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CHAPTER 1

Introduction

Recent advances in computer speed and laser measuring equipment have made it possible

to create devices that can accurately sample the surface of real world objects. Graphics

processing power has greatly increased and is able to handle very large amounts of data.

This has made way for the advancement of systems like LiDAR (Light Detection And

Ranging) which use lasers to discretely sample the surface of objects ranging in size from

small cups to skyscrapers and complete cities. While these systems are mostly used for

reverse engineering, Figure 1.1, the potential has been created to model large existing man-

made structures like buildings (both inside and outside) roadways and bridges and even

land used for water runoff and waste collection [4, 1].

Figure 1.1: This is a surface reconstruction of a gate using LiDAR data. The point cloud is behind

the reconstructed surface of the gate. This image is from www.farfieldtechnology.com.

An accurate three dimensional model of a man-made object could be used to monitor

the condition of the object or to engineering additional objects to interact with the existing
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object. For instance, buildings could be modeled to aid in precisely engineering construc-

tion of new buildings that are attached to the original. A bridge could be modeled to allow

engineers to know how to accurately add more lanes or ensure a new road underneath the

bridge has the clearance it needs. Refineries could be modeled to know the exact destina-

tion of pipes that exit or enter different building. Building interiors could be modeled to

give fire fighters a map when smoke makes it hard to find people or exits.

Although it is possible to very accurately sample objects with systems like LiDAR,

these systems only discretely digitize objects. They create many points, called a point

cloud, that represent the surface of an object. Nothing is known about how the points

should be connected or how smooth the surface is around each point. Most man-made

objects consist of a large portion of basic geometry that we will show can be easily and

accurately segmented from more complex areas of point clouds. This is advantageous

since the reduction in data is potentially immense.

Consider the interior sections of many buildings. Most contain simple planes that

should be easily identified and segmented. A densely sampled planar surface could contain

hundreds, thousands, or even millions of points. If the planar surface is a simple rectan-

gular wall, it could be accurately described using only four points. A planar surface with

a complex boundary could also be represented in a similar manner more efficiently than a

point cloud. Cylinders and cones can also be represented more efficiently using reference

points and equations instead of a point cloud. Most point clouds contain more complex sur-

faces than planes, cylinders, and cones but may also contain these simple shapes. Complex

surface modeling would benefit from the reduction of points where possible.

We will show that three basic shapes, planes, cylinders and cones can easily and quickly

be modeled in a point cloud using Expectation Maximization (EM) clustering combined

with Minimum Description Length (MDL) to estimate model order. We will also show the

three shapes can be modeled using Markov Chain Monte Carlo (MCMC) using Reversible

Jump (RJ-MCMC) to estimate model order. We will show that the MCMC algorithm is
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much more robust than EM and does not have the initialization issues that the EM algorithm

does.

1.1 Organization of Thesis

This thesis is organized in the order that the research was completed. First we will talk

about the related work that has been done in this field and the research goals we want to

accomplish. We will then talk about extracting the features from the point cloud for the

clustering algorithms. Our method is novel since we cluster using only the normal vectors

of the point cloud. We assume an unorganized point cloud. An unorganized point cloud is

simply a list of three dimensional points with no connectivity or normal vector information.

Since we use the normal vectors for clustering, they need to be estimated. This estimation

process is discussed in detail in Chapter 2.

Our first stages of research focused on clustering planes only using the EM algorithm

which is discussed in Chapter 3. After planar clustering with EM, we decided to extend the

research to cylinders and cones. Cylinders and cones lead to an atypical cluster grouping

that is unique when compared to planes. Chapter 4 discusses the new likelihood function

we derived for the unique cluster grouping of cylinders and cones. Chapter 5 explains

the EM clustering modified with our new likelihood function for clustering all three shapes

simultaneously. Chapter 6 shows how the likelihood function can also be used with a robust

MCMC algorithm and the conclusions are discussed in Chapter 7.

1.2 Related Work

Processing data from point clouds is a very diverse area of research since there are many

applications ranging in size from small to very large. In the past, research mostly focused

on noisy, poorly sampled point clouds. The goals were to extract smooth surfaces by mini-

mizing the error or energy of the surface. This usually resulted in a tradeoff between more

complex, more accurate surfaces and less complex, less accurate surfaces. Advances in
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computer power and memory sizes have allowed for changes in the point cloud research.

Laser range finders are faster and can create very large point clouds that accurately de-

scribe surfaces with little noise. Much research is now done to reduce the large amount

of data wherever possible. Our goal in this thesis is to reduce the volume of data where

possible while preserving the true geometry of the object. There are many areas of research

that are very active: Feature extraction, feature enhancing and sharpening, multiple sensor

registration, point cloud meshing, point cloud segmentation, and 3D model inference.

1.2.1 Feature Extraction

Feature extraction [5, 6] became a popular area of research as the laser scanning technology

advanced. The goal of such papers was to locate areas of the point cloud that are not smooth

surfaces. An example would be where two surfaces come together to form and edge. These

identifying features can be used as boundaries of smooth areas of the point cloud which

would be helpful to surface fitting algorithms. These papers are very important even though

we are not clustering sharp features. Feature Extraction [1] was able to locate sharp features

in point clouds using a neighbor graph as input to the algorithm. The neighbor graph is

similar to a mesh but locates the neighboring points without inferring the connectivity.

This is less computationally expensive than using a mesh. Features to be inferred include

crease loops, border loops and crease lines that appear on junctions between two different

surfaces and can be seen in Figure 1.2. Although this process is more computationally

expensive than the algorithm we are proposing, the idea allowed us to create an efficient

algorithm to estimate normal vectors of point cloud points.

1.2.2 Feature Enhancing and Sharpening

Another area of research is in sharpening features [7, 8, 9] of the point cloud. A point

cloud cannot sample the edge of an object very efficiently. An edge can be recovered and

enhanced using assumptions about the surfaces that make up the edges. A mesh [2] is also
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Figure 1.2: Example of a smooth surface of an object and the types of features to be located using

the Feature Extraction algorithm. This image taken from “Feature Extraction” [1].

a very help input to this problem. If the point cloud of the object is densely sampled and the

point cloud also has an accurate mesh, edge sharpening can occur to sharpen the mesh of

the object and calculate the location of the edge. This is done by identifying the points that

lie near the edge of an object in the mesh and processing the nearby surface information to

find an intersection line. Figure 1.3 shows an example of a meshed point cloud of a cube

that has the edges smoothed over.

Figure 1.3: Example mesh of a simple cube object. Note that the edges of the cube are cut off in

the meshing process. The edges can be recovered through edge sharpening of the cube. Image from

“Sharpen & Bend” [2]

The information can be recovered to produce a point cloud of the cube that does have

accurate edge lines, but the input to the algorithm has to be a mesh. One problem with the
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use of meshes is the tendency of a mesh to cut across the edges of an object or smooth out

the corners of an object. This is a problem for point clouds captured by LiDAR because

the object is not usually sampled on the edge. A point could fall on the edge of an object,

but in general this is not the case. As mentioned above, meshes are also computationally

expensive and do not always produce accurate results. Another downfall of this approach

is the sensitivity of the algorithm to noise in the point cloud.

Edge sharpening of the mesh is not the focus of our research, but is useful because of

the edge location in the point cloud. In order to create a good 3D model of a object, the

edges and surface intersections of that object should be accurate. Since the point cloud

does not sample on the edges of objects, estimation of the edges is important to modeling.

1.2.3 Multiple Sensor Registration

Multiple sensor data and registration [10, 11] are used to find a 3D model of a scene while

simultaneously texturing the model. The point clouds are created using stereo images in-

stead of laser range equipment. This approach is advantageous since texture data and sur-

face color are included, but the accuracy of the point cloud is a function of distance to the

stereo cameras. Laser scanners, on the other hand, produce point clouds with very little

noise.

1.2.4 Point Cloud Meshing

Point cloud meshes [12, 13, 14, 15] are a very popular area of research. Meshing a point

cloud [16] is a very wide area of research. Although we avoid the mesh application, we feel

it is an important subject since meshes are used so much in computer graphics display and

as input to many of the other papers we are mentioning. Generally, creating a mesh of a

point cloud is a very complex and computationally expensive algorithm. In our algorithm,

we use points that lie in a neighborhood to estimate the normal vectors. This is similar to

a mesh, but we do not care about how the points are connected along the surface. We only
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use the neighborhood to infer the smoothness of the surface about a point.

1.2.5 Point Cloud Segmentation

Point cloud segmentation [17, 18, 19, 20] is the area closest to our research. The goal is

to segment point clouds into meaningful section or structures. Segmentation can be done

with both proximity and local smoothness comparisons as in [17] to grow the regions of the

point cloud. This example starts with the low level processing to determine the smoothness

of each point and then compares with neighbors similar to the meshing examples. [19]

starts with the local smoothness to determine if points are on planar or smooth surfaces

and then fits a mathematical surface accordingly. [18] is also very similar since they are

calculating local smoothness and comparing on the global scale to find similar smoothness.

The idea is very close to our idea, but we approach from the normal vector space instead of

the point cloud space.

1.2.6 3D Model Inference

Model Inference of point clouds, [4, 3, 21, 22, 1], is usually accomplished by using an

algorithm like those listed above to locate the edges or shapes of point clouds. Point sim-

plification is usually used to find sections of the point cloud that are locally smooth and

use fewer points to represent the locally flat area. This reduces the number of points in the

point cloud, but still contains most of the data by adding knowledge about the areas of the

point cloud that are flat.

The goals of 3D Model Inference change depending on the object that is to me mod-

eled. In most situations, a smooth model is inferred in order to minimize the energy of the

surface. Situations like this are usually for objects where no prior knowledge is available.

The different algorithms attempt to locate features in the point cloud like edges and then

connect them.

Model inference also assumes a sparse noisy point cloud. In order to find a smooth
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Figure 1.4: This is an example of the type of point cloud used in “Inference of Integrated Surface”

[3]. The object being modeled is smooth and hard to see from just the point cloud. The point cloud

is also noisy.

model of an object, they use every point in the point cloud to help with normal vector

estimation. The point clouds used for this algorithm are more dense and our goal is to

find the original geometry of the object. The man-made objects are also not smooth. The

objects have many hard edges that need to be recovered in order to make a good model.

Because of this, slightly different techniques than [4, 3] will be used in order to recover the

original geometry.

1.3 Research Goal and Objectives

The original goal of the research was to be able to locate and segment planar surfaces in

point cloud using the EM algorithm. We were able to extend this idea to segmenting cylin-

der and cones using a new likelihood function we derived. This new likelihood function

is very versatile and can also be used with the MCMC algorithm. Using this method we

were able to segment many different shapes from a complex point cloud. The three major

sections of the research are explained by our objectives.

1.3.1 Objective 1. Location and Segmentation of Planar Surfaces in Point Clouds

using the EM algorithm

Our original goal of the research was to be able to locate and segment planar surfaces from

an unorganized point cloud. This was going to be done by clustering the normal vectors
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of each point using the Expectation Maximization (EM) algorithm. The normal vectors of

planar point cloud sections appear as tight clusters which can be easily clustered using EM.

Once the normal vector clusters are found, the orientations of planes in the point cloud are

known. The points can be segmented and an equation for each plane can easily be found.

1.3.2 Objective 2. Location and Segmentation of More Complex Surfaces in Point

Clouds using the EM algorithm

After planar surfaces could be segmented using the EM algorithm, the algorithm was ex-

tended to include two more simple shapes, Cylinders and Cones. In order to use the EM

algorithm for more complex shapes, a new likelihood function had to be derived for each

new shape. However, we were able to derive a new likelihood function that can be used

to cluster all three shapes in the point cloud. Clustering does not have to be done for each

shape independently, but can be done for all three types of shapes in the point cloud. We

include a detailed derivation of the new likelihood function along with results for different

point clouds.

