

QUANTIFYING THE EFFECTS OF SHARED

RESOURCE CONTENTION ON PERFORMANCE IN

VIRTUALIAZED SYSTEMS

 By

 PRANAV PATHAK

 Bachelor of Science in Electronics and

Telecommunication

 Pune University

 Pune, Maharashtra India

 2007

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2011

ii

 QUANTIFYING THE EFFECTS OF SHARED

RESOURCE CONTENTION ON PERFORMANCE IN

VIRTUALIAZED SYSTEMS

 Thesis Approved:

 Dr. Sohum A. Sohoni

 Thesis Adviser

 Dr. Louis G. Johnson

 Dr. John M. Acken

 Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Motivation ..4

 1.2 Research overview ...5

II. RELATED WORK ...6

 2.1 Profiling and modeling performance in virtualized systems6

 2.2 Multicore resource management ..8

 2.3 Run time feedback and scheduling ..9

III. METHODOLOGY ..10

 3.1 Experimentation Platform ..11

 3.2 Workloads ..12

 3.3 Experiments ...12

iv

Chapter Page

IV. RESULTS ..18

 4.1 Example ...18

 4.2 Results for first set of experiments. (Shared last level cache)22

 4.3 Results for second set of experiments. (Shared physical core)23

 4.4 Results for third set of experiments. (Shared last level cache and cores)24

 4.5 Results for fourth set of experiments. (Shared last level caches and cores)25

V. CONCLUSION ..26

 5.1 Future work ...27

REFERENCES ..29

APPENDICES ...32

v

LIST OF TABLES

Table Page

 1: Results for example from first set of experiments .. 20

 2: Correlation of hardware events with performance 1st set of experiments. 22

 3: Correlation of hardware events with performance 2nd set of experiments.23

 4: Correlation of hardware events with performance 3rd set of experiments. 24

 5: Correlation of hardware events with performance 4th set of experiments. 25

 6: Example of schedules generated according to an hardware event 38

vi

LIST OF FIGURES

Figure Page

 1: Example of virtualized system and resource sharing ..2

 2: Topology of experimentation platform ...11

 3: First set of experiments ...13

 4: Second set of experiments ..15

 5: Third set of experiments ...16

 6: Fourth set of experiments ...17

1

CHAPTER I

INTRODUCTION

Computing is undergoing a seismic shift from the client/server model to the cloud; this shift

comes along with an evolving shift to multicore and further manycore CPUs on chip in

hardware and the advent of virtualization technology in software as well as hardware.

Arguably, virtualization has been around in some form since the days of mainframe

computing. The main motivation for virtualization in the early 70’s was to increase the level

of sharing and utilization of expensive computing resources. In the next few years, reduction

in hardware costs meant that organizational computing needs could be fulfilled by a

collection of minicomputers. Improved networking technology and ever increasing

computing power gave rise to new computing models like client server and peer to peer

systems. In a nonvirtualized datacenter, each application typically runs on its own physical

server. In this model utilization of resources traditionally has been very low. Virtualization

enables multiple applications to run on a single server [1]. The resurgence of virtualization is

due to the move to multicore and the resulting underutilization of CPU cycles. In Large

datacenters the new computing models presented new challenges in power consumption,

reliability, security, complexity and cost. The virtualization technologies today seek to find a

solution to these challenges in an elegant way [2, 3, 4, and 5].

2

In current virtualization solutions, guest Virtual Machines (VMs) and workloads are

presented with an abstracted view of underlying physical resources [6]. The hypervisor or

virtual machine monitor presents this virtual operating platform to the guest virtual machines

and manages the execution of the guest operating systems. Typically, each VM runs its own

operating system (OS) which in turn manages the resources presented to the VM to run its

own workloads. The operating system of each VM is unaware of the other VMs sharing the

physical resources. Varying workload configurations, across different VMs impact overall

system performance and performance as seen by individual VMs; this is due to sharing of

physical resources between VMs.

Figure 1: Example of virtualized system and resource sharing in the system. As seen here all

virtual machines share Main memory, hard disk drive and network connection via the virtual

machine monitor. As an example VM 1, 2 and 3 share L2 cache. VM1 and 2 share L1 cache

and CPU core.

3

As hardware shifts towards many cores, software needs to evolve to provide flexible and

efficient use of resources. Integrated hardware-software solutions for virtualization provide

fault isolation as well as environment isolation to the applications. But current virtualization

solutions do not provide explicit performance isolation between virtual machines [2]. A body

of ongoing research exists, that profiles and models performance of varied workloads in

virtualized environments [7, 8 and 9].

Koh et al. [7] employed an instrumented Xen hypervisor to collect performance

characteristics and runtime characteristics of VMs that share a physical host. Wood et al. [8]

measured the overhead of virtualization for Xen hypervisor running paravirtualized VMs.

Menascé et al. [9] applied analytic queuing models to virtualized environments. Detailed

profiling data and performance models go a long way towards handling resource sharing and

scheduling in virtualized environments.

Management of physical resources especially of multicore processors and their memory

hierarchies impacts the performance of virtualized systems [10, 11 and 12]. The decision of

scheduling a virtual machine consists of two parts; first part is the decision, which physical

resources a virtual machine should be allowed to use and second part is the decision of how

long these resources can be allocated to a virtual machine. Scheduling of workloads is an

attractive technique to reduce resource contention and achieve desired performance due to its

low overhead. Scheduling does not need extra hardware and it is easy to integrate into the

system. Researchers have explored the usefulness of scheduling techniques in virtualized

systems. It has been demonstrated by Zhuravlev et al. [13] that a purely scheduling based

approach based on cache miss rates reduces contention for shared caches effectively. They

show that their algorithm provides aggregate performance improvement. Ghosh et al. [14]

proposed architectural support to aid symbiotic scheduling and reduce cache contention.

4

1.1 Motivation

In a virtualized environment, guest VMs or applications cannot know about the tasks being

performed by applications in the other VMs. Individual VMs have an abstracted view of the

physical resources and hence are not in a position to capture the contention for physical

resources. Thus many guest operating systems try to manage the shared resources without

knowing about resource utilization, requirements, and decisions taken by other VMs to

manage the resources. Koh et al. [7] have explained this phenomenon in their work in more

detail. On the other hand the hypervisor can observe physical resources and their utilization,

but it is unaware of resource utilization and requirements of each VM, and decisions taken by

guest operating systems to manage the resources. Fedorova et al. [12] showed that contention

for shared resources hampers the performance of multicore systems. Thus if resource

contention in virtualized systems can be captured, this information can be used to improve

the overall system performance.

The hardware counters are a set of special purpose registers available in most modern

processors. Typically, these hardware counters can be programmed to count hardware related

events. These counters can be used by programmers and operating systems alike to analyze

and fine tune the performance of workloads. These counters can be programmed to capture

the usage of shared resources at runtime in multicore architectures.

