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CHAPTER I 

INTRODUCTION 

 

Harnessing renewable energy resources is gaining considerable momentum due to 

concerns regarding global warming, security of energy supplies and the associated 

economic and environmental impacts. This is especially evident in the case of wind 

electric conversion due to dramatic improvements in technologies and significant 

lowering of generation costs. Both on-shore and off-shore multi-megawatt size units are 

being installed globally in increasing numbers and the resulting growth in penetration 

levels has brought many technical and economic problems to light for serious 

consideration and research. 

 

Electricity provides a crucial infrastructure for a nation’s overall growth and 

development. Therefore, the power system is expected to generate and supply electricity 

continuously in the amount needed and at reasonable prices with nearly 100% reliability. 

However, the mismatch between power generation and load characteristics leads to the 

uncertainties in electric power supply. Achieving high reliability with excess of 

generation capacity with respect to load is not an optimal solution from economic point 

of view. Hence, probabilistic evaluations are carried out for the power systems during 

early planning and operating phases in order to achieve maximum possible reliability 

without exceeding economic constraints. 
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Until mid 1960’s probabilistic evaluations of power systems were not done due to lack of 

data, lack of realistic reliability techniques and misunderstandings about the significance 

and meaning of such evaluations. All that changed since the major Northeast blackout of 

1965 in the US [1]. On 9
th

 November 1965, nearly 25 million people and approximately 

80,000 square miles suffered from the loss of electricity for almost 12 hours. The states 

which were left without electric supply included Ontario in Canada and Massachusetts, 

Connecticut, New Hemisphere, Rhode Island, Vermont, New York and New Jersey in 

US. To prevent the repetition of such events in future, Reliability Councils were 

established in the US to define the standards, to share the information and to improve the 

co-ordination among power suppliers. Since then reliability evaluation has become a 

regular practice in power systems.  

 

High energy demands resulting from the use of sophisticated electrical equipments and 

changing life style of human beings due to technological advances led to the installation 

of new power plants using coal, natural gas, nuclear etc. Increased use of polluting 

resources for generating electricity created issues such as green house gases, acid rains, 

increase in the percentage of atmospheric CO2 and global warming. As a result, a need 

emerged to use renewable energy sources to generate grid-friendly electricity. Since the 

last few decades, electricity is being generated not only from conventional energy sources 

but also from eco-friendly energy sources such as wind and solar. Wind generated 

electricity has shown outstanding growth over the last two decades. Since 1980’s 

generation cost of electricity from wind has reduced from US 38¢/kWh to US 4¢/kWh. 
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Some of the major contributors towards this development are advances in power 

electronic systems, advances in designing and manufacturing technologies, variable 

speed operation, increased ratings and better siting. Figure 1 shows the progress of global 

wind power capacity since 1997 and the capacity predictions up to the year of 2010 as 

estimated by World Wind Energy Association (WWEA) [2]. 

 

 

Figure 1: Global Wind Power Capacity – 1997 to 2010 [2] 

 

In spite of extraordinary progress, wind electric conversion techniques face major issues 

due to variability of output and poor reliability. At present reliability evaluations are 

routinely performed not only for conventional power generation but also for wind-electric 

conversion. Researchers have presented many reliability techniques in the past involving 

probabilistic simulation, Markov models, quadratic modeling etc. [3-5]. However, early 
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estimations of forced outage rates and expected power outputs of wind electric 

conversion systems (WECS) will prove useful in designing stages in order to adequately 

meet the grid load in the future. One such simplified approach is presented in this study. 

It mainly concentrates on the generation part of WECS and does not include the 

reliability aspects of transmission and distribution of energy. The results obtained are 

used to study the loss of load of a combined conventional and wind power system. 

 

Chapter 2 reviews the progress of wind-electric conversion technology over the years. It 

also discusses the major impacts of penetration of wind-generated electricity into 

conventional power systems. A mathematical model of reliability of wind power using 

Weibull distribution function to characterize wind is developed in Chapter 3. Various key 

parameters which affect the availability of power output from wind electric conversion 

system are defined in this chapter.  Chapter 4 applies the approach presented to a few 

study examples. Results are presented in tabular form along with the graphs of sensitivity 

analyses of key factors which affect the availability of power output from a wind turbine. 

The results obtained are used to determine the expected load loss of a combined 

conventional and wind-electric system with different levels of penetration of wind-

generated electricity.  In Chapter 5, the suggested simplified approach to evaluate the 

availability of wind power is summarized. It also provides concluding remarks for this 

study and discusses avenues to expand this work. Weibull distribution which is used to 

model the wind resource in this work and a MATLAB code for sensitivity analyses are 

documented in the Appendix section. 
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CHAPTER II 

WIND POWER IN POWER SYSTEMS 

 

Globally, wind-electric conversion continues to be the fastest growing renewable energy 

technology.  This growth is primarily due to technological advances in structural analysis, 

design and manufacture of blades and the ability for variable speed operation facilitated 

by the employment of power electronics.  However, the stochastic nature of the wind 

resource and consequently of the electrical output has significant reliability implications 

for system operation and planning. In this chapter, the progress of wind power over last 

few decades is reviewed in brief followed by its impacts on the power system operation 

and planning. 

 

2.1 Review of Progress of Wind Power  

Human beings have harnessed wind energy to enable them to accomplish various tasks 

such as sailing ships, grinding grain, pumping water and separating husk for several 

millennia. The advent of storage batteries in the mid 1800’s and the simultaneous 

emergence of electricity usage, albeit in dc form, led to the development and use of small 

“windmills” with dc generators and battery energy storage in remote areas. This trend 

continued for many years in spite of the transformation of the electric power system to 

alternating current in the late 1800’s since vast areas of the world had no access to grid 

connection [6]. 
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Until the first oil embargo of 1973 and the ensuing energy crisis and steep increases in 

energy costs, interest in using wind generated electricity was very sporadic and confined 

to a few academic institutions. By this time, use of ac was so prevalent that feeding wind 

generated electrical energy into the grid posed a challenge because of the stochastic 

nature of the resource. Efforts to accomplish this ranged from developing innovative 

schemes to obtain a constant frequency output from a generator operating at variable 

speed [7] to employing sophisticated controls to maintain the rotational speeds of 

aeroturbines constant or very nearly constant in the presence of a constantly varying wind 

input. 

 

The debate between constant-speed and variable-speed options raged on until the 

spectacular failures of MW-scale constant-speed systems in the US in the early 1980’s. 

Improved aerodynamic models revealed that maintaining a constant speed resulted in 

undue stresses on the tower and other mechanical components (leading to their premature 

failure) and variable-speed operation obviated this problem in addition to extracting a 

larger fraction of the energy available in the wind over the full range of wind speed 

inputs. Coupled with advances in power electronic devices and power conversion 

technologies, all the modern MW-scale wind electric conversion systems of today utilize 

variable-speed operation with a variety of power conversion schemes to obtain utility-

grade ac for insertion into the power-grid [8]. 

