, the referee may select a button to begin

the game and the Coordinator instructs each Game Manager to configure and begin

execution.

As an example, we now show how the referee uses the Coordinator on the PDA

to control the system. In this scenario, the referee begins a game called “Scavenger

Hunt” which requires a robot and a display for handling user interaction. The first

step for the Coordinator is to locate and query nodes which have executed the Game

Manager. Figure 3.6 shows a tree view of the available robot and display nodes which

have responded to the Coordinator request for information as well as the games which

they are able to play. The system provides an alternative view as shown in Figure 3.7

which presents the referee with the games available. By selecting the “Play game...”

menu item, the referee is able to further configure the game by providing various

parameters as shown in Figure 3.8. In this case, each display must be paired with

18



Figure 3.5: The Robotic Games System Architecture.

a robot for sending joystick commands and receiving video and other data. Upon

completion of game configuration, the referee begins the game by selecting the “Start

Game” button which instructs the connected nodes to load the game plug-in library

and begin execution. While the game is running, the Coordinator application displays

the “Game in Progress” dialog as shown in Figure 3.9. When the game is over or

when the referee ends the game, the Coordinator commands participating nodes to

unload the game plug-in and wait for further commands.

3.2 Game Examples

Using the framework discussed in Section 3.1, several games have been developed for

the Robotic Games project. The games are designed to be educational, demonstrating

various aspects of the state-of-the-art in robotics and engineering.
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Figure 3.6: Available nodes. Figure 3.7: Available games.

Figure 3.8: Game configuration. Figure 3.9: Game in progress.
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3.2.1 Robot Jeopardy

When presenting Robotic Games to a group of students, we begin with an “Introduc-

tion to Robotics” presentation which is targeted to the age group of the participants.

This presentation gives a history of robotics, examples of robots in everyday life,

types of sensors, and entertaining videos showing current robotic research projects.

The game Robot Jeopardy has been designed as a means to motivate students to

absorb as much information as they can from the presentation. In this game, teams

of students must answer questions based upon the presentation in order to advance

their robots down a race track.

Two Scorpion robots are initially placed side by side at the starting line facing

their respective team. Teams are given sets of cards which contain a pattern and a

letter (A, B, C, or D) which correspond to the possible answers to the multiple choice

questions asked by the game referee. When the referee announces a random question

from the pool which may also be projected on a screen as in Figure 3.10, students

must select the correct answer card and quickly present the card to the robot for

visual recognition. The first robot which recognizes the correct answer moves toward

the finish line by some distance. The process continues until one of the robots crosses

the finish line and wins the game as shown in Figure 3.11.

This game uses the object recognition capabilities in the ERSP library which is

based upon the ViPR algorithm. The various patterns are trained into an object

database and loaded on each robot. The application which controls the game (Figure

3.10) runs on a desktop PC and establishes a connection to each robot on startup. The

robot applications process camera images and forwards object recognition data to the

control application. If the control application is accepting answers to a question, it

commands the first robot that provides the correct answer to move forward a distance.
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Figure 3.10: The user interface of “Robot Jeopardy.”

This game was expertly designed and implemented by James McClintock using

the Robotic Games framework.

3.2.2 Obstacle Course

In the Obstacle Course game, teams of children guide a robot through a game area

filled with obstacles. Obstacles might include cones to traverse, traps to avoid, or

objects to locate. The goal of the game is to complete the course as quickly as

possible. Each robot is given a limited amount of energy E. The game artificially

limits the robot’s speed v` to

v` = Evmax/Emax,
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Figure 3.11: Students playing “Robot Jeopardy”

Figure 3.12: The “Obstacle Course” game uses hand movement for robot control.

where Emax and vmax are constants representing the robot’s maximum energy and

linear velocity respectively. As the robot moves, its energy is depleted as

Ė = −(v/v`)
2,

where v is the robot’s current velocity [55]. Thus, driving as fast as possible, v = v`,

reduces the robot’s energy the fastest. When the robot’s energy is depleted, it must

“rest.” While resting, the robot cannot move, but its energy is restored at a constant

rate. To make the game more interesting, we have integrated a vision based hand

recognition system to maneuver the robot. This system uses the HandVu library
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[56] to determine the pixel location of a hand’s centroid within a camera frame. A

vector vh is calculated from the center of the image to this point. This vector is first

normalized to the display size and then the angle φh is calculated as shown in Figure

3.12. To control the robot, values for its linear speed v and angular speed ω are taken

as

v = vh sinφh,

ω = vh cosφh.

This mapping is designed to simulate joystick control. For example, when the hand

is at the top of the image and horizontally centered, the robot moves forward. If the

hand is on the left side of the image and vertically centered, the robot spins left in

place.

3.2.3 Scavenger Hunt

A scavenger hunt is a game in which individuals or teams are given the task of locating

a variety of objects or information. Scavenger hunts are often used in educational

settings to have students learn to locate pieces of information about a given topic

from a variety of sources. In this way, students learn about the subject of the hunt

while also learning about the methods for gathering information.

