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CHAPTER I 
 

 

INTRODUCTION 

 

Computing is undergoing a seismic shift from the client/server model to the cloud; this shift 

comes along with an evolving shift to multicore and further manycore CPUs on chip in 

hardware and the advent of virtualization technology in software as well as hardware.  

Arguably, virtualization has been around in some form since the days of mainframe 

computing. The main motivation for virtualization in the early 70’s was to increase the level 

of sharing and utilization of expensive computing resources. In the next few years, reduction 

in hardware costs meant that organizational computing needs could be fulfilled by a 

collection of minicomputers. Improved networking technology and ever increasing 

computing power gave rise to new computing models like client server and peer to peer 

systems.  In a nonvirtualized datacenter, each application typically runs on its own physical 

server. In this model utilization of resources traditionally has been very low. Virtualization 

enables multiple applications to run on a single server [1]. The resurgence of virtualization is 

due to the move to multicore and the resulting underutilization of CPU cycles. In Large 

datacenters the new computing models presented new challenges in power consumption, 

reliability, security, complexity and cost. The virtualization technologies today seek to find a 

solution to these challenges in an elegant way [2, 3, 4, and 5]. 
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In current virtualization solutions, guest Virtual Machines (VMs) and workloads are 

presented with an abstracted view of underlying physical resources [6]. The hypervisor or 

virtual machine monitor presents this virtual operating platform to the guest virtual machines 

and manages the execution of the guest operating systems. Typically, each VM runs its own 

operating system (OS) which in turn manages the resources presented to the VM to run its 

own workloads. The operating system of each VM is unaware of the other VMs sharing the 

physical resources. Varying workload configurations, across different VMs impact overall 

system performance and performance as seen by individual VMs; this is due to sharing of 

physical resources between VMs.  

 
 

Figure 1:  Example of virtualized system and resource sharing in the system. As seen here all 

virtual machines share Main memory, hard disk drive and network connection via the virtual 

machine monitor. As an example VM 1, 2 and 3 share L2 cache. VM1 and 2 share L1 cache 

and CPU core. 
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As hardware shifts towards many cores, software needs to evolve to provide flexible and 

efficient use of resources. Integrated hardware-software solutions for virtualization provide 

fault isolation as well as environment isolation to the applications. But current virtualization 

solutions do not provide explicit performance isolation between virtual machines [2]. A body 

of ongoing research exists, that profiles and models performance of varied workloads in 

virtualized environments [7, 8 and 9].  

Koh et al. [7] employed an instrumented Xen hypervisor to collect performance 

characteristics and runtime characteristics of VMs that share a physical host. Wood et al. [8] 

measured the overhead of virtualization for Xen hypervisor running paravirtualized VMs. 

Menascé et al. [9] applied analytic queuing models to virtualized environments.  Detailed 

profiling data and performance models go a long way towards handling resource sharing and 

scheduling in virtualized environments.  

Management of physical resources especially of multicore processors and their memory 

hierarchies impacts the performance of virtualized systems [10, 11 and 12]. The decision of 

scheduling a virtual machine consists of two parts; first part is the decision, which physical 

resources a virtual machine should be allowed to use and second part is the decision of how 

long these resources can be allocated to a virtual machine. Scheduling of workloads is an 

attractive technique to reduce resource contention and achieve desired performance due to its 

low overhead. Scheduling does not need extra hardware and it is easy to integrate into the 

system. Researchers have explored the usefulness of scheduling techniques in virtualized 

systems. It has been demonstrated by Zhuravlev et al. [13] that a purely scheduling based 

approach based on cache miss rates reduces contention for shared caches effectively. They 

show that their algorithm provides aggregate performance improvement.  Ghosh et al. [14] 

proposed architectural support to aid symbiotic scheduling and reduce cache contention. 
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1.1 Motivation 

In a virtualized environment, guest VMs or applications cannot know about the tasks being 

performed by applications in the other VMs. Individual VMs have an abstracted view of the 

physical resources and hence are not in a position to capture the contention for physical 

resources. Thus many guest operating systems try to manage the shared resources without 

knowing about resource utilization, requirements, and decisions taken by other VMs to 

manage the resources. Koh et al. [7] have explained this phenomenon in their work in more 

detail. On the other hand the hypervisor can observe physical resources and their utilization, 

but it is unaware of resource utilization and requirements of each VM, and decisions taken by 

guest operating systems to manage the resources. Fedorova et al. [12] showed that contention 

for shared resources hampers the performance of multicore systems. Thus if resource 

contention in virtualized systems can be captured, this information can be used to improve 

the overall system performance. 

The hardware counters are a set of special purpose registers available in most modern 

processors. Typically, these hardware counters can be programmed to count hardware related 

events. These counters can be used by programmers and operating systems alike to analyze 

and fine tune the performance of workloads. These counters can be programmed to capture 

the usage of shared resources at runtime in multicore architectures.  

Large energy consumption in datacenters is an important concern these days. Bellosa et 

al. [16] have shown that hardware counters can be used to estimate the energy consumption 

in computing systems and this information can also be used to schedule the workloads for 

reduced energy consumption. 

If the hypervisor can get an estimate of shared resource usage per virtual machine, then 

the hypervisor can make scheduling decisions at the physical host level.  The hypervisor can 

target minimum shared resource contention for best system wide performance or can aim for 

minimum energy usage, while ensuring quality of service in either case. 
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1.2 Research overview 

This research uses the hardware counters to capture resource contention information which 

will be conveyed to the hypervisor to aid scheduling of virtual machines. The goal of the 

scheduler can be minimizing interference for best system-wide performance and maximum 

throughput and minimizing the energy usage, while ensuring the quality of service in either 

case. There are two parts of the problem, first part is gathering the information that is useful 

for making the scheduling decisions and the second part is taking the actual scheduling 

decisions, which involves maintaining service quality, reducing resource contention, 

improving system performance and reducing energy consumption all at the same time. This is 

a complex multivariable optimization problem that should be solved within constrained time 

and computing resources.   

In this research, we address the first part of the problem that is we find out what 

information can be gathered about executing of VMs that can aid the scheduling decisions. 

