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CHAPTER 1  

 

INTRODUCTION 

 

As a result of the major technology boost after World War II, some of the things 

that we had not even imagined have come true.  Examples of such kinds of dreams are 

space stations, robots, digital cameras, mobile phones, handhelds, portable PCs, and 

portable music players.  Many technological improvements and realization of dreams 

came from the invention of the transistor, and continuing improvement of transistor 

technology following Moore’s Law, which predicts the growth of number of transistor in 

a single chip.  This law predicts that the total number of devices in a chip will double 

every 12 months in the 1970s and the number of transistors will grow slower in the 1980s 

(it would be double every 24 months) [1].  

 

 Figure1.1: Graph of years versus Number of Transistor on a single chip [2] 
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The dramatic increase in the number of transistor in a single chip (depicted in 

Figure 1.1 above), and the reduction in gains from aggressive superscalar techniques has 

led to multi-core architecture for the CPU.  Examples of multi-core CPU architectures are 

Intel® Core 2™ Duo, Core 2™ Quad or cell processor that was invented by IBM and 

Toshiba [3] – [5].  Since multi-cores superscalar architecture can have more processing 

power compared to single core [3] – [5], it is natural trend to change the computer 

architecture to obtain higher processing performance. 

Also there is another trend in the area of computer architecture research.  Many 

computer researchers set their focus on the reconfigurable computer since the 

reconfigurable computer has the potential to achieve higher processing performance 

compared to the processing performance of single core CPU architecture [6] – [8].  Even 

though we are using the same terminology reconfigurable computer, it has different 

meaning and represents different system for different researches.  In other words, there is 

no clear single definition for the reconfigurable computer, and the meaning depends on 

the purpose of the research.  Therefore we clarify the definition of reconfigurable 

computer in this study with several examples. 

 

1.0 Definition of reconfigurable computer 

 

Among different definitions of reconfigurable computer, there is one common 

property that we can easily find.  The reconfigurable computer has the ability to adjust 

functionalities or architecture to achieve the correct functionalities or the superior 

performance.  Keeping in mind this common property, we use the term reconfigurable 
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computer as the computer system that has the abilities to adjust the architecture and 

functionalities to achieve a specific objective.  In our definition of reconfigurable 

computer, we can identify several different types of reconfigurable systems.  One 

example of a reconfigurable system is the Central Processing Unit (CPU) of a general 

purpose computer.  The current CPUs in the market have the multiple functionalities to 

implement the different logical operations and arithmetic operations. Examples of logic 

operations are AND, OR, XOR and NOT. Examples of arithmetic operations are addition, 

subtraction and multiplications.  Among the different operations, the control command in 

the instruction set reconfigure the CPU to achieve the correct functionalities to process 

information [9].  Another example of reconfigurable computer is the current computer 

system.  Since we have sufficient chips on the current high-end motherboards, we can 

operate the computer systems without any expansion cards.  Although it is not necessary 

to install expansion cards, we usually enhance the performance of the computer system 

by installing graphic cards and sound cards and so on.  In this case, we modify the system 

configuration by adding more resources to improve the performance.   

In the previous paragraph, the first case also shows the example of run-time or 

dynamic reconfigurable computer.  The dynamic reconfigurable computer changes its 

system configuration or architecture during the time when operations of the system are 

executing.  The second example displays the off-line or static reconfigurable computer.  

The static reconfigurable computer changes its characteristics during the time when the 

system is not active or is turned off.  In the other words, the reconfiguration is not only 

happened when the system is on. Table 1.1 summarizes the types of reconfigurable 

computer we describe in this section.  
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Table 1.1 Different types of Reconfigurable computer in our definition 

 Types 

Purpose Performance or Correctness of the functions 

Method Static or Dynamic 

 

1.1 Motivation 

 

In the area of computer architecture research, we know that specialized computer 

architecture has better performance than general computer where the specific application 

or purpose is concerned.  There is no doubt for this statement since this fact is very clear 

from results of almost all previous researches in the area of computer architecture 

research.  The better performance is obtained from the optimized architecture that is 

corresponding to the purpose of the system, such as mathematical operation, logical 

operation, graphical operations, encoding or decoding and so on.  (In this paper from this 

point, the term optimized stands for “specialized” to obtain the current best performance 

configuration as far as we find so far.)  

However, the specific computer architectures also have several disadvantages in 

the purpose that the system is not specialized for.  This characteristic of computer in 

general is similar to the characteristics of human brain.  Most people definitely have 

some specific fields that they are better in, than other areas, even though these 

superiorities and inferiorities in performance are different for each person.  Some people 

might be good at memorizing mathematical equations, but they might be not good at 
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playing music from music score without any practice.  Other people might have superior 

capability in computer research and programming but they might not be good at writing 

papers.  Examples that we described are limited to academic subjects, but we can find 

these performance differences all over human life from daily life to business world.  

These characteristics are based on the environmental causes, such as what we had more 

interest in, what we studied, how we grew up, and so forth.  In other words, we optimized 

ourselves or our brain for the characteristics that we need or what we use more often.  

The proof of this performance optimization is clear on where we are concerned about the 

acquisition of languages.  The children who grew up with English in their schools can 

speak English fluently compared to the children who did not speak English at all.  This 

accommodation of language abilities does not only appear in speaking, but also in 

listening, writing, and reading.  For example, children who grew up with Japanese can 

distinguish between the meaning of words, which can have several different meanings, 

even though they might sound similar or exactly same.    

There is one significant characteristic difference between conventional computer 

architecture and human brain, even though we usually use analogy of human brain to 

explain computer operations.  Human brains optimize performance or improve 

performance up to certain age, but normal computer does not change architecture after 

the production stage.  Some reconfigurable computer changes architecture to obtain 

better performance for the specific tasks, but this specialization does not work in all 

situations.  

Due to the technological improvements in the recent era, the complex 

reconfigurable computer is not just a dream any more.  With continuous changing 
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motivation towards the technological front, we try to emulate the adjustability of human 

brain in a computer system using the reconfigurable computer.  More specifically, we try 

to implement the flexibilities of human brain that is adjusting architecture for what we 

process currently.  Therefore the heterogeneous reconfigurable computer that we want to 

propose has the three essential properties as summarized in Figure 1.2. 

 

 

 

1.2 Thesis Organization 

 

 The remainder of the thesis is consisted of 6 Chapters.  We start to discuss the 

reasons and problems statement for our proposed system in Chapter 2.  In Chapter 3, we 

discuss the general idea of proposed system and the background concepts for the 

proposed system.  In Chapter 4, we will do simulation to get the proof that the genetic 

algorithm can be used for simulation of computer architecture at high level.  Also in this 

chapter, we briefly go over stochastics to introduce new assumption.  The simulations in 

this chapter are implemented with static reconfiguration of computer architecture.  

Chapter 5 describes simulations of the proposed system and observations from the results 

of simulations.  In Chapter 6, we finally conclude this thesis and offer suggestions for 

future research.   

Figure1.2: List of three Essential Characteristics for the Proposed System  

• Automatically adjustable architecture 

• Dynamic or run-time Reconfiguration 

• Optimization for specific objectives. 
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CHAPTER 2  

 

REASONS AND PROBLEM STATEMENT 

 

2.0 Reasons for our proposal 

 

In this study, we propose a multi-core reconfigurable CPU as emulating the 

processing power of human brain.  In this section, we go over several observations of the 

general reconfigurable computer to describe reasons of our choice.  Additionally, we 

mention about problems that need to solve to create the system with the three properties 

listed in Figure 1.2: automatic reconfiguration, dynamic reconfiguration, and optimization 

for the specific target.  

Assume we have a single reconfigurable core which implements the CPU, and 

our system has control unit which calculates the optimized architecture or configuration.  

Each time we try to reconfigure the system we cannot process the information during the 

reconfiguration time.  We call this interval the reconfiguration penalties.  If we try to 

implement the static reconfigurable CPU, the system does not try to process any 

information during reconfiguration.  Therefore these penalties are not so important for the 

static implementation of the reconfigurable computer.  As we describe in Chapter 1, we 

attempt to implement a system with the dynamic reconfiguration.  The insignificance 
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of the reconfiguration penalties is not same for our system.  For the dynamic single core 

reconfigurable system, we definitely add one more term to calculate the total time needed 

to execute all information.  We define the time unit we use for calculation of total Cycle 

Time (CT) as Cycle Time, which is time necessary to execute the specific instruction or 

the set of instruction.  Relationship between total CT for static reconfigurable CPU and 

total CT for dynamic reconfigurable CPU for single core case is shown in expression 

(2.1) – (2.4) (Expression (2.2) is calculation for static reconfigurable CPUs and 

expression (2.3) is calculation for dynamic reconfigurable CPUs).  We remark on one 

important fact of CT before moving to multi-core case.  The CT would not be steady for 

both dynamic and static reconfigurable CPU.  In other words, the time is dependent on 

the type of architecture we implement, and information we process during the period we 

are interested in.  Also CT is measured as the average time obtained from tremendously 

large samples, since the instruction is not always executed in the same length of time. 

 

 #                    2.1
#    

 

                                                                                                         2.2  

  
#  

_ _ _  
#  

         2.3  

                                      
#  

                                  2.4  

 

where CT is Cycle Time, CTSI is Cycle Time for the Specific Instruction,  
            dif is different, inst is instruction, TCT is Total Cycle Time,  
              RP is reconfiguration Penalties, recon is reconfiguration,  
                                           t is time, and ex is extra  
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As we see in expression (2.1) - (2.4), we have several different terms in 

reconfiguration penalties.  Extra time to find the optimized configuration in the controller 

unit is usually longer than the benefit of reconfiguration.  Therefore the dynamic system 

might have several cases that end up with worse performance in term of total CT 

compared to the static system, due to the reconfiguration penalties.  As a result, the 

average total amounts of information that the system can process in the given time 

interval cannot produce outstanding benefit from reconfiguration.  For the single core 

operation, the dynamic reconfiguration would not have sufficient motivation to 

implement, since it might not produce enough benefits in term of processing power as 

described above. 

Next we evaluate multi-core reconfigurable CPU briefly.  If reconfiguration of 

cores in systems has dependencies in terms of processing information, which means that 

all cores in systems cannot process information during reconfiguration, the result of 

simple observation would be similar to the conclusion from observation of single core 

case.  Therefore we need to develop a new system whose reconfiguration of each core is 

independent of each other.  In other words, the remainder of cores, which would not 

reconfigure, can still execute information during the process of reconfiguration.  In this 

situation, the dynamic system equation in expression (2.1) - (2.4) cannot be used to 

determine total CTs.  We have to determine reconfiguration penalties with more complex 

equations such as expression (2.5) and (2.6).  The complexity of calculation increases 

tremendously, even though expression (2.5) and (2.6) look like simple equations.  So we 

cannot determine benefit of reconfiguration as easy as evaluation of single core case if we 

use CT as performance measurement.   
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#  

                                             2.5  

  
#   #  

         2.6   

 
 

2.1 Problem Statements 

 

From the previous argument, we need to develop new performance measurement, 

which we can easily use to determine the characteristics of dynamic systems and to 

compare the results with several different systems to find a better one.  Also new 

measurement should be able to apply for static systems to compare performance between 

dynamic systems and static systems.  As we discuss about performance of architecture, 

we not focus on the silicon area that is necessary for a whole system.  We set our focus 

on processing power of systems.  To determine processing power of systems, we cannot 

forget about one fact: results of performance measurements are dependent on benchmark 

programs we choose.  For example, a result from one performance measurement shows 

outstanding benefits for a specific architecture, but the other performance measurement 

displays poor abilities for the same architecture.  These differences come from the fact 

that different benchmark programs have different sequences of instructions, different 

measurement techniques, and different purposes of measurements which they are 

specialized for [10] – [13].  As a result of such specialization, we usually need to use 

several different performance measurements to determine benefits for implementing a 

where CT is Cycle Time, CTSI is Cycle Time for the Specific Instruction,  
            dif is different, inst is instruction, TCT is Total Cycle Time,  
              RP is reconfiguration Penalties, recon is reconfiguration,  
                                           t is time, and ex is extra  
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specific architecture.  Also most benchmark programs are developed for conventional 

computer system, which might not be as dynamic as we propose.  Some of the bench 

mark programs might be developed for reconfigurable computers, but we would not 

measure performance of brain-like computers easily with them.  This is because our 

proposed system has more flexibility to adjust system configurations and architectures 

dynamically to purpose of systems.  As we describe previously, our brain-like computer 

is changing architectures according to the information we need to process while the 

machine executes the information.  Therefore a result of performance measurement might 

not be always the same, since processing of information would change as we run the 

system.  From this point of view, we need to develop the new measurement method that 

we could use for our purpose.   

In the previous paragraph, we emphasize the importance of developing new 

performance measurements for reconfigurable systems to compare each individual 

system configurations.  We also need to develop a performance measurement for 

reconfigurations or performance prediction.  Performance prediction has the huge impact 

on final overall system performance measurement.  The reason of the importance of 

performance prediction comes from the fact that the optimization technique decides 

timings for automatic reconfiguration and candidates for next configuration based on the 

information obtained from performance prediction.  Also the optimization technique is 

critical for our system.  The relationship between control algorithm and performance of 

systems can be explained with analogy in a branch prediction.  If branch prediction has 

great precision, the performance benefit from branch prediction becomes more obvious 

compared to systems without branch prediction.  In automatic reconfigurable system, the 
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system with poorly developed optimization algorithm demonstrates only poor 

performance compared to the static systems.  On the other hand, we can observe superior 

performance of dynamic automatic reconfigurable system from systems with well-

developed optimization algorithm.  Therefore control algorithm, its decision criteria, and 

performance prediction need to be developed carefully to obtain the sufficient results. 

As we close this section, we summarize the problems obtained from our 

observation in Figure 2.1.  With these problems in mind, we go over proposed brain-like 

system and its assumption in the next chapter. 

 

 

  

Figure2.1 List of Problem Statement we will solve to create the proposed system 

• What kinds of evaluation technique or bench mark will we use? 

• What kind of performance prediction will the optimization algorithm use? 

• What kind of optimization algorithm will we implement for the system?  

• What kind of performance measurement will we use for the system? 
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CHAPTER 3  

 

RECONFIGURABLE MULTI-CORE SYSTEM WITH GENETIC CONTROL 

 

3.0 Assumptions 

 

Before describing the general idea of our system with optimization technique and 

simulation technique we implement, we introduce several assumptions we use for this 

study.  These assumptions are used efficiently to decrease the number of small problems 

and to reduce the complexity of problems in simulation of our system. 

 

3.0.0 Configuration constrains 

 
There are two methods that we can use to find architecture configuration or 

design in reconfigurable computers.  One of the methods is that we start designing the 

computer configuration from scratch.  We design the candidate architecture with all 

aspects, such as number of gates logics and functions implemented in the architecture, 

without any previous information and any design constrains except the maximum number
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of gate available in a reconfigurable core.  This method can find the best architecture 

candidate in terms of performance for a specific purpose.  Even for the single static core 

system, the search space of architecture configuration would be tremendously large since 

we have infinite choices.  As a result, the search time that is necessary to find the best 

architecture would take more than a life time if we implement any search algorithm 

without blueprints.  This search time issue would cause more serious problems for 

dynamic multi-core system.  The search time that is necessary to find next configuration 

of each cores would take longer than a life time of production.  The time needs for the 

search become too long for any numbers of cores if we do not use appropriate design 

constrains or pre-designs.  Since all system change processing information as time goes, 

the “best” configuration of the past moment would not produce sufficient performance 

benefit if the search time is too long.  In the other words, there are some opportunities 

that performance of system after reconfiguration would be worse than the performance of 

system prior to reconfiguration. This is caused by the “inappropriate” change of system 

architectures.  As we describe about reconfiguration penalties in expression (2.3) - (2.4), 

search time to find the next configuration for all cores should include evaluation of 

performance measurement.  In dynamic system, each core would be redesigned to find 

better performance for each chance for reconfiguration.  Therefore if search time is too 

long such as the time necessary to find the next configuration from scratch, the 

performance benefits from reconfiguration also diminishes.   

