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CHAPTER 1

INTRODUCTION

1.1 Motivation: Spectrum Demand and Scarcity

New advancements in wireless technologies have created an excessive demand of the

wireless spectrum and resources. Current spectrum usage paradigm reflects fixed

spectrum allocation technique. The available wireless spectrum resources have been

assigned to existing wireless technologies. The excessive use of wireless spectrum and

regulations imposed by the Federal Communications Commission (FCC) have created

spectrum scarcity. Fig. 1.1 shows the train of increase in spectrum demand. The

spectrum allocation chart in United States (Fig. 1.2) by National Telecommunications

and Information Administration’s (NTIA) shows the overlapping spectrum allocation

that clearly reflects the spectrum scarcity mindset. Figs. 1 and 2 clearly reflect
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Figure 1.1: Spectrum demand and scarcity

the growing spectrum scarcity. FCC has shown its concerns regarding the excessive
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spectrum demand at a rate faster than that can be made available. The demand of

spectrum is out stripping supply and we are in the danger of Spectrum Drought. On

Figure 1.2: The NTIA frequency allocation chart

one hand, we are facing spectrum scarcity, whereas on the other hand, recent spectrum

survey by spectrum policy task force (SPTF) shows that the wireless spectrum has

been used inefficiently and the wireless resources are underutilized. The report shows

the temporal and geographic variation in spectrum usage ranging from 15% to 85% [1].

A recent study by the Shared Spectrum [2] shows that over the spectrum band of

30 MHz to 3000 MHz over multiple locations, the spectrum usage is just 5.2% and

maximum occupancy of 13% was recorded in New York city. These reports reflect

the inefficient spectrum usage because of the spectrum distribution and licence and

call for the new methods to tackle the spectrum bottleneck in wireless domain.

1.2 Cognitive Radio and Spectrum Sensing

The reports on spectrum usage clearly show that the problem of spectrum scarcity

is not because of spectrum in-abundance but, it is because of inefficient usage and

distribution. The spectrum reallocation and creating new spectrum allocation chart
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is unfortunately not feasible as it is not possible to predict the future usage and

demand of the spectrum, and also it is infeasible to create a uniform spectrum distri-

bution policy that can meet the varying spatial temporal spectrum demand. Besides,

any conflicts in spectrum reallocation will suffer opposition from the existing owners

or users of the spectrum. Thus, unharmed and unaffected access of spectrum for

the “primary users” is priority in development of any new efficient spectrum access

scheme. These conflicts in spectrum scarcity and inefficient utilization call for the

new technology which should be able to optimize the spectrum usage. The concept

of Cognitive Radio (CR) was recently proposed in [3], which introduces a concept of

secondary users (SR) or (CR) for efficient spectrum utilization. Mitola considered CR

as the radio in which every possible parameter observed by wireless node/network is

taken into account while making the decision on the transmission/reception. It is a

system that sense, and is aware of, its operational environment and can dynamically

and autonomously adjust its radio operating parameters accordingly. CR is: “A radio

that employs the model based reasoning to achieve a specific level of competence in

radio-related domains”. The primary objectives of a cognitive radio are two folds:

• Efficient utilization of wireless spectrum

• Reliable communications without affecting primary users

To achieve these objectives the primary task of CRs is to efficiently sense the primary

users in the environment. A spectrum is said to be vacant when there are no primary

users. The CRs should continuously monitor and sense the spectrum and efficiently

use the vacant spectrum (Spectrum Holes) without disrupting the primary users. So,

spectrum sensing is a mechanism of detecting presence or absence of primary users

in the environment and hence find the available spectrum holes for the secondary

communication purposes.
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1.2.1 Cognitive Radio Challenges

The primary users or the current spectrum owners are not so receptive about the

cognitive radios and the spectrum trade policies as they are likely to cause disruption

to their access in the wireless spectrum and resources. The fundamental challenges

in cognitive radio are efficiently identifying vacant bands over a wide band of spec-

trum over spatio temporal domain and maintaining Signal to Noise ratio (SNR) of

secondary users communications [4] [5]. CRs have to be able to dynamically sense

the radio spectrum and adapt its transmitter parameters according to the dynamic

surrounding radio environment. The wideband spectrum sensing requires very fast

digital sampler with high resolution to meet the dynamic and wide spectrum charac-

teristics. Besides, the radio sensitivity of CRs have to be very precise with sensing

interval as short as possible to meet the agility requirements. The implementation

challenges in wideband spectrum sensing for Cognitive radios can be broadly seen

under following categories.

• Detection Capability: The Primary users are not so receptive about the CR

concept because of the harmful effects CR could cause them. A CR may not be

able to correctly detect the spectrum and may start using it when primary user

needs it and hence results in interference in the primary user communications.

CRs not only have to sense the spectrum before beginning its transmission but

also have to continuously sense during its transmission period so as to detect the

reappearance of primary users anytime and vacate the spectrum for the primary

users. Thus receiver sensitivity is also key factor in cognitive radio network. Be-

sides, the dynamic fading and noisy communications channel makes finding the

threshold for spectrum detection and decision process complex. Sensing time

duration is also an important factor as C.Rs cannot afford spending long du-

ration in spectrum sensing because it not only has to use the spectrum for its

own communication purposes, but it should also be able to vacate the spectrum

4



immediately after a primary user reappears. The SNR margin for secondary

communication creates the tradeoff between the receiver sensitivity and trans-

mission power allocation. This requires CRs to have adaptive transmit power

based upon the communications environment.

• Wideband Sampling Circuitry: Wideband spectrum sensing is a challenging

task because of dynamic wide range of the frequency bands. It requires either

discrete grouping of wide spectrum into the narrowbands and utilizes multiple

narrowband sensing or use the digital signal processors to sample the wideband

analog signal and then perform spectrum sensing. Unfortunately, the multiple

narrowband sensing is not feasible and less attractive because of its complex

structure in wideband model, whereas the DSP necessitates high speed ADCs.

A new sampling paradigm based upon sparse sampling named Compressive Sensing

(CS) provides a sampling mechanism at rates lower than the Nyquist rates. The

signal reconstruction scheme in compressive sensing is a norm optimization problem.

In this thesis, we present a novel spectrum sensing mechanism for cognitive radio

based upon the compressive sensing.

1.3 Outline of Thesis

The rest of the thesis is organized as follows. In the Chapter 2, we provide brief intro-

duction to the spectrum scarcity and cognitive radio technique. A general outline of

important spectrum sensing approaches is presented. A brief and quick introduction

of compressive sensing and decoding approaches is also presented. In the Chapter 3,

we propose wideband spectrum sensing for single network cognitive radio system using

compressive sensing. Compressive sensing based joint spectrum sensing in frequency

overlapping networks is proposed in the Chapter 4. We exploit the joint sparsity of the

overlapped region to have better spectrum sensing performance at minimal cost. A
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novel compressive sensing scheme for Binary signals is proposed in the Chapter 5. We

implement the bipartite graphs to represent the binary compressive sensing process.

A unique, but universal sampling matrix for binary signal is developed and graph and

check-sum based decoding scheme for binary compressive sensing is proposed.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we present a brief introduction to cognitive radio and compressive

sensing techniques. We will discuss about different stages of cognitive radio cycle and

importance of spectrum sensing in cognitive cycle. We will present a critical viewpoint

on different conventional spectrum sensing techniques and some new approaches to

them. We shall also present an overview on new emergent sampling theory called

compressive sensing for sparse signals.

2.1 Cognitive Radio

The widespread acceptance of wireless technologies has created an unexpected de-

mand of wireless bandwidths and is well expected to grow in future as well. Spectrum

licensing has been the traditional approach to ensure the diverse wireless systems.

However, due to the surplus demand, the frequency allocation have overlapped and

left very small space for new emerging systems. On the contrary, the varying demand

and utilization have created many of the allocated frequencies unused and vacant

(spectrum holes) over spatio-temporal domain. The contrary in supply - demand

and utilization have urged to look for new methods to accommodate secondary (un-

licensed) wireless devices without disrupting the primary (licensed) users. Cognitive

radio in a broad sense refers to various solutions that seek to overlay, underlay or

interweave the secondary user’s signals with the primary users.

Cognitive radio is an idea to take advantage of open spectrum policy. It should be

designed to adapt dynamically to its environment and find the communication channel

7



ensuring minimal interference to the licensed users. The definition of cognitive radio

is very broad as its functions are dynamic. FCC has defined cognitive radio as:

A radio frequency transmitter receiver that is designed to intelligently

detect whether a particular segment of radio spectrum is currently in use,

and to jump into (and out of) the temporary unused spectrum very rapidly

without interfering with the transmission of other authorized users.

In [6], CR is defined as :

Cognitive radio is an intelligent wireless communication system that is

aware of its surrounding environment and uses the methodology of ‘under-

standing by building’ to learn from the environment and adapt its internal

states to statistical variations in the incoming RF stimuli by making cor-

responding changes in certain operating parameters (e.g. transmit power,

carrier frequency, modulation strategy) in real time, with two primary ob-

jectives in mind: highly reliable communication whenever and wherever

needed and efficient utilization of radio spectrum.

Basically, a cognitive radio has following capabilities:

• Sensors creating awareness in the environment

• Actuators enabling interaction with the environment

• Memory and a model of the environment

• Learning and modeling of specific beneficial adaptations

• Specific performance goals

• Autonomy

8
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Figure 2.1: Cognitive radio cycle

In [7], cognitive radio cycle has been proposed as a top level loop for cognitive radio

system. The cognitive cycle mainly consists of observe, orient, plan, decide and act

(OOPDA). In cognitive cycle information about the communication environment is

received by a cognitive radio through the direct observation or the stimuli signaling.

In orient stage, based upon the received environment information a CR determines

the importance and urgency. Planning, including negotiations with peers for best

alternatives is considered in planning stage. Best decision is made based upon the

alternatives and consequences and finally a CR acts by adjusting its resources and

performs appropriate signaling. The cognitive cycle is shown in the Fig. 2.1.

2.2 Conventional Spectrum Sensing Techniques

Several factors make spectrum sensing practically challenging. Communication chan-

nel noise, multipath fading in environment makes spectrum sensing a complex prob-

lem. Receiver sensitivity of the spectrum detectors needs SNR of the signal to be

above some threshold value to sense the signal. The SNR at the receiver may not

9



Figure 2.2: Various aspects of spectrum sensing for cognitive radios

be always greater than the threshold value because of noise and fading. Time dis-

persion of wireless signal makes coherent detection infeasible whereas the spatio-

temporal varying noise interference characteristics yield power uncertainty issues in

spectrum sensing [8, 9, 10]. Considering these facts, various aspects of spectrum

sensing are taken into account while implementing efficient spectrum sensing method.

Fig. 2.2 [11] reflects various aspects of spectrum sensing.

In the following section we will discuss about some of the most common approaches

of spectrum sensing.

2.2.1 Matched Filter

A matched filter maximizes the signal to noise ratio, so when the information of

the PU signal is known matched filter is an optimal method for any kind of signal

detection [12]. Although, match filters are optimal and the coherency requires less

time to achieve high processing gain, it is less attractive for practical purposes as

it requires prior knowledge of the primary signal. Though information regarding a

signal can be stored in memory, the synchronization and channel equalization remains

10



inevitable. Besides, a secondary user or spectrum detector requires extra circuitry

to achieve carrier synchronization. So, in wideband spectrum sensing even though

we have prior information regarding the signal, the dynamic signal characteristics in

wideband communication makes it less feasible. Compressive detector using matched

filters have been proposed in [13, 14]. Despite of its drawbacks matched filter is

applicable to certain class of primary network with uniform signal characteristics and

information about the signal is known in prior.

