
A DYNAMIC RECONFIGURABLE COMPUTER WITH

A DYNAMIC GENETIC ALGORITHM

By

KAZUNORI NISHIMURA

Associate of Arts

Central Christian College of Kansas

McPherson, Kansas

2002

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2006

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 2008

ii

A DYNAMIC RECONFIGURABLE COMPUTER WITH

A DYNAMIC GENETIC ALGORITHM

Thesis Approved:

Dr. Sohum Sohoni

Thesis Advisor

Dr. Louis Johnson

Dr. Weihua Sheng

Dr. A. Gordon Emslie

Dean of the Graduate College

iii

ACKNOWLEDGEMENT

First of all, I thank my parents, Mr. Kazuo and Ms. Reiko

Nishimura, for their support. Without their help, I would

not be able to come to U.S.A and continue studying for a

long time. Also I thank my sister and brother for their

patience and my host family for their support. I appreciate

all faculty members that I took classes from. Among the

faculty members, I give special remarks to my thesis

committee members, Dr. Sohum Sohoni, Dr. Louis Johnson,

and Dr. Weihua Sheng. Dr. Sohoni offered me the

opportunities to use research resources and advice to

complete my research. Without his help, I would not be

able to complete my research. Also I thank to people in

Writing Center for their help in the thesis edition and the

lab assistants in CEAT labs and Alvin Ng for special

accommodation on labs resources.

Kazunori Nishimura

iv

TABLE OF CONTENTS

Chapter Page

CHAPTER 1
 INTRODUCTION .. 1

1.0 Definition of reconfigurable computer .. 2

1.1 Motivation ... 4

1.2 Thesis Organization .. 6

CHAPTER 2
 REASONS AND PROBLEM STATEMENT .. 7

2.0 Reasons for our proposal ... 7

2.1 Problem Statements ... 10

CHAPTER 3
 RECONFIGURABLE MULTI-CORE SYSTEM WITH GENETIC CONTROL 13

3.0 Assumptions .. 13

3.0.0 Configuration constrains .. 13

3.0.1 Data centric approach... 18

3.0.2 Inforuction Buffer .. 19

3.0.3 Brief idea of architecture of proposed system .. 19

3.1 Optimization Technique .. 20

3.1.0 General Genetic Algorithm: Background information .. 21

3.1.1 Specialized General Genetic Algorithm... 26

 3.1.1.0 Dynamic population .. 26

 3.1.1.1 Off by one theory .. 31

v

TABLE OF CONTENTS

Chapter Page

 3.1.1.2 Multiple Crossover Operation with multiple parents .. 33

 3.1.1.3 Fitness function ... 34

 3.1.1.4 Running BEST .. 38

CHAPTER 4
 STATIC RECONFIGURABLE SYTEM: GENETIC ALGORITHM EVALUATION 40

4.0 Reason for static reconfigurable computer implementation .. 40

4.1 Assumptions for Simulation .. 41

4.1.0 Stochastic Inforuction Generator ... 41

4.1.1 Dependencies and inforuction stream .. 44

4.2 Genetic algorithm for the static operation ... 45

4.3 Simulation settings and simulation results .. 48

4.4 Simulation Results and Observations .. 52

CHAPTER 5
 DYNAMIC RECONFIGURABLE SYSTEM .. 67

5.0 Specific details of the dynamic genetic algorithm .. 67

5.1 Simulation settings .. 70

5.2 Simulation Results and Observations .. 72

CHAPTER 6
 CONCLUSION AND FUTURE WORK ... 82

6.0 Problems .. 82

6.1 Future work ... 83

6.2 Applications .. 86

6.3 Conclusion ... 87

vi

TABLE OF CONTENTS

Chapter Page

APPENDIXIES .. 89

 APPENDIX A: REFERENCES ... 89

 APPENDIX B: TABLES AND FIGURES: SETTINGS AND RESULTS 93

VITA .. 123

vii

 LIST OF FIGURE

Table Page

FIGURE1.1: GRAPH OF YEARS VERSUS NUMBER OF TRANSISTOR ON A SINGLE CHIP [2] 1

FIGURE1.2: LIST OF THREE ESSENTIAL CHARACTERISTICS FOR THE PROPOSED SYSTEM 6

FIGURE2.1 LIST OF PROBLEM STATEMENT WE WILL SOLVE TO CREATE THE PROPOSED SYSTEM 12

FIGURE3.1 OPERATION OF THE GENETIC ALGORITHM .. 24

FIGURE3.2 OPERATION FLOWCHART FOR THE GENETIC ALGORITHM .. 24

FIGURE3.3 OPERATION FLOWCHART FOR THE MODIFIED GENETIC ALGORITHM ... 33

FIGURE3.4 OPERATION FLOWCHART FOR THE FITNESS FUNCTION .. 38

FIGURE4.1 OPERATION FLOWCHART FOR THE INFORUCTION GENERATION FOR EACH CYCLE 44

FIGURE4.2 OPERATION FLOWCHART FOR THE GENETIC ALGORITHM FOR STATIC OPERATION 46

FIGURE4.3 OPERATION FLOWCHART FOR THE SIMULATION STAGE OF GENETIC ALGORITHM FOR STATIC

APPLICATION ... 47

FIGURE4.4 APITCGEN FOR DIFFERENT TYPES OF SYSTEMS .. 53

FIGURE4.5 APITCGEN FOR DIFFERENT TYPES OF SYSTEM .. 54

FIGURE4.6 APITCALL WITH BEST FOR DIFFERENT TYPES OF SYSTEMS ... 55

FIGURE4.7 SPITCALL WITH BEST AMONG SYSTEMS ... 55

FIGURE4.8 APITCALL WITH AVER FOR DIFFERENT TYPES OF SYSTEM .. 57

FIGURE4.9 SPITCALL WITH AVER AMONG SYSTEMS .. 58

FIGURE4.10 APITCALL WITH BEST FOR DIFFERENT TYPES OF SYSTEM WITH MODIFIED ALGORITHM 59

FIGURE4.11 SPITCALL WITH BEST AMONG SYSTEMS WITH MODIFIED ALGORITHM 59

FIGURE4.12 APITCALL WITH AVER FOR DIFFERENT TYPES OF SYSTEM WITH MODIFIED ALGORITHM 60

FIGURE4.13 SPITCALL WITH AVER AMONG SYSTEMS WITH MODIFIED ALGORITHM 60

FIGURE4.14 CHANGES ON NUMBER OF CORES IN APITCGEN FOR BEST .. 61

FIGURE4.15 CHANGES ON NUMBER OF CORES IN APITCGEN2 FOR BEST .. 61

viii

LIST OF FIGURE

Table Page

FIGURE4.16 CHANGES ON NUMBER OF CORES IN APITCALL FOR BEST .. 63

FIGURE4.17 CHANGES ON APITCALL WITH DIFFERENT LENGTH OF SIMULATION FOR BEST 63

FIGURE4.18 CHANGES ON APITCALL FOR BEST WITH DIFFERENT ITERATION .. 64

FIGURE4.19 CHANGES ON APITCALL FOR BEST WITH DIFFERENT STALL TRIGGER..................................... 65

FIGURE5.1 RECONFIGURATION TIME DETERMINATION PROCESS .. 68

FIGURE5.2 OPERATION FLOWCHART FOR THE DYNAMIC GENETIC ALGORITHM .. 69

FIGURE5.3 BRIEF DESCRIPTION OF FLOWCHART OF THE DYNAMIC GENETIC ALGORITHM 70

FIGURE5.4 SPITCBEST WITH DYNAMIC SYSTEMS .. 73

FIGURE5.5 APITCBEST WITH DYNAMIC SYSTEMS .. 73

FIGURE5.6 SPITCGEN WITH DYNAMIC SYSTEMS .. 74

FIGURE5.7 APITCGEN WITH DYNAMIC SYSTEMS ... 74

FIGURE5.8 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE NUMBER OF CORE) 76

FIGURE5.9 NUMBER OF RECONFIGURATIONS (CHANGING THE NUMBER OF CORES) 77

FIGURE5.10 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES) 77

FIGURE5.11 AVERAGE NUMBER OF RECONFIGURATION (CHANGING THE DELAY CYCLES FOR 6 CORES CASE)

 .. 78

FIGURE5.12 APITCGEN CHANGES FROM THE CHANGE OF INFORUCTION BUFFER .. 79

FIGURE5.13 APITCGEN CHANGES FROM THE CHANGE IN CYCLES OF EACH APPLICATION 80

FIGUREB.1 APITCGEN FOR BEST FOR EACH SETTING ... 101

FIGUREB.2 APITCGEN FOR AVER FOR EACH SETTING .. 101

FIGUREB.3 APITCGEN FOR LOG FOR EACH SETTING .. 102

FIGUREB.4 APITCGEN FOR MAT FOR EACH SETTING .. 102

FIGUREB.5 APITCGEN FOR FLP FOR EACH SETTING .. 103

FIGUREB.6 APITCGEN FOR MEM FOR EACH SETTING ... 103

FIGUREB.7 PITCGEN FOR BEST WITH AMONG 2 CORES SYSTEMS ... 104

FIGUREB.8 PITCGEN FOR BEST AMONG 4 CORES SYSTEMS .. 104

ix

LIST OF FIGURE

Table Page

FIGUREB.9 PITCGEN FOR BEST AMONG 6 CORES SYSTEMS .. 105

FIGUREB.10 PITCGEN FOR BEST AMONG 8 CORES SYSTEMS .. 105

FIGUREB.11 PITCGEN FOR BEST AMONG 10 CORES SYSTEMS .. 106

FIGUREB.12 PITCGEN FOR BEST AMONG 12 CORES SYSTEMS .. 106

FIGUREB.13 PITCGEN FOR BEST AMONG 14 CORES SYSTEMS .. 107

FIGUREB.14 APITCGEN FOR BEST FOR EACH SETTING WITH MODIFIED ALGORITHM 107

FIGUREB.15 PITCGEN FOR BEST AMONG 2 CORES SYSTEMS WITH MODIFIED ALGORITHM 108

FIGUREB.16 PITCGEN FOR BEST AMONG 4 CORES SYSTEMS WITH MODIFIED ALGORITHM 108

FIGUREB.17 PITCGEN FOR BEST AMONG 6 CORES SYSTEMS WITH MODIFIED ALGORITHM 109

FIGUREB.18 PITCGEN FOR BEST AMONG 8 CORES SYSTEMS WITH MODIFIED ALGORITHM 109

FIGUREB.19 PITCGEN FOR BEST AMONG 10 CORES SYSTEMS WITH MODIFIED ALGORITHM 110

FIGUREB.20 PITCGEN FOR BEST AMONG 12 CORES SYSTEMS WITH MODIFIED ALGORITHM 110

FIGUREB.21 PITCGEN FOR BEST AMONG 14 CORES SYSTEMS WITH MODIFIED ALGORITHM 111

FIGUREB.22 APITCGEN FOR BEST WITH DIFFERENT SIMULATION CYCLE ... 111

FIGUREB.23 APITCGEN FOR BEST WITH DIFFERENT SIMULATION CYCLE ... 112

FIGUREB.24 APITCGEN FOR BEST WITH DIFFERENT SIMULATION CYCLE ... 112

FIGUREB.25 APITCGEN FOR DYNAMIC SYSTEM WITH 6 CYCLE DELAY .. 117

FIGUREB.26 APITCGEN FOR DYNAMIC SYSTEM WITH 8 CYCLE DELAY .. 117

FIGUREB.27 APITCGEN FOR DYNAMIC SYSTEM WITH 10 CYCLE DELAY .. 118

FIGUREB.28 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 2 CORES) 118

FIGUREB.29 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 4 CORES) 119

FIGUREB.30 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 6 CORES) 119

FIGUREB.31 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 8 CORES) 120

FIGUREB.32 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 10 CORES)

 .. 120

FIGUREB.33 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 12 CORES)

 .. 121

x

LIST OF FIGURE

Table Page

FIGUREB.34 APITCGEN WITH DYNAMIC SYSTEMS (CHANGING THE DELAY CYCLES FIXED FOR 14 CORES)
 .. 121

FIGUREB.35 AVERAGE NUMBER OF RECONFIGURATION (CHANGING THE DELAY CYCLES FOR ALL CORES

CASE) ... 122

xi

LIST OF TABLES
Table Page

TABLE 1.1 DIFFERENT TYPES OF RECONFIGURABLE COMPUTERS IN OUR DEFINITION 4

TABLE 3.1 COMPARISON OF TWO METHODS OF RECONFIGURATION ... 17

TABLE4.1 PERFORMANCE OF SIMULATION STATIONS ... 49

TABLE4.2 STOCHASTIC DATA OF INFORUCTION GENERATION IN THE PERCENTAGE 50

TABLE4.3 AMOUNTS OF INFORUCTION THAT EACH ARCHITECTURES CAN PROCESS IN THE GIVEN

TIME UNIT ... 51

TABLE4.4 COMMON SETTING FOR EACH CONFIGURATION IN SIMULATION 51

TABLE4.5 VARIABLES AND THEIR POSSIBLE SETTINGS ... 52

TABLE4.6 STATISTICAL DATA OF SPITCALL WITH BEST ... 56

TABLE4.7 STATISTICAL DATA OF SPITCALL WITH AVER .. 58

TABLE5.1 COMMON SETTING FOR ALL SIMULATION ... 71

TABLE5.2 VARIABLE SETTING FOR EACH SIMULATION ... 71

TABLE6.1 PREVIOUS DYNAMIC APPROACH AND MAJOR PROBLEMS ... 84

TABLE B.1 CHANGES IN STOCHASTIC INFORMATION OF INFORUCTION GENERATOR – PART 1 93

TABLE B.2 CHANGES IN STOCHASTIC INFORMATION OF INFORUCTION GENERATOR – PART 2 94

TABLE B.3 SETTING OF STATIC SYSTEMS (ONLY DISPLAYS VARIABLE SETTINGS) – PART 1 94

TABLE B.4 SETTING OF STATIC CORES (ONLY DISPLAYS VARIABLE SETTINGS) – PART 2 95

TABLE B.5 SETTING OF STATIC CORES (ONLY DISPLAYS VARIABLE SETTINGS) - PART 3 96

TABLE B.6 SETTING OF STATIC CORES (ONLY DISPLAYS VARIABLE SETTINGS) - PART 4 97

TABLE B.7 SIMULATION RESULT OF S001 IN PITCGEN – PART 1 .. 97

TABLE B.8 SIMULATION RESULT OF S001IN PITCGEN – PART 2 ... 98

TABLE B.9 SIMULATION RESULT OF S001IN PITCGEN – PART 3 ... 99

xii

LIST OF TABLES
Table Page

TABLE B.10 SIMULATION RESULT OF S001IN PITCGEN – PART 4 ... 100

TABLE B.11 SETTING OF DYNAMIC SYSTEMS (ONLY DISPLAYS VARIABLE SETTINGS) – PART 1 113

TABLE B.12 SETTING OF DYNAMIC SYSTEMS (ONLY DISPLAYS VARIABLE SETTINGS) – PART 2 114

TABLE B.13 SETTING OF DYNAMIC SYSTEMS (ONLY DISPLAYS VARIABLE SETTINGS) – PART 3 115

TABLE B.14 SETTING OF DYNAMIC SYSTEMS (ONLY DISPLAYS VARIABLE SETTINGS) – PART 4 116

1

CHAPTER 1

INTRODUCTION

As a result of the major technology boost after World War II, some of the things

that we had not even imagined have come true. Examples of such kinds of dreams are

space stations, robots, digital cameras, mobile phones, handhelds, portable PCs, and

portable music players. Many technological improvements and realization of dreams

came from the invention of the transistor, and continuing improvement of transistor

technology following Moore’s Law, which predicts the growth of number of transistor in

a single chip. This law predicts that the total number of devices in a chip will double

every 12 months in the 1970s and the number of transistors will grow slower in the 1980s

(it would be double every 24 months) [1].

 Figure1.1: Graph of years versus Number of Transistor on a single chip [2]

2

The dramatic increase in the number of transistor in a single chip (depicted in

Figure 1.1 above), and the reduction in gains from aggressive superscalar techniques has

led to multi-core architecture for the CPU. Examples of multi-core CPU architectures are

Intel® Core 2™ Duo, Core 2™ Quad or cell processor that was invented by IBM and

Toshiba [3] – [5]. Since multi-cores superscalar architecture can have more processing

power compared to single core [3] – [5], it is natural trend to change the computer

architecture to obtain higher processing performance.

Also there is another trend in the area of computer architecture research. Many

computer researchers set their focus on the reconfigurable computer since the

reconfigurable computer has the potential to achieve higher processing performance

compared to the processing performance of single core CPU architecture [6] – [8]. Even

though we are using the same terminology reconfigurable computer, it has different

meaning and represents different system for different researches. In other words, there is

no clear single definition for the reconfigurable computer, and the meaning depends on

the purpose of the research. Therefore we clarify the definition of reconfigurable

computer in this study with several examples.