To reduce search time, we might be able to use the current designs or 

configurations of architecture as the start point of design.  Such kinds of information 

might help to reduce search time that is necessary to find next configurations, but we 
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cannot guarantee that the previous configuration would be efficient starting point for the 

architecture designs if we adjust systems for processing information in current time.  We 

can verify this fact with a simple example.  Assume a simple system which is processing 

“information A” for a long time and current configuration optimized to process 

“information A” as “configuration M”.  If “information A” changes to “information B” 

which require similar set of instructions to process, “configuration M” would be a 

sufficient starting point to improve performance.  However, the opposite case would 

cause a different result.  “Configuration M” would not be worthy of use if “information A” 

changes to “information C,” which requires completely different pattern of instructions 

compared to the instruction pattern necessary to process “information A”.   

In the two previous methods, we cannot have any characteristic information for 

each candidate we evaluate to find the optimized candidate beforehand.  Therefore we 

should measure performance of architectures after the design is completed.  To compare 

the candidates of next architecture configuration in the optimization algorithm, we need 

to wait until several other candidates are designed and measured.  We can reduce the time 

necessary for multiple candidate designs by making the design process as simultaneous 

operation instead of sequential single design process.  However, even with such kind of 

systems we cannot reduce the time necessary to complete any single candidate.  

Therefore these methods are not appropriate for our dynamic system. 

The reconfigurable computer with pre-defined configuration is the method we use.  

This method has several benefits that increase the performance of our system.  The first 

benefit is that the performance increases from reduction of the time necessary to design 

core architecture.  Since we only use architectures that are pre-configured, we do not 



16 

have to spend time for designing better architecture from the beginning.  This idea is 

similar to the method of hierarchical design of Very Large Scale Integrated chip (VLSI) 

[14].  In the VLSI, we use the predesigned cells to create a larger and more complicated 

circuit.  The cells used in the VLSI designs are extensively measured and well-designed 

to be specialized for certain objectives.  In our system, we use well-designed 

architectures which are implemented in reconfigurable cores.   

As we describe at the end of the previous paragraph, we only use well-defined 

core architecture which we know all performance characteristics such as power 

consumption, processing power, and Silicon area necessary to create.  This fact generates 

several other benefits. We can reduce reconfiguration penalties due to the performance 

measurements of the next configuration candidates.  We would know maximum 

performance of each architecture configurations without any assumptions since we can 

evaluate performance prior to use.  We can also calculate the maximum performance of a 

multi-core system with simple arithmetic from the single core specifications.  This well-

established knowledge of performance can reduce the complexity of the optimization 

algorithm and the work load to find better configurations in the algorithm.  In other words, 

the optimization algorithm is too complicated and time consuming without any prior 

knowledge of characteristic information since performance information is necessary to 

find better candidates.  The reduction of reconfiguration penalties with preconfigured and 

well-defined systems are related to improvement in the processing performance.  We go 

over one more benefit that is related to cost of implementation.  Since we only use 

preconfigured architectures that we have the possibility to use, we can reduce the size of 

each reconfigurable core to the minimum requirement which is necessary to implement 
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the largest architecture we have.  This benefit is related to the cost of Silicon area that is 

required to implement each core.  If we are designing the architecture of a core from 

scratch, we cannot obtain the information for the minimum size requirement which might 

be used in our system. Therefore we have to prepare overhead areas up to the limit of the 

Silicon area we can use, and sizes of the reconfigurable core would be more than the 

necessary area, even though the size of the final configuration might be much smaller 

than what we prepare as the overheads.  Table 3.1 displays comparison between two 

methods: designing from scratch and using the preconfigured designs. 

 

Table 3.1 Comparison of two methods of reconfiguration 

RP stands for reconfiguration penalties 

 With Scratch With Preconfigured Designs 

Performance 

Without RP (Static) 
Better Worse 

Time Necessary to  

Create Next Candidate 
Longer Shorter 

Time Necessary to  

Evaluate Next Candidate 
Longer Shorter 

Complexity of 

Optimization Algorithm 
More Complicated Less Complicated 

Performance  

With RP (Dynamic) 
Worst Better 

Silicon Areas  

Used for each Design 

Cannot be determined prior 

to complete designs 

Can be determined with 

characteristics of designs 
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3.0.1 Data centric approach 

 
One of the performance measurements we can use is processing power of 

computers.  This is one of the traditions we use in research of computer architecture. In 

general, we use throughput which described the number of instructions we can process in 

a given interval, the Instruction per Cycle (IPC), the Cycle per Instruction, and time 

necessary to complete specific instruction sets [9].  These measurements are focused on 

the number of instructions and the time needed to use the resources.   

There is other approach which uses data instead of individual instructions [15], 

[16].  This performance measurement uses the number of data or information processed 

in a given interval.  Our brains always process several different sets of information in our 

daily lives.  For example, the brain processes information from eyes to create what we 

feel to “see” such as colors, dimensional aspects, textures, and distances of objects.  Also 

our brains process multiple sounds and identify the necessary information at the same 

moments.  This identification comes from frequencies, amplitude, and distance from 

sources.  If you think about motion of hands to grab something, human brains also 

process several different sets of information to move hands as we think.  Therefore as we 

emulate flexibilities of the human brain, it is natural to use data centric approach for our 

system to find better candidates.  If we consider more details of such information sets, we 

might consider them as millions of small instructions that have many dependencies.  To 

reduce the effects of dependencies, we not break them down to individual instructions; 

instead we treat them as a set, which we define as inforuction from this point.  Since we 

use inforuction for finding the next candidate architecture configuration, our data centric 

approach needs to define several different types of inforuction to create the performance 
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measurement details.  Using these types of information, all preconfigured architectures 

are measured with their characteristics such as the amount of inforuction they can handle 

in a given time interval.  In other words, we know all performance measurements in term 

of the processing power of inforuction. 

3.0.2 Inforuction Buffer 

 
If we refer to architecture of superscalar processors in [9], we have an instruction 

buffer which stores instructions temporary till they feed to each individual pipeline.  This 

mechanism allows us to control the flow of instructions and to utilize each pipeline as 

much as possible.  We implement a similar mechanism in our system, which is identified 

as inforuction buffer.  As we decide to use data centric approach, inforuction buffer stores 

each type of inforuction in different buffers.  So each time inforuction is pre-fetched, the 

inforuction is separated with types of inforuction and feed into the corresponding 

inforuction buffer. The inforuction in the inforuction buffer is processed in the order they 

are fed in, which is the same order as first-in and first-out (FIFO) operation.  This order 

reduces probabilities that we have dependencies among information.  Therefore the 

inforuction buffer controls the flow of information and utilizes each core as much as 

possible.  

 

3.0.3 Brief idea of architecture of proposed system 

 
The General concept of our system would be similar to a cell processor [5] or 

similar to a tree.  Therefore we explain our system architecture with an analogy to a tree.  

For a tree, we have one big trunk which holds minerals, some nutrients, and water 
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obtained from the roots. Then the trunk sends these substances to the branches.  The 

branches have different number of leaves that can implement photosynthesis, which uses 

sunlight to convert some nutrients and water and carbon dioxides into oxygen and some 

useful nutrients.  Each leaf has also different amounts of chlorophyll which determines 

the capability of photosynthesis in a given day.  In our system, the trunk corresponds to 

the inforuction buffer, the number of leaves on a branch corresponds to the number of 

cores in a system, and different amounts of chlorophyll corresponds to different 

architecture configurations we implement.  Therefore our system has one big information 

buffer which stores and sends the inforuction to each core at the certain time and each 

core has input and output port at the same location in the architecture design.  Therefore 

we can switch configurations of cores without any connection problems.  

 

3.1 Optimization Technique 

 

In this section, we introduce the genetic algorithm as the optimization technique.  

The genetic algorithm is one of the newly developed field and one of the hottest topics in 

research of computational intelligence.  Application of genetic algorithm to research of 

computer architecture is not new.  The algorithm is used for research of VLSI design to 

find the optimized area and optimized number of VIAs for the situation [17] – [21].  

These references and [22] give more details for genetic algorithm which we do not go 

over deeply.  In this study, we only provide the minimum knowledge to understand 

operations of the genetic algorithm.  
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3.1.0 General Genetic Algorithm: Background information 

 
The genetic algorithm is inspired from mechanism in the natural world [22].  As 

we try to emulate flexibilities of a human brain with multi-core processors, the genetic 

algorithm emulates the optimization mechanism of species such as natural selection, 

evolution, and mutation.  In the natural world, we know that there is natural selection and 

theory of evolution, which are proposed by Charles Darwin.  The natural selection theory 

tells us that the species with characteristics more suitable to environment will prosper, 

and the species which cannot survive in the environment will decline in number, and will 

be terminated eventually [23].  The evolution theory tells us that the species would 

change its characteristics based on environment through generations [23].  These two 

theories can explain as we go over the history of Earth.  For example, the dinosaurs 

prospered in a certain time in the ancient earth, but they do not survive in the current era.  

There might be several different hypotheses for reasons of termination, such as climate 

changes due to strike of large meteor, and survival races with the small size Mammal 

species that started to prosper.  All of those hypotheses tell us that there might have been 

dramatic environmental changes in the ancient era and the dinosaurs could not adjust 

their characteristics to the changes in the environment.  There is another mechanism 

which keeps the varieties of species.  In the natural selection mechanism, each species 

would converge to the optimized characteristics, but the other mechanism generates the 

diversity in the species.  This mechanism is called mutation. With mutation, the genes of 

the offspring generation would have different traits from the parent generation.   

We introduce several terms which are commonly used in the genetic algorithm 

prior to going over the operations of the genetic algorithm. Most definitions that we use 
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come from [22].  To implement the genetic algorithm, we need to decide the targets of 

optimization and how we evaluate systems with the objective we define.  The targets of 

optimization are anything that can be evaluated with numeric values from distance of 

travels in the Traveling Salesman problems (TSP) to areas and numbers of VIAs in VLSI 

designs [21] [24] [25].  The method of evaluation is called the fitness function and 

numerical values obtained from fitness functions are called the fitness values.  The 

numeric data of fitness values represents quality of measurement of the objective.  To 

establish the fitness function, we also need to decide how we represent systems with some 

DNA like combinations, which is called chromosome.  In other words, chromosome is 

representation for a possible candidate configuration of a whole system.  Each entry in 

chromosomes represents some traits of a system, as each set of entries in DNA represent 

some kind of characteristics.  For example of TSP, chromosome is the traveling path 

which travelers will follow to visit necessary cities, and the entry in chromosome or gene 

corresponds to a specific city which he has to visit.  Set of multiple chromosomes is 

called population.   

At the initial stage, general genetic algorithm produces a set of chromosomes up 

to population size which is defined by designer, and would not change the population 

size for the entire algorithm.  We usually use random generation method, in which each 

gene in chromosomes is set randomly to include various chromosomes in population.  We 

identify these initially generated candidates as population of the first generation.  After 

we set population, we pick up parents of offspring with some methods such as random, 

weighted random, and other methods.  With chosen parents, we use some methods to 

create set of offspring.  One of the commonly used methods in process of offspring 



23 

generation is called crossover.  With the crossover operation, children have some 

common pattern of genes from both parents.  As the name implies, crossover generates 

the offspring by exchanging some gene pattern between parents which is similar to 

mechanism of gene pattern succession in the offspring.  Example of crossover is 

displayed in Figure 3.1.  After generating a candidate or candidates of next population, 

we implement the mutation operation.  This changes part of gene pattern randomly.  

Example of mutation is also displayed in Figure 3.1.  Then we evaluate generated 

offspring and old generation with fitness functions.  With fitness values and superiorities 

of fitness values that we decide, we sort entire set of chromosomes which contains both 

offspring and the entire population of previous generation.  Then we implement 

termination mechanism to adjust the number of chromosomes in the population to the 

size of population we decide to use.  After creating the new population, we designate this 

set as population of the second generation.  In other words, we increment generation 

number each time we create new population.  The processes after production of 

population of the first generation are repeated continuously till certain conditions are 

achieved.  This condition is identified as stopping criteria.  Examples of stopping criteria 

are optimized candidate have sufficient fitness value or maximum generation we define is 

passed.  Figure 3.2 shows a flowchart of the genetic algorithm.  The term iteration is used 

to count the number of repetitions for the entire flowchart in Figure 3.2.   
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Figure3.2 Operation flowchart for the genetic algorithm 
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There is significant benefit for applying the genetic algorithm as the optimization 

technique.  The genetic algorithm is an optimization algorithm which has both global 

search and local search abilities.  With the crossover operation, we implement the local 

search.  With mutation operation, we implement the global search, which checks 

randomized candidate other than similar candidates which we produce with crossover.  In 

conventional optimization algorithm, most algorithms have only one search method, not 

both.  Also the conventional optimization technique uses the sequential evaluation, in 

which the algorithm generates only single candidate, evaluates and compares with the 

current system.  Example of sequential optimization is simulated annealing [25].  For the 

genetic algorithm, we use the parallel optimization, which generates multiple candidates, 

evaluate, and compares with the previous population.  We can find better candidates 

more efficiently since we check more candidates simultaneously and choose better 

candidates. 

In this section, we discuss the general genetic algorithm.  As we close this section, 

we define two terms: global optimum and local optimum according to [23].  The local 

optimum is better candidate than all other candidates in terms of fitness values among 

results of the current search.  The global optimum is best candidates among all other local 

optimum in terms of fitness values.  Relationship between these optimums is similar to 

cost of gas in a certain state.  We can find cheapest price of gases in a city when we 

compare prices inside a city.  This cheapest price or local minimum might not be cheapest 

price all over the state or global minimum since we might find better result from another 

city.  This terminology would be used in this section.  In next section, we go over the 

genetic algorithm that we implement in our system  
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3.1.1 Specialized General Genetic Algorithm 

 
In the previous section, we introduce background information for the genetic 

algorithm.  The actual genetic algorithm that we implement in our system has more 

functions and is slightly different from the general genetic algorithm.  In this section, we 

describe the characteristics of the specialized genetic algorithm.  

3.1.1.0 Dynamic population 

 
As we explained in the previous section, the basic genetic algorithm has a fixed 

size of population which is not changed for the entire algorithm.  The choices of 

appropriate size of population are one of the hottest topics in research of genetic 

algorithms.  The reason is that the size of the population is deeply related to abilities of 

the optimization and time necessary to complete the search algorithm.  We can explain 

this with a simple example.  Assume we have the genetic algorithm which implements a 

fixed number of generations.  If we increase the size of the population, the possibilities to 

find optimized candidate or the best candidate would be greater than with smaller sizes, 

but calculation costs of each generation would also expand.  On the other hand, if we 

reduce the size of the population, calculation costs will get smaller but, the possibilities to 

find the best candidate will also decrease.  In our dynamic system case, we want to reduce 

the calculation cost as much as possible, but at the same time we want to increase 

possibilities to find better candidates as much as possible.  So the determination of a good 

population size is too sensitive of an issue since the choice of the population changes the 

functionality of algorithm dramatically.  To overcome issues related to finding the best 

population size, we use the dynamic population size approach instead of the fixed 
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population size as [26].  With this approach we start from the relatively smaller initial 

population size which we define.  After the genetic algorithm starts, we do not know the 

population size since the size is automatically adjusted according to the current condition 

of the optimization process. 