 

Figure 2 gives an idea of progress in the power ratings of wind turbines along with the 

increases in their rotor diameters and hub heights (hh) [9]. As a matter of fact, the 
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enhancement in the power ratings of wind turbines is a direct result of efficient energy 

capture enabled by improved aerodynamic structures and flexibility in control and 

operating speeds aided by the advances in power electronics.   

 

 

Figure 2: Wind Power Generation Progress Overview [9] 

 

Energy credit and capacity credits are two of the important considerations associated with 

the economics of wind generated electricity. Energy credit refers to the rating of a 

continuously operating conventional power plant a wind power plant can replace in terms 

of the energy generated per year. It is typically expressed in the form of an “energy 

production factor” or “plant factor” k, defined as 

                        
8
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kwh energy generated per year by the wind plant
k

nameplate rating in kw
=

×
    (2.1) 

Capacity credit also refers to the rating of a continuously operating conventional power 

plant a wind plant can replace, but in terms of equivalent system reliability typically 
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expressed in the form of loss of load probability (LOLP). Stochastic nature of the wind 

resource and the load demand influence capacity credit and makes it more stringent than 

the energy credit. Higher the penetration of wind-generated electricity into the power 

system, greater is the risk factor in relying on it due to the unpredictable nature of the 

wind resource and the load demand. The only way to evaluate a correct capacity credit 

and the allowable penetration level is to have accurate wind forecasting and detailed 

system modeling and simulation. 

 

Wind energy is emerging as one of the centerpieces of the new economy. Improving 

plant factors, decreasing costs, longer lifetimes, technological advances in blades and 

structures, larger units and application of power electronics to realize variable speed 

operation are some of the key factors propelling its phenomenal growth. By 2002, 

world’s wind power capacity reached 32,000 MW and it is expected to cross 90,000 MW 

by the end of 2007.  While the cost of wind-generated electricity is declining steadily, the 

volatile prices of natural gas and fossil fuels are increasing rapidly. The cost of wind 

power is different at different locations due to a strong linkage between the amount of 

energy generated and the nature of wind resource available at a particular site. However, 

in the future, the cost effectiveness of wind power is predicted to depend more on 

dynamic and compliant design of the turbine than on its size or capacity. 

 

By the end of year 2005, global wind energy installed capacity reached nearly 60,000 

MW and the contribution of U.S. towards global wind energy exceeded 15%. Following 

the success of onshore wind electricity generation, offshore wind generation is also



 
9
   

 
 

Figure 3: Progress of Wind Power in USA (2006) [10] 
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emerging as a powerful player. Offshore wind technology has the advantages of a strong 

and consistent wind resource, undersea cable installation and freedom from aesthetic 

issues such as visual pollution, noise levels and land-use concerns. Figure 3 shows the 

capacity of wind farms in different states of USA in 2006. The negative side of offshore 

development includes high investment costs, challenging construction and accessibility, 

severe environmental conditions due to corrosive salt water and potentially high capital 

and maintenance costs.  

 

It is important to note that 32,000 MW of capacity in 2002 represented only 0.4% of the 

global installed capacity [11]. The fact that wind turbine reliability is affected by various 

factors making it incapable to carry major part of the system load over the year cannot be 

overlooked. Reliability of wind power can be improved not only with better turbine 

design, advanced technology and accurate forecasting of wind but also with improved 

planning in early stages.  This study has made an attempt to suggest a simple approach to 

evaluate the reliability of WECS output during early planning stages. In the next section, 

impacts of the penetration of WECS output on the power system operation are discussed. 

 

 

2.2 Impacts of Wind Power on Power Systems 

As mentioned in the previous section, the penetration on wind-generated electricity into 

conventional power systems is increasing consistently. This has created several 

challenges for power system operators. Stochastic nature of wind resource has significant 

impacts on the availability and the quality of electric power generated from the wind. The 

addition of wind turbines into an existing power system affects the system operation in 
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many ways depending upon the size and flexibility of the power system and the level of 

penetration of wind power into it. Power system has to satisfy customer’s demands 

without failing. From the consumer’s point of view, power system must satisfy the 

following requirements: 

• Voltage level and frequency should be within acceptable limits. 

• Power should be made available in required amount and at exactly the time 

consumer needs it. 

• Power should be available at reasonable cost. 

However, power system’s ability to satisfy the above requirements will be limited by the 

penetration of wind-generated electricity due to its probabilistic nature. Electric power is 

available from a turbine only when the wind blows and as wind speed varies, the electric 

power output also varies causing variations in voltage, current and frequency at the point 

of common connection. These variations result in power fluctuations and additional 

requirements to satisfy customer demand thereby affecting the operating schedules of 

other power plants. Also, it may involve additional costs for balancing the system in 

terms of reserve requirements. The major impacts of penetration of wind generated 

electricity into existing power systems are discussed below in detail. 

 

2.2.1 Power Quality 

Electric power output is available from a wind turbine only for a certain range of wind 

speeds. Also, power available in wind is directly proportional to the cube of wind speed 

as given below. 

           31

2
wind

P AVρ=   watts                   …(2.2) 
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where 

ρ = air density in kg/m
3
 

A = area of wind turbine rotor in m
2
 

V = wind speed in m/s 

  

Hence, even a slight change in wind speed can have a significant impact on the amount of 

electric power output and on the overall power quality. The important measures of power 

quality are voltage level, frequency, harmonics, and ability to manage reactive power 

balance [12]. Impacts of probabilistic nature of wind resource on these crucial factors of 

power quality are briefly discussed below. 

 

2.2.1.1 Voltage Level:  

Stable voltage is required for normal operation of all electric equipment. Voltage 

fluctuations basically arise from fluctuating power as a result of varying wind speed. 

Such fluctuations may give rise to disturbances such as light flicker and low voltage. 

Variations in voltage are less prominent if the number of turbines connected to the grid is 

small. With large number of wind turbines connected to the grid such as a wind farm, 

every turbine generates electric power independently as they are subjected to wind 

resources having different characteristics at different times as a result of the large area of 

a wind farm. Hence, some of the high frequency fluctuations have a tendency to even out. 

Fixed speed wind turbines use pitch control to smooth out the power peaks, but they 

cannot smooth out high frequency power peaks quickly and efficiently. Variable speed 
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wind turbines incorporate power electronic circuitry to obtain a steady voltage output by 

reducing the fluctuations.  

 

2.2.1.2 Power Harmonics: 

Use of power electronic circuitry in wind-electric conversion results in to high frequency 

power harmonics and could enhance existing harmonic distortion of voltage caused by 

the conventional power generation systems. The presence of harmonics in a voltage or 

current wave is an indication of inferior power quality. Different types of power 

generating devices produce harmonics with different characteristics. Also, loads 

connected to the grid such as power electronic equipment or non-linear loads may impact 

the harmonic nature of the grid voltage. Ultimately, harmonic distortion of voltage causes 

overheating and damage to equipment, faulty operation of protective relays and 

interference in communication lines. Modern power processing units use considerable 

amount of power electronics for efficient energy capture from the wind and hence care 

must taken to overcome resulting harmonic distortion. 