1.3.3 Objective 3. Location and Segmentation of Surfaces using the MCMC algo-

rithm

The likelihood function that was created in Objective 2 can be used in the MCMC algo-

rithm. The MCMC algorithm is much more robust than the EM algorithm without the

initialization needed by EM. MCMC also has the ability to handle much more complex

point clouds than EM. We will show some clustering results for MCMC compared with

EM. We will also show some point clouds that are too complex for EM to handle, but can

be handled by MCMC.
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CHAPTER 2

Point Cloud Feature Extraction

The goal of this thesis is to identify three basic shapes in point cloud: Planes, Cylinders

and Cones. When the identification is complete, the quantity of each shape in the point

cloud will be known along with the orientation in the point cloud. This information can

be used to simplify point clouds by reducing the amount of data to simple equations where

possible. The input to this algorithm could be a point cloud as seen in Fig. 2.1.

Figure 2.1: Example input point cloud of a simple house. The planes are shaded in with

blue to help visualization. The red line is an axis and is used to help oriented the user only.

In order to find the orientation and number of planes in the house point cloud, clustering

is done on normal vectors only in the normal vector space. Clustering the normal vectors

allows a unique opportunity of being able to identify the type of shape being clustered

(Plane, Cylinder or Cone) but the ambiguity of not knowing specific shape information.
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Clustering is done on the normal vectors of the point cloud, but most point clouds are

unorganized. An unorganized point cloud is simply a collection of three dimensional points

with no normal vector or mesh information. The surface at a point cloud point is not known

and can be oriented in any direction. The normal vectors can be inferred by studying the

neighboring points of the point cloud.

Different shapes in the point cloud can have similar orientations and be mapped to

the same cluster in normal vector space. For example, multiple planes with the same ori-

entation all share the same normal vector. This ambiguity can be resolved by a second

clustering algorithm in the point cloud space. This second clustering algorithm is similar

to the first but will only be discussed briefly at the end of this thesis.

2.1 Feature Extraction

The features used for clustering are the normal vectors of the point cloud points. Point

clouds are assumed to be densely sampled as to provide a good estimate of the surface

normals. These normal vectors are calculated using the covariance of the points in a neigh-

borhood around each point. [4, 1] In our case, each input point, x, is a three dimensional

spacial point. The neighborhood consists of the nearest m points,

X = [x1,x2, . . . ,xm]T . (2.1)

The covariance matrix of the neighborhood is

Σ = E[(X− E[X])(X− E[X])T ], (2.2)

where E[X] is the expected value of the points in X. The Singular Value Decomposition,

SVD, of Eq. (2.2) is found in order to obtain the eigenvectors and eigenvalues of the

covariance matrix.
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(a) (b)

Figure 2.2: Two examples of normal vector calculation: (a) shows an area of the point cloud with

a smooth planar surface. The data spreads mostly in two of the three dimensions. The covariance

matrix of this spread will have a high condition number and the normal vector is very trustworthy;

and, (b) shows the opposite case. This point is near a feature and the covariance matrix of this data

spread will be well conditioned (close to 1) leading to a normal vector that is not trustworthy and

should not be used for clustering.

2.2 Two Normal Vector Estimation Scenarios

Assuming a smooth surface surrounding each point, the eigenvector corresponding to the

smallest eigenvalue is taken as the normal vector for said point. See Fig. 2.2a. The two

larger eigenvectors, with eigenvalues λ0 and λ1, lie along the surface while the smallest

eigenvector, with eigenvalue λ2, is perpendicular to the surface. The relationship of the

eigenvalues, λ, for a smooth surface is seen in Eq. (2.3),

λ0 > λ1 > λ2, λ0, λ1 À λ2. (2.3)

Clearly the assumption of a smooth surface surrounding each point is not always the

case. See Fig. 2.2b. When a point cloud point is close to a sharp feature on the object, the

covariance matrix should be well conditioned. The eigenvalues will be approximately the

same length meaning a well conditioned covariance matrix, Eq. (2.4),

λ0 ≈ λ1 ≈ λ2. (2.4)

Therefore, only point cloud points with an ill-conditioned covariance matrix should be

used for clustering. The higher the condition number (meaning worse conditioning), the
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smoother the surface near the point. A higher condition number threshold will exclude a

larger number of points but can lead to better modeling in the normal vector space. The

condition number also depends on the size of the neighborhood used to calculate the normal

vector and is application specific.

2.3 Potential Normal Estimation Problems

When calculating the normal vectors from a point cloud, there is an ambiguity in the direc-

tion. The normal vectors can be oriented one of two directions. A simple example would be

the normal vector of a horizontal plane. The direction can either be up or down as both are

mathematically correct. All normal vectors of a point cloud shape can be oriented outward

from center, inward towards the center or some combination of both. To avoid ambiguity

in the clustering process, we use both the positive and negative normal vectors as input to

our algorithms. When the normal vectors are estimated for the point cloud in Fig. 2.3(a)

and the well conditioned normal vectors are filtered out, the result is Fig. 2.3(b).

The image in Fig. 2.3(b) is of normal vector space. Each point is the head of a normal

vector calculated from the point cloud in Fig. 2.3(a). All the normal vectors lie on the unit

sphere as they are all normalized.

There are seven planes in the point cloud in Fig. 2.3(a) but there are only five cluster

pairs in Fig. 2.3(b). The reason is the left and right walls of the house have the same normal

vector. The front and back walls of the house also share a normal vector. The floor plane

and the two roof planes have a unique normal vector when compared to the other planes in

this point cloud. Also remember that we use both the positive and negative normal vectors

for each input. This causes a mirror cluster on the opposite side of the unit sphere. You

may realize there are only nine clusters of point in Fig. 2.3(b). This is due to the center

cluster hiding the mirror cluster directly behind.

Another potential problem with normal vector estimation is smooth surfaces of objects

with different shapes. A smooth sphere would be a good example. If the surface of the
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(a) (b)

Figure 2.3: Point cloud of a simple house consisting of planes: (a) The house is made up of four

walls, a floor and a roof; (b) shows the results of normal vector estimation for this point cloud. The

clusters have noise from the noise in the point cloud. There are five orientations of planes which

leads to ten total clusters. The solution consists of several small cluster pairs that fit tightly on the

points.

sphere were sampled densely enough, the normal vectors could be included in the clustering

process. The normal vectors of a sphere would not form a tight cluster in the normal

vector space. We can not predict what would happen during the clustering process but

acknowledge there are many problems that could occur related to the above scenario. It

would probably be necessary to perform a more complex filtering of normal vector points

than the simple condition number filtering we use in this thesis. In order to circumvent this

problem, we assume the point clouds contain only combinations of three shapes since our

research is on clustering and not normal vector estimation.
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CHAPTER 3

EM Planar Clustering

We can now cluster the normal vectors calculated in Chapter 2. In this chapter, we are

only clustering planar shapes using the EM algorithm. The clusters in this chapter can be

thought of as three dimensional clusters in normal three dimensional space. The definition

of a cluster will change in subsequent chapters and will be discussed more at that time. The

EM algorithm is not modified for this chapter.

3.1 Clustering of Normal Vectors

Since the point cloud is assumed to have noise and roundoff error, and the normal calcu-

lation is only an estimation of the normal vector at each point, the normal vectors in the

point cloud are clustered assuming a Gaussian Mixture Model in order to find the number

and direction of the optimal normal vector clusters. A Gaussian Mixture Model consists

of several Gaussian models that are combined to create a single density function. A two

dimensional example can be seen in Figure 3.1.

The optimal number of normal vector clusters for the point cloud is estimated based on

the Rissanen order identification criteria known as Minimum Description Length (MDL).

The process is equivalent to Maximum Likelihood when the number of clusters is fixed.

The results of the clustering algorithm will estimate the number of dominant normal vec-

tors in the point cloud and the direction of the normal vector for each of the planes. The

actual output of the clustering algorithm produces clusters that have different parameters

as follows.

• K - the number of clusters in the data;

15



Gaussian Mixture Model


Gaussian Models


Figure 3.1: Example of a two dimensional Gaussian Mixture Model. There are two different

Gaussian densities that are combined into one mixture model.

• πk - the probability that a pixel belongs to a cluster θk. πk is also known as the cluster

mixing weight;

• µk - the M dimensional mean of cluster θk;

• Σk - The M * M covariance matrix for cluster θk.

In normal vector clustering, the mean, µk, of each cluster, θk, is the direction of the nor-

mal vector, ~Nk = 〈A,B,C〉. The covariance matrix, Σk, for each cluster has information

about the spread of the data that produced the cluster mean. The covariance matrix is used

to check the confidence of each cluster. A covariance matrix with very small eigenvalues

represents a tight cluster and a very accurate estimation of the normal vector. The cluster

mixing weight, πk ∈ (0, 1)(k = 1, 2, . . . , K), contains information about the number of

normal vectors that were used to calculate the every cluster. If the value is large, then many

normal vectors belong to that cluster, meaning a high probability that cluster is a normal

vector for a plane in the point cloud.

The EM clustering algorithm with MDL [23] comes from Charles Bouman in the

School of Electrical Engineering from Purdue University. We present an overview of the
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clustering algorithm. The goal of the algorithm is to calculate the number and parameters

of clusters from a given set of data.

The algorithm begins by initializing the number of clusters, K, to some large number.

We use 20, but this should be a number larger than the final number of clusters. The

parameters for each cluster are also initialized. For each cluster, the mean, µk, is set to the

value of one of the data points and the covariance matrix, Σk is set to the covariance of the

entire data set. These parameters are the soft parameters for each cluster. They are called

soft because they will soon be changed by the Expectation Maximization (EM) algorithm.

3.1.1 Expectation Maximization

Intuitively, the EM algorithm is a two step iterative algorithm. First the likelihood values of

points belonging to the current cluster parameter set are calculated. These likelihood values

are used along with the point values to update the cluster parameter set. The algorithm is

repeated until clusters converge.

Expectation

The likelihood of a point belonging to a cluster is calculated using the likelihood function,

p(yn|θk) =
1

(2π)
M
2 |Σk| 12

exp

{
− (yn − µk)

TΣ−1
k (yn − µk)

2

}
, (3.1)

where yn is the nth point and θk is the kth cluster with parameters (µk,Σk, πk). The

likelihood value is calculated for all points and all clusters. Since the parent cluster is not

known, the total likelihood for each point is calculated by summing over k,

p(yn|Θ) =
K∑

k=1

πkp(yn|θk), (3.2)

where Θ = {θ1,θ2, . . . , θK} represents the entire cluster parameter set. The log likelihood

for the data set Y is calculated by taking the natural log of Eq. (3.2) and summing over N ,

ln p(Y|Θ) =
N∑

n=1

ln

(
K∑

k=1

πkp(yn|θk)

)
. (3.3)
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EM Algorithm with MDL

1: Initialize EM Algorithm with a large number of clusters

2: repeat

3: E Step:

4: Calculate the probability of each point belonging to each cluster.

p(yn|θk) in Eq. (3.1)

5: Calculate likelihood of each point given current parameter set,

p(yn|Θ) in Eq. (3.2)

6: Calculate Log-Likelihood of the entire data set, ln p(Y|Θ) in

Eq. (3.3)

7: Calculate the probability of a point belonging to a cluster,

p(θk|yn) in Eq. (3.4), for all clusters and points.

8: M Step:

9: Update Nk and πk for all clusters for the next iteration, Eq. (3.5)

and (3.6).

10: Update µk and Σk for each cluster using Eq. (3.7) and (3.8).

11: until Convergence

12: Calculate the MDL number for the given number of clusters, Eq. (3.9).

13: K = K − 1

14: if K > 0 then

15: GOTO Step 2

16: end if

17: Determine the number of clusters corresponding to the Minimum MDL

number

In order to update the parameters for the kth cluster, the cluster probability is calculated

using Eq. (3.1) and the current cluster weights,

p(θk|yn) =
p(yn|θk)πk∑K
l=1 p(yn|θl)πl

. (3.4)
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Maximization

Once the likelihood of all data points have been classified for the current cluster set, the

cluster parameters, Nk, πk, µk, and Σk, are updated. After new parameters are calculated,

the algorithm is repeated from the beginning until the new parameters for all clusters do

not change from the previous iteration.