There are several characteristics we have to define for the dynamic population 

approach. Those characteristics are what would be the trigger of change the population 

size, how we will change it, and how much we will change it.  If we do not choose each 

category carefully, the dynamic population algorithm does not work correctly or simply 

works as the fixed size population approach.   

The first question we tackle is what would start the process of changing the size 

of the population.  Since the dynamic population is part of the genetic algorithm which 

uses the fitness values to determine whether candidates are better or not, we can use the 

fitness values of the population to trigger changes of the population size.  There are 

several different statistical data of the fitness values. Examples are the best fitness value, 

the worst fitness value, the mean fitness value, and the median fitness value of the 

population.  Within these values, we use the average or mean fitness value of the current 

population and the mean fitness value of the group which consisted of both the current 

population and the candidates which we generated.  This idea came from a question that 

was asked by then Ph.D. Student Wen-Fung Leong during one of my course 

presentations.  Since the average fitness value displays the performance of the 

optimization process as a whole in a given moment, the dynamic population would 

ensure proper resource management for the search ability of the genetic algorithm.  Each 
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time we obtain the new fitness values of candidates and the new fitness values of the 

current population, we initiate the process of the dynamic population algorithm.  

As we decide when we will change the size of the population, we need to decide how we 

will change it according to the difference between two average fitness values.  There are 

two different resource management strategies we can use to determine how we will 

change the population size.  These two methods of resource management are similar to 

methods that students commonly use in their studying for final exams.  Some students 

prefer spending more time for subjects that they are very good at, and spending less time 

for topics they hate.  As a result, students would answer the question extremely well for 

the subject they studied and cannot answer the questions they did not study well.  Or 

more simply, students become specialized in specific subjects they like.  On the other 

hand, other types of students would spend more time on subjects which they are not good 

at and spend less time for the subjects which they feel strong in.  These people use time 

where it is necessary to spend it.  Comparing these two types of students, the second type 

of student has more chances to have better grade point average (GPA).  This example is 

true among different disciplines. 

Back to method of resource management, we describe and evaluate two types of 

strategies for increasing the chance of generating better average fitness values. The first 

type of resource management technique uses more computational resources when we 

have better average fitness values and uses less when we have poor results.  In other 

words, we spend more time where we find better average fitness values and less time for 

where we cannot find good average fitness values.  This strategy might find a local 

optimum quicker than the other method, but one problem of this method is that the local 
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minimum we find is not always the global minimum as we describe at the end of the 

previous section.  For the second strategy, we utilize more resources when we have a 

hard time to find the better average fitness values and less when we can easily find better 

fitness values.  This method spends more time where we cannot find better average 

fitness values and less time where we find better average fitness values.  

The comparison of these two strategies in a real situation can be explained with an 

analogy of open-book/open note exam.  Assume we try to solve two different types of 

questions: questions that we have enough knowledge to solve and questions that we do 

not have any idea how to solve.  To solve the first type of questions, we only need to 

check the correctness of our memory with books to obtain better scores.  In this case, we 

just have to use resources which relate to the concepts we need.  If we just go over each 

topic in the text books, it is just wasting time and we will end up running out of time to 

solve the other questions.  To solve the second type of questions, we cannot review 

specific topics since we do not have any idea how we can solve them.  We have to go 

over each topic briefly to find any related concepts which can be used to solve the 

questions.  If we randomly choose specific chapters in books to read in detail, the exam 

time is too short to find necessary information.  The first method of taking exams 

demonstrates a similar situation as the case when we know the fitness value of the global 

optimum.  This is not the situation where we are during the search, since we do not know 

what the global optimum is.  Therefore, we have to apply the second strategy instead of 

the first method.  In other words, we will increase population size when we have a hard 

time to find better average fitness values or very close to optimum (either global or local) 

and reduce the size when improvement in average fitness values is sufficient.  In this 
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method, we would have better opportunities to find the global optimum.  There is one 

problem while applying the second strategy: the population size might get too small to 

keep operation of the algorithm correct if we constantly improve the average fitness 

values.  We discuss the solution for this issue in the latter section of this chapter.  

We have already decided the timing of change and the method of change, but we 

have not yet finished the argument for the degree of change in the population size.  This 

question has also several different strategies such as the constant fixed change method, 

dynamic fixed change method and proportional change method. We briefly go over each 

strategy with problems and benefits.  The first strategy is simple enough to implement, 

since the size of change in the population is defined at the beginning of the algorithm.  

Therefore, we do not have to change it and also we do not have to calculate the degree of 

change according to the improvement in the average fitness value.  The problem of this 

approach is very obvious, the size always changes constantly no matter what the current 

size of the population we have, and how much we improve the average fitness values.  In 

extreme example, a result of twenty-five percent improve in the average fitness value 

cause the same degree of change in the population size as a result of one percent decrease 

in the average fitness value.  Also the impact of change does not take into consideration 

the change in the population size.  If we only use a fixed number of candidates to change 

the population size, the impact of change would not be efficient when the size of 

population is large.  For example, we would double the size of the population if we 

change its size from 10 to 20.  However, there will be only ten percent of increase in the 

size of population if we change the size from 100 to 110.  The impact of the changes in 

the average fitness value in the previous two examples is not the same.  The second 
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approach requires several conditional statements to implement the algorithm, so the 

calculation cost will increase slightly compared to the first approach.  The degree of 

changes in the fitness values are reflected in the second approach, but the impact of 

changes that is dependent on the population size is not included in this algorithm.  The 

third approach treats both the degree of changes and the impact of changes.  Instead of a 

fixed size algorithm implemented in the previous two approaches, it uses the proportional 

changes which are dependent on both the population size and the degree of changes in 

the average fitness values.  The calculation cost for implementing the third method is 

slightly greater than the second approach.  Even with the disadvantage in the calculation 

cost, the third approach is worth implementing, since we can change the population more 

dynamically compared to the other approaches.  

3.1.1.1 Off by one theory 

 
We now explain the method we implement to avoid errors in the algorithm due to 

the reduction of the population size.  Since we implement crossover operation, we 

definitely require at least more than two chromosomes in the population.  The method is 

that we insert new sets of the chromosomes into the current population whenever the 

population size does not meet the minimum size requirement of the algorithm.  New sets 

of the chromosomes are generated with some randomization mechanism. 

Before we explain randomization mechanism to fix violation of the minimum size 

requirement, we go back to several observations we discuss previously.  In section 3.0.1, 

we describe that the current adapted core architecture configuration in the dynamic 

system would not guarantee good performance in the future.  This statement is true when 

we observe processing performance of computer systems.  For short time observation, we 
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can say that current configuration would produce sufficient performance to use as seeds 

of randomized chromosomes, since the contents of inforuction buffer changes slowly 

unless it is completely empty.  Therefore the current configuration would offer several 

hints to find the next configuration.  If we only add the same configuration to the 

population, the abilities of both global and local search would decrease.  Therefore we 

need to generate randomized candidates from the current configuration.  In the 

randomization process, we generate candidates according to the off by one theory.  This 

theory tells us that it would be better to change the architecture of only one 

reconfigurable core in the randomization process.  This theory is derived from the careful 

observation of the assumption we made earlier.  We assume that during the process of 

reconfiguration the reconfiguring core cannot process any inforuction.  Therefore, if we 

increase the number of core which reconfigure, it implies the number of cores that cannot 

process inforuction in several intervals.  As a result, performance of the system would 

decrease significantly during reconfiguration. Hence, candidates that only change one 

core would yield similar performance as the current configuration of the system.  In most 

cases, generated candidates would have less performance in the processing power due to 

the reconfiguration penalties.  From this observation, we create candidates which 

randomize only single core from the current configuration, and we insert generated 

chromosomes into the population to prevent failure of the algorithm and to maintain 

diversity in the population.  Figure 3.3 illustrates the flow of the modified genetic 

algorithm. 
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3.1.1.2 Multiple Crossover Operation with multiple parents 

 
There are several papers which study about the effect of multiple crossover 

operations in the genetic algorithm.  Examples of such studies are [27] [28] [29].  The 

multiple crossover operators have one important benefit.  This method enhances the 

global search abilities of the genetic algorithm.  Even though the crossover operation 

implements local search, each different crossover operator would search through 

different search spaces.  The variety of children in each generation would increase 

compared to the implementation of single crossover operation.  Also, the multiple parents 

would increase the global search ability, since we choose several different sets of parents 

Figure3.3 Operation flowchart for the modified genetic algorithm 
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for each type of crossover operator.  So many traits of chromosomes are effectively used 

to create the next population.   

3.1.1.3 Fitness function 

 
In this section, we talk about the most important topic of the genetic algorithm.  

This is not an exaggerated expression since the result of fitness function is used for 

control of reconfiguration and control of the dynamic population.  We go over several 

facts that are used to develop our fitness function.  To compare each configuration of the 

system, we can use the processing performances of configurations after we complete the 

process of reconfiguration since they are simple enough to calculate.  Even though we 

know the processing characteristics of each core which we obtain from measurements, 

the actual performance of cores and systems might be lower than what we calculate.  

There are three types of barriers that make system performance lower.  One of the 

barriers is the stall.  The stall is the time we cannot have the full abilities of processing 

power since some infoructions are not ready to process [9] or we have too much stock of 

inforuction in the inforuction buffer.  This is caused by dependencies in inforuction.  In 

the stall condition, systems cannot obtain any new infoructions. 

Another barrier has a similar effect as the stall, but the cause of this barrier is 

slightly different.  We name this barrier empty-running.  As the name implies, the system 

does not store sufficient amounts of specific types of infoructions in the information 

buffer compared to the maximum performance we have.  We explain the problem of this 

situation with an example.  We feed each type of infoructions into the corresponding 

inforuction buffer each time we pre-fetch.  Each reconfigurable core in the system 

processes infoructions from this set of inforuction buffers.  If we have sufficient pre-
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fetched infoructions for all types of inforuction buffers, the system can process as much 

as possible with its maximum potential and there is no problem for this situation.  

However, if the inforuction buffer contains fewer amounts of some types of inforuction, 

cores cannot utilize the full-processing power as we calculate.  It can only process the 

amounts of inforuction in the inforuction buffer.  After it completes processing, it 

becomes idle or runs with the emptied inforuction buffer till the next set of infoructions is 

ready.  

Another barrier is reconfiguration penalties.  During reconfiguration, the 

processing power of systems decreases compared to full specification since several cores 

are isolated or excluded from our system.  After reconfiguration, the isolated cores 

become active to process infoructions.  Therefore these performance changes during the 

process of reconfiguration also make the processing power difficult to use as the fitness 

values of our system.  With all three of these barriers together, we cannot use processing 

power directly to determine the fitness values of a given system configuration.   

The appropriate fitness function should treat all three barriers.  We use the 

predicted amounts of infoructions we can process in a certain time interval as our fitness 

values.  The detail of fitness function is described in expression (3.1).  The time 

parameter t is used in expression (3.1). This time parameter should be longer than the 

reconfiguration penalties since we know the performance of a dynamic system during 

reconfiguration is lower than the system which stays the same as the current 

configuration.  If we take a longer time interval for the parameter t, calculation costs of 

reconfiguration would increase dramatically since the fitness function emulates behaviors 

of systems to predict amounts of information we might process.  To predict the 



36 

performance of dynamic systems, we have to predict the amount of infoructions which 

will be generated in the time interval t since the inforuction we need to process in the 

future time is unknown.  

 

 #          

#          

#            

#                                       3.1  

 

The approach we take for prediction of the future infoructions uses the similar 

concept in the neural network system [30].  In the neural system, we train the network 

with some sample patterns which model the operation of the system.  The neural network 

trains to obtain the correct result or desirable results in terms of purpose of the system 

with the differences of simulated results, and preferable results.  For our system, we will 

train our prediction mechanism with the data of the generated infoructions which are fed 

into our inforuction buffer whenever we do not reconfigure the system.  Our training 

method is straightforward.  We take the data for occurrence of each inforuction for a 

specific time interval.  This time interval is related to the time parameter (t) we use in the 

fitness function.  As a result of the fitness value evaluation, we conclude that we do not 

have to reconfigure our system, since the current system configuration might have better 

performance within the time interval (t).  Therefore we might not have to reconfigure our 

system during the time interval.  At the same time, we do not have to evaluate the 

candidates with the genetic algorithm.  We use the time interval in which the 



37 

optimization process does not operate, and resources which is usually used in the 

optimization algorithm.  We discuss the meaning of the data of inforuction occurrences in 

the later chapter.  

We will evaluate the impact of misprediction.  The misprediction occurres when 

the data for occurrence does not correspond to the actual behavior of systems.  It happens 

when sets of inforuction produced are changed dramatically from what we observe.  The 

impact caused by the misprediction would not be severe since it is softened by the 

inforuction buffers.  This is because the sets of inforuction in the inforuction buffer 

should be processed prior to the sets of inforuction predicted with the prediction 

mechanism.  In other words, we always have some portion of infoructions that we will 

definitely process since they are the stored infoructions in the inforuction buffer.  

Therefore, the ratio of amounts of mispredicted inforuction handled in the fitness function 

to the infoructions that are predicted to be handled would be always less than 1.  Even 

though there is a possibility of misprediction, our prediction mechanism represents the 

actual behavior of systems more accurately than the simplest prediction method, which 

assumes to have exactly the same number of each inforuction during our prediction.  

As we close this section, we show the flowchart of the fitness function in the 

Figure 3.4.  Our fitness function is a short time simulation of the system since we need to 

determine the performance in the future for both types of systems: the system with the 

current configuration and the system with the candidate configurations during the process 

of optimization for the multi-core system.   
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3.1.1.4 Running BEST 

The genetic algorithm will converge to the optimum when we use algorithms with 

a large number of generations.  Hence, the algorithm needs long time to obtain the 

optimum.  Even if we use large number of generations, the optimum obtained is either 

local or global.  There is no guarantee we can get global optimum without prior 

knowledge.  As we implement the genetic algorithm as part of dynamic system, the large 

generation for convergence would be problematic, since the larger generation needs more 

time to compute the fitness values.  Therefore we cannot wait the algorithm to converge, 

and we should set the generation we want to use as the stopping criteria.  Instead, we use 

Figure3.4 Operation flowchart for the fitness function 
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the running best or optimized candidate as our next candidate, which is the candidate with 

best fitness values that we evaluate through our algorithm.  In other words, we stop the 

genetic algorithm with a specific generation, and obtain the best candidate from the given 

population.  Since the chosen candidate is the best candidate in the population, we can 

use this approach for the best candidate that we can find within the limited resources. 
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CHAPTER 4  

STATIC RECONFIGURABLE SYTEM: GENETIC ALGORITHM 

EVALUATION 

 

4.0 Reason for static reconfigurable computer implementation 

 

Even though we have several examples which apply the genetic algorithm to 

research of computer architecture [17] – [21], we do not have an example of the genetic 

algorithm applied as the optimization algorithm to find better configuration candidates in 

terms of processing power of CPUs.  We can prove the performance of the genetic 

algorithm to find the optimized candidates through the implementation of a static 

reconfigurable computer, which is similar to a cell processor.  Also we can develop the 

framework of simulation that we can use for the dynamic system.  In addition to these 

benefits, the results of simulation can be used as the performance of specialized static 

computer, which can be used to compare with our proposed system.  Therefore we should 

implement a static reconfigurable computer.  
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4.1 Assumptions for Simulation 
 

We describe the important assumptions that are necessary for the simulation for 

the dynamic system in Chapter 3.  We will discuss assumptions that we will use for the 

static reconfigurable systems and will introduce the new mechanism with a new 

assumption that would be used in both simulations of static and dynamic systems.  

