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CHAPTER I 
 

 

INTRODUCTION 

I.1 Current Electric Grid 

                       It is an undeniable fact that electric power is one of the major and most important 

technologies that led to the rapid industrialization and globalization in the twentieth century. The 

electric power grid is over a century-old and is considered to be the largest and most complex 

interconnected physical system on earth. Due to its vastness, complexity and being inextricably 

linked to human development and involvement, it is termed to be an ecosystem in itself. Globally, 

there are more than 9,200 electric generating units with more than 1,000,000 megawatts of 

generating capacity and connected to more than 300,000 miles of transmission lines [1]. Life on 

earth is totally dependent on energy in some form or other. As a matter of fact, an abundant and 

sustainable supply of energy is key to solving a plethora of global problems. Furthermore, 

prosperity of a nation is highly dependent on its technological progress, which, in turn, depends 

on the availability of affordable energy in various forms. With the exponential growth in global 

economy and incessant population growth, there has been an increasing pressure on energy 

resources and the environment. Fossil fuel resources are getting depleted and coupled with a long 

list of geopolitical issues, prices are spiraling upwards. Global electricity usage is on the rise and 

there is an increasing demand for higher reliability and better quality of the electric power 

delivered by utilities.
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                       It is a well-known fact that Thomas Edison and Alexander Graham Bell were the 

key architects of the electric power and communication systems respectively. If both were 

somehow transported to the 21st century, Bell would hardly be able to recognize the components 

of today’s communications systems. On the other hand, Thomas Edison will still be able to 

recognize almost all the major components in today’s electrical grid system. This proves the fact 

that the existing electrical power system needs a lot of design improvements and vital upgrades to 

cope up with the 21st century needs. 

                         The current grid works well in what it is designed to do namely keeping the costs 

as low as possible. Also, an important aspect of the power delivery system is that it is to be 

consumed the moment it is generated. It is the epitome of all just-in-time delivery systems. The 

down side of this characteristic is that the entire delivery process would have a cascading effect 

and could prove catastrophic. Also, due to the digital revolution, the demand for higher quality of 

power is increasing at a rapid rate.  

 

Figure I.1 World Electricity Consumption [3] 
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 Due to population growth and increasing reliance on electricity, it is expected that 

global electricity supply will need to be increased by a significant amount. As seen in Figure I.1, 

global electricity consumption is expected to nearly double by the year 2050. More than 10,000 

GW of new generation capacity is needed to fulfill this growing demand. Also, as shown in 

Figure I.2, fossil fuels are expected to be on a depleting trend and such a decrease in supply will 

lead to steep increases in prices, eventually increasing the costs of electricity worldwide. This has 

indeed led to a global resurgence of interest in alternate fuels and sustainable energy generation 

techniques and has gained considerable momentum in the past decade which still continues.  

 

Figure I.2 World Liquid Oil & Gas Projections [4] 

 Due to an increasing awareness of global climate change, the Green Energy 

Revolution has gained considerable importance in the recent past. Renewable energy utilization is 

on the rise and is increasingly being integrated into existing global electric grids. Research in the 

fields of photovoltaic (PV) technology, Solar-thermal systems, Wind Electric Conversion 

Systems (WECS), fuel cells, hydrogen storage etc., has brought an altogether new dimension to 

the electric power industry in the past couple of decades. 
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I.2 Shortcomings of Current Electric Power Grid 

 As already mentioned, the electric power grid is over a century old by now, and 

many of its vital components have been operating beyond their useful life. More importantly, the 

aging workforce of the electric power industry which is clearly shown in Figure I.3 is of a 

growing concern. 

 

Figure I.3 Aging workforce trend (Typical Utility) Source: KEMA 

                       Apart from this, in the U.S, it has been identified that, 70% of the transmission 

lines are 25 years old or older, 70% of the power transformers are more than 25 years old and 

30% of the circuit breakers are more than 30 years old [5]. Further, the short-sighted bureaucratic 

policies of the regulators have led to a life-support level of investment in modernizing the electric 

grid and deepened the operational morbidity of the nation’s electricity system. Automation is still 

at a very low level, especially on the distribution side of the electric grid system. When the 

current electric power system was designed, it was basically intended to serve linear loads 
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supplied with sinusoidal voltages drawing sinusoidal currents. But, with the advent of the 

transistor and solid-state power electronic devices, there has been a surge in the usage of 

technologies that employ these on a very large scale ranging from personal computers and various 

other digital devices to large variable-speed drives which has made life simpler, efficient and 

more convenient in today’s world. The down side of this is that these devices are highly sensitive 

to voltage variations caused by voltage sags, spikes and various orders of harmonics in the system 

[5]. In the absence of appropriate back up supplies, the slightest of interruptions can bring down 

computer servers, critical control systems, assembly lines etc that could prove to be economically 

catastrophic. More importantly, all these constraints are growing at a time when the pattern of 

electricity demand is undergoing a profound shift. On the top of these, there are growing security 

concerns in regard to attacks by terrorists on the current grid to paralyze the day to day businesses 

all across the country. Cyber sabotage on a military electric power installation has the potential to 

severely cripple the US military and Homeland security installations causing a dangerous ripple 

effect across the US.  

                        For a very long time, the electric grid has had a singular mission namely to keep 

the lights on. With an aim to reduce electricity costs, long distance transportation of electricity 

and interconnections are employed to switch between providers to improve reliability. This has 

led to increased stresses on the entire network. This has also led to greater amount of congestion, 

exemplified by the Eastern Interconnection and the network in Southern California. Significant 

sums of money and resources are spent for peak power production and congestion related issues. 

In fact, an analysis done by the New York ISO, California ISO and the Pennsylvania New Jersey 

Maryland Interconnection LLC (PJM) reveal that billions of dollars are spent towards congestion 

and reliability related issues [Y]. Every day approximately half a million Americans experience 

blackouts of two hours or more, and power interruptions cost the US more than $100 Billion each 

year [6]. Also, the current US electric grid has been responsible for three major blackouts just in 
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the past nine years alone, the worst of all being the Great Northeast Blackout of August 2003 that 

affected 50 million people and caused the US economy more than $10 Billion in damages and 

lost businesses [2].  

               The twin problems of unreliability and inefficiency in the current electric system  is a 

product of the overall system’s aging infrastructure and a severe dearth in utility industry 

innovation. The wide array of problems faced by the current grid compounded by increasing 

pressure from the customers for higher reliability and quality of power for their evolving digital 

society, has eventually led to the smart grid movement. However, this would require large 

investments in the energy/power sector as shown in Figure I.4, which was put forth by Lehman 

Brothers in 2007. As seen in this figure, significant capital investments are required for installing 

long transmission lines all across the country which would indeed help to integrate the renewable 

energy generation potential in the central and southwest parts of the country to the high density 

load centers in the East and the West coasts. 

 

Figure I.4 Required electric capital investment Source: Lehman Brothers, 2007 
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Also, significant investment is required to automate the distribution system, which 

currently is the most fragile and outdated segment of the entire power delivery system. Energy 

efficiency programs, pilot projects and research and deployment of technologies associated with 

it will require additional investments. Such investments will definitely bring notable 

improvements in the overall working of the electric grid and transform it into a robust, reliable, 

intelligent (smart) and efficient grid. 

The evolving Smart Grid is expected to provide a means to handle two-way power flows 

and the problem associated with intermittency of renewable energy sources. Also, shaving of the 

peak demand by even a small amount can save millions of dollars with the reduction in the 

number of required standby power plants which is very much possible in a smart grid scenario. 

All of this has created an exciting set of unprecedented challenges and opportunities to the current 

energy/power industry. They will have to deploy and utilize better ways for real-time monitoring 

and control of their existing facilities as well as ways for the consumers to do the same by 

expanded monitoring and control throughout their distribution grids all the way to the consumers’ 

side of the meter. The use of advanced electronics, telecommunications, Internet, wireless sensor 

networks and information systems is imperative to achieve higher efficiency, improved power 

quality, enhanced reliability, lower costs, safety and security. 

I.3 Objective of the Study 

The concept of a Smart Grid has been the biggest and latest technological boom for the 

mature energy and power industry. With Billions of dollars in smart grid investments, it has been 

the topic of significance in an era of climate change and globalization. The effective utilization of 

smart grid technology for bi-directional power flow, integration of renewable energy generation 

sources , and improving the quality and reliability of power supply will require wireless sensors, 

internet and two-way communication protocols and technologies all working in unison. Further, 

intelligent sensing and switching technologies with higher redundancy in the power delivery 
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sector are vital to provide effective avoidance and restoration of power failures. This focuses on 

the electric power network in the Stillwater campus of Oklahoma State University. Possible 

strategies concerning distribution automation utilizing voltage sensors, current sensors and 

distributed generation to transform the current grid into a Smart Grid are discussed. Different 

scenarios are simulated to show the benefits of implementation of such technologies in the current 

electric grid at the Stillwater campus of Oklahoma State University. 

I.4 Organization of the Thesis 

  A brief outline of the chapters that follow are presented next. 

 Chapter II: Review of Literature 

This chapter briefly summarizes the historical evolution of the concept of a smart grid 

and the various factors driving the smart grid movement. Various smart grid technologies and the 

benefits and challenges associated with it are outlined. 

Chapter III: Current Grid at Oklahoma State University 

This chapter presents the current scenario of the electric distribution system at the 

Stillwater campus of Oklahoma State University and its shortcomings. Approaches to improve its 

performance are discussed. 

Chapter IV: Proposed techniques for a smart grid initiative at Oklahoma State University 

Load flow models with and without distributed generation and other elements in the 

current grid at OSU are presented. Different scenarios and the potential benefits of the proposed 

system configurations are studied using the simulation results. Comparisons with the existing 

system and the improvements that would occur are presented. 

Chapter V: Concluding Remarks and scope for further work 

This chapter summarizes the entire study and discuses scope for further work.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

II.1 Concept of a Smart Grid 

Rapid Industrialization, urbanization and incessant infrastructure developments have led 

to a paradigm shift in the way electricity is generated, transmitted and consumed and it has 

resulted in immense stress on the age old electrical grid infrastructure. In addition, challenges due 

to increasing energy demand with higher quality of power and reliability are mounting. The rapid 

increase in penetration of nonlinear loads such as data centers, large variable-speed drives and 

other power electronic devices across the grid have resulted in increased reliability and power 

quality concerns. The concept of smart grid provides a host of solutions to many of the issues 

faced by the current electric grid by taking advantage of next generation technologies such as 

distributed generation, distribution automation, energy management systems, advanced metering 

infrastructure (AMI), renewable energy generation technologies, plug-in hybrid electric vehicles, 

two-way wireless communication and internet, to name a few.  

Increased awareness of the depletion of energy consumption and environment, need for 

safe and steady operation of the power grid to provide high quality and reliable power supply to 

consumers in the digital age have thrust activities in the realm of smart grid to the forefront 

throughout the world [7, 8].   
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II.1.1 What is a Smart Grid 

 

Figure II.1 Smart Grid concept (Source: EPRI) 

 The basic concept of a Smart Grid is to add monitoring, analysis, control, and 

communication capabilities to the national electrical delivery infrastructure to maximize the 

throughput of the system while reducing the energy consumption. The smart grid will allow 

utilities to move electricity around the system as efficiently and economically as possible [7]. 