Large energy consumption in datacenters is an important concern these days. Bellosa et

al. [16] have shown that hardware counters can be used to estimate the energy consumption

in computing systems and this information can also be used to schedule the workloads for

reduced energy consumption.

If the hypervisor can get an estimate of shared resource usage per virtual machine, then

the hypervisor can make scheduling decisions at the physical host level. The hypervisor can

target minimum shared resource contention for best system wide performance or can aim for

minimum energy usage, while ensuring quality of service in either case.

5

1.2 Research overview

This research uses the hardware counters to capture resource contention information which

will be conveyed to the hypervisor to aid scheduling of virtual machines. The goal of the

scheduler can be minimizing interference for best system-wide performance and maximum

throughput and minimizing the energy usage, while ensuring the quality of service in either

case. There are two parts of the problem, first part is gathering the information that is useful

for making the scheduling decisions and the second part is taking the actual scheduling

decisions, which involves maintaining service quality, reducing resource contention,

improving system performance and reducing energy consumption all at the same time. This is

a complex multivariable optimization problem that should be solved within constrained time

and computing resources.

In this research, we address the first part of the problem that is we find out what

information can be gathered about executing of VMs that can aid the scheduling decisions.

For this purpose the hardware counters were programmed to capture the hardware events for

performance metrics that are good indicators of contention for shared resources in workloads.

These performance metrics were then evaluated to model the resource contention and overall

system performance in virtualized systems.

This work explores different configurations of virtual machine scheduling in virtualized

systems and investigates which hardware events are good indicators of the contention for

shared resources as well as the system performance.

6

CHAPTER II

RELATED WORK

In this chapter ongoing work in multicore research related to this work is discussed. This

includes published work that deals with profiling and modeling performance in virtualized

systems, publications related to multicore resource management, also papers related to

runtime feedback and scheduling to optimize performance and power are discussed.

2.1 Profiling and modeling performance in virtualized systems

It is important to correctly model the application performance behavior, especially in

virtualized systems, because here multiple physical resources are shared by virtual machines

(VMs) and essentially by workloads. This resource contention is not obvious to VMs and it

should be accounted for while taking scheduling decisions. Wood et al. [8] measured the

overhead of virtualization on specific virtualization platforms. They have selected and used a

specific set of microbenchmarks for this measurement. A regression based model was

developed to map native system usage profile to virtualized system usage profile for the

virtualization platform under consideration. This model is used to predict the resource

requirements of any application to be executed on that virtualization platform. They

demonstrated the use of this model at the time of launching new virtual machines on Xen

platform. This approach is useful when launching new virtual machines on a platform but

performance of applications for the native physical host should be known beforehand.

7

Thus it has been demonstrated that modeling the per VM resource requirements and using

this information to take scheduling decisions can help the performance of virtualized system.

 Koh et al. [7] employed an instrumented Xen hypervisor to collect performance

characteristics and runtime characteristics of VMs that share a physical host. They also

developed mathematical models to predict the performance of a new application from

workload characteristics. Koh et al showed that per VM data gathered from VMM is useful in

building performance models. In this work we gather per VM data that share physical host

and explore the possibility of taking scheduling decisions to enhance the performance.

Menascé et al. [9] applied analytic queuing models to virtualized environments. This analytic

queuing model classifies resources into three types of resources, load independent, load

dependent and delay resources. A case study on server utilization was used to illustrate the

analytic model. Work of Menascé et al help us select the hardware resources that influence

the performance for our study.

Bellosa et al. [16] have used hardware events for energy accounting and dynamic thermal

management. A statistical approach is taken to, come up with a linear relationship between

hardware events and energy consumed; furthermore this linear relationship is used for

dynamic thermal management of resources. Although this work was not performed on

virtualized systems, it is worth mentioning here because if this approach can be effectively

extended to virtualized systems then it can address the important issue of large power

consumption in the datacenters. Ge et al. [17] demonstrated the modeling of power

consumption in multicore processors. The processor cores and the memory subsystems were

modeled for their dynamic and idle power consumption. The processor frequency scaling also

has been considered. First they developed performance models and power consumption

models for different subsystems. These models were used to design energy consumption

models.

8

2.2 Multicore resource management

One benefit of virtualization is its ability to multiplex several operating systems on hardware

based on dynamically changing system characteristics. However, such multiplexing must be

performed while observing per VM quality of service guarantees. It is important to manage

the resources and meet the performance goals.

Matthews et al. [10] showcased a performance isolation benchmark that quantifies the

ability of a virtualization system to limit the impact of a misbehaving virtual machine on

other VMs that share the physical host. The work done by the kernel and the device driver for

individual VMs is not accounted for, even when per VM resource constraints are in place. A

comparison of different virtualization platforms is presented on the basis of different

subsystems; they are memory, CPU, disk and network resources.

The contention of the shared resources significantly impedes the efficient operation of the

multicore systems. Gupta et al [11] implemented a set of primitives in Xen to address this

issue. They have developed three components, First Xenmon that measures per-VM resource

consumption, including work done for a VM in Xen’s driver domain, second they modified

SEDF-DC scheduler accounts for aggregate VM resource consumption, third shareguard that

limits the total amount of resources consumed in Xen’s driver doamins.

Fedorova et al. [12] presented models to understand memory resource contention. The

memory resources mentioned here include last level caches, memory controller and

interconnects and, prefetching hardware. These new models were evaluated for their

effectiveness in constructing contention-free thread schedules. They have developed a

prototype of contention-aware scheduler for multicore systems called Distributed Intensity

Online scheduler. Knauerhase et al [18] have used OS observations to improve performance

it multicore systems. Similarly this work investigates observations made by VMM.

9

2.3 Run time feedback and scheduling

The scheduling of applications is an attractive tool for mitigation of contention for the shared

resources because it does not require extra hardware and it is relatively easy to integrate into

the system.

Zhuravlev et al. [13] investigated how and to what extent thread scheduling can mitigate

contention for shared resources. While scheduling to reduce resource contention important

problem is to find a classification scheme which would determine how competing threads

affect each other when competing for shared resources. They studied different techniques and

criteria for such classification and demonstrated their use with real systems and real

schedulers.

Ghosh et al. [14] proposed bloom filter signatures, a low complexity architectural support

to allow the hypervisor to infer cache footprint characteristics and interference of

applications, and then perform scheduling based on symbiosis. They also proposed and

studied three resource allocation algorithms to determine the optimal process-to-core

mapping to minimize interference in L2 cache. In this work we seek to glean information that

will lead to scheduling decisions such that overall system performance can be improved.

Verma et al. [15] studied server consolidation for reducing power consumption and

identified application performance isolation and virtualization overhead as the key

bottlenecks for server consolidation. They have showed that set size is a key parameter for

scheduling applications on virtualized servers. They presented a framework and a

methodology for power-aware application placement for HPC applications. Kim et al. [19]

like Verma et al. [10] provided poweraware scheduling algorithm for bag-of-tasks

applications on a DVS-enabled cluster system. Singh et al [20] use performance counters for

thread scheduling. This work seeks to employ these concepts to virtualized systems.