 

2.2.1.3 System Frequency: 

System frequency will be maintained only if the energy produced balances the energy 

consumed. If the energy produced is more than that consumed, for example, due to an 

increase in wind speed, then the system frequency will also increase and vice-versa. 

Unfortunately, since wind speed varies all the time, electrical energy produced by the 

wind turbine is never constant and causes variations in frequency and system voltage. 

When an active generating unit goes out of service due to a failure, system experiences a 
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sudden loss of power. In such cases, reserves get connected to the grid to maintain the 

power supply to the connected loads. In such cases, voltage and frequency will vary for a 

certain time interval depending upon the time needed to switch in reserves if the available 

spinning reserves are not adequate. A power system with large number of wind turbines 

may face such situations frequently because wind turbines are disconnected from the grid 

in case of severe weather or mechanical failures or during an insufficient or oversupply of 

wind energy. 

 

2.2.1.4 Reactive Power Balance: 

The balance between active and reactive power is critical to maintain a proper voltage 

profile which should be maintained in a power system depending on the type of load 

connected to the grid. For capacitive loads system must absorb reactive power while, for 

inductive loads it should supply the same, thereby maintaining the power factor close to 

unity. Wind turbines often use asynchronous generators which are inductive in nature and 

absorb considerable amount of reactive power e.g. induction generators. Fixed or nearly 

constant speed wind turbines incorporating squirrel cage induction generators are 

provided with large capacitor banks to satisfy the reactive power requirements. But, due 

to the nearly constant speed operation they are less efficient and more prone to 

overstresses and their use is restricted to household and farm applications only. Variable 

speed wind turbines with doubly fed induction generators are most popular due to their 

flexible operation and high overall efficiency. They use efficient power electronic 

circuitry to achieve reactive power control. However, the use of power electronics results 

in additional costs and increases the harmonic distortion of system voltage.  
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The balance between different aspects of power quality can be maintained using different 

devices. Selection of the device will depend on the instantaneous penetration level of 

wind-generated electricity into the power system. At higher levels of penetration, use of 

additional sophisticated devices may become mandatory to maintain the power quality 

which will eventually increase the cost of generated electricity. 

 

2.2.2 Power System Dynamics  

2.2.2.1 Behavior under Dynamic Conditions: 

Power system has to maintain its stability in case of sudden disturbances or changes such 

as faults, tripping of a generator, sudden loss or connection of a large load, changes in the 

mechanical power from a prime mover, etc. System voltage, current, frequency and rotor 

speeds experience momentary changes in their values during dynamic conditions. 

However, system regains its stability by adjusting itself to a new operating point without 

any loss of load.  

 

Synchronous generators used in conventional power generation systems have inherent 

ability to adjust themselves to a new operating point within a short time interval during 

dynamic conditions. However, asynchronous generators popular in modern wind turbines 

lack this ability and depend on complex power electronic circuitry to remain connected to 

the grid during dynamic conditions. During fault occurrences, system experiences heavy 

current flow and large voltage dips. Consequently, turbine components are subjected to 

excessive electrical and mechanical stresses. In order to avoid any damage to its 
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components, turbine is disconnected from the grid until the clearance of fault. In other 

words, wind turbines show a poor low voltage ride through (LVRT) capability during 

faults. Typically, a squirrel cage induction generator has extremely poor LVRT capability 

as compared to a doubly fed induction generator. Secondly, induction generators have 

less contribution towards short circuit capacity as compared to synchronous generators in 

conventional power plants. Consequently, system suffers from frequency imbalance, 

voltage drops and disturbances in its stability. 

 

2.2.2.2 System Moment of Inertia: 

“Moment of inertia of a system can be defined as the total amount of kinetic energy 

stored in all spinning turbines and rotors in the system” [13].  

 

When the power generated is not equal to the power consumed, system absorbs energy 

from reserves, if present, or from the kinetic energy stored in the rotating masses of the 

turbines and generators. As a result, the turbine rotor speed decreases and hence the 

frequency.  Systems with high moment of inertia can limit the rate of change of 

frequency thereby allowing sufficient response time to the controllers to overcome 

unbalance caused by frequency deviations. Fixed or nearly constant speed turbines 

contribute to overall moment of inertia of the system as they are directly connected to the 

grid. Variable speed wind turbines control the grid power independent of the mechanical 

power supplied by the wind to its rotor as shown in Figure 4 [14]. Power electronic 

converters decouple all the electrical quantities such as grid frequency and voltage from 

the mechanical quantities such as rotor speed. So, virtually DFIG offers zero inertia to the 



 17 

system. Use of energy storage systems becomes necessary for the systems with low 

moment of inertia. Also, it is observed that frequency changes are more when the turbine 

is subjected to large amount of wind energy. Hence, the risk of the system unbalance, 

instability, poor power quality and frequency variations is high at high penetration levels 

of wind energy. 

 

 

Figure 4: Wind-Electric Conversion with Doubly Fed Induction Generator [9] 

 

2.2.3 Distribution Network Voltage Levels 

In remote and isolated power systems, wind turbines are connected to the grid at 

locations where several consumers might be connected to the grid. In such cases, it is 

important to maintain the voltage and frequency at the point of common connection 

because any disturbance in their levels will directly affect the connected loads. Whether 

the wind turbine is active or inactive mainly depends on the wind speed. Also, the turbine 

power output varies with wind speed from time to time. In a situation where the load on 
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the system is too high and electrical output from the turbine is comparatively low, the 

voltage at the point of common connection will have a considerably low value. This kind 

of situation is undesirable from power system stability point of view and may require 

additional arrangements to maintain the voltage level and frequency level at the common 

point of connection. 

 

2.2.4 Losses 

Losses mainly include generation, transmission and distribution losses. Depending on 

whether the wind farm is connected to the grid near or far away from the load, 

transmission and distribution losses will be less or more accordingly.  

 

2.2.5 Economic Aspects  

Although the cost of wind generated electricity has declined noticeably over the last few 

decades, significant amount of investment is involved in the manufacturing and 

installation of wind turbines. To overcome the limitations resulting from the stochastic 

nature of wind resource, wind farms are equipped with additional energy storage devices 

or reserves to ensure the continuity of supply to the connected loads. Also, the complex 

power electronic circuitry used in modern wind turbines contributes towards maintaining 

power quality. Use of these sophisticated controls increases the overall cost significantly. 

Existing transmission and distribution systems are designed based on conventional power 

generation techniques such as, hydro, thermal, gas, nuclear, coal-fired plants etc.  