As illustrated in Figure II.1, the smart grid can be defined as a system that employs 

digital information and control technologies to facilitate the deployment and integration of 

distributed and renewable resources, smart consumer devices, automated systems, electricity 

storage and peak-shaving technologies [9]. Some of the other definitions of the smart grid are: 

• Convergence of information technology and communication technology with power 

system engineering. 
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• The smart grid is a broad collection of technologies that delivers an electricity network 

that is flexible, accessible, reliable and economic. Smart Grid facilitates the desired 

actions of its users and these may include distributed generation, deployment of demand 

management and energy storage systems or the optimal expansion and management of 

grid assets [10].  

• A smart grid is an electricity network that can intelligently integrate the actions of all 

users connected to it – generators, consumers and those who do both – in order to 

efficiently deliver sustainable, economic and secure electricity supplies [11]. 

• Application of digital information technology to optimize electrical power generation, 

delivery and end use. 

• Interaction of geographically dispersed equipment being able to perform coordinated 

operations through better communications and control. 

• Set of advanced technologies, concepts, topologies and approaches that allow generation, 

transmission and distribution to be replaced by organically intelligent, fully integrated 

services with efficient exchange of data, services and transactions. 

• Intelligent response and interaction between supply availability and demand. 

With increased automation, especially in the form of sensors at distribution levels, the 

smart grid will significantly enhance and improve the quality and the amount of data 

processed by the sensors and metering infrastructure. Such an approach would not only 

significantly improve the efficiency, power quality and reliability of the entire system but will 

also lead to increased customer participation, reduction in peak demand, reduced financial 

losses and more importantly reduced CO2 emissions and other environmental impacts. 
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II.1.2 Scope of a Smart Grid 

 Though a clear and concise definition of the Smart Grid is still evolving, there are several 

characteristics that remain common to many smart grid architectures. These characteristics 

clearly define the Smart Grid’s potential benefits to the overall electric power system. They 

are: 

� Anticipates and responds to system disturbances in a self-healing manner 

� Incorporates information and communication technologies into every aspect of 

electrical generation, delivery and consumption in order to  

• Minimize environmental impacts 

• Enhance markets 

• Improve reliability and service 

• Reduce costs and improve efficiency 

� The smart grid further employs digital information, distribution automation and 

various control strategies to facilitate deployment and integration of 

• Distributed Energy Resources 

• Renewable energy generation 

• Automated systems 

• Energy Storage systems 

• Peak shaving technologies 

� Accommodates all types of generation techniques and energy storage options 

� Provides higher power quality required for the 21st century digital economy 

� Operates effectively and optimizes the utilization of existing and new assets.   

� Operates resiliently and effectively against attacks and natural disasters. 
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Table II.1 shows a comparison between the traditional or the current electric grid and the 

proposed smart grid. 

TRADITIONAL GRID SMART GRID 

Centralized Generation Distributed Generation 

No energy Storage Energy Storage 

One way Communication Two way communication 

Electromechanical Digital 

Manual Restoration Self-healing 

Failures and Blackouts Adaptive and Islanding 

Reactive Approach Proactive Approach 

Total control by Utility Increased customer participation 

Lack of real time monitoring Extensive real time monitoring 

Slow Reaction time Extremely quick reaction time 

Table II.1 Comparison of traditional grid and smart grid 

 It can be clearly seen that effective two-way communication in a Smart grid will help in 

significantly reducing the peak demand as well as the overall consumption. Further, higher 

penetration of renewable energy generation technologies will reduce CO2 emissions and the 

associated global warming. Effective and well planned operation of the smart grid will lead to 

reduced operational costs, increased reliability, power quality and operating efficiency while 

optimizing asset utilization. 
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II.2 Need for a Smart Grid 

II.2.1 Power Quality 

  In the past, power quality denoted the ability of electric utilities to provide 

electric power without interruption. But with higher penetration of non-linear loads, digital 

devices and other advanced power electronic equipment, power quality at present 

encompasses any deviation from a perfect sinusoidal waveform which includes 

Electromagnetic Interference (EMI) and Radio Frequency Interference (RFI) noise, 

transients, surges, sags, brown outs, black outs and any other distortions to the sinusoidal 

waveform. Harmonic distortions, a serious power quality issue can cause overheating of 

transformers, malfunctioning of equipment and even cause damage to the digital electronic 

control systems in operation. With increasing density of sensitive equipment on the electric 

grid, there is increasing pressure on the regulators to lay strict rules regarding power quality 

issues.  

  In a smart grid system, smart meters installed at end user locations have the 

capability to determine the THD (Total Harmonic Distortion) of the supply voltage. Such 

information will allow the utilities to determine the source of harmonic distortions. The 

location where the maximum THD is observed on the feeder can be assumed to be the source 

of the harmonics and remedial measures can be taken accordingly [12]. 

II.2.2 Increasing Renewable Energy Integration 

  The integration of renewable energy generation technologies is increasingly 

gaining importance due to concerns about global warming. At present, penetration of 

renewable energy generation is very low and can be handled by the current electric grid 

reasonable well. However, as the penetration increases, serious improvements and 
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modifications would be needed to accommodate and integrate variable (stochastic) 

generation. 

 

Figure II.2 Electric grid showing key elements of the FREEDM system [13] 

With higher penetration levels, the electrical grid would require more fast-start and fast-

ramping resources to make up for the generation shortfalls when such resources are not operating 

at their expected output levels [14]. Considerable amount of research is going on in this field and 

proposed systems such as the Future Renewable Electric Energy Delivery and Management 

(FREEDM) illustrated in Figure II.2 promises many of the issues. The objective is to have an 

efficient electric power grid integrating highly stochastic, distributed and scalable alternative 

generation sources and energy storage with existing power systems to facilitate a green and 

sustainable energy based society, mitigate the growing energy crisis and the impact of carbon 

emissions on the environment [13]. Thus the introduction of smart grids will not only reduce 
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greenhouse gas emissions but also encourage increased integration of renewable sources and 

energy storage assets with the electric power grid. 

II.2.3 Technology Development 

   The current electric grid severely lacks automation, especially on the distribution side of 

the grid. Though real-time load monitoring is used in the current system, they lack the ability 

to integrate information from a wide array of sources and equipment resulting in reduced 

situational awareness. Further, with an increase in energy efficiency programs, there is a 

severe shortfall in the ability to understand and act on the acquired data. Figure II.3 shows the 

technological evolution of the smart grid.    The move to increasingly active distribution 

networks with stochastic generation, energy storage, and controllable and observable load is 

going to change the way electric power networks are planned and operated [15].  

 

Figure II.3 Evolution of Smart Grid [16] 
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II.2.4 Peak Demand Reduction 

  As explained in the previous chapter, electricity is the epitome of the just-in-time 

process since electricity must be consumed the moment it is generated. Peak demand occurs 

during times of greatest need for electricity and prices of the same being at its highest. Due to 

a lack of anticipation of the time and nature of peak demand at a particular time, utility 

operators are forced to operate peaking plants longer than what is necessary to meet the 

demand and maintain availability of power. The generating units that meet the peak demand 

are generally expensive to operate since the fuel used in these plants are bought on the 

volatile “spot” market and most of the time are fossil fuels that contribute extensively to 

greenhouse gas emissions.  

  By introducing smart grids, advanced metering infrastructure, demand response 

and increased customer participation significant reductions of the peak demand will result. 

Such a smart grid implementation would help utilities drive down costs and in some cases 

even eliminate the use of these plants thus saving the planet from carbon emissions.   

II.3 Smart Grid Technologies 

II.3.1 Advanced Metering Infrastructure 

  The evolving smart grid is built upon distribution automation [17]. For a long 

time the term smart grid, especially from the vendors’ side, has been synonymous to smart 

metering, the advanced metering infrastructure (AMI) being the main focus of discussion 

involving smart grids [19]. An advanced Energy Management System (EMS) coupled with 

smart metering (at the end user level) as is shown in Figure II.4 would offer a variety of 

opportunities to reduce energy consumption and for peak shaving. The Smart Home Area 

Networks (HAN) would strengthen demand side programs and with advanced functionality of 
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the advanced metering infrastructure the following additional functionalities would be 

realized: 

• Real-time pricing/Time-of-use pricing 

• Peak demand shaving 

• Demand profiling 

• Remote condition monitoring of sensitive equipment 

• Load monitoring 

• Outage detection and islanding 

Figure II.4 AMI composition, structure and Data flow diagram [18] 

  Smart meters and other remote digital electronic devices that can be reached through a 

two-way communication network can generate massive amounts of data which need to be 

organized in a synthetic fashion to make them accessible to various users within the utility 

organization [12]. With an enhanced two-way communication technology, dynamic pricing 

models and load shedding techniques, load distribution management and reduction in peak 

demand can be achieved effectively and efficiently. It is also very important that the control 

center resynchronizes the pricing signals with the utility side database at regular intervals, which 
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could otherwise jeopardize consumer’s billing data and plan of action for energy conservation. 

Further, features such as data recording, power monitoring and tamper protection can prove vital 

in the long run. 

II.3.2 Demand Response 

 Demand response (DR) is an important ingredient of the emerging Smart Grid paradigm 

and an important element in market design to keep the potential market power supply in check 

[20]. DR refers to the policy and business areas whereby electricity customers reduce or shift 

their electricity use during peak demand periods to ‘price signals’ or other type of incentives. 

  In recent years, DR has gained considerable interest among regulators and the 

government due to its economic and socio benefits. Texas being a leader in renewable energy 

generation, experienced a sudden, unanticipated and dramatic drop in wind power generation one 

afternoon in early 2008 causing a shortfall of around 1300 MW in just three hours. At this 

juncture, an emergency demand response program was initiated in which large industrial and 

commercial users restored most of the lost generation within ten minutes, acting as a buffer for 

this intermittent resource. This is an excellent example of smart grid principles in action [1]. 

Demand response technologies which primarily focus on end user technologies such as smart 

meters, time-of-use (TOU) pricing, and smart load controlling devices will increase customer 

participation providing tangible results for utilities and consumers in terms of economic benefits. 

The end users/building management offices may make use of the energy or demand prediction 

logic of smart meters to implement their peak shaving programs such as switching off some 

chiller loads to reduce the peak and save both electricity and money as well [21]. Thus, with more 

awareness and understanding of the smart grid technology and demand response programs 

consumers will be able to increase financial benefits and personal convenience, at the same time 

reducing greenhouse gas emissions. 
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 II.3.3 Optimal Asset utilization and Operating Efficiency 

  One of the most important features of the smart grid is to increase the operating 

efficiency of the overall grid and reduce operations and maintenance costs of the electric power 

grid. The smart grid employs technologies that essentially make use of information including grid 

operating parameters and real-time data of reflecting the state of health of equipment etc, 

monitors equipment condition to detect the degradation in performance level, assesses its 

reliability to optimize its operation, even develop condition-based maintenance strategy according 

to fault type, and analyze its failure and maintenance characteristics to predict its life-span during 

its life cycle [22].  

 

Figure II.5 Transformer reliability comparison [23] 

 A comparison of transformer failure rates with and without monitoring is illustrated in 

Figure II.5. It clearly shows that the risk of failure is around 0.7% without monitoring. With 

condition monitoring implemented to have a more proactive approach, the risks of catastrophic 
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failures decreases to 0.028% which is 2.5 times less than having a reactive approach. Thus, the 

annual expenditure on maintenance can be reduced significantly with smart grid implementation.  