10

CHAPTER III

METHODOLOGY

In this work, the hardware performance counters are used to record statistics related to

cache hierarchy and memory, branch prediction statistics and other hardware events related to

a physical core. The Hardware events related to a physical core include cycles for which

reorder buffer or reservation stations are full, cycles during which instruction queue is full.

The hardware events for our experiments were selected based on studies [8, 12] that have

shown that these metrics are useful indicators of contention for resources and performance of

the systems in computers, especially multicore systems. Also we selected events which we

thought can intuitively indicate resource contention for shared resources, like cache misses

when last level cache is shared.

The performance for a program or group of programs in this study means total time of

execution for that program or group of programs. In other words, the time of execution is

used as a measure of performance. In this study to check if a metric is a good indicator of

contention for a shared resource and overall performance of the system we count hardware

events related to a shared resource using performance counters, then we correlate between the

event count and the execution time. The hardware event related to the shared resource that

exhibits highest correlation with performance can be used to indicate contention for shared

resource and its effect on overall system performance.

11

3.1 Experimentation Platform

The experiments were run on a 2 x Quad-core Intel Xeon L5410 system [21]. Each pair

of cores in the processor shares a 6MB L2 cache. We use eight cores, of which each pair

share an L2 cache for our experiments. The topology of the system is shown in figure 2.

Figure 2 Topology of the experimentation platform. There are eight cores available in the

system. Each pair of cores has a shared level 2 cache. The level 2 cache is also the last level

cache in this system.

This work uses an established open-source virtualization solution comprised of the kernel

based virtual machine (kvm) infrastructure [22][23] and the QEMU [24] frontend. KVM is a

full virtualization solution for Linux on x86 hardware containing virtualization extension. It

consists of a loadable kernel module that provides kernel infrastructure architecture and a

processor specific module. KVM also requires QEMU which is a generic open source

machine emulator. QEMU uses dynamic binary translation for machine emulation. We use

12

the perf tools [25] available on the current Linux kernels to collect our data and Linux task set

program to pin a VM to a specific CPU core. This pinning of VMs to a specific CPU core

makes the task of using hardware counters for a VM easier.

3.2 Workloads

We used the workloads from the PARSEC benchmark suite [26]. The PARSEC

benchmark suite is chosen for its research-oriented nature: the workloads are well

characterized [27], relatively easy to setup, and the runtime for each application is reasonable.

We executed each workload to completion to record its total runtime. We recorded the

statistics for each workload for all the metrics that we evaluated. Further, in order to reduce

the experiment space and execution time involved, we selected following eight benchmarks

from the PARSEC benchmark suite for our experiments. Canneal, Dedup, Facesim, Ferret,

Freqmine, Streamcluster, Bodytrack, Swaptions are the names of eight benchmarks.

Appendix A has a brief description of these programs. It was ensured that all available types

of working set sizes, execution times and types of programs themselves were selected from

the PARSEC benchmark suite. Bienia et al. [16] characterized all the programs from the

PARSEC benchmark suite; this information was useful for selecting programs from the

PARSEC suite for our experiments. The PARSEC benchmark suite provides precompiled

binaries for commonly used research platforms. These precompiled binaries, along with the

built in utilities of PARSEC benchmark suite, were used to schedule and execute the

experiments.

3.3 Experiments

This subsection describes the experiments performed for this study. Each experiment

consists of two PARSEC benchmarks scheduled to execute on two CPU cores that share the

last level cache (L2 cache). We recorded hardware events using Linux perf tools for each

file:///C:/Users/pranav/Documents/iiswc-text.doc%23_ENREF_22

13

experiment. In each experiment, Linux perf command was executed for the hardware event

under consideration. Immediately after that run-parserc utility was called, on each VM, with

name of the benchmark to be executed. The perf command recorded data until end of

execution of both benchmarks. On completion of the experiment the perf command created a

file with information stored about the experiment. This file is queried later to extract per

process information. An example script that executes an experiment is available in appendix

B of this document. All programs were run to completion and the wall clock running time for

each is recorded as a measure of performance.

Figure 3 The first set of Experiments performed. Two VMs run on separate cores but they

share the L2 cache. The effect of sharing the last level cache on system performance time is

investigated in these experiments.

The first set of experiments was aimed at finding out the hardware events that can relate

the contention for last level cache with the system performance. Nevertheless, for consistency

purposes we not only recorded hardware events related to the last level cache but also

recorded other events.

14

The information collected from these experiments was used to create co-schedules for an

eight core machine. A co-schedule consists of eight different PARSEC benchmarks, each

running on a different CPU core.

To create a schedule for the eight core machine, four experiments were selected such that

eight different programs are present in the schedule. The time of execution for each program

is added up to get the total execution time of the schedule. The hardware event count under

consideration is also added up to come up with a total count for the schedule.

This procedure is repeated to get all of the possible different schedules and corresponding

total execution time and hardware event count. We sorted these schedules according to their

total time of execution. The optimal co-schedule is the one that finishes within minimum

time on the target platform and the worst case co-schedule takes the longest to finish.

Further, we try to establish a correlation between the total time of execution and the total

count of hardware event under consideration. This resulting correlation coefficient indicates

if and how closely this hardware counter captures the contention for shared resource under

consideration and relates it with overall system performance.

15

Figure 4: The second set of experiments performed. In these experiments two VMs share a

CPU core. Here the effects of sharing a core and resources such as L1 cache that are

associated with the core, on system performance is studied.

In the second set of experiments, two virtual machines share the same physical core. Here

it was intended to capture the effects virtual machines sharing a core on the system

performance. The emphasis of these experiments was on capturing the events related to a

single core, such as L1 cache statistics, cycles when reorder buffer or reservation stations are

full, cycles when instruction queue is full and so on. These events were selected because they

are good candidates to indicate contention for shared resources in a physical core [28]. All the

steps performed for first set of experiments were repeated. The results for these experiments

are presented in the next section.

Figure 5 below represents third set of experiments performed for this study. In this case

four virtual machines were fired up such that two VMs share a core and other two VMs share

another core in such a way that two cores (all four VMs) share the last level cache. This set of

experiments is interesting because it allows us to evaluate resource contention at what level

16

dictates the system performance and which hardware events, last level cache related or core

related or both, exhibit high correlation with performance in these complex scenarios.

Figure 5: The third set of experiments. In these experiments each core is assigned two VMs.

The cores are selected in such that they share the last level cache (the L2 cache).

Figure 6 depicts fourth set of experiments performed for this study. Here we again fired

up four virtual machines sharing cores in pairs, but unlike third set of experiments, these

cores have separate last level caches (level two caches).

The results for fourth set and third set are to investigate whether the last level cache and

core’s architectural resources are performance bottlenecks.