2.2.2 Cyclostationary Feature Detection

A signal is said to have a cyclostationary process if its statistical properties vary

cyclically with time. Modulated signals are generally coupled with periodic carri-

ers like sine wave, pulse trains, hoping sequences or cyclic prefixes which gives the

periodicity to the signal. This periodicity helps in detecting and identifying the

signal in noise dominant environment. Let x(n) be a discrete time series with mean

µx(n) := E{x(n)} and covariance cxx(n; τ) := E{[x(n)−µx(n)][x(n+τ)−µx(n+τ)]}.

For x(n) complex valued, the covariance is a complex conjugate, and n andτ are sets

of integer Z, then from [15] :

Process x(n) is cyclostationary iff, there exists an integer P such that

µx(n) = µx(n + lP ), cxx(n; τ) = cxx(n + lP ; τ), ∀n, l ∈ Z. The smallest

of all such Ps is called the period and its fourier coefficients called cyclic

correlation are related by :

cxx(n; τ) =
P−1
∑

k=0

Cxx(
2π

P
k; τ)ej

2π

P
kn ↔ Cxx(

2π

P
k; τ) =

1

P

P−1
∑

n=0

cxx(n; τ)e−j 2π

P
kn

(2.1)

The main advantage of spectral correlation in detection is that it differentiates

the noise energy from signal energy because of the spectral correlation in modulated

signal. A cyclostationary approach for signal detection is discussed in [16, 17]. Fig.
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Figure 2.3: Cyclostationary feature detection

2.3 shows basic implementation of cyclostationary detection method using spectrum

correlation function (SCF). In this method, signal information like phase, frequency

and timing parameters are preserved for comparison. Though, this method is efficient

for signal detection in noisy environment it requires longer sensing time to collect sta-

tistical parameters over long period of time. Moreover, it is computationally complex

and requires prior knowledge about the signal.

2.2.3 Pilot and Radio Detection

Knowledge about the signal and its characteristics help in signal detection and iden-

tification. Such information enables cognitive radio with higher dimension knowledge

and provides higher accuracy. For example, if it is known that the primary signal is a

bluetooth signal, CR use this information for extracting information in space dimen-

sion. Radio identification techniques are used in European Transparent ubiquitous

project (TRUST) [18]. In radio identification based sensing [19, 20], different features

of signal are extracted and are classified using standard classification techniques and

are compared with the primary signal prior information and decision is made accord-

12
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Figure 2.4: Pilot Signalling in Primary Radio

ingly. For example, in Pilot detection technique, the energy of the primary signal

is confined inside a prior known bandwidth around the central frequency (Fig. 2.4)

and activity outside it, is unknown. A primary signal sends periodic pilots and based

upon the pilot sequences detection, a primary radio is identified. Signal detection in

UWB impulse radio using pilot sequences is discussed in [21]. Radio identification

suffers same drawbacks as the cyclostationary scheme, thus these schemes are not so

attractive though they have better performance in discriminating against noise.

2.2.4 Waveform Based Sensing

Waveform based sensing is not a complete spectrum sensing approach in itself. In

this method, various characteristics of a signal are exploited. The metric so formed

from those characteristics like preamble, spreading sequences etc is compared with

the standard threshold and the decision is made accordingly. Let us consider a system

as :

y(n) = s(n) + w(n) (2.2)

13



where, y(n), s(n), w(n) are received signal, primary signal and noise, respectively.

The waveform based sensing metric is defined in [22] as:

M = Re

[

N
∑

n=1

y(n)s∗(n)

]

(2.3)

where, * represents the conjugation. In absence of the primary signal the value of M

becomes:

M = Re

[

N
∑

n=1

w(n)s∗(n)

]

(2.4)

whereas, in presence of the primary signal the decision metric becomes:

M =
N
∑

n=1

|s(n)2|+ Re

[

N
∑

n=1

w(n)s∗(n)

]

(2.5)

The metric thus obtained is compared with the standard threshold value λw and

decision is made accordingly. Waveform based sensing using preambles is discussed

in [23, 24]. Though waveform based sensing requires shorter sensing time [25] and can

sense the signal at known environments they suffer from synchronization problems.

2.2.5 Energy Detector

Energy detector based techniques in spectrum sensing are most common approach in

cognitive radio. Energy detection schemes, also known as radiometer or periodogram

are widely used because of it’s simple structure and computational gains [26, 27, 28].

When no information about the primary signal is known, and only the noise charac-

teristics of channel are known, energy detector is the optimal solution for spectrum

sensing. Basically, energy detector consists of a bandpass filter to out pass the out

band noise and adjacent signals and is followed by a sampler, square law device and an

integrator as shown in the Fig. 2.5. A band filtered signal is squared and integrated

over the period to find the energy of the received signal and then compared with the

threshold λe and decision is made accordingly. Let us consider a system defined as:

y(n) = x(n) + w(n) (2.6)
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Figure 2.5: Basic block diagram of the energy detector

where, y(n), x(n) andw(n) are received signal, primary signal and the noise, respec-

tively. Then for Energy detection scheme, test statistic is given by:

T =
∑

N

(Y [n])2 (2.7)

The decision making process in energy detector is equivalent to distinguishing between

the following two hypotheses:

H0 : y(n) = w(n) (2.8)

H1 : y(n) = x(n) + w(n) (2.9)

Expressions ( 2.8) and ( 2.9) are respectively cases of absence and presence of pri-

mary signal. The dectection performance of energy detector can be seen under two

parameters viz: probability of detection PD and probability of false alarm PF which

can be formulated as:

P(D) = Pr(T > λe|H1) (2.10)

P(F ) = Pr(T < λe|H0) (2.11)

So the goal in energy detector is always increasing PD and decreasing PF .

The time domain energy computation of a signal is inflexible in case of narrowband

signals because of pre-filter matching problem. So energy computation in frequency
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Figure 2.6: Implementation of FFT in energy detector

domain is another prevailing approach. Fourier coefficients of received signals are used

to calculate the energy using Parseval’s theorem. The frequency resolution of FFT

increases with the number of points ‘K’ which is equivalent to increasing the sensing

time of pre filter in time domain analysis. Fig. 2.6 shows the basic block diagram

of energy detector in the frequency domain. The major challenge in energy detector

scheme is estimating the appropriate threshold parameter. Though no information

about the primary signal is required in this scheme, when the noise characteristics

cannot be modeled, optimizing λe is a difficult challenge. In [29], the author has used

decode and forward scheme in energy detectors to improve its performance in fading

and noisy environment. For its simple implementation structure and computational

gain energy detector is still one of the most feasible and commonly used approach in

spectrum sensing.

Different spectrum sensing approaches have their own pros and cons based upon

the communication environment. There is always a tradeoff between the complexity

and the efficiency between different approaches of spectrum sensing. When noise

characteristics are known energy detector outperforms other sensing approaches in

terms of both accuracy and complexity. But when noise information are not known,

other schemes like cyclostationary and waveform based approaches are preferred.

Waveform based approach performs better when signal characteristics information are

prior. So, for detection of known signals waveform and cyclostationary schemes are

suitable. On the contrary, these approaches are very sensitive to hardware precession,
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Figure 2.7: Tradeoffs in complexity and accuracies of sensing methods

clock synchronization and timing. Fig: 2.7 [11] provides a very broad comparison

between different spectrum sensing approaches. Based upon the facts that energy

detector is very simple to implement, computationally efficient and requires no any

prior information about the signals, it is still most commonly used in spectrum sensing

for cognitive radios.

2.3 Introduction to Compressive Sensing

Data acquisition and sampling is an important factor in digital systems. The Nyquist

sampling theorem specifies that in order to recover a signal from its samples, the sam-

pling process should be at least two times faster than the signal bandwidth. In many

applications, including digital images, large communication networks the Nyquist rate

is so high that it results too many samples, necessitates data compression, high-speed

analog-to-digital converters, and makes the data acquisition very expensive. How-

ever, Compressive Sensing, (CS) a novel sensing/sampling paradigm goes against the
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common wisdom in data acquisition. CS theory asserts that one can recover certain

signals and images from far fewer samples or measurements than traditional meth-

ods [30, 31]. Compressive sensing is distinct from traditional single point sampling

approaches and data compression in two very broad sense. In CS, each sample is

linear functional of the original signal and, compression is carried in the data acquisi-

tion process itself rather than compressing the sampled data as in conventional data

compression techniques. This difference is shown in the Figs. 2.8 and 2.9.
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Figure 2.8: Traditional sampling and data compression
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Figure 2.9: Compressive sampling/sensing
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2.3.1 Compressible Signals

CS relies on two principles: sparsity, which pertains to the signals of interest, and

incoherence, which pertains to the sensing modality. A signal is said to be sparse, if

it contains few non-zero elements and other zeros. A real-valued, finite-length, one-

dimensional, discrete-time signal X , X ∈ {R}N with elements x[n], n = 1, 2, . . .N can

be represented in terms of a basis of N×1 vectors {ψi}Ni=1. Using N×N basis matrix

Ψ = [ψ1|ψ2| . . . ψN ] with the vectors {ψi} as columns, a signal X can be expressed as

X =

N
∑

i=1

siψi, i.e. X = ΨS. (2.12)

The signal representation of X in Ψ domain is given by S and they are equivalent.

The signal X is called K sparse in Ψ if it is linear combination of K basis vectors,

i.e. only K elements of the S are non-zeros and other are zeros. In this special case,

when a signal X is sparse in some domain and K << N , X is said to be compressible.

2.3.2 Compressive Sampling

Let us consider, a real valued signal X ∈ {R}N be a compressible signal in some

domain Ψ as discussed in the Section 2.3.1. Let us consider a sampling/sensing matrix

Φ of dimension M × N, M < N . The sampling matrix Φ is used to to generate M

linear measurements of signal X . Consider, a N length vector φj, j = 1 : M , then the

compressed measurements can be expressed as an inner products between X and φjs

as, yj = 〈X, φj〉. Arranging, yjs in a M length vector Y , and measurement vectors

φT
j as rows of sampling matrix Φ, the compressive sampling process can be expressed

as:

Y = ΦX = ΦΨS = ΘS. (2.13)

The Compressive sampling measurement process is depicted in the Fig. 2.10.

The sampling matrix Φ does not depend on the the signal X , however, it has to

be stable and incoherent with the Ψ matrix. Some examples of suitable Φ matrices
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YY

Figure 2.10: Compressive sampling measurement process

are:

• Gaussian : Φi,j = N (0, 1
M

)

• Bernouilli/rademacher

• Sparse Gaussian

• Random orthoprojection

In [32, 30], the robustness of CS measurement matrix is studied and the so called

Restricted Isometry Property (RIP) is proposed. For the matrix, Θ = ΦΨ, the isom-

etry constant δs, is defined as the smallest number such that

(1− δs)||S||22 ≤ ||ΘS||22 ≤ (1 + δs)||S||22. (2.14)

Then, the matrix Θ is said to have RIP of order S, if δs is not close to 1. The mutual

coherence parameter µ also represents the robustness of the sampling matrix in CS.

The mutual coherence between two matrix Φ and Ψ is defined as

µ(Φ,Ψ) =
√
N. maxk≤M,j≤N | < φk, ψj > |. (2.15)

µ(Φ,Ψ) ∈ [1,
√
N ]. (2.16)

A Gaussian measurement matrix has shown to have these properties necessary for

the compressive sensing [32]
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2.3.3 Compressive Sensing Reconstruction

The CS reconstruction is an under-determined system of linear equations. We have

M equations given by Y = ΦX and N variables of X have to be reconstructed. Given

the RIP and incoherent property of sampling matrix Φ is satisfied, a K − sparse,

N long signal can be reconstructed from M linear equations, where M < N . Let us

define, the pth norm of vector S as

||S||p :=

(

N
∑

i=1

|si|p
)

1

P

. (2.17)

When p = 0, it gives the number of non-zeros entries in S. The CS reconstruction of

K − sparse signal X can be obtained from l0 minimization process. However, it is

computationally prohibitively complex.

