
 REALTIME 3D MAPPING, OPTIMIZATION, AND

RENDERING BASED ON A DEPTH SENSOR

 By

CRAIG MOUSER

 Bachelor of Science in Computer Engineering

Kansas State University

 Manhattan, KS

 2011

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 December, 2012

ii

 REALTIME 3D MAPPING, OPTIMIZATION, AND

RENDERING BASED ON A DEPTH SENSOR

 Thesis Approved:

 Dr. Weihua Sheng

 Thesis Adviser

 Dr. Damon Chandler

 Dr. David Cline

iii

Name: CRAIG MOUSER

Date of Degree: DECEMBER, 2012

Title of Study: REALTIME 3D MAPPING, OPTIMIZATION, AND RENDERING

BASED ON A DEPTH SENSOR

Major Field: ELECTRICAL AND COMPUTER ENGINEERING

Abstract: This thesis provides a method for using a portable scanner to create an

optimized 3D map for real time rendering. This thesis uses a cloud computing software as

a service architecture which allows for a portable scanner to acquire depth maps. Using a

portable scanner allows for the mapping of large areas. It will then send the depth maps

to a server for a 3D map to be created in real time. This thesis discusses the acquisition of

the point cloud using an open source program for 3D mapping with a depth sensor. It

then covers the triangulation into a mesh using the marching cubes algorithm. The

optimization of the mesh to allow real time rendering is then introduced. Finally the mesh

is imported and rendered in the Unreal Engine 3 for an interactive and intuitive display.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Motivation ..1
 1.2 Related Work ...3

 1.2.1 RGB-D Mapping ...3
 1.2.2 Triangulation ...7
 1.2.3 Mesh Simplification ..8
 1.2.4 Rendering Engines ..9

 1.3 Overview of the Thesis ..11

II. HARDWARE PLATFORM ...13

 2.1 Overall System Setup ...13
 2.2 RGB-D Sensor ...14
 2.3 Portable Computer ...16

 2.3.1 Netbook ...17
 2.3.2 Fit PC2i ...18
 2.3.3 Single-Board Computer ..19
 2.3.4 Mobile Device ...20

 2.4 Server Computer ..21
 2.4.1 Server Hardware ...22
 2.4.2 CUDA enabled Graphics Processing Unit ..22
 2.4.3 Networking ...23

III. SOFTWARE PLATFORM ..25

 3.1 Point Cloud Acquisition ...25
 3.2 Triangulation ..30
 3.3 Mesh Optimization...34
 3.4 Robot Operating System ..38
 3.5 Rendering ...42

v

Chapter Page

IV. EXPERIMENTS ..47

 4.1 Accuracy ..47
 4.2 Processing Speed ...50
 4.3 Alignment Reliability...51
 4.4 Voxel Size ..55
 4.6 Triangulation ..60
 4.7 Mesh Optimization...63
 4.8 Transformation Publishing...65
 4.9 RGB-D SLAM Comparison ..68
 4.10 Overall Experiment ..69
 4.11 Problems ..74

V. CONCLUSIONS AND FUTURE WORK ..76

REFERENCES ..78

APPENDICES ...81

vi

LIST OF TABLES

Table Page

 1 Measurement Results ...48
 2 Adjusted Measurement Results..49
 3 Reliability Results ..53
 4 Voxel Size Results ...56
 5 Bandwidth Use ...59
 6 Triangulation Run Time ...61
 7 Mesh Optimization Results ..63
 8 Overall Experiment Results ...73

vii

LIST OF FIGURES

Figure Page

 1 An interior represented by a hand created 3D mesh ..2
 2 Dense point clouds created with RGB-D Mapping ...4
 3 KinectFusion output ...7
 4 Mesh optimization using the quadric mesh optimization method9
 5 Screenshot from the Unreal Engine 3 ..11
 6 A block diagram of the system setup ...14
 7 Kinect sample output ...15
 8 Kinect, Xtion Pro, and Xtion Pro Live sensors ..16
 9 The Toshiba NB305 netbook used in this thesis ..17
 10 The Fit PC2i with a battery and an Asus Xtion Pro Live19
 11 A single-board computer with an Asus Xtion Pro ...20
 12 A Motorola Xoom with an Asus Xtion Pro Live ...21
 13 Example of CUDA grid, blocks, and threads ..23
 14 Flow chart of the KinectFusion algorithm ...27
 15 Method for shifting the TSDF in the PCL implementation28
 16 An example of a TSDF volumetric surface representation29
 17 A triangle mesh representing a dolphin ...31
 18 The vertices of a marching cube ..32
 19 An example of triangulation with marching cubes ..33
 20 The 15 possible marching cubes results...34
 21 A chair at 3 levels of optimization ...35
 22 The setttings used for mesh optimization in MeshLab ..36
 23 Growth in ROS repositories and packages through 201139
 24 The two images published with ROS in this thesis..41
 25 The ROS graph when running this thesis ..42
 26 A screenshot of the Unreal Developement Kit Level Editor running a
 provided demo level ..43
 27 Collision mesh example ...45
 28 Measuring the drawer width of a 3D Map in MeshLab48
 29 Frames per second during a 3D mapping session. ...51
 30 Depth and RGB images for each of the three environments tested54
 31 An example of drift occuring during a scanin a rectangular room55
 32 A comparison between dividing the TSDF volume into 256 (left) or
 512 (right) voxels along each dimension ...56
 33 A comparison of the resulting point cloud files from this experiment58
 34 Bandwidth use for depth and status images over 60 measurements60

viii

Figure Page

 35 Run time for the marching cubes algorithm ..61
 36 An example of a triangulated mesh from our 3D mapping application62
 37 Before and after optimization was applied to several meshes65
 38 Rxplot plotting the depth sensors movement ...67
 39 Rviz vizualizing 6DOF output from kinfu in real time ...67
 40 A comparison of RGB-D SLAM and this thesis. ..68
 41 Picture of ATRC 304 Lab and the 3D map of the same area.71
 42 In game screenshot of ATRC 304 lab ..72
 43 ATRC 304 triangulated mesh ..74

1

CHAPTER I

INTRODUCTION

In this thesis, a method is developed for the capturing, representing, and rendering of 3D

environments based on a depth sensor. This chapter will first cover the motivation in Section 1.1.

Related work will then be presented in Section 1.2. Finally, an overview of this thesis will be

covered in Section 1.3.

1.1 Motivation

The ability to create 3D maps has been a popular research topic for many years. 3D maps have

intrinsic values in many different fields of study from robotics to visualization. Typically, these

maps have been created by reading in data from one or more types of sensors. These readings are

then processed into a map of their surroundings. Depending on the application requirements, a

2D or 3D map could be created. Most often, these maps have been created from either a LIDAR

(Light Detection and Ranging) sensor or SONAR (Sound Navigation and Ranging) sensor.

However, since Microsoft released the Kinect sensor in November 2010 [1], using RGB-D

images to create 3D maps has been an aggressively researched topic

[4][8][9][14][15][17][19][20][21][22].

2

Map representation is an important issue. Using a mesh to represent 3D maps is valuable

in many applications. By triangulating a 3D map, it enables the use of decades of research into

polygon rendering. Industry has provided a huge drive of research into this area because of the

popularity of video games and computer generated imagery (CGI). All modern rendering engines

are based on the concept of rendering a series of triangles into a 2D image. We now have tools to

create photo-realistic renderings, process very large meshes, apply physics simulations and more.

We can use these tools to create interactive and visually appealing displays for our 3D maps. One

application where this would be useful is in real estate. A property’s interior could be scanned

into a 3D map and uploaded online. Potential buyers would then be able to interactively tour the

property in its entirety. This would give a much more natural feeling than viewing panoramic

images of the interior of the house. Figure 1 shows a rendering of an interior room based on a

triangulated mesh. Similarly, robots can use this technology to create maps that can help

autonomous navigation and be easily viewed by operators. This can be very useful for search and

rescue, as well as reconnaissance. It would be easy to identify and mark areas of interest on an

intuitively displayed 3D map.

This thesis aims to develop a portable 3D mapping system using a depth sensor. Three

main issues are involved in this process: map creation, map optimization, and map rendering.

Map creation is the process of acquiring the point cloud representing the 3D space from a

sequence of depth images. Map optimization is the triangulation of the point clouds in to a mesh

and the optimization of the triangulated mesh. Map rendering is creating a visual display of the

optimized map for a viewer.

3

Figure 1: An interior represented by a hand created 3D mesh [2].

There are several constraints that should be met in order to create a practical 3D mapping

application. These constraints are:

• Portable: The system should allow the user to move freely through their environments to

acquire complete maps.

• Cost: The price of the system should be reasonable for its purpose. For this paper we are

proposing a method that could be used by the general population. This means that the

system should be affordable to an average consumer.

• Accuracy: The system should be able to create the map with the accuracy required for

various 3D applications.

• System Requirements: The system should only use off- the-shelf parts that are available

to all potential users.

Depth sensors such as the Kinect sensor or the Xtion sensors [42][43] provide a cheap sensor

for creating 3D maps with the required accuracy. LIDAR sensors can provide very accurate

4

results, but cost several thousand dollars. SONAR on the other hand is very cheap, but has poor

accuracy. The Kinect provides ample accuracy while costing only a small fraction of what

LIDAR costs [3].