17

Figure 6: The fourth set of experiments. In these experiments each core is assigned two

VMs. The cores are selected in such that they have separate last level cache (the L2 cache).

One of the important goals of this work is to capture the information that can be

conveyed to the virtual machine monitor or across the virtual machines and, aid scheduling of

the workloads and virtual machines. Thus we selected hardware events for shared resources

and investigated if these events exhibit a high correlation with overall system performance.

The results for all of the experiments are presented in the next section.

18

CHAPTER IV

RESULTS

In this section, results from our experiments are presented. As explained in section 3.3

each experiment creates a data file. This data file can be queried to extract the hardware event

counts for the experiment. This process of querying the data file and capturing the

information were automated using unix and perl scripts. These scripts are included in

appendix C. The numbers extracted were inputs to a C program that created schedules, as

mentioned in section 3. Section 4.1 illustrates this further with an example.

4.1 Example

This subsection illustrates with an example, how we extracted data from data files created

by the perf tools.

The first step in this process is to query the data file using perf record command.

perf kvm --host --guest report -s pid -n --stdio -i " . $file . "

perf kvm –host –guest: This option means that this query is looking at the collected guest

OS data.

19

-s pid: This option sorts the results of the query according to the process ids. The process ids

for programs executing for experiment are known and hence statistics for the experiment can

be separated from those for background processes of the operating system.

-n: This option ensures that a column with number of samples appears in the output of the

query. In other words it simply means this option with –s pid gives per process count of the

hardware event.

--stdio –i: This option allows to specify an input file to this query.

A sample output obtained by querying a data file is shown.

Events: 1M LLC-loads

Overhead Samples Command: Pid

........

 50.06% 831262 qemu-kvm:18099

 22.44% 459262 qemu-kvm:18097

 20.26% 277403 qemu-kvm:18095

 6.94% 124506 qemu-kvm:18093

 0.12% 5074 swapper: 0

 0.04% 221 khugepaged: 60

 0.02% 238 udisks-daemon: 1275

 0.01% 696 irqbalance: 748

 0.01% 763 kworker/2:1:22201

 0.01% 490 ssh:22245

 0.01% 411 perf:22238

 0.01% 97 kworker/0:0:21089

 0.01% 196 perf:22022

 0.00% 235 kworker/u:0:14637

 0.00% 272 kworker/2:2:21910

20

The output is trimmed to include only top 15 rows. As seen in the result above the

process ids for programs of the experiment occur in top rows. This due to the fact no other

program apart from Linux background processes was executing alongside the experiments.

In the next step, output in above form acts as an input to another script, written in perl,

using this program data is arranged in following format.

Benchmark 1 Percentage Hardware event

count

Benchmark

2

Percentage Hardware event

count

Bodytrack 50.14% 14478 Canneal 45.46% 13248

Bodytrack 72.93% 293377 dedup 26.64% 137280

Bodytrack 31.84% 286460 facesim 67.93% 653218

Bodytrack 46.98% 302866 ferret 52.57% 540098

Bodytrack 62.54% 326703 freqmine 36.96% 570936

Bodytrack 28.92% 265136 streamcluster 70.91% 706903

Bodytrack 69.02% 323999 swaptions 30.58% 331129

canneal 63.13% 376236 dedup 36.45% 166254

canneal 21.38% 357703 facesim 78.33% 701113

canneal 34.1% 368753 ferret 65.46% 641583

canneal 49.38% 448961 freqmine 50.05% 635654

canneal 18.91% 269278 streamcluster 80.82% 810538

canneal 56.38% 440902 Swaptions 42.82% 408154

Dedup 14.69% 159312 Facesim 85.06% 686472

Dedup 23.32% 158846 Ferret 76.34% 603922

Dedup 36.84% 180384 Freqmine 62.55% 653184

Dedup 12.51% 129699 Streamcluster 87.32% 730781

Dedup 43.64% 182687 Swaptions 55.87% 410496

Facesim 65.36% 634891 Ferret 34.28% 576131

Facesim 78.53% 805382 Freqmine 21.04% 513650

Facesim 46.28% 509313 Streamcluster 53.48% 779949

Facesim 82.71% 744109 Swaptions 16.97% 366302

Ferret 65.79% 738963 Freqmine 33.51% 514360

Ferret 30.92% 461358 Streamcluster 68.74% 833372

Ferret 71.34% 692381 Swaptions 28.05% 351548

Freqmine 18.6% 352880 Streamcluster 81.03% 916254

Freqmine 56.44% 665622 Swaptions 42.83% 480416

Streamcluster 84.61% 833287 Swaptions 15% 219057

Table 1: An example of hardware event counts gathered in our experiment. Here the hardware

event concerned is loads from the last level cache.

21

The data collected from all of the experiments was arranged as shown. This data acts as

an input to another program (see appendix C). This program creates all possible schedules for

the eight core machine using the experimental data. This involves selecting four experiments

such that eight different benchmarks are selected. Also it is ensured that schedules do not

repeat. The hardware event count for each schedule is calculated as total of hardware counts

for each benchmarks involved. The schedules are sorted according to this total hardware

event count. Similar to the hardware event count, the total time of execution for a schedule is

found by adding the total execution time for each benchmark in the schedule.

After finding the total of hardware event count and the total time of execution for all of

the schedules, Microsoft excel was used to find the coefficient of correlation between the

total hardware event count and the total time of execution. The value of correlation

coefficient varies between -1 and 1, a value of correlation coefficient close to 1 means

variables involved change closely in tandem. A correlation coefficient of negative one means

when one variable increases the other decreases. A value of zero for correlation coefficient

means variables involved are uncorrelated. The coefficient of correlation between the total of

time of execution and the total of last level cache loads, for above example was calculated to

be 0.959.

22

4.2 Results for first set of experiments following table shows results of our first set of

experiments, represented in Figure 3.

Hardware events (performance metric) Correlation with total time
Cycles for which instruction queue is full 0.9746
Cycles during which ROB is full 0.9653
L1 Accesses 0.9599
Loads from LLC 0.9590
Mispredicted Branches 0.9584
Cycles when Reservation Stations are full 0.9564
Branches 0.9520
L1 misses 0.9477
Stores to LLC 0.8236

Number of lines fetched from memory 0.4732

Table 2: shows hardware events and coefficient of correlation between the total event count

and the total of time of execution. These numbers are calculated from results for first set of

experiments performed in this work.

Table 2 shows the correlation coefficients obtained after processing the data gathered

from the first set of experiments. As seen from the table hardware events that closely

correlate with the performance that is the total time of execution are cycles for which

instruction queue is full, cycles during which reorder buffer is full, accesses to the level one

cache, loads from the last level cache, mispredicted branches and cycles when the reservation

stations are full. First these results confirm the importance of the memory related events

towards the performance. Second, close correlation of the hardware events related to

architectural resources in each core with the performance means utilization of architectural

resources reservation station, reorder buffer, instruction queue are good indicators of

performance. Third, close correlation of branches and mispredicted branches with

performance reaffirms the importance of branch prediction with performance, also shown by

Bellosa et al. [13].