Connecting wind power plants to these existing grids disturbs the operating schedules of 

conventional plants and may even result in overloading of transmission lines. 
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Redesigning the power system may improve the overall efficiency and stability, but it 

will also involve higher investments and will result in increased cost of electricity. 

 

2.2.6 Some Additional Issues 

Wind-electric conversion technology is becoming increasingly popular for its 

environmentally friendly (green) nature. Wind power can decrease the emission of CO2 

and other harmful gases by replacing conventional power plants such as coal-fired plants. 

However, this is possible only if the majority of power generation in a region is by air 

polluting coal-fired power plants. In a region where eco-friendly hydro and biomass 

plants dominate the power generation task, installation of wind power plants will not help 

to reduce the amount of CO2, instead it could affect the stability of the existing power 

system. 

 

With an increase in the penetration of wind-generated electricity into power system, the 

risk of loss of load and the loss of system balance increases. The risk at system level is 

directly proportional not only to LOLP but also to the consequences of the event [15]. So 

even with low LOLP, risk could be high due to the intermittent nature of wind speed. 

Secondly, even though non-conventional energy sources such as, wind and solar can 

satisfy the peak demands, no direct correlation exists between existence of load and 

availability of these energy sources. Operating schedules of different power plants are 

adjusted depending on the predictions made by wind forecasting techniques about the 

availability of wind during a certain time period. However, the predictions made by 

forecasting techniques are not accurate enough and uncertainties always exist, ultimately 
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increasing the probability of an unscheduled shut down of the wind turbine subjected to 

very strong winds. 

 

Wind turbine installations also cause some environmental issues such as avian mortality, 

visual pollution and noise which can be mitigated by proper siting of the plant and using 

advanced techniques for manufacturing turbine components such as blades. The low 

rotational speeds of large turbines tend to decrease avian mortality and noise levels. 

 

To sum up, all the major issues are directly or indirectly caused by the stochastic nature 

of the wind resource. Although controlling the behavior of wind is out of our scope, it is 

possible to temper its impacts by deciding the penetration level of wind power into a 

power system based on early estimations of important parameters such as forced outage 

rates. Considering the ever increasing penetration levels of wind energy in most of the 

countries, developing such early estimation techniques is of high importance.  
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CHAPTER III 

RELIABILITY OF WIND POWER 

 

IEEE Reliability Society defines Reliability as follows: 

“Reliability is a design engineering discipline which applies scientific knowledge to 

assure a product will perform its intended function for the required duration within a 

given environment.” 

 

Increased penetration of wind generated electricity into power systems makes the overall 

reliability of electric power supply a key factor in the success of wind-electric conversion 

system projects. Poor reliability of WECS units results in increased O&M cost, reduced 

system availability and it also directly affects the revenue from the project. Loss of load 

probability or LOLP is a well-known measure used to evaluate the reliability of electric 

power supply. With increasing penetration of wind generated electrical power into 

conventional power systems, LOLP will increase because the availability of electric 

power from WECS is not as high as from conventional units. Some of the crucial factors 

responsible for reduced availability of electric power from WECS are discussed in this 

chapter. A simplified method to evaluate the forced outage rate of electric power output 

from wind turbine is presented by including all the major factors affecting its availability.
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3.1 Forced Outage Rate 

Forced outage rate is one of the most important parameters in the estimation of 

component reliability. Components experience forced outage if emergency conditions 

related to a component force it out of service. The long-term probability of finding the 

component in the down state is called its ‘forced outage rate’ (FOR). 

 

3.1.1 FOR of Conventional Generating Units 

FOR of a generating unit is often termed as the ‘unavailability’ of that unit. By definition, 

it is the probability of finding the unit down on forced outage while operating under 

specified conditions at some distant time in the future. In the case of conventional 

generating units, emergency conditions may arise due to the stochastic nature of weather 

conditions, system behavior, customer demand or component failures. Also, load 

forecasting techniques constitute an important part of power system planning and 

operating decisions. But, these techniques cannot predict the load precisely, sometimes 

resulting in overloading and consequent loss of load.  

 

If ‘λ’ and ‘µ’ are the constant failure and repair rates of a generating unit respectively, 

then from reliability studies its forced outage rate is given by,  

 

                              
.

. .

down time
FOR

down time up time

λ
λ µ

= =
+ +

∑
∑ ∑

                       … (3.1) 
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Historical operational records of the unit are used to estimate the values of parameters, λ 

and µ [16]. Constant failure and repair rates imply exponentially distributed uptimes and 

downtimes. This is a commonly used assumption in reliability evaluations. 

 

3.1.2 FOR of a Wind-Electric System:  

The probability and frequency of forced outages of a wind-electric system are 

comparatively higher than those of a conventional generating unit. The stochastic nature 

of wind resource and mechanical failures of turbine components are responsible for 

forced outages of a wind-electric system resulting in zero output power. If sufficient 

reserve is not available, the power system may not be able to meet the grid load, thereby 

increasing the loss of load probability (LOLP). One possible way to decrease the loss of 

load is to have early estimates of WECS reliability and its expected power output and 

design the system accordingly. 

 

Similar to a conventional generating unit, it is possible to arrive at an FOR for a wind-

electric system. Characteristics of the wind resource, output curve of a WECS and 

mechanical failure data for a similar wind-electric system, operating in a wind regime 

having similar characteristic parameters, can be used as input data for calculating FOR of 

WECS. Estimates of FOR, availability and expected power output of WECS thus 

obtained can be used to evaluate the expected loss of load of a combined conventional 

and wind-electric system. Studies of this kind will simplify the decision making process 

at the early planning stages of introducing wind power as a generation option. 
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3.2 WECS Output Characteristics-Factors Affecting Availability of Electric Output 

Figure 5 shows a typical curve for power output from a WECS. Wind-electric system 

starts generating electric power at a wind speed known as ‘cut-in speed’ (Vci). It produces 

rated power (Pr) output above ‘rated wind speed’ (Vr) as shown in Figure 4. Wind turbine 

continues to produce the rated output till the wind speed reaches the ‘cut-out’ value (Vco). 

Beyond Vco, the turbine is completely shut down to avoid any damage to its components.  

 

Figure 5: WECS Power Output Curve 
 

Clearly, electric power output is available from a turbine only for a certain range of wind 

speeds. Secondly, mechanical failures resulting from severe weather conditions or aging 

of components force the turbine out of service. Hence, the probabilistic nature of wind 

resource and component failures are of high importance while estimating the availability 

of WECS. The major factors affecting the availability of WECS and in turn the 

availability of its power output are listed below: 

1. Electric power is available from a WECS only for wind speeds between 

Vci and Vco. 

2. Only wind speeds only in the range from Vr to Vco generate rated electric 

power.  
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3. Non-linearity of the power curve from Vci to Vr results in a variable power 

output less than the rated output. 