1.0 Definition of reconfigurable computer

Among different definitions of reconfigurable computer, there is one common

property that we can easily find. The reconfigurable computer has the ability to adjust

functionalities or architecture to achieve the correct functionalities or the superior

performance. Keeping in mind this common property, we use the term reconfigurable

3

computer as the computer system that has the abilities to adjust the architecture and

functionalities to achieve a specific objective. In our definition of reconfigurable

computer, we can identify several different types of reconfigurable systems. One

example of a reconfigurable system is the Central Processing Unit (CPU) of a general

purpose computer. The current CPUs in the market have the multiple functionalities to

implement the different logical operations and arithmetic operations. Examples of logic

operations are AND, OR, XOR and NOT. Examples of arithmetic operations are addition,

subtraction and multiplications. Among the different operations, the control command in

the instruction set reconfigure the CPU to achieve the correct functionalities to process

information [9]. Another example of reconfigurable computer is the current computer

system. Since we have sufficient chips on the current high-end motherboards, we can

operate the computer systems without any expansion cards. Although it is not necessary

to install expansion cards, we usually enhance the performance of the computer system

by installing graphic cards and sound cards and so on. In this case, we modify the system

configuration by adding more resources to improve the performance.

In the previous paragraph, the first case also shows the example of run-time or

dynamic reconfigurable computer. The dynamic reconfigurable computer changes its

system configuration or architecture during the time when operations of the system are

executing. The second example displays the off-line or static reconfigurable computer.

The static reconfigurable computer changes its characteristics during the time when the

system is not active or is turned off. In the other words, the reconfiguration is not only

happened when the system is on. Table 1.1 summarizes the types of reconfigurable

computer we describe in this section.

4

Table 1.1 Different types of Reconfigurable computer in our definition

 Types

Purpose Performance or Correctness of the functions

Method Static or Dynamic

1.1 Motivation

In the area of computer architecture research, we know that specialized computer

architecture has better performance than general computer where the specific application

or purpose is concerned. There is no doubt for this statement since this fact is very clear

from results of almost all previous researches in the area of computer architecture

research. The better performance is obtained from the optimized architecture that is

corresponding to the purpose of the system, such as mathematical operation, logical

operation, graphical operations, encoding or decoding and so on. (In this paper from this

point, the term optimized stands for “specialized” to obtain the current best performance

configuration as far as we find so far.)

However, the specific computer architectures also have several disadvantages in

the purpose that the system is not specialized for. This characteristic of computer in

general is similar to the characteristics of human brain. Most people definitely have

some specific fields that they are better in, than other areas, even though these

superiorities and inferiorities in performance are different for each person. Some people

might be good at memorizing mathematical equations, but they might be not good at

5

playing music from music score without any practice. Other people might have superior

capability in computer research and programming but they might not be good at writing

papers. Examples that we described are limited to academic subjects, but we can find

these performance differences all over human life from daily life to business world.

These characteristics are based on the environmental causes, such as what we had more

interest in, what we studied, how we grew up, and so forth. In other words, we optimized

ourselves or our brain for the characteristics that we need or what we use more often.

The proof of this performance optimization is clear on where we are concerned about the

acquisition of languages. The children who grew up with English in their schools can

speak English fluently compared to the children who did not speak English at all. This

accommodation of language abilities does not only appear in speaking, but also in

listening, writing, and reading. For example, children who grew up with Japanese can

distinguish between the meaning of words, which can have several different meanings,

even though they might sound similar or exactly same.

There is one significant characteristic difference between conventional computer

architecture and human brain, even though we usually use analogy of human brain to

explain computer operations. Human brains optimize performance or improve

performance up to certain age, but normal computer does not change architecture after

the production stage. Some reconfigurable computer changes architecture to obtain

better performance for the specific tasks, but this specialization does not work in all

situations.

Due to the technological improvements in the recent era, the complex

reconfigurable computer is not just a dream any more. With continuous changing

6

motivation towards the technological front, we try to emulate the adjustability of human

brain in a computer system using the reconfigurable computer. More specifically, we try

to implement the flexibilities of human brain that is adjusting architecture for what we

process currently. Therefore the heterogeneous reconfigurable computer that we want to

propose has the three essential properties as summarized in Figure 1.2.

1.2 Thesis Organization

 The remainder of the thesis is consisted of 6 Chapters. We start to discuss the

reasons and problems statement for our proposed system in Chapter 2. In Chapter 3, we

discuss the general idea of proposed system and the background concepts for the

proposed system. In Chapter 4, we will do simulation to get the proof that the genetic

algorithm can be used for simulation of computer architecture at high level. Also in this

chapter, we briefly go over stochastics to introduce new assumption. The simulations in

this chapter are implemented with static reconfiguration of computer architecture.

Chapter 5 describes simulations of the proposed system and observations from the results

of simulations. In Chapter 6, we finally conclude this thesis and offer suggestions for

future research.

Figure1.2: List of three Essential Characteristics for the Proposed System

• Automatically adjustable architecture

• Dynamic or run-time Reconfiguration

• Optimization for specific objectives.

7

CHAPTER 2

REASONS AND PROBLEM STATEMENT

2.0 Reasons for our proposal

In this study, we propose a multi-core reconfigurable CPU as emulating the

processing power of human brain. In this section, we go over several observations of the

general reconfigurable computer to describe reasons of our choice. Additionally, we

mention about problems that need to solve to create the system with the three properties

listed in Figure 1.2: automatic reconfiguration, dynamic reconfiguration, and optimization

for the specific target.

Assume we have a single reconfigurable core which implements the CPU, and

our system has control unit which calculates the optimized architecture or configuration.

Each time we try to reconfigure the system we cannot process the information during the

reconfiguration time. We call this interval the reconfiguration penalties. If we try to

implement the static reconfigurable CPU, the system does not try to process any

information during reconfiguration. Therefore these penalties are not so important for the

static implementation of the reconfigurable computer. As we describe in Chapter 1, we

attempt to implement a system with the dynamic reconfiguration. The insignificance

8

of the reconfiguration penalties is not same for our system. For the dynamic single core

reconfigurable system, we definitely add one more term to calculate the total time needed

to execute all information. We define the time unit we use for calculation of total Cycle

Time (CT) as Cycle Time, which is time necessary to execute the specific instruction or

the set of instruction. Relationship between total CT for static reconfigurable CPU and

total CT for dynamic reconfigurable CPU for single core case is shown in expression

(2.1) – (2.4) (Expression (2.2) is calculation for static reconfigurable CPUs and

expression (2.3) is calculation for dynamic reconfigurable CPUs). We remark on one

important fact of CT before moving to multi-core case. The CT would not be steady for

both dynamic and static reconfigurable CPU. In other words, the time is dependent on

the type of architecture we implement, and information we process during the period we

are interested in. Also CT is measured as the average time obtained from tremendously

large samples, since the instruction is not always executed in the same length of time.

 # 2.1

 2.2

_ _ _

 2.3

 2.4

where CT is Cycle Time, CTSI is Cycle Time for the Specific Instruction,
 dif is different, inst is instruction, TCT is Total Cycle Time,
 RP is reconfiguration Penalties, recon is reconfiguration,
 t is time, and ex is extra

9

As we see in expression (2.1) - (2.4), we have several different terms in

reconfiguration penalties. Extra time to find the optimized configuration in the controller

unit is usually longer than the benefit of reconfiguration. Therefore the dynamic system

might have several cases that end up with worse performance in term of total CT

compared to the static system, due to the reconfiguration penalties. As a result, the

average total amounts of information that the system can process in the given time

interval cannot produce outstanding benefit from reconfiguration. For the single core

operation, the dynamic reconfiguration would not have sufficient motivation to

implement, since it might not produce enough benefits in term of processing power as

described above.

Next we evaluate multi-core reconfigurable CPU briefly. If reconfiguration of

cores in systems has dependencies in terms of processing information, which means that

all cores in systems cannot process information during reconfiguration, the result of

simple observation would be similar to the conclusion from observation of single core

case. Therefore we need to develop a new system whose reconfiguration of each core is

independent of each other. In other words, the remainder of cores, which would not

reconfigure, can still execute information during the process of reconfiguration. In this

situation, the dynamic system equation in expression (2.1) - (2.4) cannot be used to

determine total CTs. We have to determine reconfiguration penalties with more complex

equations such as expression (2.5) and (2.6). The complexity of calculation increases

tremendously, even though expression (2.5) and (2.6) look like simple equations. So we

cannot determine benefit of reconfiguration as easy as evaluation of single core case if we

use CT as performance measurement.

10

 2.5

 2.6

2.1 Problem Statements

From the previous argument, we need to develop new performance measurement,

which we can easily use to determine the characteristics of dynamic systems and to

compare the results with several different systems to find a better one. Also new

measurement should be able to apply for static systems to compare performance between

dynamic systems and static systems. As we discuss about performance of architecture,

we not focus on the silicon area that is necessary for a whole system. We set our focus

on processing power of systems. To determine processing power of systems, we cannot

forget about one fact: results of performance measurements are dependent on benchmark

programs we choose. For example, a result from one performance measurement shows

outstanding benefits for a specific architecture, but the other performance measurement

displays poor abilities for the same architecture. These differences come from the fact

that different benchmark programs have different sequences of instructions, different

measurement techniques, and different purposes of measurements which they are

specialized for [10] – [13]. As a result of such specialization, we usually need to use

several different performance measurements to determine benefits for implementing a

where CT is Cycle Time, CTSI is Cycle Time for the Specific Instruction,
 dif is different, inst is instruction, TCT is Total Cycle Time,
 RP is reconfiguration Penalties, recon is reconfiguration,
 t is time, and ex is extra

11

specific architecture. Also most benchmark programs are developed for conventional

computer system, which might not be as dynamic as we propose. Some of the bench

mark programs might be developed for reconfigurable computers, but we would not

measure performance of brain-like computers easily with them. This is because our

proposed system has more flexibility to adjust system configurations and architectures

dynamically to purpose of systems. As we describe previously, our brain-like computer

is changing architectures according to the information we need to process while the

machine executes the information. Therefore a result of performance measurement might

not be always the same, since processing of information would change as we run the

system. From this point of view, we need to develop the new measurement method that

we could use for our purpose.

In the previous paragraph, we emphasize the importance of developing new

performance measurements for reconfigurable systems to compare each individual

system configurations. We also need to develop a performance measurement for

reconfigurations or performance prediction. Performance prediction has the huge impact

on final overall system performance measurement. The reason of the importance of

performance prediction comes from the fact that the optimization technique decides

timings for automatic reconfiguration and candidates for next configuration based on the

information obtained from performance prediction. Also the optimization technique is

critical for our system. The relationship between control algorithm and performance of

systems can be explained with analogy in a branch prediction. If branch prediction has

great precision, the performance benefit from branch prediction becomes more obvious

compared to systems without branch prediction. In automatic reconfigurable system, the

12

system with poorly developed optimization algorithm demonstrates only poor

performance compared to the static systems. On the other hand, we can observe superior

performance of dynamic automatic reconfigurable system from systems with well-

developed optimization algorithm. Therefore control algorithm, its decision criteria, and

performance prediction need to be developed carefully to obtain the sufficient results.

As we close this section, we summarize the problems obtained from our

observation in Figure 2.1. With these problems in mind, we go over proposed brain-like

system and its assumption in the next chapter.

Figure2.1 List of Problem Statement we will solve to create the proposed system

• What kinds of evaluation technique or bench mark will we use?

• What kind of performance prediction will the optimization algorithm use?

• What kind of optimization algorithm will we implement for the system?

• What kind of performance measurement will we use for the system?

13

CHAPTER 3

RECONFIGURABLE MULTI-CORE SYSTEM WITH GENETIC CONTROL

3.0 Assumptions

Before describing the general idea of our system with optimization technique and

simulation technique we implement, we introduce several assumptions we use for this

study. These assumptions are used efficiently to decrease the number of small problems

and to reduce the complexity of problems in simulation of our system.

3.0.0 Configuration constrains

There are two methods that we can use to find architecture configuration or

design in reconfigurable computers. One of the methods is that we start designing the

computer configuration from scratch. We design the candidate architecture with all

aspects, such as number of gates logics and functions implemented in the architecture,

without any previous information and any design constrains except the maximum number

14

of gate available in a reconfigurable core. This method can find the best architecture

candidate in terms of performance for a specific purpose. Even for the single static core

system, the search space of architecture configuration would be tremendously large since

we have infinite choices. As a result, the search time that is necessary to find the best

architecture would take more than a life time if we implement any search algorithm

without blueprints. This search time issue would cause more serious problems for

dynamic multi-core system. The search time that is necessary to find next configuration

of each cores would take longer than a life time of production. The time needs for the

search become too long for any numbers of cores if we do not use appropriate design

constrains or pre-designs. Since all system change processing information as time goes,

the “best” configuration of the past moment would not produce sufficient performance

benefit if the search time is too long. In the other words, there are some opportunities

that performance of system after reconfiguration would be worse than the performance of

system prior to reconfiguration. This is caused by the “inappropriate” change of system

architectures. As we describe about reconfiguration penalties in expression (2.3) - (2.4),

search time to find the next configuration for all cores should include evaluation of

performance measurement. In dynamic system, each core would be redesigned to find

better performance for each chance for reconfiguration. Therefore if search time is too

long such as the time necessary to find the next configuration from scratch, the

performance benefits from reconfiguration also diminishes.

To reduce search time, we might be able to use the current designs or

configurations of architecture as the start point of design. Such kinds of information

might help to reduce search time that is necessary to find next configurations, but we

15

cannot guarantee that the previous configuration would be efficient starting point for the

architecture designs if we adjust systems for processing information in current time. We

can verify this fact with a simple example. Assume a simple system which is processing

“information A” for a long time and current configuration optimized to process

“information A” as “configuration M”. If “information A” changes to “information B”

which require similar set of instructions to process, “configuration M” would be a

sufficient starting point to improve performance. However, the opposite case would

cause a different result. “Configuration M” would not be worthy of use if “information A”

changes to “information C,” which requires completely different pattern of instructions

compared to the instruction pattern necessary to process “information A”.

In the two previous methods, we cannot have any characteristic information for

each candidate we evaluate to find the optimized candidate beforehand. Therefore we

should measure performance of architectures after the design is completed. To compare

the candidates of next architecture configuration in the optimization algorithm, we need

to wait until several other candidates are designed and measured. We can reduce the time

necessary for multiple candidate designs by making the design process as simultaneous

operation instead of sequential single design process. However, even with such kind of

systems we cannot reduce the time necessary to complete any single candidate.

Therefore these methods are not appropriate for our dynamic system.

The reconfigurable computer with pre-defined configuration is the method we use.

This method has several benefits that increase the performance of our system. The first

benefit is that the performance increases from reduction of the time necessary to design

core architecture. Since we only use architectures that are pre-configured, we do not

16

have to spend time for designing better architecture from the beginning. This idea is

similar to the method of hierarchical design of Very Large Scale Integrated chip (VLSI)

[14]. In the VLSI, we use the predesigned cells to create a larger and more complicated

circuit. The cells used in the VLSI designs are extensively measured and well-designed

to be specialized for certain objectives. In our system, we use well-designed

architectures which are implemented in reconfigurable cores.

As we describe at the end of the previous paragraph, we only use well-defined

core architecture which we know all performance characteristics such as power

consumption, processing power, and Silicon area necessary to create. This fact generates

several other benefits. We can reduce reconfiguration penalties due to the performance

measurements of the next configuration candidates. We would know maximum

performance of each architecture configurations without any assumptions since we can

evaluate performance prior to use. We can also calculate the maximum performance of a

multi-core system with simple arithmetic from the single core specifications. This well-

established knowledge of performance can reduce the complexity of the optimization

algorithm and the work load to find better configurations in the algorithm. In other words,

the optimization algorithm is too complicated and time consuming without any prior

knowledge of characteristic information since performance information is necessary to

find better candidates. The reduction of reconfiguration penalties with preconfigured and

well-defined systems are related to improvement in the processing performance. We go

over one more benefit that is related to cost of implementation. Since we only use

preconfigured architectures that we have the possibility to use, we can reduce the size of

each reconfigurable core to the minimum requirement which is necessary to implement

17

the largest architecture we have. This benefit is related to the cost of Silicon area that is

required to implement each core. If we are designing the architecture of a core from

scratch, we cannot obtain the information for the minimum size requirement which might

be used in our system. Therefore we have to prepare overhead areas up to the limit of the

Silicon area we can use, and sizes of the reconfigurable core would be more than the

necessary area, even though the size of the final configuration might be much smaller

than what we prepare as the overheads. Table 3.1 displays comparison between two

methods: designing from scratch and using the preconfigured designs.

Table 3.1 Comparison of two methods of reconfiguration

RP stands for reconfiguration penalties

 With Scratch With Preconfigured Designs

Performance

Without RP (Static)
Better Worse

Time Necessary to

Create Next Candidate
Longer Shorter

Time Necessary to

Evaluate Next Candidate
Longer Shorter

Complexity of

Optimization Algorithm
More Complicated Less Complicated

Performance

With RP (Dynamic)
Worst Better

Silicon Areas

Used for each Design

Cannot be determined prior

to complete designs

Can be determined with

characteristics of designs

18

3.0.1 Data centric approach

One of the performance measurements we can use is processing power of

computers. This is one of the traditions we use in research of computer architecture. In

general, we use throughput which described the number of instructions we can process in

a given interval, the Instruction per Cycle (IPC), the Cycle per Instruction, and time

necessary to complete specific instruction sets [9]. These measurements are focused on

the number of instructions and the time needed to use the resources.