For this purpose the hardware counters were programmed to capture the hardware events for 

performance metrics that are good indicators of contention for shared resources in workloads. 

These performance metrics were then evaluated to model the resource contention and overall 

system performance in virtualized systems. 

This work explores different configurations of virtual machine scheduling in virtualized 

systems and investigates which hardware events are good indicators of the contention for 

shared resources as well as the system performance.
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CHAPTER II 
 

 

RELATED WORK 

 

In this chapter ongoing work in multicore research related to this work is discussed. This 

includes published work that deals with profiling and modeling performance in virtualized 

systems, publications related to multicore resource management, also papers related to 

runtime feedback and scheduling to optimize performance and power are discussed. 

2.1 Profiling and modeling performance in virtualized systems 

It is important to correctly model the application performance behavior, especially in 

virtualized systems, because here multiple physical resources are shared by virtual machines 

(VMs) and essentially by workloads. This resource contention is not obvious to VMs and it 

should be accounted for while taking scheduling decisions. Wood et al. [8] measured the 

overhead of virtualization on specific virtualization platforms. They have selected and used a 

specific set of microbenchmarks for this measurement. A regression based model was 

developed to map native system usage profile to virtualized system usage profile for the 

virtualization platform under consideration. This model is used to predict the resource 

requirements of any application to be executed on that virtualization platform. They 

demonstrated the use of this model at the time of launching new virtual machines on Xen 

platform. This approach is useful when launching new virtual machines on a platform but 

performance of applications for the native physical host should be known beforehand. 
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Thus it has been demonstrated that modeling the per VM resource requirements and using 

this information to take scheduling decisions can help the performance of virtualized system.  

 Koh et al. [7] employed an instrumented Xen hypervisor to collect performance 

characteristics and runtime characteristics of VMs that share a physical host. They also 

developed mathematical models to predict the performance of a new application from 

workload characteristics. Koh et al showed that per VM data gathered from VMM is useful in 

building performance models. In this work we gather per VM data that share physical host 

and explore the possibility of taking scheduling decisions to enhance the performance.  

Menascé et al. [9] applied analytic queuing models to virtualized environments. This analytic 

queuing model classifies resources into three types of resources, load independent, load 

dependent and delay resources. A case study on server utilization was used to illustrate the 

analytic model. Work of Menascé et al help us select the hardware resources that influence 

the performance for our study. 

Bellosa et al. [16] have used hardware events for energy accounting and dynamic thermal 

management. A statistical approach is taken to, come up with a linear relationship between 

hardware events and energy consumed; furthermore this linear relationship is used for 

dynamic thermal management of resources. Although this work was not performed on 

virtualized systems, it is worth mentioning here because if this approach can be effectively 

extended to virtualized systems then it can address the important issue of large power 

consumption in the datacenters. Ge et al. [17] demonstrated the modeling of power 

consumption in multicore processors. The processor cores and the memory subsystems were 

modeled for their dynamic and idle power consumption. The processor frequency scaling also 

has been considered. First they developed performance models and power consumption 

models for different subsystems. These models were used to design energy consumption 

models. 
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2.2 Multicore resource management 

One benefit of virtualization is its ability to multiplex several operating systems on hardware 

based on dynamically changing system characteristics. However, such multiplexing must be 

performed while observing per VM quality of service guarantees. It is important to manage 

the resources and meet the performance goals.  

Matthews et al. [10] showcased a performance isolation benchmark that quantifies the 

ability of a virtualization system to limit the impact of a misbehaving virtual machine on 

other VMs that share the physical host. The work done by the kernel and the device driver for 

individual VMs is not accounted for, even when per VM resource constraints are in place. A 

comparison of different virtualization platforms is presented on the basis of different 

subsystems; they are memory, CPU, disk and network resources. 

The contention of the shared resources significantly impedes the efficient operation of the 

multicore systems. Gupta et al [11] implemented a set of primitives in Xen to address this 

issue. They have developed three components, First Xenmon that measures per-VM resource 

consumption, including work done for a VM in Xen’s driver domain, second they modified 

SEDF-DC scheduler accounts for aggregate VM resource consumption, third shareguard that 

limits the total amount of resources consumed in Xen’s driver doamins.  

Fedorova et al. [12] presented models to understand memory resource contention. The 

memory resources mentioned here include last level caches, memory controller and 

interconnects and, prefetching hardware. These new models were evaluated for their 

effectiveness in constructing contention-free thread schedules. They have developed a 

prototype of contention-aware scheduler for multicore systems called Distributed Intensity 

Online scheduler. Knauerhase et al [18] have used OS observations to improve performance 

it multicore systems. Similarly this work investigates observations made by VMM. 
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2.3 Run time feedback and scheduling 

The scheduling of applications is an attractive tool for mitigation of contention for the shared 

resources because it does not require extra hardware and it is relatively easy to integrate into 

the system. 

Zhuravlev et al. [13] investigated how and to what extent thread scheduling can mitigate 

contention for shared resources. While scheduling to reduce resource contention important 

problem is to find a classification scheme which would determine how competing threads 

affect each other when competing for shared resources. They studied different techniques and 

criteria for such classification and demonstrated their use with real systems and real 

schedulers. 

Ghosh et al. [14] proposed bloom filter signatures, a low complexity architectural support 

to allow the hypervisor to infer cache footprint characteristics and interference of 

applications, and then perform scheduling based on symbiosis. They also proposed and 

studied three resource allocation algorithms to determine the optimal process-to-core 

mapping to minimize interference in L2 cache. In this work we seek to glean information that 

will lead to scheduling decisions such that overall system performance can be improved. 

Verma et al. [15] studied server consolidation for reducing power consumption and 

identified application performance isolation and virtualization overhead as the key 

bottlenecks for server consolidation. They have showed that set size is a key parameter for 

scheduling applications on virtualized servers. They presented a framework and a 

methodology for power-aware application placement for HPC applications. Kim et al. [19] 

like Verma et al. [10] provided poweraware scheduling algorithm for bag-of-tasks 

applications on a DVS-enabled cluster system. Singh et al [20] use performance counters for 

thread scheduling.  This work seeks to employ these concepts to virtualized systems.
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CHAPTER III 
 

 

METHODOLOGY 

 

In this work, the hardware performance counters are used to record statistics related to 

cache hierarchy and memory, branch prediction statistics and other hardware events related to 

a physical core. The Hardware events related to a physical core include cycles for which 

reorder buffer or reservation stations are full, cycles during which instruction queue is full. 