The number of points, Nk, for each cluster is calculated by summing the cluster proba-

bility over all points, N ,

Nk =
N∑

n=1

p(θk|yn). (3.5)

Nk is used to find the mixing weight, πk, of each cluster for the next iteration,

πk =
Nk

N
, (3.6)

and to update the mean, µk,

µk =
1

Nk

N∑
n=1

ynp(θk|yn), (3.7)

and covariance matrix, Σk,

Σk =
1

Nk

N∑
n=1

(yn − µk)(yn − µk)
T p(θk|yn). (3.8)

The algorithm starts back at the Expectation step until the cluster parameters do not

improve. Once the clusters parameters do not improve, the final cluster parameters, Θ, are

recorded along with the number of clusters, K, and the final likelihood value for K clusters.

The number of clusters is reduced by one and the EM process starts again until the number

of clusters is 0. The problem with the process is that number of cluster that fit the data the

best is always the most number of clusters. This is where the Minimum Description Length

(MDL) part of the clustering algorithm helps.
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3.1.2 Minimum Description Length

The MDL puts a penalty function on the number of clusters used to describe the data set

and can be seen in Eq. (3.9).

MDL(K,Θ) = − ln p(Y|Θ) +
L ln(NM)

2
, (3.9)

where L ln(NM) is the penalty function, N is the number of data points and L is a constant

defined by Equation (3.10).

L = K

(
1 + M +

(M + 1)M

2

)
− 1, (3.10)

where K is the number of clusters and M is the dimension of the data. In our case, M = 3

for the three dimensional vectors being clustered.

The MDL number, also known as the Rissanen criterion, is calculated for the number

of clusters in the clustering algorithm. The goal of the MDL is to find the number of

clusters that best fits the data without over-fitting the data by using too many clusters.

Once the MDL value is calculated for every number of clusters, the number of clusters that

corresponds to the smallest MDL value is set as the number of clusters that best fits the

data. The parameters for that number of clusters is used as the output from the clustering

algorithm. An example output of the MDL is in Figure 3.2. The minimum number occurs

at 5 clusters meaning this is the number of clusters that best fit the data.

3.2 Simulation Results

Simulation results for Chapter 3 were obtained by using point clouds created using a com-

puter program that will calculate points between user created corner points. In order to test

the plane location and position optimization for this algorithm, every shape that was tested

is made up of planar surfaces. The current shapes are a Cube, Pyramid, Three Planes Cross-

ing, Two Steps and Two Planes that come together like a roof. The point cloud program

was created using Visual Studio 2005 and other processing was done by Matlab.
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Figure 3.2: Example output of the clustering process. The X axis is the number of clusters and

the Y axis is the Rissanen number for each number of clusters. In this case, the minimum Rissanen

number occurs at 5 clusters.

The point clouds are created using a spacing between each of the points which is usually

0.5. The spacing can be adjusted along with the overall scale of the object in the point cloud.

By default, each point cloud can fit in a cube that is 4 units on each side, but can be scaled

to be any size. Many different densities of points in the point clouds can be tested easily.

In order to test the ability of the algorithm, noise was added to each point cloud before

testing. For each point cloud, white noise was added with variances of 0.0001 and 0.0025,

respectively.

Once the different point clouds are created, Matlab is used to calculate the normal

vector for each point and test the condition of the covariance matrix. It was found through

the process of trial and error the best results were obtained using only those normal vectors

which have a condition number greater than 25. The more complicated the point cloud is,

the larger the condition number should be in order to get reliable results.
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3.2.1 Point Cloud Creation Program

The program used to create the point could was created using Microsoft’s Visual Studio

2005. The graphics were handled by Microsoft’s graphics engine, DirectX 9.0c. Figure

3.3 shows a screen shot of the program. The program is very simple to operate. The user

selects the shape of the point cloud from the drop down list on the right. The user sets the

scale of the object and the spacing of the points to be drawn and the program computes the

location of the points and draws them to the screen. Future revisions could make it possible

to change the location of corner points and create different and more complex shapes.

Figure 3.3: Screen shot of the program used to create the point cloud for testing. Program was

created using Microsoft Visual Studio 2005.

3.2.2 Cube Results

The point cloud of a cube was first used because of the simplicity and ease of testing the

program. There would be known results for the normal vectors and the location of the real

planes in the image are also easily calculated. The cube can be seen in Figure 3.4.

There are six sides to the cube which means there are six planes for this shape. The
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Figure 3.4: Point cloud of a cube. This point cloud contains six hundred points and each side of

the cube is five units long.

point cloud is made up of 600 points. Each side of the cube is five units long with one

corner at the point (0, 0, 0) and the opposite corner at the corner (5, 5, 5). The ground truth

constant values for the planes are listed in the tables. Instead of writing the entire equation,

we just write the constants in the form of (Aideal, Bideal, Cideal). The estimated values for

the constants also appear in the tables. They have the same format as the ground truth

constants, (Aest, Best, Cest). An example of the normal vectors calculated that are used for

clustering can be seen in Figure 3.5.

Table 3.1 shows the results for the cube point cloud. There are three separate planes

calculated for the three dominant normal vectors in the point cloud. The results are very

close to the ground truth values which is expected.
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Figure 3.5: Each dot in this figure is a normal value that has been calculated for the point cloud.

They are all normalized so they appear on a sphere with a radius of 1 around the origin point.

Because of the ambiguity of the point cloud, normal vectors are sometimes calculated that point in

opposite directions. There are five different clusters in this image that represent the three dominant

normal vectors of the cube point cloud.

Table 3.1: Estimated and Ideal Values for the Cube Point Cloud.

A B C σ2

EM 1.000 −0.003 0.000

0.009 1.000 −0.006

−0.007 0.005 1.000 0.0001

EM 1.000 −0.008 0.000

0.012 1.000 −0.007

−0.009 0.009 1.000 0.0025

Real 1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000
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3.2.3 Planes Results

Another point cloud that was used to test the algorithm was a point cloud of three different

planes that meet at a point in the middle of each plane. This is a case that is used by

the different researchers [4], [3], [24] etc. An example of the point cloud can be seen

in Figure 3.6. The point cloud contains 768 points at a spacing of 0.3. This is a good

point cloud to test because the point where the planes comes together makes normal vector

calculation difficult. The program seems to be robust enough to handle this situation. The

results for the Planes are in Table 3.2.

Figure 3.6: This is a point cloud of three different planes meeting at their centers. This point cloud

contains 768 points and each side is 4.8 units long. Points are at a spacing of 0.3.
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Table 3.2: Estimated and Ideal Values for the Three Planes Point Cloud.

A B C σ2

EM 1.000 −0.004 0.003

−0.001 1.000 0.000

−0.001 0.000 1.000 0.0001

EM 0.997 0.006 0.075

−0.011 1.000 −0.011

0.005 0.003 1.000 0.0025

Real 1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000
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3.2.4 Pyramid Results

Figure 3.7 shows an image of the Pyramid point cloud. This point cloud consists of 836

points with a spacing of 0.3 . The pyramid is made up of 5 different planes that all have

different normal vectors. The normal vector calculation of the pyramid estimate many

outliers and appears to have the more clusters then it does. There results estimate the

correct number of clusters as can be seen in Table 3.3. One reason for the good results

in the pyramid is the density of the points in the original point cloud. If the object is not

sampled densely enough, clustering problems may present themselves.

Figure 3.7: This is a point cloud of a pyramid. This point cloud contains 836 points and each side

of the base is 4.8 units long. Points are at a spacing of 0.3.
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Table 3.3: Estimated and Ideal Values for the Pyramid Point Cloud.

A B C σ2

EM −0.001 −0.448 0.894

−0.002 0.451 0.892

0.895 −0.447 0.002

0.894 0.448 0.002

−0.001 −1.000 0.002 0.0001

EM 0.002 −0.450 0.893

−0.003 0.449 0.894

0.893 −0.450 0.003

0.892 0.453 0.005

0.005 1.000 −0.001 0.0025

Real 0.000 −0.447 0.894

0.000 0.447 0.894

0.894 −0.447 0.000

0.894 0.447 0.000

0.000 1.000 0.000
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3.2.5 Steps Results

The steps in Figure 3.9 is probably the most complicated point cloud we tested with this

algorithm. There are only three different dominant normal vectors for this shape, but there

are a total of eight planes. Two of the normal vectors have three planes associated with

each one. This point cloud has a spacing of 0.25 between each point and 1408 points for

the entire point cloud. Very good results are estimated for this and every other point cloud

that was tested. The constant values are within 1% of the ideal values. The results for the

Planes are in Table 3.4.

Figure 3.8: This is a point cloud of two steps. This point cloud contains 968 points and each side

of the base is 4 units long. The points are spaced at 0.25.
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Table 3.4: Estimated and Ideal Values for the Steps Point Cloud.

A B C σ2

EM 1.000 0.000 −0.006

0.000 1.000 −0.007

0.000 0.004 1.000 0.0001

EM 1.000 0.000 0.003

0.000 1.000 0.007

0.000 0.004 1.000 0.0025

Real 1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000
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3.2.6 Roof Results

This is a point cloud that was created in order to test the normal vector calculation between

two different planes that are not perpendicular to each other. The height of the roof can

change but the overall scale of the point cloud does not change. This allows different

angles to be tested. The results appear in Table 3.5.

Figure 3.9: This is a point cloud of a roof. This point cloud contains 450 points and each side of

the base is 4 units long. The points are spaced at 0.2.

Table 3.5: Estimated and Ideal Values for the Roof Point Cloud.

A B C σ2

EM 0.437 0.899 −0.001

0.444 −0.896 0.002 0.0001

EM 0.438 0.899 −0.003

0.445 −0.898 0.001 0.0025

Real 0.447 0.894 0.000

0.447 −0.894 0.000
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CHAPTER 4

New Likelihood Function for EM and MCMC

In order to model cylinders and cones, we needed a new likelihood function. As in Chap-

ter 3, we are clustering in the normal vector space using only the normal vector values

calculated in Section 2.1. All of the normal vectors, Eq. (4.1), are normalized (length of 1).

As before, these can be visualized as points that lie on the unit sphere,

~N = 〈A,B, C〉, (4.1)

where ~N is the normal vector and A, B, C are the x, y, z components of the normal vector.

The Gaussian likelihood function works very well on planes in the point cloud since

the normal vectors bunch together in a tight 3D cluster. The mapping process for planes

can be seen in Fig. 4.1. This is not the case for cylinders, Fig. 4.2, or cones, Fig 4.3. The

normal vectors for both cylinders and cones are circles in the normal vector space. Normal

vectors for cylinders map as a unit circle. Normal vectors for cones map as a circle with

radius between 0 and 1 depending on the interior angle of a cone.

Our new likelihood function models a shape in the normal vector space as the intersec-

tion of a plane, Eq. (4.2), and the unit sphere. To avoid confusion, we refer to this as the

cluster plane instead of a point cloud plane in the real world space which will just be called

a plane. The normal vector of the cluster plane will also be known as the cluster normal

vector.

Ax + By + Cz + D = 0, (4.2)

where the cluster normal vector, Eq. (4.1), is perpendicular to the surface of the cluster

plane and D is the offset from the origin of the cluster plane. Our cluster mean vector µ
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will change from three dimensional to four dimensional,

µ = 〈A,B,C,D〉. (4.3)

Since the likelihood function is modified as the intersection of the cluster plane and the unit

sphere, the parameters in Eq. (4.3) are restricted to the following values,

−1 ≤ A ≤ 1,

−1 ≤ B ≤ 1,

−1 ≤ C ≤ 1,

||〈A,B,C〉|| = 1,

|D| ≤ 1.