4. Severe weather conditions exert excessive electrical and mechanical 

stresses on the system components leading to mechanical failures. In 

addition, normal wear and tear and fatigue will cause some components to 

fail. Serious mechanical failures result in turbine shutdown and 

consequently the unavailability of power output until repair is completed.  

5. Wind turbine is disconnected from the grid beyond Vco in order to avoid 

excessive electrical and mechanical stresses on system components. 

 

As a result, the expected power output from WECS is always less than its rated power output. A 

realistic assessment of WECS output can be made by including all the factors listed above in an 

appropriate manner. The nonlinearity present in the power curve for wind speeds between Vci to 

Vr can be included by approximating it by a straight line as discussed in the next section. 

Since all the estimations and evaluations are probabilistic, this approximation is not 

expected to have any major influence on the results. 

 

3.3 Approximation of WECS Power Output Curve 

Figure 6 shows the approximated power output curve of a wind-electric system. The non-

linear part of the curve between Vci and Vr is approximated by a straight line. Thus, the 

equation for power output becomes 
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Figure 6: Approximated Power Output Curve 
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Using Pr as the base value, equation (3.2) can be normalized as 
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                     … (3.3) 

 

3.4 Overall Forced Outage Rate of WECS Output 

All the factors that affect the availability of wind-electric systems must be quantified to 

include their effects on the FOR value for WECS [17]. For this purpose, wind resource is 

modeled using Weibull Distribution as given in the Appendix A. 
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3.4.1 Quantification of the Factors Affecting Availability: 

(1) Wind Availability Factor (PWA): It is defined as the probability that wind speed is 

between cut-in and cut-out values. 

                 

( ). .

................................ exp exp

ci co WA

ci co
WA

Wind Availability Factor P V V V P

V V
P

β β

α α

= ≤ ≤ =

      ∴ = − − −      
         

                        

                                                                … (3.4) 

 

(2) Constant Power Output Factor (PConst): Since rated power output results for wind 

speeds between Vr and Vco, the expected normalized power output in this speed range 

will be the probability of the wind speed lying in this speed range. Hence, 

 

                                          exp exp cor
Const

VV
P

ββ

α α

     = − − −     
         

                         … (3.5) 

 

(3) Variable Power Output Factor (PVar): Expected value of normalized power output 

over the speed range from Vci to Vr can be calculated as follows:  

 

Figure 7: Expected Power Output Calculation for Variable Portion 
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The region from Vci to Vr is divided into n small intervals as shown in Figure 6. 

Probability that the wind speed is between any two values, say V1 and V2 (Figure 7), will 

be 

                        ( ) 1 2
1 1 2 exp exp

V V
a P V V V

β β

α α

      = ≤ ≤ = − − −      
         

                 … (3.6) 

 

Then, the expected normalized power output over the speed range from V1 to V2 will be, 

                                              ( )
1 2

1,2 1

2

( )

ci

r ci

V V
V

E P a
V V

+  − 
 = ∗

−
                                  … (3.7) 

 

Summation of the expected normalized power outputs calculated in this way for each 

small interval in the variable part will yield the expected normalized power output for the 

region from Vci to Vr. Thus, 

                                                        1,2( )VarP E P= ∑                                          … (3.8) 

 

(4) Factor for mechanical failures (PMech): Forced outage rate for a mechanical 

component with a constant failure rate of ‘λ’ per hour and a mean repair time of ‘r’ hours 

is given by, 

                . .forced outage rate rλ≅                                    … (3.9) 

Wind turbine consists of several mechanical components as shown in Figure 8 with 

different failure and repair rates. With a serious failure of any one component, the wind 

turbine goes out of service. Therefore, from reliability point of view of all the 
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components can be seen to be logically in series as shown in Figure 9. Then, the FOR of 

mechanical system will be a summation of individual component FORs [18].                              

                                                           
Mech i i

i

FOR rλ=∑                                          … (3.10) 

Hence,  

                                                        1Mech MechP FOR= −                                        … (3.11) 

 

 

Figure 8: Wind Turbine Components 

 

 

 

 

Figure 9: Series Reliability Model 
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3.4.2 Reliability Model of WECS: 
 

 

Figure 10: Series Reliability Model for WECS 

 
 

Availability of power output from WECS depends on availabilities of wind resource and 

mechanical system. Hence, the overall reliability model for WECS will be a series model 

as shown in Figure 10. Also, for variable part of the power output curve, the expected 

power output from WECS is less than the rated power output by a factor defined earlier. 

This factor must be included appropriately [19]. Collecting all the factors discussed 

above, the reliability R for a WECS can be expressed as 

                                                   ( )* *W A M echR P E P P=                                 … (3.12) 

where                                     ( )
Var Const

E P P P= +                                       … (3.13) 

Then, the overall forced outage rate for the WECS output will be 

                                   1PowFOR R= −                                           … (3.14) 

 

3.5 Summary 

A method to determine the forced outage rate for wind-generated electricity is developed 

based on an approximated power output curve for WECS and failure and repair rates of 

mechanical components. Using Weibull probability density function and cumulative 

distribution function equations; general key factors are defined and expressed 

mathematically. Sensitivities of these factors for different parameters are examined in 
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detail in the next chapter. Also, the FOR value is used to evaluate the generation 

reliability of power systems containing both conventional and wind generation. 
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CHAPTER IV 

STUDY EXAMPLES 

 

In this chapter, the concepts of FOR and expected power output of WECS are applied to 

assess the influence of the penetration of wind power into a conventional generation 

system. In particular, LOLP is employed to quantify the influence. Published failure data 

for wind power systems operating in Sweden are used in the example studies. Sensitivity 

of expected power output and wind availability factor to the Weibull parameters 

characterizing wind resource and design parameters such as cut-in and cut-out wind 

speeds is studied and the results are presented in graphical form. 

 

4.1 FOR and Expected Power Output of WECS 

For the study, three different wind regimes, labeled as low, moderate and high with their 

corresponding Weibull parameters as listed in Table 1 are chosen [20]. Values of cut-in, 

rated and cut-out wind speeds are chosen as 3.6 m/s, 8 m/s and 21 m/s respectively (1 

mile/hr ≈ 2.24 m/s). Table 2 lists failure data for various components taken from 

published literature [21]. 

 

Table 3 lists the values of expected power output, wind availability factor, WECS 

reliability and FOR for the three different wind regime using the same component failure 
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data. It can be seen that expected power output ranges from 31% to 87% of the rated 

power depending on the wind regime. As expected, better wind regimes yield higher 

values of expected power output, higher unit reliability and lower FOR values. In 

particular, the FOR values are significantly larger than the corresponding values for 

conventional generators. 