1.2 Related Work

This section will briefly discuss recent works that are related to this thesis. As previously

mentioned, there has been a lot of research on the use of RGB-D images since the release of the

Kinect sensor.

1.2.1 RBG-D Mapping

Henry et al. introduced a method for mapping through the creation of a dense point cloud

from RGB-D images [4]. They created these maps by combining both visual features and shape

based alignment. Their implementation detects visual features using the scale-invariant feature

transform (SIFT) algorithm [5]. It uses an RGB-D iterative closest point (ICP) algorithm [6] for

the shape based alignment. The RGB-D ICP is an enhancement of ICP specialized for the RGB-D

sensors. It uses the SIFT feature points projected into 3D using the depth data as 3D features.

The random sample consensus (RANSAC) [7] algorithm is used to find features that are

considered inliers between the source and target frame. ICP is then used to determine the

transformation from the previous frame. They also use visual and depth information on key

frames to detect loop closures and applied correction for drift. A key frame is created any time

there are less than 3 inliers found between the current frame and last key frame. Each time a key

frame is added, it is compared to previous key frames in an attempt to detect loop closure. Figure

2 shows two dense point clouds from their experiments. This implementation can run at

approximately one frame per second without merging points.

5

Figure 2: Dense point clouds created with RGB-D Mapping [4].

 Huang et al. combined the previous work with a flying quadrotor and was able to create

dense 3D point cloud maps for localization using only the onboard computer [8]. The dense point

cloud map was also used for stabilizing and controlling the flight of the quadrotor. Engelhard et

al. implemented a similar solution to Henry’s to enable real-time 3D SLAM (Simultaneous

Localization and Mapping) with an RGB-D camera [9]. In their implementation they used

speeded up robust feature (SURF) [10] feature extraction on the RGB image combined with

RANSAC to estimate the relative transformation of the camera. They then refine this estimate

with a second estimate from a variant of the ICP algorithm. This is all stored using a pose graph

optimization [11] to help form a globally consistent map. However, their implementation is only

able to run at approximately 2 seconds per frame. All of the previous work mentioned above has

used dense point clouds to store their 3D maps. Dense point clouds can use a large amount of

memory when working with large areas.

The following papers created similar systems using various methods to reduce memory

usage. Hartmann et al. presented a method of RGB-D SLAM using a Kinect and two feature

extraction algorithms, Oriented FAST [12]and Rotated BRIEF (ORB) [13][14]. In their paper

they use a landmark based mapping system that is required for their FastSLAM algorithm. In this

6

method, it stores a series of landmarks which represent a point of interest. Each landmark will

hold the 3D position, the error covariance, and a descriptor. While this implementation is very

fast and memory efficient, it does not retain the necessary information to create a realistic

rendering. In another paper, Endres et al. evaluated RGB-D SLAM using three different

algorithms [15]. They tested SIFT, SURF, and ORB. They stored their results in an OctoMap, an

octree-based voxel map proposed by Wurm et al. [16]. Their research showed similar accuracies

for SURF and SIFT, while ORB did not perform quite as well. ORB and SIFT had similar run

times that were much faster than SURF on average. The SIFT implementation was executed on

the GPU however. Zou et al. presented a method for indoor localization and 3D scene

reconstruction using the Kinect [17]. Their research also decided to use the aforementioned

OctoMap to efficiently deal with the large amounts of data. In their implementation they tested

four feature detectors: ORB, SURF, Shi-Tomasi (ST) corners [18], and FAST. They did not

utilize any GPU acceleration as the goal of their research was to run their software on mobile

robotics platforms with limited computing power. ORB and SURF were the only two to complete

both test environments successfully. FAST, however, was the fastest algorithm. It was closely

followed by ORB and ST corners.

The first virtual reality applications came along when Izadi et al. of Microsoft Research

released their paper on KinectFusion [19]. KinectFusion presented a surface mapping and

tracking system based only on the depth frame. It utilizes a coarse-to-fine ICP algorithm for

tracking. This implementation compares the current depth map to the entire observed model. This

helps reduce drift over time that can be seen in other implementations. It also utilizes a highly

parallelized set of algorithms, which allows almost all the software to be run on the GPU. The

limitation of their implementation is it only works on a 3 meter cube. This makes it impractical

for scanning large environments. However it did offer the greatest quality tracking and rendering.

Figure 3 shows two examples of the original KinectFusion algorithm constructing models from

7

RGB-D images. This publication along with another on the same project [20] prompted a barrage

of research on extending this system.

Figure 3: KinectFusion output. Left: Raw Kinect data with normals. Right: Constructed map.
[19].

Whelan et al. implemented an extension to the KinectFusion algorithm named Kintinuous

[21]. This system runs the KinectFusion algorithm on the 3 meter cube, but when the camera

moves towards the edge of the cube it exports a dense point cloud and re-centers the cube on the

cameras location. This is performed by treating the cube as a cyclical array. When the cube is re-

centered, or shifted, the area that is no longer in the cube is exported to CPU memory and

reassigned to the new area being shifted into the cube. Open source implementations similar to

KinectFusion and Kintinuous will be discussed in greater detail in Section 3.1 of this thesis. Roth

and Vona developed a similar approach to extending KinectFusion that also uses a moving cube

[22]. Their implementation works by storing two cubes in GPU memory and swapping back and

forth as the user moves. Therefore their implementation requires twice the memory of the

Kintinuous implementation.

8

1.2.2 Triangulation

Triangulation has been a research topic for decades that spans many different fields. In this

case triangulation of points in a dense point cloud is necessary in 3D space. This has been a

widely researched area which has yielded many excellent solutions. In 1998 Owen provided a

survey of the top triangulation methods [23]. These methods were Octree [24], Delaunay [25],

and Advancing Front triangulation [26]. A method for efficient and constrained Delaunay

triangulation in 3D space was introduced in 1994 By Weatherill and O’Hassan [27]. This method

is still widely used today and is much more popular than the other two.

The method which was used in this thesis is known as marching cubes triangulation [28].

Marching cubes was introduced in 1987 by Lorenson and Cline as a method to triangulate models

of constant density. It was originally designed to deal with medical data, but has since been

expanded to computer graphics. This method was implemented using a GPU in 2006 by

Johansson and Carr [29]. This research allowed GPUs to run the marching cubes algorithm in a

fraction of the time. This is important for working with large data sets such as dense point clouds.

1.2.3 Mesh Simplification

Mesh simplification is another research topic that has been popular for years. When computer

graphics were just beginning, the computing power did not exist to process large meshes. Many

researchers created algorithms to simplify meshes. Cignoni, Montani, and Scopigno created a

comparison of various mesh simplification methods in 1998 [30]. In their paper, the authors

compared 21 existing methods for simplifying a mesh. They analyzed everything from number of

triangles, runtime, local and global error, and memory usage. Each method was applied over

various models to extensively test the strengths and weaknesses of each approach. The most

consistent method was using quadric error metrics. Multi-resolution decimation provided similar

quality but had nearly 20 times

metrics has been the most popular method for mesh optimization.

Using quadric error metrics for mesh optimization was first

[31]. Their method is capable

relatively small amount of time compared to similar methods. Their method works by iteratively

contracting vertex pairs and merging them. They

connected by an edge. The most important aspect however is the use of the quadric error metric.

The algorithm works by computing a quadric error matrix for each vertex. It then selects all valid

pairs. Each pair is given a contraction cost where the lower the cost

contraction. The pairs are then sorted from lowest to highest and the contractions are iteratively

performed until it reaches a stop condition. After each contraction, affected vertices will have

their costs recalculated. Figure 4

method.

Figure 4: Mesh optimization of a model from 5,804 to 994, 532, 248, and 64 faces respectively
using the quad

1.2.4 Rendering Engines

Trenholme and Smith

first person virtual environments in 2007

popular engines at the time: CryENGINE

Unreal 2 [36]. The id Tech 3

available. CryENGINE, Source, and Unreal

these was found to have similar qualities by Trenholme and Smith. All three have very wide

9

times the runtime. Since their paper was published, using quadric error

most popular method for mesh optimization.

Using quadric error metrics for mesh optimization was first used by Garland and Heckbert

. Their method is capable of creating high quality approximations of polygon meshes in a

relatively small amount of time compared to similar methods. Their method works by iteratively

contracting vertex pairs and merging them. They would even conjoin vertices that were not

d by an edge. The most important aspect however is the use of the quadric error metric.

The algorithm works by computing a quadric error matrix for each vertex. It then selects all valid

pairs. Each pair is given a contraction cost where the lower the cost means it is a more ideal

contraction. The pairs are then sorted from lowest to highest and the contractions are iteratively

performed until it reaches a stop condition. After each contraction, affected vertices will have

Figure 4 shows an example of Garland and Heckberts results using their

: Mesh optimization of a model from 5,804 to 994, 532, 248, and 64 faces respectively
using the quadric mesh optimization method [31]

Trenholme and Smith published a survey of using computer game engines for visualizing

first person virtual environments in 2007 [32]. They surveyed several key aspects of the 6 most

: CryENGINE [33], id Tech 3 and 4 [34], Jupiter EX, Source

The id Tech 3and 4 engines as well as the Jupiter EX engine are no longer

available. CryENGINE, Source, and Unreal Engine are still widely used and supported. Each of

found to have similar qualities by Trenholme and Smith. All three have very wide

using quadric error

used by Garland and Heckbert

of creating high quality approximations of polygon meshes in a

relatively small amount of time compared to similar methods. Their method works by iteratively

even conjoin vertices that were not

d by an edge. The most important aspect however is the use of the quadric error metric.