The CS reconstruction approximation using least square solution is given by.

Ŝ = argmin||S||2, such that Y = ΘS. (2.18)

The CS reconstruction approximation using l2 minimization is not a good approxi-

mation. Fortunately, l1 norm minimization process relaxes the l0 optimization and

gives approximate solution of the signal X as

Ŝ = argmin||S||1, such that Y = ΘS. (2.19)

Figure 2.11: CS Reconstruction Geometry. (a) Sparse vector in R
3. (b) l2 minimiza-

tion. (c) l1 minimization.
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Fig. 2.11 shows the basic geometry of CS reconstruction using norm minimization

approach. Fig. 2.11 (b) shows pictorial representation of l2 minimization and why l2

minimization fails whereas from the Fig. 2.11 (c) we can see l1 minimization gives

a good approximation of sparse signal S. Details of CS geometry can be found in

[31, 30, 32].

Another class of CS reconstruction based on greedy pursuit such as Orthogonal

Matching Pursuit, CoSaMP, have been discussed in [33, 34, 35, 36]. Model based

compressive sensing decoding for special class of signals are discussed in [37, 38,

39]. There exists a tradeoff between different compressive sensing reconstruction

and decoding algorithm in terms of their complexity, error rate, and signal model.

However, we can list following important remarks about the compressive sensing

process.

• Stable : The CS acquisition and recovery process is numerically stable.

• Universal: The CS sampling matrix is adaptive and universal to the signal

models.

• Asymmetrical : Most of the processing is carried out at the decoder.

• Democratic : Each CS measurement carried equally important information.

2.4 Conclusion

In this chapter, we discussed about the spectrum scarcity and the cognitive radio

technique. We presented a brief introduction to various spectrum sensing techniques

and their tradeoffs. Spectrum sensing in cognitive radio for wideband network is

an expensive approach in terms of data sampling and acquisition cost. Compressive

sensing paradigm provides a new and efficient data acquisition and reconstruction

approach for certain class of compressible signals. In the next chapter, we will model

and discuss the application of compressive sensing in cognitive radio.
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CHAPTER 3

WIDE BAND SPECTRUM SENSING FOR COGNITIVE RADIO

NETWORK USING DISTRIBUTED COMPRESSIVE SENSING

3.1 Introduction

The increasing demand for wireless resources and spectrum has created spectrum

scarcity. However, spectrum utilization studies show that these scarce wireless spec-

trum has been distributed and used inefficiently [40], [41]. This bottleneck in spec-

trum scarcity and inefficient usage is addressed by the dynamic spectrum access policy

[42, 43]. Cognitive radio (CR) with an ability to sense unused spectrum and oppor-

tunistically transmit over spectrum holes is proposed in [44], [6]. The fundamental

challenge in the cognitive radio implementation is detection of the vacant spectrum

(holes) [4].Various spectrum sensing and detection mechanisms such as an energy de-

tector [45], cyclo-stationary sensing [15] and pilot detection [46] have investigated the

spectrum sensing problem under different wireless environment. The current trends

in spectrum sensing and cognitive radios are well explained in many survey reports

[47], [11]. Many of the spectrum sensing algorithms deal with the narrow band sens-

ing which are tailored energy detector and power spectral density of the narrow band

signal. Wideband spectrum sensing requires fast and dynamic spectrum analysis

over larger spectrum band. Recent paradigm in sparse sampling, compressive sensing

(CS) [30], [32] provides solution to sparse signal reconstruction as an optimization

problem. In [48, 49], CS sampling, forward differentiation and singular value decom-

position methods are used for wideband spectrum sensing purpose. These approaches

provide wideband spectrum sensing in a simple individual network. To eliminate the
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need of high speed analog to digital converters and digital signal processors in wide-

band sensing, techniques such as random demodulators, parallel signal processing are

proposed in [50, 51].

In this chapter, we build up basic compressive sensing model for the spectrum

sensing in cognitive radio network. This model is then extended to the frequency

overlapping jointly sparse networks in the Chapter 4. The rest of the chapter is

organized as follows: In the Section 3.2, we formulate the spectrum sensing problem

in single network for the cognitive radio. Section 3.3 presents the system model for our

problem statement. Proposed spectrum sensing for cognitive radio using compressive

sensing is discussed in the Section 3.4. Simulation results are presented in the Section

3.5 and finally Section 3.6, concludes the chapter.

3.2 Problem Definition

Let us consider a wideband communication model with primary and secondary (cog-

nitive radios) users coexistence as shown in the Fig. 3.1. The total communication

bandwidth of the system is divided into N subbands each centered at frequency fn,

where n = 1, 2, 3, . . . , N . Very few of the N subbands are occupied by the primary

users at a given geographical and temporal region. Let us consider, out of N sub-

bands, S << N are occupied by primary users during sensing time. The unoccupied

channels by primary users over given spatia-temporal region called, spectrum holes,

are opportunistically accessed by the cognitive users keeping the rights of the pri-

mary safe. The cognitive radios in the system need to detect these spectrum holes

for secondary communication.

At time t, the received signal at mth cognitive user can be expressed as:

ym(t) =
N
∑

n=1

xn(t) ∗ gnm(t) + wm(t), (3.1)

where, ∗ represents the convolution, xn(t) is the signal of nth primary user, gnm(t)
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Figure 3.1: Primary and secondary users coexistence

denotes the channel gain response, and wm(t) is additive white gaussian noise with

zero mean and variance of σ2
w. In frequency domain, (3.1) can be represented as:

y
(m)
f =

N
∑

n=1

D(nm)
g x

(n)
f + wm

f , (3.2)

where D(nm)
g is a diagonal N × N channel gain matrix between nth primary and

mth CR. xf and wf represent corresponding frequency response of x(t) and w(t),

respectively and elements g
(nm)
f of D(nm)

g are given by:

g(i,j) = 0; i 6= j; and i, j ∈ {1, 2, . . .N}, (3.3)

and, g(i,j) = gf(i,j); i = j; and i, j ∈ {1, 2, . . .N}. (3.4)

However, we know that at any time t, only few of the N channels are occupied .

Let Ŝ be the set of occupied channels such that Ŝ ⊂ N̂ . N̂ is the set of bands under

consideration. Thus for all n : n /∈ Ŝ

xn(t) = 0. (3.5)
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From (3.5), N̂ is sparse. Accordingly, (3.1) and (3.2) reduce to,

ym(t) =
∑

s∈Ŝ

xs(t) ∗ gsm(t) + wm(t), (3.6)

and, y
(m)
f =

∑

s∈Ŝ

D(sm)
g x

(s)
f + wm

f . (3.7)

This sparseness of signal in the frequency domain makes CS possible for the spec-

trum sensing purposes in cognitive radio network. The frequency response of the

channels occupied by the primary users are non-zero values, whereas, those of vacant

channels are zero. Hence, the total frequency response of the signal under consid-

eration is a sparse signal. In CS, instead of taking point by point samples as in

conventional sampling, each sample taken is linear functional of the sparse signal.

Consider the problem of reconstructing N × 1 length, S sparse signal X . Let us

consider an M × N dimension, where M < N , sensing matrix Φ. We can obtain

M compressed measurements, Y , using, Y = ΦX . Since, M < N , the recovery of

X from compressed measurements Y is ill-posed in general. Interestingly, provided

X is sparse in some domain and the measurement matrix Φ satisfies the restricted

isometry property (RIP) [30], the signal X can be recovered from the measurement

vector Y . The recovery of S non-zero elements of signal X is actually the solution of

the l0 norm minimization problem.

X̂ = arg min||X||l0, s.t. Y = ΦX, (3.8)

Unfortunately, solving l0 is prohibitively computationally complex. However, the

approximate solution of X can be obtained using l1 minimization as:

X̂ = arg min||X||l1, s.t. Y = ΦX, (3.9)

For secondary communication in the cognitive radio network, finding the set Ŝ is

the most important and first requirement. The complexity of spectrum sensing de-

pends upon the requirements of an application. In cognitive radio spectrum sensing,
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our primary concern is finding which of the S bands among N are occupied rather

than the exact signal strength of the the occupied channels. In cognitive radio net-

work, the problem of spectrum sensing using energy detector, at each mth CR boils

down to distinguishing between binomial hypotheses. The signal energy of each of

the subband is compared with the threshold λe which is the function of noise and

channel characteristics. If the received signal is greater than λe the channel is said

to be occupied else it is taken as vacant. Finding an optimal λe is an agenda in the

communication channel modeling research [52].

In conventional spectrum sensing, each secondary user senses and detects each of

the band individually. This requires large number of measurements in the system and

increases data acquisition cost [11, 48]. Besides, each sensing device/cognitive radio1

needs to have sensing bandwidth entirely over the communication band making the

sensing process more prone to noise.

3.3 System Model

We have N channels to detect, and M compressive sensing measurements, where,

M << N . Out of N channels some of them are occupied by primary users (dark

blocks in Fig.3.2) and some of them are empty (white blocks in Fig.3.2). Let S

denotes the number of occupied channels and S << N . Hence in our system we

assume N >> M >> S. We refer to S/N as sparsity. The sensing devices in our

architecture can be seen as a unit having the combination of band-pass filters tapped

at different bands.

1The terms sensing device and cognitive radio have been used interchangeably in this work
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Figure 3.2: System Model

3.4 Proposed Compressive Spectrum Sensing

Let X = [xi]N×1 be the signal component test statistics of N channels. If we denote

the sensing matrix as ΦM×N and Y = [yi]M×1 as the compressed measurements, then,

Y = Φ×X. (3.10)

3.4.1 Generation of Sensing Matrix Φ

In previous works [35, 30], the mathematical models of compressive sensing has been

explained thoroughly. From the implementation point of view, the physical realization

of sensing matrix Φ is an important issue. The sensing matrix ΦM×N in our model is

the element-wise combination of the two matrices: Frequency selective matrix FM×N

and channel response matrix HM×N . i.e

Φ = F (.?)H, (3.11)

where, (.?) represents element wise product. We consider each of the Ms sensing

device/CR consists of ms filter banks where each filter bank is collection of random
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bandpass filter tapped at L random bands. For simplicity , we assume the filters are

ideal with unity gain and zero phase. Hence, F is a binary matrix with constant row

weight L and it is characterized by the following expressions:

N
∑

n=1

Fm,n = L ;m = 1, 2, 3 . . .M, (3.12)

Also, if Lm denotes the the set of band index of the filters in the mth frequency

selective filter bank, then:

Fm,n = 1 ; if, n ∈ Lm, (3.13)

else, Fm,n = 0. (3.14)

Similarly, the channel response matrix is defined by:

H = |hm,n|, (3.15)

m = {1, 2, . . .M} and n = {1, 2, . . .N},

where, |hm,n| is the channel response between mth sensing device and the nth primary

signal, and is function of the channel modeling. In our simulations, we model the

channel characteristics as the distance gradient model and assume we have complete

channel state information (CSI) [49]. From (3.11) and (3.13), we can have :

Φm,n = Fm,n ×Hm,n ; ifFm,n = 1, (3.16)

else, Φm,n = 0. (3.17)

Hence, the sensing matrix Φ is a constant row weight matrix.