 

Wind Speed α (m/s) β 

Low 5.07 1.31 

Moderate 9.7 2.00 

High 15.55 3.10 

Table 1. Wind Specific Data 

 

 

 

Table 2. Component Failure Data [17] 

Component 
Failure Rate 

(yr
-1

) 

Repair 

Time 

(hrs/yr) 

MTTR 

(hrs) 

Structure 0.006 0.6 100.00 

Yaw System 0.026 6.6 253.85 

Hydraulics 0.061 2.6 42.62 

Mechanical Brakes 0.005 0.6 120.00 

Gears 0.045 11.6 257.78 

Sensors 0.054 2.7 50.00 

Drive Train 0.004 1.2 300.00 

Controls 0.050 9.2 184.00 

Electric System 0.067 7.2 107.46 

Generator 0.021 4.5 214.29 

Blades 0.052 4.7 90.38 

Hub 0.001 0.0 0.00 
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Wind 

Speed 
Low Moderate High 

E(P) 0.3159 0.6867 0.8709 

PWA 0.5265 0.8621 0.9118 

FORMech 0.0059 0.0059 0.0059 

R 0.1653 0.5885 0.7892 

FORPow 0.8347 0.4115 0.2108 

Table 3. Results 

 

4.2 Sensitivity Analyses 

Although the general nature of the relationship of the expected power output and wind 

availability factor to wind parameters, cut-in speed and cut-out speed are known, a simple 

study was undertaken to quantify these relationships. The results are presented in Figures 

11-22 for all the three chosen wind regimes. 

 

As the scale factor α increases, the mean wind speed also increases and wind speed 

approaches cut-out region for very high values of α. Accordingly, the expected power 

output and wind availability factor show a steady growth initially but a slight reduction 

for higher values of α as shown in Figures 11-13. Figure 14 and Figure 15 show a steady 

rise in expected power output and wind availability factor with increasing β at moderate 

and high wind speeds. However, as β increases, the spread of Weibull density function 

curve decreases indicating less variation in the wind speed. So, at low wind speeds and 

high β values, the turbine continues to generate power in the variable part of the power 

curve for a longer time thereby decreasing the expected power output as shown in Figure 

16. Figures 17-19 show that with increasing Vci, the expected power output increases 
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while the wind availability factor decreases. As Vci increases, the variable power output is 

available over a smaller speed range and the turbine generates the rated electric power for 

most of the time. Hence, the wind availability factor decreases while the average power 

over the operational wind speed range increases. With increasing Vco, the operational 

wind speed range increases and hence, rated power is available over a larger range of 

wind speed. Therefore, the wind availability factor and expected power output both 

increase with increasing Vco as shown in Figures 20-22. 

 

 

 

Figure 11: β = 1.31, Varying α 
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Figure 12: β = 2.0, Varying α 

 

 

Figure 13: β = 3.1, Varying α 
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Figure 14: Low Wind Speed -Varying β constant α 

 

 

Figure 15: Moderate Wind Speed – Varying β constant α 



 38 

 

Figure 16: High Wind Speed –Varying β constant α 

 

 

Figure 17: Low Wind Speed -Varying Vci constant Vco 



 39 

 

Figure 18: Moderate Wind Speed – Varying Vci constant Vco 

 

 

Figure 19: High Wind Speed –Varying Vci constant Vco 
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Figure 20: Low Wind Speed -Varying Vco constant Vci 

 

 

Figure 21: Moderate Wind Speed –Varying Vco constant Vci 
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Figure 22: High Wind Speed –Varying Vco constant Vci 

 

4.3 Hybrid System Study using WECS FOR Values 

Using the FOR values of WECS power output listed in Table 3, expected loss of load is 

calculated for a hybrid system consisting of different combinations of conventional 

generators and WECS generators.  

 

i) Consider a system shown in Figure 23 consisting of three conventional coal 

fired generators and one WECS. All generators have a rating of 1 MW each. 

The forced outage rate of coal fired plant is taken as 0.02 and the system load 

is assumed to be 3 MW.  
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Figure 23: LOLP Study of a Hybrid System – One WECS Generator 

 

Capacity In 

(MW) 

Capacity 

Out (MW) 

Individual 

Probability 

Load Loss 

(MW) 

4 0 0.1556 0 

3 1 0.7951 0 

2 2 0.0483 1 

1 3 9.83e-4 2 

0 4 6.68e-6 3 

 

Table 4. Sample Calculations of LOLP - One WECS Generator 
 

For selected values of α and β (α = 5.07, β = 1.31) the probabilities of load 

loss (LOLP) are calculated as given in Table 4. Then, the expected loss of 

load of this system is equal to 0.0503 MW as calculated below.   

Expected Load Loss = (1) (0.0483) + (2) (9.83e-4) + (3) (6.68e-6) 

                                           = 0.0503 MW 

 

 

ii) Now, using the same FOR and wind specific data but replacing one of the 

three coal fired generators by an additional WECS as shown in Figure 24, the 

α 5.07 

β 1.31 

FORG 0.02 

FORPOW 0.8347 



 43 

probabilities of load loss are calculated as given in Table 5. It is observed that 

with an additional WECS generator the expected load loss has increased to 

0.7356 MW. 

Expected Load Loss = (1) (0.68) + (2) (0.0274) + (3) (2.79e-4) 

 = 0.7356 MW  

 

 

 

Figure 24: LOLP Study of a Hybrid System - Two WECS Generators 

 

Capacity In 

(MW) 

Capacity 

Out (MW) 

Individual 

Probability 

Load Loss 

(MW) 

4 0 0.0262 0 

3 1 0.2661 0 

2 2 0.6800 1 

1 3 0.0274 2 

0 4 2.79e-4 3 

 

Table 5. Sample Calculations of LOLP- Two WECS Generators 
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Following this approach, the expected values of loss of load are calculated for different 

combinations of conventional coal-fired generators and wind-electric generators and the 

results are tabulated in Table 6. Clearly, the expected load loss has shown significant rise 

in its values with an increase in the number of WECS generators or in other words, at 

high penetration levels of wind generated electricity into power system [22].  

 

E(Load Loss) MW 

With Different Wind  Speeds 
# of  

Coal-Fired 

Plant 

Generators 

# of WECS 

Generators 
Low Moderate High 

4 0 0.00236 0.00236 0.00236 

3 1 0.0503 0.0254 0.0136 

2 2 0.7356 0.1956 0.06 

1 3 1.53 0.4543 0.134 

     
4 1 0.00195 0.00099 0.00053 

5 0 7.84e-5 7.84e-5 7.84e-5 

 

 

Table 6. Expected Load Loss of a Hybrid System at different Penetration Levels 
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CHAPTER V 

SUMMARY AND CONCLUDING REMARKS 

6.1 Summary and Concluding Remarks 

With the phenomenal global growth of wind farms feeding electric power into utility 

grids, their impact on the overall system operation is becoming increasingly important at 

several levels. The stochastic nature of wind and consequently of the electrical output has 

significant reliability implications for system operation and planning. Preliminary long-

range planning will benefit by the availability of simpler models, to be followed by 

detailed analyses and studies. This study has presented a simple approach to evaluate the 

forced outage rate of the electrical output from a wind-electric conversion system that 

could be used in the early stages of planning with wind energy in the generation mix.  