Assume we have the multi-core system described in section 3.0.3.  Each of architecture 

configurations of cores we use in our system is well designed.  The characteristics of each 

architecture configuration are well measured in terms of amounts of possible inforuction 

each core can process during a certain time unit.  This measurement is called Inforuction 

Per Clock Cycle (IPCC).  Since we implement superscalar architecture in each core, 

IPCC for each core has amounts of each types of inforuction that a single core can 

process simultaneously during a given time unit.  Before discussing the details of genetic 

algorithm in the next section, we will introduce the new concept: stochastic inforuction 

generator.  

4.1.0 Stochastic Inforuction Generator 
 

Before introducing the stochastic inforuction generator, we will go over the basic 

idea of stochastics.  Most definitions come from [31] – [33].  When we observe result of 

a fair-six-faced dice roll, we get faces from 1 to 6.  For short time observations or from 

small number of samples of a single dice roll, occurrence of each faces dynamically 

change as we roll, and we cannot find steady result in frequencies of occurrence for each 

face.  When we observe fairly large numbers of dice roll or we have sufficient numbers 

of samples of dice roll, there would be steady data for occurrence of each face, which is 
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one sixth for each face in this case.  In other words, if we observe some system for a long 

time, we would find stochastic data or probability information in behaviors of the 

observed system.  In the previous example, the stochastic information we get is 

frequencies of occurrence of each face.  Since this is the representation of system 

behavior, we can predict the behavior of the given system with probabilities.  The 

example of prediction is probability of fair-coin toss.  We know probabilities of 

occurrence for each side of the coin would be one half.  Therefore, if we toss a coin 

significant number of times, we can predict that we will have about half of toss as heads 

and the other half as tails.  In real situations, there are dependencies among occurrence of 

each instance.  Since the dependencies change the probabilities of occurrence, our 

prediction of occurrence is more difficult.  However, if we find out all dependencies, the 

predictions would correspond to the actual system behavior.  

If we observe a single computer system with a certain simulation for a long time, 

or if we observe multiple computes with same settings, there should be stochastic 

information for occurrence of each type of instructions.  We prove this statement with 

contradiction.  Assume we do not have any stochastic information or probabilities for 

occurrence of each instruction.  In other words, the instructions we process is decided 

randomly.  For such situation, we cannot reproduce a result of simulation, even if we use 

the exactly same setting.  However, the normal simulations implemented in some 

benchmark programs definitely have steady results that we can reproduce with the same 

settings.  With reproducible results, we justify our accomplishments. Simulators or 

benchmark programs are designed to reproduce the data if we use the exactly same 

setting since they produce the same sets of instructions for the same settings.  On other 



43 

hand, if we have different sets of instruction, the result of simulation would not be 

reproducible. This is contradictory to what we assume: we cannot reproduce the same 

result since the instruction is randomly generated.  Therefore there exists the stochastic 

information for patterns of instruction generation in a simulator, which is dependent on 

the type of application.  This assumption is based on the observation of a specific purpose 

application.  For example, the mathematical application software would produce more 

instruction related to mathematical operation compared to other software.  If we are 

watching a movie on the computer, the instruction related to graphics and sounds would 

be more than the normal operation of the system.  For our system, we would have 

stochastic patterns in inforuction generation that are different for each types of 

application.  With stochastic information for occurrence of each types of inforuction, we 

can generate infoructions to simulate real behavior of systems.  We call this stochastic 

method of generating inforuction as stochastic inforuction generators.  We will remark 

one more fact for the stochastic inforuction generator. The stochastic information should 

obtain from data that is consisted of large numbers of samples since validity of the 

stochastic information increases with larger amounts of data due to the reduction of the 

effect from the noise or unexpected data.  Also we need to use stochastic inforuction 

generator for longer cycle to increase accuracy and precision of the simulation.  

The actual process of inforuction stream generation is illustrated in Figure 4.1.  

As Figure 4.1 displays, we use a random number generator to generate the actual 

inforuction in each cycle. We cannot match the stochastic information used to the 

generate infoructions with the stochastic information from actual generated infoructions 

in each cycle.  We can only observe the random generation of infoructions in a short time.  
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However, if we observe the inforuction generation pattern for a long time, we can get 

similar stochastic information as information used to generate inforuction stream.  From 

this point, this method can be used for a short cycle operation, which does not have any 

clear stochastic information for a generation pattern.    

 

 

Figure4.1 Operation flowchart for the inforuction generation for each cycle 
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numbers of total inforuction we will process in our simulation.  To compare the systems 

with the same number of cycles fairly, we use the exact same inforuction stream.  This 

means we have the same stochastic data, the same number of inforuction, the same 

numbers of dependencies, and the same sequence for each inforuction. 

 

4.2 Genetic algorithm for the static operation 

 

The genetic algorithm we implement for the static system has the same 

characteristic as dynamic algorithm expect the several differences that come from system 

properties.  For the static application, we do not change system configuration while the 

system processes infoructions.  Therefore we do not have to worry about reconfiguration 

penalties and reduction of performance due to reconfiguration.  The objective of the 

static reconfigurable computer is to find the optimized configuration for the system 

which has the “best” performance for given application or application sequence.  So 

fitness values of the static reconfigurable computer are the total time unit necessary to 

complete all inforuction.  As we describe previously, we have to worry about the 

reduction of processing performance due to stall and empty-running, since stall and 

empty-running will increase the necessary time unit to complete all inforuction. The 

flowchart of the static genetic computer is described in Figure 4.2.  We go over several 

stages which is different from the dynamic operation we described at the previous chapter. 
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Most significant difference between dynamic operation and static operation is 

location of the genetic algorithm or the stage of simulation.  For dynamic systems, we are 

running simulation while we use the genetic algorithm to find better candidates of the 

next configuration.  For this application, we run the miniature of simulation in the process 

of fitness function evaluation.  For the static operation, we use the genetic algorithm after 

we simulate a system to find the fitness values. The details of simulation flow are shown 

in Figure 4.3.   

 

Figure4.2 Operation flowchart for the genetic algorithm for static operation 
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This figure is similar to Figure 3.4 which displays the flow of fitness function in 

dynamic systems.  The differences between these two flowcharts are at the last 

conditional or check statement.  For the fitness function of dynamic system, the amount of 

infoructions processed is variable, and the cycle in which we simulate remains constant.  

The simulation for static systems is targeted to obtain the difference in time cycle for 

given amounts of infoructions we need to process.  From these reason the stall condition 

is implemented in the different location in the two flowcharts. 

Another difference between the two flowcharts is the method we use to generate 

chromosomes to adjust the population size.  Remember for the dynamic system, we 

introduce the off-by-one theory, which tries to change configuration of only one core in 

Figure4.3 Operation flowchart for the simulation stage of genetic algorithm for static application
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the process of generating the extra candidate for adjusting population size.  This theory is 

to avoid the severe reconfiguration penalty from reconfiguring multiple cores at once.  

As we described previously, we do not have to worry about the reconfiguration penalty 

in the static system.  Therefore we insert chromosomes which are randomly generated to 

ensure the varieties in the population.  Since there are local optimum issues for the 

optimization process, the randomly chosen configuration would give more chances to 

find global optimum. 

One more remark for simulation method we can use for both dynamic and static 

system as we close this section, which is how we implement the stall.  As we describe, 

the stall is time necessary to “catch up” with the current inforuction flow to avoid the 

hardware hazard.  Therefore the stalls are detected when any types of inforuction buffers 

have greater amounts of infoructions than the dimension we pre-defined.  During the stall, 

the internal clock is incremented without generating new inforuction sets.  The stall will 

be continued until amounts of infoructions in all types of the inforuction buffers are 

smaller than the limitation we defined.  In the next section, we will go over the simulation 

setting and results of the simulation with observations.  

 

4.3 Simulation settings and simulation results 

 

In the previous section, we go over details of the genetic algorithm for the static 

reconfigurable CPUs.  Before we show the results of simulations, we go over the details 

of the simulation setting. 
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We simulate our programs with 77 high end computers simultaneously to reduce 

the simulation time.  Performance of each individual computer which runs simulation is 

given in Table 4.1.  In our simulation, we have two types of settings.  One of them is 

common for all static computer simulations and the other is unique for each individual 

simulation. We go over the details of common characteristics and then describe details of 

unique settings.   

 

Table4.1 Performance of Simulation Stations 

 Performance 

Cumulated # of computer 77 

CPU Intel® Core™2 Duo Processor 6700 @ 2.66 GHz 

Memory 2 GB  

 

We choose the following setting as common configuration for all static 

computers: number of different types of inforuction, characterization of each type of 

infoructions, amounts of infoructions generated in a time cycle, number of predefined 

architectures we use, characterization of each core architectures, number of generations 

in the genetic algorithm, and number of initial population.  Also we set the number of 

maximum population we will use in the genetic algorithm as constant to improve the 

simulation time.   We identify 4 different types of infoructions that we use to characterize 

the performance of core architecture and stochastic data in inforuction generation pattern 

for a certain application. The types of infoructions are similar to types of functional units 

in the superscalar processor [9].  The types of inforuction are logic, mathematic, floating 

point, and memory.  We use 4 different pseudo applications that have unique stochastic 

information pattern for each inforuction.  Each of application is identified as General, 
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Logic/Math, Floating Point, and Memory, which corresponds to the intensity of the 

infoructions for a given application.  Characteristics of each application in terms of 

stochastic data of inforuction generation are summarized in Table 4.2. We define the 

characteristics of 5 different specialized cores. We name each type of architecture such as 

GENeral, LOGic, MATh, FLoating Point, and MEMory, which corresponds to their 

specialization.  The performances of each type of architecture in terms of IPCC are listed 

in Table 4.3.  The total amounts of inforuction each processor can handle are set to 8 

which is the realistic number since it corresponds to the number of functional units in the 

superscalar processor [9].  To emulate changes of application in the systems, we 

randomly choose three applications from the repeated sample which consisted of the four 

applications we defined.  The list of all inforuction generation patterns is displayed in 

Table B.1 and Table B.2.  The common characteristic of systems we simulate is set as 

Table 4.4.  Each inforuction stream is unique for the same length of cycle for each 

application we want to simulate.  

 

 

Table4.2 Stochastic data of Inforuction generation in the percentage 

where L is Logic inforuction, MA is Mathematic infoructions, FLP is Floating point infoructions, 
and ME is Memory infoructions. 

 
 L MA FLP ME 

General 35 30 20 15 

Logic/Math 70 18 7 5 

Floating Point 5 12 80 3 

Memory 15 15 10 60 
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Table4.3 Amounts of inforuction that each architectures can process in the given time unit 

where L is Logic inforuction, MA is Mathematic infoructions, FLP is Floating point infoructions, 
and ME is Memory infoructions. 

 
 L MA FLP  ME 

General 3 3 1 1 

Logic 4 2 1 1 

Math 2 4 1 1 

Floating 1 1 5 1 

Memory  1 1 1 5 

 

Table4.4 Common setting for each configuration in simulation  

 Setting 

# of total simulation  64 ( = 4^3) 

Total # of Inforuction prefetched 64 

Size of Initial population 15 

# of generation 200 

Maximum size of population 450 (= 15*30) 

Dependencies factor .05 

 

The rest of the settings, such as the number of reconfigurable cores we have in a 

system, the number of minimum cycles for each application, the number of iteration we 

implement, and the amounts of inforuction that trigger stall, are chosen to be variables to 

observe the properties of the static reconfigurable CPUs.  Each individual setting for 

these variables is shown in Table 4.5 and the complete set of actual setting for each 

system we will simulate is in Table B.3 through Table B.6.   
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Table4.5 Variables and their possible settings 

 Candidates of setting we will setting 

# of cores in the system 2, 4, 6, 8, 10, 12, 14 

Length of each 

application 
50, 100, 200, 400, 600 

# of iterations we 

implement 
10, 15 

Stall trigger 30, 50 

 

  

4.4 Simulation Results and Observations 

 

Our simulation time to complete individual configuration over 64 different 

application sequences are less than 5 minutes with the computer we used.  Before 

discussing about any further observation of results, we discuss how we will compare the 

results of simulations among the different settings.  We use a PITCGEN (Percentage of 

the performance Improvement in terms of Time necessary to process all infoructions 

Compared with the performance of GENeral core only systems) to describe the 

performance of our systems.  Remember, our raw simulation result is time necessary to 

complete the inforuction streams.  To obtain the performance improvement compared 

with the general core only system, we use the expression (4.1).  We identify these ratios 

as a Specific PITCGEN (SPITCGEN) since these measurements are dependent on the 

types of application sequences in the simulation.  To find the Average PITCGEN over all 

application sequences (APITCGEN), we use the expression (4.2).  The result of the 
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calculation of APITCGEN is shown in Table 4.6.  We should not forget that SPITCGEN 

and APITCGEN are both dependent on the setting of the systems.  

 

1
     
       

                    4.1  

     
∑    

           4.2  

 

Figure 4.4 and Figure 4.5 (Enlarged figure is in Appendix: Figure B.1 through 

Figure B.6) displays the APITCGEN for BEST (BEST performance we find in the whole 

algorithm), AVER (AVERage performance of the best performance we find in each 

iteration), LOG (LOGic specialized core only systems), MAT (MATh specialized core 

only systems), FLP (FLoating Point operation specialized core only systems), and MEM 

(MEMory operation specialized core only systems). 

 

 

Figure4.4 APITCGEN for different types of systems 

Left graph: result of BEST and Right graph: result of AVER.  The horizontal axis displays different 
settings: S001 through S077 which is depicted in Table B3 through Table B6. 
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Figure4.5 APITCGEN for different types of system 

Top Left graph: result of LOG, Top Right: result of MAT, Bottom Left: result of FLP, and  
Bottom Right: result of for MEM. The horizontal axis displays different settings:  

S001 through S077, which are depicted in Table B3 through Table B6. 
 

Figure 4.4 and Figure 4.5 demonstrate that we seem to have about 30 % 

improvement in overall performance compared to GEN.  This performance increase 

comes from the result of the static reconfiguration according to the individual inforuction 

streams.  Since we have a different configuration for each inforuction stream, we can 

compare our result with the best configuration for single design core only systems. To 

compare the performance of our system with the best performance for single design core 

only systems, we use expressions (4.3) and (4.4).  Since GEN systems do not produce the 

best PITC for all settings, this comparison provides more information about the 

optimization capability of our system.   

 

1
  

                    4.3  
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∑    

                  4.4  

 

Figure4.6 APITCALL with BEST for different types of systems 

 

 

Figure4.7 SPITCALL with BEST among systems 

Each entry in the graph corresponds to a specific setting (S001 – S077) in Table B.3 through B.6. 
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Figure 4.6 and Figure 4.7 demonstrate the performance of our system that is 

calculated from expressions (4.3) and (4.4).  As we focused on Figure 4.6, the average 

performance improvements we achieve with our systems compared to the best 

performance of the single design core only systems is about 14 % and we have only 

positive average improvement for all settings. The 14 % increase might not seem 

outstanding.  We look for details about this 14 % increase.  Figure 4.7 demonstrate the 

interesting results and problems of our static systems. The problem is also one of the 

problems of the genetic algorithm.  Each individual PICTALL is ranged from about          

-120 % to 40 %.  Most parts of settings in Figure 4.7 demonstrate the positive 

performance improvement or the same performance as the best performance for single 

design core only systems.  As we describe, the magnitude of negative performance 

improvement or performance reduction is momentous because it reduces our average of 

APICTALL, even though the number of simulations which end up with negative result is 

about 20 % of the entire simulation results.  Table 4.6 demonstrates the several data of 

our simulation.    