In the case of the Robotic Games, the Scavenger Hunt game was designed to

demonstrate teleoperation of a mobile robot in a potentially hostile environment for

the purpose of gathering information without endangering the human operator. For

the setup of the game, robots are placed in a room away from and out of the sight of

the operator. The operator uses a joystick and video feedback from one of the robots
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within the user interface shown in Figure 3.13. When the game begins, a timer

begins to track the operator’s efficiency while he or she searches the environment.

The game sequentially presents the player with randomly chosen objects to locate in

the environment with both an image of the object as well as by a computer synthesized

voice which also describes the object. As the robot moves, it uses its object recognition

capabilities to let the user know when it sees one of the objects that it has knowledge

of, whether it is the one being searched for or not. If the object matches the one

that the operator is looking for and the object is recognized within a certain distance

of the robot, the user interface clears the current object and moves on to the next.

The game notifies the player when he or she has located all of the objects and then

presents the player’s total time.

This game may be played in a variety of ways depending on the particular audience

and time constraints. One mode of play is a “relay race” in which teams of students

are formed and each member locates an object and passes control to the next member.

Teams may then compete against the clock or against each other. Due to the nature of

the game, a number of teams equal to the number of available robots may participate.

Another mode of play is that the participants compete against one another in a

tournament arrangement.

Figure 3.4 depicts the the ERSP behavior network which is executed on each

robot. This relatively simple network illustrates the power of the ERSP system.

There is a “camera” behavior which obtains image frames from the camera resource

and forwards them to the “ObjRecRecognize” object recognition behavior as well as

the “A/V Client” behavior which forwards video over the network to the GUI on

another computer. The “Camera Client” behavior is an example of a custom ERSP

“Malleable Behavior” for sending arbitrary data over the network. In this case, the
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“Camera Client” sends the results of the object recognizer and receives the joystick

data. The “Multiplication” and “Buffer” behaviors scale and buffer the joystick input

before passing this data to the “Drive System” behavior which ultimately control the

robot’s motors.

Figure 3.13: “Scavenger Hunt” user interface.

3.2.4 Marco Polo

Marco Polo was a famous Italian explorer and trader who lived during the thirteenth

and fourteenth century [57]. His travels took him along the Silk Road to China and

made him one of the first Westerners to bring documentation of the Chinese culture

and people back to Europe. Many children today play a swimming pool game which

is based upon his life and extraordinary travels. This game requires two or more

players, one of which is called “Marco.” Marco must keep his or her eyes closed while

attempting to tag (touch) one of the other players. Other players may keep their eyes

open as they move around the pool trying not to be tagged by Marco. When Marco
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announces “Marco?”, all other players must immediately respond with “Polo!”. This

audible cue is what allows Marco to track other players. Based on Marco’s knowlege

of the game area (the pool) and prior knowledge of the other players (speed, abilities,

etc.), he or she forms strategies for pursuing the other playes. When a player is

ultimately tagged by Marco, he or she must immediately shut his or her eyes and

become the new Marco. The previous Marco may open his or her eyes to become a

regular player.

Marco Polo is a pursuit-evasion game in which the pursuer receives information

about the evaders’ location in random time intervals. The game uses two Scorpion

robots operating in a leader/follower configuration. The pursuer robot is autonomous

while the evader robot is controlled by a participant using a wireless joystick. The goal

for the human player is to evade capture by the autonomous pursuer robot for as long

as possible. In this game, the evader robot is defined as “caught” when the separation

distance between the two robots’ centers falls below a threshold value for some length

of time. At the beginning of the game, the two Scorpion robots are placed together

at random locations within the game area. The player is given a wireless joystick,

informed about the rules of the game, and instructed to begin moving. Once the

game is running, the evader robot immediately begins responding to commands from

the player’s joystick. At a constrained random interval, the pursuer robot announces

“Marco?” over its laptop computer’s speakers and uses the computer network to

request the position of the evader. Once the pursuer receives the evader’s location for

the first time, it begins moving. Following this, the communication process described

above is repeated. The human player generally attempts to maneuver around the

pursuer robot in such a way as to maximize the distance between the two. The

optimal strategy for a pursuer with incomplete information based on intermittent
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cooperation is a challenging research problem that is relevant to this game.
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Chapter 4

A Marco Polo Case Study

In this chapter, a formal definition of the Marco Polo problem is presented together

with an experimental implementation of the game using the framework discussed in

Chapter 3.

4.1 Problem Formulation

From a game design standpoint, the goal of Marco Polo is to capture a group of

intelligent evaders as quickly as possible using a team of autonomous pursuers that

have intermittent knowledge of the evaders’ locations. The remainder of this section

presents a formal definition of this problem including the assumptions that will be

made and the terminology that will be used to describe the game.

Let the game area be referred to as S and its boundary as ∂S. We assume that

S ⊂ R2, and that it is convex and bounded. Associated with S is a fixed coordinate

frame FS . The pursuers or mobile sensor agents are nonholonomic vehicles that can
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be modeled using the unicycle model [58]

ẋi
p = vi

p cos θi
p,

ẏi
p = vi

p sin θi
p, (4.1)

θ̇i
p = ωi

p,

where (xi
p, y

i
p, θ

i
p) ∈ SE(2) is the position and orientation of pursuer i with respect

to FS and ui
p = [vi

p ωi
p]

T represents the input to pursuer i. In addition, pursuers

are bound by certain kinematic and dynamic constraints. Specifically, we assume

that the maximum linear velocity Vp max and angular velocity Ωp max of all pursuers is

known.