II.3.4 Energy Storage 

  With increasing cases of blackouts, low power quality and increase in renewable 

energy generation, energy storage has become a major concern, leading to aggressive investments 

in energy storage technologies. Economic energy storage is highly desirable for peak shaving and 

power quality improvements. Energy storage devices enable the power system network to [24]: 

• integrate renewable sources with the power system by converting them into a smoother 

and dispatchable format; 

• provide ride through capability when the distributed generation fails to supply required 

energy; and 

• manage the amount of power required to supply during peak power demand by storing it 

during off peak hours 

Storage systems such as batteries (BESS), flywheels (FES), compressed air 

(CAES), pumped hydro (PHS), ultra capacitors (UC), super conducting magnetic energy storage 

(SMES), hydrogen storage etc. store energy in different forms such as electrochemical, kinetic, 

pressure, potential, electrostatic, electromagnetic, chemical, and thermal [25 - 29].  

Lead Acid batteries are still used on a large scale due to their low cost and 

ruggedness but are losing popularity because of weight and power density issues. Sodium Sulfur 

(NAS) battery systems which are  already in use at grid level by Tokyo Electric Power Company 

(TEPCO) since 1980’s and are gaining much popularity due to their high power and energy 

densities, temperature stability, low cost and good safety [30]. Such storage technologies can 

complement the current power plants for peak shaving, emergency power supply, uninterrupted 

power supply and can be integrated later with various renewable energy generation resources. 
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Lastly, the value of energy storage technologies must be assessed with consideration to costs of 

installation in the short term, maintenance costs and revenue or savings provided by the energy 

storage in the medium term, and finally the potential long term benefits to the overall electricity 

infrastructure [31, 32] 

II.4 Smart Grid challenges 

II.4.1 Technical challenges 

  The smart grid is at a nascent stage of development. As such there are numerous 

technical challenges to be overcome [34, 41, 42]. 

• Merging planning and real-time analysis 

• Very large system models 

• Handling a large amount of AMI data 

• AMI-based decision making  

• Time series simulation 

• DG integration and protection 

• Cheap energy storage technology 

  Apart from the above, for effective interoperability of smart grid devices, robust 

standards need to be developed. Furthermore, with increased investments in the smart grid sector, 

a number of smart grid technologies are already being implemented in the electric power grid. In 

the absence of universal standards, these technologies face the danger of becoming prematurely 

obsolete or face its security being compromised.  

  Increased dependence on distributed generation, demand side resources and 

distribution system applications significantly increase the systems’ exposure to cyber 

vulnerability [35]. The entire security architecture can be built on existing communication and 



23 

 

technology infrastructures, further merging it with the electric grid to enable the Smart Grid 

implementation at various levels in the electric power system. Furthermore, a robust framework 

for conformity testing and certification of smart grid devices and systems need to be established 

to ensure interoperability and cyber security [33].   

II.4.2 Business & Financial challenges  

 The business case for a smart grid needs to be established for successfully 

deploying the smart grid plans in real world. In its most general terms, a business case provides 

the basic rationale for investment in projects for business change. In the smart grid arena, the 

entities looking into building business cases are primarily network operators and possibly 

electricity retailers and newly emerging players such as generation and demand aggregators [36]. 

The initial capital cost of a full-fledged smart grid deployment would be significantly high and 

justifying it with site-proven benefits is the biggest business challenge facing the utility industry. 

Furthermore, consumers are skeptical about the cost benefits of such an investment as the cost 

benefits appear to be small compared to the investment made. Also, at the macro policy level, the 

power industry needs to meet the requirements of resource-saving and environment-friendly 

society, adapt to climate change and confirm with sustainable environment [37]. Further, sharing 

the cost of common infrastructure across the benefits derived from various applications will 

provide a more realistic cost / benefit ratio for each application in an integrated system for full 

roll out beyond the pilot stage [38, 39]. 

 With so much investments put into the smart grid scenario, it is important for the 

utilities to recover their investment costs. Mostly smart grid is associated with costs savings at the 

consumer end, but it is also vital to note that on a broader perspective smart grids can lead to 

potential savings by increasing the reliability of the electric power grid. For example, with the 

implementation of wide-area measurement systems (WAMS) and phasor measurement units 
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(PMUs), the 2003 great northeast blackout could have been avoided saving the U.S. an 

approximately $10 Billion in economic damages.  

 Lastly, there is a need to address consumer concerns regarding plug-in hybrid 

electric vehicles (PHEVs) in terms of pricing, costs benefits, technical specifications and 

reliability. The plug in hybrid vehicles which will play an important role in future smart grid 

networks are currently very expensive and considered as a luxury rather than a way to save 

money and reduce carbon emissions. At present, the cost of converting a hybrid vehicle to a plug 

in hybrid electric vehicle is high and also there is very little infrastructure in the form of charging 

infrastructure to support this new technology. Also, PHEV’s have still not gained universal 

acceptance as a contributor to reduced greenhouse gas emissions, since the fossil fuel base load 

plants are the ones powering these vehicles. All these issues in the PHEV sector need to be 

resolved to achieve universal acceptance of its technology and thus economic and environmental 

benefits. 

II.4.3 Regulation challenges 

  With investments for smart grid deployment in the form of advanced metering 

infrastructure estimated to be around $27 Billion, and the Brattle Group’s estimation of around 

$1.5 Trillion to update the grid by 2030 (Chupka et al. 2008) it is obvious that the cost factor and 

the regulation to permit the recovery of such investments are the biggest challenges the smart grid 

movement faces. Though the Smart grid is seen as a collection of technologies that enable an 

entirely new way of operating power systems, the utilities and regulators often view it as a 

collection of new kinds of transmission and distribution investments, each yielding unfamiliar 

new products and service streams. The utilities, regulators, and other stakeholders will have to 

evaluate these investments by measuring their value to customers, their impact on utility rates, 

and how customers and generators who use the new capabilities are charged for their use [40].  
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 Today, with increased expectations from the smart grid, regulatory agencies face 

a monumental task of making sure the investements made in this sector do not prove futile. With 

a limited talent pool in this sector and increasing requirement for human resources, the regulators 

need to take up this challenge with determination and perseverance to transform the current grid 

into a smart grid.         
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CHAPTER III 
 

 

CURRENT ELECTRIC GRID AT OKLAHOMA STATE UNIVERSITY 

III.1 Overview 

III.1.1 Design of Distribution Network 

Distribution networks are the most complicated, most reliable, and also the most 

economical means for distributing power [43]. As is commonly done, at Oklahoma State 

University, the distribution system is broken down into three parts namely, the distribution 

substation, distribution primary and distribution secondary.  Voltage level is reduced at the on-

campus substation for distribution to various buildings and other electrical installations in the 

Stillwater campus. OG&E is the primary power supplier for the university.  In addition, the 

university has an on-campus power plant which has an 8 MW generating capacity using natural 

gas as fuel. Due to its small generating capacity, it is limited to power only 18 buildings out of the 

more than 80 building located on campus. It is found that the total cost of generating power and 

transmitting it is higher than purchasing the same amount of power from the utility. Due to such 

an economic constraint, the on-campus power plant keeps the generation of power at a bare 

minimum and the chiller plants are used more frequently for heating purposes all across the 

campus. But during peak load conditions, especially in summer, the on-campus power plant does 

help in meeting the peak demand. 
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Figure III.1 shows one of the six segments of the current distribution system at the 

Stillwater campus of Oklahoma State University. It serves 13 buildings out of which 4 of them 

are considered as critical loads due to the density of sensitive equipment in them and the amount 

of research work being conducted in these buildings. These critical loads are more sensitive to 

power outages and voltage fluctuations. The protection systems used all across the university’s 

distribution grid are fuses manufactured by S&C. The on-campus power plant is not connected to 

the grid shown in Figure III.1, thus lowering the redundancy of the overall distribution system 

under consideration. Also, the number of distribution lines across the university campus is 

significantly large and all the distribution across the campus is done using underground cables. 

As illustrated in Figure III.1, buses are represented as nodes. It is known that there are 

different types of buses, an understanding of which would be very beneficial for this study.  

The different types of buses are basically distinguished depending on their actual, 

practical operating constraints. The two major types of buses and which are of particular interest 

in distribution systems are load buses and generator buses. Load buses are referred to as PQ buses 

since, at the load bus an assumption is made that the power consumption data are provided by the 

end user.  Thus both real power and reactive power are specified for every load bus. In Figure 

III.1, there are 13 load buses namely; Bus 9, Bus 10, Bus 14, Bus 15, Bus 18, Bus 19, Bus 22, 

Bus 23, Bus 31, Bus 32, Bus 35, Bus 36 and Bus 37.  

In principle, at the generator buses P and Q can be specified. However, problems would 

arise with this. The first has to do with balancing the power needs of the system, and the second 

with the actual operational control of generators. As a result, it turns out to be convenient to 

specify P for all but one generator connected to the slack bus, and to use the generator bus 

voltage, V, instead of the reactive power Q as the second variable. Generator buses are therefore 

called PV buses [44].  
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Figure III.1 A segment of the current distribution system layout at Oklahoma State University 
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Table III.1 summarizes the known and unknown variables for the various types of buses 

used in load flow studies. 

Type of Bus Given Variables Unknown Variables (Calculated) 

 

LOAD BUS 

 

Real Power (P) 

Reactive Power (Q) 

 

Voltage Magnitude (V) 

Voltage Angle (�) 

   

GENERATOR BUS  Real Power (P) 

Voltage Magnitude (V) 

Reactive Power (Q) 

Voltage Angle (�) 

   

SLACK BUS Voltage Magnitude (V) 

Voltage Angle (�) 

Real Power (P) 

Reactive Power (Q) 

   

 

Table III.1 Types of buses and associated variables in load flow study 

Using Power World Student v.13 software, load flow model for the current distribution 

system at Oklahoma State University was developed for one segment. With the load data, bus 

voltages and distribution line parameters as known values in the load flow analysis of the system 

under consideration, variation of bus voltages under changing load conditions or outages can be 

calculated. In addition, currents through the different lines can be calculated by the application of 

ohms law to each individual link. Also, it is important to know that all the currents at an instant 

are to be determined in order to compute the overall line losses in the system. Depending on the 

user’s choice of programming the software, the basic output variables such as currents for all the 

lines can be stated in amperes, or it is even possible to express the flow in each and every link in 

terms of the real (Megawatts) and reactive power (MVAr) values.  
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III.1.2 Distribution Substation 

Distribution substation design has been somewhat standardized by the electric utility 

industry based on past experiences. A typical substation may include the following equipments: 

(i) power transformers, (ii ) circuit breakers, (iii ) disconnecting switches, (iv) station buses and 

insulators, (v) current limiting reactors, (vi) shunt reactors, (vii) current transformers, (viii ) 

potential transformers, (ix) capacitor voltage transformers, (x) coupling capacitors, (xi) series 

capacitors, (xii) shunt capacitors, (xiii ) grounding system, (xiv) lightning arrestors/or gaps, (xv) 

line traps, (xvi) protective relays, (xvii) station batteries, (xviii) other apparatus [45]. 

There are two distribution substations on campus, one rated at 14.4 KV and the other at 

24 KV. These substations feed the entire distribution system at Oklahoma State University, 

Stillwater campus. 