There is other approach which uses data instead of individual instructions [15],

[16]. This performance measurement uses the number of data or information processed

in a given interval. Our brains always process several different sets of information in our

daily lives. For example, the brain processes information from eyes to create what we

feel to “see” such as colors, dimensional aspects, textures, and distances of objects. Also

our brains process multiple sounds and identify the necessary information at the same

moments. This identification comes from frequencies, amplitude, and distance from

sources. If you think about motion of hands to grab something, human brains also

process several different sets of information to move hands as we think. Therefore as we

emulate flexibilities of the human brain, it is natural to use data centric approach for our

system to find better candidates. If we consider more details of such information sets, we

might consider them as millions of small instructions that have many dependencies. To

reduce the effects of dependencies, we not break them down to individual instructions;

instead we treat them as a set, which we define as inforuction from this point. Since we

use inforuction for finding the next candidate architecture configuration, our data centric

approach needs to define several different types of inforuction to create the performance

19

measurement details. Using these types of information, all preconfigured architectures

are measured with their characteristics such as the amount of inforuction they can handle

in a given time interval. In other words, we know all performance measurements in term

of the processing power of inforuction.

3.0.2 Inforuction Buffer

If we refer to architecture of superscalar processors in [9], we have an instruction

buffer which stores instructions temporary till they feed to each individual pipeline. This

mechanism allows us to control the flow of instructions and to utilize each pipeline as

much as possible. We implement a similar mechanism in our system, which is identified

as inforuction buffer. As we decide to use data centric approach, inforuction buffer stores

each type of inforuction in different buffers. So each time inforuction is pre-fetched, the

inforuction is separated with types of inforuction and feed into the corresponding

inforuction buffer. The inforuction in the inforuction buffer is processed in the order they

are fed in, which is the same order as first-in and first-out (FIFO) operation. This order

reduces probabilities that we have dependencies among information. Therefore the

inforuction buffer controls the flow of information and utilizes each core as much as

possible.

3.0.3 Brief idea of architecture of proposed system

The General concept of our system would be similar to a cell processor [5] or

similar to a tree. Therefore we explain our system architecture with an analogy to a tree.

For a tree, we have one big trunk which holds minerals, some nutrients, and water

20

obtained from the roots. Then the trunk sends these substances to the branches. The

branches have different number of leaves that can implement photosynthesis, which uses

sunlight to convert some nutrients and water and carbon dioxides into oxygen and some

useful nutrients. Each leaf has also different amounts of chlorophyll which determines

the capability of photosynthesis in a given day. In our system, the trunk corresponds to

the inforuction buffer, the number of leaves on a branch corresponds to the number of

cores in a system, and different amounts of chlorophyll corresponds to different

architecture configurations we implement. Therefore our system has one big information

buffer which stores and sends the inforuction to each core at the certain time and each

core has input and output port at the same location in the architecture design. Therefore

we can switch configurations of cores without any connection problems.

3.1 Optimization Technique

In this section, we introduce the genetic algorithm as the optimization technique.

The genetic algorithm is one of the newly developed field and one of the hottest topics in

research of computational intelligence. Application of genetic algorithm to research of

computer architecture is not new. The algorithm is used for research of VLSI design to

find the optimized area and optimized number of VIAs for the situation [17] – [21].

These references and [22] give more details for genetic algorithm which we do not go

over deeply. In this study, we only provide the minimum knowledge to understand

operations of the genetic algorithm.

21

3.1.0 General Genetic Algorithm: Background information

The genetic algorithm is inspired from mechanism in the natural world [22]. As

we try to emulate flexibilities of a human brain with multi-core processors, the genetic

algorithm emulates the optimization mechanism of species such as natural selection,

evolution, and mutation. In the natural world, we know that there is natural selection and

theory of evolution, which are proposed by Charles Darwin. The natural selection theory

tells us that the species with characteristics more suitable to environment will prosper,

and the species which cannot survive in the environment will decline in number, and will

be terminated eventually [23]. The evolution theory tells us that the species would

change its characteristics based on environment through generations [23]. These two

theories can explain as we go over the history of Earth. For example, the dinosaurs

prospered in a certain time in the ancient earth, but they do not survive in the current era.

There might be several different hypotheses for reasons of termination, such as climate

changes due to strike of large meteor, and survival races with the small size Mammal

species that started to prosper. All of those hypotheses tell us that there might have been

dramatic environmental changes in the ancient era and the dinosaurs could not adjust

their characteristics to the changes in the environment. There is another mechanism

which keeps the varieties of species. In the natural selection mechanism, each species

would converge to the optimized characteristics, but the other mechanism generates the

diversity in the species. This mechanism is called mutation. With mutation, the genes of

the offspring generation would have different traits from the parent generation.

We introduce several terms which are commonly used in the genetic algorithm

prior to going over the operations of the genetic algorithm. Most definitions that we use

22

come from [22]. To implement the genetic algorithm, we need to decide the targets of

optimization and how we evaluate systems with the objective we define. The targets of

optimization are anything that can be evaluated with numeric values from distance of

travels in the Traveling Salesman problems (TSP) to areas and numbers of VIAs in VLSI

designs [21] [24] [25]. The method of evaluation is called the fitness function and

numerical values obtained from fitness functions are called the fitness values. The

numeric data of fitness values represents quality of measurement of the objective. To

establish the fitness function, we also need to decide how we represent systems with some

DNA like combinations, which is called chromosome. In other words, chromosome is

representation for a possible candidate configuration of a whole system. Each entry in

chromosomes represents some traits of a system, as each set of entries in DNA represent

some kind of characteristics. For example of TSP, chromosome is the traveling path

which travelers will follow to visit necessary cities, and the entry in chromosome or gene

corresponds to a specific city which he has to visit. Set of multiple chromosomes is

called population.

At the initial stage, general genetic algorithm produces a set of chromosomes up

to population size which is defined by designer, and would not change the population

size for the entire algorithm. We usually use random generation method, in which each

gene in chromosomes is set randomly to include various chromosomes in population. We

identify these initially generated candidates as population of the first generation. After

we set population, we pick up parents of offspring with some methods such as random,

weighted random, and other methods. With chosen parents, we use some methods to

create set of offspring. One of the commonly used methods in process of offspring

23

generation is called crossover. With the crossover operation, children have some

common pattern of genes from both parents. As the name implies, crossover generates

the offspring by exchanging some gene pattern between parents which is similar to

mechanism of gene pattern succession in the offspring. Example of crossover is

displayed in Figure 3.1. After generating a candidate or candidates of next population,

we implement the mutation operation. This changes part of gene pattern randomly.

Example of mutation is also displayed in Figure 3.1. Then we evaluate generated

offspring and old generation with fitness functions. With fitness values and superiorities

of fitness values that we decide, we sort entire set of chromosomes which contains both

offspring and the entire population of previous generation. Then we implement

termination mechanism to adjust the number of chromosomes in the population to the

size of population we decide to use. After creating the new population, we designate this

set as population of the second generation. In other words, we increment generation

number each time we create new population. The processes after production of

population of the first generation are repeated continuously till certain conditions are

achieved. This condition is identified as stopping criteria. Examples of stopping criteria

are optimized candidate have sufficient fitness value or maximum generation we define is

passed. Figure 3.2 shows a flowchart of the genetic algorithm. The term iteration is used

to count the number of repetitions for the entire flowchart in Figure 3.2.

24

Figure3.2 Operation flowchart for the genetic algorithm

Start

Initialization

Generation

Evaluation

Termination

Stopping
criteria?

Satisfied Not Satisfied

Stop

1.) Initialization Stage
a. Create the chromosome randomly

2.) Generation Stage
a. Choose the parents
b. Implement Crossover
c. Implement Mutation

3.) Evaluation Stage
a. Evaluate with Fitness function

4.) Termination Stage
a. Sort the population with result of 3‐a.)
b. Choose the chromosome to terminate
c. Generate new population

5.) Check Stage
a. Check for stopping Criteria

Figure3.1 Operation of the genetic Algorithm

A C E A E B

A B C B A E

A.) Cross over operation with multiple offspring case

A B C A E B

A C E B A E

A C E B A E A C A B A E
B.) Mutation operation

25

There is significant benefit for applying the genetic algorithm as the optimization

technique. The genetic algorithm is an optimization algorithm which has both global

search and local search abilities. With the crossover operation, we implement the local

search. With mutation operation, we implement the global search, which checks

randomized candidate other than similar candidates which we produce with crossover. In

conventional optimization algorithm, most algorithms have only one search method, not

both. Also the conventional optimization technique uses the sequential evaluation, in

which the algorithm generates only single candidate, evaluates and compares with the

current system. Example of sequential optimization is simulated annealing [25]. For the

genetic algorithm, we use the parallel optimization, which generates multiple candidates,

evaluate, and compares with the previous population. We can find better candidates

more efficiently since we check more candidates simultaneously and choose better

candidates.

In this section, we discuss the general genetic algorithm. As we close this section,

we define two terms: global optimum and local optimum according to [23]. The local

optimum is better candidate than all other candidates in terms of fitness values among

results of the current search. The global optimum is best candidates among all other local

optimum in terms of fitness values. Relationship between these optimums is similar to

cost of gas in a certain state. We can find cheapest price of gases in a city when we

compare prices inside a city. This cheapest price or local minimum might not be cheapest

price all over the state or global minimum since we might find better result from another

city. This terminology would be used in this section. In next section, we go over the

genetic algorithm that we implement in our system

26

3.1.1 Specialized General Genetic Algorithm

In the previous section, we introduce background information for the genetic

algorithm. The actual genetic algorithm that we implement in our system has more

functions and is slightly different from the general genetic algorithm. In this section, we

describe the characteristics of the specialized genetic algorithm.

3.1.1.0 Dynamic population

As we explained in the previous section, the basic genetic algorithm has a fixed

size of population which is not changed for the entire algorithm. The choices of

appropriate size of population are one of the hottest topics in research of genetic

algorithms. The reason is that the size of the population is deeply related to abilities of

the optimization and time necessary to complete the search algorithm. We can explain

this with a simple example. Assume we have the genetic algorithm which implements a

fixed number of generations. If we increase the size of the population, the possibilities to

find optimized candidate or the best candidate would be greater than with smaller sizes,

but calculation costs of each generation would also expand. On the other hand, if we

reduce the size of the population, calculation costs will get smaller but, the possibilities to

find the best candidate will also decrease. In our dynamic system case, we want to reduce

the calculation cost as much as possible, but at the same time we want to increase

possibilities to find better candidates as much as possible. So the determination of a good

population size is too sensitive of an issue since the choice of the population changes the

functionality of algorithm dramatically. To overcome issues related to finding the best

population size, we use the dynamic population size approach instead of the fixed

27

population size as [26]. With this approach we start from the relatively smaller initial

population size which we define. After the genetic algorithm starts, we do not know the

population size since the size is automatically adjusted according to the current condition

of the optimization process.

There are several characteristics we have to define for the dynamic population

approach. Those characteristics are what would be the trigger of change the population

size, how we will change it, and how much we will change it. If we do not choose each

category carefully, the dynamic population algorithm does not work correctly or simply

works as the fixed size population approach.

The first question we tackle is what would start the process of changing the size

of the population. Since the dynamic population is part of the genetic algorithm which

uses the fitness values to determine whether candidates are better or not, we can use the

fitness values of the population to trigger changes of the population size. There are

several different statistical data of the fitness values. Examples are the best fitness value,

the worst fitness value, the mean fitness value, and the median fitness value of the

population. Within these values, we use the average or mean fitness value of the current

population and the mean fitness value of the group which consisted of both the current

population and the candidates which we generated. This idea came from a question that

was asked by then Ph.D. Student Wen-Fung Leong during one of my course

presentations. Since the average fitness value displays the performance of the

optimization process as a whole in a given moment, the dynamic population would

ensure proper resource management for the search ability of the genetic algorithm. Each

28

time we obtain the new fitness values of candidates and the new fitness values of the

current population, we initiate the process of the dynamic population algorithm.

As we decide when we will change the size of the population, we need to decide how we

will change it according to the difference between two average fitness values. There are

two different resource management strategies we can use to determine how we will

change the population size. These two methods of resource management are similar to

methods that students commonly use in their studying for final exams. Some students

prefer spending more time for subjects that they are very good at, and spending less time

for topics they hate. As a result, students would answer the question extremely well for

the subject they studied and cannot answer the questions they did not study well. Or

more simply, students become specialized in specific subjects they like. On the other

hand, other types of students would spend more time on subjects which they are not good

at and spend less time for the subjects which they feel strong in. These people use time

where it is necessary to spend it. Comparing these two types of students, the second type

of student has more chances to have better grade point average (GPA). This example is

true among different disciplines.

Back to method of resource management, we describe and evaluate two types of

strategies for increasing the chance of generating better average fitness values. The first

type of resource management technique uses more computational resources when we

have better average fitness values and uses less when we have poor results. In other

words, we spend more time where we find better average fitness values and less time for

where we cannot find good average fitness values. This strategy might find a local

optimum quicker than the other method, but one problem of this method is that the local

29

minimum we find is not always the global minimum as we describe at the end of the

previous section. For the second strategy, we utilize more resources when we have a

hard time to find the better average fitness values and less when we can easily find better

fitness values. This method spends more time where we cannot find better average

fitness values and less time where we find better average fitness values.

The comparison of these two strategies in a real situation can be explained with an

analogy of open-book/open note exam. Assume we try to solve two different types of

questions: questions that we have enough knowledge to solve and questions that we do

not have any idea how to solve. To solve the first type of questions, we only need to

check the correctness of our memory with books to obtain better scores. In this case, we

just have to use resources which relate to the concepts we need. If we just go over each

topic in the text books, it is just wasting time and we will end up running out of time to

solve the other questions. To solve the second type of questions, we cannot review

specific topics since we do not have any idea how we can solve them. We have to go

over each topic briefly to find any related concepts which can be used to solve the

questions. If we randomly choose specific chapters in books to read in detail, the exam

time is too short to find necessary information. The first method of taking exams

demonstrates a similar situation as the case when we know the fitness value of the global

optimum. This is not the situation where we are during the search, since we do not know

what the global optimum is. Therefore, we have to apply the second strategy instead of

the first method. In other words, we will increase population size when we have a hard

time to find better average fitness values or very close to optimum (either global or local)

and reduce the size when improvement in average fitness values is sufficient. In this

30

method, we would have better opportunities to find the global optimum. There is one

problem while applying the second strategy: the population size might get too small to

keep operation of the algorithm correct if we constantly improve the average fitness

values. We discuss the solution for this issue in the latter section of this chapter.

We have already decided the timing of change and the method of change, but we

have not yet finished the argument for the degree of change in the population size. This

question has also several different strategies such as the constant fixed change method,

dynamic fixed change method and proportional change method. We briefly go over each

strategy with problems and benefits. The first strategy is simple enough to implement,

since the size of change in the population is defined at the beginning of the algorithm.

Therefore, we do not have to change it and also we do not have to calculate the degree of

change according to the improvement in the average fitness value. The problem of this

approach is very obvious, the size always changes constantly no matter what the current

size of the population we have, and how much we improve the average fitness values. In

extreme example, a result of twenty-five percent improve in the average fitness value

cause the same degree of change in the population size as a result of one percent decrease

in the average fitness value. Also the impact of change does not take into consideration

the change in the population size. If we only use a fixed number of candidates to change

the population size, the impact of change would not be efficient when the size of

population is large. For example, we would double the size of the population if we

change its size from 10 to 20. However, there will be only ten percent of increase in the

size of population if we change the size from 100 to 110. The impact of the changes in

the average fitness value in the previous two examples is not the same. The second

31

approach requires several conditional statements to implement the algorithm, so the

calculation cost will increase slightly compared to the first approach. The degree of

changes in the fitness values are reflected in the second approach, but the impact of

changes that is dependent on the population size is not included in this algorithm. The

third approach treats both the degree of changes and the impact of changes. Instead of a

fixed size algorithm implemented in the previous two approaches, it uses the proportional

changes which are dependent on both the population size and the degree of changes in

the average fitness values. The calculation cost for implementing the third method is

slightly greater than the second approach. Even with the disadvantage in the calculation

cost, the third approach is worth implementing, since we can change the population more

dynamically compared to the other approaches.

3.1.1.1 Off by one theory

We now explain the method we implement to avoid errors in the algorithm due to

the reduction of the population size. Since we implement crossover operation, we

definitely require at least more than two chromosomes in the population. The method is

that we insert new sets of the chromosomes into the current population whenever the

population size does not meet the minimum size requirement of the algorithm. New sets

of the chromosomes are generated with some randomization mechanism.

Before we explain randomization mechanism to fix violation of the minimum size

requirement, we go back to several observations we discuss previously. In section 3.0.1,

we describe that the current adapted core architecture configuration in the dynamic

system would not guarantee good performance in the future. This statement is true when

we observe processing performance of computer systems. For short time observation, we

32

can say that current configuration would produce sufficient performance to use as seeds

of randomized chromosomes, since the contents of inforuction buffer changes slowly

unless it is completely empty. Therefore the current configuration would offer several

hints to find the next configuration. If we only add the same configuration to the

population, the abilities of both global and local search would decrease. Therefore we

need to generate randomized candidates from the current configuration. In the

randomization process, we generate candidates according to the off by one theory. This

theory tells us that it would be better to change the architecture of only one

reconfigurable core in the randomization process. This theory is derived from the careful

observation of the assumption we made earlier. We assume that during the process of

reconfiguration the reconfiguring core cannot process any inforuction. Therefore, if we

increase the number of core which reconfigure, it implies the number of cores that cannot

process inforuction in several intervals. As a result, performance of the system would

decrease significantly during reconfiguration. Hence, candidates that only change one

core would yield similar performance as the current configuration of the system. In most

cases, generated candidates would have less performance in the processing power due to

the reconfiguration penalties. From this observation, we create candidates which

randomize only single core from the current configuration, and we insert generated

chromosomes into the population to prevent failure of the algorithm and to maintain

diversity in the population. Figure 3.3 illustrates the flow of the modified genetic

algorithm.