The model of the evader or target agents is given by

ẋj
τ = vj

τ cos θj
τ ,

ẏj
τ = vj

τ sin θj
τ , (4.2)

where (xj
τ , y

j
τ ) ∈ R2 is the position of target j, vj

τ is uniformly distributed in [0, Vτ max]

and θj
τ is uniformly distributed in [0, 2π). In our experimental implementation, the

evader is tele-operated by a human. In this case, uniform distributions may not be

the best choice. This human-robot interaction is a topic of further research.

Obstacles may be placed in the game area as long as certain conditions are met.

Suppose the jth obstacle obstructs a certain region in R2 denoted as Oj. Valid obsta-

cles will meet the following conditions: (i) Oj is a convex region in R2, (ii) Oj ⊂ S,

and (iii) the minimum distance from any point p ∈ Oj to a point q ∈ Oi (i 6= j) or

to a point s ∈ ∂S is greater than W . Here W refers to the diameter of the smallest
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circle which can completely surround the largest participating robot’s projection onto

R2. This ensures that there are no regions in the game area that can be reached by

some robots but not by others.

Let N be the total number of pursuers and M the total number of active targets

that are participating in the game. All targets are considered active at the beginning

of the game. Once a target is caught, it becomes inactive. Inactive agents must

either move to a position where they represent valid obstacles and remain still or

be removed from the playing field S. Let pi (τi) = [xi
p(τ) yi

p(τ)]
T ∈ R2 refer to

the position of the ith pursuer (target) robot with respect to FS . When there is

no danger of confusion, pi (τi) may simply be used to refer to the robot itself as

well. The notation P = {p1, p2, p3, . . .} is used to refer to the set of all pursuers and

T = {τ1, τ2, τ3, . . .} refers to the set of all targets. All agents in P and in T must have

initial positions within S and cannot leave S while active. Let eji be the Euclidean

distance from the jth target position, τj, to the closest pursuer, i.e., eji = d(τj, pi).

The pursuer i is said to capture the target j when eji < ε. The threshold value ε is

called the capture threshold for an interval ∆c called the capture timeframe.

The pursuers receive information about the position of each target intermittently.

Let σi ∈ [σmin σmax] be a random variable representing the time period between

communications for the ith target. At the instant of communication from target i,

its exact position within S is known by the pursuer agent. Following this, the target

may continue to move but the sensor agent receives no updated information until the

next communication from target i. Based on the previous discussion, the problem in

Marco Polo can be stated as follows:

Problem 4.1 Given a set P of N pursuers and a set T of M target robots within

a specified game area S and meeting all of the assumptions outlined in this section,
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choose values ui
p = [vi

p ωi
p]

T for all pursuers in P subject to the pursuers’ dynamic

and kinematic constraints which minimize the time tc required to capture all targets

in T .

4.2 Experimental Implementation

Marco Polo requires at least two robots. However, the evader robot is relatively

simple using only a wireless joystick to set the robot’s velocity inputs. Since the

pursuer robot is autonomous, its implementation is more challenging requiring an

answer to the three fundamental questions in autonomous mobile robotics: 1) Where

am I? 2) Where am I going? and 3) How do I get there?

Where am I?

Section 4.1 indicates that the pursuer robot receives information about the location

of the evader at a random interval. The Scorpion’s encoder-based odometry alone

cannot accurately provide this information over long distances. Marco Polo uses the

vSLAMTM algorithm that is included with ERSP. The algorithm extracts distinguish-

ing features from camera images to correct odometry error. To ensure that robots

communicate in the same reference frame, each use a common vSLAMTM map. Thus,

this common map of the game area is generated first. At the beginning of each game,

all pursuers wander around the room attempting to determine their positions in the

game area by watching for scenes in the map. After the pursuer determines its loca-

tion, it begins tracking the evader. Evaders also watch for scenes in the map as game

participants maneuver them. In summary, the vSLAMTM module provides a method

for accurately tracking each robot’s location throughout the game even if they start

at random locations within S.
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Figure 4.1: Landmark image after vSLAMTM processing.

Where am I going?

This is the question that motivated most of the research related to Marco Polo.

However, one key issue here relating to the experimental implementation of Marco

Polo is the method used for communication between the two robots. Since both

robots have Tablet PC with wireless network interfaces, using TCP/IP over a standard

wireless network is simple and effective. Also, both ERSP and Qt provide networking

modules that make communication relatively easy. We use the ERSP networking in

our implementation.

How do I get there?

Answering this question involves designing a low-level controller that is capable of

generating values of v and ω that will maneuver the robot from its current location

to a goal location within the game area. Since the goal location depends on the low-

level controller that is chosen, a high-level control strategy must take into account

the low-level controller that is used or supply the needed control values rather than
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Figure 4.2: Marco Polo controller definitions.

the goal location. The pursuit strategy presented above is designed for use with an

attractive potential field controller [59]. Suppose that pursuer i is located at (xi
p, y

i
p)

and must travel to the goal location ri = (xi
r, y

i
r) ∈ S. We define the distance error

`i = d(pi, ri) as the Euclidean distance between pursuer i and its target as depicted in

Figure 4.2. Let φi = arctan 2(yi
r−yi

p, x
i
r−xi

p) represent the angle of a vector connecting

the pursuer to its target. Then, we define the angular error as ψi = θi
p − φi where

ψi ∈ (−π π]. Based on this notation, the proportional control law is given by

ui
p = Kpζi, (4.3)

where ζi = [`i ψi]
T is the error vector and Kp = diag(kv, kω) is a diagonal matrix of

control constants.