(4.4)

There is a very helpful reason to model shapes in this manner; All three shapes can be

modeled using the same likelihood function. Consider a plane in the real world space with

a normal vector of 〈0, 0, 1〉, Fig. 4.1. All of the points on the plane have the same normal

vector, ~N = 〈0, 0, 1〉, so when they appear in normal vector space, they appear as a very

tight cluster. This cluster of points can be thought of as a cluster plane tangent to the unit

sphere. In other words, the cluster plane has an offset value, D = 1, which makes the

cluster mean value µ = 〈0, 0, 1, 1〉.

Figure 4.1: Example of plane in the real world space and the resulting normal vector mapping.

The plane consists of several different normal vectors for each point in the point cloud. When these

normal vectors are mapped to the normal vector space, they all point the same direction and overlap

leading to a very tight clustering.

This idea can be extended to both the cylinder and cone cases. First the cylinder case in

Fig. 4.2. All of the normal vectors calculated for the points on the cylinder point outward
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from the center. When these normal vectors are mapped to the normal vector space, they

create a ring with radius, r = 1. The center line of the cylinder determines the orientation

of the ring in normal vector space because the direction is the same as the cluster normal

vector. In Fig. 4.2, the normal vector is the same as Fig. 4.1, ~N = 〈0, 0, 1〉, but the offset

value is different, D = 0. The mean vector for the cylinder is µ = 〈0, 0, 1, 0〉.

Figure 4.2: Example of the likelihood function in the case of a cylinder. The normal vectors of the

cylinder all point outward from the center of the cylinder. When the normal vectors are mapped to

the normal vector space, they create a ring of points. For cylinders, the ring is always a unit circle

that is centered at the origin. The center line of the cylinder is the same as the cluster normal vector

used to model the cylinder.

The cone case, Fig. 4.3, is the general case for all of the shapes. When using the new

likelihood function, the D value determines the shape that is found in the clustering process.

This can be seen in Table 4.1. The D value is also related to the interior angle of the cone,

Eq. (4.5),

D = sin−1 φ

2
, (4.5)

where φ is the interior angle of the cone. If φ is increased to π radians, the cone is a plane.

When φ is decreased to 0 radians, the cone tip lies at infinity and the cone is a cylinder. The

radius, r, of the cluster ring is also related to the interior angle of the cone, Eq. (4.6),

r = cos−1 φ

2
. (4.6)
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Figure 4.3: An example of a cone case show that the normal vectors also create a ring in the normal

vector space. This is the general case that can be extended to the plane and cylinder cases. The plane

case is a cone cluster with a ring of radius 0 and the cylinder case is a cone cluster with radius 1.

Table 4.1: Table of the D (cluster plane offset) values and the corresponding shapes being modeled.

All three shapes can be thought of as cones. Planes and cylinders are extreme cases of the cone have

D values of 1 and 0 respectively.

D Value Shape

D ∼= 0 Cylinder

0 < |D| < 1 Cone

|D| ∼= 1 Plane

4.1 Arc Length Calculation

The clusters we are using for modeling are rings that lie on a unit sphere. The mean value is

not a point, but a ring that can be as large as a unit circle. The minimum distance between

a normal vector point and the cluster mean along the unit sphere is used in the likelihood

function for both the Modified EM algorithm (Chapter 5) and the RJ-MCMC algorithm

(Chapter 6). Since the normal vectors and the cluster means exist only on the unit sphere,

we use the distance traveled on the unit sphere as the distance in the likelihood calculation.

The arc length, Darc(yn,µk), is calculated using normal vector point yn = (xn, yn, zn) and

cluster mean µk = 〈A,B, C, D〉 for the kth cluster. The arc length is calculated for all

normal vectors, Y = {y1,y2, . . . ,yN}, to every K ≥ 1 clusters.
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The arc length, Fig. 4.4, for all points is calculated by first calculating the projected

distance, d to a reference cluster plane (Nref = 〈Ak, Bk, Ck〉, Dref = 0) passing through

the origin,

d = |Akx + Bky + Ckz|. (4.7)

The arc length, l, is derived from d and radius, r = 1, as follows,

l = sin−1 d

r
= sin−1 d. (4.8)

The arc length, L, of the current cluster to the reference cluster is derived from the

current cluster D value and the radius, r = 1, in a similar manner,

L = sin−1 |D|
r

= sin−1 |D|. (4.9)

The two arc lengths, l and L, are calculated in this manner in order to calculate the true

arc length from a point to the cluster plane,

Darc(yn,µk) = |L− l|. (4.10)

Radius, r

Projected distance, d

Arc Length, l

Point, P

Projected distance, D

Arc Length, L

Cluster Plane

Unknown Arc Length
|L-l|

Figure 4.4: Example of the arc length calculation. The final arc length is the difference between

the two reference arc lengths, Eq. (4.10).
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4.2 Cluster Variance

Since we are using a one dimensional distance from each normal vector to the cluster mean,

we no longer have a covariance matrix for each cluster. We instead have a single variance

value. When the EM algorithm was attempted using the new likelihood function, we found

the algorithm found the incorrect solution. A good example of this problem can be seen in

Fig. 4.5.

(a) (b) (c)

(d) (e)

Figure 4.5: Point Cloud and clustering results of a simple plane: (a) is a simple plane with normal

vector pointing out of the page; (b)–(c) show the bad results obtained from the clustering algorithm.

The solution, visualized by the transparent grey circle, cuts through the cluster; and, (d)–(e) show

the correct clustering solution. There are two cluster representing the positive and negative normal

vector of the plane. There is a small grey circle about each cluster which is expected.

The point cloud in Fig. 4.5(a) is of a single planar surface. Fig. 4.5(b)–(c) show the in-

correct clustering solution. For comparison, the correct solution can be seen in Fig. 4.5(d)–

(e). The correct solution should be a tight circle close to the points. The incorrect solution

in this case found a cylinder in the point cloud instead of a planar surface. The incorrect

solution in Fig. 4.5 is a local likelihood maxima that can be a global likelihood maxima at
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times.

Our solution for this problem was to study the variance of different shapes in the normal

vector space. We empirically found the variance of each cluster varied exponentially with

the offset value D. We also found this exponential function changed very little with changes

of noise in the point cloud. With this knowledge, we update the variance of each cluster

using the exponential function based on the D value of each cluster. This update process

further explored in Chapter 5. This relationship of variance versus offset value D can be

seen in Fig. 4.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4.6: Graph of the exponentially decreasing variance based on the D value. This variance is

plotted against the absolute value of D since the value of the variance only depends on the distance

of the plane from the origin.
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CHAPTER 5

EM Clustering with New Likelihood Function

Now that we have derived a new likelihood function, we will revisit and modify the EM

algorithm. We still assume a Gaussian distribution of the data, but we have modified the

likelihood calculation [25] and the cluster update steps to work with the ring clusters. These

steps will be discussed further in the following Sections.

5.1 Modified EM Algorithm

The mixing weights for each cluster are πk ∈ (0, 1)(k = 1, 2, . . . , K) which is subject to

summation
∑K

k=1 πk = 1. The entire parameter set is denoted by Θ = {θ1,θ2, . . . , θK}
where each cluster has the parameters θk = (µk, Σk, πk). µk = 〈Ak, Bk, Ck, Dk〉 is the

cluster mean and Σk is the cluster variance. The variance value is now one dimensional as

discussed in Chapter 4.2.

5.1.1 Expectation

The probability density function for normal point yn given cluster θk is given by

p(yn|θk) =
exp

{
Darc(yn,µk)Σ−1

k Darc(yn,µk)

−2

}

(2π)
3
2 |Σk| 12

, (5.1)

where Darc(yn,µk) is the arc length from Chapter 4.1. The cluster parent is not known so

sum over k to find the likelihood of each point given the current parameter set, Θ,

p(yn|Θ) =
K∑

k=1

πkp(yn|θk), (5.2)
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EM Algorithm with MDL

1: Initialize EM Algorithm with a large number of clusters

2: repeat

3: E Step:

4: Calculate the probability of each point belonging to each cluster.

p(yn|θk) in Eq. (5.1)

5: Calculate the likelihood of each point given current parameter

set, p(yn|Θ) in Eq. (5.2)

6: Calculate Log-Likelihood of the entire data set, ln p(Y|Θ) in

Eq. (5.3)

7: Calculate the probability of a point belonging to a cluster,

p(θk|yn) in Eq. (5.4), for all clusters and points.

8: M Step:

9: Update Nk and πk for all clusters for the next iteration, Eq. (5.6)

and (5.7).

10: Use Nk and πk to update the mean normal vector, ~Nk = 〈Ak, Bk, Ck〉,
using Eq. (5.8)

11: Update the offset of the cluster mean, Dk, using Eq. (5.9) and

(5.10).

12: until Convergence

13: Calculate the MDL number for the given number of clusters, Eq. (5.11).

14: K = K − 1

15: if K > 0 then

16: GOTO Step 2

17: end if

18: Determine the number of clusters corresponding to the Minimum MDL

number

then the log-likelihood for the entire data set given the current parameter set is

ln p(Y|Θ) =
N∑

n=1

ln

( K∑

k=1

πkp(yn|θk)

)
. (5.3)
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In order to update the parameters for the Maximization step, the probability of cluster θk

given data point yn is calculated for all data points and all clusters,

p(θk|yn) =
p(yn|θk)πk∑K
l=1 p(yn|θl)πl

. (5.4)

which logically sums to 1 over k,

K∑

k=1

p(θk|yn) = 1. (5.5)

5.1.2 Maximization

The number of points, Nk, belonging to each cluster for the next iteration is calculated by

summing the probability of all points belonging to cluster θk,

Nk =
N∑

n=1

p(θk|yn). (5.6)

Nk is used to find the mixing weight, πk, of each cluster for the next iteration,

πk =
Nk

N
, (5.7)

and to update the cluster mean, µk. µk is calculated in a similar manner to the normal

vector estimate of Chapter 2.1. A weighted covariance matrix, Σµk
, is calculated using the

data set, Y and the current cluster center, νk = |Dk| · 〈Ak, Bk, Ck〉,

Σµk
=

1

Nk

N∑
n=1

(yn − νk)(yn − νk)
T p(θk|yn). (5.8)

µk is the eigenvector corresponding to the smallest eigenvalue of the cluster covariance

matrix, Σµk
. This process is discussed in greater detail in Section 5.1.4.

Nk is also used to calculate the average arc length, φk, for a cluster.

φk =
1

Nk

N∑
n=1

Darc(yn,µk)p(θk|yn), (5.9)

which is used to update the Dk in the parameter set for the next iteration,

Dk = sin(φk). (5.10)

Dk is also used to set the variance value for each cluster for the next iteration, Chapter 4.2.

41



5.1.3 MDL

The MDL [26] section of the algorithm has not changed from Chapter 3 but will be stated

again for convenience. After the EM algorithm has converged for a parameter set, the

Minimum Description Length number, MDL(K,Θ), is calculated for the parameter set

by adding the MDL Penalty value (the second term of Eq. (5.11)) to the negative log-

likelihood,

MDL(K,Θ) = − ln p(Y|Θ) +
1

2
L ln(NM). (5.11)

where N is the number of points in the data set, M is the dimension of the feature vector

and L is defined using the current number of clusters, K,

L = K

(
1 + M +

(M + 1)M

2

)
− 1. (5.12)

This process is performed for a large number of clusters and repeated with one less cluster

until the number of clusters is 1. The lowest MDL number corresponds to the correct

number of clusters in the model.