The platform under consideration belongs to Intel x86 family of computers, which

implements deep pipelining this means a branch is associated with severe performance

23

penalty. As pipeline has to be stalled until the branch is resolved. To avoid this branch

prediction is implemented. This way pipeline can use predicted result for the branch and

predicted target when a branch occurs. A problem in this scheme is that pipeline has to be

flushed if result of the branch instruction is mispredicted. This means that whenever such a

misprediction occurs the performance takes a hit. This phenomenon is reflected in the

statistics gathered.

In the first set of experiments, varied hardware events were considered in order to find

hardware events that can be good statistical indicators of the performance. These results from

the first set of experiments also dictate the selection of hardware events for further

experiments.

4.3 Results for second set of experiments: The table below shows results for second set of

experiments represented in Figure 4.

Hardware events (performance metric) Correlation with total time

Cycles in which instruction queue is full 0.954

Cycles in which Reservation Stations are full 0.937

L1 misses 0.878

Cycles during which ROB 0.867

LLC loads 0.835

Mispredicted Branches 0.817

Table 3: shows hardware events and coefficient of correlation between the total event count

and the total of time of execution. These numbers are calculated from the results for the

second set of experiments in this work.

The second set of experiments was intended at study the case where virtual machines

share a physical core. The statistics obtained from the results of the second set of experiments

show that when two virtual machine share same physical core hardware events related to

architectural resources within the core, namely instruction queue, reservation stations, level

one cache and, reorder buffer, correlate closely with performance of the system and the

24

coefficient of correlation for hardware event for last level cache takes a lower value than that

observed in the first set of experiments where each virtual machine had a core of its own.

4.4 Results for third set of experiments: The table below shows results for third set of

experiments represented in Figure 5.

Hardware events (performance metric) Correlation with total time

Cycles in which Instruction queue is full 0.951

Cycles in which Reservation Stations are full 0.937

LLC loads 0.922

lines loaded from memory 0.732

Table 4: shows hardware events and coefficient of correlation between the total event count

and the total of time of execution. These numbers are calculated from results for third set of

experiments performed in this work.

In the third set of experiments virtual machines shared a CPU core and four virtual

machines shared a last level cache. The sharing of last level cache means the last level cache

becomes important for the overall performance, this is reflected by the increased value of

coefficient of correlation for loads from the last level cache. Notice that this value was much

less in second set of experiments. Also it can be observed that the number of lines loaded

from the memory have a higher correlation with the performance than that observed in the

first set of experiments. Because two virtual machines share a core hardware events related to

the physical core also exhibit very high correlation with overall system performance.

25

4.5 Results for fourth set of experiments: The table below shows results for Fourth set of

experiments represented in Figure 6.

Hardware events (performance metric) Correlation with total time

Cycles in which Instruction queue is full 0.957

Cycles in which Reservation Stations are full 0.93

LLC loads 0.926

lines loaded from memory 0.778

Table 5: shows hardware events and coefficient of correlation between the total event count

and the total of time of execution. These numbers are calculated from results for fourth set of

experiments performed in this work.

The fourth set of experiments scheduled four virtual machines such that they share CPU

cores in pairs but each pair has its own last level cache. The hardware events of the last level

cache are closely correlated with the performance because virtual machines share the last

level cache in pairs. Another interesting observation is that correlation of the number lines

loaded from the memory has increased as compared to the third set of experiments. In this set

of experiments each pair of virtual machines has its own last level cache and thus the main

memory becomes for important for performance. Higher values of correlation between events

related physical core and system performance are present in both third and fourth set of

experiments. This means the contention for shared resources within a core influences the the

system performance.

26

CHAPTER V

CONCLUSIONS

As seen from section 4.2 table 1, hardware events related to architectural resources

within the core exhibit very high correlation with performance. This reaffirms that the

architectural resources within a core are very important for performance as seen by the

workloads.

In all of the experiments performed, the count of loads from the last level cache, the

cycles for which instruction was full, cycles for which reorder buffers are full, are the

hardware events that always exhibited good correlation with overall system performance.

These events can be good indicators of resource contention and overall system performance

in virtualized system.

When virtual machines are scheduled to share the last level cache the hardware event,

which counts the loads coming from last level cache, shows highest correlation with overall

system performance, amongst other last level cache related hardware events. Thus the count

of the loads coming from the last level cache is a good indicator of the contention between

virtual machines for the last level cache and the effect of this contention on overall system

performance.

27

When virtual machines are scheduled to share the same physical core the hardware

events, that count cycles for which instruction queue was full, cycles for which reorder

buffers were full and, misses in level one cache, exhibit highest values of correlation with

overall system performance. Thus cycles for which instruction queue is a full, cycle for which

reorder buffers are full and misses from level one cache are good indicators of contention for

the core’s architectural resources and effect of this contention on overall system performance.

When scheduling of virtual machines is such that virtual machines share a physical

core and a last level cache hardware events, that count cycles for which instruction queue was

full, cycles for which reorder buffers were full, loads from last level cache, exhibit highest

values of correlation with overall system performance. In this case contention occurs at

physical core level as well for the last level cache and hence hardware events related to both

resources show high correlation with overall system performance. These three events showed

highest values of correlation among other events and hence are good indicators of resource

contention as well as overall system performance.

For a fixed number of virtual machines, if scheduling is so performed as to reduce the

contention for last level cache, hardware event that counts number of loads coming from the

memory shows higher correlation with overall system performance. This hardware event is an

indicator of contention for main memory and an increase in correlation of loads coming from

main memory and overall system performance means contention for memory is affecting the

performance of the system. Thus in such scenarios the count of loads coming from memory is

a good indicator of contention for memory and overall system performance.

5.1 Future work:

In this work hardware events related to share resources in virtualized systems were studied to

see how closely they can correlate the usage of the shared resource with overall system

28

performance. These hardware events captured by the performance counters and details about

sharing of resources will act as inputs to the scheduler. The scheduler of a virtualization

solution in turn will use this information to take scheduling decisions that will reduce

contention for shared resources, reduce energy consumption and still maintain service quality.

Studying the scheduler of a virtualized system and modifying it to solve this multivariable

optimization problem will make this work usable on a real virtualization solution.

29

REFERENCES

[1] R. Harms and M.Yamartino, The economics of the cloud, white paper, Microsoft

Corporation.

[2] M. Armbrust, et al. Above the clouds: A Berkeley view of cloud computing. Tech. Rep.

UCB/EECS-2009-28,EECS Department, U.C. Berkeley, Feb 2009.

[3] INTEL CORPORATION. Intel R_ Virtualization Technology Specification for the IA-32

Intel R_ Architecture, April 2005.

[4] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet impasse

through virtualization. IEEE Computer, 38(4):34–41, Apr. 2005.