3.4.2 Compressed Measurements

Each element of measurement vector Y is the weighted sum of L elements of X as

given by (3.18), where the ith element of Y , yi, is given by:

∀i = 1, 2, 3, . . .M, yi =
∑

Φi,j × xj , j = 1, 2, 3 . . .N, j ∈ Li, (3.18)
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where, Φi,j = 0, if Fi,j = 0, else, Φi,j = Fi,j×Gi,j , We know that the the Filter Matrix

is constant row weight matrix with row weight L and accordingly, Φ is a also a constant

row weight matrix with row weight L. Hence, each compressed measurement is the

weighted sum of the L elements of X .

If we consider the transmission channel from sensing device to controller is noisy,

then the measurement Y is effected by noise as:

Y = Φ×X +W, (3.19)

where, W is the additive gaussian noise of zero mean and variance σ2
w.

3.4.3 Compressive Decoding

Compressive sensing (CS) decoding techniques based on optimization algorithms with

l1 minimization (Basis Pursuit) is discussed in [30, 32]. We implement Basis Pursuit

and Orthogonal Matching Pursuit in this problem to observe the performance in the

spectrum detection. CS decoding based on l1 minimization is as follows:

X̂ = argmin||X||1, s.t. Y = ΦX. (3.20)

In case of noisy measurements the constraint is modified as:

||Y − ΦX||2 ≤ δ, (3.21)

where, δ is the noise energy. We also implement the compressive decoding technique

based upon the greedy pursuit called Orthogonal Matching Pursuit (OMP) [33, 34,

35]. A greedy algorithm computes the support of X iteratively. The steps in the

OMP can be summarized in following procedure.

Given: M × N measurement matrix Φ, M , length compressed measurements Y

of N long vector X .

1. Normalize Φ such that each column of Φ, (Φi) has unit norm. i.e ||Φi||2 = 1.
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2. Initialize residual: r0 = Y , Index set (Col), count, (t = 1) and empty set Θ0.

3. Find the index It that solves:

It = argmax| < rt−1,Φi > |, i = 1 : N.

4. Modify Index set and empty set Col(t) = Col(t−1) ∪ It and Θt = [Θt−1 . . .Θt].

5. Solve least square problem to obtain signal estimate,

Xt = argmin||ΘtX − Y ||2. (3.22)

6. Calculate new residual,

rt = Y −ΘtXt (3.23)

7. Increment count: t = t+ 1 and go to step 3.

OMP is an iterative based method. At each step, the residual is modified and

new supports of the signal are determined. These steps are repeated until minimum

residual value threshold is met or up to predefined numbers of iteration. In our sim-

ulations, we implement l1 minimization (Basis Pursuit) and the orthogonal matching

pursuit for the spectrum detection. An improved version of l1 minimization termed as

weighted l1 minimization is developed in [53, 54]. In weighted l1, the weight to each

component of the signal vector is introduced. The use of weights is to counter influ-

ence the signal magnitude on the minimization function. The large weights are used

to discourage non-zero entries and vice versa. One of the possible weight functions

for this case may be the inverse function of the signal component. The re-weighted

l1 minimization scheme developed in [53] can be summarized as following.

1. Set the iteration count, l = 0 and weight, v0i = 1; i = 1, 2 . . .N

2. Solve the l1 minimization problem,

xl = argmin||V (l)X||l1, Subject to : Y = ΦX (3.24)
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3. Update weights,

v
(l+1)
i =

1

|xli|+ ε
(3.25)

where, ε is small positive number slightly greater than the smallest sparse ele-

ment in X .

4. If iteration count l = maximum iteration, Terminate, else go to step 2.

The re-weighted l1 process improves the reconstruction performance. However, it

is an iterative l1 process, hence the performance gain is achieved at a cost of decoding

time. The l1 minimization process has to be repeated in every iteration for every

modified weight values. This accounts for the delay in reconstruction process and

spectrum detection.

3.5 Simulation and Results

For our experimental simulation we take N = 1000. We take measurements at differ-

ent rate from 10% to 40% of total signal length. The results provided are the average

of 10000 simulations under different signal strength values and different random mea-

surement matrices keeping sparsity (S/N) and other characteristics are same. We

consider two different simulation scenarios with sparsity 5 % and 10%. Moreover,

we observe the results in two different channels i.e. noiseless and noisy channels

with noise energy of 20 dB. Following parameters are defined for the performance

measurement.

• Sampling Rate (S.R = M
N

%): Sampling rate is defined as the ratio of the

number of compressed measurements to the total number of channels. S.R is

represented in % as well.

• Probability Of Detection (POD): It is the ratio of total number of hits to

the sums of total hits and miss. Hit is an event when we decide the presence or
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absence of primary user correctly, whereas, any other wrong decision is termed

as miss event. For an illustration let us consider, B and E denote busy and

empty state of channel respectively, and H and M denote Hits and Miss. The

following table shows an example of Hit and a Miss detection.













B E B E

B B E E

H M M H













• Error of Reconstruction (EOR): EOR is the ratio of energy difference be-

tween reconstructed and original signal to the energy of the original signal.
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Figure 3.3: Probability of Detection in Noiseless Measurements

Figs. 3.3 through 3.6 depict our simulation results for l1 minimization and OMP

method for different primary users occupancy rate. We can clearly see from our results

for the noiseless measurements that different decoding algorithms provide different

performance levels for our system. The POD using OMP for 5% primary occupancy
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Figure 3.4: Error Of Reconstruction in Noiseless Measurements
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Figure 3.5: Probability of Detection in Noiseless Measurements using OMP

is about 0.95 at sampling rate of 40%. OMP is comparatively less efficient compared

to l1 minimization. l1 method has high POD increase rate as we increase the sampling
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Figure 3.6: Error Of Reconstruction in Noiseless Measurements using OMP

rate. For sampling rate as low as 25%, we get POD close to 1. For a signal of 10%

occupancy, the number of measurements required for successful decoding increases

compared to that of 5% occupancy. Figs. 3.4 and 3.6 show the over all error in

energy of the reconstructed signal using l1 and OMP, respectively.

Figs. 3.7 and 3.8 shows the performance measurement comparison for noisy and

noiseless measurement in 10% primary occupancy, using l1 minimization method. We

can clearly see that POD and EOR deteriorates in noisy measurements but still more

than 90% of spectrum is detected with sampling rate as low as 40% and overall error

in energy is about 0.1

In Figs. 3.9 and 3.10, we clearly see that the reweighted l1 minimization improves

the performance in terms of both reconstruction detection probability and reconstruc-

tion energy error. The performance gain is achieved in reweighted scheme because in

each iteration, the higher value of weight suppresses the zero components and lower

value of weight estimates non zero components of the signal more closely to their
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Figure 3.7: Probability of Detection in Noisy Measurements
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Figure 3.8: Error of Reconstruction in Noisy Measurements

actual value. For this reason we choose the weight of each element to be the inverse

of its approximated value in each iteration. However, the reweighted l1 minimization

requires more computational complexity and decoding time because the minimization
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process has to be repeated at every iteration for the modified weights.
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Figure 3.9: Probability of Detection using Reweighted l1 Minimization

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

Sampling Rate

E
rr

o
r 

o
f 

R
e

co
n

st
ru

ct
io

n

 

 

l1 minimization

Reweight l1, 3 Iterations

Figure 3.10: Error of Reconstruction using Reweighted l1 Minimization
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3.6 Conclusion

In this chapter, we proposed a spectrum management architecture for cognitive ra-

dios using compressive sensing technique. We evaluated our scheme with different

simulations using different decoding algorithms and channel cases. The advantage

of our architecture is that, not only we reduce the total number of reports sent to

the controller using compressive sensing but also show that the Probability of De-

tection (POD) at the controller is improved. We also showed that our architecture

can also perform efficiently for spectrum sensing in noisy measurements by increasing

the sampling rate. Reweighted l1 scheme is used to improve the performance in the

spectrum sensing. In totality, the proposed architecture significantly enhances the

spectrum sensing for cognitive radio networks. This chapter also lays the foundation

for the concept of overlapping networks in the Chapter 4. The basic spectrum sens-

ing scenario presented in this chapter is extended into the system where more than

one network exists and networks overlap in their operating region in geo-spatial and

frequency domain.
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CHAPTER 4

JOINT WIDE BAND SPECTRUM SENSING IN FREQUENCY

OVERLAPPING COGNITIVE RADIO NETWORK USING

DISTRIBUTED COMPRESSIVE SENSING

4.1 Introduction

The NTIA’s frequency allocation chart [55] shows many networks overlap in the fre-

quency zone because of spectrum scarcity. The spectrum overlapping or jointly sparse

frequency overlapping networks in cognitive radio network come into picture because

of spatial diversity of primary and secondary transmission power [56]. In conven-

tional spectrum sensing approaches, it is considered that all the CRs are silent and

synchronized during the sensing period. In large overlapping networks, or in spa-

tially distant CRs, synchronization cannot be guaranteed due to spatial diversity of

primary transmission power [56]. This creates jointly sparse frequency overlapping

networks over large spatial domain. In this chater, we extend our work in the Chapter

3 and propose joint reconstruction for wideband spectrum sensing in such frequency

overlapping networks using distributed compressive sensing. We extend our work in

wideband compressive sensing for cognitive radios [57] into a frequency overlapping

network and present joint reconstruction scheme for spectrum sensing in frequency

overlapping networks.

The rest of the chapter is structured as follows. In the Section 4.2, we introduce

the frequency overlapping network and formulate the spectrum sensing problem for it.

We propose joint compressive sensing scheme for jointly sparse frequency overlapping

cognitive radio networks. Individual reconstruction scheme and joint reconstruction
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for the compressed measurement are presented and compared. Section 4.3 provides

simulation results for the proposed joint wideband spectrum sensing in frequency

overlapping networks and finally, Section 4.4 concludes the chapter.

4.2 Proposed Wideband Compressive Spectrum Sensing in Frequency

Overlapping Networks

The NTIA’s frequency allocation chart clearly shows the frequency overlapping over

different system protocols to meet the band scarcity issue. Let us consider two network

systems S1 and S2 with some overlapping operating bands as shown in Fig. 4.1. We

call the networks S1 and S2 as the frequency overlapping networks and denote it

with network HN . The theoretical backgrounds on joint sparse signal can be found

in literatures [58, 59]. Let Bs1 and Bs2 represent the spectrum band of S1 and S2

respectively, where |Bs1| = N1 and |Bs2| = N2. Bsc denotes the frequency overlapping

between S1 and S2 and |Bsc| = Nc. The total number of bands (channels) under

consideration is : NT = N1 + N2 − Nc. In jointly sparse frequency overlapping

networks, for each of the network, (3.7), takes the form of:

y
(m)
if =

∑

s∈Ŝi

D
(sm)
gi (x

(s)
if + x

(s)
cf ) + wm

f , (4.1)

where, i = 1, 2 refers to corresponding network, x
(s)
if and x

(s)
cf , denote the spec-

tral innovation of ith network and joint sparse portion, respectively, as illustrated in

the Fig. 4.1, and all other notations have same meaning as in (3.7). We consider,

each of the network consists of Ms sensing devices and each sensing device takes ms

compressed measurements. So total number of measurements taken in each network

= Ms ×ms = M .

Let X1 = [x
(1)
i ]N1×1 and X(2) = [x

(2)
i ]N2×1 represent the test statistic for the spec-

trum sensing in two networks S1 and S2 respectively and X(c) = [x
(c)
i ]Nc×1 represents

that of overlapping portion. A vector V of lengthN is said to beK sparse if V contains
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Figure 4.1: Schematic of overlapping networks and overlapping spectrum bands

only K non-zero elements, i.e. ‖V ‖l0 = K, where, l0 denotes norm zero. Also, the

support of a vector, V = [vi]N×1 is defined as : supp(V ) = {i , vi 6= 0, i = 1, 2, . . .N}.