The algorithm works by computing a quadric error matrix for each vertex. It then selects all valid

means it is a more ideal

contraction. The pairs are then sorted from lowest to highest and the contractions are iteratively

performed until it reaches a stop condition. After each contraction, affected vertices will have

shows an example of Garland and Heckberts results using their

: Mesh optimization of a model from 5,804 to 994, 532, 248, and 64 faces respectively

published a survey of using computer game engines for visualizing

. They surveyed several key aspects of the 6 most

, Jupiter EX, Source [35], and

engines as well as the Jupiter EX engine are no longer

are still widely used and supported. Each of

found to have similar qualities by Trenholme and Smith. All three have very wide

10

community support, however CryENGINE and Unreal 2 were praised for their graphics abilities

while Source was praised for its ability for modularity, scripting, lip synchronization, and more

game specific features that are not necessary in this thesis.

 Another engine that has been developed is the Unity 3D Engine [37]. It is a cross

platform game engine that supports several programming languages, 3D software packages, and

many operating systems including Windows, Mac, iOS, Android, and others. It is a newer engine

than the others mentioned so far and has less community support. It is growing quickly however.

At this time its graphics quality does not meet the levels of CryENGINE and the Unreal Engine.

The cross platform capabilities of this engine make it a potential solution in the future.

However, for this thesis the Unreal Engine was chosen because of its graphics quality and

wide community support. It also has a new version and many new features that have been added

since Trenholme and Smith’s survey in 2007. One key feature is that the engine can now publish

games for mobile devices, similar to the Unity engine. There are existing apps for both iOS and

Android that utilize the Unreal Engine and have very realistic rendering. The graphics quality has

also progressed to such a realistic level that it is being used for films and television shows, as well

as visualization by architectural firms. Figure 5 shows the realism that is achievable with the

Unreal Engine.

11

Figure 5: Screenshot from the Unreal Engine 3 [36]

1.3 Overview of the Thesis

This thesis implements a portable 3D mapping system for large indoor environments. The system

will utilize both a client and server computer. The client computer will interface with the depth

sensor needed for mapping the environment. The depth image will be streamed to the server

where the computation to create the 3D map will be performed. An image will then be streamed

back to the client computer to provide a real time status update of the map creation. The client

computer will therefore only need the capability to upload 16 bit video while downloading 24 bit

video. These connection speeds are typical and internet speeds are increasing regularly. The

resulting map can then be shared and viewed in a rendering engine after mesh simplification. This

system will meet all the criteria previously stated for this project as explained below:

• Portable: A laptop or netbook using wireless internet would allow the user to explore and

map their environment without restriction.

12

• Cost: A laptop or netbook is very affordable and already commonly owned. RGB-D

sensors are also affordable. An Xtion sensor and netbook can be purchased for $120 and

$230 dollars respectively [38][39]. It is also very common for users to already have an

existing wireless internet connection.

• Accuracy: The implementation will provide accuracy that is suitable for large

environments by utilizing the methods from previous work.

• System Requirements: All components necessary for the user are widely available off-

the-shelf.

This thesis is organized as follows: Chapter 2 will present the hardware setup for the map

creation system. It will discuss both the user’s end and the cloud based computation, as well as

the networking connecting them. Chapter 3 will discuss the software created in this project.

Chapter 4 will discuss and present the results the experiment performed for this project. Chapter 5

will discuss the conclusions and future work.

13

CHAPTER II

HARDWARE PLATFORM

This chapter will describe the different types of hardware used in this project. There are several

key hardware components for this thesis. The overall system setup will be discussed in section

2.1. The importance of each individual piece of hardware will then be discussed. Section 2.2 will

cover the RGB-D sensor. Section 2.3 will discuss the portable client computer. Section 2.4 will

discuss the server computer and the networking.

2.1 Overall System Setup

The system designed for this thesis is composed of two main parts. The first part is the portable

scanner, which in turn is composed of two parts. The first part is the RGB-D sensor to capture the

depth images necessary for creating the 3D maps. The second part is the computer the user will

need to interface with the RGB-D sensor and to communicate with the server computer. They will

also need to have an active internet connection to communicate with the cloud computing service.

The second main component is the server side computer. It is the computer that runs the cloud

computing software. It must have a CUDA enabled GPU in order to run the software needed for

this thesis. It must also have access to an internet connection to communicate with the client

computer. Figure 6 shows a block diagram of the overall setup of this system.

14

Figure 6: A block diagram of the system setup

The overall system works as follows. The client computer will capture a stream of depth

images from the RGB-D sensor. It will then compress the images and upload them over a TCP/IP

connection to the server computer. The server computer will use the depth images to build up a

3D map. During this process the server will generate a stream of compressed images showing the

current 3D map so the user can see the progress of the scan. This will also allow the user to see

what areas need to receive more attention to create a complete map. When the process is

complete, the server will generate the 3D mesh file. This mesh file can be optimized by the client

using the quadric error optimization method. This allows the user to select a level of optimization

that suites their purpose. This process could be automated to provide a set amount of optimization

if that is preferred. The file could then be shared and displayed using a game engine such as the

Unreal Engine.

2.2 RGB-D Sensor

The first popular RGB-D sensor released was Microsoft’s Kinect sensor [40]. It was originally

designed for use playing video games with Microsoft’s X-Box, but has since been used for many

other applications. The Kinect sensor uses a video frame rate of 30 frames per second and a

resolution of 640 x 480. The RGB stream uses standard 8 bit/channel or 24 bit color. The depth

15

sensor uses 11 bit depth which provides 2048 levels of depth [41]. To determine depth the Kinect

sensor emits a series of infrared dots. It then uses the deformation of these dots in the image to

calculate the depth map. Because all the parameters of the camera are known, the Kinect is

capable of calculating absolute depth from the sensor, as opposed to the relative depth of each

pixel. Figure 7 shows an example of a Kinect sensors output while looking at a typical desk. The

Kinect struggles to calculate the depth of objects too close to the sensor or that are too bright,

such as the monitors. This issue causes problems for the Kinect in daylight. The infrared dots are

not strong enough to be picked up in direct sunlight. It may also struggle with reflective or clear

objects. You can also see there is a shadow in the depth image behind the monitor because the

infrared emitter and camera are slightly offset within the Kinect device.

Figure 7: Kinect sample output. Left: RGB image. Center: Depth image. Right: Infrared pattern.

 Following the release of the Kinect, Asus released two similar sensors. These sensors are

named the Xtion Pro and Xtion Pro Live [42][43].The Xtion Pro is only capable of sending the

depth image, while the Xtion Pro Live contains depth image, RGB image, and audio information.

A key difference between the two Xtion sensors and the Kinect sensor is the Xtion sensors only

require a USB connection. The Kinect requires a USB and AC power connection. This makes the

Xtion sensors ideal for this project because they can be carried around with a laptop. They will

not be constrained to being plugged into a wall. The Xtion sensors are also more compact and

lighter than the Kinect. These three sensors can be seen side by side in Figure 8. This figure

helps provide an idea of the difference in size between the three sensors.

16

Figure 8: Left: Microsoft Kinect. Center: Asus Xtion Pro. Right: Asus Xtion Pro Live

 All three of these devices are compatible with the OpenNI drivers [44]. OpenNI is an

open source framework for Natural Interaction (NI). It is an industry-led, not-for-profit

organization that maintains this framework. The OpenNI framework supports both Windows and

Ubuntu. The OpenNI framework provides code to receive streams of depth maps, RGB images,

infrared images, and others such as audio, hand position, and gesture tracking. Any code

developed using these drivers can use any of the three sensors interchangeably without adjusting

the code.

2.3 Portable Client Computer

The client computer is the device the user will use to obtain the depth images needed for creating

the 3D map. It must be capable of meeting a number of requirements. It must be portable so that

the user can easily scan large environments. It must be able to connect to the RGB-D device

through USB. It should also be able to connect wirelessly to the internet. This could include the

802.11 standard or a cellular data network. Finally, it should have the processing power and

memory requirements to compress and upload the depth sensor image and download,

decompress, and display the status image if necessary. For this thesis many possibilities for the

portable client computer were researched. Only one configuration was implemented for this

thesis, the netbook. First, using a netbook will be discussed in section 2.3.1. Then alternate

17

configurations will be discussed such as the Fit PC2i in Section 2.3.2, the single-board computer

configuration in 2.3.3, and using a mobile device in 2.3.4.

2.3.1 Netbook

For the implementation of this thesis, a netbook was used for the client computer. A

netbook is a relatively new category of computers that arose in 2007. They are a small laptop

computer that is inexpensive, has extended battery life, and is much lighter. They often, however,

have less computing power than their laptop counterparts. For this thesis, the Toshiba mini

NB305 model netbook [45] is used. It has a 1.66 GHz Intel Atom N450 Processor, 1 GB of

DDR2 Memory, and a 10.1 inch 720p resolution screen. It also has 3 USB 2.0 ports which can be

used to connect the RGB-D device. Finally, it also has built in Wi-Fi wireless that can connect to

802.11b/g/n networks. 802.11n is an important feature as it is supports 300 Mbps wireless

transfer speeds. This is useful for the streaming of the depth images and status images. For this

thesis, Ubuntu 10.04 is used for the operating system. This netbook can be seen in Figure 9.