Software Integration

To complete the game, the design techniques discussed above are integrated into a

Qt plug-in DLL that may be configured and managed using the Robotic Games Co-

ordinator and Game Manager. The plug-in is designed using four modules including:

a vSLAMTM module, a networking module, a joystick control module, and an au-
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tonomous control module. The game referee uses the Coordinator to specify which

of the two robots will be the pursuer and which will be the evader. Both robots load

the vSLAMTM and networking modules together with one of the control modules.

All three modules run in separate threads and communicate using a thread-safe event

system that is built into ERSP. The autonomous control design is best described us-

Figure 4.3: Block diagram of the Marco Polo game.

ing the notation of a hierarchical hybrid system [17]. An automaton representation of

this system is shown in Figure 4.4. This design consists of two outer states that switch

based on the vSLAMTM module’s confidence in its location estimation. If this value

is below a threshold, the Localization state is active. Otherwise, the robot switches to

the Gameplay state. Each outer state contains three inner states including obstacle

avoidance, boundary detection, and goal seeking. The goal in the Localization state

is simply wandering. This state is implemented using an ERSP behavior and is used

to enhance the vSLAMTM module’s ability to localize. In the Gameplay state, the

goal is to approach a goal point that is calculated based on the pursuit strategy as

discussed above. When one of the obstacle avoidance or boundary avoidance states

is active, the current goal is ignored and v and ω are adjusted to prevent leaving the

boundary or colliding with an obstacle.
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Read Discrete LOCALIZED

Localization

Wandering Obstacle Avoidance

Boundary Avoidance

BoundaryDetected == true

ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false

ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false

ObstacleDetected == false

BoundaryDetected == true

ObstacleDetected == false

Game Play

LOCALIZED == true
LOCALIZED == false

Read Discrete ObstacleDetected, BoundaryDetected

Read Discrete ObstacleDetected, BoundaryDetected

Tracking Obstacle Avoidance

Boundary Avoidance

BoundaryDetected == true

ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false

ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false

ObstacleDetected == false

BoundaryDetected == true

ObstacleDetected == false

Figure 4.4: A hybrid automaton representing the autonomous control module.
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Chapter 5

Geometric Optimization for

Detecting and Intercepting

Dynamic Targets

In this chapter, we consider a modified version of the Marco Polo problem that is

relevant to military, security, and surveillance applications for both ground based and

aerial vehicles [60, 61, 62]. The major modification to the general Marco Polo problem

is that no communication between targets and pursuers takes place, but the pursuers

may obtain only position information about the targets when they enter their field of

view.

5.1 Methodology Summary

This problem has been formalized and a solution methodology has been developed in

a collaborative effort between the Laboratory of Intelligent Systems and Controls at

Duke University and the Marhes Laboratory at Oklahoma State University which

includes the author. Details of the methodology may be found in [63]. This chapter

summarizes the problem assumptions and methodology that has been presented in
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these works and describes the differences from the Marco Polo problem presented in

the previous chapter.

In this problem, multiple mobile targets enter a rectangular environment con-

taining obstacles at random locations on the environment border and with random

heading. Targets are assumed to be constrained to straight line motion and travel

with constant velocity as they move through the environment. Multiple sensors are

placed in the environment in order to maximize the probability of detecting targets

by k different sensors such that the targets track may be hypothesized. This type

of detection and tracking scheme using spatially distributed sensors is known as a

track-before-detect approach [64] and is typical when using proximity sensors which

have limited range and are subject to frequent false alarms. By considering detections

at different times from k independent sensors, a higher-level controller may be able to

declare a target track to be positively identified in order to deploy a sensor to pursue

and capture the target.

Target tracks may be classified by the number of detections into three different

classes. These classes are given by the following definitions.

Definition 5.1 An unobserved track is the path of a target j for which there are no

detections at the present time, t.

Definition 5.2 A partially-observed track is the path of a target that is estimated

from 0 < l < k individual sensor detections obtained up to the present time, t.

Definition 5.3 A fully-observed track is the path of a target that is estimated from

at least k individual sensor detections obtained up to the present time, t.

The user designs the value of the parameter k based upon the reliability and deploy-

ment costs of the sensors. In [64] it was found that from a geometric point of view
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k = 3 is a convenient number of detections for estimating a track in the absence of

false alarms. However, in certain surveillance applications the cost associated with

capturing a target is very high and, therefore, a higher number of detections may be

required.

Figure 5.1: A hybrid automaton which models the pursuer and target as hierarchical
hybrid systems with discrete states of operation.

The major difference between this problem and that of Marco Polo is how sensors

or pursuers switch between detection mode and pursuit mode as shown in Figure 5.1.