Let, |supp(X1)| = K1 and |supp(X2)| = K2. K1 and K2 denote number of occupied

channels in network 1 and 2, respectively. It should be noted that in spectrum sensing

for cognitive radios, our objective is to find the supp(X1) and supp(X2) and hence

detect primary users and find the spectrum holes.

In compressive sensing, it is the method of data acquisition which makes it distinct

from conventional sampling approaches. In the following subsections, we describe

the sampling approach, the structure of sparse sampling matrix Φ, data acquisition

techniques and decoding approaches.

4.2.1 Sensing Matrix Φ

In previous works [35, 30] the mathematical models of compressive sensing have been

explained thoroughly. From the implementation point of view the physical realization

of sampling matrix Φ is an important issue. The sensing matrix ΦM×N in our model is

the element-wise combination of the two matrices: random frequency selective matrix
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FM×N and channel response matrix HM×N . i.e

Φ = F (.?)H, (4.2)

where, (.?) represent element wise product. We consider each of the Ms sensing

device/CR consists of ms filter banks, where Ms × ms = M . Each filter bank is

collection of random bandpass filter tapped at L random bands. For simplicity, we

assume the filters are ideal filters with unity gain and zero phase. Hence, F is a

binary matrix with constant row weight L. Also, if Lm denotes the the set of band

index of the filters in the mth frequency selective filter bank, then:

Fm,n = 1 ; if, n ∈ Lm, (4.3)

else, Fm,n = 0. (4.4)

Similarly, the channel response matrix is defined by:

H = hm,n, m = 1, 2, . . .M and n = 1, 2, . . . N, (4.5)

where, hm,n is the channel response between mth sensing device and the nth primary

signal, and is function of the channel modeling. From (4.2) and (4.3), we can have :

Φm,n = Fm,n ×Hm,n ; ifFm,n = 1, (4.6)

else, Φm,n = 0. (4.7)

Hence, the sensing matrix Φ is a constant row weight matrix.

4.2.2 Compressed Measurement Y

Let the sensing matrix Φ for network systems S1 and S2 be represented by [Φ1]M1×N1

and [Φ2]M2×N2
respectively, with the characteristics as explained in Section 4.2.1.

For ease in calculation, we assume M = M1 = M2 and N1 = N2 = N . Each sensing

device samples the spectrum bands in the corresponding network system in S1 and S2.
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Each sensing device gives ms compressed measurements and each network consists of

Ms sensing devices. For each system the total number of compressed measurements

sent to the individual controller unit is then M = Ms × ms. The ith compressive

measurement at mth sensing device is given by:

y(i)m = Φ(m,:) ×X, (4.8)

i = 1, 2 . . .ms, m = 1 : number of sensing devices (Ms) Hence, Y1 and Y2, denoting

the compressed measurement at network system 1 and 2 respectively, can be written

as:

Yi = Φi ×Xi; i = 1, 2. (4.9)

Similarly, in case of the noisy measurements, it is affected with additive white gaussian

noise of zero mean and variance σ2, W (0, σ2).

Yi = Φi ×Xi +Wi; i = 1, 2. (4.10)

4.2.3 Compressive Sensing Decoding

The solution to the compressive sensing decoding is an optimization problem. CS

decoding algorithm based upon the norm optimization like Basis pursuit (l1) mini-

mization is discussed in [32, 30, 60].

In the followings, we first provide a quick reference to individual compressive

spectrum sensing and individual reconstruction, and then we illustrate the joint re-

construction scheme for the frequency overlapping networks.

Individual Reconstruction

In individual reconstruction scheme, each network reconstructs its compressively

sensed test statistics individually without cooperating with other networks and the

decision about the spectrum occupancy is made accordingly using thresholding [52].
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The reconstructed test vector in individual reconstruction is give by:

X̂i = arg min‖Xi‖l1 s.t. Yi = ΦiXi ; i = 1, 2, (4.11)

where as in case of the noisy measurements the optimization constraint is minimized

as:

‖Yi − ΦiXi‖2 ≤ σ2, (4.12)

Joint Reconstruction

The number of required measurements for CS reconstruction is a function of the

sparsity of the signal. It has been shown that the number of samples required for the

CS reconstruction is in the order of CKlog
(

N
K

)

[30, 59]. In overlapping networks,

the individual reconstruction requires redundant numbers of samples for reconstruc-

tion. In individual reconstruction, the number of measurements required depends on

(K1 + K2). In [56], the LASSO algorithm with iterative user consensus is used to

detect the overlapped bands. However, the advantage of common sparse elements in

joint reconstruction is not exploited, and individual reconstruction is required in each

network. In joint reconstruction, the number of measurements required for recon-

struction depends on (K1 +K2 −Kc = KT ). It has been shown that the the number

of required measurements for CS reconstruction depends upon the sparsity, hence

the joint reconstruction will have the measurement gain. Moreover, only one joint

optimization is performed for the reconstruction of the both networks. We implement

joint reconstruction scheme for spectrum sensing in frequency overlapping networks

and compare it with the conventional individual reconstruction scheme and the itera-

tive LASSO consensus algorithm [56]. In joint reconstruction scheme, cognitive users

in each network take the compressed measurements of spectrum in their network.

The CS measurements are sent to a common controller unit. The schematic of joint

spectrum sensing and reconstruction in frequency overlapping network is shown in

the Fig. 4.2. The dark boxes represent the occupied channels whereas, white boxes
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represent spectrum holes.
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Figure 4.2: Joint spectrum sensing schematic in frequency overlapping networks

Let the measurements for the joint reconstruction be denoted by Y as,

Y =







Y1

Y2






, (4.13)

where, Y1 and Y2 are compressed measurements of networks S1 and S2, respectively.

Joint reconstruction matrix Φjoint for reconstruction of the spectrum test statistics,

X :=













Xi1

Xc

Xi2













,

be represented as:

Φjoint =







ΦA ΦC1
Φnull

Φnull ΦC2
ΦB






. (4.14)

If Ic denotes the set of the overlapping bands of two networks, X̂i1 and X̂i2 denote

innovation bands of network 1 and 2 respectively, and (φ)j denotes the jth column of
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the Φ, then :

ΦA = (Φ1)j j ∈ X̂i1,

ΦB = (Φ2)j j ∈ X̂i2,

ΦC1
= (Φ1)j j ∈ Ic,

ΦC2
= (Φ2)j j ∈ Ic, (4.15)

and Φnull are null matrices. Then the joint reconstruction optimization for X is

performed as:

X̂ = arg min‖X‖l1 s.t. Y = Φjoint ×X. (4.16)

In case of noisy measurements the constraint of optimization is modified accordingly

as in (4.12).

4.3 Simulation and Results

For evaluating our performance we define following performance measurement pa-

rameters.

Performance Measurement and Simulation Parameters

• Sampling Rate (S.R = 2M
NT

): Sampling rate is defined as the ratio of the

number of compressed measurements to the total number of channels.

• Probability Of Detection (POD): It is the ratio of total number of hits to

the sums of total hits and miss. Hit is an event when we decide the presence or

absence of primary user correctly, whereas, any other wrong decision is termed

as miss event.

• Error of Reconstruction (EOR): EOR is the ratio of energy difference be-

tween reconstructed and original signal to the energy of the original signal.

46



• Sparse Overlapping Factor (SOF = Kc

KT

): SOF is the ratio of number of

occupied channels in the overlapping bands to the total number of occupied

channels in the network.

• Measurement Gain (MG): For the given probability of detection, measure-

ment gain is defined as:

MG = 1− # of measurements required in joint reconstruction

# of measurements required in individual reconstruction

For simulation purpose we take total number of channels, NT = 1000, out of

which, Nc = 30% are overlapping, the sparsity, (KT

NT

= 10%), and SOF = 0.5 unless

stated otherwise. Compressed measurements at different sampling rate are obtained

and reconstructed. The results provided are the average of 1000 simulations. Both

noisy and noiseless measurement schemes are simulated.
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Figure 4.3: POD using individual and joint reconstruction

From Figs. 4.3 and 4.4, it is clearly observed that for the same number of com-

pressed measurements, the joint reconstruction algorithm has better performance

than the individual reconstruction. We see that the POD approaches 1 for joint
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Figure 4.4: EOR using individual and joint reconstruction

reconstruction at sampling rate of 30% whereas it is at 44% for the individual recon-

struction. This gain in measurements is the consequence of sparse overlapping ele-

ments and joint reconstruction. The EOR for joint reconstruction approaches to zero

for the sampling rate of as low as 28% where as for that of individual reconstruction

it occurs at 40%. We see that for same performance the joint reconstruction requires

less number of samples. This reduces the data acquisition cost and the redundancies.

Figs. 4.5 and 4.6 are the performance measurement under noisy measurements.
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Figure 4.5: POD using individual and joint reconstruction in noisy measurements
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Figure 4.6: EOR using individual and joint reconstruction in noisy measurements

The performance under noisy measurements degrades both in terms of probability

of detection and reconstruction error, however the joint reconstruction scheme still
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performs better than the individual reconstruction. Fig. 4.7 shows the effect of the

varying SOF on the measurement gain between the individual reconstruction and the

joint reconstruction. It shows the measurement gain for POD = 0.99.
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Figure 4.7: Measurement gain for varying SOF when POD=0.99

We can clearly see that the measurement gain increases as the SOF increases.

This implies that the number of measurements required in joint reconstruction for

same performance decreases comparatively to individual reconstruction when there

are more occupied channels in the overlapping region.

In the Fig. 4.8 we present the performance of joint reconstruction scheme in terms

of probability of primary detection and false alarm rate. The Receiver Operating

Characteristic (ROC) curve for different SNR is presented. It is clearly seen that

the ROC have good performance for low false alarm rate and depends on the SNR.

We compare our performance with the iterative LASSO consensus scheme in [56]. In

[56], the frequency overlapping scheme is illustrated using multihop cognitive network.

Fig. 4.9 is the Receiver operating characteristics (ROC) comparison and Fig. 4.10
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shows the comparison of reconstruction error. We clearly observe that the joint

reconstruction scheme has better receiver operating characteristics where as the error

of reconstruction is comparable to that of in iterative LASSO consensus.
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Figure 4.8: ROC performance for different SNR
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Figure 4.9: ROC performance comparison, For SNR=-5dB, S.R=0.6 and Spar-

sity=40%

2 4 6 8 10 12 14 16 18 20
0.42

0.44

0.46

0.48

0.5

0.52

0.54

Number of Iterations

E
r
r
o

r
 o

f 
R

e
c

o
n

s
t
r
u

c
t
io

n

 

 

LASSO consensus

Joint reconstruction

Figure 4.10: EOR comparison, For SNR=-5dB, S.R=0.6 and Sparsity=40%

We also reconstruct the original time domain signal using individual and joint

52



reconstruction methods in Figs. 4.11 and 4.12, respectively, at sampling rate of 32%.

Comparing these figures, we observe that the signal reconstructed using the joint

reconstruction matches more closely to the original signal.
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Figure 4.11: Original time domain signal and reconstructed using individual recon-

struction method
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Figure 4.12: Original time domain signal and reconstructed using joint reconstruction

method

4.4 Conclusion

In this chapter, we proposed a novel wide band spectrum sensing for cognitive ra-

dios in the frequency overlapping networks using distributed compressive sensing and

joint reconstruction. The concept have been demonstrated through the theoretical

explanation and have been validated using the simulation results. A distributed com-

53



pressive sensing for cognitive radio network in the frequency overlapping system has

been explored. Proposed joint reconstruction scheme for spectrum sensing exploits

the joint sparsity in frequency overlapping networks and efficiently reduces the number

of samples required. It is shown that the proposed scheme outperforms the individ-

ual reconstruction scheme and has better receiver operating characteristics compared

to LASSO consensus algorithm. This is because the overlapping channels can be

exploited to enhance the compressive decoding using joint reconstruction scheme.