Figure 9: The Toshiba NB305 netbook used in this thesis

18

 Using a netbook for this thesis is very convenient for many reasons. It meets all the

requirements stated in Section 1.1. Netbooks are inherently portable by design. They are

lightweight and easy to carry around which allows the user to map large 3D areas. They are also

already owned by many people. Alternatively, a full-size laptop could be used in place of the

netbook with little or no change to the system. A laptop has higher performance in every category

except battery life and portability. Laptops are still very portable, but are slightly larger and

heavier than netbooks.

2.3.2 Fit PC2i

The FitPC2i is a small form computer that uses very little power [46]. It packs a full

computer’s capability into a 4” x 4.5” x 1.05” case. At the same time it uses 94% less power than

a standard desktop computer. It uses from 6-8 watts when in use and only 1 watt on standby. The

Fit PC2i has an Intel Atom Z530 at 1.6 GHz. This is an older model than the N450 that was in the

Toshiba netbook. It also has 1GB of memory. It has 4 USB 2.0 ports, though 2 of them use the

mini-USB connections. It also has built in 802.11n wireless support. The Fit PC2i can be seen in

Figure 10 below.

The Fit PC2i uses a 12V DC input. This makes it convenient to use a battery to power the

device. By using a battery we make the device much more portable. The weakness to this design

is there is no screen to display the current status image. This makes it difficult for a person to map

an environment. However, this could be ideal for a robotics application. The depth sensor could

be attached to a robot and the status image could be displayed in a remote location to a user.

19

Figure 10: The Fit PC2i with a battery and an Asus Xtion Pro Live.

2.3.3 Single-Board Computer

 Single-board computers are complete computers built onto a single circuit board. This

includes the processor, memory, and many IO devices. These types of systems have grown in

popularity recently. Some of the more notable single-board computers are the Arduino [47],

BeagbleBoard [48], and the Raspberry Pi [49]. These are just a few of the most popular single-

board computers, but there are many more. Each of these boards has their own unique qualities

that would need to be considered for implementing this thesis. The advantage to using a single-

board computer is that you could create a very small, low-power, standalone device for 3D

mapping. Most single-board computers use DC power supplies and use a relatively low amount

of power. The single-board computer could be powered by battery similar to the Fit PC2i in

Section 2.3.2. Figure 11 shows an example of how this system could be configured. It is an in

progress project that is being built in our ASCC lab that combines a Beagleboard xM with an

20

Asus Xtion Pro sensor for tracking gestures. By reversing the direction of the camera it could

easily be repurposed for this thesis.

Figure 11: A single-board computer with an Asus Xtion Pro.

2.3.4 Mobile Device

It would be desirable to be able to use a mobile phone or tablet as the client computer.

Almost everyone these days has a smart phone or tablet. Worldwide tablet sales are estimated to

be near 119 million in 2012 [50]. This is following 60 million sold in 2011. This is in addition to

the 472 million smart phones that were sold in 2011 [51]. Smart phones and tablets are beginning

to replace netbooks or even laptops for many people. These mobile devices meet all the

requirements set forth in Section 1.1. They are extremely portable, have long battery life, and are

very easily obtainable. However, each device has its own set of specifications that may or may

not meet the system requirements for this project. Most modern devices should have the required

computing capabilities and network speed for this thesis. They also typically have a micro-USB

connection that could connect to the Kinect or Xtion devices using an adapter. Raymond Lo has

21

been able to interface both the Kinect and Xtion sensors with an Android device and perform

finger tracking in real time [52][53]. He is using an NVIDIA developer tablet with a Tegra 3

processor, which is considered state of the art at this time. Figure 12 shows a possible

configuration of this thesis using the Motorola Xoom tablet.

Figure 12: A Motorola Xoom with an Asus Xtion Pro Live.

2.4 Server Computer

The server computer will have a few tasks. Its first task is to receive the stream of depth images

from the client computer. It should decompress the stream and use the images for developing the

3D map. As the map is being developed in real time, the server computer should be able to

compress the current status image and stream it back to the client computer or display it if

necessary. It is required that the server computer should use a CUDA enabled GPU. This is

necessary to run the software used in this thesis project.

22

2.4.1 Server Hardware

For this thesis, a workstation PC in the ASCC lab is used to act as the server computer.

This computer is the Dell T7500 Workstation. This workstation is running two Intel Xeon X5570

quad-core processors at 2.93 GHz. It has 12 GB of RAM. We swapped the NVDIA Quadro 4800

with the NVIDIA GTX 560 Ti GPU. The workstation is running Ubuntu 12.04 LTS 64-bit. This

workstation is connected through Ethernet to a wireless router. This workstation meets the

performance requirements for this thesis.

2.4.2 CUDA enabled Graphics Processing Unit (GPU)

To utilize the research published in the KinectFusion papers by Microsoft [19][20], it is

necessary to perform a large amount of processing on a GPU. The most popular method for

programming on a GPU is to use CUDA . CUDA is a parallel computing platform and

programming model invented by NVIDIA [54]. It allows programmers to simply convert their

code to utilize parallel computing across hundreds or thousands of cores. CUDA has been widely

used in the scientific community since its release. Many computationally intensive programs can

greatly improve by using parallel processing. Most of the algorithms used in this project fall into

this category. CUDA allows you to send C, C++, or Fortran code directly to the GPU for

processing.

 GPUs are ideal for parallel programming because they are designed to do graphical

calculations on each pixel. This made a highly parallelized architecture ideal. The CUDA

architecture is composed of grids, blocks, and threads. A grid is created for each function, or

kernel, that is called. The grid is assigned to a device and split up into many blocks. Each block

contains many threads. A block is assigned to a streaming multiprocessor (SMP). Each SMP may

process several blocks. This is done to allow latency hiding. If one block is waiting on a memory

operation, the GPU will perform calculations on another block while it is waiting. Each thread

23

within the block is assigned to a single processor (SP). Each SMP contains several SPs allowing

multiple threads to be computed simultaneously. Figure 13 provides an example of how grids,

blocks, and threads are divided.

Figure 13: Example of CUDA Grid, blocks, and threads [55].

 To use CUDA in your applications, you must have a CUDA enabled NVIDIA GPU.

Every NVIDIA GPU created since the 8000 series in 2006 is compatible with CUDA. However,

different GPUs have different compute capabilities ranging from 1.0 to 3.5. The newer cards with

higher compute capabilities can make use of the newer features of the CUDA architecture. For

this project a compute capability of 2.0 or higher is used. In our testing we used both a GTX 480

and GTX 560 Ti graphics cards.

2.4.3 Networking

This thesis uses a relatively simple networking setup based off existing technologies. By

the NIST definition of cloud computing, this project would be considered Cloud Software as a

24

Service (SaaS) by providing a consumer the ability to use the provider’s applications running on a

cloud infrastructure [56]. By performing the processing in the cloud we are able to decrease the

system requirements of the user to a low end computer and an internet connection. This makes

the system much more practical to users. Instead of purchasing an expensive system, they can use

an existing computer they already own. Performing computing in the cloud is a relatively new

concept that is becoming more popular.

25

CHAPTER III

SOFTWARE PLATFORM

This chapter will present the various pieces of software used and created for this thesis project.

First, in Section 3.1, KinectFusion will be discussed in greater detail. Triangulation will then be

described in Section 3.2. In section 3.3 mesh optimization will be described. Section 3.4 will

present the use of ROS (Robot Operating System) for network communication. Section 3.5 will

cover the rendering of the final 3D map.

3.1 Point Cloud Aquisition

Microsoft published their research paper on KinectFusion, but did not provide the source code to

the public. The Point Cloud Library (PCL) is a standalone, large scale, open source project for

2D/3D image and point cloud processing [57]. They implemented their own version of

Microsoft’s KinectFusion algorithm based off the information provided in the research papers.

The KinectFusion algorithm in PCL is known as Kinfu and is expected to be released in version

1.7. They have also begun developing a KinfuLS or Kinfu Large Scale implementation which is

similar to the research by Whelan et al. mentioned in the previous work section. This software is

still in the process of being developed. Access to these two projects is currently available by

26

downloading the source code from the trunk of their SVN. The main difference between

Microsoft’s research and the PCL implementation is PCL does not use RGB information

The KinectFusion algorithms works through a complex set of steps. The first step is to

run a bilateral filter on the depth image. The bilateral filter works to remove noise through a

weighted average based on a Gaussian distribution while preserving hard edges. The depth image

can then be converted into a point cloud, or a series of vertices in 3D space. This is a relatively

simple calculation of mapping each pixel ��� , ��� to a 3D point, ���, �, �� using the following

equations:

� 	 ��� � ��� � �������� , �����

� 	 ��� � ���� � �������� , ������

� 	 �������� , ���

 �� and ��� are the cameras principle points. �� and ��� are the focal points of the

camera [58]. This creates the points in the camera’s coordinate system. It must then be translated

into the global coordinate system using the translation and rotation information from the ICP

algorithm. The normal of each vertex is also estimated at this point. A GPU implementation of

the Iterative Closest Point (ICP) algorithm is now run to estimate the transformation of the newest

frame with 6 Degrees of Freedom (DOF). ICP finds correspondences between the new point

cloud and the existing model. The ICP algorithm will also remove outlying vertices at this time

by testing the Euclidean distance and angle. The point cloud is then integrated into the volumetric

storage type. The data is stored in a truncated signed distance function (TSDF) based of Curless

and Levoy’s research [58]. The TSDF is a three dimensional grid divided into many voxels. By

default, the TSDF is broken into 512x512x512 voxels and the grid is 3 meters. In my

27

implementation a 256x256x256 TSDF was used to decrease the amount of data. Finally,

raycasting is then used to render an image of the TSDF for real time feedback to the user. Figure

14 shows a flowchart of this algorithm with example images of each step.