The hardware events for our experiments were selected based on studies [8, 12] that have 

shown that these metrics are useful indicators of contention for resources and performance of 

the systems in computers, especially multicore systems. Also we selected events which we 

thought can intuitively indicate resource contention for shared resources, like cache misses 

when last level cache is shared. 

The performance for a program or group of programs in this study means total time of 

execution for that program or group of programs. In other words, the time of execution is 

used as a measure of performance. In this study to check if a metric is a good indicator of 

contention for a shared resource and overall performance of the system we count hardware 

events related to a shared resource using performance counters, then we correlate between the 

event count and the execution time. The hardware event related to the shared resource that 

exhibits highest correlation with performance can be used to indicate contention for shared 

resource and its effect on overall system performance. 
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3.1 Experimentation Platform 

The experiments were run on a 2 x Quad-core Intel Xeon L5410 system [21]. Each pair 

of cores in the processor shares a 6MB L2 cache. We use eight cores, of which each pair 

share an L2 cache for our experiments. The topology of the system is shown in figure 2. 

 

Figure 2 Topology of the experimentation platform. There are eight cores available in the 

system.  Each pair of cores has a shared level 2 cache. The level 2 cache is also the last level 

cache in this system. 

 

This work uses an established open-source virtualization solution comprised of the kernel 

based virtual machine (kvm) infrastructure [22][23] and the QEMU [24] frontend. KVM is a 

full virtualization solution for Linux on x86 hardware containing virtualization extension. It 

consists of a loadable kernel module that provides kernel infrastructure architecture and a 

processor specific module. KVM also requires QEMU which is a generic open source 

machine emulator. QEMU uses dynamic binary translation for machine emulation. We use 
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the perf tools [25] available on the current Linux kernels to collect our data and Linux task set 

program to pin a VM to a specific CPU core. This pinning of VMs to a specific CPU core 

makes the task of using hardware counters for a VM easier. 

3.2 Workloads 

We used the workloads from the PARSEC benchmark suite [26]. The PARSEC 

benchmark suite is chosen for its research-oriented nature: the workloads are well 

characterized [27], relatively easy to setup, and the runtime for each application is reasonable. 

We executed each workload to completion to record its total runtime. We recorded the 

statistics for each workload for all the metrics that we evaluated. Further, in order to reduce 

the experiment space and execution time involved, we selected following eight benchmarks 

from the PARSEC benchmark suite for our experiments. Canneal, Dedup, Facesim, Ferret, 

Freqmine, Streamcluster, Bodytrack, Swaptions are the names of eight benchmarks. 

Appendix A has a brief description of these programs. It was ensured that all available types 

of working set sizes, execution times and types of programs themselves were selected from 

the PARSEC benchmark suite. Bienia et al. [16] characterized all the programs from the 

PARSEC benchmark suite; this information was useful for selecting programs from the 

PARSEC suite for our experiments.  The PARSEC benchmark suite provides precompiled 

binaries for commonly used research platforms. These precompiled binaries, along with the 

built in utilities of PARSEC benchmark suite, were used to schedule and execute the 

experiments. 

3.3 Experiments 

This subsection describes the experiments performed for this study. Each experiment 

consists of two PARSEC benchmarks scheduled to execute on two CPU cores that share the 

last level cache (L2 cache). We recorded hardware events using Linux perf tools for each 

file:///C:/Users/pranav/Documents/iiswc-text.doc%23_ENREF_22
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experiment. In each experiment, Linux perf command was executed for the hardware event 

under consideration. Immediately after that run-parserc utility was called, on each VM, with 

name of the benchmark to be executed. The perf command recorded data until end of 

execution of both benchmarks. On completion of the experiment the perf command created a 

file with information stored about the experiment. This file is queried later to extract per 

process information. An example script that executes an experiment is available in appendix 

B of this document. All programs were run to completion and the wall clock running time for 

each is recorded as a measure of performance. 

 

Figure 3 The first set of Experiments performed. Two VMs run on separate cores but they 

share the L2 cache. The effect of sharing the last level cache on system performance time is 

investigated in these experiments. 

The first set of experiments was aimed at finding out the hardware events that can relate 

the contention for last level cache with the system performance. Nevertheless, for consistency 

purposes we not only recorded hardware events related to the last level cache but also 

recorded other events. 
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The information collected from these experiments was used to create co-schedules for an 

eight core machine. A co-schedule consists of eight different PARSEC benchmarks, each 

running on a different CPU core.  

To create a schedule for the eight core machine, four experiments were selected such that 

eight different programs are present in the schedule. The time of execution for each program 

is added up to get the total execution time of the schedule. The hardware event count under 

consideration is also added up to come up with a total count for the schedule. 

This procedure is repeated to get all of the possible different schedules and corresponding 

total execution time and hardware event count. We sorted these schedules according to their 

total time of execution.  The optimal co-schedule is the one that finishes within minimum 

time on the target platform and the worst case co-schedule takes the longest to finish. 

Further, we try to establish a correlation between the total time of execution and the total 

count of hardware event under consideration. This resulting correlation coefficient indicates 

if and how closely this hardware counter captures the contention for shared resource under 

consideration and relates it with overall system performance.
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Figure 4: The second set of experiments performed. In these experiments two VMs share a 

CPU core.  Here the effects of sharing a core and resources such as L1 cache that are 

associated with the core, on system performance is studied. 

In the second set of experiments, two virtual machines share the same physical core. Here 

it was intended to capture the effects virtual machines sharing a core on the system 

performance. The emphasis of these experiments was on capturing the events related to a 

single core, such as L1 cache statistics, cycles when reorder buffer or reservation stations are 

full, cycles when instruction queue is full and so on. These events were selected because they 

are good candidates to indicate contention for shared resources in a physical core [28]. All the 

steps performed for first set of experiments were repeated. The results for these experiments 

are presented in the next section.  