In detection mode, a pursuer has three objectives (i) Avoid obstacles; (ii) maximize

the probability of detecting unobserved tracks; and (iii) maximize the probability of

detecting partially-observed tracks. The objective of a pursuer in pursuit mode is to

minimize the time to capture tc a target based upon its fully-observed track.

The methodology seeks to coordinate the network of sensors in detection mode to
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address the objectives of these sensors as characterized by its treatment of three areas:

information-driven motion planning, probability of detection for partially-observed

tracks, and search area coverage.

Information-driven motion planning deals with the issue of moving sensors in the

environment for the purpose of obtaining information from multiple targets. The

methodology addresses this problem by first performing convex polygonal decompo-

sition of the environment which is a task common in classical motion planning [65].

This decomposition divides the environment into convex regions or cells which contain

obstacles (C-obstacles), those which are free of obstacles or Cfree cells, and obstacle

free observation cells which have a non-zero probability of containing a partially-

observed target (C-targets). Obstacle free cells which share a boundary are said to

be adjacent. From the adjacency of cells, an undirected graph is constructed in which

the nodes of the graph represent Cfree cells that are connected by graph edges to

reflect cell adjacency.

The sensor planning objectives are then expressed in terms of a reward function

that represents the expected profit of the measurements that would be obtained by

moving from a configuration in one cell, qi ∈ κl, to a configuration in an adjacent

cell, qi ∈ κı,

R(κl, κı) = B(κl, κı)− J(κl, κı), (5.1)

where B is the benefit gained by moving between the two cells, and J is the cost. The

value of the reward function between adjacent cells becomes the value on the arcs of

the connectivity graph. The reward function is defined as

R(κl, κı) = w1PR(κı) + w2∆P
k
S (κl, κı)− w3d(κl, κı), (5.2)
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where PR is the probability of detecting a target with a partially-observed track,

∆P k
S is the gain in the probability of detecting unobserved tracks, and d(κl, κı) is the

Euclidean distance between adjacent cells.

Then, the optimal sequence of cells or channel that maximizes the total reward

of a pursuer in detection mode is

µ∗ ≡ {κ0, . . . , κf}∗ = arg max
µ

∑
(κl,κı)∈µ

R(κl, κı). (5.3)

Once the connectivity graph has been obtained, the optimal channel µ∗ is computed

using a graph searching algorithm, such as the A∗ [65]. This optimal set of cells

are then mapped into a set of waypoints which the sensor uses to navigate. Figure

5.2 illustrates the decomposed game area with obstacles, a sensor, and a partially

detected target. Figure 5.3 is an example connectivity graph that might be obtained

from such an environment.

5.2 Pursuit Strategy

In this section we propose two very simple approaches to pursue a target in the Marco

Polo formulation or a fully observed target as described in the previous section. These

solutions include (i) moving to the last known target location and (ii) assuming the

target is moving in a straight line with constant velocity and intercepting along that

line.

The first solution simply instructs the pursuer to move to the last known point

of the target. This strategy of capturing the target may be most useful when the

pursuer is far from the target and the communication interval is small enough. That

is, this strategy would be employed to move the pursuer close enough to the evader
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Figure 5.2: Example of cell decomposition (dashed lines) for a workspace with four
C-obstacles (dark gray) and one C-target CR (light gray) corresponding to 2 < k
detections. One sensor with range r and field of view D is installed on a robot with
a square platform geometry A.
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Figure 5.3: Connectivity graph obtained from the cell decomposition in Figure 5.2,
where the cells in the decomposition are numbered from left to right and from top to
bottom, and the observation cells are shown in grey.
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to select a more sophisticated strategy.

The second approach shown in Figure 5.4 is a simple solution based upon the

geometry of the problem taking into account the kinematic constraints of the pursuer.

This approach is strongly dependent on the controller used to guide the nonholonomic

vehicle to a target waypoint. In this case, the assumed controller is based on the

potential field controller (PFC) presented in [59]. The strategy also assumes that the

target is moving with both constant velocity and heading. The strategy attempts

to intercept the target at a point δ which is a function of the interception time tc

which is the time for the pursuer and target to reach that point. The initial states

of the pursuer and target are p0 = (xp, yp, θp) and τ0 = (xτ , yτ , θτ ), respectively. The

interception point is defined as

Figure 5.4: Pursuit strategy to capture a target.

δ(tc) =

 xt + tcvt cos θt

yt + tcvt sin θt

 .
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The time to interception is

tc =
rψ + ‖c− δ(tc)‖ cosα

vp

, (5.4)

where the distance traveled by the pursuer is the distance along the arc p0p1 plus the

straight line distance between p1 and δ. The arc radius is the same as the turn radius

of the pursuer and is defined as r = vp

ωp
, where vp is the maximum linear velocity and

ωp is the maximum angular velocity of the pursuer. There are two possible circles

corresponding to a right or a left turn of the pursuer. The center points, cR and cL,

of the circles defined by the turn radius are calculated as

cR =

 p0x + r cos(θp − π
2
)

p0y + r sin(θp − π
2
)

 ,

cL =

 p0x + r cos(θp + π
2
)

p0y + r sin(θp + π
2
)

 .
The center point lying closest to the interception point is chosen as

c =

 cR, if ‖cR − δ‖ ≤ ‖cL − δ‖,

cL, if ‖cR − δ‖ > ‖cL − δ‖.