[5] Ristenpart, Thomas,et al “Hey, you, Get Off of MY Cloud: Exploring Information

Leakage in Third-Party Compute Clouds.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A.

Warfield, Xen and the art of virtualization, in: Proc. 19th ACM Symposium on Operating

Systems Principles, SOSP 2003, Bolton Landing, USA, Oct. 2003.

[7]Y Koh, R. C. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, "An analysis of

performance interference effects in virtual environments," in ISPASS. IEEE Computer

Society, 2007, pp. 200-209.

 [8] T. Wood, L. Cherkasova, K. M. Ozonat and P. J. Shenoy. Profiling and modeling

resource usage of virtualized applications. In Val´erie Issarny and Richard E. Schantz,

editors, Middleware, volume 5346 of Lecture Notes in Computer Science, pages 366–387.

Springer, 2008.

[9] D. A. Menascé, “Virtualization: Concepts, applications, and performance modeling,” in

Proc. 31th Int. Computer Measurement Group Conf., Orlando, FL, 2005, pp. 407–414.

[10] J.N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M.

McCabe, and J. Owens, Quantifying the Performance Isolation Properties of Virtualization

Systems, ACM Workshop on Experimental Computer Science (ExpCS).

[11] D. Gupta, L. Cherkasova, Rob Gardner, and Amin Vahdat Enforcing Performance

Isolation across Virtual Machines in Xen. HP Labs, Technical Report HPL-2006-77.

[12] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing contention for shared

resources on multicore processors. Communications of the ACM, 53(2), 2010.

30

[13] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention

in multicore processors via scheduling. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2010.

[14] M. Ghosh, R. Nathuji, M. Lee, K. Schwan, H. Hsin S. Lee Symbiotic Scheduling for

shared caches in Multi-core Systems using memory footprint signature arch.ece.gatech.edu.

[15] A.Verma, P. Ahuja, A. Neogi Power-aware Dynamic Placement of HPC Application,

ICS’08, June 7–12, 2008.

[16] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-driven energy accounting for

dynamic thermal management. In Proceedings of the Workshop on Compilers and Operating

Systems for Low Power (COLP’03), New Orleans, LA, September 27 2003.

[17] R. Ge, X. Feng, and K. W. Cameron. Modeling and evaluating energy-performance

efficiency of parallel processing on multicore based poweraware systems. Parallel and

Distributed Processing Symposium, International, 0:1{8, 2009.

[18] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS Observations to

Improve Performance in Multicore Systems. IEEE Micro, 28(3):54–66, 2008.

[19] K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications with

deadline constraints on DVS-enabled clusters, in: Proc. 7th IEEE Int. Symposium on Cluster

Computing and the Grid, CCGrid 2007, Rio de Janeiro, Brazil, May 2007.

[20] Singh, K., Bhadauria, M., McKee, S., Real Time Power Estimation and Thread

Scheduling via Performance Counters. In ACM SIGARCH Computer Architecture News, vol

37 issue 2, may 2009.

[21] Intel xeon L5410 processor http://ark.intel.com/products/33090/Intel-Xeon-Processor-

L5410-(12M-Cache-2_33-GHz-1333-MHz-FSB)

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual

machine monitor. In OLS ’07: The 2007 Ottawa Linux Symposium, pages 225–230, July

2007.

[23] T. Deshane, Z. Shepherd, J.N. Matthews, M. Ben-Yehuda, A. Shah, and B. Rao.

Quantitative comparison of Xen and KVM. Xen Summit, Boston, MA, USA, pages 1–

2, 2008.

[24] QEMU generic and open source machine emulator and virtualizer

http://wiki.qemu.org/Main_Page.

[25] perf: linux profiling with performance counters. https://perf.wiki.kernel.org/

[26] C. Bienia. Ph.D. Thesis. Benchmarking Modern Multiprocessors, Princeton University,

January 2011.

[27] C. Bienia, S. Kumar, et al. The parsec benchmark suite: Characterization and

architectural implications. Tech. Rep. TR-811-08, Princeton University, 2008.

[28] Intel IA- 32 architecture Software Developer's Manual

http://ark.intel.com/products/33090/Intel-Xeon-Processor-L5410-(12M-Cache-2_33-GHz-1333-MHz-FSB)
http://ark.intel.com/products/33090/Intel-Xeon-Processor-L5410-(12M-Cache-2_33-GHz-1333-MHz-FSB)

31

32

APPPENDICES

Appendix A

Description of benchmark programs from PARSEC suite used in our experiments.

1) Canneal: This kernel was developed by Princeton University. It uses cache-aware

simulated annealing (SA) to minimize the routing cost of a chip design . Canneal uses

fine-grained parallelism with a lock-free algorithm and a very aggressive synchronization

strategy that is based on data race recovery instead of avoidance.

2) Dedup: This kernel was developed by Princeton University. It compresses a data stream

with a combination of global and local compression that is called ’deduplication’. The

kernel uses a pipelined programming model to mimic real-world implementations. The

reason for the inclusion of this kernel is that deduplication has become a mainstream

method for new generation backup storage systems.

3) Facesim: This Intel RMS application was originally developed by Stanford University. It

computes a visually realistic animation of the modeled face by simulating the underlying

physics. The workload was included in the benchmark suite because an increasing

number of animations employ physical simulation to create more realistic effects.

4) Ferret: this application is based on the Ferret toolkit which is used for content-based

similarity search. It was developed by Princeton University. The reason for the inclusion

in the benchmark suite is that it represents emerging next-generation search engines for

non-text document data types. In the benchmark, we have configured the Ferret toolkit

for image similarity search. Ferret is parallelized using the pipeline model.

33

5) Freqmine: This application employs an array-based version of the FP-growth (Frequent

Pattern-growth) method for Frequent Itemset Mining (FIMI). It is an Intel RMS

benchmark which was originally developed by Concordia University. Freqmine was

included in the PARSEC benchmark suite because of the increasing use of data mining

techniques.

6) Streamcluster: This RMS kernel was developed by Princeton University and solves the

online clustering problem. Streamcluster was included in the PARSEC benchmark suite

because of the importance of data mining algorithms and the prevalence of problems with

streaming characteristics.

7) Bodytrack: This computer vision application is an Intel RMS workload which tracks a

human body with multiple cameras through an image sequence. This benchmark was

included due to the increasing significance of computer vision algorithms in areas such as

video surveillance, character animation and computer interfaces.

8) Swaptions: The application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. Swaptions employs Monte

Carlo (MC) simulation to compute the prices.

34

Appendix B

This appendix has an example script that was used to execute an experiment.

perf kvm --guest --host --guestmount /mnt/guest-5555-root record -e

$5 -a &

time ssh -p5554 localhost "./run-parsec.sh $1 native 1" &

pid0=$!

time ssh -p5555 localhost "./run-parsec.sh $2 native 1" &

pid1=$!

wait $pid0

wait $pid1

killall -s SIGINT perf

mv perf.data.kvm ./output-data/$5-5554-5555-$1-$2

The Steps performed in this script are

1) Perf record command is executed with $5 as the parameter which is the mask for the hardware

event taken from Intel’s manual for xeon machine.