 III.1.3. Distribution Feeders 

The majority of the distribution feeders at Oklahoma State University are either radial or 

loop feeder type. It is a known fact that radial feeder designs are most widely used at distribution 

levels all across North America due to its reduced costs and ease of planning, design, operation 

and analysis. But the biggest drawback of a radial system is that it provides a single electrical 

path from the substation to the end user. On the other hand, the loop system such as the one 

illustrated in Figure III.1 has two separate electrical paths to feeding the loads. The network 

feeder systems which are an improvement over the loop feeder systems have multiple paths to 

feed the load. The loop and the network feeders systems help in exponentially increasing the 

redundancy of the entire network. Figure III.2 illustrates the different types of distribution system 

designs.   
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Figure III.2 Simplified illustration of the concepts behind three types of power distribution configurations [5] 

As seen in the Figure III.2, the loop system exactly matches the current OSU distribution 

system under consideration and shown in Fig III.1. The feedback loop in the current system is 

connected from Bus 28 to Bus 33. In terms of complexity, a loop feeder system is only slightly 

more complicated than a radial system – power usually flows out from both sides towards the 

middle, and in all cases can take only one of two routes. Voltage drop, sizing and protection 

engineering are only slightly more complicated than for radial systems [43]. 

 III.2. Challenges 

With a vast main campus consisting of around 80 buildings, it is a monumental task for 

the utilities department to keep the lights ON every single minute of the year. The university does 

have an on-campus power plant with a capability to generate 8 MW of electricity using natural 

gas. Although OSU receives most of its electrical power from OG&E, the OSU power plant acts 

as a system buffer and back up supply. All distribution is done using underground cables for 

aesthetic purposes and as such faces problems such as shifting terrain leading to cracking of 

underground banks, water seepage and higher installation and maintenance costs. 
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As illustrated in Figure III.1, though redundancy is provided by means of a feedback loop 

connected from Bus 28 to Bus 33, the S&C switches and the protection devices being fuses, a 

considerable amount of time is lost in restoring power during power outages. Furthermore, a fault 

on Bus 1 would lead to a complete blackout causing significant financial losses to the university. 

One critical problem with the current distribution system illustrated in Figure III.1 is that during 

times of outages, its own feedback loop has to take care of re-routing power since the on campus 

power plant is not connected to this loop.  This operation leads to disturbance of voltage levels at 

all buses. As discussed earlier, the loads connected to buses 10, 35, 31 and 32 are treated as 

critical loads. These buildings thus consist of a high density of electronic and sensitive 

equipment. Hence, it becomes extremely essential to provide enough redundancy in the electric 

grid connecting these loads to avoid any kind of outages. Also, it is preferred to have the voltage 

levels at other buses maintained above 0.99 p.u. 

Though there have not been any major campus blackouts in the past few years, the 

electrical system needs to be upgraded since it is plagued with various challenges that need to be 

addressed. They are: 

• Significant load growth 

• Not much reliance on distribution automation 

• No uniformity in distribution voltage levels 

• Control center operation not extended to the building level 

• Less investment on power system upgrade schemes 

III.3 Load Flow Study 

Load flow or power flow studies are by far the most important calculations in power 

system engineering, since it calculates the network performance under normal as well as during 

times of faults, disturbances or outages. Load flow calculations allow the designer to ensure that 
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the current in the various branches of a network do not exceed their safe working limits or reach 

an otherwise unsuitable value [46]. It is more importantly used in expansion planning studies and 

by using optimal power flow technique the most economical operation of the current system. The 

results acquired from load flow studies are very helpful in designing appropriate protection 

schemes too. With input data provided such as the distribution system connection diagram, load 

data in the form of real and reactive power, transmission line parameters and transformer 

parameters, the condition and operation of any current system or proposed system can be studied 

and analyzed using load flow studies.  A load flow analysis can provide the following information 

[47]: 

a) Voltages at each bus; 

b) Phase angle for each bus; 

c) Power flow in each line (Megawatts and Megavars); 

d) Megawatt and megavar loss in each line; 

e) Direction of reactive power flow; 

f) Required transformer capacities; 

g) Transformer losses; 

h) Generator and tie capacities; 

i) Transmission line megavolt ampere capacity requirements; 

j) Effects of transformer tap selection; 

k) Line protective relay settings; 

l) Area megawatt and megavar losses; 

m) Total system megawatt and megavar losses; 

n) Power factor of equipment and lines. 
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Further, multiple load flow studies can used to obtain the following information: 

a) Optimum system operation; 

b) Balanced reactive flows; 

c) Effect of future loads (load growth); 

d) Effect of new lines; 

A load flow study on a segment of the current distribution system at Oklahoma State 

University is performed and all of the above results can be obtained as required. The entire 

system comprises of 37 Buses and load data, distribution line parameters and bus voltages are 

used as input data to conduct the study. The following load data are used in the study. 

Load name Real Power      

(MW) 

Reactive Power 

(MVAr) 

Apparent Power 

(MVA) 

Building 1 0.45 0.22 0.5 

 

Building 2 

 

0.36 

 

0.19 

 

0.4 

 

Building 3 

 

0.27 

 

0.11 

 

0.3 

 

Building 4 

 

0.45 

 

0.3 

 

0.54 

 

Building 5 

 

0.04 

 

0.1 

 

0.04 

 

Building 6 

 

0.1 

 

0.06 

 

0.11 

 

Building 7 

 

0.1 

 

0.03 

 

0.1 

 

Building 8 

 

0.18 

 

0.09 

 

0.2 

 

Building 9 

 

0.11 

 

0.05 

 

0.12 

 

Building 10 

 

0.14 

 

0.06 

 

0.15 

 

Building 11 

 

0.15 

 

0.05 

 

0.16 

 

Building 12 

 

Building 13 

 

 

0.02 

 

0.07 

 

0.02 

 

0.03 

 

0.03 

 

0.08 

Table III.2 Load data of a segment of the current OSU Distribution system 
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CHAPTER IV 
 

 

PROPOSED TECHNIQUES FOR SMART GRID INITIATIVE AT OKLAHOMA STATE 

UNIVERSITY 

IV.1 Incorporating Distributed Generation 

Distributed generation, or DG, includes the application of small generators often in close 

proximity to loads, typically ranging in capacity from 15 to 10,000 kW, scattered throughout a 

power system, to provide the electric power needed by electrical consumers. As ordinarily 

applied, the term distributed generation includes all use of small electric power generators, 

whether located in the utility system, at the site of a utility customer, or at an isolated site not 

connected to the power grid [48]. The service availability of a well-designed electric distribution 

system is generally of the order of 99.96%. It becomes increasingly difficult and economically 

less feasible to increase the availability above 99.96% which would also require expensive 

equipment with several levels of redundancy. A high quality DG unit has a service availability of 

about 95%(including time out of service for both scheduled maintenance and unexpected failures 

and repairs). The best units have availabilities in the range of 98%. Thus, it takes redundancy, 

sometimes up to 100% additional capacity, to assure that DG power will always be there. 

Distributed generation is tailorable in both cost and reliability to a degree that the electric utility 

often cannot match [49, 51].
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A micro grid system that includes distributed generation is one of the many ways to help 

the existing distribution system at the Stillwater campus of Oklahoma State University to 

increase its system redundancy, efficiency and improve the voltage profile of the 

network. A possible connection of distributed generation with the current system is 

illustrated in Figure IV.1. This action will result in an improved and more robust system 

as compared to the existing one shown in Figure III.1. 

           Implementation of distribution automation devices in the system such as 

advanced voltage and current sensors with integrated wireless communication technology 

will significantly reduce the outage time and also aid in maintaining a database for the 

various parameters of the complete system under consideration. The important item for 

the sensor assembly is the need for a communication interface with a communication 

network to transport the data to a repository and management system. The accumulated 

data have to be tagged with circuit information before reaching their final destination 

which is the data management system [50]. A large number of advanced voltage and 

current sensors can be deployed by connecting them to feeders and their loads. Such a 

scenario would prove to be economically unjustified and thus it is important to have such 

sensors installed near critical loads only. As illustrated in Figure IV.1, sensors are 

installed on feeders connecting to bus 10, bus 31, bus32 and bus 35, which, as mentioned 

before, are the ones feeding critical loads. With this, critical loads connected to the 

network are protected from outages and voltage disturbances and at the same time this is 

a more economically viable option. 

 Apart from the above, such an automated distributed generation 

configuration will also help the electric power grid at OSU with various other benefits 

such as:  
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• Emergency Power supply – With increasing outages and faults at OSU due to 

increased stresses on the distribution system, emergency power supply is a key 

requirement for critical loads. This can be achieved by distributed generation 

integrated with the current electric grid at OSU.  

• Power quality benefits – There is a steady increase in the power quality requirement 

across the university campus and is expected to increase further in the future.  DG 

and distribution automation can be very useful in improving the quality of power 

distributed across the university. 

• Increase in operating reserve – With more penetration of DG into the current 

distribution system at OSU, an increase in the overall operating reserve can be 

achieved. 

• Economic benefits from peak demand reduction – With DG along with aggressive 

energy efficiency programs, peak demand can be reduced thus financial losses to 

both OSU and OG&E. 
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Figure IV.1 A segment of the current electric grid at OSU with Distributed Generation and added distribution lines 
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IV.2 Discussion of Simulation Results 

 One of the six segments in the existing distribution system at the Stillwater campus of 

Oklahoma State University is modified by adding a 300 kW DG with additional distribution lines 

connecting the DG to buses near critical loads as shown in Figure IV.1. Load flow analysis of this 

system is run considering various scenarios.  Scenario 1 and scenario 3 consider an upstream in-

line fault on the distribution lines which connects bus 4 and bus 3 respectively. Scenario 2 and 

scenario 4 consider downstream in-line faults near bus 34 and bus 30 which connect the critical 

loads through a step-down transformer. The charts presented for various scenarios represent the 

p.u. voltage values at all busses. Further, the bar graphs represent the percentage increase in p.u. 

voltage at all buses for the respective scenarios. 

As illustrated in Figure IV.1, voltage and current sensors are placed near critical load 

buses namely bus 10, bus 31, bus 32 and bus 35. The operational sequence of these sensors for 

the various scenarios are clearly presented in the operational logic diagrams shown in figures 

IV.3, IV.7, IV.11 and IV.15.    

The in-line faults considered in the study is a 3-phase balanced fault. Also, the line data 

used in this study and the load flow results for all scenarios are presented in the appendix.   

IV.2.1 Scenario 1 

As shown in Figure IV.2, for scenario 1, an in-line fault is considered between bus 2 and 

bus 4. Such faults occur on a more frequent basis, the worst being a 3 phase balanced fault. This 

would cause the protective device on the respective feeder to come into effect and accordingly 

take appropriate corrective action. In case of the OSU distribution system, fuses are used as 

protective devices which, in case of a fault, would cause it to open thus avoiding a cascading 

effect and preventing the fault from propagating upstream. With the newly proposed system 

consisting of distributed generation and automated voltage and current sensors connected at 
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critical load points, a complete blackout scenario can be avoided. But it is highly important and 

essential that the operation of the proposed system takes place in a planned way as shown in the 

operational logic diagram shown in Figure IV.3. This would improve the overall voltage level at 

all buses and provide effective redundancy to the overall system. More importantly, it would help 

in safeguarding the critical loads from an outage situation. It is important to note that in this 

study, the DG is always in the ON state.  