33

3.1.1.2 Multiple Crossover Operation with multiple parents

There are several papers which study about the effect of multiple crossover

operations in the genetic algorithm. Examples of such studies are [27] [28] [29]. The

multiple crossover operators have one important benefit. This method enhances the

global search abilities of the genetic algorithm. Even though the crossover operation

implements local search, each different crossover operator would search through

different search spaces. The variety of children in each generation would increase

compared to the implementation of single crossover operation. Also, the multiple parents

would increase the global search ability, since we choose several different sets of parents

Figure3.3 Operation flowchart for the modified genetic algorithm

Start

Initialization

Adjustment

Evaluation

Termination

Stopping
criteria?

Satisfied

Not Satisfied

Stop

1.) Initialization Stage
a. Create the chromosome randomly

2.) Adjustment Stage
a. Change the population size

3.) Generation Stages
a. Choose the parents
b. Implement Crossover
c. Implement Mutation

4.) Evaluation Stage
a. Evaluate with Fitness function

5.) Determination Stage
a. Evaluate the next population size

6.) Termination Stage
a. Sort the population with result of 4-a.)
b. Choose the chromosome to terminate
c. Generate new population

7.) Check Stage
a. Check for stopping Criteria

8.) Stop Stage
a. The best candidate is picked up as the output

of algorithm

Generation

Determination

Minimum
size?

Not Satisfied

Satisfied

34

for each type of crossover operator. So many traits of chromosomes are effectively used

to create the next population.

3.1.1.3 Fitness function

In this section, we talk about the most important topic of the genetic algorithm.

This is not an exaggerated expression since the result of fitness function is used for

control of reconfiguration and control of the dynamic population. We go over several

facts that are used to develop our fitness function. To compare each configuration of the

system, we can use the processing performances of configurations after we complete the

process of reconfiguration since they are simple enough to calculate. Even though we

know the processing characteristics of each core which we obtain from measurements,

the actual performance of cores and systems might be lower than what we calculate.

There are three types of barriers that make system performance lower. One of the

barriers is the stall. The stall is the time we cannot have the full abilities of processing

power since some infoructions are not ready to process [9] or we have too much stock of

inforuction in the inforuction buffer. This is caused by dependencies in inforuction. In

the stall condition, systems cannot obtain any new infoructions.

Another barrier has a similar effect as the stall, but the cause of this barrier is

slightly different. We name this barrier empty-running. As the name implies, the system

does not store sufficient amounts of specific types of infoructions in the information

buffer compared to the maximum performance we have. We explain the problem of this

situation with an example. We feed each type of infoructions into the corresponding

inforuction buffer each time we pre-fetch. Each reconfigurable core in the system

processes infoructions from this set of inforuction buffers. If we have sufficient pre-

35

fetched infoructions for all types of inforuction buffers, the system can process as much

as possible with its maximum potential and there is no problem for this situation.

However, if the inforuction buffer contains fewer amounts of some types of inforuction,

cores cannot utilize the full-processing power as we calculate. It can only process the

amounts of inforuction in the inforuction buffer. After it completes processing, it

becomes idle or runs with the emptied inforuction buffer till the next set of infoructions is

ready.

Another barrier is reconfiguration penalties. During reconfiguration, the

processing power of systems decreases compared to full specification since several cores

are isolated or excluded from our system. After reconfiguration, the isolated cores

become active to process infoructions. Therefore these performance changes during the

process of reconfiguration also make the processing power difficult to use as the fitness

values of our system. With all three of these barriers together, we cannot use processing

power directly to determine the fitness values of a given system configuration.

The appropriate fitness function should treat all three barriers. We use the

predicted amounts of infoructions we can process in a certain time interval as our fitness

values. The detail of fitness function is described in expression (3.1). The time

parameter t is used in expression (3.1). This time parameter should be longer than the

reconfiguration penalties since we know the performance of a dynamic system during

reconfiguration is lower than the system which stays the same as the current

configuration. If we take a longer time interval for the parameter t, calculation costs of

reconfiguration would increase dramatically since the fitness function emulates behaviors

of systems to predict amounts of information we might process. To predict the

36

performance of dynamic systems, we have to predict the amount of infoructions which

will be generated in the time interval t since the inforuction we need to process in the

future time is unknown.

 #

3.1

The approach we take for prediction of the future infoructions uses the similar

concept in the neural network system [30]. In the neural system, we train the network

with some sample patterns which model the operation of the system. The neural network

trains to obtain the correct result or desirable results in terms of purpose of the system

with the differences of simulated results, and preferable results. For our system, we will

train our prediction mechanism with the data of the generated infoructions which are fed

into our inforuction buffer whenever we do not reconfigure the system. Our training

method is straightforward. We take the data for occurrence of each inforuction for a

specific time interval. This time interval is related to the time parameter (t) we use in the

fitness function. As a result of the fitness value evaluation, we conclude that we do not

have to reconfigure our system, since the current system configuration might have better

performance within the time interval (t). Therefore we might not have to reconfigure our

system during the time interval. At the same time, we do not have to evaluate the

candidates with the genetic algorithm. We use the time interval in which the

37

optimization process does not operate, and resources which is usually used in the

optimization algorithm. We discuss the meaning of the data of inforuction occurrences in

the later chapter.

We will evaluate the impact of misprediction. The misprediction occurres when

the data for occurrence does not correspond to the actual behavior of systems. It happens

when sets of inforuction produced are changed dramatically from what we observe. The

impact caused by the misprediction would not be severe since it is softened by the

inforuction buffers. This is because the sets of inforuction in the inforuction buffer

should be processed prior to the sets of inforuction predicted with the prediction

mechanism. In other words, we always have some portion of infoructions that we will

definitely process since they are the stored infoructions in the inforuction buffer.

Therefore, the ratio of amounts of mispredicted inforuction handled in the fitness function

to the infoructions that are predicted to be handled would be always less than 1. Even

though there is a possibility of misprediction, our prediction mechanism represents the

actual behavior of systems more accurately than the simplest prediction method, which

assumes to have exactly the same number of each inforuction during our prediction.

As we close this section, we show the flowchart of the fitness function in the

Figure 3.4. Our fitness function is a short time simulation of the system since we need to

determine the performance in the future for both types of systems: the system with the

current configuration and the system with the candidate configurations during the process

of optimization for the multi-core system.

38

3.1.1.4 Running BEST

The genetic algorithm will converge to the optimum when we use algorithms with

a large number of generations. Hence, the algorithm needs long time to obtain the

optimum. Even if we use large number of generations, the optimum obtained is either

local or global. There is no guarantee we can get global optimum without prior

knowledge. As we implement the genetic algorithm as part of dynamic system, the large

generation for convergence would be problematic, since the larger generation needs more

time to compute the fitness values. Therefore we cannot wait the algorithm to converge,

and we should set the generation we want to use as the stopping criteria. Instead, we use

Figure3.4 Operation flowchart for the fitness function

Start

Initialization

Generation

Processing

Evaluation

Time t
passes?

Satisfied
Not Satisfied

Stop

1.) Initialization Stage
a. Memorize the current inforuction

buffer and current pattern of
inforuction generation

2.) Generation Stage
a. Generate the inforuction pattern

the same as 1‐a.)
3.) Processing Stage

a. Increment the internal clock
b. Process the # of inforuction for the

current processing power
4.) Check Stage

a. Time check
i. Check whether the time interval

t is passed?
b. Stall check

i. Check whether the stall is
happened or not

5.) Evaluation Stage
a. Evaluate the fitness function

Stall?

Not happened

happened

39

the running best or optimized candidate as our next candidate, which is the candidate with

best fitness values that we evaluate through our algorithm. In other words, we stop the

genetic algorithm with a specific generation, and obtain the best candidate from the given

population. Since the chosen candidate is the best candidate in the population, we can

use this approach for the best candidate that we can find within the limited resources.

40

CHAPTER 4

STATIC RECONFIGURABLE SYTEM: GENETIC ALGORITHM

EVALUATION

4.0 Reason for static reconfigurable computer implementation

Even though we have several examples which apply the genetic algorithm to

research of computer architecture [17] – [21], we do not have an example of the genetic

algorithm applied as the optimization algorithm to find better configuration candidates in

terms of processing power of CPUs. We can prove the performance of the genetic

algorithm to find the optimized candidates through the implementation of a static

reconfigurable computer, which is similar to a cell processor. Also we can develop the

framework of simulation that we can use for the dynamic system. In addition to these

benefits, the results of simulation can be used as the performance of specialized static

computer, which can be used to compare with our proposed system. Therefore we should

implement a static reconfigurable computer.

41

4.1 Assumptions for Simulation

We describe the important assumptions that are necessary for the simulation for

the dynamic system in Chapter 3. We will discuss assumptions that we will use for the

static reconfigurable systems and will introduce the new mechanism with a new

assumption that would be used in both simulations of static and dynamic systems.

Assume we have the multi-core system described in section 3.0.3. Each of architecture

configurations of cores we use in our system is well designed. The characteristics of each

architecture configuration are well measured in terms of amounts of possible inforuction

each core can process during a certain time unit. This measurement is called Inforuction

Per Clock Cycle (IPCC). Since we implement superscalar architecture in each core,

IPCC for each core has amounts of each types of inforuction that a single core can

process simultaneously during a given time unit. Before discussing the details of genetic

algorithm in the next section, we will introduce the new concept: stochastic inforuction

generator.

4.1.0 Stochastic Inforuction Generator

Before introducing the stochastic inforuction generator, we will go over the basic

idea of stochastics. Most definitions come from [31] – [33]. When we observe result of

a fair-six-faced dice roll, we get faces from 1 to 6. For short time observations or from

small number of samples of a single dice roll, occurrence of each faces dynamically

change as we roll, and we cannot find steady result in frequencies of occurrence for each

face. When we observe fairly large numbers of dice roll or we have sufficient numbers

of samples of dice roll, there would be steady data for occurrence of each face, which is

42

one sixth for each face in this case. In other words, if we observe some system for a long

time, we would find stochastic data or probability information in behaviors of the

observed system. In the previous example, the stochastic information we get is

frequencies of occurrence of each face. Since this is the representation of system

behavior, we can predict the behavior of the given system with probabilities. The

example of prediction is probability of fair-coin toss. We know probabilities of

occurrence for each side of the coin would be one half. Therefore, if we toss a coin

significant number of times, we can predict that we will have about half of toss as heads

and the other half as tails. In real situations, there are dependencies among occurrence of

each instance. Since the dependencies change the probabilities of occurrence, our

prediction of occurrence is more difficult. However, if we find out all dependencies, the

predictions would correspond to the actual system behavior.

If we observe a single computer system with a certain simulation for a long time,

or if we observe multiple computes with same settings, there should be stochastic

information for occurrence of each type of instructions. We prove this statement with

contradiction. Assume we do not have any stochastic information or probabilities for

occurrence of each instruction. In other words, the instructions we process is decided

randomly. For such situation, we cannot reproduce a result of simulation, even if we use

the exactly same setting. However, the normal simulations implemented in some

benchmark programs definitely have steady results that we can reproduce with the same

settings. With reproducible results, we justify our accomplishments. Simulators or

benchmark programs are designed to reproduce the data if we use the exactly same

setting since they produce the same sets of instructions for the same settings. On other

43

hand, if we have different sets of instruction, the result of simulation would not be

reproducible. This is contradictory to what we assume: we cannot reproduce the same

result since the instruction is randomly generated. Therefore there exists the stochastic

information for patterns of instruction generation in a simulator, which is dependent on

the type of application. This assumption is based on the observation of a specific purpose

application. For example, the mathematical application software would produce more

instruction related to mathematical operation compared to other software. If we are

watching a movie on the computer, the instruction related to graphics and sounds would

be more than the normal operation of the system. For our system, we would have

stochastic patterns in inforuction generation that are different for each types of

application. With stochastic information for occurrence of each types of inforuction, we

can generate infoructions to simulate real behavior of systems. We call this stochastic

method of generating inforuction as stochastic inforuction generators. We will remark

one more fact for the stochastic inforuction generator. The stochastic information should

obtain from data that is consisted of large numbers of samples since validity of the

stochastic information increases with larger amounts of data due to the reduction of the

effect from the noise or unexpected data. Also we need to use stochastic inforuction

generator for longer cycle to increase accuracy and precision of the simulation.

The actual process of inforuction stream generation is illustrated in Figure 4.1.

As Figure 4.1 displays, we use a random number generator to generate the actual

inforuction in each cycle. We cannot match the stochastic information used to the

generate infoructions with the stochastic information from actual generated infoructions

in each cycle. We can only observe the random generation of infoructions in a short time.

44

However, if we observe the inforuction generation pattern for a long time, we can get

similar stochastic information as information used to generate inforuction stream. From

this point, this method can be used for a short cycle operation, which does not have any

clear stochastic information for a generation pattern.

Figure4.1 Operation flowchart for the inforuction generation for each cycle

4.1.1 Dependencies and inforuction stream

Up to this point we do not have any mechanism to implement for dependencies of

infoructions. For our simulation, instead of implementing the actual dependency

mechanism, we randomly insert an extra cycle in which no new data is fed into the

inforuction buffer. This corresponds to NO OP instruction in regular computer

terminology. To model system accurately, the numbers of dependencies correspond to the

Start

Load stochastic

Set Ref

 Check the type

Stop

1.) Load Stage
a. Load stochastic data of inforuction

generation
2.) Set Ref Stage

a. Use random generator to set the
reference point

3.) Check Type Stage
a. Check what type of inforuction will be

generated (Find the value k which
satisfies the following expression:

∑ P ith type)
4.) Generation Stage

a. Generate the inforuction according to
check stage result

5.) Check # of Generated Stage
a. Check the number of inforuction

generated for this cycle is the same as
the number we defined or not

Completed

Not

Generation

Generate all?

45

numbers of total inforuction we will process in our simulation. To compare the systems

with the same number of cycles fairly, we use the exact same inforuction stream. This

means we have the same stochastic data, the same number of inforuction, the same

numbers of dependencies, and the same sequence for each inforuction.

4.2 Genetic algorithm for the static operation

The genetic algorithm we implement for the static system has the same

characteristic as dynamic algorithm expect the several differences that come from system

properties. For the static application, we do not change system configuration while the

system processes infoructions. Therefore we do not have to worry about reconfiguration

penalties and reduction of performance due to reconfiguration. The objective of the

static reconfigurable computer is to find the optimized configuration for the system

which has the “best” performance for given application or application sequence. So

fitness values of the static reconfigurable computer are the total time unit necessary to

complete all inforuction. As we describe previously, we have to worry about the

reduction of processing performance due to stall and empty-running, since stall and

empty-running will increase the necessary time unit to complete all inforuction. The

flowchart of the static genetic computer is described in Figure 4.2. We go over several

stages which is different from the dynamic operation we described at the previous chapter.

46

Most significant difference between dynamic operation and static operation is

location of the genetic algorithm or the stage of simulation. For dynamic systems, we are

running simulation while we use the genetic algorithm to find better candidates of the

next configuration. For this application, we run the miniature of simulation in the process

of fitness function evaluation. For the static operation, we use the genetic algorithm after

we simulate a system to find the fitness values. The details of simulation flow are shown

in Figure 4.3.

Figure4.2 Operation flowchart for the genetic algorithm for static operation

Start

Initialization

Adjustment

Simulation

Termination

Stopping
criteria?

Satisfied

Not Satisfied

Stop

1.) Initialization Stage
a. Create the configuration of cores

randomly
2.) Adjustment Stage

a. Insert randomly generated candidates
to satisfy the minimum population size

3.) Generation Stages
a. Choose the parents
b. Implement Crossover
c. Implement Mutation

4.) Simulation Stage
a. Simulate the time necessary to

complete the inforuction sets
5.) Determination Stage

a. Evaluate the next population size
6.) Termination Stage

a. Sort the population with result of 4‐a.)
b. Choose the chromosome to terminate
c. Generate new population

7.) Check Stage
a. Check for stopping Criteria

8.) Stop Stage
a. The best candidate is picked up as the

output of algorithm

Generation

Determination

Minimum
size?

Not Satisfied

Satisfied

47

This figure is similar to Figure 3.4 which displays the flow of fitness function in

dynamic systems. The differences between these two flowcharts are at the last

conditional or check statement. For the fitness function of dynamic system, the amount of

infoructions processed is variable, and the cycle in which we simulate remains constant.

The simulation for static systems is targeted to obtain the difference in time cycle for

given amounts of infoructions we need to process. From these reason the stall condition

is implemented in the different location in the two flowcharts.