Table4.6 Statistical data of SPITCALL with BEST 

 # of simulation % of Occurrence Average 

Total Number 4928 100 % 14.25 % 

Positive PITCALL 3919 79.53 % 22.33 % 

Zero PITCALL 69 1.40 % 0 % 

Negative PITCALL 940 19.07 % -18.39 % 

 

In the theory and our simulation setting, we should not get any result with a 

negative SPITC since all single core only configurations, which are GEN, LOG, MAT, 

FLP, and MEM, are one of the subsets in our search space.  Therefore, if our optimization 



57 

method uses the exhaustive search, we could identify these configurations as a superior 

configuration whenever it is appropriate.  The reason why we cannot find these 

configurations can be explained with the one of the weaknesses of a genetic algorithm.  

The genetic algorithm uses a stochastic search method. During the generation of the set 

of candidate chromosomes, we have a certain probability to generate each candidate 

based on a choice of parents.  There are certain probabilities that we do not check a 

certain candidate.  Therefore, there is always non-zero probability that we cannot find the 

truly optimized candidate.  What we end up with in our optimization process is local 

optimums that are different from the global optimum.  This result is well displayed when 

we refer to Figure 4.8 which shows the APITCALL with AVER and Figure 4.9 which 

shows SPITCALL with AVER.  AVER, which is the average of the “best” values we find 

over the individual iteration, is much less than the BEST, which is the “best” we find 

over all iterations (Data for SPITCALL with AVER is displayed in Table 4.7).  The 

reason is that there are some probabilities that the algorithm could not find the true 

“optimum” within the single iteration.  

 

 

Figure4.8 APITCALL with AVER for different types of system 
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Figure4.9 SPITCALL with AVER among systems 

Each entry in the graph is a specific setting (S001 – S077) in Table B.3 through B.6. X Axis is for the 
sequence pattern of applications from P01 to P64 in Table B.1 and Table B.2; 

 

Table4.7 Statistical data of SPITCALL with AVER 

 # of simulation % of Occurrence Average  

Total Number 4928 100 % -16.44 % 

Positive PITCALL 2220 45.05 % 11.90 % 

Zero PITCALL 1 0.02 % 0 % 

Negative PITCALL 2707 19.07 % -20.68 % 

 

We can easily improve our algorithm by introducing 5 single design core only 

systems into the first generation of our search. With this method, we are sure the search 

space of simulation includes the single design core only cases.  Also this modification 

improves the search area of the algorithm since the single design core only systems are 

not similar to each other.  As a result, our search algorithm can produce better results.  

Simulation results of the modified algorithm are displayed in Figure 4.10 through Figure 

4.12.  The APITCGEN and SPITCGEN with BEST are in Figure B.14 through Figure 
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B.21.  Compared with Figure 4.10 through Figure 4.13, our algorithm shows 

improvement in the optimization abilities.  We have only positive performance 

improvements in both SPITCALL with BEST and SPITCALL with AVER. The negative 

SPICTALL is replaced with the zero or the positive SPICTALL since we increase the 

variety of systems in the first generation and we are forced to evaluate the 5 different 

types of single core only systems.    

 

Figure4.10 APITCALL with BEST for different types of system with modified algorithm 

  

 

Figure4.11 SPITCALL with BEST among systems with modified algorithm 

Each entry in the graph is a specific setting (S001 – S077) in Table B.3 through B.6.  
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Figure4.12 APITCALL with AVER for different types of system with modified algorithm  

 

 

 

 

 
Figure4.13 SPITCALL with AVER among systems with modified algorithm 

Each entry in the graph is a specific setting (S001 – S077) in Table B.3 through B.6.  
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  Figure4.14 Changes on number of cores in APITCGEN for BEST 

Legend explains the rest settings of simulation with the following format: 
 Cycles of each application: Stall trigger levels: Number of iterations. 

 

 

 
Figure4.15 Changes on number of cores in APITCGEN2 for BEST 

Legend explains the rest settings of simulation with the following format: 
 Cycles of each application: Stall trigger levels: Number of iterations.  
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Figure 4.14 displays the APITCGEN for BEST.  According to this figure, 

performance improvement compared to GEN which has the same number of cores as the 

comparison target, becomes the largest when we have 4 core systems, then our 

percentage of improvement keeps decreasing.  Since the maximum amounts of total 

inforuction generated in a cycle are fixed, the utilization of the system compared to 

systems with general core only cannot be optimized if we have too many cores.  The 

fixed amounts of inforuction generated per cycle, which is 64, come from the maximum 

processing power of an 8 core system.  If we adjust the data to compare with the 

APITCGEN with 2 cores (GEN2), we observe a graph as Figure 4.15.  The graph 

demonstrates the remarkable improvement when we increase the number of cores from 2 

to 4.  With this change, the maximum processing power of the system becomes half of 

the total amounts of infoructions generated per cycle.  The result of this comparison 

clearly displays the diminishing performance improvement when we increase the number 

of cores in a system, especially if the system can only pre-fetch the fixed amounts of 

inforuction per cycle.  When we increase the number of cores from 2 to 4, we efficiently 

reduce the cause of stalls and do not increase the probability of empty-running at the 

same time.  After the 4 core system, chances of empty running are increased more than 

decrease in the chances of stalls.  Therefore the performance is not improved as in the 

case of 4 cores.  

If we plot the same graph compared to the best single cores instead of GEN, the 

figure looks slightly different from the figures we observe.  Figure 4.16 has similar 

characteristic as the previous figures up to 10 core system.  However, we have the 

improvement for 12 and 14 cores systems.  The reason why we cannot observe this 
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improvement in the previous two figures can be explained with Figure 4.11.  For the 

comparison with the best of single design core only settings, we have more range of 

changes in the performance measurement for each individual setting and each individual 

inforuction pattern.  Therefore, we observe the improvements for 12 and 14 cores.  

 

Figure4.16 Changes on number of cores in APITCALL for BEST 

Legend explains the rest settings of simulation with the following format: 
 Cycles of each application: Stall trigger levels: Number of iterations. 

 

 

Figure4.17 Changes on APITCALL with different length of simulation for BEST 

Legend explains the rest settings of simulation with the following format: 
 Number of cores: Stall trigger levels: Number of iterations. 
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Figure 4.17 displays the changes of APITCALL by changing the number of 

minimum length of each application.  In Appendix B, we have larger size of these figures 

in Figure B.22 through Figure B.24.  As we observe in the figures, our static system does 

not demonstrate any firm changes such as a monotonous decrease or increase when we 

change the cycles of each application.  Instead of a monotonous increase or decrease, we 

observe the APITCALL stays in about .5 % of deviations.  This comes from the 

differences for each length of simulation in the actual percentage of inforuction stream 

we simulate.  Hence, we conclude this relationship as the following statement: the 

number of cycles for each application does not change the APITCALL significantly.  

Therefore our static operation seems to have steady performance improvement compared 

to the best configuration from single design core only system for any number of cycles.    

 

 

Figure4.18 Changes on APITCALL for BEST with different iteration  

Legend explains the rest settings of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels. 
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When we study the graph in Figure 4.18, we can still verify the local optimum 

issues of the genetic algorithm, since the 10 iteration data has slightly smaller 

APITCALL compared to 15 iteration data.  Therefore we should keep the number of 

iterations to a relatively large number to obtain the global optimum or better performance.   

 
Figure4.19 Changes on APITCALL for BEST with different stall trigger 

Legend explains the rest settings of simulation with the following format: 
 Number of cores: Cycles of each application: Number of iterations. 

 
With Figure 4.19, we cannot observe the relationship between APITCALL and 

the changes of amounts of inforuction that causes the stall, which corresponds to size of 

the inforuction buffer that is related to the hardware hazards.  Some of results display the 

performance improvement when we have tighter stall trigger condition and the others 

display a decrease in the performance with the tighter constraint.  The conclusion of this 

observation is that the change in condition of stall trigger definitely changes the 

APITCALL, but we cannot predict the effect in APITCALL due to the changes in the 

inforuction buffers from the current observations.  The reason we cannot observe the 
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steady changes in the performance might comes from the following points: the 

inforuction buffers still have large enough size to avoid most stalls, the best configuration 

for single design core only systems already avoid the stalls as much as possible, the 

significant changes are averaged in the process of calculation of APITCALL, and/or the 

changes of best performance of single core only systems eliminate the proof of 

performance changes as in the observation of Figure 4.16.   

In this chapter, we introduce the static genetic reconfigurable system which 

demonstrates the ability to find the optimized configuration.  Even though our algorithm 

still remains the several rooms of improvement, we obtained the positive APITC with 

general cores only system for all settings.  With the modified algorithm, we demonstrate 

the better performance in the optimization to each individual application sequence.  This 

result stands for the following statement:  the genetic algorithm and our static system can 

change configurations of the system to obtain better performance in PITCs.  We also 

have to emphasize the following fact: the optimization process needs prior information of 

the stochastic data of inforuction generation or application sequences.  Without any 

information, our static system and the static genetic algorithm would not produce the 

superior results and end up with meaningless results for reconfiguration.  
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CHAPTER 5  

DYNAMIC RECONFIGURABLE SYSTEM 

 

5.0 Specific details of the dynamic genetic algorithm 

 

Since we discuss details of dynamic system in the previous sections, we will not 

repeat the same topic. Instead, we describe a topic which has not been discussed yet.  

That is how we determine the time to finish the previous reconfiguration process and start 

the new reconfiguration process.  We have to use fixed time to estimate the fitness values, 

but we do not have to use the fixed time to terminate.  We identify this time as 

reconfiguration time, which is the time we terminate the old reconfiguration process and 

then start the new process.  If we do not choose this time interval carefully, our 

performance does not correspond to what we achieve in the real situation.  For example, 

if we choose time interval shorter than the actual time for the reconfiguration of a FPGA 

(Field Programmable Gate Array) device, our simulation result is not realistic.  Also, we 

have to take into consideration the calculation time for our reconfiguration process, since 

the timing of reconfiguration will change the performance we can get from our system. 

In addition to the fitness function we define in the former section, we add one 

more parameter that memorizes the changes of processing performance within a time
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interval.  After we find the best candidate by a genetic algorithm, we evaluate the 

predicted processing power of both the current configuration and the best candidate 

configuration.  We compare these candidate performances for each time unit, beginning 

with the time frame we use for the genetic algorithm to the time of reconfiguration 

penalties.  The time step we find through this process is set as the reconfiguration time 

that we previously defined.  The flowchart of this process is shown in Figure 5.1, and the 

entire flowchart of the dynamic genetic algorithm is shown in Figure 5.2 and Figure 5.3. 

 

 

 

  

Figure5.1 Reconfiguration time determination process 
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Figure5.2 Operation flowchart for the dynamic genetic algorithm  
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5.1 Simulation settings 

In the previous chapter, we verify that the optimization ability of the genetic 

algorithm with the static reconfigurable system on the average.  We use several fixed 

settings as common factors between the previous chapter and the present chapter, such as: 

stochastic information of inforuction generation in each application, number of different 

application, total number of inforuction generated in a given cycle, the number of core in 

a system, types of core architecture, types of inforuction, performance of each type of 

core architectures that are listed in Table 4.2, .Table 4.3 and Table 4.4.  We change the 

number of generation to smaller number since we want to run this algorithm faster and 

the generation is the only stopping criteria as we describe.  We also do not limit the size 

of the population inside the algorithm, but we limit the size of the population which 

carries over to the next implementation of the genetic algorithm.  These fixed settings, 

Figure5.3 Brief Description of flowchart of the dynamic genetic algorithm  

1.) Initialization Stage 
a. Set the number of application and number of iteration for each application 

2.) Generation Stage 
a. Create the specific total amounts of information 

3.) Reconfiguration Flag Check Stage 
a. Check whether reconfiguration is currently in the process or not 

4.) Genetic algorithm Stage 
a. Implement genetic algorithm to find the better configuration 

5.) Verification Stage 
a. Check whether the new configuration produce the better or not 

6.) Process Stage 
a. Increment the time unit 
b. Process the # of information for the current processing power 

7.) Stall Check  
a. Check whether the stall is happened or not  

8.) Information check 
a. Check whether all information is completed or not 

9.) Reconfiguration time Check 
a. Check whether the reconfiguration time is passed after the trigger of reconfiguration 

10.) Modification Stage 
a. Change the performance of the system by adding the restriction or removing it 



71 

which are different from Table 4.4, are listed in Table 5.1.  Also we use several variable 

settings as common to the setting listed in Table 4.5.  The settings for variable parameter 

are listed in Table 5.2.  All combinations of setting are listed in Table B.11 – Table B.14.  

As we describe in the previous chapter, we will observe the differences in the 

performance of static reconfigurable system and dynamic reconfigurable system.  We 

could repeat the algorithm as we did in the static system, but we put more focus on the 

speed of the algorithm, since this is a time-critical operation which the environment 

changes as time goes and performance improvement is also dependent on the time we 

complete the algorithm.  The fixed time we describe during the previous section is 

determined from the expression (5.1)   

Table5.1 Common setting for all simulation 

 Setting 

# of total simulation  64 ( = 4^3) [same as Table 4.4] 

Total # of Inforuction at a time unit 64 [same as Table 4.4] 

Size of Initial population 15 [same as Table 4.4] 

# of generation 45 

Maximum carry over factor (size) 4 (60 = 4*15) 

Dependencies factor .05 

Prediction factor 2 

 

Table5.2 Variable Setting for each simulation 

 Candidates of setting we will setting 

# of cores in the system 2, 4, 6, 8, 10, 12, 14 [same as Table 4.4] 

Length of each application 50,100, 200, 400 

Reconfiguration penalties  6,8,10 

Stall trigger 30, 50 [same as Table 4.4] 
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                                       5.1  

where RP is reconfiguration penalties 
 

The choice of reconfiguration penalty is based on [34], where they said that the 

time necessary to complete the full programmable device is typically done in several 

microseconds and is dependent on the type of devices used for the reconfiguration.  Also 

the time is dependent on the area that needs to be reconfigured [34].  In addition to the 

actual reconfiguration time, which is the time necessary to change the architecture, we 

need to think about the time to calculate the best dynamic architecture corresponding to 

the inforuction streams as we describe previously.  The process of calculation can be 

implemented along with processing of inforuction in our main system.  So we choose the 

reconfiguration penalties, which are sum of time necessary to change the architecture and 

time needs to calculate the optimized candidates, as 6, 8, and 10 cycles.  We run the 

MATLAB codes with computers which have the same specifications as listed in Table 

4.1.  The cumulated numbers of computers used for dynamic system simulation is 102 

since we simulate each individual setting with a different computer.   

 

5.2 Simulation Results and Observations 

 

As we describe in the previous chapter and this chapter, we can use several results 

of observations from the previous chapter, since we use common settings.  We set the 

model of the conventional system as general cores only and use the performance 

measurement of our system which is similar to what we derive in expression (4.1) and 

(4.2).  We use the both SPITCGEN and APITCGEN, and also we use the SPITCBEST 
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and APITCBEST, in which BEST is the result of static systems in the previous chapter.  

The expressions to calculate SPITCBEST and APITCBEST are in expression (5.2) and 

(5.3).  With these methods, we can easily compare the results of performance 

improvements from the different types of systems. 

1
    

         5.2  

              
∑    

                   5.3  

where BEST performance we obtain in Chapter 4 
 

 
Figure5.4 SPITCBEST with dynamic systems 

Each entry in the graph is a specific setting (D001 – S077) in Table B.11 through B.14.  
 