With the use of advanced voltage and current sensors in the proposed system, it is 

important to arrange a predetermined set point for each. If the voltage or current in the circuit 

goes below or above the set value respectively, the sensors would automatically take corrective 

action. The voltage and current set points in this case would be 0.994 p.u. and 400 Amp 

respectively. As in this scenario, when an in-line fault occurs between bus 2 and bus 4, it is 

observed that the voltage levels at various buses decreases significantly as illustrated in Figure 

IV.4. During such an instance, the voltage sensors at bus 4, bus10 and bus 35 which continuously 

compare the bus voltage with the reference values will activate as the voltage at the 

corresponding bus is observed to go below the predetermined value. When such a scenario 

exceeds a certain time duration (which needs to be considered to avoid corrective operation of 

voltage sensor during a voltage flicker or voltage sag), the voltage sensors will automatically send 

a signal via the communication line to the central station, leading to the switching ON of the line 

connecting bus 34 and bus 38 and distribution line connecting bus 38 and bus 8. Such a 

coordinated operation needs to be performed in this case, as it is observed that the voltage levels 

at both buses 10 and 35 drop below the predetermined set point. 

 On the other hand, the protective device (fuse) connected between bus 2 and bus 4 

will operate due to the rise in current above the allowable limit. If an automated protective device 

is considered to be in use instead of the fuse, the current sensors located at bus 35 and bus 10 

which continuously compares the current through the circuit to the reference will send a signal to 
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the protective device to operate during such an overcurrent fault situation. Also, at the same 

instant, a signal is sent to the control station to activate the distribution line connecting the DG to 

the affected buses. Since OSU uses fuses as protective devices in its distribution system, an 

overcurrent condition would lead to the opening of the circuit. For restoration of power, it thus 

becomes mandatory to replace the fuse in the circuit which, further requires physical plant 

services personnel to go to the fault location and take corrective measures. Once the cause of the 

fault is identified and fixed, the line can be restored and if the voltage and current sensed by the 

sensors are within limits, the distribution line connecting the DG and the critical buses switches 

off automatically.   
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Figure IV.2 A segment of the current OSU Electric Grid with Distributed Generation & with in-line 
fault between Bus 2 and Bus 4 
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Figure IV.3 Operational logic for in-line fault between Bus 2 and Bus 4 
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  As shown in Figure IV.4 and Figure IV.5, a well-planned and coordinated 

operation of the proposed scheme results in significant improvement in the bus voltage levels at 

various nodes in the grid and more importantly at the buses connected to the critical loads. 

 Even if there are multiple in-line faults in the distribution lines connecting to 

buses 8, 34 and 4, the voltage and current sensors will act according to the same operational logic 

as shown in Figure IV.3. If the voltage and current values at the buses under measurements are 

out of preset limits, the operation of re-routing power using DG will again come into effect.   

 

Figure IV.4 p.u. voltage at all buses during in-line fault occurrence between Bus 2 and Bus 4 
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Figure IV.5 p.u. voltage percentage increase with DG in system and in-line fault between Bus 2 and Bus 4 

IV.2.2 Scenario 2 

As illustrated in Figure IV.6, an in-line fault is considered between bus 33 and bus 34. 

This is a downstream fault and thus less severe as compared to the previous case in which an 

upstream fault was considered. But, since a critical load is connected to bus 35, an outage at bus 

34 will prove to be catastrophic. The load connected to bus 35 being a research building, loss of 

power to this load would lead to significant financial loss.  

With the proposed system, such a scenario is eliminated due to the re-routing of power 

provided by the DG connected to bus 34. The entire operation of the proposed system would take 

place as illustrated in the operational logic diagram shown in Figure IV.7. When an in-line fault 

occurs between buses 33 and 34, the voltage level at bus 35 drops to zero and thus triggers the 

voltage sensor installed on the same bus. During an occurrence of such a fault, the voltage sensor 

sends a signal to the central station prompting to switch on the line connecting bus 34 to bus 38 at 
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which the DG is installed. At the same time, the fuse which operated due to the fault current is 

replaced and the line is restored back to normalcy.  

Once that done, the voltage and current sensors again compare the voltages and currents 

at bus 35. If observed to be within acceptable limits, such a scenario would further make the 

sensors to send a command signal to switch off the line connecting the DG and bus 34. As clearly 

illustrated in Figure IV.8 and Figure IV.9, the voltage levels at bus 34 and bus 35 are restored. 

Thus the well-coordinated operation of the proposed scheme effectively avoids an outage at the 

critical load bus 35. 

 In short, such a type of network operation makes sure that, there is no outage at critical 

buses and also the voltage levels at all other buses are maintained within acceptable limits. The 

immediate re-routing of power avoids any kind of outage time thus making the entire distribution 

network under consideration more redundant, efficient and cost effective.  
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Figure IV.6 A segment of the current OSU Electric Grid with Distributed Generation and in-                           
line fault between Bus 33 and Bus 34 
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Figure IV.7 Operational logic for in-line fault between Bus 33 and Bus 34 



49 

 

 

Figure IV.8 p.u. voltage at all buses during in-line fault occurrence between Bus 33 and Bus 34 

 

Figure IV.9 p.u. voltage percentage increase with DG in system and in-line fault between Bus 33 and Bus 34 
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IV.2.3 Scenario 3 

This case is similar to scenario 1, where the occurrence of an in-line fault between bus 2 

and bus 4 was considered. In this scenario, as shown in Figure IV.10, the occurrence of an 

upstream in-line fault is assumed to be between bus 2 and bus 3. It is observed that due to the 

opening of the fuse connected in the line between bus 2 and bus 3, the voltage levels at various 

buses in the system are affected significantly. It is observed that there is no outage created at any 

bus due to the feedback loop provided which initiates re-routing of power during such an 

upstream fault scenario. But since drop in voltage levels at the critical buses are of particular 

concern, the proposed system will provide a much more effective way of handling such faults or 

outage situations. During such an upstream fault scenario, the operation of the proposed system 

would work according to the proposed operational logic diagram shown in Figure IV.11.  

For this case, the variation of the voltages at buses 10, 31 and 32 are clearly shown in 

Figure IV.12. As illustrated, the voltage levels at a number of buses fall sharply due to the outage 

at bus 3. More importantly, there is a sharp decrease in the voltage level at the critical load buses, 

namely bus 31 and bus 32. Since, these buses are serving critical loads; such a situation could 

prove far worse especially during peak load conditions. Again, in such a fault condition, the 

voltage sensors at bus 31 and bus 32 will measure the bus voltages against the reference voltage. 

As observed in this operation, the voltages at the critical buses are observed to drop below the 

reference level which in this case is 0.994 p.u.; thus triggering the voltage sensor which would 

then send a signal to switch on the distribution line connecting the DG. On the other hand, due to 

the sudden rise of current, the protective device connected to bus 3 operates isolating the fault 

from the rest of the system. Since the protective device in the system under consideration is a 

fuse, repairmen are sent to the fault location to resolve the problem and restore the system.  
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Figure IV.10 A segment of the current OSU Electric Grid with Distributed Generation & with in-line 
fault between Bus 2 and Bus 3 
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Figure IV.11 Operational logic for in-line fault between Bus 2 and Bus 3 
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The current sensors placed at critical buses 31 and 32 continuously keep monitoring the 

current through the line connected to them. A worst case scenario can occur when an upstream in-

line fault occurs on the distribution line connecting bus 3 and at the same instant a downstream 

in-line fault occurs on the distribution lines connecting either or both buses 31 and 32. Such a 

scenario can be effectively resolved by the proposed scheme at the Stillwater campus of 

Oklahoma State University. In such a scenario, power is effectively re-routed without causing an 

outage of the critical loads and at the same time improving the voltage profile at all buses. 

Figure IV.12 clearly shows the negative impact of an in-line fault between bus 2 and bus 

3 on the voltage profiles at all buses. As illustrated in Figure IV.12 and Figure IV 13, a well-

coordinated operation of the proposed system as per the operational logic diagram shown in 

Figure IV.11 effectively improves the voltage levels at all buses. Also, Figure IV.13 shows the 

percentage increase in the p.u. bus voltages due to the DG operation in such a scenario. It is 

clearly observed that there is a significant increase in the p.u. voltage level at the critical buses in 

addition to improvement in the voltage profile at other buses.  

 

Figure IV.12 p.u. voltage at all buses during in-line fault occurrence between Bus 2 and Bus 3 
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Figure IV.13 p.u. voltage percentage increase with DG in system and in-line fault connecting Bus 2 and Bus 3 

IV.2.4 Scenario 4 

As illustrated in Figure IV.14, a downstream in-line fault between bus 28 and bus 30 is 

considered. This is similar to scenario 2, wherein the fault was considered between bus 33 and 

bus 34. Again, such a downstream fault is less harmful unless a critical load is connected to the 

bus affected by the fault. In case of the OSU distribution system under consideration, such a 

scenario is of significant importance as the critical load is connected to Bus 32 which is severely 

affected during such a downstream fault scenario.  

The voltage and current set points in this case would be same as in all previous scenarios 

i.e. 0.994 p.u and 400 amps respectively. Due to the high current in the circuit during fault 

condition, the protective device connected to bus 30 operates and avoids a cascading effect 

preventing the fault penetrating upstream which would further disrupt operation of the overall 

system.  
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 The operation of the proposed system during such an in-line fault scenario takes place 

according to the operational logic diagram illustrated in Figure IV.15. The voltage sensor which 

is placed at bus 32 will come into effect and will measure the voltage level against the 

predetermined voltage set point. As shown in Figure IV.16, due to the in-line fault in the line 

connecting bus 28 and 30, the voltage falls sharply at bus 30 and 32, which would cause an 

outage at load connected to bus 32. This is an undesirable situation, as the load connected at bus 

32 is considered to be a critical load. 