Another difference between the two flowcharts is the method we use to generate

chromosomes to adjust the population size. Remember for the dynamic system, we

introduce the off-by-one theory, which tries to change configuration of only one core in

Figure4.3 Operation flowchart for the simulation stage of genetic algorithm for static application

Start

Generation

Processing

Stall?
Not
Happened

Happened

Stop

1.) Generation Stage
a. Generate the inforuction pattern which

is pre‐configured for the purpose for the
system

2.) Processing Stage
a. Increment the internal clock
b. Process the # of inforuction for the

current processing power
3.) Stall Check Stage

a. Check whether the stall is happened or
not

4.) Information check
a. Check whether all inforuction is

completed or not

Complete?

Completed Not completed

48

the process of generating the extra candidate for adjusting population size. This theory is

to avoid the severe reconfiguration penalty from reconfiguring multiple cores at once.

As we described previously, we do not have to worry about the reconfiguration penalty

in the static system. Therefore we insert chromosomes which are randomly generated to

ensure the varieties in the population. Since there are local optimum issues for the

optimization process, the randomly chosen configuration would give more chances to

find global optimum.

One more remark for simulation method we can use for both dynamic and static

system as we close this section, which is how we implement the stall. As we describe,

the stall is time necessary to “catch up” with the current inforuction flow to avoid the

hardware hazard. Therefore the stalls are detected when any types of inforuction buffers

have greater amounts of infoructions than the dimension we pre-defined. During the stall,

the internal clock is incremented without generating new inforuction sets. The stall will

be continued until amounts of infoructions in all types of the inforuction buffers are

smaller than the limitation we defined. In the next section, we will go over the simulation

setting and results of the simulation with observations.

4.3 Simulation settings and simulation results

In the previous section, we go over details of the genetic algorithm for the static

reconfigurable CPUs. Before we show the results of simulations, we go over the details

of the simulation setting.

49

We simulate our programs with 77 high end computers simultaneously to reduce

the simulation time. Performance of each individual computer which runs simulation is

given in Table 4.1. In our simulation, we have two types of settings. One of them is

common for all static computer simulations and the other is unique for each individual

simulation. We go over the details of common characteristics and then describe details of

unique settings.

Table4.1 Performance of Simulation Stations

 Performance

Cumulated # of computer 77

CPU Intel® Core™2 Duo Processor 6700 @ 2.66 GHz

Memory 2 GB

We choose the following setting as common configuration for all static

computers: number of different types of inforuction, characterization of each type of

infoructions, amounts of infoructions generated in a time cycle, number of predefined

architectures we use, characterization of each core architectures, number of generations

in the genetic algorithm, and number of initial population. Also we set the number of

maximum population we will use in the genetic algorithm as constant to improve the

simulation time. We identify 4 different types of infoructions that we use to characterize

the performance of core architecture and stochastic data in inforuction generation pattern

for a certain application. The types of infoructions are similar to types of functional units

in the superscalar processor [9]. The types of inforuction are logic, mathematic, floating

point, and memory. We use 4 different pseudo applications that have unique stochastic

information pattern for each inforuction. Each of application is identified as General,

50

Logic/Math, Floating Point, and Memory, which corresponds to the intensity of the

infoructions for a given application. Characteristics of each application in terms of

stochastic data of inforuction generation are summarized in Table 4.2. We define the

characteristics of 5 different specialized cores. We name each type of architecture such as

GENeral, LOGic, MATh, FLoating Point, and MEMory, which corresponds to their

specialization. The performances of each type of architecture in terms of IPCC are listed

in Table 4.3. The total amounts of inforuction each processor can handle are set to 8

which is the realistic number since it corresponds to the number of functional units in the

superscalar processor [9]. To emulate changes of application in the systems, we

randomly choose three applications from the repeated sample which consisted of the four

applications we defined. The list of all inforuction generation patterns is displayed in

Table B.1 and Table B.2. The common characteristic of systems we simulate is set as

Table 4.4. Each inforuction stream is unique for the same length of cycle for each

application we want to simulate.

Table4.2 Stochastic data of Inforuction generation in the percentage

where L is Logic inforuction, MA is Mathematic infoructions, FLP is Floating point infoructions,
and ME is Memory infoructions.

 L MA FLP ME

General 35 30 20 15

Logic/Math 70 18 7 5

Floating Point 5 12 80 3

Memory 15 15 10 60

51

Table4.3 Amounts of inforuction that each architectures can process in the given time unit

where L is Logic inforuction, MA is Mathematic infoructions, FLP is Floating point infoructions,
and ME is Memory infoructions.

 L MA FLP ME

General 3 3 1 1

Logic 4 2 1 1

Math 2 4 1 1

Floating 1 1 5 1

Memory 1 1 1 5

Table4.4 Common setting for each configuration in simulation

 Setting

of total simulation 64 (= 4^3)

Total # of Inforuction prefetched 64

Size of Initial population 15

of generation 200

Maximum size of population 450 (= 15*30)

Dependencies factor .05

The rest of the settings, such as the number of reconfigurable cores we have in a

system, the number of minimum cycles for each application, the number of iteration we

implement, and the amounts of inforuction that trigger stall, are chosen to be variables to

observe the properties of the static reconfigurable CPUs. Each individual setting for

these variables is shown in Table 4.5 and the complete set of actual setting for each

system we will simulate is in Table B.3 through Table B.6.

52

Table4.5 Variables and their possible settings

 Candidates of setting we will setting

of cores in the system 2, 4, 6, 8, 10, 12, 14

Length of each

application
50, 100, 200, 400, 600

of iterations we

implement
10, 15

Stall trigger 30, 50

4.4 Simulation Results and Observations

Our simulation time to complete individual configuration over 64 different

application sequences are less than 5 minutes with the computer we used. Before

discussing about any further observation of results, we discuss how we will compare the

results of simulations among the different settings. We use a PITCGEN (Percentage of

the performance Improvement in terms of Time necessary to process all infoructions

Compared with the performance of GENeral core only systems) to describe the

performance of our systems. Remember, our raw simulation result is time necessary to

complete the inforuction streams. To obtain the performance improvement compared

with the general core only system, we use the expression (4.1). We identify these ratios

as a Specific PITCGEN (SPITCGEN) since these measurements are dependent on the

types of application sequences in the simulation. To find the Average PITCGEN over all

application sequences (APITCGEN), we use the expression (4.2). The result of the

53

calculation of APITCGEN is shown in Table 4.6. We should not forget that SPITCGEN

and APITCGEN are both dependent on the setting of the systems.

1

 4.1

∑

 4.2

Figure 4.4 and Figure 4.5 (Enlarged figure is in Appendix: Figure B.1 through

Figure B.6) displays the APITCGEN for BEST (BEST performance we find in the whole

algorithm), AVER (AVERage performance of the best performance we find in each

iteration), LOG (LOGic specialized core only systems), MAT (MATh specialized core

only systems), FLP (FLoating Point operation specialized core only systems), and MEM

(MEMory operation specialized core only systems).

Figure4.4 APITCGEN for different types of systems

Left graph: result of BEST and Right graph: result of AVER. The horizontal axis displays different
settings: S001 through S077 which is depicted in Table B3 through Table B6.

54

Figure4.5 APITCGEN for different types of system

Top Left graph: result of LOG, Top Right: result of MAT, Bottom Left: result of FLP, and
Bottom Right: result of for MEM. The horizontal axis displays different settings:

S001 through S077, which are depicted in Table B3 through Table B6.

Figure 4.4 and Figure 4.5 demonstrate that we seem to have about 30 %

improvement in overall performance compared to GEN. This performance increase

comes from the result of the static reconfiguration according to the individual inforuction

streams. Since we have a different configuration for each inforuction stream, we can

compare our result with the best configuration for single design core only systems. To

compare the performance of our system with the best performance for single design core

only systems, we use expressions (4.3) and (4.4). Since GEN systems do not produce the

best PITC for all settings, this comparison provides more information about the

optimization capability of our system.

1

 4.3

55

∑

 4.4

Figure4.6 APITCALL with BEST for different types of systems

Figure4.7 SPITCALL with BEST among systems

Each entry in the graph corresponds to a specific setting (S001 – S077) in Table B.3 through B.6.

56

Figure 4.6 and Figure 4.7 demonstrate the performance of our system that is

calculated from expressions (4.3) and (4.4). As we focused on Figure 4.6, the average

performance improvements we achieve with our systems compared to the best

performance of the single design core only systems is about 14 % and we have only

positive average improvement for all settings. The 14 % increase might not seem

outstanding. We look for details about this 14 % increase. Figure 4.7 demonstrate the

interesting results and problems of our static systems. The problem is also one of the

problems of the genetic algorithm. Each individual PICTALL is ranged from about

-120 % to 40 %. Most parts of settings in Figure 4.7 demonstrate the positive

performance improvement or the same performance as the best performance for single

design core only systems. As we describe, the magnitude of negative performance

improvement or performance reduction is momentous because it reduces our average of

APICTALL, even though the number of simulations which end up with negative result is

about 20 % of the entire simulation results. Table 4.6 demonstrates the several data of

our simulation.

Table4.6 Statistical data of SPITCALL with BEST

 # of simulation % of Occurrence Average

Total Number 4928 100 % 14.25 %

Positive PITCALL 3919 79.53 % 22.33 %

Zero PITCALL 69 1.40 % 0 %

Negative PITCALL 940 19.07 % -18.39 %

In the theory and our simulation setting, we should not get any result with a

negative SPITC since all single core only configurations, which are GEN, LOG, MAT,

FLP, and MEM, are one of the subsets in our search space. Therefore, if our optimization

57

method uses the exhaustive search, we could identify these configurations as a superior

configuration whenever it is appropriate. The reason why we cannot find these

configurations can be explained with the one of the weaknesses of a genetic algorithm.

The genetic algorithm uses a stochastic search method. During the generation of the set

of candidate chromosomes, we have a certain probability to generate each candidate

based on a choice of parents. There are certain probabilities that we do not check a

certain candidate. Therefore, there is always non-zero probability that we cannot find the

truly optimized candidate. What we end up with in our optimization process is local

optimums that are different from the global optimum. This result is well displayed when

we refer to Figure 4.8 which shows the APITCALL with AVER and Figure 4.9 which

shows SPITCALL with AVER. AVER, which is the average of the “best” values we find

over the individual iteration, is much less than the BEST, which is the “best” we find

over all iterations (Data for SPITCALL with AVER is displayed in Table 4.7). The

reason is that there are some probabilities that the algorithm could not find the true

“optimum” within the single iteration.

Figure4.8 APITCALL with AVER for different types of system

58

Figure4.9 SPITCALL with AVER among systems

Each entry in the graph is a specific setting (S001 – S077) in Table B.3 through B.6. X Axis is for the
sequence pattern of applications from P01 to P64 in Table B.1 and Table B.2;

Table4.7 Statistical data of SPITCALL with AVER

 # of simulation % of Occurrence Average

Total Number 4928 100 % -16.44 %

Positive PITCALL 2220 45.05 % 11.90 %

Zero PITCALL 1 0.02 % 0 %

Negative PITCALL 2707 19.07 % -20.68 %

We can easily improve our algorithm by introducing 5 single design core only

systems into the first generation of our search. With this method, we are sure the search

space of simulation includes the single design core only cases. Also this modification

improves the search area of the algorithm since the single design core only systems are

not similar to each other. As a result, our search algorithm can produce better results.

Simulation results of the modified algorithm are displayed in Figure 4.10 through Figure

4.12. The APITCGEN and SPITCGEN with BEST are in Figure B.14 through Figure

59

B.21. Compared with Figure 4.10 through Figure 4.13, our algorithm shows

improvement in the optimization abilities. We have only positive performance

improvements in both SPITCALL with BEST and SPITCALL with AVER. The negative

SPICTALL is replaced with the zero or the positive SPICTALL since we increase the

variety of systems in the first generation and we are forced to evaluate the 5 different

types of single core only systems.

Figure4.10 APITCALL with BEST for different types of system with modified algorithm

Figure4.11 SPITCALL with BEST among systems with modified algorithm

Each entry in the graph is a specific setting (S001 – S077) in Table B.3 through B.6.

60

Figure4.12 APITCALL with AVER for different types of system with modified algorithm

Figure4.13 SPITCALL with AVER among systems with modified algorithm

Each entry in the graph is a specific setting (S001 – S077) in Table B.3 through B.6.

61

 Figure4.14 Changes on number of cores in APITCGEN for BEST

Legend explains the rest settings of simulation with the following format:
 Cycles of each application: Stall trigger levels: Number of iterations.

Figure4.15 Changes on number of cores in APITCGEN2 for BEST

Legend explains the rest settings of simulation with the following format:
 Cycles of each application: Stall trigger levels: Number of iterations.

62

Figure 4.14 displays the APITCGEN for BEST. According to this figure,

performance improvement compared to GEN which has the same number of cores as the

comparison target, becomes the largest when we have 4 core systems, then our

percentage of improvement keeps decreasing. Since the maximum amounts of total

inforuction generated in a cycle are fixed, the utilization of the system compared to

systems with general core only cannot be optimized if we have too many cores. The

fixed amounts of inforuction generated per cycle, which is 64, come from the maximum

processing power of an 8 core system. If we adjust the data to compare with the

APITCGEN with 2 cores (GEN2), we observe a graph as Figure 4.15. The graph

demonstrates the remarkable improvement when we increase the number of cores from 2

to 4. With this change, the maximum processing power of the system becomes half of

the total amounts of infoructions generated per cycle. The result of this comparison

clearly displays the diminishing performance improvement when we increase the number

of cores in a system, especially if the system can only pre-fetch the fixed amounts of

inforuction per cycle. When we increase the number of cores from 2 to 4, we efficiently

reduce the cause of stalls and do not increase the probability of empty-running at the

same time. After the 4 core system, chances of empty running are increased more than

decrease in the chances of stalls. Therefore the performance is not improved as in the

case of 4 cores.

If we plot the same graph compared to the best single cores instead of GEN, the

figure looks slightly different from the figures we observe. Figure 4.16 has similar

characteristic as the previous figures up to 10 core system. However, we have the

improvement for 12 and 14 cores systems. The reason why we cannot observe this

63

improvement in the previous two figures can be explained with Figure 4.11. For the

comparison with the best of single design core only settings, we have more range of

changes in the performance measurement for each individual setting and each individual

inforuction pattern. Therefore, we observe the improvements for 12 and 14 cores.

Figure4.16 Changes on number of cores in APITCALL for BEST

Legend explains the rest settings of simulation with the following format:
 Cycles of each application: Stall trigger levels: Number of iterations.

Figure4.17 Changes on APITCALL with different length of simulation for BEST

Legend explains the rest settings of simulation with the following format:
 Number of cores: Stall trigger levels: Number of iterations.

64

Figure 4.17 displays the changes of APITCALL by changing the number of

minimum length of each application. In Appendix B, we have larger size of these figures

in Figure B.22 through Figure B.24. As we observe in the figures, our static system does

not demonstrate any firm changes such as a monotonous decrease or increase when we

change the cycles of each application. Instead of a monotonous increase or decrease, we

observe the APITCALL stays in about .5 % of deviations. This comes from the

differences for each length of simulation in the actual percentage of inforuction stream

we simulate. Hence, we conclude this relationship as the following statement: the

number of cycles for each application does not change the APITCALL significantly.

Therefore our static operation seems to have steady performance improvement compared

to the best configuration from single design core only system for any number of cycles.

Figure4.18 Changes on APITCALL for BEST with different iteration

Legend explains the rest settings of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels.

65

When we study the graph in Figure 4.18, we can still verify the local optimum

issues of the genetic algorithm, since the 10 iteration data has slightly smaller

APITCALL compared to 15 iteration data. Therefore we should keep the number of

iterations to a relatively large number to obtain the global optimum or better performance.

Figure4.19 Changes on APITCALL for BEST with different stall trigger

Legend explains the rest settings of simulation with the following format:
 Number of cores: Cycles of each application: Number of iterations.

With Figure 4.19, we cannot observe the relationship between APITCALL and

the changes of amounts of inforuction that causes the stall, which corresponds to size of

the inforuction buffer that is related to the hardware hazards. Some of results display the

performance improvement when we have tighter stall trigger condition and the others

display a decrease in the performance with the tighter constraint. The conclusion of this

observation is that the change in condition of stall trigger definitely changes the

APITCALL, but we cannot predict the effect in APITCALL due to the changes in the

inforuction buffers from the current observations. The reason we cannot observe the

66

steady changes in the performance might comes from the following points: the

inforuction buffers still have large enough size to avoid most stalls, the best configuration

for single design core only systems already avoid the stalls as much as possible, the

significant changes are averaged in the process of calculation of APITCALL, and/or the

changes of best performance of single core only systems eliminate the proof of

performance changes as in the observation of Figure 4.16.

In this chapter, we introduce the static genetic reconfigurable system which

demonstrates the ability to find the optimized configuration. Even though our algorithm

still remains the several rooms of improvement, we obtained the positive APITC with

general cores only system for all settings. With the modified algorithm, we demonstrate

the better performance in the optimization to each individual application sequence. This

result stands for the following statement: the genetic algorithm and our static system can

change configurations of the system to obtain better performance in PITCs. We also

have to emphasize the following fact: the optimization process needs prior information of

the stochastic data of inforuction generation or application sequences. Without any

information, our static system and the static genetic algorithm would not produce the

superior results and end up with meaningless results for reconfiguration.

67

CHAPTER 5

DYNAMIC RECONFIGURABLE SYSTEM

5.0 Specific details of the dynamic genetic algorithm

Since we discuss details of dynamic system in the previous sections, we will not

repeat the same topic. Instead, we describe a topic which has not been discussed yet.