The other parameters for calculating the interception time are calculated as

α = arcsin

(
r

‖c− δ‖

)
,

γ = arctan(cy − δy, cx − δx),

44



β =

 γ − α, if c = cR

γ + α, if c = cL

,

p1 =

 δx + ‖c− δ‖ cosα cos β

δy + ‖c− δ‖ cosα sin β

 ,
ψ = | arctan(p1y − cy, p1x − cx)− arctan(p0y − cy, p0x − cx)|.

The interception point δ in (5.4) which is passed to the PFC may be solved numerically

using an iterative algorithm such as that presented in [66] or a Newton method.

5.3 Simulation Results

In order to validate the methodology and pursuit strategy described in Section 5.1, a

Matlab simulator has been developed. We integrate the motion planning and control

methodologies described in previous sections into simple simulation scenarios.

5.3.1 Pursuit Strategy

The Matlab simulator has been developed for the single pursuer, single target case

and is able to use a joystick input such that an intelligent driver may control the target

agent either to specify waypoints for later following by the target or to actually steer

the target as the pursuer attempts to capture it.

To facilitate comparison of the two pursuit strategies, several basic maneuvers

were performed using the joystick and a simple waypoint extraction algorithm [67].

These maneuvers, which are performed by the target in each simulation, include (i)

a “figure 8”, (ii) a spiral, and (iii) random walk motion. For the simulations, the

pursuer and target agents are given maximum linear and angular velocities with the
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pursuer’s greater than the target’s. Also, to guarantee that the simulation ends in

finite time, the velocity of the target is reduced with time as vt = vt0e
− t

τ where

τ is the time constant and vt0 is the target’s initial maximum linear velocity. The

communication interval of the target’s position to the pursuer is a random variable σ

whose distribution is uniform in [σmin, σmax]. For the simulations, the initial state of

the pursuer is p0 = [−5 8 π
2
]T and the initial state of the evader is τ0 = [0 0 0]T .

Other parameter values used for the simulations are summarized in Table 5.1.

Parameter Symbol Value
Capture threshold ∆c 0.5 m
Angular velocity ωp, ωt 1 rad/s
Linear Velocity vt 0.5 m/s

vp 0.55 m/s
Communication interval σmin 1 s

σmax 5 s
Time constant τ 180 s

Table 5.1: Simulation values.

A total of 100 simulations were performed for each strategy/maneuver pair. Time

to capture is the metric used for comparison in each case. Table 5.2 summarizes

the results of these simulations. The line interception strategy clearly outperforms

Figure 8 Spiral Random
Line Point Line Point Line Point

Minimum (s) 29.25 39.7 23.95 42.4 32.6 37.75
Maximum (s) 43.25 111.3 68 117.35 91.6 113.95
Mean (s) 31.88 78.64 37.11 74.68 44.13 78
Standard Dev. 1.81 14.76 12.47 14.36 13.61 12.68

Table 5.2: Comparison of simulation results for line interception and point intercep-
tion strategies.

the more naive approach of simply moving to the last known location. These sim-

ulations only present results for a few specific cases. However, they indicate that,

in general, the line interception approach is a better solution for target maneuvers
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containing straight line motion. The full solution to the general problem may be a

composition of these and other strategies currently under investigation including a

circular interception strategy and an application of the “lion and man” problem [68].

The controller could perhaps be modeled as a hybrid system for switching among the

various strategies. The continuation of this research has been left as future work.

This strategy has also been implemented in hardware using the Evolution Robotics

Scorpion robotic platform. Figure 5.5 shows these experimental results. The target

robot follows a straight line and is quickly captured by its pursuer which moves with

a constant linear velocity and a potential field controller which steers it toward the

calculated interception point using the method in Section 5.3.1.

Figure 5.5: Experimental setup: A target is captured by its pursuer.

5.3.2 Scenario 1: Track Detection and Simultaneous Pursuit

We now present three simulation scenarios based upon the methodolgy summarized in

Section 5.1. Figure 5.6(a) depicts the search area of the first scenario. The simulated
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region is 10 m by 10 m. A total of five sensors with various sensing radii (1 m, 1 m, 1.5

m, 1.75 m, and 2 m, respectively) are optimally placed in the search area to maximize

the track detection probability and remain fixed. In this case, the number of sensor

detections required for a completely detected track is k = 3. Targets randomly appear

on the border ∂S of the search area S with random heading. For the simulation, all

targets begin moving at the same time with constant velocity and heading.
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Figure 5.6: a.) The initial target locations and headings and initial sensor placement
for the optimal coverage based on the number of sensors, and the sensing radius
of each. b.) All target tracks as they move through the search area. Some tracks
are completely detected those passing through 3 different sensing regions, others are
partially detected less than 3 sensing regions, and others go completely undetected.

As targets move through the environment and through the sensing regions, sensors

are assumed to be able to distinguish among different targets as they are detected

(Figures 5.6(b) and 5.7(a)).

Once several tracks have been fully-observed, the pursuers switch from detection

mode to pursuit mode and attempt to capture targets on the fully-observed tracks.