Figure 14: Flow chart of the KinectFusion algorithm [19].

 While the KinectFusion algorithm worked well, it was bounded by the size of the TSDF

volume. This made it very impractical for many applications as it is limited to about a three meter

cube. KinfuLS looked to expand KinectFusion by allowing the user to shift the TSDF as the user

moved. The TSDF became a three dimensional circular buffer. When the camera had moved a

given distance away from the center of the TSDF, the TSDF would be realigned so that the

camera would be in the center. The area that would no longer be inside the TSDF was converted

to a point cloud and extracted from the GPU memory to main memory. Figure 15 shows a visual

representation of this process. By allowing the TSDF volume to shift, much larger areas could be

scanned. This is the method used by KinfuLS in the Point Cloud Library.

 The TSDF stores a value at each voxel that represents the signed distance from the voxel

to the surface along the line of sight from the camera. The distance of the voxel is calculated by

summing the estimated distance for each frame and multiplying it by the weight for that frame.

28

This value is then divided by the total weight for that voxel. The weight is calculated as the sum

of the weights for each frame. These equations can be seen below:

Figure 15: Method for shifting the TSDF in the PCL implementation [60].

29

���, �, �� 	 ∑ ����, �, ������, �, ��∑ ����, �, ��

���, �, �� 	 � ����, �, ��

 The distance of each voxel is signed to represent weather it is inside or outside of the

surface. If the number is in the range of 0 � ���, �, �� 1 then it is considered outside the

surface. While the range from �1 ���, �, �� � 0 is considered inside the surface. This leaves

the surface represented by the function ���, �, �� 	 0. The point cloud can be extracted by

iterating the TSDF finding the transitions from negative to positive numbers. Note that the value

of ���, �, �� is not in meters but is a relative measurement. An example of this can be seen in

Figure 16 below.

Figure 16: An example of a TSDF volumetric surface representation

For this project a modified version of the PCL implementation of KinectFusion Large

Scale (KinfuLS) was used. The version used has been modified to work with the Robot

30

Operating System (ROS) that will be discussed in Section 3.4. Another modification made was

using a 256 x 256 x 256 TSDF size as opposed to the default 512 x 512 x 512. This eliminates

87.5% of the data which allows for faster transitions when shifting the TSDF on our system. With

higher end hardware it should be possible to use the 512 setting. The 512 settings has a total of

134 million voxels while the 256 setting only has 16 million voxels. The drawback from using the

smaller TSDF is you lose some detail in the models. With the 512 setting each voxel represents a

5.9 mm or 0.23 inch cube. The 256 setting on the other hand has each voxel representing a 1.172

cm or 0.46 inch cube. While you do lose some accuracy, the details are not as necessary when

scanning large environments. The TSDF size could be configured to use any multiple of 32, so it

could be configured to use 288 or 320 for instance.

 The main modification added to the PCL implementation of KinfuLS was to triangulate

the point cloud into a mesh and optimize it. This enables the output file to be smaller in size and

also allows it to be rendered in real-time. Using modern mesh optimization techniques allows us

to significantly decrease the amount of points without losing much quality to the model.

3.2 Triangulation

Triangulation is the process of connecting unordered vertices to create a series of triangles.

Triangulation has applications in many fields and problems. In this instance, the series of

triangles is used to create a mesh where the triangles represent the surface of an object. The idea

of using triangulated vertices to represent 3D objects is very common and is the backbone of

modern rendering. Rendering is the process of creating a 2D image from the three dimensional

data. Figure 17 shows an example of a triangle mesh that represents a dolphin. The same concept

is applied to all 3D models.

Figure

 In this thesis project the

as they were exported from the TSDF. The necessity to have a series of smaller meshes, as

opposed to one large mesh, is described later in Section 3.5. As mentioned in Section 1.2

marching cubes method is ideal for meshes with consistent density of points. This works well for

our implementation because the TSDF

density of voxels. While not every voxel outputs a point to the

evenly spaced. The second benefit to the

which makes it ideal for utilizing the power of our CUDA GPU.

cubes implementation provided within the Point Cloud Library

already optimized for running on the GPU using CUDA. The GPU accelerated version is only

available on version 1.7 and higher.

 The marching cubes algorithm

single bit. Each cube’s results can be stored in an 8 bit value, using the one bit for each of the 8

vertices in the cube (

surface and a 0 if it is outside of the surface. You can see how this algorithm has similarities to

31

Figure 17: A triangle mesh representing a dolphin [61]

s project the marching cubes method was used to triangulate the point clouds

as they were exported from the TSDF. The necessity to have a series of smaller meshes, as

opposed to one large mesh, is described later in Section 3.5. As mentioned in Section 1.2

ubes method is ideal for meshes with consistent density of points. This works well for

our implementation because the TSDF which outputs the point cloud is composed of an even

density of voxels. While not every voxel outputs a point to the point cloud, adjacent points are all

The second benefit to the marching cubes algorithm is that it can be r

which makes it ideal for utilizing the power of our CUDA GPU. For this project the

provided within the Point Cloud Library was used. This implementation is

already optimized for running on the GPU using CUDA. The GPU accelerated version is only

available on version 1.7 and higher.

ubes algorithm works by creating a cube where each vertex is given a

single bit. Each cube’s results can be stored in an 8 bit value, using the one bit for each of the 8

). The vertex is given a value of 1 if it is found to be inside the

ide of the surface. You can see how this algorithm has similarities to

to triangulate the point clouds

as they were exported from the TSDF. The necessity to have a series of smaller meshes, as

opposed to one large mesh, is described later in Section 3.5. As mentioned in Section 1.2, the

ubes method is ideal for meshes with consistent density of points. This works well for

is composed of an even

point cloud, adjacent points are all

ubes algorithm is that it can be run in parallel

For this project the marching

. This implementation is

already optimized for running on the GPU using CUDA. The GPU accelerated version is only

ere each vertex is given a

single bit. Each cube’s results can be stored in an 8 bit value, using the one bit for each of the 8

. The vertex is given a value of 1 if it is found to be inside the

ide of the surface. You can see how this algorithm has similarities to

32

the way the TSDF stores a volumetric representation of a surface. This provides us 256 different

possibilities for each cube. By utilizing two forms of symmetry, the number of different

possibilities can be reduced to 15 possibilities. The first form is rotational symmetry; the second

is using complimentary cases. Cases with over 4 vertices can invert the value of each bit and use

the complimentary configurations result and invert the normal of the surface. A lookup table is

created for each of these 15 configurations shown in Figure 20. The output triangles can generate

from 0 to 12 vertices (�" … �$$) to represent the surface as seen in Figure 18. Each vertex �� is

located along an edge of the cube connecting %& and %'. The exact location of �� along the edge is

linearly interpolated based on the distance from %& and %' to the surface. After the cube is done

being completed, the cube marches to the next location and performs the same operation. After all

areas have been operated on, a resulting mesh is completed [28].

Figure 18: The vertices of a marching cube [28]

This algorithm is designed well for parallel computing. Each cube can be calculated

independently of the others. This allows for many cores to be working on their own cubes

simultaneously. By using the CUDA implementation, the triangulation of the point cloud can be

calculated in a short amount of time.

33

 The point cloud that is exported from the TSDF volume saves four values for each point.

It saves the x, y, and z coordinate and intensity. The x, y, and z coordinates map each point into

the 3D coordinate space. Each of these points should represent exactly one voxel from the TSDF

volume. The intensity value is the result of the distance function ���, �, �� in the TSDF

calculations. The TSDF extracts a point for every non-one value in the TSDF. The points’ values

can be directly applied to each cube for the marching cubes implementation. This can be done by

finding the point from the point cloud that would apply to each vertex of the cube. If that point’s

intensity value is negative, it receives a value of 1. If the point’s intensity value is positive then it

receives a value of 0. If there is not a vertex in the point cloud that correlates to one of the cubes

vertices, than no mesh is generated for that cube. An example of triangulation can be seen in

Figure 19.

Figure 19: An example of triangulation with marching cubes. Left: A point cloud of a chair.
Right: The chair triangulated with marching cubes.

34

Figure 20: The 15 possible marching cubes results [28].

3.3 Mesh Optimization

Mesh optimization is the technique of simplifying a mesh to use less vertices and triangles while

maintaining while still accurately representing its surface. This is a very important process in this

thesis because point clouds do not efficiently represent a space, especially after triangulation. If

you imagine a large planar surface such as a wall, ceiling, floor, or tabletop, a point cloud will

represent this surface using thousands or millions of points. This is due to the fact that a point

cloud doesn’t have a surface representation; each point represents an individual point along a

35

surface. To properly represent the large surface, point clouds must be densely packed along its

surface. However, a triangulated mesh does have a surface representation. This allows any

perfectly rectangular surface to represented, ideally, with only 4 vertices connected by 5 edges.