5.1.4 EM Algorithm Mean Update

The update section of the EM algorithm calculates a new mean by first calculating a new

cluster normal vector, ~Nk. In order to get the new cluster normal vector, the covariance

matrix, Eq. 5.14, for each cluster has to be calculated using

cwnk
= p(θk|yn)1/2(yn − νk), (5.13)

where cwnk
is the vector from yn to νk = |Dk| · 〈Ak, Bk, Ck〉 which is the center point of

θk. This vector is weighted by the root of the probability, p(θk|yn) of point yn belonging

to cluster θk. The covariance matrix for cluster θk, is defined as

Σµk
= E[CkC

T
k ], (5.14)

where Σµk
is the covariance matrix and Ck is the vector containing all weighted distance

vectors, cwnk
for cluster θk.
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The eigenvector corresponding to the smallest eigenvalue of the covariance matrix is

the new normal vector for the EM update step. Since the clusters are rings, they are ideally

two dimensional. There is some spread in the third dimension, but it is much smaller than

the spread in the other two dimensions. The vectors of points lying near the ring have a

much higher weight than points far from the ring.

λ0 > λ1 > λ2, λ0, λ1 À λ2, (5.15)

where λ is an eigenvalue of Σµk
. Once the normal vector is calculated for each cluster, the

offset value, Dk, can also be calculated by averaging the weighted projection of the points

to the origin plane.

5.2 EM Clustering Limitations

There are three main issues when using EM for clustering in the normal vector space.

The first is the ambiguity of calculating a normal vector from a point cloud. The normal

vectors are calculated, [1, 4, 3], in a manner similar to the mean update for the clusters,

Section 5.1.4. When calculated in this manner, the normal vector can be oriented one of

two directions. A simple example would be the normal vector of a horizontal plane. The

direction can either be up or down as both are mathematically correct. All normal vectors

of a point cloud shape can be oriented outward from center, inward towards the center or

some combination of both. To avoid ambiguity in the clustering process, we use both the

positive and negative normal vectors as input to the EM algorithm. This can clearly be seen

in Fig. 6.2(c)–(d). The top and bottom ring are from the cone object in the point cloud.

The top ring is the outward normal vectors and the bottom ring the inward normal vectors.

If viewing this document in color, the yellow points are positive and the red points are

negative values of the input. The clusters that appear in Table 6.2– 6.6 are just one of the

cluster pair. Each cluster in the cluster pair is differentiated by the sign of the D value.

The second issue is the quality of the input points. The normal vector calculation works
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best when the point is on a flat surface as in Fig. 5.1(a). The normal vector calculated in

this example has a high probability of being the correct normal vector for the surface at that

point.

Fig. 5.1(b) shows an example of a less trustworthy condition number calculation. The

point lies near an sharp feature in the point cloud (in this case and edge). The quality of the

normal vectors can easily be determined by the condition number of the covariance matrix

used to calculate each normal vector. The covariance matrix in each figure is visualized by

the circles around the point. In Fig. 5.1(a) the covariance matrix has very little spread in

the vertical direction, meaning a small eigenvalue which leads to a large condition num-

ber. Fig. 5.1(b) show spread approximately equal in all directions meaning the covariance

matrix is well conditioned.

(a) (b)

Figure 5.1: Two examples of normal vector calculation: (a) shows an area of the point cloud with

a smooth planar surface. The data spreads mostly in two of the three dimensions. The covariance

matrix of this spread will have a high condition number and the normal vector is very trustworthy;

and, (b) shows the opposite case. This point is near a feature and the covariance matrix of this data

spread will be well conditioned (close to 1) leading to a normal vector that is not trustworthy and

should not be used for clustering.

The third issue is the EM initialization. This is potentially always a problem with EM

due to local minima in the data set. The data in our case has a limited area to exist. This

can lead to great overlap with increasing complexity of the point cloud. We use a simple

initialization algorithm that tests the likelihood of several random parameter sets to start

with a parameter set in the correct neighborhood. Some limitations can be seen in Fig. 6.3

and 6.5.

44



5.3 Simulation Results

We have included some simulation results to aid in the visualization of this algorithm. The

point clouds were created with a newer program than was used in Chapter 3. The program

has a similar appearance but has the ability to create much more complex point clouds.

There is no spacing of points in this chapter as there was before. The points are created

randomly allowing the user to test many different point clouds of the same objects. Noise

can also be added to the point clouds with any variance.

The EM and MCMC (Chapter 6) algorithms are contained in the new program so Mat-

lab does not have to be utilized. The program was created using Visual C# and Microsoft’s

DirectX graphics engine. The speed of C# allowed us to create and test point clouds up to

ten times the size of Chapter 3. The visualizations of this chapter are also going to be a

little different. We show two views of the original point cloud with a transparent shape out-

line to help the reader see the shapes tested. We also show the results in the normal vector

space. The clustering results are visualized as transparent grey discs that are outlined by

the normal vector points of the point cloud.

5.3.1 Two Cylinders

The first is two cylinders approximately the same size as can be seen in Fig. 5.2(a)–(b). The

centerline in the two cylinders is perpendicular and the normal vector space can be seen in

Fig. 5.2(c)–(d). The grey transparent circles are the visual representation of the clustering

result. The numerical results can be seen in Table 5.1. All error values are calculated by

averaging the arc length of every point to the closest cluster.
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(a) (b)

(c) (d)

Figure 5.2: Point cloud of two cylinders with perpendicular center lines, Table 5.1: (a)–(b) show

the two cylinders the make up the point cloud. The images are taken from a slightly different angle

to help the viewer see the depth; and, (c)–(d) show the normal vector space that was calculated from

the original point cloud. The clustering results are seen as the slightly transparent grey circles that

fill the rings made by the normal vectors. The X, Y and Z axes are shown with a Red, Green and

Blue line, respectively. There are two different angles to help the viewer see the depth in the images.

Table 5.1: Results for the Two Cylinders point cloud, Fig. 5.2.

A B C D σ2 Error

EM −1.000 0.001 0.000 0.000

0.002 0.002 1.000 0.000 0.0001 0.020

EM −1.000 0.003 −0.007 0.000

0.001 0.000 1.000 0.000 0.001 0.034

EM −1.000 0.000 0.009 0.054

0.003 0.005 1.000 0.056 0.005 0.043

Real −1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000
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5.3.2 Cone and Cylinder

The second example shows a cone and a cylinder with the same center line, meaning the

normal vector in the cluster will be the same. The shapes are distinguished by the difference

in the D values as can be seen in Table 5.2. This is a good example of the duplex data points

used in the clustering process. There is only one cone, but the normal vector space shows

two rings for the cone (the top and bottom). There are also two rings for the cylinder, but

they overlap leaving the appearance of one center ring.

(a) (b)

(c) (d)

Figure 5.3: Point cloud containing a single cone and cylinder, Table 5.2: (a)–(b) show the cylinder

with a cone attached at the top. The radius of the large end of the cone is the same as the radius of

the cylinder; and, (c)–(d) show the results of the clustering algorithms. There are three rings visible

in the image even though there are only two shapes in the point cloud. This is due to the cone and

the positive and negative direction of the normal vector points. The top and bottom ring are mirror

images of each other.
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Table 5.2: Results for the Cone and Cylinder point cloud, Fig. 5.3.

A B C D σ2 Error

EM 0.004 0.004 −1.000 −0.706

0.003 0.001 −1.000 0.000 0.0001 0.034

EM −0.008 0.004 −1.000 −0.708

0.000 −0.003 −1.000 0.000 0.001 0.038

EM 0.021 −0.015 −1.000 −0.688

0.002 0.019 −1.000 0.083 0.005 0.065

Real 0.000 0.000 −1.000 −0.707

0.000 0.000 −1.000 0.000
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5.3.3 Three Cylinders

The next example, Fig. 5.4, shows some of the limitations of the algorithm. Very low noise

levels produce good results, but higher noise levels produce worse results. The results at

high noise can be very bad based on the initialization of the EM algorithm.

(a) (b)

(c) (d)

Figure 5.4: Point cloud of three cylinders rotated about an axis, Table 5.3: (a)–(b) show the point

cloud images; and, (c)–(d) show the correct solution. EM has some trouble with this solution,

getting it correct ≈ 80% of the time with moderate noise and less with greater noise.
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Table 5.3: Results for the Three Cylinders point cloud, Fig. 5.4.

A B C D σ2 Error

EM 0.501 0.002 0.866 0.000

−0.002 0.000 −1.000 0.000

0.865 0.001 0.502 0.000 0.0001 0.011

EM 0.328 0.014 0.945 −0.147

0.018 −0.027 −1.000 −0.001

0.863 0.001 0.505 0.000 0.001 0.044

EM 0.350 −0.020 0.937 0.145

0.062 −0.016 −0.998 0.059

0.872 0.016 0.489 0.084 0.005 0.050

Real 0.500 0.000 0.866 0.000

0.000 0.000 −1.000 0.000

0.866 0.000 0.500 0.000
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5.3.4 Cone, Cylinder and Plane

The final example is similar to the first, but a plane has been added. When the point cloud

has little noise, the correct solution can be found with EM, Table 5.4. With a moderate

amount of noise, the clusters have more spread and MDL has a difficult time estimating the

correct number of clusters. The correct solution is obtained, but an extra cluster appears

along with the correct solution. This is due to the moderate noise in the point cloud and the

close proximity of the features. The high levels of noise produce incorrect results. Two of

the clusters are correct, but there are four incorrect clusters in the solution. The high levels

of noise spread the clusters evenly over the sphere. More clusters are needed in the solution

to obtain a good fit for the data.

(a) (b)

(c) (d)

Figure 5.5: Point cloud the three shapes, Cone, Cylinder and Plane, Table 5.4: (a)–(b) show the

point cloud images; and, (c)–(d) show the correct solution. EM gets the correct solution at low noise

levels but has a lot of trouble with this point cloud when the noise level is high. The clusters are no

longer tight leading to incoherent results.
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Table 5.4: Results for the Cone, Cylinder and Plane point cloud, Fig. 5.5.

A B C D σ2 Error

EM 0.001 0.016 1.000 1.000

0.000 0.001 1.000 0.005

−0.003 −0.003 −1.000 −0.713 0.0001 0.008

EM 0.006 −0.003 1.000 0.998

0.003 −0.002 1.000 −0.005

−0.014 −0.009 −1.000 −0.708

−0.449 −0.893 −0.029 0.0261 0.001 0.027

EM 0.005 0.023 1.000 0.015

0.011 0.020 1.000 −0.022

0.013 0.016 −1.000 −0.712

−0.754 −0.657 −0.007 0.005

0.865 −0.502 0.017 −0.016

−0.884 −0.312 −0.349 −0.371 0.005 0.033

Real 0.000 0.000 1.000 1.000

0.000 0.000 1.000 0.000

0.000 0.000 −1.000 −0.707
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CHAPTER 6

MCMC Clustering of Point Clouds

In this chapter, we use Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) with the

likelihood function from Chapter 4 to determine quantity and orientation of unique shapes

in the normal vector space. MCMC works by utilizing a random walk from an initial

state [27, 28] to locate the global maxima (or minima depending on the situation). Each

sweep of the algorithm calculates the likelihood ratio of the new state versus the old state.

The likelihood ratio is compared to a uniform random variable and accepted if the random

variable is less than the ratio. This is a very important distinction when compared to the

EM algorithm [23] because a new state could be accepted even if the likelihood is lower

than the current state. This gives MCMC the ability to escape local maxima that EM does

not have, meaning MCMC initialization is not as important as EM initialization.

Reversible Jump MCMC (RJ-MCMC) [29] is very similar to MCMC but has the ability

to switch between discrete dimensions. This is used to determine the system order by

increasing or decreasing the number of clusters. The likelihood ratio is still used with two

provisions. A Jacobian is calculated to account for the change in dimensions and priors for

model order are used protect against over fitting the data.

6.1 Normal Space Inference Problem using the MCMC Algorithm

The MCMC algorithm for our clustering is similar to the EM algorithm since the log-

likelihood, Eq. (6.1), is calculated the same way for both,

ln p(Y|Θ) =
N∑

n=1

ln

( K∑

k=1

πkp(yn|θk)

)
, (6.1)
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where p(Y|Θ) is the probability of data set Y given parameter set Θ. The parameter set,

Θ = {θ1,θ2, . . . , θK}, consists of K clusters with each cluster having the parameters

θk = (µk, Σk, πk). µk is the cluster mean, Σk is the cluster variance, and πk is the weight

of each cluster. πk ∈ (0, 1)(k = 1, 2, . . . , K) which is subject to summation
∑K

k=1 πk = 1.