 The swift operation of the proposed system with voltage and current sensors installed at 

bus 32 will increase the redundancy and efficiency of the system. This is further achieved by re-

routing power to the load through the DG connected to bus 30. It is also important to note that the 

duration of the drop in voltage during a fault condition should be above 1 minute to avoid false 

operation of the system during times of transients, voltage sags or voltage flickers. 
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Figure IV.14 A segment of the current OSU Electric Grid with Distributed Generation & with in-line 
fault between Bus 28 and Bus 30 
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Figure IV.15 Operational logic for in-line fault between Bus 28 and Bus 30 
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Figure IV.16 p.u. voltages at all buses during in-line fault occurrence between Bus 28 and Bus 30 

 

 

Figure IV.17 p.u. voltage percentage increase with DG in system and in-line fault between Bus 28 and Bus 30 
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CHAPTER V 
 

 

SUMMARY AND CONCLUDING REMARKS 

The transition towards a smart grid from the current electric grid at Oklahoma State 

University will be one of the most important decisions to meet its electric reliability, economy, 

efficiency and sustainability goals. The proposed smart microgrid system with distributed 

generation and distribution automation employing advanced voltage and current sensors will help 

in saving money and add value to both OG&E and to the university campus. The various 

scenarios presented in this study indicate that the overall operation of a segment of the 

distribution system at Oklahoma State University can be improved by implementing the proposed 

suggestions. It clearly shows that the most effective action to providing reliable and higher 

quality power to the university campus is by re-routing of its feeds during times of power outages 

or severe voltage fluctuations. Also, for taking full advantage of the proposed system for 

increasing the reliability and efficiency of the current distribution grid, it is important that all 

manual switches and fuses be replaced by automatic protection and automatic switching devices 

which can respond to digital signals generated by a computer with a capability to re-route power 

at signs of trouble without any interruptions. With a well-designed microgrid system involving 

distributed generation and advanced voltage and current sensors embedded in distribution 

automation, it would not only help the university in providing stable voltage and improved 

reliability but also help in shaving its demand during peak periods. 
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Currently, at the Stillwater campus of Oklahoma State University, during times of power 

outages electricity supply is restored manually which involves cost of sending maintenance 

personnel out to take corrective action and restore power. In this study, research buildings are 

considered as critical loads such as the ones connected to buses 10, 31, 32 and 35 as illustrated in 

Figure IV.1. Power outages in these buildings will have a pronounced effect in the form of lost 

faculty and staff productivity, loss of critical academic experiments and reduced life of 

equipment. As discussed under the various scenarios, the results clearly present the advantages of 

having distributed generation and additional distribution lines connecting buses 8, 34, 29 and 30 

(See Figures IV.5, IV.9, IV.13, IV.17) which feed the critical loads through a step-down 

transformer. A well-coordinated and efficient operation of the proposed system as per the 

operational logic discussed under various scenarios will ensure that these critical loads are not 

affected by power outages or severe voltage fluctuations. The proposed system which comprises 

of distributed generation with additional distribution lines and advanced voltage and current 

sensors connects these critical buildings to a power loop which has the capacity to isolate faults 

and re-route power, thus increasing the overall reliability of the system and at the same time 

reducing the losses associated with power outages. The distributed generation considered in this 

study can be in the form of a gas turbine unit or solar power and/or wind energy conversion 

systems with suitable energy storage, fuel cells or batteries. Further research will be required to 

identify which specific technology or combination of technologies will be the optimum DG 

strategy to be implemented as part of the proposed system. Also, similar studies need to be 

undertaken on all segments of the distribution system at OSU Stillwater, to arrive at a 

comprehensive networked microgrid system that would benefit all segments of the distribution 

system. 

The electric grid at the Stillwater campus of Oklahoma State University has a robust 

architecture upon which a smart grid can be installled. Developing a micro grid, encouraging 
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renewable energy generation technologies, installing smart meters, developing impenetrable 

security and communication infrastructures and implementing full automation in the current grid 

would benefit the university in terms of availability, reliability, efficiency, higher power quality, 

security and reduced financial losses. Detailed economic and social benefits need to be further 

analyzed to justify the cost of implementing smart grid technologies on campus. Further, dynamic 

simulations and optimization studies of the current and proposed electric distribution systems at 

Oklahoma State University need to be carried out to identify projects and activities with highest 

potential for improvement. Addressing the cost savings and other benefits of such an 

implementation to concerned personnel is vital to initiate actions.  

The entire process of developing a smart grid on a national scale will require 

concerted efforts from the government, utilities and consumers, the end result of which would 

be compelling. Considerable research work and financial support are still needed to make the 

Smart Grid an ubiquitous entity in the power sector. At Oklahoma State University, both 

OG&E and the university must embrace the concept of Smart Grid and start working 

coherently at the consumer, distribution and transmission levels. 



62 

 

 

 

REFERENCES 
 

 

[1]  U.S. Department of Energy, “An introduction to Smart Grid”, 2009.. 

[2]         Rohit Nair, R. Ramakumar, “Prospects for a Smart Grid at Oklahoma State University”, 
43rd Annual  Frontiers of Power Conference, Oct’10, Oklahoma State University, 
Stillwater, Oklahoma 

[3]  Asko Vuorinen, “World Electricity in the year 2050”, 2008 

[4]  “World Energy Supply”, The Global Energy Project 2007  

[5]  Global Environment fund, “Electric Power Grid”, 2005 

[6]  Rober Galvin and Kurt Yeager, Perfect Power, McGraw-Hill Publication, 2008, pp. 4 

[7]  Zhang W.L., Liu Z.Z., Wang M.J., and Yang X.S., Research status and development 
trend of smart grid. Power system technology, vol. 33, no. 13, pp. 1-11, 2009. 

[8]  Anne H. Smart grid thinking. Engineering & Technology, 2009, (3): 46-49 

[9]  Text of the “Energy Independence and Security Act of 2007 (EISA)” - H.R. 6 - 
December 19, 2007 

 
[10]  Wolfs, P.; Isalm, S.; , "Potential barriers to smart grid technology in Australia," 

Power Engineering Conference, 2009. AUPEC 2009. Australasian Universities , vol., 
no., pp.1-6, 27-30 Sept. 2009 

[11]  European Technology Platform SmartGrids, “Strategic Research Agenda for Europe’s 
Electricity Networks of the Future”, European Commission, Directorate General for 
Research, Directorate Energy. 

 
[12]  Mak, S.T.; , "Knowledge based architecture serving as a rigid framework for Smart Grid 

applications," Innovative Smart Grid Technologies (ISGT), 2010 , vol., no., pp.1-8, 19-21 
Jan. 2010 doi: 10.1109/ISGT.2010.5434778 



63 

 

[13]  Crow, M.L.; McMillin, B.; Wenye Wang; Bhattacharyya, S.; , "Intelligent Energy 
Management of the FREEDM System," Power and Energy Society General Meeting, 
2010 IEEE , vol., no., pp.1-4, 25-29 July 2010 doi: 10.1109/PES.2010.5589992 

[14]  Rodriguez, G.D.; , "A utility perspective of the role of energy storage in the smart grid," 
Power and Energy Society General Meeting, 2010 IEEE , vol., no., pp.1-2, 25-29 July 
2010 
doi: 10.1109/PES.2010.5589870 

[15]  Davidson, E.M.; Catterson, V.M.; McArthur, S.D.J.; , "The role of intelligent systems in 
delivering the Smart Grid," Power and Energy Society General Meeting, 2010 IEEE , 
vol., no., pp.1-6, 25-29 July 2010 doi: 10.1109/PES.2010.5590034 

 
[16]  Hossain, M.R.; Maung Than Oo, A.; Shawkat Ali, A.B.M.; , "Evolution of smart grid and 

some pertinent issues," Universities Power Engineering Conference (AUPEC), 2010 20th 
Australasian , vol., no., pp.1-6, 5-8 Dec. 2010 

[17]  Asgeirsson, H.; , "Distribution automation — The foundation for the smart grid at DTE 
energy," Power and Energy Society General Meeting, 2010 IEEE , vol., no., pp.1-3, 25-
29 July 2010 doi: 10.1109/PES.2010.5589632 

[18]  Bai Xiao-min; Meng Jun-xia; Zhu Ning-hui; , "Functional analysis of advanced metering 
infrastructure in smart grid," Power System Technology (POWERCON), 2010 
International Conference on , vol., no., pp.1-4, 24-28 Oct. 2010 doi: 
10.1109/POWERCON.2010.5666048 

[19]  Vale, Z.A.; Morais, H.; Khodr, H.; , "Intelligent multi-player smart grid management 
considering distributed energy resources and demand response," Power and Energy 
Society General Meeting, 2010 IEEE , vol., no., pp.1-7, 25-29 July 2010 doi: 
10.1109/PES.2010.5590170 

 
[20]  Rahimi, F.; Ipakchi, A.; , "Overview of Demand Response under the Smart Grid and 

Market paradigms," Innovative Smart Grid Technologies (ISGT), 2010 , vol., no., pp.1-7, 
19-21 Jan. 2010 
doi: 10.1109/ISGT.2010.5434754 

[21]  Lee, P.K.; Lai, L.L.; , "A practical approach of smart metering integration in micro-grid," 
Power and Energy Society General Meeting, 2010 IEEE , vol., no., pp.1-5, 25-29 July 
2010 
doi: 10.1109/PES.2010.5589980 

[22]  Tianshu Bi; Sumei Liu; Zhenyu Huang; Hadjsaid, N.; , "The implication and 
implementation of smart grid in China," Power and Energy Society General Meeting, 
2010 IEEE , vol., no., pp.1-5, 25-29 July 2010 doi: 10.1109/PES.2010.5589979 

[23]  Stewart, Robert, and Flynn, Byron, “Modeling DA Improvements to Reliability 
Performance Metrics”, 2007 WPDAC, Spokane, Washington, April 3 – 5, 2007. 



64 

 

 
[24]  Chouhan, Nishant S.; Ferdowsi, Mehdi; , "Review of energy storage systems," North 

American Power Symposium (NAPS), 2009 , vol., no., pp.1-5, 4-6 Oct. 2009 doi: 
10.1109/NAPS.2009.5484062 

[25]  P. J. Binduhewa, A. C. Renfrew, and M. Barnes, “Ultracapacitor energy storage for 
MicroGrid micro-generation,” IET Power Electronics, Machines and Drives, Conf., 
2008, pp. 270-274. 

 
[26]  W. Li and G. Joos, “Comparison of energy storage system technologies and 

configurations in a wind farm,” in Proc. IEEE Power Electronics Specialist Conference, 
June 2007, pp. 1280-1285. 

[27]  S. M. Schoenung and W. Hassenzahl “Long vs. Short-Term Energy Storage: Sensitivity 
Analysis,” SAND2007-4253 July 2007 July 2007 Sandia National Laboratories, 
Albuquerque, NM, USA. 

 
[28]  E. Spahic, G. Balzer, B. Hellmich and W. Munch, “Wind Energy Storage – Possibilities,” 

IEEE, PowerTech July 2007, pp. 615-620. 
 
[29]  J. D. Boyes, and N. H. Clark, “Technologies for energy storage, flywheels and super 

conducting magnetic energy storage,” Power Engineering Society Summer Meeting, 
IEEE, 2000. 