Figure 5 below represents third set of experiments performed for this study. In this case 

four virtual machines were fired up such that two VMs share a core and other two VMs share 

another core in such a way that two cores (all four VMs) share the last level cache. This set of 

experiments is interesting because it allows us to evaluate resource contention at what level 
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dictates the system performance and which hardware events, last level cache related or core 

related or both, exhibit high correlation with performance in these complex scenarios. 

  

Figure 5: The third set of experiments. In these experiments each core is assigned two VMs. 

The cores are selected in such that they share the last level cache (the L2 cache). 

Figure 6 depicts fourth set of experiments performed for this study. Here we again fired 

up four virtual machines sharing cores in pairs, but unlike third set of experiments, these 

cores have separate last level caches (level two caches). 

The results for fourth set and third set are to investigate whether the last level cache and 

core’s architectural resources are performance bottlenecks. 
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Figure 6: The fourth set of experiments. In these experiments each core is assigned two 

VMs. The cores are selected in such that they have separate last level cache (the L2 cache). 

One of the important goals of this work is to capture the information that can be 

conveyed to the virtual machine monitor or across the virtual machines and, aid scheduling of 

the workloads and virtual machines.  Thus we selected hardware events for shared resources 

and investigated if these events exhibit a high correlation with overall system performance. 

The results for all of the experiments are presented in the next section.
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CHAPTER IV 
 

 

RESULTS 

 

In this section, results from our experiments are presented. As explained in section 3.3 

each experiment creates a data file. This data file can be queried to extract the hardware event 

counts for the experiment. This process of querying the data file and capturing the 

information were automated using unix and perl scripts. These scripts are included in 

appendix C. The numbers extracted were inputs to a C program that created schedules, as 

mentioned in section 3. Section 4.1 illustrates this further with an example. 

4.1 Example 

This subsection illustrates with an example, how we extracted data from data files created 

by the perf tools. 

The first step in this process is to query the data file using perf record command. 

perf kvm --host --guest report -s pid -n --stdio -i " . $file . " 

perf kvm –host –guest: This option means that this query is looking at the collected guest 

OS data.
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-s pid: This option sorts the results of the query according to the process ids. The process ids 

for programs executing for experiment are known and hence statistics for the experiment can 

be separated from those for background processes of the operating system. 

-n: This option ensures that a column with number of samples appears in the output of the 

query. In other words it simply means this option with –s pid gives per process count of the 

hardware event. 

--stdio –i: This option allows to specify an input file to this query. 

A sample output obtained by querying a data file is shown. 

# Events: 1M LLC-loads 

# Overhead Samples            Command:  Pid 

# ........ ..........  ..................... 

    50.06%     831262               qemu-kvm:18099 

    22.44%     459262               qemu-kvm:18097 

    20.26%     277403               qemu-kvm:18095 

     6.94%     124506               qemu-kvm:18093 

     0.12%       5074                swapper:    0 

     0.04%        221             khugepaged:   60 

     0.02%        238          udisks-daemon: 1275 

     0.01%        696             irqbalance:  748 

     0.01%        763            kworker/2:1:22201 

     0.01%        490                    ssh:22245 

     0.01%        411                   perf:22238 

     0.01%         97            kworker/0:0:21089 

     0.01%        196                   perf:22022 

     0.00%        235            kworker/u:0:14637 

     0.00%        272            kworker/2:2:21910 
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The output is trimmed to include only top 15 rows. As seen in the result above the 

process ids for programs of the experiment occur in top rows. This due to the fact no other 

program apart from Linux background processes was executing alongside the experiments.  

In the next step, output in above form acts as an input to another script, written in perl, 

using this program data is arranged in following format. 

Benchmark 1 Percentage Hardware event 

count 

Benchmark 

2 

Percentage Hardware event 

count 

Bodytrack 50.14% 14478 Canneal 45.46% 13248 

Bodytrack 72.93% 293377 dedup 26.64% 137280 

Bodytrack 31.84% 286460 facesim 67.93% 653218 

Bodytrack 46.98% 302866 ferret 52.57% 540098 

Bodytrack 62.54% 326703 freqmine 36.96% 570936 

Bodytrack 28.92% 265136 streamcluster 70.91% 706903 

Bodytrack 69.02% 323999 swaptions 30.58% 331129 

canneal 63.13% 376236 dedup 36.45% 166254 

canneal 21.38% 357703 facesim 78.33% 701113 

canneal 34.1% 368753 ferret 65.46% 641583 

canneal 49.38% 448961 freqmine 50.05% 635654 

canneal 18.91% 269278 streamcluster 80.82% 810538 

canneal 56.38% 440902 Swaptions 42.82% 408154 

Dedup 14.69% 159312 Facesim 85.06% 686472 

Dedup 23.32% 158846 Ferret 76.34% 603922 

Dedup 36.84% 180384 Freqmine 62.55% 653184 

Dedup 12.51% 129699 Streamcluster 87.32% 730781 

Dedup 43.64% 182687 Swaptions 55.87% 410496 

Facesim 65.36% 634891  Ferret 34.28% 576131 

Facesim 78.53% 805382 Freqmine 21.04% 513650 

Facesim 46.28% 509313 Streamcluster 53.48% 779949 

Facesim 82.71% 744109 Swaptions 16.97% 366302 

Ferret 65.79% 738963 Freqmine 33.51% 514360 

Ferret 30.92% 461358 Streamcluster 68.74% 833372 

Ferret 71.34% 692381 Swaptions 28.05% 351548 

Freqmine 18.6% 352880 Streamcluster 81.03% 916254 

Freqmine 56.44% 665622 Swaptions 42.83% 480416 

Streamcluster 84.61% 833287 Swaptions 15% 219057 

 

Table 1: An example of hardware event counts gathered in our experiment. Here the hardware 

event concerned is loads from the last level cache. 
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The data collected from all of the experiments was arranged as shown. This data acts as 

an input to another program (see appendix C). This program creates all possible schedules for 

the eight core machine using the experimental data. This involves selecting four experiments 

such that eight different benchmarks are selected. Also it is ensured that schedules do not 

repeat. The hardware event count for each schedule is calculated as total of hardware counts 

for each benchmarks involved. The schedules are sorted according to this total hardware 

event count. Similar to the hardware event count, the total time of execution for a schedule is 

found by adding the total execution time for each benchmark in the schedule.   