The probability of point yn belonging to cluster θk is

p(yn|θk) =
exp

{
Darc(yn,µk)Σ−1

k Darc(yn,µk)

−2

}

(2π)
3
2 |Σk| 12

. (6.2)

where Darc(yn,µk) is the one dimensional arc length and Σk is the one dimensional co-

variance matrix (variance value). The probability of point yn given the data set Θ is found

by summing over variable k,

p(yn|Θ) =
K∑

k=1

πkp(yn|θk). (6.3)

Θ denotes the current parameters and Θ′ denotes the proposal parameters. The apos-

trophe, ′, signifies the proposal state for the entire MCMC algorithm. πpdf (Θ) is the pdf

of the current set of parameters and πpdf (Θ
′) is the pdf of the proposed set of parameters.

The proposed parameters are chosen with density q(Θ′|Θ), but they need not depend on

the current parameters, Θ. It does not matter in our case since the densities are equal,

q(Θ′|Θ) = q(Θ|Θ′), and will cancel each other. The posterior distribution of parameters

given the observed data, Y, is used for the target distribution, πpdf (Θ), in Eq. (6.4),

πpdf (Θ) = p(Θ|Y) =
p(Y|Θ)p(Θ)

p(Y)
, (6.4)

with πpdf (Θ
′) calculated in the same manner. The MCMC acceptance ratio, α, is then given

by Eq. (6.5),

α(Θ,Θ′) = min

{
1,

πpdf (Θ
′)q(Θ|Θ′)

πpdf (Θ)q(Θ′|Θ)

∣∣∣∣
∂(Θ′)

∂(Θ,u)

∣∣∣∣
}

. (6.5)

When the posterior probabilities are substituted in Eq. (6.5), α is reduced to the ratio of

likelihood values, Eq. (6.6),

α(Θ,Θ′) = min

{
1,

p(Θ′)L(Θ′|Y)

p(Θ)L(Θ|Y)

∣∣∣∣
∂(Θ′)

∂(Θ,u)

∣∣∣∣
}

. (6.6)
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MCMC Algorithm

1: Initialize MCMC with 1 cluster

2: repeat

3: Choose a cluster randomly from the set, θk, and available move

type: Update, Birth/Death, or Split/Combine.

4: Calculate the new parameter set, Θ′.

5: Calculate Acceptance Ratio, α(Θ,Θ′).

6: if α(Θ,Θ′) > U(0, 1) then

7: Accept new parameter set

8: Θ = Θ′

9: else

10: Keep the same parameter set

11: Θ = Θ

12: end if

13: until Maximum sweep number met

14: Calculate the frequency of acceptances per cluster.

15: Calculate average parameters for most popular cluster quantity.

Since we are using RJ-MCMC [30, 29] to estimate the model order, [26], there are

several different types of update steps that are utilized: Simple Update, Birth/Death, or

Split/Combine. One cluster is selected during each cycle (or sweep) of the RJ-MCMC

algorithm along with a move type to adjust the cluster parameters. The parameters are

adjusted according to the move type and the acceptance ratio is calculated. The move is

accepted if α is greater than a uniform random number, U(0, 1).

6.1.1 Simple Update

The Update step will change the parameters of a cluster in one of two distinct ways. The

first will create a random vector, u,

u = 〈Au, Bu, Cu, Du〉, (6.7)
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where u is created using 4 zero mean Gaussian random numbers. u is added to the current

cluster, Eq. (6.8),

θ′ = θ + u = 〈A′, B′, C ′, D′〉. (6.8)

The new cluster is constrained by Eq. (6.9),

||〈A′, B′, C ′〉|| = 1,

||D′|| < 1.
(6.9)

The second way to update a cluster is to just accept the random vector, u as the new

cluster, Eq. (6.10).

θ′ = u. (6.10)

This can be considered a new global cluster that can appear anywhere. This cluster does

not depend on the previous cluster making it one of the most important parts of MCMC.

The global parameter update is very useful for escaping local minima that can easily trap

the EM algorithm. All new clusters are constrained by Eq. (6.9).

6.1.2 Birth/Death

The Birth and Death moves are slightly more complex than the Update move because the

number of clusters changes and the Jacobian, Eq. (6.11),

J =
∂(Θ′)

∂(Θ,u)
, (6.11)

has to be calculated. There are two types of Birth moves that are very similar to the Update

moves. The first type will copy the parameters of an existing cluster and add them to a

random vector, Eq. (6.8). The second type of Birth move will create a globally random

cluster, Eq. (6.10). The Death move is slightly easier. A cluster from the list is chosen at

random and removed. The Jacobian for the Death move is the inverse of the Jacobian for

the Birth move.
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Table 6.1: MCMC move types. Basic move types only update a single cluster while more

complex types have the ability to update two clusters simultaneously.

Number of Number of

Move Type Clusters Affected Clusters Changed

Update 1 No Change

Birth 1 +1

Death 1 −1

Split 2 +1

Combine 2 −1

6.1.3 Split/Combine

Both the Split and Combine moves are slightly more complicated than the Birth/Death

moves. For Split, a cluster is chosen at random, θ, and split into two different clusters

using random vector u. The two new clusters are updates from the current cluster, Eq.

(6.12),

θ′1 = θ + 1
2
u,

θ′2 = θ − 1
2
u,

(6.12)

where θ′1 and θ′2 are the two clusters created from θ and u.

Combine is performed by randomly picking a cluster, θ1, and averaging it with the

nearest cluster, θ2, to get the new cluster, θ′, Eq. (6.13),

θ′ =
θ1 + θ2

2
. (6.13)

The Jacobian of the Combine move is the inverse of the Split move.

Both the Combine and Death moves can only be performed when the number of clusters

is greater than the minimum number. The Birth and Split moves can only be performed

when the number of clusters is less than the maximum. The different move types are

illustrated in Table 6.1.
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6.2 Simulation Results

We have included a number of examples to help in the visualization of this algorithm. We

are also including results of each data set found using the Expectation Maximization (EM)

algorithm [31] combined with Minimum Description Length (MDL), Chapter 5, to deter-

mine system order for comparison. We intend to show some simple examples to aid with

the new cluster idea we are using. The simple point clouds will show very similar results

using both the RJ-MCMC and EM algorithm. We will show some slightly complicated ex-

amples where EM will occasionally find a local maxima instead of the correct solution. We

will also show some more complicated examples that will show how robust the RJ-MCMC

algorithm can be. The correct solution of some complicated examples can rarely be found

using EM.

6.2.1 Algorithm Initialization

Initialization for the RJ-MCMC algorithm is very easy since it is not sensitive to initializa-

tion. Our initialization is done by creating a single cluster and picking 〈A,B, C,D〉 values

at random. The number of clusters will quickly increase and start locating the correct solu-

tion.

We found EM to be much more sensitive to initialization than RJ-MCMC. This led to a

simple initialization done by creating a large number of clusters with random values. The

likelihood value is calculated and the clusters are randomly initialized again. This process

is repeated a few hundred times and the configuration with the highest likelihood is used

as the initialization for the algorithm. This solution is not elegant but works well for this

application. Simple point clouds do not need the initialization as much as more complicated

point clouds. However, even with initialization, the correct solution is not guaranteed using

the EM algorithm.
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6.2.2 Simple Example: Two Cylinders Point Cloud

We have included some simulation results to aid in the visualization of this algorithm. The

first is two cylinders approximately the same size as can be seen in Fig. 6.1(a)–(b). The

centerline in the two cylinders is perpendicular and the normal vector space can be seen in

Fig. 6.1(c)–(d). The grey transparent circles are the visual representation of the clustering

result. The numerical results can be seen in Table 6.2. All error values are calculated by

averaging the arc length of every point to the closest cluster.

(a) (b)

(c) (d)

Figure 6.1: Point cloud of two cylinders with perpendicular center lines, Table 6.2: (a)–(b) show

the two cylinders the make up the point cloud. The images are taken from a slightly different angle

to help the viewer see the depth; and, (c)–(d) show the normal vector space that was calculated from

the original point cloud. The clustering results are seen as the slightly transparent grey circles that

fill the rings made by the normal vectors. The X, Y and Z axes are shown with a Red, Green and

Blue line, respectively. There are two different angles to help the viewer see the depth in the images.
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Table 6.2: Results for the Two Cylinders point cloud, Fig. 6.1. This example was also seen in

Chapter 5 and is simple enough that both EM and RJ-MCMC can easily obtain a good estimate of

the correct solution.

A B C D Error

EM −1.000 0.001 0.000 0.000

0.002 0.002 1.000 0.000 0.0205

RJ-MCMC −1.000 −0.004 0.005 0.000

0.003 −0.001 1.000 −0.003 0.0170

Correct −1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000
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6.2.3 Simple Example: Cone and Cylinder Point Cloud

The second simple point cloud example shows a cone and a cylinder with the same center

line, meaning the normal vector in the cluster will be the same. The shapes are distin-

guished by the difference in the D values as can be seen in Table 6.3. This is a good

example of the duplex data points used in the clustering process. There is only one cone,

but the normal vector space shows two rings for the cone (the top and bottom).

(a) (b)

(c) (d)

Figure 6.2: Point cloud containing a single cone and cylinder, Table 6.3: (a)–(b) show the cylinder

with a cone attached at the top. The radius of the large end of the cone is the same as the radius of

the cylinder; and, (c)–(d) show the results of the clustering algorithms. There are three rings visible

in the image even though there are only two shapes in the point cloud. This is due to the cone and

the positive and negative direction of the normal vector points. The top and bottom ring are mirror

images of each other.
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Table 6.3: Results for the Cone and Cylinder point cloud, Fig. 6.2.

A B C D Error

EM 0.004 0.004 −1.000 −0.706

0.003 0.001 −1.000 0.000 0.0339

RJ-MCMC 0.009 0.008 −1.000 −0.704

0.001 −0.004 −1.000 0.000 0.0317

Correct 0.000 0.000 −1.000 −0.707

0.000 0.000 −1.000 0.000
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6.2.4 Simple Example: Three Cylinders Point Cloud

This point cloud of cylinders is a good example of odd overlapping that can occur in the

normal vector space. Visually, the clusters appear to be very well separated, but this point

cloud has some local maxima that can fool EM. This is the first point cloud where the

differences between EM and RJ-MCMC start to appear. RJ-MCMC will find the correct

solution most of the time even with different levels of noise, while EM can struggle to find

the solution.

(a) (b)

(c) (d)

Figure 6.3: Point cloud of three cylinders rotated about an axis, Table 6.4: (a)–(b) show the point

cloud images; and, (c)–(d) show the correct solution. MCMC will find the correct solution most of

the time with different levels of noise.
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Table 6.4: Results for the Three Cylinders point cloud, Fig. 6.3.

A B C D Error

EM 0.501 0.002 0.866 0.000

−0.002 0.000 −1.000 0.000

0.865 0.001 0.502 0.000 0.011

RJ-MCMC 0.501 −0.001 0.865 0.001

0.002 −0.007 −1.000 −0.003

0.866 −0.001 0.500 −0.003 0.009

Real 0.500 0.000 0.866 0.000

0.000 0.000 −1.000 0.000

0.866 0.000 0.500 0.000
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6.2.5 Complex Example: House Point Cloud

The first more complex case is a house that is made up of five planes, Fig. 6.4, meaning

there are five cluster pairs. Four of the cluster pairs can be though of as a plane rotated

about an axis and oriented four different directions. Although there is plenty of separation,

the solution can appear to be a single cylinder instead of four planes, Fig. 6.4(c)–(d). EM

will find this solution most of the time (without long initialization) and the error is three

times larger than the correct solution, Table 6.5. The error in the cluster data is completely

incorrect due to the number of clusters and the D values.