Figure 5.7(b) shows four fully-observed tracks Ri and four targets τi to be captured.
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Figure 5.7: a.) Fully observed tracks. b.) Targets are intercepted as the sensors
switch from detection mode to pursuit mode.

Also, five pursuers pj are available to pursue the targets τi. To assign a pursuer pj to

a target track Ri, the Euclidean distance from that target to all unassigned pursuers

is calculated and the closest pursuer is chosen. This pursuer pi is then removed from

the set of available pursuers P . These steps are carried out until all target tracks in

R have pursuers assigned or P = ∅ indicating that all pursuers are chasing targets.

When a pursuer captures a target track, that track is removed from R. If R 6= ∅,

the set P is reset to include all pursuers and this algorithm is repeated completely.

New target tracks are assigned to all pursuers, including the one that just captured

its target.

5.3.3 Scenario 2: Multiple Static Sensors and One Pursuer

In many surveillance applications static sensor networks can be used with a few

motion-enabled sensors. Static sensors are placed to optimally cover a given area

[32]. If a target (evader) is detected, then a mobile sensor can be sent to investigate
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or capture the target. This scenario is a special case of the pursuit-evasion problem

addressed in this work. The simulation results are depicted in Figure 5.8. This

scenario extends the first scenario by including obstacles and the use of the reward

function (5.2). The obstacle free path of the single pursuer is calculated from the

reward function with w1 = 0, w2 = 0, and w3 = 1 which finds the minimal distance

path.

Initial location of 
mobile sensor

Optimal 
path

Detection points

Static sensors

Target

Mobile sensor

Hypothesized 
track

Obstacles

Figure 5.8: Static multiple detectors and one pursuer.

5.3.4 Scenario 3: Multiple Mobile Sensors and Targets

The third simulation scenario extends the second by considering the same environment

but with multiple targets and non-zero values for the reward function weights w1 and

w2 (the detection probability terms) which are w1 = 1 and w2 = 1 in the simulation.

With these particular weights, it is possible that sensors closer to targets are not
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(a) (b)

Figure 5.9: a.) Initial sensor placement. b.) Two targets each detected once.

selected to obtain additional measurements. Before the simulation scenario begins,

five sensors with platforms measuring 0.25 m square are placed in the 10 m by 10

m environment to maximize the probability of detecting tracks with k = 2 since

we require this number of detections to form a partially observed track. Obstacle

and coverage maps are generated for each sensor corresponding to the placement in

each cell. Figure 5.9(a) shows the initial environment and the five sensors - one with

sensing radius 1.5 m, one with sensing radius 1.25 m, and three with sensing radii of

1 m. Initially, all sensors are in detection mode and each is a candidate to switch to

the pursuit mode when target tracks become fully observed.

In this scenario, two targets enter the environment at different locations and head-

ings and with different velocities. As they move along their trajectories, they are

detected by the sensors (Figure 5.10(b)). The sensors in the network remain motion-

less since each target has been detected only once. After the second detection of a

target, the network hypothesizes the target track based on previous detections and
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(a) (b)

Figure 5.10: a.) Target 1 is partially observed with its hypothesized track, and Sensor
1 is deployed to obtain additional observations. b.) Two targets each detected once.

deploys the sensor which receives the highest reward (or lowest cost) as obtained by

the A* graph search algorithm [65] to move to obtain an additional detection of the

target (Figure 5.10(a)). When the second target becomes partially detected, the same

track hypothesis and sensor deployment occurs. At the point that the first target’s

track becomes fully observed, the network again evaluates the reward (distance) and

deploys the best sensor, denoted by its green color in Figure 5.11(a), to pursue the

target. The same pursuit is performed when the second target is fully observed as

shown in Figure 5.11(b). The state of the network following capture of all known

targets is depicted in Figure 5.12. The network is rearranged to maximize area cov-

erage at the next recalculation interval. Table 5.3 summarizes the chronology of the

main events which occur during the simulation. Algorithm 1 illustrates how the

simulation scenario has been implemented.
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(a) (b)

Figure 5.11: a.) Target 1 is fully observed and Sensor 3 is deployed to pursue it
while Target 2 becomes partially observed, and Sensor 1 is deployed to obtain an
additional observation. b.) Target 1 has been captured. Target 2 is fully observed
and is pursued by Sensor 1.

Figure 5.12: Final sensor arrangement after both targets are captured.
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Event Time (s) Position (m) Sensor Target
Detect 0.40 (3.46,9.78) 1 2
Detect 1.70 (0.49,6.99) 4 1
Detect 5.45 (1.56,8.06) 3 1
Deploy 5.45 (1.75,8.25) 1 1
Detect 6.30 (1.80,8.30) 1 1
Pursue 6.30 - 3 1
Detect 6.35 (2.94,6.85) 4 2
Deploy 6.35 (2.75,5.25) 2 2
Capture 6.60 (1.76,8.57) 3 1
Detect 8.55 (2.75,5.77) 2 2
Pursue 8.55 - 2 2
Capture 9.40 (2.75,5.55) 2 2

Table 5.3: Simulation events of Scenario 3.
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Algorithm 1 Scenario 3 Algorithm