 
Figure5.5 APITCBEST with dynamic systems 
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Figure5.6 SPITCGEN with dynamic systems 

Each entry in the graph is a specific setting (D001 – S102) in Table B.11 through B.14.  
 

 
Figure5.7 APITCGEN with dynamic systems 

 
 

Figure 5.4 and Figure 5.5 display the simulation results with SPITCBEST and 

APITCGEN.  From these figures, we have to conclude that dynamic systems might not 

perform as well as the static systems, which are described in Chapter 4.  APITCBESTs 

show that we have a performance reduction for most settings, but for several settings we 

have performance improvements.  Since these improvements are observed in comparison 
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to BEST, the dynamic systems have better performances compared to any other fixed 

architecture system under certain situations.  The fact that we do not get a better 

performance improvement in most situations comes from two major reasons.  One of 

them is inactive time of reconfigurable cores during reconfiguration.  The static system 

does not have any performance reduction due to the reconfiguration.  Even if we compare 

with a normal system, which has only general cores, the effect of performance reduction 

is clear.  This statement is supported with Figure 5.6 and Figure 5.7.  We have about 

20 % of performance improvement on the average of APITCGEN, but we have several 

performance reductions in SPITCGENs.  If we compare our result with highly optimized 

systems for specific inforuction streams, the performance reduction due to 

reconfiguration becomes more clear and significant than comparison between dynamic 

systems and GENs.  Another reason is the issue of local optimums.  As we describe in the 

previous chapter, our optimization process might be trapped with local optimums.  To 

avoid local optimums, we increase the number of iterations in the static systems.   In our 

dynamic system, we cannot increase the number of iterations unless we have sufficient 

computational power for optimization processes, since the calculation cost would also 

increase as we increase the iterations.   

We study the details of characteristics of the system with APITCGEN.  We 

investigate the effect of changing the settings of our systems.  Figure 5.8 demonstrates 

the performance changes due to increase in the numbers of cores in the system.  Larger 

figures are shown in Figure B.25 through Figure B.27.  From the graphs, we can observe 

that we have significant performance improvement between 4 core systems and 6 core 

systems, and we have very low improvement at 2 core systems.  Since with 2 cores 
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systems, we have fewer choices for configurations and performance reduction due to 

reconfiguration is significant, it is natural to have such low performances.  Most results of 

the simulation have the higher performance improvement when we compare with GEN 

systems, which have the same number of cores.  Even from these graphs, we can observe 

that the magnitude of performance improvement decreases as we increase the number of 

cores in a system.  The reason of these behaviors is exactly the same as what we describe 

in the previous chapter: the fixed amounts of inforuction generation per cycle.  From this 

point, we can conclude that the peak of performance improvement would be dependent 

on the number of inforuction generated per cycle. Figure 5.9 displays the relationship 

between the numbers of reconfiguration of the system and the number of cores in a 

system.  Since we have performance reduction during the reconfiguration process, the 

performance improvement from the reconfiguration would become smaller when we have 

more cores with fixed size inforuction prefetching system.  

 

Figure5.8 APITCGEN with dynamic systems (Changing the number of core) 

Legend explains the setting of each result of simulation with the following format: 
 Number of delay cycles: Cycles of each application: Stall trigger levels. 
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Figure5.9 Number of reconfigurations (Changing the number of cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of delay cycles: Cycles of each application: Stall trigger levels. 

 

 

 

Figure5.10 APITCGEN with dynamic systems (Changing the delay cycles) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels. 
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With Figure 5.10, we explain the relationship between the performance 

improvement and the delay due to reconfiguration.  All set of configurations is located in 

the Appendix B: Figure B.28 through Figure B.34.  In these figures, we can observe two 

opposite trends in the change of performance improvement.  The decrease of 

performance improvement can be easily explained with the performance reduction during 

the reconfiguration process.  As the figures show, we have lower performance 

improvement when we have larger reconfiguration penalties, since larger reconfiguration 

penalties imply more performance reduction during the reconfiguration process.  There 

are several cases that we have performance improvement due to larger reconfiguration 

penalties.  This might come from the fact that we eliminate the unnecessary 

reconfigurations that make the performance lower.  This can be supported with Figure 

that displays the average number of reconfiguration occurred to process specific 

information stream in Figure 5.11.  Figure B.35 displays whole setting of Average 

number of reconfiguration.   

 

 

Figure5.11 Average number of reconfiguration (Changing the delay cycles for 6 cores case) 

Legend explains the setting of each result of simulation with the following format: 
Number of cores: Cycles of each application: Stall trigger levels. 
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Figure5.12 APITCGEN Changes from the change of inforuction buffer 

Legend explains the setting of each result of simulation with the following format: 
Number of cores: Number of delay cycles: Cycles of each application. 

 

Now we observe the relationship between the size of the inforuction buffer and 

the performance improvement.  As Figure 5.12 displays, there is no strong relationship 

between the improvement and size of inforuction buffers.  The reason of this behavior 

might come from two points: the percentage of performance change due to the changes in 

the buffer size is not large enough and/or the buffer size is still larger than the critical size 

which would dramatically change the performance.  From the figure, we conclude that 

we do not have any strong relationship when we change the buffer size from 50 to 30.  

Finally, we study the effect of length of simulation in the performance 

improvement.  Figure 5.13 demonstrates that we have lower performance improvement 

for short time applications, but our performance improvement increases rapidly for 

medium length applications.  Since we have more chances to reconfigure, the 

performances are increased.  If we simulate longer cycles for each inforuction pattern, 
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our performance improvement increases more slowly.  The total cycles necessary to 

simulate all application increase, but the amounts of cycle we can improve without stalls 

and empty running do not increase as much as medium length applications. Therefore, the 

percentage of improvement seems to become saturated for longer cycles.   

 

  

Figure5.13 APITCGEN Changes from the change in cycles of each application 

Legend explains the setting of each result of simulation with the following format: 
Number of cores: Number of delay cycles: Cycles of each application. 

 We emphasize one of the facts we do not discuss yet.  For the static applications, 

we need the prior knowledge of application sequences to efficiently improve the 

performance.  However, for dynamic systems, we do not need such kinds of information, 

since our system has simple automatic learning mechanism, which learns the application 

patterns we processed in the several intervals.  The major difference in the performance 
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between the static and the dynamic computer comes from their optimization targets.  In 

other words, the static computer optimizes their architecture to have the “best” 

performance using the result of simulation based on the prior knowledge of inforuction 

streams we will process, and the dynamic operation use the short time prediction to have 

better performance than the current configuration.  Most part of performance differences 

in these systems come from the reconfiguration penalties which is only used in the 

dynamic system and mispredictions that might happen in the dynamic systems. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

6.0 Problems 
 

Before concluding this study, we will go over some problems of our approach.  

Since the simulation results are based on several assumptions we made in this study, the 

results are not appropriate for a real world operation model.  One of the most significant 

differences from real world operation is reconfiguration penalties.  Even though we 

discuss the performance improvement from the dynamic reconfiguration in the previous 

chapter, the settings for reconfiguration penalties are not realistic.  Since we have to 

simulate the short time behaviors to evaluate the fitness functions for dynamic systems, 

the calculation time for the reconfiguration process would be much greater than the time 

we assume in the previous chapter.  Also the time to reconfigure the core will take much 

longer.  From these defects, our simulation result is not accurate enough to demonstrate a 

genuine performance improvement from the dynamic systems.  In addition, the core or 

computational unit used for the genetic algorithm was not included in the simulation.  

Therefore the comparison would not be fair because the number of cores used for GEN 

and our system is different.  We will discuss how to avoid these issues in the future work 

section.  Also, our approach of dependencies is significantly different from the real world  
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operations of a computer.  In the real world, we might have much more dependencies 

compared to our method and the dependencies would not occur in random locations.  

Also some operations of CPUs are not even described in this study.  These functions, 

such as branch, are critical to determine the true performance of CPUs.   

The stochastic data we use for each type of application during the generation of 

inforuction streams are not realistic.  And the simulation itself is only a theoretical model 

for operations of a computer.  It is not implemented in the lower level simulations such as 

SPEC and Simics, which have more detailed information of computer architectures and 

produce more accurate data.  Our simulation is implemented in the higher models with 

assumptions we made in this study.  Also the system does not calculate the delay of 

inforuction due to the length of paths from the buffer to each individual core.   

6.1 Future work 
 

We should improve the accuracy of our study to strongly justify our statement: 

“the human-brain-like-computer has superior power to process information compared to 

the conventional computer.”  To improve the accuracy of our study, we have to research 

specialized architectures.  We should design more realistic core architectures and 

measure performances with benchmark programs.  At the same time, we have to decide 

what kinds of specialized cores are appropriate to our list of configuration candidates.  

Also we have to improve accuracy of our computer models from two different 

viewpoints: improving the stochastic data of application and improving the model itself.  

To improve the stochastic data of applications, we need a long time observation of real 

computer operation with several famous benchmark programs.  With observation, our 

long cycle simulations improve model reliability because our model corresponds to real 
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systems.  As we describe in the previous section, we should include the branch operation 

to make our model more realistic and improve the dependencies operation of our model 

to find the accurate performance benefits.  We can modify our genetic algorithm to 

improve the search abilities in the optimization process.  To improve functionality of our 

simulation, we should change the code.  Currently, our simulation code uses several 

parameters as the constants of the program.  Instead of using them as the constants, we 

should assign them as the inputs to improve usability of our code.  Also the optimal cycle 

size of prediction and details of reconfiguration methods leave as a topic for future 

research since we do not have enough time to identify the best solution. 

 

Table6.1  Previous Dynamic Approach and Major Problems 

 Approach Problem 

Prediction Method Each-cycle Taking too long 

Reconfiguration 

Penalties 
6,8,10 Too short! 

Target Time Close future operation Not sufficient time 

Comparison The same # of cores Not Fair 

 

As we promise in the previous section, we will discuss how we can improve the 

dynamic reconfigurable computer.  We summarize the previous approach and issues 

related to it in Table 6.1.  As we describe, the most significant issues of our system are 

related to time, such as the reconfiguration penalties and the calculation time for the 

genetic algorithm.  One of the methods to solve these issues is to change the target time 

of optimization to further future operations, such that the reconfiguration and the 

calculation for the genetic algorithm will be completed beforehand.  For example, if the 
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calculation time of the genetic algorithm is 100 cycles and reconfiguration penalties are 

150 cycles, we will predict the condition of our system after 500 cycles. Following that, 

we adjust the system to meet the demand in terms of processing power or to avoid 

bottlenecking of the system for 100 cycles from the prediction point.  To accomplish this 

method, we need to reduce the calculation time of the genetic algorithm, since trials of 

prediction with each-cycle method in the genetic algorithm takes too long to get results 

on time.  Instead of each-cycle prediction, we can use the multiple-cycle prediction.  In 

the multiple-cycle prediction, we use the stochastic data of system to predict future 

operations, such as cycles that the system stalled, cycles that the system is in empty-

running state, and cycles that the system encounters dependencies.  Data we used with 

the previous method is also used to predict the generated infoructions.  In this method, 

calculation of fitness values is similar to expression (3.1), but the method of evaluation is 

slightly different and more sophisticated.  With the new method of prediction, there 

might be more chances of mispredictions.  Hence, we also need to develop more 

sophisticated method of prediction.  To make fair comparison, we will reduce one core 

from our system to assign the removed core as the control unit of the system.  Another 

approach we can use to reduce the reconfiguration penalties is to set one core as the 

victim of reconfiguration.  The selection of next victim is based on the lowest 

performance improvement among the activate cores in the system.  We have one less 

core during the calculation time of genetic algorithm, but during the rest of the operation 

we have two cores less than GEN system.  In other words, one core is in the process of 

reconfiguration during approximately half of the operation time.  In this approach, we do 

not have to worry about the reduction of performance, since we already removed the core 
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that would reconfigure for future operations.  In this method, we should care about the 

performance changes due to reconfigurations, and due to the increase in the performance 

while waiting for the trigger of reconfiguration.  Since we do not have enough time to 

implement the new idea of dynamic reconfigurable computer to simulate the performance, 

we leave this idea as future work.    

We reemphasize the fact that our system is only theoretical right now.  Therefore, 

we need research to implement our idea in the real system.  

 

6.2 Applications  
 

In this study, we prove the potential power of our multi-core dynamic 

reconfigurable genetic system compared to general homogeneous systems.  In the 

process of our proof we also demonstrate the power of the genetic algorithm to find the 

better configuration in the static reconfigurable system.  We will go over several 

different applications of our proposed systems in the real world.  With the static 

reconfigurable system, we can determine the configurations and the number of pipelines 

required to obtain the maximum performance of processors within given resources for a 

specific purpose.  The designers can use the results obtained in our algorithm for the 

starting point of their designs of superscalar processors for specialized applications that 

might be used in our dynamic systems.  We can apply it to automatically find the 

optimum number of each type of pipelines; we do not have to do trial-and-error in the 

human brain.  We can also create pseudo dynamic system from our static system.  Instead 

of real run time reconfigurations implemented in our system, we keep switching the state 

of machines between inactive mode and active mode.  During the active mode, we simply 
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use the maximum processing power to execute infoructions and we obtain the data for 

next possible inforuction streams in some method such as the method used for the 

dynamic systems.  Then after several time intervals we try to reconfigure the system with 

the stochastic information of inforuction streams.  This method is similar to active mode 

and off mode of the wireless sensor network [35].  Since our dynamic system emulates 

the human brain, we can use our system as the brain for the general purpose robots.  With 

our system, the robot can implement the several different tasks with optimized 

performance in the single system implementation.  We can use our dynamic system 

where space is premium.  Since our dynamic system can adjust the configurations to the 

purpose of the systems without any prior knowledge, we might reduce the space 

necessary for each type of specialized processors.  If we change the fitness functions to 

find the minimum configuration within given resources, then we can minimize the 

number of cores necessary to complete the specific applications in the given cycles.  In 

other words, we can create the system which dynamically turns off the unnecessary part 

of computer to reduce power consumption.  We can apply our algorithm to create 

dynamic memory architectures.  Also we can apply it to create much larger scale of 

reconfigurable systems. 

 

6.3 Conclusion 
 

In this study, we propose a heterogeneous dynamic reconfigurable computer.  To 

demonstrate the optimization power of the genetic algorithm, we introduce a simpler type 

of system, which is called a static reconfigurable computer.  Both of our proposed 

systems implement a genetic algorithm as part of the system.  We introduce several ideas 
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and background information to explain the operation of the systems and techniques to 

reduce the complexity of our systems and simulations.  The algorithm is used for the 

optimization process to find the better system configurations with predefined 

architectures.  We implement higher level simulations in MATLAB to observe the 

system performances.  In the static system simulations, we evaluate each individual 

system with the fitness function, which calculates the time necessary to complete all 

infoructions in a specific stream.  In this higher level simulation, we demonstrate 

approximately 35 % performance improvement compared to the homogeneous general 

multi-core system which has the same numbers of cores as our static system.  Our system 

also demonstrates approximately 18 % of performance improvement compared to the 

best result from any homogeneous multi-core systems.  These accomplishments are due 

to the prior knowledge of the streams we want to process.  After we demonstrate the 

optimization power of the genetic algorithm, we implement our dynamic systems.  Even 

though there are defects in our simulation, we verify potential superiority of our proposed 

system, which shows approximately 15 % average performance improvement compared 

to the homogeneous general multi-core system with the same number of cores.  As we 

describe, there are several defects in our system, such as the problem of local optimum, 

problems of assumptions for the systems, and unfair comparison with homogeneous 

systems.  We need further research on the proposed systems to determine the actual 

performance improvement in the real world.  However, we are still motivated to continue 

with the research on heterogeneous dynamic reconfigurable computers because the 

flexibilities of human-brain-like-computers have potential to improve system 

performance and many applications which have potential to save space and power. 