This is far more efficient than the thousands or millions of points. In practice we cannot optimize

it this perfectly, but we can remove many unnecessary points without degrading the quality of the

mesh. This process does not only apply to planar surfaces. Most surfaces that are created from

the point cloud data contain a very dense mesh that contains a higher level of detail than is

necessary. While simplifying the mesh does not perfectly represent the original mesh, the

difference is minimal, depending on the level of simplification.

Figure 21: A chair at 3 levels of optimization. From left to right, each contains 42k, 10.6k and
7.4k triangles. The Top shows a smoothed mesh. The bottom shows a wireframe rendering.

An example of a chair that was scanned during the development of this thesis being

optimized can be seen in Figure 2

triangles. It was imported into Mesh

decimation. MeshLab is open source software for processing and editing of 3D meshes. The chair

was optimized at different levels using the settings s

the mesh to 25% of the original mesh resulting in 7,467 vertices and 10,687 triangles. A second

level of optimization was applied resulting in 5,863 vertices and 7,479 triangles. You can see that

the first level of optimization has a very similar appearance to the original mesh with only a small

fraction of the original data. This is our goal for the mesh optimization process.

Figure 22:

36

An example of a chair that was scanned during the development of this thesis being

optimized can be seen in Figure 21. The original mesh contained 128,328 vertices and 42,776

triangles. It was imported into MeshLab [62] and optimized using quadric edge collapse

ab is open source software for processing and editing of 3D meshes. The chair

was optimized at different levels using the settings shown in Figure 22. The first level optimized

the mesh to 25% of the original mesh resulting in 7,467 vertices and 10,687 triangles. A second

level of optimization was applied resulting in 5,863 vertices and 7,479 triangles. You can see that

of optimization has a very similar appearance to the original mesh with only a small

fraction of the original data. This is our goal for the mesh optimization process.

: The setttings used for mesh optimization in MeshLab.

An example of a chair that was scanned during the development of this thesis being

tices and 42,776

and optimized using quadric edge collapse

ab is open source software for processing and editing of 3D meshes. The chair

. The first level optimized

the mesh to 25% of the original mesh resulting in 7,467 vertices and 10,687 triangles. A second

level of optimization was applied resulting in 5,863 vertices and 7,479 triangles. You can see that

of optimization has a very similar appearance to the original mesh with only a small

ab.

37

For this thesis,the quadric edge decimation algorithm in the MeshLab software was used.

This allowed feedback from the user. As mentioned earlier, the scene is exported into several

separate meshes. Depending on the content in each mesh, it can be optimized to a different level.

By allowing the user to control the level of optimization we can achieve maximum compression

without compromising the validity of the mesh. This solution is ideal because setting a constant

level of compression can be very wasteful. Large flat areas without significant detail can be

compressed to a much higher level than a mesh with many details such as a desk with many

objects on it.

Quadric mesh optimization is a novel method for optimizing a mesh without

compromising the overall structure of the mesh. They key idea is that each vertex, 	
(% %� %) 1*+ , is associated with a 4x4 symmetric matrix, ,. The error for each vertex is defined

by the function ∆�.� 	 ./,.. The , matrix is a heuristic used to measure the geometric error at

each vertex. Its definition and derivation can be found in [31]. The algorithm then works as

follows. First, the , matrix is calculated for each vertex. Second, each valid pair of vertices is

selected. A pair of vertices is considered valid if they are connected by an edge, or within a

threshold distance. Other parameters can be used, such as if the vertex is on the edge of a mesh,

you can not include it for consideration as a valid pair. Next, you compute the optimal position

for the new vertex created by contracting a pair. This vertex is called .0. This can be computed by

minimizing the function ∆�.0�. This can be found by solving 1∆/1� 	 1∆/1� 	 1∆/1� 	 0.

It may be rewritten as:

34$$ 4$54$5 455
4$6 4$7456 4574$6 4560 0 466 4670 1 8 .0 	 300018

The function ∆�.0� is now considered the cost of the contraction of the vertex pair. These costs

can now be sorted from lowest to highest. The contraction with the lowest cost will be performed.

38

After each contraction, the costs of each affected vertex and valid vertex pair can be updated.

This process is repeated until you meet the desired number of triangles.

3.4 Robot Operating System

The Robot Operating System (ROS) is an open source software frame work developed for

robotics [63]. It is not actually an operating system, but provides operating system like

functionality such as low level hardware abstraction. ROS is supported on Ubuntu, but an

experimental version can be used on many other operating systems. ROS is built off a system of

packages. ROS itself comes with several packages that provide many common functions. Other

users can contribute their own packages that they develop. This has created a huge repository of

useful functions that can be used by anyone. Figure 23 shows how rapidly the number of

packages within ROS is growing. ROS uses a publish-subscribe architecture that allows

communication between packages. Each package that is run is considered a node. Each node can

subscribe to data that may be published by other nodes. The node may also publish its own

information that it creates. Published information is called a topic. Each topic has a type that

could be anything from an integer to an image or point cloud. When information is published

over a topic it is called a message. Another important feature built into ROS is the networking

capabilities. In many instances, the multiple nodes will exist on the same computer. However,

ROS also supports running the nodes across multiple computers. All computers will connect

through the “ROS master” which provides lookup information similar to a DNS server.

Figure 23: Growth in ROS repositori

 ROS was used in this thesis project for several purposes. It was used for the networking

capabilities, image compression,

utilized. The KinectFusion and triangulation code

packages used will be briefly covered

 The first package utilized in this thesis is the

provides the OpenNI drivers needed to use the Kinect or Xtion sensors on the computer. This

package handles the interaction with the RGB

images and camera information for RGB, depth, depth registered, and infrared type images. The

camera information is published using the sensor_msgs/CameraInfo type

details that are needed such as a distortion matrix, and the intrinsic camera matrix.

images are published using unsigned 16 bit images where each pixel represents a depth

millimeters. The openni_camera

 The image_transport

images within ROS [67]. It provides an abstracted layer of processing that allows images to

automatically be published in several ways. Without adding any extra code, images can be

39

: Growth in ROS repositories and packages through 2011

ROS was used in this thesis project for several purposes. It was used for the networking

capabilities, image compression, and for OpenNI support. Several existing ROS packages

he KinectFusion and triangulation code was also ported to a ROS node.

will be briefly covered, followed by the overall ROS setup for this

The first package utilized in this thesis is the openni_camera package [65]

provides the OpenNI drivers needed to use the Kinect or Xtion sensors on the computer. This

package handles the interaction with the RGB-D sensors and publishes several topics. It publishes

images and camera information for RGB, depth, depth registered, and infrared type images. The

camera information is published using the sensor_msgs/CameraInfo type [66]. It provides many

details that are needed such as a distortion matrix, and the intrinsic camera matrix.

images are published using unsigned 16 bit images where each pixel represents a depth

openni_camera publishes all images using the image_transport

image_transport package is the standard method for publishing and subscribing to

. It provides an abstracted layer of processing that allows images to

automatically be published in several ways. Without adding any extra code, images can be

es and packages through 2011 [64]

ROS was used in this thesis project for several purposes. It was used for the networking

everal existing ROS packages were

to a ROS node. Each of the

the overall ROS setup for this thesis.

[65]. This package

provides the OpenNI drivers needed to use the Kinect or Xtion sensors on the computer. This

sensors and publishes several topics. It publishes

images and camera information for RGB, depth, depth registered, and infrared type images. The

. It provides many

details that are needed such as a distortion matrix, and the intrinsic camera matrix. The depth

images are published using unsigned 16 bit images where each pixel represents a depth in

image_transport package.

package is the standard method for publishing and subscribing to

. It provides an abstracted layer of processing that allows images to

automatically be published in several ways. Without adding any extra code, images can be

40

published with raw data, image compression, or using Theora video codec. There are two types of

image compression, both of which are used in this thesis. The first is simply called compressed in

ROS. It uses JPEG compression on the images. The second type is called compressedDepth and

uses PNG compression. This method is designed for compressing the 16 bit depth images. PNG

compression is lossless, unlike JPEG compression. The theora type is based off the Theora

compression developed by Xiph.Org [68]. It is a free and open lossy video compression format.

The Theora video compression currently has a bug and could not be used in this project.

 The image_view package is used for viewing the images that are published in this thesis

[69]. Primarily, it is used for displaying the status image that is published back to the user on the

client computer. An example of image_view can be seen in Figure 24.

 The roscore package is a collection and nodes and programs that must be running for ros

nodes to communicate [70]. The computer that is running the roscore package is considered the

“ROS master” that was mentioned previously. The roscore package is in charge of handling the

communication of topics between nodes across multiple machines. Two shell variables must be

set before running any nodes to ensure the network is set up correctly. The first is ROS_IP. It

should be set to the IP address of the node is going to be run on. The second is

ROS_MASTER_URI. This variable needs to be set to the IP address of the “ROS master”. It

must include “http://” followed by the IP address and then the port number proceeded by a colon.