That is how we determine the time to finish the previous reconfiguration process and start

the new reconfiguration process. We have to use fixed time to estimate the fitness values,

but we do not have to use the fixed time to terminate. We identify this time as

reconfiguration time, which is the time we terminate the old reconfiguration process and

then start the new process. If we do not choose this time interval carefully, our

performance does not correspond to what we achieve in the real situation. For example,

if we choose time interval shorter than the actual time for the reconfiguration of a FPGA

(Field Programmable Gate Array) device, our simulation result is not realistic. Also, we

have to take into consideration the calculation time for our reconfiguration process, since

the timing of reconfiguration will change the performance we can get from our system.

In addition to the fitness function we define in the former section, we add one

more parameter that memorizes the changes of processing performance within a time

68

interval. After we find the best candidate by a genetic algorithm, we evaluate the

predicted processing power of both the current configuration and the best candidate

configuration. We compare these candidate performances for each time unit, beginning

with the time frame we use for the genetic algorithm to the time of reconfiguration

penalties. The time step we find through this process is set as the reconfiguration time

that we previously defined. The flowchart of this process is shown in Figure 5.1, and the

entire flowchart of the dynamic genetic algorithm is shown in Figure 5.2 and Figure 5.3.

Figure5.1 Reconfiguration time determination process

Start

Set to the fixed time

Decrement timer

Check
performance

Satisfied

Not Satisfied

Stop

NOT satisfied

Check
performance

Satisfied

69

Figure5.2 Operation flowchart for the dynamic genetic algorithm

Start

Initialization

Processing

Stall?
Not
Happened

Happened

Stop

Complete?

Completed Not completed

Flag?

Genetic Algorithm

Generation

Better?

Time?

Off

No
Modification

Yes

Passed

Not Passed

On

70

5.1 Simulation settings

In the previous chapter, we verify that the optimization ability of the genetic

algorithm with the static reconfigurable system on the average. We use several fixed

settings as common factors between the previous chapter and the present chapter, such as:

stochastic information of inforuction generation in each application, number of different

application, total number of inforuction generated in a given cycle, the number of core in

a system, types of core architecture, types of inforuction, performance of each type of

core architectures that are listed in Table 4.2, .Table 4.3 and Table 4.4. We change the

number of generation to smaller number since we want to run this algorithm faster and

the generation is the only stopping criteria as we describe. We also do not limit the size

of the population inside the algorithm, but we limit the size of the population which

carries over to the next implementation of the genetic algorithm. These fixed settings,

Figure5.3 Brief Description of flowchart of the dynamic genetic algorithm

1.) Initialization Stage
a. Set the number of application and number of iteration for each application

2.) Generation Stage
a. Create the specific total amounts of information

3.) Reconfiguration Flag Check Stage
a. Check whether reconfiguration is currently in the process or not

4.) Genetic algorithm Stage
a. Implement genetic algorithm to find the better configuration

5.) Verification Stage
a. Check whether the new configuration produce the better or not

6.) Process Stage
a. Increment the time unit
b. Process the # of information for the current processing power

7.) Stall Check
a. Check whether the stall is happened or not

8.) Information check
a. Check whether all information is completed or not

9.) Reconfiguration time Check
a. Check whether the reconfiguration time is passed after the trigger of reconfiguration

10.) Modification Stage
a. Change the performance of the system by adding the restriction or removing it

71

which are different from Table 4.4, are listed in Table 5.1. Also we use several variable

settings as common to the setting listed in Table 4.5. The settings for variable parameter

are listed in Table 5.2. All combinations of setting are listed in Table B.11 – Table B.14.

As we describe in the previous chapter, we will observe the differences in the

performance of static reconfigurable system and dynamic reconfigurable system. We

could repeat the algorithm as we did in the static system, but we put more focus on the

speed of the algorithm, since this is a time-critical operation which the environment

changes as time goes and performance improvement is also dependent on the time we

complete the algorithm. The fixed time we describe during the previous section is

determined from the expression (5.1)

Table5.1 Common setting for all simulation

 Setting

of total simulation 64 (= 4^3) [same as Table 4.4]

Total # of Inforuction at a time unit 64 [same as Table 4.4]

Size of Initial population 15 [same as Table 4.4]

of generation 45

Maximum carry over factor (size) 4 (60 = 4*15)

Dependencies factor .05

Prediction factor 2

Table5.2 Variable Setting for each simulation

 Candidates of setting we will setting

of cores in the system 2, 4, 6, 8, 10, 12, 14 [same as Table 4.4]

Length of each application 50,100, 200, 400

Reconfiguration penalties 6,8,10

Stall trigger 30, 50 [same as Table 4.4]

72

 5.1

where RP is reconfiguration penalties

The choice of reconfiguration penalty is based on [34], where they said that the

time necessary to complete the full programmable device is typically done in several

microseconds and is dependent on the type of devices used for the reconfiguration. Also

the time is dependent on the area that needs to be reconfigured [34]. In addition to the

actual reconfiguration time, which is the time necessary to change the architecture, we

need to think about the time to calculate the best dynamic architecture corresponding to

the inforuction streams as we describe previously. The process of calculation can be

implemented along with processing of inforuction in our main system. So we choose the

reconfiguration penalties, which are sum of time necessary to change the architecture and

time needs to calculate the optimized candidates, as 6, 8, and 10 cycles. We run the

MATLAB codes with computers which have the same specifications as listed in Table

4.1. The cumulated numbers of computers used for dynamic system simulation is 102

since we simulate each individual setting with a different computer.

5.2 Simulation Results and Observations

As we describe in the previous chapter and this chapter, we can use several results

of observations from the previous chapter, since we use common settings. We set the

model of the conventional system as general cores only and use the performance

measurement of our system which is similar to what we derive in expression (4.1) and

(4.2). We use the both SPITCGEN and APITCGEN, and also we use the SPITCBEST

73

and APITCBEST, in which BEST is the result of static systems in the previous chapter.

The expressions to calculate SPITCBEST and APITCBEST are in expression (5.2) and

(5.3). With these methods, we can easily compare the results of performance

improvements from the different types of systems.

1

 5.2

∑

 5.3

where BEST performance we obtain in Chapter 4

Figure5.4 SPITCBEST with dynamic systems

Each entry in the graph is a specific setting (D001 – S077) in Table B.11 through B.14.

Figure5.5 APITCBEST with dynamic systems

74

Figure5.6 SPITCGEN with dynamic systems

Each entry in the graph is a specific setting (D001 – S102) in Table B.11 through B.14.

Figure5.7 APITCGEN with dynamic systems

Figure 5.4 and Figure 5.5 display the simulation results with SPITCBEST and

APITCGEN. From these figures, we have to conclude that dynamic systems might not

perform as well as the static systems, which are described in Chapter 4. APITCBESTs

show that we have a performance reduction for most settings, but for several settings we

have performance improvements. Since these improvements are observed in comparison

75

to BEST, the dynamic systems have better performances compared to any other fixed

architecture system under certain situations. The fact that we do not get a better

performance improvement in most situations comes from two major reasons. One of

them is inactive time of reconfigurable cores during reconfiguration. The static system

does not have any performance reduction due to the reconfiguration. Even if we compare

with a normal system, which has only general cores, the effect of performance reduction

is clear. This statement is supported with Figure 5.6 and Figure 5.7. We have about

20 % of performance improvement on the average of APITCGEN, but we have several

performance reductions in SPITCGENs. If we compare our result with highly optimized

systems for specific inforuction streams, the performance reduction due to

reconfiguration becomes more clear and significant than comparison between dynamic

systems and GENs. Another reason is the issue of local optimums. As we describe in the

previous chapter, our optimization process might be trapped with local optimums. To

avoid local optimums, we increase the number of iterations in the static systems. In our

dynamic system, we cannot increase the number of iterations unless we have sufficient

computational power for optimization processes, since the calculation cost would also

increase as we increase the iterations.

We study the details of characteristics of the system with APITCGEN. We

investigate the effect of changing the settings of our systems. Figure 5.8 demonstrates

the performance changes due to increase in the numbers of cores in the system. Larger

figures are shown in Figure B.25 through Figure B.27. From the graphs, we can observe

that we have significant performance improvement between 4 core systems and 6 core

systems, and we have very low improvement at 2 core systems. Since with 2 cores

76

systems, we have fewer choices for configurations and performance reduction due to

reconfiguration is significant, it is natural to have such low performances. Most results of

the simulation have the higher performance improvement when we compare with GEN

systems, which have the same number of cores. Even from these graphs, we can observe

that the magnitude of performance improvement decreases as we increase the number of

cores in a system. The reason of these behaviors is exactly the same as what we describe

in the previous chapter: the fixed amounts of inforuction generation per cycle. From this

point, we can conclude that the peak of performance improvement would be dependent

on the number of inforuction generated per cycle. Figure 5.9 displays the relationship

between the numbers of reconfiguration of the system and the number of cores in a

system. Since we have performance reduction during the reconfiguration process, the

performance improvement from the reconfiguration would become smaller when we have

more cores with fixed size inforuction prefetching system.

Figure5.8 APITCGEN with dynamic systems (Changing the number of core)

Legend explains the setting of each result of simulation with the following format:
 Number of delay cycles: Cycles of each application: Stall trigger levels.

77

Figure5.9 Number of reconfigurations (Changing the number of cores)

Legend explains the setting of each result of simulation with the following format:
 Number of delay cycles: Cycles of each application: Stall trigger levels.

Figure5.10 APITCGEN with dynamic systems (Changing the delay cycles)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels.

78

With Figure 5.10, we explain the relationship between the performance

improvement and the delay due to reconfiguration. All set of configurations is located in

the Appendix B: Figure B.28 through Figure B.34. In these figures, we can observe two

opposite trends in the change of performance improvement. The decrease of

performance improvement can be easily explained with the performance reduction during

the reconfiguration process. As the figures show, we have lower performance

improvement when we have larger reconfiguration penalties, since larger reconfiguration

penalties imply more performance reduction during the reconfiguration process. There

are several cases that we have performance improvement due to larger reconfiguration

penalties. This might come from the fact that we eliminate the unnecessary

reconfigurations that make the performance lower. This can be supported with Figure

that displays the average number of reconfiguration occurred to process specific

information stream in Figure 5.11. Figure B.35 displays whole setting of Average

number of reconfiguration.

Figure5.11 Average number of reconfiguration (Changing the delay cycles for 6 cores case)

Legend explains the setting of each result of simulation with the following format:
Number of cores: Cycles of each application: Stall trigger levels.

79

Figure5.12 APITCGEN Changes from the change of inforuction buffer

Legend explains the setting of each result of simulation with the following format:
Number of cores: Number of delay cycles: Cycles of each application.

Now we observe the relationship between the size of the inforuction buffer and

the performance improvement. As Figure 5.12 displays, there is no strong relationship

between the improvement and size of inforuction buffers. The reason of this behavior

might come from two points: the percentage of performance change due to the changes in

the buffer size is not large enough and/or the buffer size is still larger than the critical size

which would dramatically change the performance. From the figure, we conclude that

we do not have any strong relationship when we change the buffer size from 50 to 30.

Finally, we study the effect of length of simulation in the performance

improvement. Figure 5.13 demonstrates that we have lower performance improvement

for short time applications, but our performance improvement increases rapidly for

medium length applications. Since we have more chances to reconfigure, the

performances are increased. If we simulate longer cycles for each inforuction pattern,

80

our performance improvement increases more slowly. The total cycles necessary to

simulate all application increase, but the amounts of cycle we can improve without stalls

and empty running do not increase as much as medium length applications. Therefore, the

percentage of improvement seems to become saturated for longer cycles.

Figure5.13 APITCGEN Changes from the change in cycles of each application

Legend explains the setting of each result of simulation with the following format:
Number of cores: Number of delay cycles: Cycles of each application.

 We emphasize one of the facts we do not discuss yet. For the static applications,

we need the prior knowledge of application sequences to efficiently improve the

performance. However, for dynamic systems, we do not need such kinds of information,

since our system has simple automatic learning mechanism, which learns the application

patterns we processed in the several intervals. The major difference in the performance

81

between the static and the dynamic computer comes from their optimization targets. In

other words, the static computer optimizes their architecture to have the “best”

performance using the result of simulation based on the prior knowledge of inforuction

streams we will process, and the dynamic operation use the short time prediction to have

better performance than the current configuration. Most part of performance differences

in these systems come from the reconfiguration penalties which is only used in the

dynamic system and mispredictions that might happen in the dynamic systems.

82

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.0 Problems

Before concluding this study, we will go over some problems of our approach.

Since the simulation results are based on several assumptions we made in this study, the

results are not appropriate for a real world operation model. One of the most significant

differences from real world operation is reconfiguration penalties. Even though we

discuss the performance improvement from the dynamic reconfiguration in the previous

chapter, the settings for reconfiguration penalties are not realistic. Since we have to

simulate the short time behaviors to evaluate the fitness functions for dynamic systems,

the calculation time for the reconfiguration process would be much greater than the time

we assume in the previous chapter. Also the time to reconfigure the core will take much

longer. From these defects, our simulation result is not accurate enough to demonstrate a

genuine performance improvement from the dynamic systems. In addition, the core or

computational unit used for the genetic algorithm was not included in the simulation.

Therefore the comparison would not be fair because the number of cores used for GEN

and our system is different. We will discuss how to avoid these issues in the future work

section. Also, our approach of dependencies is significantly different from the real world

83

operations of a computer. In the real world, we might have much more dependencies

compared to our method and the dependencies would not occur in random locations.

Also some operations of CPUs are not even described in this study. These functions,

such as branch, are critical to determine the true performance of CPUs.

The stochastic data we use for each type of application during the generation of

inforuction streams are not realistic. And the simulation itself is only a theoretical model

for operations of a computer. It is not implemented in the lower level simulations such as

SPEC and Simics, which have more detailed information of computer architectures and

produce more accurate data. Our simulation is implemented in the higher models with

assumptions we made in this study. Also the system does not calculate the delay of

inforuction due to the length of paths from the buffer to each individual core.

6.1 Future work

We should improve the accuracy of our study to strongly justify our statement:

“the human-brain-like-computer has superior power to process information compared to

the conventional computer.” To improve the accuracy of our study, we have to research

specialized architectures. We should design more realistic core architectures and

measure performances with benchmark programs. At the same time, we have to decide

what kinds of specialized cores are appropriate to our list of configuration candidates.

Also we have to improve accuracy of our computer models from two different

viewpoints: improving the stochastic data of application and improving the model itself.

To improve the stochastic data of applications, we need a long time observation of real

computer operation with several famous benchmark programs. With observation, our

long cycle simulations improve model reliability because our model corresponds to real

84

systems. As we describe in the previous section, we should include the branch operation

to make our model more realistic and improve the dependencies operation of our model

to find the accurate performance benefits. We can modify our genetic algorithm to

improve the search abilities in the optimization process. To improve functionality of our

simulation, we should change the code. Currently, our simulation code uses several

parameters as the constants of the program. Instead of using them as the constants, we

should assign them as the inputs to improve usability of our code. Also the optimal cycle

size of prediction and details of reconfiguration methods leave as a topic for future

research since we do not have enough time to identify the best solution.

Table6.1 Previous Dynamic Approach and Major Problems

 Approach Problem

Prediction Method Each-cycle Taking too long

Reconfiguration

Penalties
6,8,10 Too short!

Target Time Close future operation Not sufficient time

Comparison The same # of cores Not Fair

As we promise in the previous section, we will discuss how we can improve the

dynamic reconfigurable computer. We summarize the previous approach and issues

related to it in Table 6.1. As we describe, the most significant issues of our system are

related to time, such as the reconfiguration penalties and the calculation time for the

genetic algorithm. One of the methods to solve these issues is to change the target time

of optimization to further future operations, such that the reconfiguration and the

calculation for the genetic algorithm will be completed beforehand. For example, if the

85

calculation time of the genetic algorithm is 100 cycles and reconfiguration penalties are

150 cycles, we will predict the condition of our system after 500 cycles. Following that,

we adjust the system to meet the demand in terms of processing power or to avoid

bottlenecking of the system for 100 cycles from the prediction point. To accomplish this

method, we need to reduce the calculation time of the genetic algorithm, since trials of

prediction with each-cycle method in the genetic algorithm takes too long to get results

on time. Instead of each-cycle prediction, we can use the multiple-cycle prediction. In

the multiple-cycle prediction, we use the stochastic data of system to predict future

operations, such as cycles that the system stalled, cycles that the system is in empty-

running state, and cycles that the system encounters dependencies. Data we used with

the previous method is also used to predict the generated infoructions. In this method,

calculation of fitness values is similar to expression (3.1), but the method of evaluation is

slightly different and more sophisticated. With the new method of prediction, there

might be more chances of mispredictions. Hence, we also need to develop more

sophisticated method of prediction. To make fair comparison, we will reduce one core

from our system to assign the removed core as the control unit of the system. Another

approach we can use to reduce the reconfiguration penalties is to set one core as the

victim of reconfiguration. The selection of next victim is based on the lowest

performance improvement among the activate cores in the system. We have one less

core during the calculation time of genetic algorithm, but during the rest of the operation

we have two cores less than GEN system. In other words, one core is in the process of

reconfiguration during approximately half of the operation time. In this approach, we do

not have to worry about the reduction of performance, since we already removed the core

86

that would reconfigure for future operations. In this method, we should care about the

performance changes due to reconfigurations, and due to the increase in the performance

while waiting for the trigger of reconfiguration. Since we do not have enough time to

implement the new idea of dynamic reconfigurable computer to simulate the performance,

we leave this idea as future work.