2) Two parsec benchmarks are started within two different virtual machines.

3) The script runs until both benchmarks finish and records the hardware event count.

4) In the end it saves the data file and kills the perf command

35

Appendix C

Appendix C describes and presents the scripts used for processing the data gathered in experiments.

1) The Perl script below processes the perf file that has captured the count of loads coming to the last

level cache. It queries the data file and store the query output in another text file.

#!/usr/bin/perl -w

use strict;

use warnings;

my @files = </root/output-data/LLC-loads-5554-5555*>;

my $file;

foreach $file (@files){

 system "echo " . $file . ">>~/myout \n";

 system "perf kvm --host --guest report -s pid -n --stdio -i " . $file . " | grep \"31548\\|31550\\"

>>~/myout\n";

}

36

2) #!/usr/bin/perl -w

use strict;

use warnings;

my @benchmark1;

my @benchmark2;

my @array;

my $file = "myout";

my $fileout = ">>results.csv";

my $perfcounter = "empty";

my $pctr;

my @p;

open FILE, $file;

my $flag1 = 0;

my $flag2 = 0;

my $flag3 = 0;

#open MYFILE, $fileout;

read the file line by line

my $line;

foreach $line(<FILE>){

 chomp($line);

 if($flag1 == 1 && $flag2 == 1 && $flag3 == 1){

 open MYFILE,">>",$fileout;

 print MYFILE @benchmark1;

 print MYFILE @benchmark2;

 print MYFILE "\n";

 close MYFILE;

 @benchmark1 = ();

 @benchmark2 = ();

 $flag1 = 0;

 $flag2 = 0;

 $flag3 = 0;

 }

 if(index($line, "5554") != -1){

 # print the data to file

 # clear all the arrays

 @array = ();

 @array = split(/-/,$line);

 #Benchmark 1

 push(@benchmark2, pop(@array));

 push(@benchmark2,',');

 #Benchmark 2

 push(@benchmark1, pop(@array));

 push(@benchmark1,',');

 #What are we counting ?

 pop(@array);

 pop(@array);

 $pctr = pop(@array);

 @p = ();

37

 @p = split(/\//,$pctr);

 $pctr = pop(@p);

 if($pctr ne $perfcounter){

 $fileout = $pctr.".csv";

 #print $fileout;

 $perfcounter = $pctr;

 #close MYFILE;

 open MYFILE,">",$fileout;

 print MYFILE "Benchamark1".","."Percentage".","."Count".",";

 print MYFILE "Benchmark2".","."Percentage".","."Count";

 print MYFILE "\n";

 #print $fileout;

 close MYFILE;

 }

 $flag1 = 1;

 }

 #Case 2 We are on second line get the stats for one benchmark

 elsif(index($line,"324") != -1){

 @array = split(' ',$line);

 if(index($line, "32469") != -1){

 #Percent 1

 push(@benchmark1, shift(@array));

 push(@benchmark1,',');

 #count 1

 push(@benchmark1, shift(@array));

 push(@benchmark1, ',');

 $flag2 = 1;

 }

 elsif(index($line, "32471") != -1){

 #percent 2

 push(@benchmark2,shift(@array));

 push(@benchmark2,',');

 #count 2

 push(@benchmark2,shift(@array));

 $flag3 = 1;

 }

 }

}

close FILE;

close MYFILE;

This perl script processes the text output generated by script one described in this appendix.

This script produces results for each experiment. It gives out details about each experiment,

the names of the benchmarks executed and hardware event count associated with each

benchmark

38

1 2 3 4 5 6 7 8 time LLC loads

freqmine ferret streamclusterdedup swaptions canneal facesim bodytrack 4294 4070235

swaptions ferret streamclusterdedup freqmine canneal facesim bodytrack 4298 4073247

swaptions freqmine streamclusterdedup ferret canneal facesim bodytrack 4322 4081275

freqmine ferret swaptions facesim streamclusterdedup canneal bodytrack 4326 4113140

freqmine ferret facesim dedup swaptions canneal streamclusterbodytrack 4327 4073625

swaptions facesim streamclusterdedup freqmine canneal ferret bodytrack 4328 4114465

swaptions ferret facesim dedup freqmine canneal streamclusterbodytrack 4331 4076637

swaptions facesim freqmine dedup ferret canneal streamclusterbodytrack 4331 4104561

swaptions facesim streamclusterdedup ferret canneal freqmine bodytrack 4334 4106009

swaptions ferret freqmine dedup facesim canneal streamclusterbodytrack 4335 4105437

streamclusterfreqmine ferret dedup swaptions canneal facesim bodytrack 4338 4112264

swaptions ferret streamclusterdedup facesim canneal freqmine bodytrack 4338 4106885

ferret facesim freqmine dedup swaptions canneal streamclusterbodytrack 4338 4098164

swaptions facesim ferret dedup freqmine canneal streamclusterbodytrack 4339 4100031

ferret facesim streamclusterdedup swaptions canneal freqmine bodytrack 4341 4099612

freqmine facesim streamclusterdedup swaptions canneal ferret bodytrack 4343 4098999

swaptions ferret freqmine facesim streamclusterdedup canneal bodytrack 4345 4100686

freqmine facesim ferret dedup swaptions canneal streamclusterbodytrack 4354 4084565

swaptions freqmine facesim dedup ferret canneal streamclusterbodytrack 4355 4084665

swaptions freqmine streamclusterdedup facesim canneal ferret bodytrack 4356 4123369

freqmine ferret streamclusterdedup facesim canneal swaptions bodytrack 4356 4131962

freqmine ferret swaptions facesim dedup canneal streamclusterbodytrack 4358 4114943

streamclusterferret freqmine dedup swaptions canneal facesim bodytrack 4359 4123240

streamclusterfreqmine facesim dedup swaptions canneal ferret bodytrack 4360 4130088

swaptions freqmine ferret facesim streamclusterdedup canneal bodytrack 4361 4117783

streamclusterfreqmine swaptions ferret dedup canneal facesim bodytrack 4361 4130188

streamclusterfreqmine swaptions ferret facesim dedup canneal bodytrack 4362 4131775

ferret facesim streamclusterdedup freqmine canneal swaptions bodytrack 4363 4127701

swaptions freqmine ferret dedup facesim canneal streamclusterbodytrack 4367 4108935

streamclusterfreqmine swaptions facesim ferret dedup canneal bodytrack 4370 4155169

freqmine facesim streamclusterdedup ferret canneal swaptions bodytrack 4371 4118632

streamclusterfreqmine swaptions dedup ferret canneal facesim bodytrack 4372 4144039

freqmine ferret swaptions dedup facesim canneal streamclusterbodytrack 4373 4129670