After finding the total of hardware event count and the total time of execution for all of 

the schedules, Microsoft excel was used to find the coefficient of correlation between the 

total hardware event count and the total time of execution. The value of correlation 

coefficient varies between -1 and 1, a value of correlation coefficient close to 1 means 

variables involved change closely in tandem. A correlation coefficient of negative one means 

when one variable increases the other decreases. A value of zero for correlation coefficient 

means variables involved are uncorrelated.  The coefficient of correlation between the total of 

time of execution and the total of last level cache loads, for above example was calculated to 

be 0.959. 
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4.2 Results for first set of experiments following table shows results of our first set of 

experiments, represented in Figure 3. 

Hardware events (performance metric) Correlation with total time 
Cycles for which instruction queue is full 0.9746 
Cycles during which ROB is full 0.9653 
L1 Accesses 0.9599 
Loads from LLC 0.9590 
Mispredicted Branches 0.9584 
Cycles when Reservation Stations are full 0.9564 
Branches 0.9520 
L1 misses 0.9477 
Stores to LLC 0.8236 

Number of lines fetched from memory 0.4732 

 

Table 2: shows hardware events and coefficient of correlation between the total event count 

and the total of time of execution. These numbers are calculated from results for first set of 

experiments performed in this work. 

Table 2 shows the correlation coefficients obtained after processing the data gathered 

from the first set of experiments. As seen from the table hardware events that closely 

correlate with the performance that is the total time of execution are cycles for which 

instruction queue is full, cycles during which reorder buffer is full, accesses to the level one 

cache, loads from the last level cache, mispredicted branches and cycles when the reservation 

stations are full. First these results confirm the importance of the memory related events 

towards the performance. Second, close correlation of the hardware events related to 

architectural resources in each core with the performance means utilization of architectural 

resources reservation station, reorder buffer, instruction queue are good indicators of 

performance. Third, close correlation of branches and mispredicted branches with 

performance reaffirms the importance of branch prediction with performance, also shown by 

Bellosa et al. [13]. 

The platform under consideration belongs to Intel x86 family of computers, which 

implements deep pipelining this means a branch is associated with severe performance 
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penalty. As pipeline has to be stalled until the branch is resolved. To avoid this branch 

prediction is implemented. This way pipeline can use predicted result for the branch and 

predicted target when a branch occurs. A problem in this scheme is that pipeline has to be 

flushed if result of the branch instruction is mispredicted. This means that whenever such a 

misprediction occurs the performance takes a hit. This phenomenon is reflected in the 

statistics gathered.  

In the first set of experiments, varied hardware events were considered in order to find 

hardware events that can be good statistical indicators of the performance. These results from 

the first set of experiments also dictate the selection of hardware events for further 

experiments. 

4.3 Results for second set of experiments: The table below shows results for second set of 

experiments represented in Figure 4. 

Hardware events (performance metric) Correlation with total time 

Cycles in which instruction queue is full 0.954 

Cycles in which Reservation Stations are full 0.937 

L1  misses 0.878 

Cycles during which ROB 0.867 

LLC loads 0.835 

Mispredicted Branches 0.817 

 

Table 3: shows hardware events and coefficient of correlation between the total event count 

and the total of time of execution. These numbers are calculated from the results for the 

second set of experiments in this work. 

The second set of experiments was intended at study the case where virtual machines 

share a physical core. The statistics obtained from the results of the second set of experiments 

show that when two virtual machine share same physical core hardware events related to 

architectural resources within the core, namely instruction queue, reservation stations, level 

one cache and, reorder buffer, correlate closely with performance of the system and the 
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coefficient of correlation for hardware event for last level cache takes a lower value than that 

observed in the first set of experiments where each virtual machine had a core of its own.  

4.4 Results for third set of experiments: The table below shows results for third set of 

experiments represented in Figure 5. 

Hardware events (performance metric) Correlation with total time 

Cycles in which Instruction queue is full 0.951 

Cycles in which Reservation Stations are full 0.937 

LLC loads 0.922 

# lines loaded from memory 0.732 

 

Table 4: shows hardware events and coefficient of correlation between the total event count 

and the total of time of execution. These numbers are calculated from results for third set of 

experiments performed in this work. 

In the third set of experiments virtual machines shared a CPU core and four virtual 

machines shared a last level cache. The sharing of last level cache means the last level cache 

becomes important for the overall performance, this is reflected by the increased value of 

coefficient of correlation for loads from the last level cache. Notice that this value was much 

less in second set of experiments. Also it can be observed that the number of lines loaded 

from the memory have a higher correlation with the performance than that observed in the 

first set of experiments. Because two virtual machines share a core hardware events related to 

the physical core also exhibit very high correlation with overall system performance. 
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4.5 Results for fourth set of experiments: The table below shows results for Fourth set of 

experiments represented in Figure 6. 

Hardware events (performance metric) Correlation with total time 

Cycles in which Instruction queue is full 0.957 

Cycles in which Reservation Stations are full 0.93 

LLC loads 0.926 

# lines loaded from memory 0.778 

 

Table 5: shows hardware events and coefficient of correlation between the total event count 

and the total of time of execution. These numbers are calculated from results for fourth set of 

experiments performed in this work. 

The fourth set of experiments scheduled four virtual machines such that they share CPU 

cores in pairs but each pair has its own last level cache. The hardware events of the last level 

cache are closely correlated with the performance because virtual machines share the last 

level cache in pairs. Another interesting observation is that correlation of the number lines 

loaded from the memory has increased as compared to the third set of experiments. In this set 

of experiments each pair of virtual machines has its own last level cache and thus the main 

memory becomes for important for performance. Higher values of correlation between events 

related physical core and system performance are present in both third and fourth set of 

experiments. This means the contention for shared resources within a core influences the the 

system performance.
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CHAPTER V 
 

 

CONCLUSIONS 

 

As seen from section 4.2 table 1, hardware events related to architectural resources 

within the core exhibit very high correlation with performance. This reaffirms that the 

architectural resources within a core are very important for performance as seen by the 

workloads.  