89 

APPENDIXIES 

APPENDIX A: REFERENCES 
 

[1]  G. Moore, “Progress in Digital Integrated Electronics,” in Technical Digest—IEEE 
International Electron Devices Meeting, IEEE, 1975, p.p. 11-13  

 
[2]  Intel, “Moore's Law, The Future - Technology & Research at Intel,” Intel. [Online]. 

Available: http://www.intel.com/cd/corporate/techtrends/emea/eng/209729.htm. 
[Accessed: April 22, 2008] 

 
[3]  Intel, “Intel® Core™2 Duo Processor Overview,” Intel [Online] Available:  

http://www.intel.com/products/processor/core2duo/ [Accessed: May. 20, 2008] 
 
[4]  Intel, “Intel® Core™2 Quad Processor Overview,” Intel [Online] Available: 

http://www.intel.com/products/processor/core2quad/ [Accessed: May. 20, 2008] 
 
[5]  IBM, “The Cell architecture,” IBM [Online] Available: 

http://domino.research.ibm.com/comm/research.nsf/pages/r.arch.innovation.html 
[Accessed: May. 20, 2008] 

 
[6]  J. Rice, K. C. Pace, M. D. Gates, G. R. Morris, and K. H. Abed, “Reconfigurable 

computer application design considerations” Southeastcon, 2008, IEEE, p.p. 236-243, 
3-6 April 2008  

 
[7]  G.R. Morris, “Floating-Point Computations on Reconfigurable Computers,” DoD 

High Performance Computing Modernization Program Users Group Conference, 
2007, p.p. 339-344, 18-21 June 2007 

 
[8]  I. Ouaiss, and R.Vemuri, “Hierarchical memory mapping during synthesis in FPGA-

based reconfigurable computers,” Design, Automation and Test in Europe, 2001. 
Proceedings of Conference and Exhibition 2001, p.p. 650-657, 2001 

 
[9]  David A. Patterson, and John L. Hennessy, “Computer Organization & Design: The 

Hardware/Software Interface”, Morgan Kaufmann Publishers, San Francisco, 
California, 2005  

 



90 

[10] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S. Pai, 
“Challenges in computer architecture evaluation,” Computer, vol.36, no.8, p.p. 30-
36, August 2003 

 
[11] Standard Performance Evaluation Corporation, “SPEC Benchmark Suite,” Standard 

Performance Evaluation Corporation [Online] http://www.spec.org  
[Accessed: May. 20, 2008] 
 

[12] J. L. Henning, “SPEC CPU2000: measuring CPU performance in the New 
Millennium,” Computer, vol.33, no.7, p.p. 28-35, July 2000 

 
[13] Virtutech, “Simics Benchmark Suite”, Virtutech [Online] 

http://www.virtutech.com/whatissimics.html [Accessed: May. 20, 2008] 
 
[14] A. E. Dunlop, and B. W. Kernighan, “A Procedure for Placement of Standard-Cell 

VLSI Circuits,” Transactions on IEEE Computer-Aided Design of Integrated 
Circuits and Systems, vol.4, no.1, p.p. 92-98, January 1985 

 
[15] Bryan R. Buck and Jeffrey K. Hollingsworth, “Data Centric Cache Measurement on 

the Intel ltanium 2 Processor”, in Proceeding on of the 2004 ACM/IEEE conference 
on Supercomputing, p.58, November 06-12, 2004  

 
[16] A. Akram, J. Kewley, and R. Allan, “A Data Centric approach for Workflows,” 

Enterprise Distributed Object Computing Conference Workshops, 2006. EDOCW 
‘06. 10th IEEE International, p.p. 10-10, October 2006  

 
[17] Guo-Fang Nan, Min-Qiang Li, Dan Lin and Ji-Song Kou, “Application of 

evolutionary algorithm to three key problems in VLSI layout,” Proceedings of 2005 
International Conference on Machine Learning and Cybernetics. Volume 5, p.p. 
2929 – 2933 

 
[18] S. Coe, S. Areibi, and M. Moussa, “A hardware Memetic accelerator for VLSI 

circuit partitioning,” Computers and Electrical Engineering, vol.33 no.4, p.p. 233-
248, July, 2007  

 
[19] S. Coe, S. Areibi, and M. Moussa, “A genetic local search hybrid architecture for 

VLSI circuit partitioning,” in Proceeding on 16th International Conference on 
Microelectronics, 2004. ICM 2004, p.p. 253-256, 6-8 Dec. 2004  

 
 [20] S. Areibi, M. Moussa, and G. Koonar, “A Genetic algorithm hardware accelerator 

for VLSI circuit partitioning,” International Journal of Computers and Their 
Applications, 2005 vol. 12, no.3, p.p. 163-180. 

 
[21] S. Areibi, and Z. Yang, “Effective memetic algorithms for VLSI design automation 

= genetic algorithms + local search + multi-level clustering,” Evolutionary 
Computation, vol .12, no.3, p.p. 327-353, September 2004  



91 

 
[22] C. R. Reeves, and J. E. Rowe, “Genetic Algorithms: Principles and Perspectives: A 

Guide to GA Theory,” Kluwer Academic Publishers, Norwell, MA, 2002  
 
[23] C. Darwin, “The Origin of Species,” Literature.org [Online] Available at: 

http://www.literature.org/authors/darwin-charles/the-origin-of-species/index.html  
 [Accessed: May. 20, 2008] 

 
[24] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic Algorithms for 

the Traveling Salesman Problem”, in Proceeding on 1st International Conference on 
Genetic Algorithms and Their Applications, p.p.160 - 168, 1985. 

 
[25] F. Zhuang, and F. D. Galiana, “Unit commitment by simulated annealing,” IEEE 

Transactions on Power Systems, vol. 5, no. 1, February 1990, p.p. 311-318. 
 
[26] G. G. Yen and H. Lu, "Dynamic population size in multiobjective evolutionary 

algorithm,” in Proceeding on 9th IEEE Congress of Evolutionary Computation, p.p. 
1648-1653, 2002. 

 
[27] R. Takahashi, “Solving the traveling salesman problem through genetic algorithms 

with changing crossover operators,” in Proceeding on 4th International Conference 
on Machine Learning and Applications, 2005, p.p. 6, 15-17 December 2005 

. 
[28] A. Acan, H. Altincay, Y. Teko, and A. Unveren, “A genetic algorithm with multiple 

crossover operators for optimal frequency assignment problem,” The 2003 Congress 
on Evolutionary Computation, 2003. CEC '03. , vol.1, p.p. 256-263, 8-12 December 
2003.  

 
[29] S. C.Esquivel, A. Leiva, and R. H. Gallard, “Multiple Crossover Per Couple in 

genetic algorithms,” IEEE International Conference on Evolutionary Computation, 
1997, p.p. 103-106, 13-16 April 1997 

 
[30] M.T. Hagan, H.B. Demuth, and M.H. Beale, “Neural network design”, PWS 

Publishing Company, Boston MA, USA, 1996.  
 
[31] S. Karlin and H. Taylor, A First Course in Stochastic Processes, 2nd ed. San Diego, 

CA: Academic, 1975.  
 
[32] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist., 

vol. 22, pp. 400–407, 1951.  
 
[33] H. Kushner and G. Yin, “Stochastic Approximation Algorithms and Applications,” 

New York: Springer-Verlag, 1997.  
  



92 

[34] F. Mehdipour, M. S. Zamani, H. R. Ahmadifar, M. Sedighi, K. Murakami, 
“Reducing reconfiguration time of reconfigurable computing systems in integrated 
temporal partitioning and physical design framework,” 20th International Parallel 
and Distributed Processing Symposium, 2006. IPDPS 2006, p.p. 8, 25-29 April 2006 

 
[35] S. Park, A. Savvides, and M.B. Srivastava. 2000. “SensorSim: a simulation 

framework for sensor networks”.in Proceeding on the 3rd ACM international 
workshop on Modeling, analysis and simulation of wireless and mobile systems 
(MSWIM 2000), p. p. 104-111. Boston, Massachusetts, United States: ACM Press. 



93 

APPENDIX B: TABLES AND FIGURES: SETTINGS AND RESULTS 
 

Table B.1 Changes in stochastic information of inforuction generator – Part 1 

where the top row represent pattern ID, left column represent order we use,  G is general stochastic pattern, 
 LM is logic /mathematic operation intensive pattern, FL is floating point operation intensive pattern,  

and M is memory operation intensive pattern 
 

 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 

1st G G G G G G G G G G G G 

2nd G G G G LM LM LM LM FL FL FL FL 

3rd G LM FL M G LM FL M G LM FL M 

 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 

1st G G G G LM LM LM LM LM LM LM LM 

2nd M M M M G G G G LM LM LM LM 

3rd G LM FL M G LM FL M G LM FL M 

 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

1st LM LM LM LM LM LM LM LM FL FL FL FL 

2nd FL FL FL FL M M M M G G G G 

3rd G LM FL M G LM FL M G LM FL M 

 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 

1st FL FL FL FL FL FL FL FL FL FL FL FL 

2nd LM LM LM LM FL FL FL FL M M M M 

3rd G LM FL M G LM FL M G LM FL M 
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Table B.2 Changes in stochastic information of inforuction generator – Part 2 

where the top row represent pattern ID, left column represent order we use,  G is general stochastic pattern, 
 LM is logic /mathematic operation intensive pattern, FL is floating point operation intensive pattern,  

and ME is memory operation intensive pattern 
 

 P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 

1st M M M M M M M M M M M M 

2nd G G G G LM LM LM LM FL FL FL FL 

3rd G LM FL M G LM FL M G LM FL M 

 P61 P62 P63 P64         

1st M M M M         

2nd M M M M         

3rd G LM FL M         

 

Table B.3 Setting of Static systems (Only displays variable settings) – Part 1 

where A is number of cores, B is length of each application in the time unit,  
C is numbers of iterations we implement, D is amounts of inforuction that 
 cause stall and left column represent configuration ID for static system. 

 
 A B C D 

S001 2 50 10 50 

S002 2 100 10 50 

S003 2 200 5 50 

S004 2 200 10 50 

S005 2 200 10 30 

S006 2 400 5 50 

S007 2 400 10 50 

S008 2 400 10 30 

S009 2 600 5 50 

S010 2 600 10 50 

S011 2 600 10 30 

S012 4 50 10 50 

S013 4 100 10 50 
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Table B.4 Setting of Static cores (Only displays variable settings) – Part 2 

Where A is number of cores, B is length of each application in the time unit,  
C is numbers of iterations we implement, D is amounts of inforuction that 
 cause stall and left index is configuration ID for static reconfigurable core. 

 
 A B C D 

S014 4 200 5 50 

S015 4 200 10 50 

S016 4 200 10 30 

S017 4 400 5 50 

S018 4 400 10 50 

S019 4 400 10 30 

S020 4 600 5 50 

S021 4 600 10 50 

S022 4 600 10 30 

S023 6 50 10 50 

S024 6 100 10 50 

S025 6 200 5 50 

S026 6 200 10 50 

S027 6 200 10 30 

S028 6 400 5 50 

S029 6 400 10 50 

S030 6 400 10 30 

S031 6 600 5 50 

S032 6 600 10 50 

S033 6 600 10 30 

S034 8 50 10 50 

S035 8 100 10 50 

S036 8 200 5 50 

S037 8 200 10 50 

S038 8 200 10 30 

S039 8 400 5 50 



96 

Table B.5 Setting of Static cores (Only displays variable settings) - Part 3 

Where A is number of cores, B is length of each application in the time unit,  
C is numbers of iterations we implement, D is amounts of inforuction that 
 cause stall and left index is configuration ID for static reconfigurable core. 

 
 A B C D 

S040 8 400 10 50 

S041 8 400 10 30 

S042 8 600 5 50 

S043 8 600 10 50 

S044 8 600 10 30 

S045 10 50 10 50 

S046 10 100 10 50 

S047 10 200 5 50 

S048 10 200 10 50 

S049 10 200 10 30 

S050 10 400 5 50 

S051 10 400 10 50 

S052 10 400 10 30 

S053 10 600 5 50 

S054 10 600 10 50 

S055 10 600 10 30 

S056 12 50 10 50 

S057 12 100 10 50 

S058 12 200 5 50 

S059 12 200 10 50 

S060 12 200 10 30 

S061 12 400 5 50 

S062 12 400 10 50 

S063 12 400 10 30 

S064 12 600 5 50 

S065 12 600 10 50 
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Table B.6 Setting of Static cores (Only displays variable settings) - Part 4 

Where A is number of cores, B is length of each application in the time unit,  
C is numbers of iterations we implement, D is amounts of inforuction that 
 cause stall and left index is configuration ID for static reconfigurable core. 

 
 A B C D 

S066 12 600 10 30 

S067 14 400 10 30 

S068 14 600 5 50 

S069 14 600 10 50 

S070 14 600 10 30 

S071 14 50 10 50 

S072 14 100 10 50 

S073 14 200 5 50 

S074 14 200 10 50 

S075 14 200 10 30 

S076 14 200 10 50 

S077 14 200 10 30 

 
Table B.7 Simulation result of S001 in PITCGEN – Part 1 

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only  
system, BEST is the “BEST” performance we find during optimization over all iteration,  

AVER is average of best performance we find during each iteration, LOG is the logic  
specialized cores system, MAT is the mathematical operation specialized 

 cores system, FLO is the floating point operation specialized cores  
system, MEM is the memory operation specialized core system. 

  S001 is defined in Table B.3. 
 

 P01 P02 P03 P04 P05 P06 P07 

BEST 11.90% 9.20% 48.80% 40.45% 5.19% 10.07% 38.92% 

AVER -16.74% -48.25% 11.50% 16.50% -33.87% -54.18% -0.23% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 0.00% 9.20% 0.00% 0.00% 9.09% 17.57% 4.77% 

MAT  0.00% -18.71% 0.00% 0.00% -18.38% -35.14% -10.53% 

FLP -76.09% -130.88% 28.71% -30.71% -124.18% -162.68% -1.20% 

MEM -76.09% -130.88% -24.63% 12.50% -124.18% -162.68% -54.43% 
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Table B.8 Simulation result of S001in PITCGEN – Part 2 

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only  
system, BEST is the “BEST” performance we find during optimization over all iteration,  

AVER is average of best performance we find during each iteration, LOG is the logic  
specialized cores system, MAT is the mathematical operation specialized 

 cores system, FLO is the floating point operation specialized cores  
system, MEM is the memory operation specialized core system. 

  S001 is defined in Table B.3. 
 