Table 6.5: Results for a house point cloud, Fig. 6.4.

A B C D Error

EM −1.000 −0.000 0.001 0.000

Bad Results 0.001 0.001 −1.000 0.000 0.0109

RJ-MCMC −1.000 −0.000 0.009 1.000

−0.002 1.000 0.004 1.000

−0.005 −0.008 −1.000 1.000

−0.005 −0.705 −0.709 −1.000

0.001 0.699 −0.718 1.000 0.0035

Correct −1.000 0.000 0.000 1.000

0.000 1.000 0.000 1.000

0.000 0.000 −1.000 1.000

0.000 −0.707 −0.707 −1.000

0.000 0.707 −0.707 1.000
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Point cloud of a house consisting of planes, Table 6.5: (a)–(b) are two images of the

house. It is made up of four walls, a floor and a roof. There are five cluster pairs for a total of ten

clusters in this point cloud; (c)–(d) are and example of the incorrect solution to this problem. The

solution has two large circles which indicates two cylinders in the point cloud. This is a good fit

mathematically, but not what is wanted. EM has a difficult time finding the correct solution for this

point cloud; (e) is the correct solution for this point cloud. The solution consists of several small

cluster pairs that fit tightly on the points; and, (f) shows a closeup of one of the clusters. The other

clusters in the solution are similar in appearance.
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6.2.6 Complex Example: Cone, Cylinder and Plane Point Cloud

The final complex point cloud example has all three shapes at once. RJ-MCMC does a

good job on this point cloud, but EM can obtain an incorrect solution. We have included

two different solutions for EM along with the RJ-MCMC solution for comparison. The

incorrect EM solution in this case has an extra cluster. Notice that the extra cluster helps to

reduce the error measurement. It should also be noted that the incorrect EM solution was

obtained even though the initialization was used. This is a good example of the robustness

of RJ-MCMC.

(a) (b)

(c) (d)

Figure 6.5: Point cloud the three shapes, Cone, Cylinder and Plane, Table 6.6: (a)–(b) show the

point cloud images; and, (c)–(d) show the correct solution. EM gets the correct solution at low noise

levels but has a lot of trouble with this point cloud when the noise level is high. The clusters are no

longer tight leading to incoherent results.
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Table 6.6: Results for the Cone, Cylinder and Plane point cloud, Fig. 6.5. A good and

bad EM result is included along with the RJ-MCMC result for this point cloud. This point

cloud demonstrates the robustness of RJ-MCMC over EM.

A B C D Error

EM 0.001 0.016 1.000 1.000

0.000 0.001 1.000 0.005

Good Results −0.003 −0.003 −1.000 −0.713 0.014

EM 0.006 −0.003 1.000 0.998

0.003 −0.002 1.000 −0.005

−0.014 −0.009 −1.000 −0.708

Bad Results −0.449 −0.893 −0.029 0.0261 0.011

RJ-MCMC −0.020 0.007 1.000 0.999

0.008 0.006 1.000 −0.001

Good Results −0.013 −0.005 −1.000 −0.711 0.012

Real 0.000 0.000 1.000 1.000

0.000 0.000 1.000 0.000

0.000 0.000 −1.000 −0.707
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6.2.7 Robust Example: Coupling with Cylinders Point Cloud

A good example of the robust cases that can be handled by MCMC and not EM is in Fig.

6.6. There is a simple pipe coupling that consist of a couple of cylinders and a cone along

with some other cylinders in the point cloud. Each of the cylinders is oriented differently

which creates a lot of overlap in the normal vector space. In order to get the correct solution

with EM, the initialization process has to be long leaving little work for EM. MCMC can

find the correct solution, but the number of sweeps will need to be higher, ≈ 200000,

meaning much computation time.

(a) (b)

(c) (d)

Figure 6.6: Point cloud of a coupling with three cylinders, Table 6.7: (a)–(b) are images of the

point cloud; and, (c)–(d) show the results of clustering. These results are very hard to get with EM

but much easier with MCMC.
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Table 6.7: Results for the coupling and cylinders, Fig. 6.6. The EM algorithm produces

very bad results while the RJ-MCMC algorithm produces good results.

A B C D Error

EM 0.922 0.006 0.388 0.321

−0.001 −0.001 −1.000 0.000

0.269 0.014 0.963 0.216

Very Bad −0.424 0.019 0.906 −0.407

Results 0.869 0.001 0.496 0.001 0.0206

RJ-MCMC 1.000 −0.001 0.003 0.004

−0.003 −0.002 −1.000 0.000

0.004 0.000 1.000 −0.706

Correct −0.502 0.001 −0.865 −0.003

Results −0.855 −0.002 −0.519 −0.001 0.0054

Correct 1.000 0.000 0.000 0.000

0.000 0.000 −1.000 0.000

0.000 0.000 1.000 −0.707

−0.500 0.000 −0.866 0.000

−0.866 0.000 −0.500 0.000
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6.2.8 Robust Example: House and Silo Point Cloud

The example of a house with a silo structure, Fig. 6.7, is another example of the robustness

of MCMC. There is a lot of overlap in the normal vector space. Two of the plane clusters lie

in the middle of the cylinder cluster and are difficult to see. Another reason this is difficult

is the small size of the conical roof for the silo. This means a much small cluster since the

area is small comparatively (point density in the point cloud is the same for all shapes).

Watching MCMC work on this point cloud is interesting since it usually finds the incor-

rect solution first. This incorrect solution resembles the incorrect solution in Fig. 6.4. The

number of clusters will eventually increase and the incorrect clusters will disappear when

a better solution emerges.

(a) (b)

(c) (d)

Figure 6.7: House and Silo point cloud, Table 6.8: (a)–(b) show the house from Fig. 6.4 with a

silo structure nearby; and, (c)–(d) show the results of clustering with RJ-MCMC.
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Table 6.8: Results for clustering the house and silo, Fig. 6.7. Only RJ-MCMC results are

included since EM will never obtain good clustering for this complex point cloud.

A B C D Error

MCMC 0.001 −0.001 −1.000 0.004

0.009 0.006 1.000 0.871

−0.001 −0.002 −1.000 1.000

0.002 0.711 −0.703 1.000

−1.000 0.004 0.004 −1.000

0.000 −0.716 −0.698 −1.000

Good Results 0.008 1.000 −0.010 −1.000 0.0023

Correct 0.000 0.000 −1.000 0.000

0.000 0.000 1.000 0.866

0.000 0.000 −1.000 1.000

0.000 0.707 −0.707 1.000

−1.000 0.000 0.000 −1.000

0.000 −0.707 −0.707 −1.000

0.000 1.000 0.000 −1.000
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6.2.9 Limitations of clustering

The EM algorithm can perform clustering very fast and accurately as long as the point

cloud is not too complicated. As seen in this Chapter, the point clouds can get complicated

very quickly. There are also several different situations that do not look complicated but

can be.

When the EM algorithm does find the correct solution, the results are usually closer to

the ground truth than the MCMC results. This may seem counterintuitive since the error

values are usually larger than the MCMC error values. This is due to the cluster pair that is

used in the clustering process. The EM algorithm will find the correct D value for cylinders,

D = 0, but the MCMC algorithm will find a different D value, |D| > 0. This will lead to

a slightly smaller error for the MCMC even though the EM results are technically better.

The robustness of MCMC more than makes up for this small difference in error values.
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CHAPTER 7

Conclusions and Future Research

In this thesis, we presented two algorithms for clustering simple shapes in point clouds. In

Chapter 3 we used the EM algorithm to cluster planes in a point cloud. The EM algorithm

works very well for this situation since planes in the point cloud form small clusters in the

normal vector space. The EM algorithm used in Chapter 3 did not require any modification

and was able to estimate the system order well with MDL.

In order to expand the clustering ability of EM, a new likelihood function was derived in

Chapter 4. When the EM algorithm was modified for use with the new likelihood function,

both cones and cylinders could be clustered along with planes. We are very proud of the

new likelihood function since it can be used with all three shapes simultaneously. The EM

algorithm was modified in Chapter 5 to be used with the new likelihood function.

We found the algorithm to work well with simple point clouds but had problems with

the complexity of the point cloud increased. There were two problem areas that needed

work. The first problem was the variance of the clusters being modeled. The EM algorithm

was able to model a simple plane as two different shapes: a plane with a small variance

or a cylinder with a large variance. This problem was corrected empirically by studying

the variance of different shapes in the point cloud. It was found that the variance of a

cluster changed with the shape of the cluster. As a cone changed from tubular to planar, the

variance of the cluster had a smooth exponential decrease. This was found to be the case

regardless of the noise in the original point cloud. This exponential function is used instead

of calculating the variance for each cluster. The second problem with the EM algorithm

was the initialization. In complex point clouds, there are several local maxima in which the
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EM algorithm can be trapped. The solution to this problem was to create an initialization

algorithm that would attempt to find a good starting point for EM. This solution is not

mathematically pretty, but helped get the correct model in complex situations.

Once we had the new likelihood function, we used it to modify the MCMC algorithm

in Chapter 6. Using the reversible jump form of the MCMC algorithm, we were able to

very accurately model the shapes in point clouds. The MCMC algorithm worked much

better than the EM algorithm. The MCMC algorithm does not need the complex initial-

ization that EM uses. Using the MCMC algorithm, we were able to model complex point

clouds that EM would never model correctly. The downside of MCMC is the amount of

computation required. Since MCMC updates by randomly picking a new solution, it is

possible that the correct solution may take a while to find. There are several solutions to

this dilemma though. A complex point cloud can be segmented into several smaller point

clouds for clustering. Newer multicore processors can also be used to increase the speed of

algorithms. Although MCMC can be slower than EM, MCMC seems to be the algorithm

capable of producing the best results.

7.1 Limitations

The algorithms we have discussed have several limitations. Normal estimation of unorga-

nized point clouds is one of the major limitations. This process depends on the smoothness

of the object, the sampling density, and the noise of the input point cloud. When a point

cloud is created using a laser ranging system, the noise level is usually very small. There

are situations where this is untrue, such as a laser ranging system attached to an airplane

or a point cloud of a very busy surface such as a tree. However, most point clouds created

with laser ranging create very accurately sampled surfaces with small amounts of noise.

The technology has also advanced enough to create very densely sampled surfaces with

millions of points.

Another limitation is the small surface area of the normal vector space. As we have
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shown, the normal vector space can lead to overlap of shape clusters. This can create many

problems for EM. While MCMC handles this situation well, the processing time can be

immense. We were unable to find a good solution to this problem. One solution could be

to limit the size of the point clouds used as input to the clustering algorithm by segmenting

into several smaller point clouds. This could work, but several different segments of the

point cloud would probably contain the same shapes, meaning clustering the same shapes

multiple times. Another possible solution would be to down sample the point cloud. Down

sampling could potentially lead to excluding smaller shapes in the point cloud as noise.

The initialization of the EM algorithm is also a limitation. While it worked well in the

beginning for the simple plane clustering, the algorithm needed much adjustment to get

good results for more complex shapes. In hindsight, we worked on EM too long trying to

get good results. It might have been better to attempt different clustering algorithms once

we had derived our new likelihood function. The initialization we used in this paper is very

similar to running MCMC. Complex point clouds required long initialization which could

not guarantee good results for EM. We are very pleased with the results of MCMC though.

7.2 Future Research

Future research on this topic will involve taking the clustering results of the normal vector

space and finding the locations and boundaries of shapes in the real world space. The first

step is to determine how many real world shapes belong to each normal vector cluster. This

is necessary since multiple shapes can be mapped to the same location. A simple example

of three planes sharing the same normal vector can be seen in Fig. 7.1. There are three

different planes, but will be seen as as one unique plane in the normal vector space. This is

not a problem since the points belonging to these planes can easily be segmented after the

first clustering. Once segmented, a one dimensional clustering algorithm can be performed

to find the number of planes sharing the same normal vector and the real world position

of each plane. A similar process can be done for cylinders [32] and cones and will be
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expedited by using the results from the first clustering.