54



CHAPTER 5

BINARY COMPRESSIVE SENSING

5.1 Introduction

The paradigm of sparse sampling and reconstruction, called Compressive Sensing (CS)

has been the state of art research in recent years. The gist of CS lies in determining

the sparse solution of an under-determined system of linear equations. The solution

of the under-determined system has been of particular research interest for a long

time. However, the CS [30, 31] approach opened up many new research spaces

in the field of under-determined system, ranging from theoretical formulations to

many practical applications in image processing, wireless communication, genetic

and molecular analysis, data-streaming, medical resonance imaging etc. Compressive

sensing provides solution for the under-determined system of a sparse source. A

vector, X ∈ R
N is said to be K sparse if X contains K non-zero elements, i.e.

||X||l0 = K, where, ||X||l0 denotes zero norm of X . For illustration, let us consider a

K sparse, N length source X be defined by M linear equations as in (5.1)

Y = ΦX. (5.1)

In terms of compressive sensing, Φ ∈ R
M×N , M << N is called sampling matrix

or measurement matrix and Y ∈ R
M is linear functionals of sparse source X and

is called compressed measurements. In general, the system in (5.1) is ill-posed, but

CS theory asserts that under the conditions, the source X is sparse and sampling

matrix Φ satisfies the Restricted Isometry Property (RIP) [32, 61], the solution can
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be obtained by the following optimization problem,

X̂ = argmin||X||l0 : Y = ΦX. (5.2)

Unfortunately, solving l0 is prohibitively computationally complex. However, the

approximate solution to (5.1) is obtained by following l1 minimization.

X̂ = argmin||X||l1 : Y = ΦX. (5.3)

Based on this general foundation, CS theory have been widely adopted and modified

according to the signal characteristics. Many works have been carried out in designing

the efficient sampling matrix Φ, and decoding algorithms have been modified accord-

ingly. CS decoding algorithm based on matching pursuit [62] and greedy algorithm,

called Orthogonal Matching Pursuit and CoSaMP are developed in [33, 34, 36], re-

spectively. Designing of sampling matrix Φ according to signal and application is also

of particular interest in CS. In [61], the RIP of random sampling matrices is proved.

Systematic random sampling matrix based on linear error correcting codes for com-

pressive sensing is designed in [63] and its RIP is proved. Similar sampling matrix

related to linear codes and orthogonal optical codes is introduced in [64]. Model based

compressive sensing for improved performance, and compressive sensing with prior

partial information are explained in [37, 38, 39].

In this chapter, we introduce a novel compressive sensing approach for special

class of signal with binary entries. We first design a sampling matrix for the binary

signal, and then we present two different decoding algorithms for the binary sparse

signal.

The rest of the chapter is organized as follows: In the Section 5.2, we formally

define the binary compressive sensing problem and provide a quick review on existing

works on binary compressive sensing and their pros and cons. In the Section 5.3,

we introduce our new binary sampling matrix and the binary compressive decod-

ing algorithm. Section 5.6 verifies our proposed scheme with numerical simulations
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and comparison with the existing methods, and finally the Section 5.7 concludes the

chapter.

5.2 Related Work and Contribution

In this chapter, we deal with the special class of the under-determined system in (5.1).

Instead of considering the real valued signal, we have the prior information that the

source signal X is binary. The system is thus redefined as:

Y = ΦX. (5.4)

where, X ∈ B
N and B = {0, 1}. Binary sparse signal can come into account in

many practical applications such as event detection in wireless sensor networks, group

testing, spectrum hole detection for cognitive radios etc [65, 66]. Linear programming

based solution to (5.4) have already been proposed and discussed. In [67], the author

modified the solution (5.3) for the binary system in (5.4) accordingly as in (5.5). The

author has also provided the recovery threshold for l1 reconstruction of the binary

signal.

X̂ = argmin||X||l1 (5.5)

subject to Y = ΦX,

0 ≤ xi ≤ 1, 1 ≤ i ≤ N.

In [68], the authors have developed reconstruction algorithm for binary sparse signal

using lq norm, where, 0 ≤ q ≤ 1, which is based upon the re-weighted l1 minimization

algorithm developed in [69]. Though these methods improve the performance for the

binary sparse signal, the reconstructed signal x̂i ∈ [0, 1], i = 1, 2, 3 . . .N , whereas,

the original xi ∈ {0, 1}, i = 1, 2, 3 . . .N . The mapping function for x̂i ∈ [0, 1] to

the xi ∈ {0, 1} is also undetermined. So, these solutions are not able to exactly

reconstruct the original signal in X ∈ B
N . In a very recent work [70], the authors
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employ integer programming model to solve the the under-determined binary sys-

tems of linear equations. The work is basically the solution for the general binary

systems of equations. In compressive sensing, we have an added advantage of having

control over the sampling matrix Φ, the elements of which are the coefficients of the

linear equations. Implementation of bipartite graphs has also been interesting topic

in CS. In [71], a mixed algorithm using two phase of encoding and reconstruction is

proposed for CS using graph and matrix inversion. In [72, 73], the authors proposed

use of bipartite graphs to represent the CS and have explained the rate distortion

performance of binary CS based upon the edge evolution in low density parity check

codes [74]. The authors have provided an interesting closed form solution for edge

evolution using large deviation probability theory and the martingales [75]. However,

the edge evolution process halts after some iterations and thus the reconstruction so-

lution is incomplete. In this chapter, we first design a unique but universal sampling

matrix Φ for binary signal, suitable for graph based recovery. We then propose two

recovery algorithms each of them having trade-offs in terms of computation and phys-

ical resource. We also provide analysis of our scheme and discuss the measurements

required, error floor, and complexity and verify our scheme using both numerical

analysis and simulations.

5.3 Binary Compressive Sensing

Let us represent the binary compressive sensing system in (5.4) by the bipartite

graph as in the Fig. 5.1. The elements of the binary sparse signal X is represented by

the circular nodes and the compressive sensing measurements, i.e. elements of Y are

represented by the square nodes and are termed as Variable nodes (V −nodes) and the

Check nodes (C − nodes), respectively as shown in the Fig. (5.1). The ith V − node

and jth C − node are represented by vi and cj and their corresponding values are

represented by xi and yj, respectively. The edge Eij between vi and cj , represents
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Figure 5.1: Representation of Compressive Sensing with Bipartite Graph

the jth row and ith column element of sampling matrix, (Φ)ji. The filled V-nodes

represent xi = 1, xi ∈ X and the empty V-nodes represent xi = 0, xi ∈ X . Similarly,

the C − nodes are divided into 4 different types as shown in the Fig.(5.1). We will

discuss about these check nodes in the next section later. A V − node, vi is said to

be neighbor of C − node, cj , if, ∃, Eji, i.e. (Φ)ji 6= 0. In previous binary compressive

sensing works using bipartite graph [72, 73], the sampling matrix Φ is constant row

weight binary matrix with row weight L. So in these approaches, the compressed

measurements (C-nodes), yi ∈ Y can be grouped in three groups, yi = 0 or yi = L

and rest all in one group.

Clearly, for decoding purpose,

∀, vk ∈ cm, xk = 0, if, ym = 0, (5.6)

xk = 1, if, ym = L,

xk = unknown.

This phase of recovering V −nodes associated with C−nodes with values yi = 0 and

yi = L is termed as First Phase Recovery (FPR). After the first phase recovery,the

edge recovery is performed by corresponding edge removal process. (For details in

edge recovery please refer to [72, 73, 74]. But this approach has two major setbacks.
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First, the edge recovery process does not recover all the V −nodes and the second, the

work does not provides any explanation about the effect of row-weight L on overall

recovery of the C − nodes. In the following section, we first design the sampling

matrix Φ and then discuss the consequence of row weight L on the FPR.

5.3.1 The Sampling Matrix, Φ

Let us consider, the M × N dimension sampling matrix Φ of row weight L. Each

row of Φ contains L non-zero elements placed randomly. Let Ωi denotes the set of

non-zero elements in ith row and Ωi1 and Ωi2 are any two subsets : Ωi1 , Ωi2 ⊆ Ωi

and Ωi1 6= Ωi2 i = 1, 2, . . .M . Let, θ denotes the elements in Ωi, then, the following

condition should be satisfied:
∑

j∈Ωi1

θj 6=
∑

j∈Ωi2

θj . (5.7)

In other words, all the possible sums of non-zero row elements of Φ are unique. For a

finite constant row-weight L, when the row-elements of Φ are sampled from continuous

random distributions such as Gaussian or Uniform, (5.7) is easily satisfied. Hence,

the ith, i = 1, 1.. . . .M, row of sampling matrix Φ is given by following steps:

Ωi = fr(i, L), Γi = fp(i, L,N), (5.8)

For, k=1,2,. . . N

Φi,k = Ωi; k ∈ Γi,

else, Φi,k = 0. (5.9)

fr(i, L) is a function that generates L random numbers from Gaussian or Uniform

distribution, the function, fp(i, L,N) generates L random positions from 1 to N , and

Γi is the set of non-zero locations of the ith row of Φ. Hence, the sampling matrix in

our method is sparse constant row weight matrix whose non-zero elements are drawn

from the Gaussian or uniform distribution and each row of Φ satisfies (5.7).
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5.3.2 Compressed Measurements and the Check Nodes

The compressed measurements (C − nodes) are the linear, scaled sums of the L

random V − nodes as represented by (5.4) and the Fig.(5.1). The C − nodes are

divided into 4 groups as followings:

Definition 1: A C − node, cj is said to be Zero C − node, if yj = 0. This happens

when all the neighbor v′is of cj are zero elements. c1, c2 are examples of Zero C−nodes

in the Fig.(5.1).

Definition 2: A C − node, cj is said to be Light C − node, if, yj = (Φ)j,k, where,

k ∈ Γj. In other words, a C − node, cj is said to Light C − node, if, yj is equal to

any one non-zero element of jth row of Φ. This happens, when one of the neighbor

v′is of cj is one and all other are zeros. c3, c4 are examples of Light C − nodes in the

Fig. (5.1).

Definition 3: c5 is an example of Partial C − node. A C − node, cj is said to be

Partial C − node, if, yj 6= 0 6= (Φ)j,k ; k ∈ Γj but, during edge recovery process, the

node ultimately turns to be either Zero C − node or Light C − node.

Definition 4: c6 is an example of Heavy C − node. A Heavy C − node, cj occurs

when for all the V − nodes, v′is which are neighbors of cj, there exists more than one

vi which is neighbor of only cj and is not recovered by edge removal process.

5.3.3 Compressive Sensing Decoding

The node recovery or decoding is divided into two phases.

First Phase Recovery

In the First Phase Recovery (FPR), the V − nodes which are neighbors of Zero

C − nodes and Light C − nodes are recovered. Let, Λj is set of neighbors vi’s of

C−node, cj. The V −nodes which are neighbors of Zero C−nodes or Light C−nodes
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is recovered as follows:

if, cj is Zero C − node i.e. yj = 0,

xi = 0; ∀ vi ∈ Λj (5.10)

elseif, cj is Light C − node , i.e. cj = (Φ)jk, k ∈ Γj

xk = 1, vk ∈ Λj

xi = 0, ∀vi ∈ Λj, i 6= k. (5.11)

Edge Removal, Check Nodes Update and Iteration

After, the variable nodes are recovered from Zero and Light C − nodes, edges associ-

ated with the corresponding V −nodes are removed from the graph, and subsequently

the C − nodes are updated.