In all of the experiments performed, the count of loads from the last level cache, the 

cycles for which instruction was full, cycles for which reorder buffers are full, are the 

hardware events that always exhibited good correlation with overall system performance. 

These events can be good indicators of resource contention and overall system performance 

in virtualized system. 

When virtual machines are scheduled to share the last level cache the hardware event, 

which counts the loads coming from last level cache, shows highest correlation with overall 

system performance, amongst other last level cache related hardware events. Thus the count 

of the loads coming from the last level cache is a good indicator of the contention between 

virtual machines for the last level cache and the effect of this contention on overall system 

performance.
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When virtual machines are scheduled to share the same physical core the hardware 

events, that count cycles for which instruction queue was full, cycles for which reorder 

buffers were full and, misses in level one cache, exhibit highest values of correlation with 

overall system performance. Thus cycles for which instruction queue is a full, cycle for which 

reorder buffers are full and misses from level one cache are good indicators of contention for 

the core’s architectural resources and effect of this contention on overall system performance. 

When scheduling of virtual machines is such that virtual machines share a physical 

core and a last level cache hardware events, that count cycles for which instruction queue was 

full, cycles for which reorder buffers were full, loads from last level cache, exhibit highest 

values of correlation with overall system performance. In this case contention occurs at 

physical core level as well for the last level cache and hence hardware events related to both 

resources show high correlation with overall system performance.  These three events showed 

highest values of correlation among other events and hence are good indicators of resource 

contention as well as overall system performance. 

For a fixed number of virtual machines, if scheduling is so performed as to reduce the 

contention for last level cache, hardware event that counts number of loads coming from the 

memory shows higher correlation with overall system performance. This hardware event is an 

indicator of contention for main memory and an increase in correlation of loads coming from 

main memory and overall system performance means contention for memory is affecting the 

performance of the system. Thus in such scenarios the count of loads coming from memory is 

a good indicator of contention for memory and overall system performance. 

5.1 Future work:  

In this work hardware events related to share resources in virtualized systems were studied to 

see how closely they can correlate the usage of the shared resource with overall system 
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performance. These hardware events captured by the performance counters and details about 

sharing of resources will act as inputs to the scheduler. The scheduler of a virtualization 

solution in turn will use this information to take scheduling decisions that will reduce 

contention for shared resources, reduce energy consumption and still maintain service quality.  

Studying the scheduler of a virtualized system and modifying it to solve this multivariable 

optimization problem will make this work usable on a real virtualization solution.
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APPPENDICES 

 

 

Appendix A  

Description of benchmark programs from PARSEC suite used in our experiments. 

1) Canneal: This kernel was developed by Princeton University. It uses cache-aware 

simulated annealing (SA) to minimize the routing cost of a chip design . Canneal uses 

fine-grained parallelism with a lock-free algorithm and a very aggressive synchronization 

strategy that is based on data race recovery instead of avoidance.  

2) Dedup: This kernel was developed by Princeton University. It compresses a data stream 

with a combination of global and local compression that is called ’deduplication’. The 

kernel uses a pipelined programming model to mimic real-world implementations. The 

reason for the inclusion of this kernel is that deduplication has become a mainstream 

method for new generation backup storage systems. 

3) Facesim: This Intel RMS application was originally developed by Stanford University. It 

computes a visually realistic animation of the modeled face by simulating the underlying 

physics. The workload was included in the benchmark suite because an increasing 

number of animations employ physical simulation to create more realistic effects. 

4) Ferret: this application is based on the Ferret toolkit which is used for content-based 

similarity search. It was developed by Princeton University. The reason for the inclusion 

in the benchmark suite is that it represents emerging next-generation search engines for 

non-text document data types. In the benchmark, we have configured the Ferret toolkit 

for image similarity search. Ferret is parallelized using the pipeline model.
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5) Freqmine: This application employs an array-based version of the FP-growth (Frequent 

Pattern-growth) method for Frequent Itemset Mining (FIMI). It is an Intel RMS 

benchmark which was originally developed by Concordia University. Freqmine was 

included in the PARSEC benchmark suite because of the increasing use of data mining 

techniques. 

6) Streamcluster: This RMS kernel was developed by Princeton University and solves the 

online clustering problem. Streamcluster was included in the PARSEC benchmark suite 

because of the importance of data mining algorithms and the prevalence of problems with 

streaming characteristics. 

7) Bodytrack: This computer vision application is an Intel RMS workload which tracks a 

human body with multiple cameras through an image sequence. This benchmark was 

included due to the increasing significance of computer vision algorithms in areas such as 

video surveillance, character animation and computer interfaces. 

8) Swaptions: The application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. Swaptions employs Monte 

Carlo (MC) simulation to compute the prices.  
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Appendix B 

 

This appendix has an example script that was used to execute an experiment. 

perf kvm --guest --host --guestmount /mnt/guest-5555-root record -e 

$5 -a & 

time ssh -p5554 localhost "./run-parsec.sh $1 native 1" & 

pid0=$! 

time ssh -p5555 localhost "./run-parsec.sh $2 native 1" &  

pid1=$! 

wait $pid0 

wait $pid1 

killall -s SIGINT perf 

mv perf.data.kvm ./output-data/$5-5554-5555-$1-$2 

 

The Steps performed in this script are 

1) Perf record command is executed with $5 as the parameter which is the mask for the hardware 

event taken from Intel’s manual for xeon machine. 

2) Two parsec benchmarks are started within two different virtual machines. 

3) The script runs until both benchmarks finish and records the hardware event count. 

4) In the end it saves the data file and kills the perf command
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Appendix C 

 

Appendix C describes and presents the scripts used for processing the data gathered in experiments. 

1) The Perl script below processes the perf file that has captured the count of loads coming to the last 

level cache. It queries the data file and store the query output in another text file. 