1: Perform initial optimal sensor placement
2: Decompose environment into Cfree and Cobstacle cells
3: for all Sensors do
4: Calculate obstacle map
5: Calculate coverage map
6: end for
7: while Game not over do
8: for all Sensors in pursuit do
9: if Pursued target beneath capture threshold then

10: Remove target
11: End pursuit
12: end if
13: end for
14: if Detection then
15: if Target detections = 2 then
16: Hypothesize target track
17: Calculate observation cells
18: for all Sensors that have not detected this target do
19: Calculate path and reward to investigate target
20: end for
21: Deploy the sensor with the greatest reward
22: else if Target detections = 3 then
23: for all Sensors not in pursuit do
24: Calculate path and reward to pursue target
25: end for
26: Deploy the sensor with the greatest reward
27: end if
28: end if
29: if Sensor update interval then
30: for all Sensors do
31: Calculate coverage map
32: end for
33: Deploy next sensor to maximize coverage
34: end if
35: end while
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have presented a framework for robotics education and research

and a new pursuit-evasion game which has been implemented on the platform and

in simulation. The Robotic Games framework has been designed as a tool for im-

plementing educational games using multiple robots that may be used for outreach

to stimulate the interest of children towards science, technology, engineering, and

mathematics. In addition to the framework itself, a number of robotic games have

been developed which demonstrate specific robotic behaviors and associated prob-

lems. “Robot Jeopardy” reinforces robotics concepts learned and demonstrates an

application of computer vision. “Scavenger Hunt” demonstrates teleoperation of a

robot in a hostile environment for the purpose of exploration or search and rescue.

“Obstacle Course” also demonstrates teleoperation but using a mechanism that may

be more intuitive for humans to eventually command teams of robots. Finally, “Marco

Polo” demonstrates formation control of an autonomous robot which is able to use

computer vision and other sensor to localize, map, and navigate in an environment.

During the development of the framework and games, a number of student groups

– including the Cub Scouts, 4-H, and the Native American Sequoyah High School
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in Tahlequah, Oklahoma – participated in hands-on demonstrations and tests of the

games. Most of the students were between the ages of 8 and 12 years and were

visibly interested in the demonstrations. Feedback from the students in the form of

comments and questions indicated that the robotic games had indeed stimulated their

interest and imaginations. In addition to this qualitative feedback, we have received

positive quantitative feedback from one the largest groups that participated. This

feedback is presented in the Appendix and clearly shows that the students found the

demonstrations both educational and enjoyable.

In addition to its educational benefits, one game in particular, Marco Polo, has

become the basis of new research in the area of pursuit-evasion games which involve

intermittent communication or knowledge about an evader’s position. We have pre-

sented the formal definition of this problem as well as implementations in hardware

and simulation. The methodology developed from the definition of the problem has

been summarized and additional simulations have been carried out which serve to

validate this methodology. Simulations have been presented in a progessive manner

to illustrate the various scenarios that might be encountered. Also, a simple geo-

metric derivation has been presented which allows a nonholonomic vehicle using an

attractive potential field controller to intercept a target constrained to straight line

motion. The strategy has been implemented on hardware to illustrate its usage in a

real scenario.

6.2 Future Work

The Robotic Games framework has been developed using specific, commercial hard-

ware and software platforms. In order to expand the development and usage of the
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framework, integration with other cost-free or open source projects in the future

would allow for additional features to be added. For instance, Player/Gazebo [69] is

an open source project which provides a lightweight robot server which runs on the

Linux operating system and supports are variety of additional sensors and robotic

platforms and includes a 3D simulation environment with realistic physics modeling.

Microsoft Robotics Studio [70] is another possible robotic development environment

which, like Gazebo, supports a 3D simulation environment and physics engine. Ad-

ditionally, both Player and Microsoft Robotics Studio provide drivers for interfacing

with additional sensors and robotic platforms such as the iRobot Roomba and Create.

Usage of these iRobot platforms would allow games to be developed on a low cost,

readily available platform.

This thesis has presented the formal definition of the pursuit-evasion problem

Marco Polo and has introduced some initial research to address the creation of pursuit

strategies in the presence of intermittent communication. However, much additional

theoretical development is required to more fully address a solution to the general

problem. The methodology developed based on this problem has promising initial

results but would benefit from additional research and development. For instance,

more consideration should be given to the estimation of partially observed targets.

That is, a more sophisticated probability function should be developed rather than

the simple binary distribution that is currently used. Also, coverage maps that are

calculated for each sensor are dependent on the positions of the other sensors in

the network. Because of this, as sensors are deployed, coverage maps are quickly

outdated and require recalculation periodically. More analysis and work is needed to

find a method which may more intelligently recalculate the coverage function taking

into account the strong interdependence of sensor positions.

58



Appendix A

Supporting Documentation

This appendix includes documents that support the value of the Robotic Games

system as an educational tool. We presented a robotics presentation and hands-on

demonstration on July 22, 2006 to a group of approximately 45 students between

the ages of 9 and 12 years as part of a science camp organized by the 4-H Youth

Development Program at Oklahoma State University. As shown in the following

pages, our presentation was overwhelmingly favored over the other portions of the

camp, especially in terms of its educational value.
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