 

The approach considers the nature of wind and its availability, output characteristics of 

typical wind-electric conversion systems and hardware failure models. The resulting 

values of reliability and forced outage rate are used to estimate the expected loss of load 

of a combined generation system with different combinations of coal-fired plants and 

WECS generators having a rating of 1 MW each and with a system load of 3 MW. 

Results clearly indicate a significantly higher expected load loss at higher penetration 

levels of wind power into the system which is unacceptable. Hence, early estimations of 

loss of load will be helpful in power system scheduling and reserve
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planning in order to meet the demand on the grid. Also, the acceptable level of 

penetration of wind generated electricity into the power system can be assessed by 

incorporating its FOR value into conventional reliability evaluation techniques used to 

assess generation capacity. 

 

In addition to being simple, the approach is general enough to consider units of any rating 

and any location. In spite of the approximations made, the results reveal the influences of 

all the major design factors such as cut-in speed, cut-out speed and Weibull parameters. 

These influences are presented graphically for different wind speed data. Graphs show 

the behavior of wind availability factor and expected normalized power output from a 

wind turbine when different key parameters are varied. Approximating the non-linear part 

of the power curve to a straight line does not affect the forced outage rate values 

significantly. The usefulness of the key factors obtained using approximated power curve 

has been illustrated by hybrid generation system study examples.  

 

6.2 Scope for Future Work 

The study presented has assumed a constant wind specific data throughout and has not 

included the variations in the Weibull characteristic parameters over time. Usually, the 

scale and shape parameters vary with seasonal changes. The effect of seasonal changes 

can be covered with slight modifications to the approach presented. This study assumes a 

constant load whereas in a practical scenario, the load also varies stochastically. The 

impact of variable load on the expected load loss values is left for future work. In order to 
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obtain more accurate results, different turbine design parameters can be included in this 

study which requires further work. 

 

The approach presented can also be used as an initial step in reserve planning. Since we 

have the forced outage rate values of wind-generated electricity, they can be utilized to 

determine effective load carrying capability (ELCC) of wind capacity. The results of 

ELCC will decide how much capacity of wind power is equivalent to the conventional 

generation capacity maintained in the reserve margin. Similar kind of study has been 

done by Electric Reliability Council of Texas, Inc. (ERCOT) for the year 2008 [23]. 

According to ERCOT report, by replacing 550 MW of pulverized coal capacity with the 

overall wind capacity of 6300 MW the same value of LOLP can be reached. Hence, the 

ELLC of wind energy is 8.7% of the installed wind capacity which can be counted in the 

reserve margin calculations. Future studies should take into account the approach 

presented in the ERCOT report as it will allow the eco-friendly wind power to replace the 

polluting coal-fired plants without crossing the reliability standards. 
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APPENDIX A 

 

 

WEIBULL DISTRIBUTION TO MODEL WIND RESOURCE 

 

Weibull distribution has been used in the presented study to model the wind resource. It 

is one of the most widely used probability distributions for wind resource. It is a two 

parameter distribution namely, a “scale parameter” (α) having unit m/s and a “shape 

parameter” (β). Figures A.1 and A.2 show the “Probability Density Function” (pdf) and 

the “Cumulative Distribution Function” (CDF) respectively.  

 

 

 

Figure A.1: Weibull Probability Density Function 

 

 
  

Figure A.2: Weibull Cumulative Distribution Function 
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Weibull Cumulative Distribution Function:  
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Weibull Probability Density Function: 
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where, 

 V = wind speed (m/s) 

 

Hence, using CDF function the probability that the wind speed V m/s  is between any two 

values say V1 and V2 can be written as, 
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The expected value of Weibull distribution is given by,  
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where µ is called the first moment of random variable V i.e. wind speed and Γ is the 

gamma function given by, 
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The variance of Weibull distribution is 

                                            [ ] ( )2 2 2
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where σ is known as ‘standard deviation’. By substituting values of f(V) and µ we get 
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Using the equations above, the mean or expected value and variance of wind speed V for 

different values of α and β are calculated as follows: 

 

For α = 5.07 m/s and β = 1.31,   

E [V] ≈ 4.7 m/s (= 10.528 miles/hr), Variance ≈ 13 m
2
/s

2 

For α = 9.70 m/s and β = 2.00,   

E [V] ≈ 8.6 m/s (= 19.264 miles/hr), Variance ≈ 20 m
2
/s

2 

For α = 15.55 m/s and β = 3.1,   

E [V] ≈ 14 m/s (= 31.36 miles/hr), Variance ≈ 24 m
2
/s

2 

 

In this way the mean wind speed can be determined for a particular location provided the 

scale and shape parameters of Weibull distribution are known. The graph in Figure A.3 

shows the variations of the scale parameter α with respect to mean wind speed E[V] for 

different values of β. 
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 Figure A.3: Scale Parameter vs. Mean Wind Speed 
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APPENDIX B 

 

 

MATLAB CODE FOR SENSITIVITY ANALYSES 

 

B.1 Program Listing 

function[] = FOR(Alpha,Beta,Vci, Vr, Vco, FailuresPerYear, RepairHoursPerFailure) 

Interval = (Vr-Vci)/50; 

V = Vci; 

for k = 1:50 

    V_New = V + Interval; 

    Probability(k,:) = exp(-(V/Alpha)^Beta) - exp(-(V_New/Alpha)^Beta); 

    Power(k,:) = (((V_New + V)/2)-Vci)/(Vr-Vci); 

    V = V_New; 

end 

  

%%%Calculate different factors affecting availability of WECS output 

Variable_Output_Factor = Probability' * Power; 

Constant_Output_Factor = exp(-(Vr/Alpha)^Beta) - exp(-(Vco/Alpha)^Beta); 

Exp_Pow_Output = Variable_Output_Factor + Constant_Output_Factor; 

Wind_Availability_Factor = exp(-(Vci/Alpha)^Beta) - exp(-(Vco/Alpha)^Beta); 

Failure_Rates = FailuresPerYear./8760;
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FOR_Mech = RepairHoursPerFailure * Failure_Rates'; 

Reliability_Power = Wind_Availability_Factor * (1-FOR_Mech) * Exp_Pow_Output; 

FOR_Power = 1 - Reliability_Power; 

  

%%%Plot graphs of sensitivity analyses 

 %%%Varying Alpha 

Count = 1; 

for Alpha_New = 5:0.05:15 

    V = Vci; 

    for k = 1:50 

        V_New = V + Interval; 

        Probability(k,:) = exp(-(V/Alpha_New)^Beta) - exp(-(V_New/Alpha_New)^Beta); 

        Power(k,:) = (((V_New + V)/2)-Vci)/(Vr-Vci); 