[30]  Zhaoyin Wen; , "Study on Energy Storage Technology of Sodium Sulfur Battery and 
it's Application in Power System," Power System Technology, 2006. PowerCon 2006. 
International Conference on , vol., no., pp.1-4, 22-26 Oct. 2006 

[31]  Carter, R.; Ault, G.; Kockar, I.; , "Techniques for assessing the value of energy storage in 
the transition to and operation of SmartGrids," Power and Energy Society General 
Meeting, 2010 IEEE , vol., no., pp.1-4, 25-29 July 2010 doi: 10.1109/PES.2010.5590071 

[32]  Ferdowsi, Mehdi; , "Vehicle-to-grid Technology: Challenges and emerging solutions," 
Power and Energy Society General Meeting, 2010 IEEE, 2010 , pp.1-2, 4-25-29 July 
2010  

[33]  Nelson, T.L.; FitzPatrick, G.J.; , "NIST role in the interoperable Smart Grid," Power and 
Energy Society General Meeting, 2010 IEEE , vol., no., pp.1-3, 25-29 July 2010 doi: 
10.1109/PES.2010.5589733  

[34]  Dugan, R.C.; Arritt, R.F.; McDermott, T.E.; Brahma, S.M.; Schneider, K.; , "Distribution 
System Analysis to support the Smart Grid," Power and Energy Society General 
Meeting, 2010 IEEE , vol., no., pp.1-8, 25-29 July 2010 doi: 10.1109/PES.2010.5589539 

[35]  Mark G. Lauby, ’Reliability Considerations for Applications of Smart Grid 
Technologies’, IEEE PES General Meeting, Minneapolis, Minnesota USA, July 2010 

 



65 

 

[36]  Bouffard, F.; , "The challenge with building a business case for smart grids," Power and 
Energy Society General Meeting, 2010 IEEE , vol., no., pp.1-3, 25-29 July 2010 doi: 
10.1109/PES.2010.5589906 

[37]  Jingjing Lu; Da Xie; Qian Ai; , "Research on smart grid in China," Transmission & 
Distribution Conference & Exposition: Asia and Pacific, 2009 , vol., no., pp.1-4, 26-30 
Oct. 2009 doi: 10.1109/TD-ASIA.2009.5356959 

[38]  Forte, V.J.; , "Smart Grid at National Grid," Innovative Smart Grid Technologies 
(ISGT), 2010 , vol., no., pp.1-4, 19-21 Jan. 2010 doi: 10.1109/ISGT.2010.5434729 

 

[39]  Kuntze, N.; Rudolph, C.; Cupelli, M.; Liu, J.; Monti, A.; , "Trust infrastructures for future 
energy networks," Power and Energy Society General Meeting, 2010 IEEE , vol., no., 
pp.1-7, 25-29 July 2010 doi: 10.1109/PES.2010.5589609 

[40] Peter Fox-Penner, Smart Power, Island Press, 2010, pp. 51 

[41]  Pipattanasomporn, M.; Feroze, H.; Rahman, S.; , "Multi-agent systems in a distributed 
smart grid: Design and implementation," Power Systems Conference and Exposition, 
2009. PSCE '09. IEEE/PES , vol., no., pp.1-8, 15-18 March 2009 doi: 
10.1109/PSCE.2009.4840087 

 
[42]  Amin, S.M.; , "Electricity infrastructure security: Toward reliable, resilient and secure 

cyber-physical power and energy systems," Power and Energy Society General Meeting, 
2010 IEEE , vol., no., pp.1-5, 25-29 July 2010 doi: 10.1109/PES.2010.5589488 

[43]  H. Lee Willis, Power Distribution Planning reference Book, Marcel Dekker Inc.                                     
Publication, 2004 pp. 32 

[44]  Alexandra Von Meier, Electric Power Systems – A conceptual Model, John Wiley & 
Sons Inc., Publication, 2006, pp. 201 

[45]  Turan Gönen, Electric Power Distribution System Engineering, CRC Press, 2008, pp. 
173 

[46]  Openshaw Taylor and G.A. Boal, Electric Power Distribution, Edward Arnold Publishers 
Ltd, pp. 3  

[47]  Smith, John R.; , "Load Flow? What Can It Tell You?," Industry Applications, IEEE 
Transactions on , vol.IA-8, no.6, pp.728-734, Nov. 1972 doi: 10.1109/TIA.1972.349857 

 [48]  H. Lee Willis, Walter G. Scott, Distributed Power Generation – Planning and 
Evaluation,  Marcel Dekker Inc. Publication, 2000,  pp. 1 

[49]  H. Lee Willis, Walter G. Scott, Distributed Power Generation – Planning and 
Evaluation,  Marcel Dekker Inc. Publication, 2000,  pp. 9 



66 

 

[50]  Mak, S.T.; , "Sensor data output requirements for Smart Grid applications," Power and 
Energy Society General Meeting, 2010 IEEE , vol., no., pp.1-3, 25-29 July 2010 doi: 
10.1109/PES.2010.5589580 

[51]  H. Lee Willis, Walter G. Scott, Distributed Power Generation – Planning and 
Evaluation,  Marcel Dekker Inc. Publication, 2000,  pp. 29   



67 

 

APPPENDIX A 
 

Load Records 

Load Records 

Load Name Status MW Mvar MVA 

Building 1 Closed 0.45 0.22 0.5 

Building 2 Closed 0.36 0.19 0.41 

Building 3 Closed 0.27 0.11 0.3 

Building 4 Closed 0.45 0.3 0.54 

Building 5 Closed 0.04 0.01 0.04 

Building 6 Closed 0.1 0.06 0.11 

Building 7 Closed 0.1 0.03 0.1 

Building 8 Closed 0.18 0.09 0.2 

Building 9 Closed 0.11 0.05 0.12 

Building 10 Closed 0.14 0.06 0.15 

Building 11 Closed 0.15 0.05 0.16 

Building 12 Closed 0.02 0.02 0.03 

Building 13 Closed 0.07 0.03 0.08 
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APPENDIX B 

            Current Distribution System 

Bus Records (Without outage) Bus Records (With outage on Bus 4) 

Number 

Nom 

kV PU Volt Volt (kV) Number 

Nom 

kV PU Volt Volt (kV) 

1 12.47 1 12.47 1 12.47 1 12.47 

2 12.47 0.99996 12.469 2 12.47 0.99996 12.469 

3 12.47 0.99977 12.467 3 12.47 0.9995 12.464 

4 12.47 0.99993 12.469 4 12.47 0.99467 12.404 

5 12.47 0.99884 12.455 5 12.47 0.99466 12.403 

6 12.47 0.99882 12.455 6 12.47 0.99465 12.403 

7 12.47 0.99877 12.455 7 12.47 0.9946 12.403 

8 12.47 0.99879 12.455 8 12.47 0.99462 12.403 

9 0.48 0.99864 0.479 9 0.48 0.99447 0.477 

10 0.48 0.99874 0.479 10 0.48 0.99457 0.477 

11 12.47 0.99871 12.454 11 12.47 0.99479 12.405 

12 12.47 0.99855 12.452 12 12.47 0.99463 12.403 

13 12.47 0.99863 12.453 13 12.47 0.9947 12.404 

14 0.48 0.99856 0.479 14 0.48 0.99464 0.477 

15 0.48 0.99838 0.479 15 0.48 0.99446 0.477 

16 12.47 0.99974 12.467 16 12.47 0.99947 12.463 

17 12.47 0.99975 12.467 17 12.47 0.99948 12.463 

18 0.21 0.99974 0.208 18 0.21 0.99947 0.208 

19 0.48 0.99975 0.48 19 0.48 0.99948 0.48 

20 12.47 0.99919 12.46 20 12.47 0.9979 12.444 

21 12.47 0.9991 12.459 21 12.47 0.99781 12.443 

22 12.47 0.99911 12.459 22 12.47 0.99782 12.443 

23 0.21 0.99909 0.208 23 0.21 0.9978 0.208 

24 0.21 0.99905 0.208 24 0.21 0.99776 0.208 

25 12.47 0.99906 12.458 25 12.47 0.99745 12.438 

26 12.47 0.99904 12.458 26 12.47 0.99744 12.438 

27 12.47 0.99906 12.458 27 12.47 0.99745 12.438 

28 12.47 0.99892 12.457 28 12.47 0.99689 12.431 

29 12.47 0.99888 12.456 29 12.47 0.99684 12.431 

30 12.47 0.99892 12.457 30 12.47 0.99688 12.431 

31 0.21 0.99888 0.208 31 0.21 0.99684 0.207 

32 0.48 0.99892 0.479 32 0.48 0.99688 0.479 

33 12.47 0.99876 12.455 33 12.47 0.99565 12.416 

34 12.47 0.99866 12.453 34 12.47 0.99555 12.415 

35 0.21 0.99864 0.208 35 0.21 0.99552 0.207 

36 0.21 0.99906 0.208 36 0.21 0.99745 0.207 

37 0.21 0.99904 0.21 37 0.21 0.99743 0.209 

 



69 

 

APPENDIX C 

Scenario I 

Bus Records with in line fault between Bus 2 and Bus 4 

  With outage and DG OFF With Outage and DG ON 

Number 

Nom 

kV PU Volt 

Volt 

(kV) Angle (Deg) 

Nom 

kV PU Volt 

Volt 

(kV) Angle (Deg) 

1 12.47 1 

Volt 

(kV) 0 12.47 1 12.47 0 

2 12.47 0.99995 12.47 0 12.47 0.99997 12.47 0 

3 12.47 0.99941 12.469 -0.02 12.47 0.99978 12.467 -0.03 

4 12.47 0.99354 12.463 -0.18 12.47 0.99888 12.456 -0.35 

5 12.47 0.99354 12.39 -0.18 12.47 0.99888 12.456 -0.35 

6 12.47 0.99282 12.39 -0.17 12.47 0.99861 12.453 -0.42 

7 12.47 0.99232 12.381 -0.17 12.47 0.99811 12.446 -0.42 

8 12.47 0.9914 12.374 -0.17 12.47 0.99924 12.461 -0.49 

9 0.48 0.99219 12.375 -0.19 0.48 0.99798 0.479 -0.43 

10 0.48 0.99127 0.476 -0.18 0.48 0.99912 0.48 -0.5 

11 12.47 0.9937 0.476 -0.18 12.47 0.99872 12.454 -0.34 

12 12.47 0.99353 12.391 -0.18 12.47 0.99855 12.452 -0.34 

13 12.47 0.9936 12.389 -0.18 12.47 0.99862 12.453 -0.34 

14 0.48 0.99348 12.39 -0.19 0.48 0.9985 0.479 -0.35 

15 0.48 0.99332 0.477 -0.19 0.48 0.99834 0.479 -0.35 

16 12.47 0.99938 0.477 -0.02 12.47 0.99975 12.467 -0.03 

17 12.47 0.99939 12.462 -0.02 12.47 0.99976 12.467 -0.03 

18 0.21 0.99938 12.462 -0.02 0.21 0.99975 0.208 -0.03 

19 0.48 0.99939 0.208 -0.02 0.48 0.99976 0.48 -0.03 

20 12.47 0.99747 0.48 -0.08 12.47 0.99929 12.461 -0.14 

21 12.47 0.99739 12.438 -0.08 12.47 0.9992 12.46 -0.14 

22 12.47 0.9974 12.437 -0.08 12.47 0.99921 12.46 -0.14 

23 0.21 0.99738 12.438 -0.08 0.21 0.99919 0.208 -0.14 

24 0.21 0.99734 0.207 -0.09 0.21 0.99915 0.208 -0.14 

25 12.47 0.99693 0.207 -0.1 12.47 0.99916 12.46 -0.17 

26 12.47 0.99691 12.432 -0.1 12.47 0.99914 12.459 -0.17 

27 12.47 0.99693 12.432 -0.1 12.47 0.99915 12.459 -0.17 

28 12.47 0.99624 12.432 -0.12 12.47 0.99902 12.458 -0.2 

29 12.47 0.99619 12.423 -0.12 12.47 0.99897 12.457 -0.2 

30 12.47 0.99623 12.423 -0.12 12.47 0.99901 12.458 -0.2 

31 0.21 0.99619 12.423 -0.12 0.21 0.99897 0.208 -0.2 

32 0.48 0.99623 0.207 -0.12 0.48 0.999 0.48 -0.2 

33 12.47 0.99469 0.478 -0.16 12.47 0.99886 12.456 -0.29 

34 12.47 0.99317 12.404 -0.25 12.47 0.99993 12.469 -0.5 

35 0.21 0.99208 12.385 -0.26 0.21 0.99983 0.208 -0.51 

36 0.21 0.99692 0.207 -0.1 0.21 0.99915 0.208 -0.17 

37 0.21 0.99691 0.207 -0.1 0.21 0.99914 0.21 -0.17 
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APPENDIX D 