We reemphasize the fact that our system is only theoretical right now. Therefore,

we need research to implement our idea in the real system.

6.2 Applications

In this study, we prove the potential power of our multi-core dynamic

reconfigurable genetic system compared to general homogeneous systems. In the

process of our proof we also demonstrate the power of the genetic algorithm to find the

better configuration in the static reconfigurable system. We will go over several

different applications of our proposed systems in the real world. With the static

reconfigurable system, we can determine the configurations and the number of pipelines

required to obtain the maximum performance of processors within given resources for a

specific purpose. The designers can use the results obtained in our algorithm for the

starting point of their designs of superscalar processors for specialized applications that

might be used in our dynamic systems. We can apply it to automatically find the

optimum number of each type of pipelines; we do not have to do trial-and-error in the

human brain. We can also create pseudo dynamic system from our static system. Instead

of real run time reconfigurations implemented in our system, we keep switching the state

of machines between inactive mode and active mode. During the active mode, we simply

87

use the maximum processing power to execute infoructions and we obtain the data for

next possible inforuction streams in some method such as the method used for the

dynamic systems. Then after several time intervals we try to reconfigure the system with

the stochastic information of inforuction streams. This method is similar to active mode

and off mode of the wireless sensor network [35]. Since our dynamic system emulates

the human brain, we can use our system as the brain for the general purpose robots. With

our system, the robot can implement the several different tasks with optimized

performance in the single system implementation. We can use our dynamic system

where space is premium. Since our dynamic system can adjust the configurations to the

purpose of the systems without any prior knowledge, we might reduce the space

necessary for each type of specialized processors. If we change the fitness functions to

find the minimum configuration within given resources, then we can minimize the

number of cores necessary to complete the specific applications in the given cycles. In

other words, we can create the system which dynamically turns off the unnecessary part

of computer to reduce power consumption. We can apply our algorithm to create

dynamic memory architectures. Also we can apply it to create much larger scale of

reconfigurable systems.

6.3 Conclusion

In this study, we propose a heterogeneous dynamic reconfigurable computer. To

demonstrate the optimization power of the genetic algorithm, we introduce a simpler type

of system, which is called a static reconfigurable computer. Both of our proposed

systems implement a genetic algorithm as part of the system. We introduce several ideas

88

and background information to explain the operation of the systems and techniques to

reduce the complexity of our systems and simulations. The algorithm is used for the

optimization process to find the better system configurations with predefined

architectures. We implement higher level simulations in MATLAB to observe the

system performances. In the static system simulations, we evaluate each individual

system with the fitness function, which calculates the time necessary to complete all

infoructions in a specific stream. In this higher level simulation, we demonstrate

approximately 35 % performance improvement compared to the homogeneous general

multi-core system which has the same numbers of cores as our static system. Our system

also demonstrates approximately 18 % of performance improvement compared to the

best result from any homogeneous multi-core systems. These accomplishments are due

to the prior knowledge of the streams we want to process. After we demonstrate the

optimization power of the genetic algorithm, we implement our dynamic systems. Even

though there are defects in our simulation, we verify potential superiority of our proposed

system, which shows approximately 15 % average performance improvement compared

to the homogeneous general multi-core system with the same number of cores. As we

describe, there are several defects in our system, such as the problem of local optimum,

problems of assumptions for the systems, and unfair comparison with homogeneous

systems. We need further research on the proposed systems to determine the actual

performance improvement in the real world. However, we are still motivated to continue

with the research on heterogeneous dynamic reconfigurable computers because the

flexibilities of human-brain-like-computers have potential to improve system

performance and many applications which have potential to save space and power.

89

APPENDIXIES

APPENDIX A: REFERENCES

[1] G. Moore, “Progress in Digital Integrated Electronics,” in Technical Digest—IEEE
International Electron Devices Meeting, IEEE, 1975, p.p. 11-13

[2] Intel, “Moore's Law, The Future - Technology & Research at Intel,” Intel. [Online].

Available: http://www.intel.com/cd/corporate/techtrends/emea/eng/209729.htm.
[Accessed: April 22, 2008]

[3] Intel, “Intel® Core™2 Duo Processor Overview,” Intel [Online] Available:

http://www.intel.com/products/processor/core2duo/ [Accessed: May. 20, 2008]

[4] Intel, “Intel® Core™2 Quad Processor Overview,” Intel [Online] Available:

http://www.intel.com/products/processor/core2quad/ [Accessed: May. 20, 2008]

[5] IBM, “The Cell architecture,” IBM [Online] Available:

http://domino.research.ibm.com/comm/research.nsf/pages/r.arch.innovation.html
[Accessed: May. 20, 2008]

[6] J. Rice, K. C. Pace, M. D. Gates, G. R. Morris, and K. H. Abed, “Reconfigurable

computer application design considerations” Southeastcon, 2008, IEEE, p.p. 236-243,
3-6 April 2008

[7] G.R. Morris, “Floating-Point Computations on Reconfigurable Computers,” DoD

High Performance Computing Modernization Program Users Group Conference,
2007, p.p. 339-344, 18-21 June 2007

[8] I. Ouaiss, and R.Vemuri, “Hierarchical memory mapping during synthesis in FPGA-

based reconfigurable computers,” Design, Automation and Test in Europe, 2001.
Proceedings of Conference and Exhibition 2001, p.p. 650-657, 2001

[9] David A. Patterson, and John L. Hennessy, “Computer Organization & Design: The

Hardware/Software Interface”, Morgan Kaufmann Publishers, San Francisco,
California, 2005

90

[10] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S. Pai,
“Challenges in computer architecture evaluation,” Computer, vol.36, no.8, p.p. 30-
36, August 2003

[11] Standard Performance Evaluation Corporation, “SPEC Benchmark Suite,” Standard

Performance Evaluation Corporation [Online] http://www.spec.org
[Accessed: May. 20, 2008]

[12] J. L. Henning, “SPEC CPU2000: measuring CPU performance in the New
Millennium,” Computer, vol.33, no.7, p.p. 28-35, July 2000

[13] Virtutech, “Simics Benchmark Suite”, Virtutech [Online]

http://www.virtutech.com/whatissimics.html [Accessed: May. 20, 2008]

[14] A. E. Dunlop, and B. W. Kernighan, “A Procedure for Placement of Standard-Cell

VLSI Circuits,” Transactions on IEEE Computer-Aided Design of Integrated
Circuits and Systems, vol.4, no.1, p.p. 92-98, January 1985

[15] Bryan R. Buck and Jeffrey K. Hollingsworth, “Data Centric Cache Measurement on

the Intel ltanium 2 Processor”, in Proceeding on of the 2004 ACM/IEEE conference
on Supercomputing, p.58, November 06-12, 2004

[16] A. Akram, J. Kewley, and R. Allan, “A Data Centric approach for Workflows,”

Enterprise Distributed Object Computing Conference Workshops, 2006. EDOCW
‘06. 10th IEEE International, p.p. 10-10, October 2006

[17] Guo-Fang Nan, Min-Qiang Li, Dan Lin and Ji-Song Kou, “Application of

evolutionary algorithm to three key problems in VLSI layout,” Proceedings of 2005
International Conference on Machine Learning and Cybernetics. Volume 5, p.p.
2929 – 2933

[18] S. Coe, S. Areibi, and M. Moussa, “A hardware Memetic accelerator for VLSI

circuit partitioning,” Computers and Electrical Engineering, vol.33 no.4, p.p. 233-
248, July, 2007

[19] S. Coe, S. Areibi, and M. Moussa, “A genetic local search hybrid architecture for

VLSI circuit partitioning,” in Proceeding on 16th International Conference on
Microelectronics, 2004. ICM 2004, p.p. 253-256, 6-8 Dec. 2004

 [20] S. Areibi, M. Moussa, and G. Koonar, “A Genetic algorithm hardware accelerator

for VLSI circuit partitioning,” International Journal of Computers and Their
Applications, 2005 vol. 12, no.3, p.p. 163-180.

[21] S. Areibi, and Z. Yang, “Effective memetic algorithms for VLSI design automation

= genetic algorithms + local search + multi-level clustering,” Evolutionary
Computation, vol .12, no.3, p.p. 327-353, September 2004

91

[22] C. R. Reeves, and J. E. Rowe, “Genetic Algorithms: Principles and Perspectives: A

Guide to GA Theory,” Kluwer Academic Publishers, Norwell, MA, 2002

[23] C. Darwin, “The Origin of Species,” Literature.org [Online] Available at:

http://www.literature.org/authors/darwin-charles/the-origin-of-species/index.html
 [Accessed: May. 20, 2008]

[24] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic Algorithms for

the Traveling Salesman Problem”, in Proceeding on 1st International Conference on
Genetic Algorithms and Their Applications, p.p.160 - 168, 1985.

[25] F. Zhuang, and F. D. Galiana, “Unit commitment by simulated annealing,” IEEE

Transactions on Power Systems, vol. 5, no. 1, February 1990, p.p. 311-318.

[26] G. G. Yen and H. Lu, "Dynamic population size in multiobjective evolutionary

algorithm,” in Proceeding on 9th IEEE Congress of Evolutionary Computation, p.p.
1648-1653, 2002.

[27] R. Takahashi, “Solving the traveling salesman problem through genetic algorithms

with changing crossover operators,” in Proceeding on 4th International Conference
on Machine Learning and Applications, 2005, p.p. 6, 15-17 December 2005

.
[28] A. Acan, H. Altincay, Y. Teko, and A. Unveren, “A genetic algorithm with multiple

crossover operators for optimal frequency assignment problem,” The 2003 Congress
on Evolutionary Computation, 2003. CEC '03. , vol.1, p.p. 256-263, 8-12 December
2003.

[29] S. C.Esquivel, A. Leiva, and R. H. Gallard, “Multiple Crossover Per Couple in

genetic algorithms,” IEEE International Conference on Evolutionary Computation,
1997, p.p. 103-106, 13-16 April 1997

[30] M.T. Hagan, H.B. Demuth, and M.H. Beale, “Neural network design”, PWS

Publishing Company, Boston MA, USA, 1996.

[31] S. Karlin and H. Taylor, A First Course in Stochastic Processes, 2nd ed. San Diego,

CA: Academic, 1975.

[32] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist.,

vol. 22, pp. 400–407, 1951.

[33] H. Kushner and G. Yin, “Stochastic Approximation Algorithms and Applications,”

New York: Springer-Verlag, 1997.

92

[34] F. Mehdipour, M. S. Zamani, H. R. Ahmadifar, M. Sedighi, K. Murakami,
“Reducing reconfiguration time of reconfigurable computing systems in integrated
temporal partitioning and physical design framework,” 20th International Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006, p.p. 8, 25-29 April 2006

[35] S. Park, A. Savvides, and M.B. Srivastava. 2000. “SensorSim: a simulation

framework for sensor networks”.in Proceeding on the 3rd ACM international
workshop on Modeling, analysis and simulation of wireless and mobile systems
(MSWIM 2000), p. p. 104-111. Boston, Massachusetts, United States: ACM Press.

93

APPENDIX B: TABLES AND FIGURES: SETTINGS AND RESULTS

Table B.1 Changes in stochastic information of inforuction generator – Part 1

where the top row represent pattern ID, left column represent order we use, G is general stochastic pattern,
 LM is logic /mathematic operation intensive pattern, FL is floating point operation intensive pattern,

and M is memory operation intensive pattern

 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

1st G G G G G G G G G G G G

2nd G G G G LM LM LM LM FL FL FL FL

3rd G LM FL M G LM FL M G LM FL M

 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24

1st G G G G LM LM LM LM LM LM LM LM

2nd M M M M G G G G LM LM LM LM

3rd G LM FL M G LM FL M G LM FL M

 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36

1st LM LM LM LM LM LM LM LM FL FL FL FL

2nd FL FL FL FL M M M M G G G G

3rd G LM FL M G LM FL M G LM FL M

 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48

1st FL FL FL FL FL FL FL FL FL FL FL FL

2nd LM LM LM LM FL FL FL FL M M M M

3rd G LM FL M G LM FL M G LM FL M

94

Table B.2 Changes in stochastic information of inforuction generator – Part 2

where the top row represent pattern ID, left column represent order we use, G is general stochastic pattern,
 LM is logic /mathematic operation intensive pattern, FL is floating point operation intensive pattern,

and ME is memory operation intensive pattern

 P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60

1st M M M M M M M M M M M M

2nd G G G G LM LM LM LM FL FL FL FL

3rd G LM FL M G LM FL M G LM FL M

 P61 P62 P63 P64

1st M M M M

2nd M M M M

3rd G LM FL M

Table B.3 Setting of Static systems (Only displays variable settings) – Part 1

where A is number of cores, B is length of each application in the time unit,
C is numbers of iterations we implement, D is amounts of inforuction that
 cause stall and left column represent configuration ID for static system.

 A B C D

S001 2 50 10 50

S002 2 100 10 50

S003 2 200 5 50

S004 2 200 10 50

S005 2 200 10 30

S006 2 400 5 50

S007 2 400 10 50

S008 2 400 10 30

S009 2 600 5 50

S010 2 600 10 50

S011 2 600 10 30

S012 4 50 10 50

S013 4 100 10 50

95

Table B.4 Setting of Static cores (Only displays variable settings) – Part 2

Where A is number of cores, B is length of each application in the time unit,
C is numbers of iterations we implement, D is amounts of inforuction that
 cause stall and left index is configuration ID for static reconfigurable core.

 A B C D

S014 4 200 5 50

S015 4 200 10 50

S016 4 200 10 30

S017 4 400 5 50

S018 4 400 10 50

S019 4 400 10 30

S020 4 600 5 50

S021 4 600 10 50

S022 4 600 10 30

S023 6 50 10 50

S024 6 100 10 50

S025 6 200 5 50

S026 6 200 10 50

S027 6 200 10 30

S028 6 400 5 50

S029 6 400 10 50

S030 6 400 10 30

S031 6 600 5 50

S032 6 600 10 50

S033 6 600 10 30

S034 8 50 10 50

S035 8 100 10 50

S036 8 200 5 50

S037 8 200 10 50

S038 8 200 10 30

S039 8 400 5 50

96

Table B.5 Setting of Static cores (Only displays variable settings) - Part 3

Where A is number of cores, B is length of each application in the time unit,
C is numbers of iterations we implement, D is amounts of inforuction that
 cause stall and left index is configuration ID for static reconfigurable core.

 A B C D

S040 8 400 10 50

S041 8 400 10 30

S042 8 600 5 50

S043 8 600 10 50

S044 8 600 10 30

S045 10 50 10 50

S046 10 100 10 50

S047 10 200 5 50

S048 10 200 10 50

S049 10 200 10 30

S050 10 400 5 50

S051 10 400 10 50

S052 10 400 10 30

S053 10 600 5 50

S054 10 600 10 50

S055 10 600 10 30

S056 12 50 10 50

S057 12 100 10 50

S058 12 200 5 50

S059 12 200 10 50

S060 12 200 10 30

S061 12 400 5 50

S062 12 400 10 50

S063 12 400 10 30

S064 12 600 5 50

S065 12 600 10 50

97

Table B.6 Setting of Static cores (Only displays variable settings) - Part 4

Where A is number of cores, B is length of each application in the time unit,
C is numbers of iterations we implement, D is amounts of inforuction that
 cause stall and left index is configuration ID for static reconfigurable core.

 A B C D

S066 12 600 10 30

S067 14 400 10 30

S068 14 600 5 50

S069 14 600 10 50

S070 14 600 10 30

S071 14 50 10 50

S072 14 100 10 50

S073 14 200 5 50

S074 14 200 10 50

S075 14 200 10 30

S076 14 200 10 50

S077 14 200 10 30

Table B.7 Simulation result of S001 in PITCGEN – Part 1

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only
system, BEST is the “BEST” performance we find during optimization over all iteration,

AVER is average of best performance we find during each iteration, LOG is the logic
specialized cores system, MAT is the mathematical operation specialized

 cores system, FLO is the floating point operation specialized cores
system, MEM is the memory operation specialized core system.

 S001 is defined in Table B.3.

 P01 P02 P03 P04 P05 P06 P07

BEST 11.90% 9.20% 48.80% 40.45% 5.19% 10.07% 38.92%

AVER -16.74% -48.25% 11.50% 16.50% -33.87% -54.18% -0.23%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 0.00% 9.20% 0.00% 0.00% 9.09% 17.57% 4.77%

MAT 0.00% -18.71% 0.00% 0.00% -18.38% -35.14% -10.53%

FLP -76.09% -130.88% 28.71% -30.71% -124.18% -162.68% -1.20%

MEM -76.09% -130.88% -24.63% 12.50% -124.18% -162.68% -54.43%

98

Table B.8 Simulation result of S001in PITCGEN – Part 2

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only
system, BEST is the “BEST” performance we find during optimization over all iteration,

AVER is average of best performance we find during each iteration, LOG is the logic
specialized cores system, MAT is the mathematical operation specialized

 cores system, FLO is the floating point operation specialized cores
system, MEM is the memory operation specialized core system.