        V = V_New; 

    end 

    Variable_Output_Factor = Probability' * Power; 

    Constant_Output_Factor = exp(-(Vr/Alpha_New)^Beta)  

                                                – exp(- (Vco/Alpha_New)^Beta); 

    Exp_Pow_Output1(Count,:) = Variable_Output_Factor + Constant_Output_Factor; 

    Wind_Availability_Factor1(Count,:) = exp(-(Vci/Alpha_New)^Beta)  

                                                                   – exp(-(Vco/Alpha_New)^Beta); 

    Count = Count + 1; 

end 
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Alpha_New = 5:0.05:15; 

subplot(4,1,1),[AX,H1,H2]  

= plotyy(Alpha_New,Exp_Pow_Output1,Alpha_New,Wind_Availability_Factor1,'plot'); 

xlabel('Alpha') 

set(get(AX(1),'Ylabel'),'String','E(P)')  

set(get(AX(2),'Ylabel'),'String','Pwa') 

  

%%%Varying Beta 

Count = 1; 

for Beta_New = 1:0.05:3 

    V = Vci; 

    for k = 1:50 

        V_New = V + Interval; 

        Probability(k,:) = exp(-(V/Alpha)^Beta_New) - exp(-(V_New/Alpha)^Beta_New); 

        Power(k,:) = (((V_New + V)/2)-Vci)/(Vr-Vci); 

        V = V_New; 

    end 

    Variable_Output_Factor = Probability' * Power; 

    Constant_Output_Factor = exp(-(Vr/Alpha)^Beta_New)  

                                                - exp(-(Vco/Alpha)^Beta_New); 

    Exp_Pow_Output2(Count,:) = Variable_Output_Factor + Constant_Output_Factor; 

    Wind_Availability_Factor2(Count,:) = exp(-(Vci/Alpha)^Beta_New)  

       - exp(-(Vco/Alpha)^Beta_New); 
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    Count = Count + 1; 

end 

Beta_New = 1:0.05:3; 

subplot(4,1,2),[AX,H1,H2] = 

plotyy(Beta_New,Exp_Pow_Output2,Beta_New,Wind_Availability_Factor2,'plot'); 

xlabel('Beta') 

set(get(AX(1),'Ylabel'),'String','E(P)')  

set(get(AX(2),'Ylabel'),'String','Pwa') 

  

%%%Varying Vci 

Count = 1; 

for Vci_new = 3:0.05:5 

    V = Vci_new; 

    for k = 1:50 

        V_New = V + Interval; 

        Probability(k,:) = exp(-(V/Alpha)^Beta) - exp(-(V_New/Alpha)^Beta); 

        Power(k,:) = (((V_New + V)/2)-Vci_new)/(Vr-Vci_new); 

        V = V_New; 

    end 

    Variable_Output_Factor = Probability' * Power; 

    Constant_Output_Factor = exp(-(Vr/Alpha)^Beta) - exp(-(Vco/Alpha)^Beta); 

    Exp_Pow_Output3(Count,:) = Variable_Output_Factor + Constant_Output_Factor; 
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    Wind_Availability_Factor3(Count,:) = exp(-(Vci_new/Alpha)^Beta)  

               - exp(-(Vco/Alpha)^Beta); 

    Count = Count + 1; 

end 

Vci_new = 3:0.05:5; 

subplot(4,1,3),[AX,H1,H2] = 

plotyy(Vci_new,Exp_Pow_Output3,Vci_new,Wind_Availability_Factor3,'plot'); 

xlabel('Vci') 

set(get(AX(1),'Ylabel'),'String','E(P)')  

set(get(AX(2),'Ylabel'),'String','Pwa') 

  

%%%Varying Vco 

Count = 1; 

for Vco_new = 18:0.5:28 

    V = Vci; 

    for k = 1:50 

        V_New = V + Interval; 

        Probability(k,:) = exp(-(V/Alpha)^Beta) - exp(-(V_New/Alpha)^Beta); 

        Power(k,:) = (((V_New + V)/2)-Vci)/(Vr-Vci); 

        V = V_New; 

    end 

    Variable_Output_Factor = Probability' * Power; 

    Constant_Output_Factor = exp(-(Vr/Alpha)^Beta) - exp(-(Vco_new/Alpha)^Beta); 
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    Exp_Pow_Output4(Count,:) = Variable_Output_Factor + Constant_Output_Factor; 

    Wind_Availability_Factor4(Count,:) = exp(-(Vci/Alpha)^Beta)  

              - exp(-(Vco_new/Alpha)^Beta); 

    Count = Count + 1; 

end 

Vco_new = 18:0.5:28; 

subplot(4,1,4),[AX,H1,H2] = 

plotyy(Vco_new,Exp_Pow_Output4,Vco_new,Wind_Availability_Factor4,'plot'); 

xlabel('Vco') 

set(get(AX(1),'Ylabel'),'String','E(P)')  

set(get(AX(2),'Ylabel'),'String','Pwa') 

  

%%%Output results 

Exp_Pow_Output 

Wind_Availability_Factor 

FOR_Mech 

Reliability_Power 

FOR_Power 

 
 
B.2 User Instructions 

User needs to run the MATLAB program by giving following command in the 

“Command Window”. 

FOR(Alpha,Beta,Vci, Vr, Vco, Failures, RepairHoursPerFailure) 
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Following are the codes snippets of the input data at different wind speeds for above 

command. 

%%%%%%%%%%%%%%%%%LOW WIND SPEED%%%%%%%%%%%%%%% 

Alpha = 5.07; 

Beta = 1.31; 

Vci = 3.6; 

Vr = 8; 

Vco = 21; 

Failures = [0.006 0.026 0.061 0.005 0.045 0.054 0.004 0.05 0.067 0.021 0.052 0.001]; 

RepairHoursPerFailure  

             = [100 253.85 42.62 120 257.78 50 300 184 107.46 214.29 90.38 0]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%MODERATE WIND SPEED%%%%%%%%%%%%%%%% 

Alpha = 9.7; 

Beta = 2.0; 

Vci = 3.6; 

Vr = 8; 

Vco = 21; 

Failures = [0.006 0.026 0.061 0.005 0.045 0.054 0.004 0.05 0.067 0.021 0.052 0.001]; 

RepairHoursPerFailure  

 = [100 253.85 42.62 120 257.78 50 300 184 107.46 214.29 90.38 0]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%HIGH WIND SPEED%%%%%%%%%%%%%%% 

Alpha = 15.55; 

Beta = 3.12; 

Vci = 3.6; 

Vr = 8; 

Vco = 21; 

Failures = [0.006 0.026 0.061 0.005 0.045 0.054 0.004 0.05 0.067 0.021 0.052 0.001]; 

RepairHoursPerFailure  

 = [100 253.85 42.62 120 257.78 50 300 184 107.46 214.29 90.38 0]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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