Scenario II 

Bus Records with in line fault occurrence between Bus 33 and Bus 34 

Number PU Volt (DG OFF) Nom kV PU Volt (DG ON) 

1 1 12.47 1 

2 0.99957 12.47 0.99957 

3 0.99934 12.47 0.99934 

4 0.99934 12.47 0.99934 

5 0.99839 12.47 0.99839 

6 0.99769 12.47 0.99769 

7 0.99719 12.47 0.99719 

8 0.99734 12.47 0.99734 

9 0.99706 0.48 0.99706 

10 0.99729 0.48 0.99729 

11 0.99787 12.47 0.99787 

12 0.99772 12.47 0.99772 

13 0.99779 12.47 0.99779 

14 0.99773 0.48 0.99773 

15 0.99754 0.48 0.99754 

16 0.99931 12.47 0.99931 

17 0.99932 12.47 0.99932 

18 0.99931 0.21 0.99931 

19 0.99932 0.48 0.99932 

20 0.99858 12.47 0.99858 

21 0.99849 12.47 0.99849 

22 0.9985 12.47 0.9985 

23 0.99845 0.21 0.99845 

24 0.99843 0.21 0.99843 

25 0.99843 12.47 0.99843 

26 0.99841 12.47 0.99841 

27 0.99842 12.47 0.99842 

28 0.99825 12.47 0.99825 

29 0.99814 12.47 0.99814 

30 0.99818 12.47 0.99818 

31 0.99814 0.21 0.99814 

32 0.99818 0.48 0.99818 

33 0.99803 12.47 0.99803 

34 0 12.47 0.99987 

35 0 0.21 0.99977 

36 0.99842 0.21 0.99842 

37 0.99841 0.21 0.99841 

38 1 12.47 1 
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APPENDIX E 

    Scenario III 

Bus Records with in line fault between Bus 2 and Bus 3 

Number Nom kV 

With Outage and DG OFF With Outage and DG ON 

PU Volt Angle (Deg) PU Volt Angle (Deg) 

1 12.47 1 0 1 0 

2 12.47 0.99952 0 0.99977 -0.02 

3 12.47 0.9935 -0.07 0.99882 -0.36 

4 12.47 0.99904 -0.01 0.99954 -0.04 

5 12.47 0.99696 -0.07 0.99908 -0.16 

6 12.47 0.99626 -0.07 0.99838 -0.15 

7 12.47 0.99576 -0.07 0.99788 -0.15 

8 12.47 0.99591 -0.07 0.99803 -0.16 

9 0.48 0.99563 -0.08 0.99775 -0.17 

10 0.48 0.99586 -0.09 0.99798 -0.17 

11 12.47 0.99521 -0.03 0.99786 -0.23 

12 12.47 0.99505 -0.03 0.9977 -0.23 

13 12.47 0.99513 -0.03 0.99777 -0.23 

14 0.48 0.99506 -0.04 0.99771 -0.24 

15 0.48 0.99488 -0.05 0.99753 -0.24 

16 12.47 0.99347 -0.07 0.99879 -0.36 

17 12.47 0.99347 -0.07 0.9988 -0.36 

18 0.21 0.99347 -0.07 0.99879 -0.36 

19 0.48 0.99347 -0.07 0.99879 -0.36 

20 12.47 0.9936 -0.07 0.99892 -0.36 

21 12.47 0.9935 -0.07 0.99883 -0.35 

22 12.47 0.99352 -0.07 0.99884 -0.35 

23 0.21 0.99346 -0.07 0.99879 -0.36 

24 0.21 0.99344 -0.07 0.99876 -0.36 

25 12.47 0.99371 -0.07 0.99903 -0.35 

26 12.47 0.99369 -0.07 0.99901 -0.35 

27 12.47 0.9937 -0.07 0.99902 -0.35 

28 12.47 0.99388 -0.06 0.9992 -0.35 

29 12.47 0.99127 -0.06 0.99966 -0.37 

30 12.47 0.99182 -0.06 0.99938 -0.37 

31 0.21 0.99277 -0.06 0.99966 -0.37 

32 0.48 0.99221 -0.06 0.99937 -0.37 

33 12.47 0.99456 -0.04 0.99827 -0.28 

34 12.47 0.99289 -0.15 0.99661 -0.39 

35 0.21 0.99279 -0.16 0.99651 -0.4 

36 0.21 0.9937 -0.07 0.99902 -0.35 

37 0.21 0.99369 -0.07 0.99901 -0.35 

38 12.47 0 0 1 -0.39 
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APPENDIX F 

     Scenario IV 

Number 

Bus Records with in line fault between Bus 28 and Bus 30 

Nom kV PU Volt (DG OFF) Nom kV PU Volt (DG ON) 

1 12.47 1 12.47 1 

2 12.47 0.99955 12.47 0.99955 

3 12.47 0.99932 12.47 0.99932 

4 12.47 0.9993 12.47 0.9993 

5 12.47 0.99829 12.47 0.99829 

6 12.47 0.9976 12.47 0.9976 

7 12.47 0.99709 12.47 0.99709 

8 12.47 0.99724 12.47 0.99724 

9 0.48 0.99696 0.48 0.99696 

10 0.48 0.9972 0.48 0.9972 

11 12.47 0.9977 12.47 0.9977 

12 12.47 0.99754 12.47 0.99754 

13 12.47 0.99762 12.47 0.99762 

14 0.48 0.99755 0.48 0.99755 

15 0.48 0.99737 0.48 0.99737 

16 12.47 0.99929 12.47 0.99929 

17 12.47 0.99929 12.47 0.99929 

18 0.21 0.99929 0.21 0.99929 

19 0.48 0.99929 0.48 0.99929 

20 12.47 0.99853 12.47 0.99853 

21 12.47 0.99844 12.47 0.99844 

22 12.47 0.99845 12.47 0.99845 

23 0.21 0.9984 0.21 0.9984 

24 0.21 0.99838 0.21 0.99838 

25 12.47 0.99837 12.47 0.99837 

26 12.47 0.99835 12.47 0.99835 

27 12.47 0.99837 12.47 0.99837 

28 12.47 0.99818 12.47 0.99818 

29 12.47 0.99808 12.47 0.99808 

30 12.47 0 12.47 0.99992 

31 0.21 0.99807 0.21 0.99807 

32 0.48 0 0.48 0.99992 

33 12.47 0.99781 12.47 0.99781 

34 12.47 0.99615 12.47 0.99615 

35 0.21 0.99605 0.21 0.99605 

36 0.21 0.99837 0.21 0.99837 

37 0.21 0.99835 0.21 0.99835 

38 12.47 1 12.47 1 
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APPENDIX G 

    Line and Transformer Records 

Line Records 

From Number To Number Xfrmr MW From  

Mvar 

From  

MVA 

From  

1 2 No 2.4 1.1 2.7 

2 3 No 1 0.5 1.1 

2 4 No 1.5 0.7 1.6 

3 16 No 0 0 0 

3 17 No 0.1 0.1 0.1 

3 20 No 0.8 0.4 0.9 

4 5 No 1.5 0.7 1.6 

5 6 No 0.8 0.3 0.9 

5 11 No 0.7 0.3 0.8 

6 7 No 0.5 0.2 0.5 

6 8 No 0.4 0.1 0.4 

7 9 Yes 0.4 0.2 0.5 

8 10 Yes 0.4 0.1 0.4 

11 12 No 0.5 0.3 0.5 

11 13 No 0.3 0.1 0.3 

11 33 No -0.1 -0.1 0.1 

12 15 Yes 0.4 0.3 0.5 

13 14 Yes 0.3 0.1 0.3 

16 18 Yes 0 0 0 

17 19 Yes 0.1 0.1 0.1 

20 21 No 0.1 0 0.1 

20 22 No 0.2 0.1 0.2 

20 25 No 0.5 0.3 0.6 

21 23 Yes 0.1 0 0.1 

22 24 Yes 0.2 0.1 0.2 

25 26 No 0.1 0 0.1 

25 27 No 0 0 0 

25 28 No 0.5 0.2 0.5 

26 37 Yes 0.1 0 0.1 

27 36 Yes 0 0 0 

28 29 No 0.1 0.1 0.1 

28 30 No 0.1 0.1 0.2 

33 28 No -0.2 -0.1 0.2 

29 31 Yes 0.1 0.1 0.1 

30 32 Yes 0.1 0.1 0.2 

33 34 No 0.2 0.1 0.2 

34 35 Yes 0.2 0.1 0.2 



VITA 
 

Rohit Prabhakaran Nair 
 

Candidate for the Degree of 
 

Master of Science 
 
Thesis:    A PROPOSED SYSTEM FOR A SMART GRID IMPLEMENTATION AT 

OKLAHOMA STATE UNIVERSITY 
 
 
Major Field:  Electrical Engineering 
 
Biographical: 
 

Education: 
 
Completed the requirements for the Master of Science in Electrical Engineering 
at Oklahoma State University, Stillwater, Oklahoma in July, 2011. 

 
Completed the requirements for the Bachelor of Science in Electrical 
Engineering at University of Pune, Nashik, India in 2009. 
 
Experience:   
 
Graduate Research Assistant at Engineering Energy Laboratory, School of 
Electrical and Computer Engineering, Oklahoma State University from May 
2010 to May 2011. 
 
 
 

 



 
ADVISER’S APPROVAL:   Dr. Ramakumar 
 
 
 

 

Name: Rohit Prabhakaran Nair                          Date of Degree: July, 2011 
 
Institution: Oklahoma State University                Location: Stillwater, Oklahoma 
 
Title of Study: A PROPOSED SYSTEM FOR A SMART GRID IMPLEMENTATION 

AT OKLAHOMA STATE UNIVERSITY 
 
Pages in Study: 73            Candidate for the Degree of Master of Science 

Major Field: Electrical Engineering 
 
Scope and Method of Study: The purpose of the study was to consider a possible system 

design for a smart grid implementation on a segment of the current distribution 
system at the Stillwater campus of Oklahoma State University. The proposed 
system includes a DG with additional distribution lines connecting the DG to 
buses near critical loads. In addition, voltage and current sensors are placed at 
critical load buses of the distribution system.  The proposed system under 
consideration comprises of 41 buses. Load data, distribution line parameters and 
bus voltages are used as input to conduct the load flow study. Different scenarios 
are proposed and discussed with corresponding simulation results and operational 
logic diagrams illustrating the implementation of the proposed system. 

 
Findings and Conclusions:  All simulations are performed using Power World v.13 

software. The results discussed under various scenarios clearly present the 
advantages of having distributed generation, current and voltage sensors at 
strategic points and additional distribution lines connected to critical loads. In 
addition, a well-coordinated and efficient operation of the proposed system as per 
the operational logic discussed under various scenarios will ensure that the critical 
loads are not affected by power outages or severe voltage fluctuations. Re-routing 
of power during times of power outages and severe voltage fluctuations at critical 
loads increases the overall reliability of the system and at the same time reduces 
the losses associated with power outages. The proposed system discussed here can 
provide a strong foundation in setting up a smart grid initiative at Oklahoma State 
University, Stillwater. 

 
 
 
 
 
 
 
 
 