The final package used was the one developed for this thesis named kinfu. This package

combined the code written for 3D mapping and triangulation and combined it with ROS. It was

able to subscribe to the openni_camera’s topics to allow the user to create 3D maps from a

remote computer. It is also able to publish the status image back to the user. These images can be

seen in Figure 24. The depth image is compressed using the compressedDepth mode. The status

image is compressed using the compressed mode. The kinfu node also publishes the relative

41

transformation. When the mapping is being performed, the software tracks the cameras location

as it moves with 6DOF. This information can be published over the ROS network. It is very

common in robotics applications to have several of these topics being published. Typically, they

are published to the topic name /tf. This was also done in the kinfu package created in this thesis.

ROS has packages that can manage several coordinate frames and their relationships such as the

tf package [71]. This can be used for localization and sensor fusion. This information is not used

for anything in this thesis, but has made it available for future uses of this project.

Figure 24: The two images published with ROS in this thesis. Left: The depth image published by
the openni_camera node. Right: The status image published by the kinfu node.

 Figure 25 shows the ROS graph created by running this thesis. It is created by running

the rxgraph tool provided with ROS [72]. It is configured to only show topics that are connected.

There are several other topics that are being published, but do not have any subscribers. These

include the RGB and infrared images being published by openni_camera. The /openni_driver

node is created by running the openni_camera package. It is publishing both the depth image and

camera information to the /kinfuLS node. The /kinfuLS node is also publishing the status image

over the topic /kinfuLS/status. You can see an instance of image view subscribed to this topic.

This is used to display the status image to the user. You can also see /kinfuLS publishing the /tf

topic as mentioned previously. In this instance it is being subscribed to by rxplot, a ROS package

42

used for plotting data from published topics [73] . Finally, the /rosout topics and node you see are

created by roscore and performs logging. In this setup, the /kinfuLS node and roscore would be

running on the server computer while the /openni_driver and image_view nodes would be

running on the portable client computer.

Figure 25: The ROS graph when running this thesis.

3.5 Rendering

At this point we have created a 3D map using cloud computing. The 3D map is created by

exporting a point cloud which is then triangulated into several meshes. These meshes are then all

optimized using quadric mesh optimization. We now have several meshes which represent a 3D

space and would like to be able to present them in a visually appealing manner. To accomplish

this task the Unreal Engine has been used. As mentioned in the previous work section, the Unreal

Engine is a state-of-the-art rendering engine that can be used for everything from video games to

television shows. It has many features including photorealistic rendering, real-time physics

simulations, and the capability of supporting very detailed scenes. It has numerous other features;

however they are not relevant to this thesis.

 The Unreal Engine provides a development kit named the Unreal Development Kit

(UDK). The UDK provides a free edition of the newest Unreal Engine 3 to the public. It is free

for non-commercial use. The UDK and the tools it provide have won several awards for their

technologies and availability. They also release regular updates to give users access to the

technology and features, the most r

developers with access to tools needed to develop entire games based on Unreal Engine 3. It also

provides them with a level creator that can be used to create custom levels and environments.

This is the feature used in this thesis for imp

Figure 26.

Figure 26: A screenshot of the Unreal Developement Kit Level Editor running a provided demo

 There are several aspects of the Unreal Engine that must be conside

The first aspect is the world unit size. The Unreal Engine has its own unit size, dubbed the Unreal

Unit. An Unreal Unit is equal to two centimeters

to one meter. This discrepancy was handled by scaling the size of the point cloud input to the

43

commercial use. The UDK and the tools it provide have won several awards for their

technologies and availability. They also release regular updates to give users access to the

he most recent being in November 2012 [74]. The UDK provides

developers with access to tools needed to develop entire games based on Unreal Engine 3. It also

provides them with a level creator that can be used to create custom levels and environments.

This is the feature used in this thesis for importing and rendering our meshes and can be seen in

: A screenshot of the Unreal Developement Kit Level Editor running a provided demo
level.

There are several aspects of the Unreal Engine that must be considered for this project.

The first aspect is the world unit size. The Unreal Engine has its own unit size, dubbed the Unreal

is equal to two centimeters [75]. One unit in our kinfu ROS package is equal

to one meter. This discrepancy was handled by scaling the size of the point cloud input to the

commercial use. The UDK and the tools it provide have won several awards for their

technologies and availability. They also release regular updates to give users access to the newest

The UDK provides

developers with access to tools needed to develop entire games based on Unreal Engine 3. It also

provides them with a level creator that can be used to create custom levels and environments.

orting and rendering our meshes and can be seen in

: A screenshot of the Unreal Developement Kit Level Editor running a provided demo

red for this project.

The first aspect is the world unit size. The Unreal Engine has its own unit size, dubbed the Unreal

ROS package is equal

to one meter. This discrepancy was handled by scaling the size of the point cloud input to the

44

marching cubes algorithm. This was done using the PCL’s transforms functions. The point cloud

for each mesh was altered from the original 3 meters to 150 Unreal Units. This ensures the output

of the marching cubes algorithm is consistent with the sizes in the Unreal Engine.

 A second consideration of the Unreal Engine is the maximum file size. Unreal Engine

only supports up to 65,535 vertices per static mesh [76]. In our 3D mapping application, this

eliminates the possibility of using one mesh to represent the entire map. As explained earlier in

this thesis, we export a series of smaller meshes as the user moves around. Each mesh maintains

its global coordinates so that when it is imported into the UDK, each mesh will be correctly

aligned with the others.

 To utilize the physics engine of Unreal Engine 3, we need to create a collision mesh. A

collision mesh is a very low polygon mesh that is not rendered to the user. The collision mesh is

only used in physics calculations. By using a low polygon mesh, the physics engine can check for

collisions in a small fraction of the time compared to the full mesh. Many times physics

calculations do not need the details that rendering needs, so using a collision mesh still creates a

realistic visualization for the user. An example of a collision mesh is shown in Figure 27. The

green, lower polygon mesh is the collision mesh. The blue, dense mesh is the graphic mesh. You

can see that they are very similar in size and the user would most likely not notice the difference

in the physics.

45

Figure 27: Collision mesh example [#]

 The Unreal Engine 3 uses the FBX file type for its static meshes. FBX is a filetype

designed by Autodesk [77]. It includes capabilities for 2D, 3D, audio, video, and properties. It is

designed to provide interoperability between different content creation applications. The file type

is used widely in several different applications because of its ability to work with multiple

software applications. Unfortunately MeshLab did not adopt the FBX file type, and instead chose

the Universal 3D (U3D) file format [78]. Because of this, the optimized mesh must be ran

through another program to convert it into the FBX file needed for Unreal Engine 3. In this thesis

Blender is used to convert the file to FBX. Blender is a free, open-source 3D content creation

suite that is available for many operating systems [79]. To do this conversion the mesh is saved

46

out of MeshLab in the Collada format (.dae) and imported it into Blender. The mesh could then

be exported in the FBX file necessary for Unreal Engine 3.

47

CHAPTER IV

EXPERIMENTS

For this thesis several experiments were performed on the 3D mapping and rendering system.

Each experiment was designed to test different aspects of the system. In this chapter, the details

of each experiment run will be discussed, as well as, what aspects were tested, and the results of

each of the experiments.

4.1 Accuracy

 My first several experiments were geared toward testing the mapping of the system.

There were several aspects of the 3D mapping that needed to be tested. The first aspect to test

was the accuracy. This experiment was designed to ensure that the measurements in the created

map and mesh would be accurate to the measurements in reality. To test this, a 3D map of a room

with many known measurements was created. The exported mesh file was then imported into

MeshLab. MeshLab has a measuring tool that allows you to find the distance between two points

along a mesh. A screenshot of one of the measurements in MeshLab is provided in Figure 28. To

perform this experiment a large portion of our lab was mapped, ensuring that the TSDF volume

was shifted several times and that there were multiple meshes exported. This allowed us to

Measurement Actual (m)

Printer 0.419

Cone 0.457

Box 0.371

Drawer 0.406

Bench Width 1.714

Bench to Desk 2.616

Box to Robot 1.943

Room Width 6.299

Table 1: Experimental results of measuring real objects and the virtually 3D mapped objects.

Figure 28: Measuring the drawer width of a 3D Map in MeshLab

48

Actual (m) Experimental (m) Difference (m) Error

0.419 0.408 -0.011 2.63%

0.457 0.454 -0.003 0.66%

0.371 0.342 -0.029 7.82%

0.406 0.402 -0.004 0.99%

1.714 1.654 -0.06 3.50%

2.616 2.51 -0.106 4.05%

1.943 1.859 -0.084 4.32%

6.299 6.022 -0.277 4.40%

Experimental results of measuring real objects and the virtually 3D mapped objects.

: Measuring the drawer width of a 3D Map in MeshLab

Error Multi-TSDF

2.63% No

0.66% No

7.82% No

0.99% No

3.50% Yes

4.05% Yes

4.32% Yes

4.40% Yes

Experimental results of measuring real objects and the virtually 3D mapped objects.

: Measuring the drawer width of a 3D Map in MeshLab

49

measure the accuracy of not only the distances within a TSDF volume, but the accuracy across

larger areas. The results of this experiment are shown in Table 1.