Normal Vector, N

Figure 7.1: Three planes in the real world that share the same normal vector. 1D clustering in

the real world space will determine both the quantity and location of the planes in relation to an

arbitrary point in space. The line on the right shows the Gaussian spread from noise in the point

cloud.

Once the number of shapes and location is known, the boundary of each shape needs to

be determined. It would also be possible at this point to include points that were excluded

due to the condition number of the normal vector estimation. It seems this would be a very

difficult problem. A balance would need to be found between a smooth boundary and a

more accurate boundary. We assume at this time a line fitting algorithm might be used to

estimate the boundary. Once the boundary of each shape is known, a simple model of the

shapes would be known and modeling would be complete.

77



BIBLIOGRAPHY

[1] S. Gumhold, X. Wang, and R. Macleod, “Feature Extraction from Point Clouds,” in

Proceedings of the Tenth International Meshing Roundtable, pp. 293–305, Sandia

National Laboratories, October 2001.

[2] Marco Attene and Bianca Falcidieno and Jarek Rossignac and Michela Spagnuolo,

“Sharpen&Bend: Recovering Curved Sharp Edges in Triangle Meshes Produced by

Feature-Insensitive Sampling,” IEEE Transactions on Visualization and Computer

Graphics, vol. 11, pp. 181–192, March 2005.

[3] C. Tang and G. Medioni, “Inference of Integrated Surface, Curve and Junction De-

scriptions from Sparse 3D Data,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, pp. 1205–1223, November 1998.

[4] G. Guy and G. Medioni, “Inference of Surfaces, 3D Curves, and Junctions from

Sparse, Noisy, 3D Data,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 19, pp. 1265–1277, November 1997.

[5] P. Csakany and A. Wallace, “Representation and classification of 3-d objects,” Sys-

tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 33,

pp. 638–647, Aug. 2003.

[6] M. Pauly, L. P. Kobbelt, and M. Gross, “Point-based multiscale surface representa-

tion,” ACM Trans. Graph., vol. 25, no. 2, pp. 177–193, 2006.

[7] F. Pedersini, A. Sarti, and S. Tubaro, “Visible surface reconstruction with accurate

localization of object boundaries,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 10, pp. 278–292, Mar 2000.

78



[8] A. Jalba and J. Roerdink, “Efficient surface reconstruction using generalized coulomb

potentials,” Visualization and Computer Graphics, IEEE Transactions on, vol. 13,

pp. 1512–1519, Nov.-Dec. 2007.

[9] M. Attene, B. Falcidieno, J. Rossignac, and M. Spagnuolo, “Edge-sharpener: recov-

ering sharp features in triangulations of non-adaptively re-meshed surfaces,” in SGP

’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geom-

etry processing, (Aire-la-Ville, Switzerland, Switzerland), pp. 62–69, Eurographics

Association, 2003.

[10] W. Zhao, D. Nister, and S. Hsu, “Alignment of continuous video onto 3d point

clouds,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,

pp. 1305–1318, August 2005.

[11] Z. Lu, S. Baek, and S. Lee, “Robust 3d line extraction from stereo point clouds,” in

RAM, pp. 1–5, 2008.

[12] J. Huang and C.-H. Menq, “Automatic data segmentation for geometric feature ex-

traction from unorganized 3-d coordinate points,” Robotics and Automation, IEEE

Transactions on, vol. 17, pp. 268–279, June 2001.

[13] J. Barhak and A. Fischer, “Parameterization and reconstruction from 3d scattered

points based on neural network and pde techniques,” Visualization and Computer

Graphics, IEEE Transactions on, vol. 7, pp. 1–16, Jan-Mar 2001.

[14] C. Dietrich, C. Scheidegger, J. Schreiner, J. Comba, L. Nedel, and C. Silva, “Edge

transformations for improving mesh quality of marching cubes,” Visualization and

Computer Graphics, IEEE Transactions on, vol. 15, pp. 150–159, Jan.-Feb. 2009.

[15] X. Renbo, L. Weijun, and W. Yuechao, “A robust and topological correct march-

ing cube algorithm without look-up table,” in Computer and Information Technology,

2005. CIT 2005. The Fifth International Conference on, pp. 565–569, Sept. 2005.

79



[16] H. Woo, E. Kang, S. Wang, and K. H. Lee, “A new segmentation method for point

cloud data,” International Journal of Machine Tools Manufacture, vol. 42, pp. 167–

178, January 2002.

[17] W. Zou and X. Ye, “Multi-resolution hierarchical point cloud segmenting,” Com-

puter and Computational Sciences, 2007. IMSCCS 2007. Second International Multi-

Symposiums on, pp. 137–143, Aug. 2007.

[18] R. Unnikrishnan and M. Hebert, “Robust extraction of multiple structures from non-

uniformly sampled data,” Intelligent Robots and Systems, 2003. (IROS 2003). Pro-

ceedings. 2003 IEEE/RSJ International Conference on, vol. 2, pp. 1322–1329 vol.2,

Oct. 2003.

[19] P. Gotardo, K. Boyer, O. Bellon, and L. Silva, “Robust extraction of planar and

quadric surfaces from range images,” Pattern Recognition, 2004. ICPR 2004. Pro-

ceedings of the 17th International Conference on, vol. 2, pp. 216–219 Vol.2, Aug.

2004.

[20] S. R. Lach and J. P. Kerekes, “Robust extraction of exterior building boundaries from

topographic lidar data,” Geoscience and Remote Sensing Symposium, 2008. IGARSS

2008. IEEE International, vol. 2, pp. II–85–II–88, July 2008.

[21] G. Vosselman and B. G. H. Gorte and G. Sithole and T. Rabbani, “Recognising Struc-

ture in Laser Scanner Point Clouds,” in International Archives of Photogrammetry,

pp. 33–38, Remote Sensing and Spatial Information Sciences, 2004.

[22] H. Schuster, “Segmentation of LiDAR Data Using the Tensor Voting Framework,” in

International Archives of Photogrammetry, Remote Sensing and Spatial Information,

2004.

[23] C. A. Bouman, CLUSTER: An Unsupervised Algorithm for Modeling Gaussian Mix-

tures. Purdue University, July 2005, http://www.ece.purdue.edu/˜bouman.

80



[24] M. Alexa and T. Klug and C. Stoll, “Direction Fields Over Point-Sampled Geometry,”

Journal of WSCG, vol. 11, February 2003.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete

data via the em algorithm,” Journal of the Royal Statistical Society, Series B, vol. 34,

pp. 1–38, 1977.

[26] S. J. Roberts, D. Husmeier, I. Rezek, and W. Penny, “Bayesian approaches to gaussian

mixture modeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, pp. 1133–1142, 1998.

[27] Z. Zhang, K. L. Chan, Y. Wu, and C. Chen, “Learning a multivariate gaussian mixture

model with the reversible jump mcmc algorithm,” Statistics and Computing, vol. 14,

pp. 343–355, October 2004.

[28] M. Figueiredo and A. Jain, “Unsupervised learning of finite mixture models,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 381–

396, 2002.

[29] S. Richardson and P. Green, “On bayesian analysis of mixtures with unknown number

of components,” 1997.

[30] P. J. Green, “Reversible jump markov chain monte carlo computation and bayesian

model determination,” Biometrika, vol. 82, pp. 711–732, 1995.

[31] J. G. Dias and M. Wedel, An empirical comparison of EM, SEM and MCMC perfor-

mance for problematic Gaussian mixture likelihoods Journal Statistics and Comput-

ing, vol. 14. Springer Netherlands, October 2004.

[32] A. Linka, J. Picek, P. Volf, and G. Ososkov, “New solution to circle fitting problem in

analysis of rich detector data,” Czechoslovak Journal of Physics, vol. 49, pp. 161–168,

February 1999.

81



[33] C. Tang and G. Medioni, “Curvature-Augmented Tensor Voting for Shape Inference

from Noisy 3D Data,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 24, pp. 858–864, June 2002.

[34] N. Mitra and A. Nguyen, “Estimating Surface Normals in Noisy Point Cloud Data,”

in Proceedings of the Nineteenth Annual Symposium on Computational Geometry,

pp. 322–328, ACM Symposium on Computational Geometry, ACM Press, 2003.

[35] M. Peternell, “Recognition and Reconstruction of Developable Surfaces from Point

Clouds,” in Proceedings of the Geometric Modeling and Processing, pp. 301–310,

2004.

[36] H. Hoppe and T. DeRose and T. Duchamp and M. Halstead and H. Jin and J. McDon-

ald and J. Schweitzer and W. Stuetzle, “Piecewise Smooth Surface Reconstruction,”

pp. 295–302, 1994.

[37] U. Clarenz and M. Rumpf and A. Telea, “Finite Elements of Point Based Surfaces,”

in Eurographics Symposium on Point-Based Graphics (M. Alexa, S. Rusinkiewicz,

ed.), 2004.

[38] J. Solem and A. Heyden, “Reconstructing Open Surfaces from Unorganized Data

Points,” Proceedings of the 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, vol. 2, pp. 653–660, June-July 2004.

[39] N. Amenta and Y. Joo Kil, “Defining Point-Set Surfaces,” ACM Transactions on

Graphics, vol. 23, pp. 264–270, August 2004.

[40] C. Andrieu and J. de Freitas and A. Doucet, “Sequential MCMC for Bayesian Model

Selection,” in Proceedings of the IEEE Signal Processing Workshop on Higher-Order

Statistics, pp. 130–134, IEEE Higher Order Statistics Workshop, 1999.

82



[41] C. Andrieu and N. de Freitas and A. Doucet and M. Jordan, “An Introduction to

MCMC for Machine Learning,” Machine Learning, vol. 50, pp. 5–43, January 2003.

[42] Q. Shi and N. Xi, “Automated data processing for a rapid 3d surface inspection sys-

tem,” Robotics and Automation, 2008. ICRA 2008. IEEE International Conference

on, pp. 3939–3944, May 2008.

[43] J. Liu, J. Zhang, and J. Xu, “Cultural relic 3d reconstruction from digital images

and laser point clouds,” Image and Signal Processing, 2008. CISP ’08. Congress on,

vol. 2, pp. 349–353, May 2008.

[44] P. Hebert, D. Laurendeau, and D. Poussart, “Scene reconstruction and description:

geometric primitive extraction from multiple viewed scattered data,” Computer Vi-

sion and Pattern Recognition, 1993. Proceedings CVPR ’93., 1993 IEEE Computer

Society Conference on, pp. 286–292, Jun 1993.

83



VITA

Thomas Patten

Candidate for the Degree of

Master of Science

Thesis: 3D MODELING OF POINT CLOUDS

Major Field: Electrical Engineering

Biographical:

Personal Data: Elk City, OK, United States on May 4, 1980.

Education:
Received a B.S. degree from Oklahoma State University, Stillwater, OK, United
States, 2002, in Mechanical Engineering
Received a M.S. degree from Oklahoma State University, Stillwater, OK, United
States, 2004, in Mechanical Engineering
Completed the requirements for the degree of Master of Science with a major
in Electrical Engineering Oklahoma State University in July, 2009.



Name: Thomas Patten Date of Degree: July, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: 3D MODELING OF POINT CLOUDS

Pages in Study: 83 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

We present our research on modeling simple shapes in a point cloud using both Expectation
Maximization (EM) and Markov Chain Monte Carlo (MCMC). The shapes to be modeled
are Planes, Cylinders and Cones. Although most point clouds consist of more complex
shapes, they may also contain these three simple shapes. In the case of man-made struc-
tures, a large percentage of a point cloud could be made up of simple shapes. Creating a
model of shapes can lead to a huge reduction in data.

ADVISOR’S APPROVAL: Dr. Gouliang Fan