#!/usr/bin/perl -w 

use strict; 

use warnings; 

my @files = </root/output-data/LLC-loads-5554-5555*>; 

my $file; 

foreach $file (@files){ 

 system "echo " . $file . ">>~/myout \n"; 

 system "perf kvm --host --guest report -s pid -n --stdio -i " . $file . " | grep \"31548\\|31550\\"  

>>~/myout\n"; 

} 
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2) #!/usr/bin/perl -w 

use strict; 

use warnings; 

 

my @benchmark1;  

my @benchmark2; 

my @array; 

my $file = "myout"; 

my $fileout = ">>results.csv"; 

my $perfcounter = "empty"; 

my $pctr; 

my @p; 

open FILE, $file; 

my $flag1 = 0; 

my $flag2 = 0; 

my $flag3 = 0; 

#open MYFILE, $fileout; 

# read the file line by line 

my $line; 

foreach $line(<FILE>){ 

 chomp($line); 

 if($flag1 == 1 && $flag2 == 1 && $flag3 == 1){  

  open MYFILE,">>",$fileout; 

  print MYFILE @benchmark1; 

  print MYFILE @benchmark2; 

  print MYFILE "\n"; 

  close MYFILE;  

  @benchmark1 = (); 

  @benchmark2 = (); 

  $flag1 = 0; 

  $flag2 = 0; 

  $flag3 = 0; 

 } 

 if(index($line, "5554") != -1){ 

   # print the data to file 

   # clear all the arrays 

   @array = (); 

   @array = split(/-/,$line); 

   #Benchmark 1 

   push(@benchmark2, pop(@array)); 

   push(@benchmark2,','); 

   #Benchmark 2 

   push(@benchmark1, pop(@array));   

   push(@benchmark1,','); 

   #What are we counting ? 

   pop(@array); 

   pop(@array); 

   $pctr = pop(@array); 

   @p = (); 
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   @p = split(/\//,$pctr); 

   $pctr = pop(@p); 

   if($pctr ne  $perfcounter){ 

    $fileout = $pctr.".csv"; 

    #print $fileout; 

    $perfcounter = $pctr; 

    #close MYFILE; 

    open MYFILE,">",$fileout;  

    print MYFILE "Benchamark1".","."Percentage".","."Count".","; 

    print MYFILE "Benchmark2".","."Percentage".","."Count"; 

    print MYFILE "\n"; 

    #print $fileout; 

    close MYFILE; 

   } 

   $flag1 = 1; 

  }  

 #Case 2 We are on second line get the stats for one benchmark 

 elsif(index($line,"324") != -1){ 

  @array = split(' ',$line); 

  if(index($line, "32469") != -1 ){ 

   #Percent 1  

   push(@benchmark1, shift(@array)); 

   push(@benchmark1,','); 

   #count 1  

   push(@benchmark1, shift(@array)); 

   push(@benchmark1, ','); 

   $flag2 = 1; 

  }  

  elsif(index($line, "32471") != -1){ 

   #percent 2  

   push(@benchmark2,shift(@array)); 

   push(@benchmark2,','); 

   #count 2  

   push(@benchmark2,shift(@array)); 

   $flag3 = 1; 

  } 

 }  

} 

close FILE; 

close MYFILE; 

 

 

This perl script processes the text output generated by script one described in this appendix. 

This script produces results for each experiment. It gives out details about each experiment, 

the names of the benchmarks executed and hardware event count associated with each 

benchmark 
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1 2 3 4 5 6 7 8 time LLC loads

freqmine ferret streamclusterdedup swaptions canneal facesim bodytrack 4294 4070235

swaptions ferret streamclusterdedup freqmine canneal facesim bodytrack 4298 4073247

swaptions freqmine streamclusterdedup ferret canneal facesim bodytrack 4322 4081275

freqmine ferret swaptions facesim streamclusterdedup canneal bodytrack 4326 4113140

freqmine ferret facesim dedup swaptions canneal streamclusterbodytrack 4327 4073625

swaptions facesim streamclusterdedup freqmine canneal ferret bodytrack 4328 4114465

swaptions ferret facesim dedup freqmine canneal streamclusterbodytrack 4331 4076637

swaptions facesim freqmine dedup ferret canneal streamclusterbodytrack 4331 4104561

swaptions facesim streamclusterdedup ferret canneal freqmine bodytrack 4334 4106009

swaptions ferret freqmine dedup facesim canneal streamclusterbodytrack 4335 4105437

streamclusterfreqmine ferret dedup swaptions canneal facesim bodytrack 4338 4112264

swaptions ferret streamclusterdedup facesim canneal freqmine bodytrack 4338 4106885

ferret facesim freqmine dedup swaptions canneal streamclusterbodytrack 4338 4098164

swaptions facesim ferret dedup freqmine canneal streamclusterbodytrack 4339 4100031

ferret facesim streamclusterdedup swaptions canneal freqmine bodytrack 4341 4099612

freqmine facesim streamclusterdedup swaptions canneal ferret bodytrack 4343 4098999

swaptions ferret freqmine facesim streamclusterdedup canneal bodytrack 4345 4100686

freqmine facesim ferret dedup swaptions canneal streamclusterbodytrack 4354 4084565

swaptions freqmine facesim dedup ferret canneal streamclusterbodytrack 4355 4084665

swaptions freqmine streamclusterdedup facesim canneal ferret bodytrack 4356 4123369

freqmine ferret streamclusterdedup facesim canneal swaptions bodytrack 4356 4131962

freqmine ferret swaptions facesim dedup canneal streamclusterbodytrack 4358 4114943

streamclusterferret freqmine dedup swaptions canneal facesim bodytrack 4359 4123240

streamclusterfreqmine facesim dedup swaptions canneal ferret bodytrack 4360 4130088

swaptions freqmine ferret facesim streamclusterdedup canneal bodytrack 4361 4117783

streamclusterfreqmine swaptions ferret dedup canneal facesim bodytrack 4361 4130188

streamclusterfreqmine swaptions ferret facesim dedup canneal bodytrack 4362 4131775

ferret facesim streamclusterdedup freqmine canneal swaptions bodytrack 4363 4127701