swaptions ferret freqmine facesim dedup canneal streamclusterbodytrack 4377 4102489

ferret facesim swaptions dedup freqmine canneal streamclusterbodytrack 4380 4125409

streamclusterfreqmine facesim dedup ferret canneal swaptions bodytrack 4388 4149721

freqmine facesim swaptions dedup ferret canneal streamclusterbodytrack 4388 4116340

streamclusterfreqmine swaptions facesim dedup canneal ferret bodytrack 4391 4171406

streamclusterferret swaptions facesim freqmine dedup canneal bodytrack 4391 4166145

swaptions freqmine ferret facesim dedup canneal streamclusterbodytrack 4393 4119586

streamclusterferret facesim dedup swaptions canneal freqmine bodytrack 4395 4128078

streamclusterfreqmine ferret dedup facesim canneal swaptions bodytrack 4400 4173991

streamclusterferret swaptions dedup freqmine canneal facesim bodytrack 4401 4150485

streamclusterfreqmine swaptions facesim ferret canneal dedup bodytrack 4404 4178287

streamclusterfreqmine swaptions dedup facesim canneal ferret bodytrack 4406 4186133

39

streamclusterfreqmine swaptions facesim ferret canneal dedup bodytrack 4404 4178287

streamclusterfreqmine swaptions dedup facesim canneal ferret bodytrack 4406 4186133

streamclusterfreqmine swaptions ferret facesim canneal dedup bodytrack 4408 4179163

streamclusterfreqmine ferret facesim swaptions dedup canneal bodytrack 4411 4180547

streamclusterfreqmine ferret facesim swaptions canneal dedup bodytrack 4411 4171890

swaptions ferret freqmine dedup streamclustercanneal facesim bodytrack 4411 4179476

swaptions freqmine streamclusterferret dedup canneal facesim bodytrack 4414 4144662

swaptions freqmine streamclusterferret facesim dedup canneal bodytrack 4415 4146249

streamclusterferret facesim dedup freqmine canneal swaptions bodytrack 4417 4156167

streamclusterferret freqmine dedup facesim canneal swaptions bodytrack 4421 4184967

streamclusterfreqmine ferret facesim dedup canneal swaptions bodytrack 4426 4184642

streamclusterferret swaptions facesim dedup canneal freqmine bodytrack 4426 4169396

streamclusterferret swaptions facesim freqmine canneal dedup bodytrack 4433 4184733

streamclusterferret swaptions dedup facesim canneal freqmine bodytrack 4441 4184123

swaptions facesim freqmine dedup streamclustercanneal ferret bodytrack 4441 4220694

swaptions freqmine ferret dedup streamclustercanneal facesim bodytrack 4443 4182974

swaptions ferret facesim dedup streamclustercanneal freqmine bodytrack 4447 4184314

streamclusterferret freqmine facesim swaptions dedup canneal bodytrack 4448 4177924

streamclusterferret freqmine facesim swaptions canneal dedup bodytrack 4448 4169267

freqmine ferret swaptions dedup streamclustercanneal facesim bodytrack 4449 4203709

swaptions facesim ferret dedup streamclustercanneal freqmine bodytrack 4455 4207708

swaptions freqmine streamclusterferret facesim canneal dedup bodytrack 4461 4193637

streamclusterferret freqmine facesim dedup canneal swaptions bodytrack 4463 4182019

swaptions freqmine facesim dedup streamclustercanneal ferret bodytrack 4465 4200798

freqmine ferret facesim dedup streamclustercanneal swaptions bodytrack 4465 4209391

ferret facesim freqmine dedup streamclustercanneal swaptions bodytrack 4476

freqmine ferret swaptions facesim streamclustercanneal dedup bodytrack 4481 4237957

streamclusterfacesim freqmine dedup swaptions canneal ferret bodytrack 4483 4257181

swaptions ferret streamclusterfacesim freqmine dedup canneal bodytrack 4485 4258868

freqmine facesim ferret dedup streamclustercanneal swaptions bodytrack 4492 4220331

ferret facesim swaptions dedup streamclustercanneal freqmine bodytrack 4496 4233086

streamclusterfacesim ferret dedup swaptions canneal freqmine bodytrack 4497 4244195

freqmine facesim swaptions dedup streamclustercanneal ferret bodytrack 4498 4232473

swaptions ferret freqmine facesim streamclustercanneal dedup bodytrack 4500 4225503

streamclusterfacesim freqmine dedup ferret canneal swaptions bodytrack 4511 4276814

swaptions freqmine ferret facesim streamclustercanneal dedup bodytrack 4516 4242600

swaptions freqmine streamclusterfacesim ferret dedup canneal bodytrack 4517 4262366

streamclusterfacesim ferret dedup freqmine canneal swaptions bodytrack 4519 4272284

swaptions ferret streamclusterfacesim dedup canneal freqmine bodytrack 4520 4262119

freqmine ferret streamclusterfacesim swaptions dedup canneal bodytrack 4523 4283101

freqmine ferret streamclusterfacesim swaptions canneal dedup bodytrack 4523 4274444

streamclusterfacesim swaptions dedup freqmine canneal ferret bodytrack 4525 4284426

swaptions ferret streamclusterfacesim freqmine canneal dedup bodytrack 4527 4277456

streamclusterfacesim swaptions dedup ferret canneal freqmine bodytrack 4531 4275970

swaptions freqmine streamclusterfacesim dedup canneal ferret bodytrack 4538 4278603

freqmine ferret streamclusterfacesim dedup canneal swaptions bodytrack 4538 4287196

Table 6: Schedules generated according to hardware event loads form the last level cache and

mapped with total time of execution for each schedule.

VITA

Pranav Suresh Pathak

Candidate for the Degree of

Master of Science

Thesis: QUANTIFYING THE EFFECTS OF SHARED RESOURCE CONTENTION

ON PERFORMANCE IN VIRTUALIAZED SYSTEMS

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in your major at

Oklahoma State University, Stillwater, Oklahoma in December, 2011.

Completed the requirements for the Bachelor of Science in Electronics and

Telecommunication at Pune University, Pune India in December 2007.

Experience: Employed by Oklahoma State University, as research assistant and

teaching assistant 2009 –present.

 Employed by Infosys technologies limited as a software engineer 2007-

2009.

ADVISER’S APPROVAL: Dr. Sohum A. Sohoni

Name: Pranav Pathak Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: QUANTIFYING THE EFFECTS OF SHARED RESOURCE

CONTENTION ON PERFORMANCE IN VIRTUALIAZED SYSTEMS

Pages in Study: 39 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: This study explores the use of hardware performance

counters to capture correlation between shared resource usage and performance of

the system, in a virtualized computer system.

Findings and Conclusions: This thesis found hardware events that can be used in

different scheduling scenarios to capture the correlation between contention for

shared resource and overall system performance. Schedulers in virtualized

systems need to be studied and modified to leverage these hardware events for

better scheduling decisions.