∀cj , cj is Zero or Light C − node,

∀vi ∈ Λj ,

Remove Eji,

Remove Eqi, where, q 6= j, q = 1, 2 . . .M

if, xi = 0,

yq = yq. (5.12)

elseif, xi = 1,

yq = yq − Φqi. (5.13)

After, edge removal and check nodes update process, new Zero C − nodes and Light

C − nodes will be created. Then the FPR process and the edge removal and check

nodes update process is repeated until the generation of new new Zero C − nodes

and Light C − nodes stops. The process of FPR and edge removal and check nodes

update for the Fig.5.1 is illustrated graphically below.
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For the graph in the Fig.5.1:

Zero C − node : c1: Γ1 = {1, 6, 8}, Λ1 = {v1, v6, v8}

y1 = 0, → x1 = x6 = x8 = 0.

Edge Removal: Remove: E1,1, E1,6, E1,8

Remove: E4,6

Check Nodes Update: x6 = 0, → y4 = y4

Similar process is carried out for all Zero C − nodes.

For Light C − node : c3 : Γ3 = {3, 5, 12}, Λ3 = {v3, v5, v12}

y3 = Φ3,3, → x3 = 1, x5 = x12 = 0.

Edge Removal: Remove: E3,3, E3,5, E3,12

Remove: E6,12

Check Nodes Update: x12 = 0, → y6 = y6

Similarly,

For Light C − node : c4 : Γ4 = {6, 9, 11}, Λ4 = {v6, v9, v11}

y4 = Φ4,9, → x9 = 1, x6 = x11 = 0.

Edge Removal: Remove: E4,6, E4,9, E4,11

Remove: E5,9

Check Nodes Update: x9 = 1, → y5 = y5 − Φ5,9

At this point, it should be noted that, the Partial C − node, c5, has changed to Light

C−node. The reduced graph after these steps is shown in the Fig.5.2. The process of

edge removal, check nodes update and Zero and Light C−nodes recovery is continued

as long as there exist single Zero or Light C − node. However, all V − nodes cannot

be recovered by these process. The V −nodes which are neighbor of Heavy C−nodes

(e.g. c6) have to be yet recovered. These nodes are recovered by following method.
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Check Sum Method for Heavy C − nodes

In the Section 5.3.1, we discussed about the non-zero elements of the sampling matrix

Φ. The condition for non-zero row elements of Φ in (5.7) guarantees that any combi-

natorial sum of these elements is unique. We use this property the sampling matrix Φ

designed in the Section (5.3.1) to recover the Heavy nodes and V − nodes, which are

neighbors of Heavy nodes. The Check Sum method is described by following steps.

Algorithm 1 Check Sum Method for Heavy Nodes Recovery

1. ∀, Heavy C − nodes, cj ,

2. Find: Updated Γj and Λj

3. Find: The numbers of elements in Γj, i.e. |Γj| = β

4. Create: Vector, Vφ = Φj,k, ∀k ∈ Γj.

5. Create: Binary Matrix (BT ) 0 to 2β − 1,

where, each row of table is corresponding binary representation of 0 to 2β − 1 .

6. Compute: Check-Sum (SUM): SUM = BT × V ′
φ

7. Find: yj = SUM(l)

8. Assign: ∀, vi ∈ Λj, Assign element wise lth row of BT to vi ∈ Λj

To illustrate this process for the Fig.5.1, we can see from the Fig:5.2 that the c6

is Heavy Check − node. Following the steps described above.

For Heavy Check − node, c6,
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Updated: Γ6 = {4, 15}, Λ6 = {v4, v15} and β = 2.

Vφ = [Φ6,4 Φ6,15], Binary Table: B.T =



















0 0

0 1

1 0

1 1



















SUM = [0 Φ6,4 Φ6,15 (Φ6,4 + Φ6,15)]
′

Clearly, y6 = SUM(4)→ Λj ← (BT )4.

Hence, x4 = 1 and x15 = 1.

In the following section, we present an alternative method of Binary CS based

only on the Check Sum.

5.4 An Alternative Approach

In this approach we modify the sampling matrix Φ. The function fr(i, L) is made

independent of the row.

i.e. Ω1 = Ω2 = ...ΩM = fr(L) = Ω. (5.14)

This suggests that the all the rows in sampling matrix Φ contains same non zero

elements from Ω. Then, the sampling matrix Φ is generated as:

For, k = 1, 2, . . .N

Φi,k = Ω; k ∈ Γi

else, Φi,k = 0 (5.15)

All notations and functions have same meaning as described in the Section 5.3.1

unless stated otherwise and Ω also satisfies the condition in (5.7).
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5.4.1 Compressive Sensing Decoding

In this approach, the decoding center has a vector (SUM) stored. A SUM vector is

generated by following steps.

Create: Binary Matrix (BT ) 0 to 2 L − 1,

Compute: Check-Sum (SUM): SUM = BT × Ω′

It should be noted that the SUM vector is all possible combinatorial sum of elements

in Ω. Hence, the check nodes and their corresponding variable nodes are decoded by

following algorithm.

Algorithm 2 An Alternative Method

1. ∀, C − nodes, cj ,

2. Find: yj = SUM(l)

3. Find: Vector, lbinary = fB(l − 1, L). where, fB(l − 1, L) is a function that gives

L bit binary representation of l − 1 with least significant bit at right and left bits

padded with zero whenever necessary.

4. Assign: ∀, vi ∈ Λj, xi = lbinary(k), k = 1 : L

5.5 Analysis and Discussion

The graph and check sum based compressive sensing for binary sparse signals is ben-

eficial than the solution based on the l1 minimization approaches. In this section, we

discuss the consequences of row weight L in performance, the encoding and decoding

complexities, the measurement constraints and error probability of our scheme.

5.5.1 Choice of Row-Weight (L)

In our scheme, the first phase of recovery is based on the number of Zero and Light

C − nodes. The number of Zero and Light C − nodes is a function of the row-weight

L and the sparsity S of the binary sparse signal. The sparsity (S) of signal X , with

66



|X| = N , is defined as, S ≡ K/N , where K is the number of non zero elements in

X . The recovery of Zero and Light C − nodes is crucial in our scheme for two broad

purposes. Recovery of Zero and Light C−nodes requires only search operation and is

faster than recovering Heavy C−nodes. Moreover, the edge recovery and check node

update process during first phase recovery reduces the edges of Partial and Heavy

C − nodes as illustrated in the Fig.5.2. The edge reduction decreases the size of Γj

and β. Smaller is the β, lesser is the computations in the Check Sum method.

Let us consider, P0 and P1 denote the probability that the check node is Zero−

node and Light − node respectively. Then, P0 is the probability the check node has

all zero neighbors and P1 is the probability that the check node has only one non-zero

(xi = 1) neighbor and all other are zero neighbors. P0 and P1 are given by:

P0 = (1− S)L. (5.16)

P1 = (1− S)L−1 · S ·
(

L

1

)

. (5.17)

It is clear that to maximize Zero−nodes and Light−nodes we need to maximize

P0 and P1. Let, FP = P0 + P1. Then,

FP =P0 + P1 (5.18)

d(FP )

dL
=
d(P0 + P1)

dL
(5.19)

=(1− S)L · ln(1− S) + (1− S)L−1 · S + LṠ · (1− S)L−1 · ln(1− S). (5.20)

To maximize FP we equate (5.20) to 0 and approximating −ln(1 − S) ≈ S, we get

L=1. From (5.16) we see that for L = 0, P0 = 1. However, taking row-weight

L = 0 or 1 do not make any sense in compressive sensing because, when L = 0

we are not taking any samples and when L = 1 we are taking only one sample in

each measurement, it means in each measurement, we either sample only 0 or only 1.

This violates the basic norm of compressive measurement that each measurement in

compressive sensing is linear functionals of numbers of samples. So, taking L = 0 or 1
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is not feasible in compressive sensing. To illustrate this, in the Fig. 5.3 we show P0, P1

and FP for S = 0.1 and varying L. Hence, it is desirable to maximize Light− nodes.
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Figure 5.3: Probability of zero and light check nodes for different row-weight

Maximizing Light C − nodes has mainly two advantages:

• Light C-nodes reduce the edges of check nodes and makes the graph less denser.

• Light C-nodes after each iteration create new Light C-nodes. Every C-nodes

which has two non-zero neighbors and one of the non-zero neighbors belongs to

Light C-node turns into new Light C-node after edge removal and check node

update process.

Theorem 1 The optimal row weight L for the maximum Light C − node is (1/S).

Proof. Let, P1 denote probability of C − node being Light C − node.

P1 = (1− S)L−1 · S ·
(

L

1

)

(5.21)
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d

dL
(P1) = 0,

(1− S)L−1 · S + L · S · (1− S)L−1 · ln(1− S) = 0,

L · ln(1− S) = −1.

Expanding, −ln(1 − S) = S + S2

2
+ S3

3
+ . . . and for small S, −ln(1− S) ≈ S

L ≈ (1/S) . (5.22)

5.5.2 Encoding and Decoding Complexity

For encoding purposes in both, first approach and the alternative approach, each

measurement requires L, measurements. We make M measurements. Hence, the

encoding requires O (ML) complexity.

The decoding complexity in the first approach depends upon the number of Heavy

nodes and the β of the reduced graph. To decode Zero and Light C − nodes we need

just one search operation. However, for each Heavy C − node, we need one matrix

multiplication and a search operation. For this reason, it is very important to Zero

and Light C−nodes first and reduce the graph by edge removal and check node update

process. However, in an alternative approach, at the cost of physical memory to store

check-sum vector (SUM), the decoding complexity is greatly reduced. In alternative

approach, to decode each C − node, we need only one search operation. Both of our

decoding schemes are faster than the general compressive sensing decoding schemes

for binary sparse signal in [67, 68] as shown in the Fig.5.11.

5.5.3 The Number of Measurements (M)

In our scheme, for successful decoding of all C−nodes and hence recover all V −nodes,

two conditions have to be satisfied.
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1. The non-zero elements of sampling matrix Φ should satisfy (5.7).

2. Each of the V −node should be the neighbor of at least one C−node, i.e. Each

of the variable node should be sampled at least once.

Theorem 2 For successful decoding of binary sparse source from compressed mea-

surement using graph and sum based decoding algorithm, the number of measurements

M is of O (Klog(N)).

Proof. For a bipartite graph with N, V − nodes and M, C − nodes with L C − node

degree, we need M×L of order Nlog(N) for all V −nodes to be sampled in the graph

[76].

Hence, M = O
(

N

L
logN

)

We have, L = O(1/S)

M = O (KlogN)

Lemma 1 The encoding requires the computational complexity of O(ML) = O(NlogN)

5.5.4 The Error Rate (E.R)

Let the error rate of the graph and sum based compressive sensing algorithm for

binary sparse signals be defined as the ratio of numbers unrecovered variable nodes

to the total number of variable nodes. Provided, (5.7) is satisfied, in our scheme, the

variable nodes cannot be recovered only when it is not sampled in the check nodes

(compressed measurements).

Theorem 3 Error rate (E.R) of Graph and Sum based scheme is given by: E.R =
(

1− L
N

)M
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Proof. The probability that a variable node is sampled in one measurement =
(

L
N

)

The probability that a variable node is not sampled in one measurement =
(

1− L
N

)

The probability that a variable node is not sampled in M measurements =
(

1− L
N

)M

The probability that a variable node is sampled inM measurements =
[

1−
(

1− L
N

)M
]

∴ For large N , average numbers of variable nodes sampled = N ×
[

1−
(

1− L
N

)M
]

We have, E.R =
N −N

[

1−
(

1− L
N

)M
]

N

∴ E.R =

(

1− L

N

)M

(5.23)

5.6 Simulation and Results

For simulation purpose, following values are considered unless stated otherwise. We

take the number of variable nodes N = 1000, the sparsity of the binary source S = 0.1

In edge recovery, the number of check nodes recovered in the first phase is very

important factor. More the numbers of C−nodes recovered in first phase, easier and

quicker is the overall recovery scheme. The more numbers of C − nodes recovered in

first phase phase has following advantages.