swaptions freqmine ferret dedup facesim canneal streamclusterbodytrack 4367 4108935

streamclusterfreqmine swaptions facesim ferret dedup canneal bodytrack 4370 4155169

freqmine facesim streamclusterdedup ferret canneal swaptions bodytrack 4371 4118632

streamclusterfreqmine swaptions dedup ferret canneal facesim bodytrack 4372 4144039

freqmine ferret swaptions dedup facesim canneal streamclusterbodytrack 4373 4129670

swaptions ferret freqmine facesim dedup canneal streamclusterbodytrack 4377 4102489

ferret facesim swaptions dedup freqmine canneal streamclusterbodytrack 4380 4125409

streamclusterfreqmine facesim dedup ferret canneal swaptions bodytrack 4388 4149721

freqmine facesim swaptions dedup ferret canneal streamclusterbodytrack 4388 4116340

streamclusterfreqmine swaptions facesim dedup canneal ferret bodytrack 4391 4171406

streamclusterferret swaptions facesim freqmine dedup canneal bodytrack 4391 4166145

swaptions freqmine ferret facesim dedup canneal streamclusterbodytrack 4393 4119586

streamclusterferret facesim dedup swaptions canneal freqmine bodytrack 4395 4128078

streamclusterfreqmine ferret dedup facesim canneal swaptions bodytrack 4400 4173991

streamclusterferret swaptions dedup freqmine canneal facesim bodytrack 4401 4150485

streamclusterfreqmine swaptions facesim ferret canneal dedup bodytrack 4404 4178287

streamclusterfreqmine swaptions dedup facesim canneal ferret bodytrack 4406 4186133
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streamclusterfreqmine swaptions facesim ferret canneal dedup bodytrack 4404 4178287

streamclusterfreqmine swaptions dedup facesim canneal ferret bodytrack 4406 4186133

streamclusterfreqmine swaptions ferret facesim canneal dedup bodytrack 4408 4179163

streamclusterfreqmine ferret facesim swaptions dedup canneal bodytrack 4411 4180547

streamclusterfreqmine ferret facesim swaptions canneal dedup bodytrack 4411 4171890

swaptions ferret freqmine dedup streamclustercanneal facesim bodytrack 4411 4179476

swaptions freqmine streamclusterferret dedup canneal facesim bodytrack 4414 4144662

swaptions freqmine streamclusterferret facesim dedup canneal bodytrack 4415 4146249

streamclusterferret facesim dedup freqmine canneal swaptions bodytrack 4417 4156167

streamclusterferret freqmine dedup facesim canneal swaptions bodytrack 4421 4184967

streamclusterfreqmine ferret facesim dedup canneal swaptions bodytrack 4426 4184642

streamclusterferret swaptions facesim dedup canneal freqmine bodytrack 4426 4169396

streamclusterferret swaptions facesim freqmine canneal dedup bodytrack 4433 4184733

streamclusterferret swaptions dedup facesim canneal freqmine bodytrack 4441 4184123

swaptions facesim freqmine dedup streamclustercanneal ferret bodytrack 4441 4220694

swaptions freqmine ferret dedup streamclustercanneal facesim bodytrack 4443 4182974

swaptions ferret facesim dedup streamclustercanneal freqmine bodytrack 4447 4184314

streamclusterferret freqmine facesim swaptions dedup canneal bodytrack 4448 4177924

streamclusterferret freqmine facesim swaptions canneal dedup bodytrack 4448 4169267

freqmine ferret swaptions dedup streamclustercanneal facesim bodytrack 4449 4203709

swaptions facesim ferret dedup streamclustercanneal freqmine bodytrack 4455 4207708

swaptions freqmine streamclusterferret facesim canneal dedup bodytrack 4461 4193637

streamclusterferret freqmine facesim dedup canneal swaptions bodytrack 4463 4182019

swaptions freqmine facesim dedup streamclustercanneal ferret bodytrack 4465 4200798

freqmine ferret facesim dedup streamclustercanneal swaptions bodytrack 4465 4209391

ferret facesim freqmine dedup streamclustercanneal swaptions bodytrack 4476

freqmine ferret swaptions facesim streamclustercanneal dedup bodytrack 4481 4237957

streamclusterfacesim freqmine dedup swaptions canneal ferret bodytrack 4483 4257181

swaptions ferret streamclusterfacesim freqmine dedup canneal bodytrack 4485 4258868

freqmine facesim ferret dedup streamclustercanneal swaptions bodytrack 4492 4220331

ferret facesim swaptions dedup streamclustercanneal freqmine bodytrack 4496 4233086

streamclusterfacesim ferret dedup swaptions canneal freqmine bodytrack 4497 4244195

freqmine facesim swaptions dedup streamclustercanneal ferret bodytrack 4498 4232473

swaptions ferret freqmine facesim streamclustercanneal dedup bodytrack 4500 4225503

streamclusterfacesim freqmine dedup ferret canneal swaptions bodytrack 4511 4276814

swaptions freqmine ferret facesim streamclustercanneal dedup bodytrack 4516 4242600

swaptions freqmine streamclusterfacesim ferret dedup canneal bodytrack 4517 4262366

streamclusterfacesim ferret dedup freqmine canneal swaptions bodytrack 4519 4272284

swaptions ferret streamclusterfacesim dedup canneal freqmine bodytrack 4520 4262119

freqmine ferret streamclusterfacesim swaptions dedup canneal bodytrack 4523 4283101

freqmine ferret streamclusterfacesim swaptions canneal dedup bodytrack 4523 4274444

streamclusterfacesim swaptions dedup freqmine canneal ferret bodytrack 4525 4284426

swaptions ferret streamclusterfacesim freqmine canneal dedup bodytrack 4527 4277456

streamclusterfacesim swaptions dedup ferret canneal freqmine bodytrack 4531 4275970

swaptions freqmine streamclusterfacesim dedup canneal ferret bodytrack 4538 4278603

freqmine ferret streamclusterfacesim dedup canneal swaptions bodytrack 4538 4287196

 

Table 6:  Schedules generated according to hardware event loads form the last level cache and 

mapped with total time of execution for each schedule. 
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