 P08 P09 P10 P11 P12 P13 P14 

BEST 34.92% 48.72% 40.02% 61.61% 49.92% 41.09% 33.90% 

AVER -5.16% 13.67% -3.61% 26.74% 20.40% 10.26% -3.00% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 5.56% 0.00% 4.71% 0.00% 0.00% 0.00% 5.90% 

MAT  -11.05% 0.00% -9.47% 0.00% 0.00% 0.00% -11.68% 

FLP -60.62% 28.22% 2.99% 64.49% 31.00% -32.08% -63.53% 

MEM -17.09% -24.26% -48.99% -6.15% 19.98% 12.08% -21.41% 

 P15 P16 P17 P18 P19 P20 P21 

BEST 49.44% 57.07% 0.00% 17.78% 39.70% 28.16% 9.92% 

AVER 22.68% 17.49% -39.06% -32.43% 6.58% -0.44% -35.70% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 0.00% 0.00% 9.00% 17.78% 4.74% 5.55% 17.28% 

MAT  0.00% 0.00% -18.10% -35.75% -9.47% -11.03% -34.66% 

FLP 31.18% -9.03% -122.85% -169.86% -0.41% -59.40% -161.95% 

MEM 18.58% 53.87% -122.85% -169.86% -52.94% -16.45% -161.95% 

 P22 P23 P24 P25 P26 P27 P28 

BEST 14.30% 23.85% 29.54% 39.10% 23.62% 55.96% 29.17% 

AVER -76.35% -7.95% -7.99% 2.19% -17.05% 11.29% 13.28% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 25.00% 9.19% 10.70% 4.65% 9.22% 3.11% 3.51% 

MAT  -50.00% -18.33% -21.41% -9.24% -18.44% -6.15% -7.01% 

FLP -199.91% -22.75% -85.63% 2.35% -23.27% 45.44% 10.67% 

MEM -199.91% -73.37% -43.27% -49.31% -73.69% -24.67% 0.08% 
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Table B.9 Simulation result of S001in PITCGEN – Part 3 

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only  
system, BEST is the “BEST” performance we find during optimization over all iteration,  

AVER is average of best performance we find during each iteration, LOG is the logic  
specialized cores system, MAT is the mathematical operation specialized 

 cores system, FLO is the floating point operation specialized cores  
system, MEM is the memory operation specialized core system. 

  S001 is defined in Table B.3. 
 

 P29 P30 P31 P32 P33 P34 P35 

BEST 33.25% 28.33% 30.38% 52.80% 48.59% 39.02% 61.78% 

AVER 4.89% -12.53% 14.76% 5.31% 17.08% -6.47% 24.13% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 5.61% 11.03% 3.56% 3.97% 0.00% 4.86% 0.00% 

MAT  -11.29% -22.12% -7.17% -8.02% 0.00% -9.77% 0.00% 

FLP -58.24% -88.37% 11.28% -32.01% 28.02% -0.31% 64.29% 

MEM -17.21% -48.40% -2.82% 29.98% -24.69% -51.83% -5.40% 

 P36 P37 P38 P39 P40 P41 P42 

BEST 50.37% 40.15% 34.63% 55.48% 29.09% 62.90% 45.39% 

AVER 26.45% -4.12% -3.99% 16.60% 9.16% 26.62% 17.61% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 0.00% 4.69% 9.26% 3.21% 3.53% 0.00% 3.21% 

MAT  0.00% -9.48% -18.47% -6.41% -7.03% 0.00% -6.36% 

FLP 31.22% -0.26% -23.47% 44.07% 10.60% 62.90% 44.28% 

MEM 20.61% -51.91% -73.87% -25.66% -0.93% -7.55% -25.49% 

 P43 P44 P45 P46 P47 P48 P49 

BEST 66.65% 66.64% 49.12% 30.06% 48.67% 66.62% 39.44% 

AVER 13.33% 23.50% 20.29% 7.81% 20.30% 30.30% 5.01% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 0.00% 0.00% 0.00% 3.59% 0.00% 0.00% 0.00% 

MAT  0.00% 0.00% 0.00% -7.19% 0.00% 0.00% 0.00% 

FLP 79.99% 58.11% 31.15% 10.78% 58.43% 31.41% -31.92% 

MEM 0.00% 20.22% 18.48% -2.32% 20.16% 44.43% 12.83% 
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Table B.10 Simulation result of S001in PITCGEN – Part 4 

where PITC is Performance improvement in terms of Time Compared to, GEN is the general cores only  
system, BEST is the “BEST” performance we find during optimization over all iteration,  

AVER is average of best performance we find during each iteration, LOG is the logic  
specialized cores system, MAT is the mathematical operation specialized 

 cores system, FLO is the floating point operation specialized cores  
system, MEM is the memory operation specialized core system, 

and S001 is defined in Table B.3. 
 

 P50 P51 P52 P53 P54 P55 P56 

BEST 33.71% 49.37% 57.19% 32.63% 14.83% 25.96% 52.84% 

AVER -8.70% 22.67% 11.29% -10.70% -28.89% 8.44% 5.86% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 5.76% 0.00% 0.00% 5.63% 11.08% 3.52% 3.97% 

MAT  -11.77% 0.00% 0.00% -11.88% -22.22% -7.09% -7.98% 

FLP -63.01% 31.23% -9.94% -63.56% -88.80% 11.39% -31.85% 

MEM -17.66% 18.97% 52.79% -19.44% -47.59% -1.84% 31.24% 

 P57 P58 P59 P60 P61 P62 P63 

BEST 34.92% 27.58% 58.86% 40.08% 56.88% 47.50% 66.66% 

AVER 16.51% 9.07% 23.02% 24.69% 21.21% 7.23% 23.80% 

GEN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

LOG 0.00% 3.66% 0.00% 0.00% 0.00% 4.07% 0.00% 

MAT  0.00% -7.32% 0.00% 0.00% 0.00% -8.22% 0.00% 

FLP 30.55% 10.07% 58.86% 31.86% -10.75% -32.79% 32.01% 

MEM 20.41% -2.28% 19.82% 45.79% 53.64% 28.94% 44.98% 

 P64       

BEST 73.23%       

AVER 23.09%       

GEN 0.00%       

LOG 0.00%       

MAT  0.00%       

FLP 0.00%       

MEM 73.23%       
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FigureB.1 APITCGEN for BEST for each setting 

where APITC is average Performance improvement over all application sequences in terms of Time  
Compared to, GEN is the general cores only system, and BEST is the “BEST” performance  

we find during optimization over all iteration, system. S001 through S077 are defined  
in Table B.3 through Table B.6. 

 
FigureB.2 APITCGEN for AVER for each setting 

where APITC is average Performance improvement over all application sequences in terms of Time 
 Compared to, GEN is the general cores only system, and AVER is average of best performance we find  

during each iteration. S001 through S077 are defined in Table B.3 through Table B.6. 
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FigureB.3 APITCGEN for LOG for each setting 

where APITC is average Performance improvement in terms of Time Compared to, GEN is the  
general cores only system, and LOG is the logic specialized cores system 

S001 through S077 are defined in Table B.3 through Table B.6.. 
 

 

FigureB.4 APITCGEN for MAT for each setting 

where APITC is average Performance improvement over all application sequences in terms of  
Time Compared to, GEN is the general cores only system, and MAT is the mathematical  

operation specialized cores system S001 through S077 are defined in  
Table B.3 through Table B.6.  
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FigureB.5 APITCGEN for FLP for each setting 

where APITC is average Performance improvement over all application sequences in terms of Time 
Compared to, GEN is the general cores only and FLP is the floating point operation specialized 

 cores system, S001 through S077 are defined in Table B.3 through Table B.6.

 
FigureB.6 APITCGEN for MEM for each setting 

where APITC is average Performance improvement over all application sequences in terms of Time  
Compared to, GEN is the general cores only system, and MEM is the memory operation  

specialized core system.  S001 through S077 are defined in Table B.3  
through Table B.6. 
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FigureB.7 PITCGEN for BEST with among 2 cores systems 

where PITC is Performance improvement for each application  sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 

FigureB.8 PITCGEN for BEST among 4 cores systems 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  
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FigureB.9 PITCGEN for BEST among 6 cores systems 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 

 
FigureB.10 PITCGEN for BEST among 8 cores systems 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  
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FigureB.11 PITCGEN for BEST among 10 cores systems 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 

 
FigureB.12 PITCGEN for BEST among 12 cores systems 

Where PITC is Performance improvement for each application  sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  
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FigureB.13 PITCGEN for BEST among 14 cores systems 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 

 
FigureB.14 APITCGEN for BEST for each setting with modified algorithm 

where APITC is average Performance improvement over all application sequences in terms of Time  
Compared to, GEN is the general cores only system, and BEST is the “BEST” performance  

we find during optimization over all iteration, system. S001 through S077 are defined  
in Table B.3 through Table B.6. 
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FigureB.15 PITCGEN for BEST among 2 cores systems with modified algorithm  

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 

FigureB.16 PITCGEN for BEST among 4 cores systems with modified algorithm 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  
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FigureB.17 PITCGEN for BEST among 6 cores systems with modified algorithm 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 

 
FigureB.18 PITCGEN for BEST among 8 cores systems with modified algorithm 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  
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FigureB.19 PITCGEN for BEST among 10 cores systems with modified algorithm 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 
 

 
FigureB.20 PITCGEN for BEST among 12 cores systems with modified algorithm 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  
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FigureB.21 PITCGEN for BEST among 14 cores systems with modified algorithm 

where PITC is Performance improvement for each application sequences in terms of Time Compared to, 
 GEN is the general cores only system, BEST is the “BEST” performance we find during optimization 

 over all iteration,  P01 through P64 is defined in Table B.1 and Table B.2. . 
S001 through S077 is defined in Table B3 through B6.  

 
 

 

FigureB.22 APITCGEN for BEST with different simulation cycle 

where APITC is Average Performance improvement for each application  sequences in terms of Time 
Compared to, GEN is the general cores only system, BEST is the “BEST” performance we find  
during optimization over all iterations. Actual cycles of simulation is more than three times of  

numbers labeled on the axis. Legend displays numbers of core: amounts of inforuction for 
 stall trigger, and iterations of the algorithm, respectively. 
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FigureB.23 APITCGEN for BEST with different simulation cycle 

where APITC is Average Performance improvement for each application  sequences in terms of Time 
Compared to, GEN is the general cores only system, BEST is the “BEST” performance we find  
during optimization over all iterations. Actual cycles of simulation is more than three times of  

numbers labeled on the axis. Legend displays numbers of core: amounts of inforuction for 
 stall trigger, and iterations of the algorithm, respectively. 

 

 

FigureB.24 APITCGEN for BEST with different simulation cycle 

where APITC is Average Performance improvement for each application  sequences in terms of Time 
Compared to, GEN is the general cores only system, BEST is the “BEST” performance we find  
during optimization over all iterations. Actual cycles of simulation is more than three times of  

numbers labeled on the axis. Legend displays numbers of core: amounts of inforuction for 
stall trigger, and iterations of the algorithm, respectively. 
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Table B.11 Setting of Dynamic systems (Only displays variable settings) – Part 1 

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,  
D is amounts of inforuction that cause stall and left column represent configuration ID 

 for dynamic system. 
 

 A B D E 

D001 2 6 400 50 
D002 2 8 50 50 
D003 2 8 100 50 
D004 2 8 200 50 
D005 2 8 400 50 
D006 2 8 400 30 
D007 2 10 50 50 
D008 2 10 100 50 
D009 2 10 200 50 
D010 2 10 400 50 
D011 4 6 100 50 
D012 4 6 200 50 
D013 4 6 400 50 
D014 4 6 400 30 
D015 4 8 50 50 
D016 4 8 100 50 
D017 4 8 200 50 
D018 4 8 400 50 
D019 4 8 400 30 
D020 4 10 50 50 
D021 4 10 100 50 
D022 4 10 200 50 
D023 4 10 400 50 
D024 6 6 50 50 
D025 6 6 100 50 
D026 6 6 200 50 
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Table B.12 Setting of Dynamic systems (Only displays variable settings) – Part 2 

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,  
D is amounts of inforuction that cause stall and left column represent configuration ID 

for dynamic system. 
 

A B C D 
D027 6 6 400 50 
D028 6 6 400 30 
D029 6 8 50 50 
D030 6 8 100 50 
D031 6 8 400 50 
D032 6 8 400 30 
D033 6 8 600 50 
D034 6 10 50 50 
D035 6 10 100 50 
D036 6 10 200 50 
D037 6 10 400 50 
D038 6 10 600 50 
D039 8 6 50 50 
D040 8 6 100 50 
D041 8 6 200 50 
D042 8 6 400 50 
D043 8 6 400 30 
D044 8 6 600 50 
D045 8 8 400 30 
D046 8 10 50 50 
D047 8 10 100 50 
D048 8 10 200 50 
D049 8 10 400 50 
D050 8 10 400 30 
D051 10 6 50 50 
D052 10 6 100 50 
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Table B.13 Setting of Dynamic systems (Only displays variable settings) – Part 3 

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,  
D is amounts of inforuction that cause stall and left column represent configuration ID 

for dynamic system. 
 

A B C D 
D053 10 6 200 50 
D054 10 6 400 50 
D055 10 6 600 50 
D056 10 8 50 50 
D057 10 8 100 50 
D058 10 8 200 50 
D059 10 8 400 50 
D060 10 8 400 30 
D061 10 8 600 50 
D062 10 10 50 50 
D063 10 10 100 50 
D064 10 10 200 50 
D065 10 10 400 50 
D066 10 10 400 30 
D067 10 10 600 50 
D068 12 6 50 50 
D069 12 6 100 50 
D070 12 6 200 50 
D071 12 6 400 50 
D072 12 6 400 30 
D073 12 6 600 50 
D074 12 8 50 50 
D075 12 8 100 50 
D076 12 8 200 50 
D077 12 8 400 50 
D078 12 8 400 30 



116 

Table B.14 Setting of Dynamic systems (Only displays variable settings) – Part 4 

where A is number of cores, B is length of delays penalty, C is length of each application in the time unit,  
D is amounts of inforuction that cause stall and left column represent configuration ID 

for dynamic system. 
 

A B C D 

D079 12 8 600 50 
D080 12 10 50 50 
D081 12 10 100 50 
D082 12 10 200 50 
D083 12 10 400 50 
D084 12 10 400 30 
D085 12 10 600 50 
D086 14 6 50 50 
D087 14 6 100 50 
D088 14 6 200 50 
D089 14 6 400 50 
D090 14 6 400 30 
D091 14 6 600 50 
D092 14 8 50 50 
D093 14 8 100 50 
D094 14 8 400 50 
D095 14 8 200 50 
D096 14 8 600 50 
D097 14 10 50 50 
D098 14 10 100 50 
D099 14 10 200 50 
D100 14 10 400 50 
D101 14 10 400 30 
D102 14 10 600 50 
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FigureB.25 APITCGEN for dynamic system with 6 cycle delay 

Legend explains the setting of each result of simulation with the following format: 
 Number of delay cycles: Cycles of each application: Stall trigger levels 

 

 

 

 

 
FigureB.26 APITCGEN for dynamic system with 8 cycle delay 

Legend explains the setting of each result of simulation with the following format: 
 Number of delay cycles: Cycles of each application: Stall trigger levels 
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FigureB.27 APITCGEN for dynamic system with 10 cycle delay 

Legend explains the setting of each result of simulation with the following format: 
 Number of delay cycles: Cycles of each application: Stall trigger levels 

 
 
 
 
 
 
 

 
FigureB.28  APITCGEN with dynamic systems (Changing the delay cycles fixed for 2 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 
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FigureB.29  APITCGEN with dynamic systems (Changing the delay cycles fixed for 4 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 

 
 
 
 

 
FigureB.30  APITCGEN with dynamic systems (Changing the delay cycles fixed for 6 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 
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FigureB.31  APITCGEN with dynamic systems (Changing the delay cycles fixed for 8 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 

 
 
 
 
 

 
FigureB.32  APITCGEN with dynamic systems (Changing the delay cycles fixed for 10 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 
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FigureB.33  APITCGEN with dynamic systems (Changing the delay cycles fixed for 12 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 

 
 
 
 
 
 

 
FigureB.34  APITCGEN with dynamic systems (Changing the delay cycles fixed for 14 cores) 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 
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FigureB.35  Average number of reconfiguration (Changing the delay cycles for all cores case) 
 

Legend explains the setting of each result of simulation with the following format: 
 Number of cores: Cycles of each application: Stall trigger levels 
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