• The number of edges removed in each iteration increases with number of check

nodes recovered in the iteration. The number of edges removed in each iteration

is given by the numbers of C − nodes recovered× C − node degree.

• It makes the overall V ariable Nodes recovery process faster as the bipartite

graph becomes less dense.

• Only few numbers of C−nodes will be remained for decoding using Check-Sum

method.
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In the Figs. 5.4 and 5.5 we compare the first iteration recovery of C − nodes in

our scheme with that of in Binary Tree scheme in [72, 73].
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Figure 5.4: Probability of Check Nodes Recovered in First Iteration (CNRP)

Fig. 5.4 shows the probability of check nodes recovered (CNRP) in first iteration

for different sparsity and different row weight (L). We can clearly see that at each L

and sparsity the CNRP is greater than that of in Binary Tree scheme. It also shows

that for the given L, the CNRP decreases as the sparsity increases. So it is necessary

to decrease the row weight in high sparsity signal to increase the CNRP. However,

in all instances the CNRP in our scheme is greater than that of in the Binary Tree

scheme.

To address the low CNRP for large sparsity is desirable to take the row weight

L of the sampling matrix of the order O
(

1
S

)

as discussed in 5.5.1. In the Fig. 5.5,

we show the number of check nodes recovered in first iteration for different sparsity.

The row weight L is taken to be 1
S

and the number of measurements (C-nodes) (M)

is taken as 300.
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Figure 5.5: Numbers of Check Nodes Recovered in First Iteration (CNRN)

From the Fig. 5.5 we can clearly see that in our scheme, out of 300 C − Nodes,

about 225 are recovered in the first iteration itself whereas in Binary Tree scheme the

number is as low as 100.

In our scheme, it is necessary that all the V − nodes be neighbor of at least one

C − node. Whenever, a V − node is not a neighbor of any C − nodes, that particular

V −nodes remains unrecovered and increases the Error Rate. In the Fig. 5.6, we can

clearly see that for the given number of measurements, the Error Rate decreases as

the row weight increases. However, this increases in performance is achieved by some

cost in decoding time as shown in the Fig. 5.7.
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Figure 5.7: Row weight and Decode Time

Fig. 5.8 shows the performance of our scheme for various row weight and sampling

rate. It is clearly seen that the Error Rate decreases as the sampling rate increases.
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We can also see that for the same sampling rate, the error rate decreases as the row

weight is increased.
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Figure 5.8: Error Rate for different Sampling Rate and Row weight

We can clearly see from the Fig. 5.8 that the simulated error rate is very close to

the error rate calculated in the section 5.5.4. Hence, our calculated error rate (5.23)

expression is validated through the experimental results as well.

In [67] and [68], the general l1 minimization method is modified for the Binaray

signal source. A new reconstruction constraint is used to bound the reconstruted

signal values within, 0 ≤ x̂ ≤ 1, in [67]. A similar approach is used in [68] where

the optimization is iterated using the weight factor. These methods perform com-

paratively better than general l1 method for binary signal. However, in both of

these schemes, the reconstructed binary signal values lie in the continious range of

0 ≤ x̂ ≤ 1 instead of giving discreet values 0 or 1. In the Fig. 5.9the original binary

singal and reconstructed signal using the l1 binary and our scheme is shown. In the

Fig. 5.9, (A) is the original Binary signal, (B) is the reconstructed signal using l1
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binary method and (C) is reconstructed signal using our scheme.
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Figure 5.9: Original and Reconstructed Signal using Binary l1 and Our Scheme

For a better pictorial representation of the original and reconstructed signal in

the Fig. 5.9, the simulation has been carried out for the binary signal of length

(N = 250), Sparsity (S = 0.1) Row-weight (L = 20) and Sampling Rate (S.R = 0.2).

We can clearly see that the scheme has better reconstruction that the l1 binary scheme.

Besides, the reconstructed signal using l1 Binary method is continuously distributed

over 0 ≤ x̂ ≤ 1.

In Binary l1 scheme, the reconstructed signal values are in the range of 0 ≤ x̂ ≤ 1.

We modify this scheme slightly. We put the threshold 0.5 to make a decision if the

reconstructed spike is 0 or 1. Fig. 5.10 shows the error rate comparison of our scheme

and the Binary l1 scheme with threshold.
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Figure 5.10: Error Rate Comparison with Binary l1 scheme with threshold
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Figure 5.11: Decode Time comparision Binary l1 scheme with threshold

We can clearly see that for row weight of 30 at low sampling rate of 25%, the

error rate of our scheme is in the order of 10−4 whereas, the error rate in binary
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l1 method is in the order of 10−2. At very low sampling rate our scheme has very

good performance rate compared to the binary l1 scheme. When the sampling rate

is increased binary l1 has slightly better performance than our scheme, however, the

error rate in both schemes are in the same order. It should be noted that the error

rate in our scheme is solely because of the un-covered V −nodes. Moreover, Fig. 5.11

shows that our schemes takes comparatively very less time for decoding and small

gain in error rate performance is achieved at very high cost of decode time in binary

l1 method.

In the Section 5.3.3, we discussed about the check-sum method and heave nodes

degree β. Large values of β, makes the check sum method computationally complex.

However, the iterative edge-recovery and check nodes update process make the heavy

nodes degree very small. In the Fig.5.12 we show the maximum beta occurrence rate

for S = 0.1, L = 30 and M = 300. The result provided is an average of 10,000

experiments.
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We can clearly see the distribution of maximum β peaks around 3−5. This shows

that the iterative edge removal and check nodes update process effectively reduces

the heavy check nodes degree and makes check-sum method simple and feasible.

5.7 Conclusion

In this chapter, we presented a novel compressive sampling and decoding method for

Binary Sparse Signal using Graph and Check-Sum method. We modeled the binary

compressive sensing method as the Bipartite graph and implemented the edge recovery

scheme. Edge recovery scheme in itself cannot guarantee the complete decoding. To

overcome this drawback, we designed a unique sampling matrix for the binary sparse

source. We showed that consequences of row weight of sampling matrix in edge

recovery as well as overall recovery performance. We also formulated the error rate

of our scheme for a given row weight and number of measurements. We compared

our scheme with Binary tree recovery method and Binary l1 method. Binary sparse

source is found in many real life applications. For instance, in event detection scheme

in wireless sensor network, in spectrum occupancy decision and binary images, the

source can be modeled as the binary signal. In these applications, our scheme can

find appropriate applications.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this thesis, we have proposed compressive sensing based spectrum sensing for wide-

band cognitive radio networks. In wideband cognitive radio networks conventional

spectrum sensing is less feasible because of the data sampling and acquisition cost.

A new paradigm in data sampling and acquisition, called compressive sensing is an

effective approach for wideband data sampling. Compressive sensing possess an abil-

ity to reconstruct the certain class of compressible original signal from fewer numbers

of samples than conventional point-to-point data sampling schemes. Unlike in tra-

ditional data compression, compressive sensing not only compresses sampled data,

the compression process in itself is embedded in the sampling process. In this light,

compressive sensing, in one hand reduces the number of samples and in the other

hand it also relaxes the number of sensors and sensing points in the sampling process

itself. These features make compressive sensing very feasible and attractive for data

acquisition and sampling purposes.

In the Chapter 2, we briefly discussed about the spectrum scarcity and evolution

of cognitive radio technique to address spectrum scarcity problem. Various challenges

in implementation of cognitive radio such as power constraints, and spectrum sensing

is briefly discussed. A brief introduction to spectrum sensing approaches and com-

pressive sensing is discussed. In the chapter 3, we proposed compressive sensing based

spectrum sensing for single network cognitive radio system. Proposed wideband com-

pressive sensing based spectrum sensing method has good performance in terms of

both detection probability and error in energy of reconstruction. We also investigated
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various compressive sensing algorithms and their performance in spectrum sensing.

Compressive sensing based joint spectrum sensing in frequency overlapping net-

works is proposed in the Chapter 4. In many spectrum sensing schemes the geo-

temporal diversity of spectrum occupancy is overseen and all CRs are assumed to be

synchronized during sensing period. However, in large networks, this assumption is

very optimistic and deviates far from the practical scenario. Frequency overlapping

networks also comes into picture in multi-hop networks, multi-band operating de-

vices. We proposed joint spectrum sensing using compressive sensing and developed

joint reconstruction scheme for such frequency overlapping network. We exploit the

joint sparsity of the overlapped region to have better spectrum sensing performance

at minimal cost. Proposed joint spectrum sensing and reconstruction method have

shown to perform better than the individual reconstruction and LASSO consensus

scheme.

A novel compressive sensing scheme for Binary signals is proposed in the Chapter

5. Binary signals pictures into many practical applications such as detection problems,

black and white images, group testing, binary classification etc. We implement the

bipartite graphs to represent the binary compressive sensing process. A unique, but

universal sampling matrix for binary signal is developed. We first implement edge

evolution concept from error control coding to make the bipartite graph less dense

and then implement check-sum method to completely decode all the variable nodes in

the system. Our proposed scheme stands out from conventional optimization based

compressive sensing scheme in terms of both, decoding accuracy and decoding time.

In totality, in this thesis, we have proposed compressive sensing based spectrum

sensing for cognitive radio networks and also presented a novel binary compressive

sensing scheme. However, there exists ample of space to improve and enhance in

future work. Spectrum sensing in multiple Geo-Temporal-Frequency domains can be

an interesting new research space to look into. Spectrum diversity can be modeled in
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the Geo-Temporal-Frequency domain and their inter relation can be used to enhance

the spectrum sensing performance. Our proposed compressive sensing for binary

signals can be used in many practical applications such as even detection in wireless

sensor networks, binary image sampling and reconstruction, small scale classification

problems etc.

6.1 Future Works

Current works in spectrum sensing and our work in this area are bounded on the

assumption that the spectrum occupancy state is static according to the Geo-temporal

and frequency domain. It is considered that if a channel has some occupancy state

busy or idle at any region or time, the occupancy state is same at any other location.

Besides, the correlation between the channel occupancy state in geographical and

temporal region is also not considered. If we model the channel occupancy state and

their correlation in geo-temporal or even frequency region then we can exploit this

prior correlation information in multi-dimensional spectrum sensing.

Figure 6.1: Spectrum occupancy state variation in spatio-temporal region

In the Fig. 6.1, we can see that the spectrum state variation according to the ge-
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ographical and temporal region [77]. By modeling this correlation between the spatio

-temporal spectrum occupancy distribution, multi-dimensional spectrum sensing can

be carried out.

In the Chapter 5, we have developed a novel compressive sensing method for

binary sparse signal. Binary sparse signal comes into application in many areas such

as event detection in wireless sensor networks. In wireless sensor networks, an event

is modeled as 1 whereas, no-event is modeled as 0 [65, 66]. In this case, the signal

under consideration is Binary sparse signal so our approach can be used in this kind

of network for sparse event detection.

The current compressive sensing algorithms based on l1 minimization process takes

longer decoding time as discussed in the Chapter 5. Let us consider a dynamic wireless

sensor network where the sensor events changes very rapidly with time as shown in

the Fig. 6.2.
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Figure 6.2: Wireless sensor network with dynamic and rapid event changes

When the time difference between the state change in the network is very short, i.e.
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(t2− t1) is very short, there is high probability that the optimization based schemes,

which takes longer decoding time fail to detect those changes. In these cases, we

need very fast decoding approach. In the Chapter 5 we have already shown that our

scheme takes comparatively very short decoding time compared to the optimization

based schemes. Hence, our scheme can be very beneficial in such scenarios.
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