 S001 is defined in Table B.3.

 P08 P09 P10 P11 P12 P13 P14

BEST 34.92% 48.72% 40.02% 61.61% 49.92% 41.09% 33.90%

AVER -5.16% 13.67% -3.61% 26.74% 20.40% 10.26% -3.00%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 5.56% 0.00% 4.71% 0.00% 0.00% 0.00% 5.90%

MAT -11.05% 0.00% -9.47% 0.00% 0.00% 0.00% -11.68%

FLP -60.62% 28.22% 2.99% 64.49% 31.00% -32.08% -63.53%

MEM -17.09% -24.26% -48.99% -6.15% 19.98% 12.08% -21.41%

 P15 P16 P17 P18 P19 P20 P21

BEST 49.44% 57.07% 0.00% 17.78% 39.70% 28.16% 9.92%

AVER 22.68% 17.49% -39.06% -32.43% 6.58% -0.44% -35.70%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 0.00% 0.00% 9.00% 17.78% 4.74% 5.55% 17.28%

MAT 0.00% 0.00% -18.10% -35.75% -9.47% -11.03% -34.66%

FLP 31.18% -9.03% -122.85% -169.86% -0.41% -59.40% -161.95%

MEM 18.58% 53.87% -122.85% -169.86% -52.94% -16.45% -161.95%

 P22 P23 P24 P25 P26 P27 P28

BEST 14.30% 23.85% 29.54% 39.10% 23.62% 55.96% 29.17%

AVER -76.35% -7.95% -7.99% 2.19% -17.05% 11.29% 13.28%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 25.00% 9.19% 10.70% 4.65% 9.22% 3.11% 3.51%

MAT -50.00% -18.33% -21.41% -9.24% -18.44% -6.15% -7.01%

FLP -199.91% -22.75% -85.63% 2.35% -23.27% 45.44% 10.67%

MEM -199.91% -73.37% -43.27% -49.31% -73.69% -24.67% 0.08%

99

Table B.9 Simulation result of S001in PITCGEN – Part 3

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only
system, BEST is the “BEST” performance we find during optimization over all iteration,

AVER is average of best performance we find during each iteration, LOG is the logic
specialized cores system, MAT is the mathematical operation specialized

 cores system, FLO is the floating point operation specialized cores
system, MEM is the memory operation specialized core system.

 S001 is defined in Table B.3.

 P29 P30 P31 P32 P33 P34 P35

BEST 33.25% 28.33% 30.38% 52.80% 48.59% 39.02% 61.78%

AVER 4.89% -12.53% 14.76% 5.31% 17.08% -6.47% 24.13%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 5.61% 11.03% 3.56% 3.97% 0.00% 4.86% 0.00%

MAT -11.29% -22.12% -7.17% -8.02% 0.00% -9.77% 0.00%

FLP -58.24% -88.37% 11.28% -32.01% 28.02% -0.31% 64.29%

MEM -17.21% -48.40% -2.82% 29.98% -24.69% -51.83% -5.40%

 P36 P37 P38 P39 P40 P41 P42

BEST 50.37% 40.15% 34.63% 55.48% 29.09% 62.90% 45.39%

AVER 26.45% -4.12% -3.99% 16.60% 9.16% 26.62% 17.61%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 0.00% 4.69% 9.26% 3.21% 3.53% 0.00% 3.21%

MAT 0.00% -9.48% -18.47% -6.41% -7.03% 0.00% -6.36%

FLP 31.22% -0.26% -23.47% 44.07% 10.60% 62.90% 44.28%

MEM 20.61% -51.91% -73.87% -25.66% -0.93% -7.55% -25.49%

 P43 P44 P45 P46 P47 P48 P49

BEST 66.65% 66.64% 49.12% 30.06% 48.67% 66.62% 39.44%

AVER 13.33% 23.50% 20.29% 7.81% 20.30% 30.30% 5.01%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 0.00% 0.00% 0.00% 3.59% 0.00% 0.00% 0.00%

MAT 0.00% 0.00% 0.00% -7.19% 0.00% 0.00% 0.00%

FLP 79.99% 58.11% 31.15% 10.78% 58.43% 31.41% -31.92%

MEM 0.00% 20.22% 18.48% -2.32% 20.16% 44.43% 12.83%

100

Table B.10 Simulation result of S001in PITCGEN – Part 4

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only
system, BEST is the “BEST” performance we find during optimization over all iteration,

AVER is average of best performance we find during each iteration, LOG is the logic
specialized cores system, MAT is the mathematical operation specialized

 cores system, FLO is the floating point operation specialized cores
system, MEM is the memory operation specialized core system,

and S001 is defined in Table B.3.

 P50 P51 P52 P53 P54 P55 P56

BEST 33.71% 49.37% 57.19% 32.63% 14.83% 25.96% 52.84%

AVER -8.70% 22.67% 11.29% -10.70% -28.89% 8.44% 5.86%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 5.76% 0.00% 0.00% 5.63% 11.08% 3.52% 3.97%

MAT -11.77% 0.00% 0.00% -11.88% -22.22% -7.09% -7.98%

FLP -63.01% 31.23% -9.94% -63.56% -88.80% 11.39% -31.85%

MEM -17.66% 18.97% 52.79% -19.44% -47.59% -1.84% 31.24%

 P57 P58 P59 P60 P61 P62 P63

BEST 34.92% 27.58% 58.86% 40.08% 56.88% 47.50% 66.66%

AVER 16.51% 9.07% 23.02% 24.69% 21.21% 7.23% 23.80%

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

LOG 0.00% 3.66% 0.00% 0.00% 0.00% 4.07% 0.00%

MAT 0.00% -7.32% 0.00% 0.00% 0.00% -8.22% 0.00%

FLP 30.55% 10.07% 58.86% 31.86% -10.75% -32.79% 32.01%

MEM 20.41% -2.28% 19.82% 45.79% 53.64% 28.94% 44.98%

 P64

BEST 73.23%

AVER 23.09%

GEN 0.00%

LOG 0.00%

MAT 0.00%

FLP 0.00%

MEM 73.23%

101

FigureB.1 APITCGEN for BEST for each setting

where APITC is average Performance improvement over all application sequences in terms of Time
Compared to, GEN is the general cores only system, and BEST is the “BEST” performance

we find during optimization over all iteration, system. S001 through S077 are defined
in Table B.3 through Table B.6.

FigureB.2 APITCGEN for AVER for each setting

where APITC is average Performance improvement over all application sequences in terms of Time
 Compared to, GEN is the general cores only system, and AVER is average of best performance we find

during each iteration. S001 through S077 are defined in Table B.3 through Table B.6.

102

FigureB.3 APITCGEN for LOG for each setting

where APITC is average Performance improvement in terms of Time Compared to, GEN is the
general cores only system, and LOG is the logic specialized cores system

S001 through S077 are defined in Table B.3 through Table B.6..

FigureB.4 APITCGEN for MAT for each setting

where APITC is average Performance improvement over all application sequences in terms of
Time Compared to, GEN is the general cores only system, and MAT is the mathematical

operation specialized cores system S001 through S077 are defined in
Table B.3 through Table B.6.

103

FigureB.5 APITCGEN for FLP for each setting

where APITC is average Performance improvement over all application sequences in terms of Time
Compared to, GEN is the general cores only and FLP is the floating point operation specialized

 cores system, S001 through S077 are defined in Table B.3 through Table B.6.

FigureB.6 APITCGEN for MEM for each setting

where APITC is average Performance improvement over all application sequences in terms of Time
Compared to, GEN is the general cores only system, and MEM is the memory operation

specialized core system. S001 through S077 are defined in Table B.3
through Table B.6.

104

FigureB.7 PITCGEN for BEST with among 2 cores systems

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.8 PITCGEN for BEST among 4 cores systems

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

105

FigureB.9 PITCGEN for BEST among 6 cores systems

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.10 PITCGEN for BEST among 8 cores systems

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

106

FigureB.11 PITCGEN for BEST among 10 cores systems

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.12 PITCGEN for BEST among 12 cores systems

Where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

107

FigureB.13 PITCGEN for BEST among 14 cores systems

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.14 APITCGEN for BEST for each setting with modified algorithm

where APITC is average Performance improvement over all application sequences in terms of Time
Compared to, GEN is the general cores only system, and BEST is the “BEST” performance

we find during optimization over all iteration, system. S001 through S077 are defined
in Table B.3 through Table B.6.

108

FigureB.15 PITCGEN for BEST among 2 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.16 PITCGEN for BEST among 4 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

109

FigureB.17 PITCGEN for BEST among 6 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.18 PITCGEN for BEST among 8 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

110

FigureB.19 PITCGEN for BEST among 10 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.20 PITCGEN for BEST among 12 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

111

FigureB.21 PITCGEN for BEST among 14 cores systems with modified algorithm

where PITC is Performance improvement for each application sequences in terms of Time Compared to,
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization

 over all iteration, P01 through P64 is defined in Table B.1 and Table B.2. .
S001 through S077 is defined in Table B3 through B6.

FigureB.22 APITCGEN for BEST with different simulation cycle

where APITC is Average Performance improvement for each application sequences in terms of Time
Compared to, GEN is the general cores only system, BEST is the “BEST” performance we find
during optimization over all iterations. Actual cycles of simulation is more than three times of

numbers labeled on the axis. Legend displays numbers of core: amounts of inforuction for
 stall trigger, and iterations of the algorithm, respectively.

112

FigureB.23 APITCGEN for BEST with different simulation cycle

where APITC is Average Performance improvement for each application sequences in terms of Time
Compared to, GEN is the general cores only system, BEST is the “BEST” performance we find
during optimization over all iterations. Actual cycles of simulation is more than three times of

numbers labeled on the axis. Legend displays numbers of core: amounts of inforuction for
 stall trigger, and iterations of the algorithm, respectively.

FigureB.24 APITCGEN for BEST with different simulation cycle

where APITC is Average Performance improvement for each application sequences in terms of Time
Compared to, GEN is the general cores only system, BEST is the “BEST” performance we find
during optimization over all iterations. Actual cycles of simulation is more than three times of

numbers labeled on the axis. Legend displays numbers of core: amounts of inforuction for
stall trigger, and iterations of the algorithm, respectively.

113

Table B.11 Setting of Dynamic systems (Only displays variable settings) – Part 1

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,
D is amounts of inforuction that cause stall and left column represent configuration ID

 for dynamic system.

 A B D E

D001 2 6 400 50
D002 2 8 50 50
D003 2 8 100 50
D004 2 8 200 50
D005 2 8 400 50
D006 2 8 400 30
D007 2 10 50 50
D008 2 10 100 50
D009 2 10 200 50
D010 2 10 400 50
D011 4 6 100 50
D012 4 6 200 50
D013 4 6 400 50
D014 4 6 400 30
D015 4 8 50 50
D016 4 8 100 50
D017 4 8 200 50
D018 4 8 400 50
D019 4 8 400 30
D020 4 10 50 50
D021 4 10 100 50
D022 4 10 200 50
D023 4 10 400 50
D024 6 6 50 50
D025 6 6 100 50
D026 6 6 200 50

114

Table B.12 Setting of Dynamic systems (Only displays variable settings) – Part 2

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,
D is amounts of inforuction that cause stall and left column represent configuration ID

for dynamic system.

A B C D
D027 6 6 400 50
D028 6 6 400 30
D029 6 8 50 50
D030 6 8 100 50
D031 6 8 400 50
D032 6 8 400 30
D033 6 8 600 50
D034 6 10 50 50
D035 6 10 100 50
D036 6 10 200 50
D037 6 10 400 50
D038 6 10 600 50
D039 8 6 50 50
D040 8 6 100 50
D041 8 6 200 50
D042 8 6 400 50
D043 8 6 400 30
D044 8 6 600 50
D045 8 8 400 30
D046 8 10 50 50
D047 8 10 100 50
D048 8 10 200 50
D049 8 10 400 50
D050 8 10 400 30
D051 10 6 50 50
D052 10 6 100 50

115

Table B.13 Setting of Dynamic systems (Only displays variable settings) – Part 3

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,
D is amounts of inforuction that cause stall and left column represent configuration ID

for dynamic system.

A B C D
D053 10 6 200 50
D054 10 6 400 50
D055 10 6 600 50
D056 10 8 50 50
D057 10 8 100 50
D058 10 8 200 50
D059 10 8 400 50
D060 10 8 400 30
D061 10 8 600 50
D062 10 10 50 50
D063 10 10 100 50
D064 10 10 200 50
D065 10 10 400 50
D066 10 10 400 30
D067 10 10 600 50
D068 12 6 50 50
D069 12 6 100 50
D070 12 6 200 50
D071 12 6 400 50
D072 12 6 400 30
D073 12 6 600 50
D074 12 8 50 50
D075 12 8 100 50
D076 12 8 200 50
D077 12 8 400 50
D078 12 8 400 30

116

Table B.14 Setting of Dynamic systems (Only displays variable settings) – Part 4

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,
D is amounts of inforuction that cause stall and left column represent configuration ID

for dynamic system.

A B C D

D079 12 8 600 50
D080 12 10 50 50
D081 12 10 100 50
D082 12 10 200 50
D083 12 10 400 50
D084 12 10 400 30
D085 12 10 600 50
D086 14 6 50 50
D087 14 6 100 50
D088 14 6 200 50
D089 14 6 400 50
D090 14 6 400 30
D091 14 6 600 50
D092 14 8 50 50
D093 14 8 100 50
D094 14 8 400 50
D095 14 8 200 50
D096 14 8 600 50
D097 14 10 50 50
D098 14 10 100 50
D099 14 10 200 50
D100 14 10 400 50
D101 14 10 400 30
D102 14 10 600 50

117

FigureB.25 APITCGEN for dynamic system with 6 cycle delay

Legend explains the setting of each result of simulation with the following format:
 Number of delay cycles: Cycles of each application: Stall trigger levels

FigureB.26 APITCGEN for dynamic system with 8 cycle delay

Legend explains the setting of each result of simulation with the following format:
 Number of delay cycles: Cycles of each application: Stall trigger levels

118

FigureB.27 APITCGEN for dynamic system with 10 cycle delay

Legend explains the setting of each result of simulation with the following format:
 Number of delay cycles: Cycles of each application: Stall trigger levels

FigureB.28 APITCGEN with dynamic systems (Changing the delay cycles fixed for 2 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

119

FigureB.29 APITCGEN with dynamic systems (Changing the delay cycles fixed for 4 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

FigureB.30 APITCGEN with dynamic systems (Changing the delay cycles fixed for 6 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

120

FigureB.31 APITCGEN with dynamic systems (Changing the delay cycles fixed for 8 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

FigureB.32 APITCGEN with dynamic systems (Changing the delay cycles fixed for 10 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

121

FigureB.33 APITCGEN with dynamic systems (Changing the delay cycles fixed for 12 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

FigureB.34 APITCGEN with dynamic systems (Changing the delay cycles fixed for 14 cores)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

122

FigureB.35 Average number of reconfiguration (Changing the delay cycles for all cores case)

Legend explains the setting of each result of simulation with the following format:
 Number of cores: Cycles of each application: Stall trigger levels

VITA

Kazunori Nishimura

Candidate for the Degree of

Master of Science

Thesis: A DYNAMIC RECONFIGURABLE COMPUTER WITH A DYNAMIC

GENETIC ALGORITHM

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Fukuoka, Fukuoka, on September 30, 1980, the son of
Kazuo and Reiko Nishimura.

Education: Graduated from Chikushigaoka High School, Fukuoka City, Fukuoka

in March 1999; received Associate of Arts degree in General Study
from Central Christian College of Kansas in May 2002, and received
Bachelor of Science degree in Electrical Engineering from Oklahoma
State University in May 2006. Completed the requirements for the
Master of Science degree with a major in Electrical Engineering at
Oklahoma State University in July, 2008.

Experience: Employed by Central Christian College of Kansas as a computer lab

assistant from August 2001 to May 2002. Employed by Oklahoma
State University, Department of Electrical and Computer Engineering
as a teaching assistant, 2007 and as a graduate research assistant, 2007;
Oklahoma State University, Department of Electrical and Computer
Engineering, 2002 to present.

Professional Memberships:

IEEE member, Eta Kappa Nu Honor society, Phi Kappa Phi honor society

Name: Kazunori Nishimura Date of Degree: July, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A DYNAMIC RECONFIGURABLE COMPUTER WITH A DYNAMIC
GENETIC ALGORITHM

Pages in Study: 122 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

The performance of the human brain is incredible and motivated us to create a system

which behaves similarly. The flexibility of performance is the main function we emulate.

We will create a system model of heterogeneous dynamic multi-core reconfigurable

computers with a genetic algorithm. We introduce several concepts to find the next

configuration with the genetic algorithm. Before we create our model, we introduce

concepts of heterogeneous static multi-core reconfigurable computers to verify the

optimization capability of the genetic algorithm. From the simulation results, we

conclude that the genetic algorithm can optimize the configuration candidate of static

systems. Then, the dynamic reconfigurable systems are generated, simulated, and

observed. We conclude that there might exist potential performance improvement of our

systems compared to homogeneous multi-core systems. Our evaluation model is fully

parameterized, and will be available to the research community. We suggest future

applications and improvements for static and dynamic systems.

ADVISOR’S APPROVAL: Dr. Sohum Sohoni