The results of the experiment show consistent results for most measurements. The

measurements that took place within the same TSDF volume had very accurate results with the

exception of the box measurement. This is likely explained by the position of the box. The box

was in the corner of the room and did was always near the maximum distance from the depth

sensor. Another cause for error is the lower resolution TSDF volume. By decreasing its size from

512 to 256 we lose a small amount of accuracy. Other measurements within the same TSDF

provided very accurate results. The drawer and cone measurements both resulted in less than 1%

error. The multi-TSDF measurements provided very consistent results. In all four cases the

measurements were between 3.5% and 4.4% smaller than the actual measurements. This

discrepancy could easily be taken care of by adjusting the transform when converting to Unreal

Units. Overall, every experimental measurement was less than the actual measurement. This

encourages the transformation to provide more accurate results. By adding a 4% increase to the

transformation we can achieve the numbers provided in Table 2.

Measurement Actual (m) Experimental (m) Difference (m) Error Multi-TSDF

Printer 0.419 0.42432 0.00532 1.27% No

Cone 0.457 0.47216 0.01516 3.32% No

Box 0.371 0.35568 -0.01532 4.13% No

Drawer 0.406 0.41808 0.01208 2.98% No

Bench Width 1.714 1.72016 0.00616 0.36% Yes

Bench to Desk 2.616 2.6104 -0.0056 0.21% Yes

Box to Robot 1.943 1.93336 -0.00964 0.50% Yes

Room Width 6.299 6.26288 -0.03612 0.57% Yes

Table 2: Adjusting the transformation provides more accurate and consistent results.

50

 By adjusting the transformation, more consistent results were achieved. On the

measurements within a single TSDF volume, we did not achieve the level of accuracy as before,

but also did not have as large of range of error. However, on the multi-TSDF volume

measurements, we have decreased our error to a range from 0.21% - 0.57%. This is a very high

level of accuracy. As mentioned previously, this thesis in designed for scanning in larger areas.

Therefore we are more concerned with the accuracy in larger measurements than the accuracy of

measuring small details. These results are well within the desired accuracy for this thesis.

4.2 Processing Speed

 In the previous work section we discussed several similar works that utilized RGB

features to assist in finding their transformations. The limitations of these methods was that it

required extra processing time and would decrease the overall frame rate to only a few frames per

second (FPS) and in some cases below one FPS. It is important to provide the user with a frame

rate that allows for fluid, natural motion and that does not appear to have a high latency. Ideally

the software should be able to run at a minimum of 10 FPS.

In this experiment, the software was run for several minutes scanning in a large

environment and recorded the frames per second. By scanning in a large area it could be

determined if the overall memory size would cause the frame rate to drop. The lab room was

mapped very carefully for over 10 minutes. It created a world containing over 3.6 million points.

The frames per second and elapsed time were tracked. The number of frames per second was

calculated by finding the elapsed time per every 33 frames processed. The results of this

experiment can be seen in Figure 29. The frame rate stayed around 20 frames per second for most

of the mapping process. There were occasional dips down to the 13 FPS range when the TSDF

was shifted. This is expected and was one reason why it was necessary to use the 256 voxel size

51

in the TSDF volume. The overall average for this experiment was 19.94 FPS. This is an adequate

frame rate for using this system. There did not appear to be a drop in the average FPS as the time

went on. The frame rate is high enough that even with the drops while shifting it still met the

requirements put forth for this thesis. For most applications, such as 3D mapping for rendering, it

should only take a few minutes to map the entire area. If this software was going to be used in

another way, such as robotics, where it would be running for an extended period of time, the

decrease in FPS while shifting may need to be addressed.

The openni_camera node publishes images at 30 frames per second in ideal conditions.

Its frame rate was tested when publishing over the wireless network. The frame rate ranged from

15.6 FPS when frame sizes were averaging over 100 kB to 29.6 FPS when frames were

compressed to less than 20 kB. The frame rate was typically in the range of 25 FPS. This

experiment was run on the netbook from Section 2.3.1. The limitation to the publishing was the

processing power of the netbook. Running an identical test on the workstation from Section 2.4.1

results in a constant rate between 29 and 30 FPS.

Figure 29 : Frames per second during a 3D mapping session.

0

5

10

15

20

25

2

2
3

4
3

6
3

8
4

1
0

5

1
2

6

1
4

7

1
6

9

1
8

9

2
1

2

2
3

3

2
5

5

2
7

5

2
9

6

3
1

6

3
3

6

3
5

7

3
7

7

3
9

9

4
2

2

4
4

9

4
7

1

4
9

2

5
1

2

5
3

2

5
5

5

5
7

5

5
9

4

6
1

4

Second elapsed

Frames Per Second

52

4.3 Alignment Reliability

One of the key weaknesses of the Kinfu system is that it struggles to keep track of the camera’s

location when the depth sensor does not contain enough detail. In areas that are predominantly

flat and featureless, the Kinfu algorithm will not be able to detect where the camera is moving.

This is one reason why many of the previous work implementations used RGB features to assist

in tracking. Currently the algorithm handles getting lost by acting as though it had shifted back to

the origin. It will extract everything in the TSDF volume to a point cloud, similar to what it would

do during a shift. This prevents having lost data or merging multiple scans in different coordinate

systems into one TSDF. Once everything has been shifted out, it will reset the cameras current

location to the origin and restart the mapping process. This can result in having misaligned

meshes output. It can be recovered by manually translating the misaligned meshes to align them

with the others. MeshLab has built in functionality for alignment with minimal user input. While

this will allow for Kinfu to work, even when getting lost, it is not an ideal solution. It also does

not allow the user to scan areas with few features as the system will constantly be considered lost.

 In an effort to test the reliability of the system to properly align the cameras location

within the coordinate system, an experiment was devised to test it under different conditionsThe

3D mapping system was run in three different environments, and the number of times the system

was considered to be lost was recorded. The first environment is ATRC 304. It is a typical sized

room with many features that should be relatively easy for the algorithm to align. The second

environment is the ATRC hallway. This environment has very few features and the algorithm

could struggle to track the movement. The third environment is ATRC 320. This is a large lab

room that has many features, but they are spread apart which could prove challenging for the

depth image to show. Each environment is mapped exactly one time. This is done because the

system should not require users to perform multiple attempts to map one area. A user should be

able to successfully map their environment on their first attempt.

53

Location Features Frames Lost

ATRC 304 Rich 2013 1

ATRC 320 Dispersed 2376 3

Hallway Few 924 5

Table 3:Results from reliability testing

 This experiment behaved similar to the predictions. During the scan of ATRC 304 the

software only became lost one time. It was not clear what made it get lost on that frame. ATRC

320 has many features but there are large areas between them. In the areas with lots of features it

behaved very well and did not get lost. However, in the areas without features it became lost three

times. The algorithm is not designed to track areas outside the TSDF. If you are centered in the

3m x 3m x 3m TSDF volume, anything beyond 1.5 meters in front of you cannot be used for

tracking. This was the issue for ATRC 320. While being lost only three times is not devastating,

it makes it very difficult for the user to reconstruct their 3D map when they are complete. Finally

the hallway was tested. The hallway is nearly completely devoid of features that the depth sensor

could pick up on. If you used these features, you could scan small areas while these features are

in the frame. However, the mapping of the hallway was unsuccessful due to the large areas where

there are no depth features. The depth and RGB images are shown below in Figure 30 so you can

see the depth map in each of the different types of environments.

54

Figure 30: Depth and RGB images for each of the three environments tested. Top: ATRC 304.
Middle ATRC 320. Bottom: Hallway.

 This experiment clearly shows that the reliability is lacking in large areas. The results

can be seen in Table 3. This has been a known issue with KinectFusion since its release. There is

discussion within the PCL developers to use the RGB information, if it is available, when the

depth image cannot provide enough features to accurately find the transformation

solution would help for mapping large environment

in other areas for improving upon this problem such as using motion capture

information [81]. Also, because this implementation does not utilize a loop closure algorithm as

done in [4], drift can occur over time. An example of this problem can be clearly seen in Figure

31.

Figure 31: An example of drift occuring during a scanin a rectangular room.

For the third experiment on the point cloud acquisition,

on using different voxel sizes for the TSDF volume.

256 x 256 x 256 TSDF representing a 3 meter x 3 meter x 3 meter cube

55

depth image cannot provide enough features to accurately find the transformation

would help for mapping large environments with empty spaces. There has been research

in other areas for improving upon this problem such as using motion capture [58]

Also, because this implementation does not utilize a loop closure algorithm as

, drift can occur over time. An example of this problem can be clearly seen in Figure

: An example of drift occuring during a scanin a rectangular room.

4.4 Voxel Size

experiment on the point cloud acquisition, the goal was to gather some information

on using different voxel sizes for the TSDF volume. As mentioned previously, for this thesis a

256 x 256 x 256 TSDF representing a 3 meter x 3 meter x 3 meter cube is used.

depth image cannot provide enough features to accurately find the transformation [80]. This

s with empty spaces. There has been research

[58] and IMU

Also, because this implementation does not utilize a loop closure algorithm as

, drift can occur over time. An example of this problem can be clearly seen in Figure

: An example of drift occuring during a scanin a rectangular room.

to gather some information

As mentioned previously, for this thesis a

. This was done to

56

eliminate much of the data and in turn allow for faster processing. It was done at the cost of

increased detail in the 3D map. The goal of this experiment is to validate these two claims by

showing the difference in data, speed, and detail in the scene. Since the amount of detail in a

scene is not easily quantifiable, images of the results will be shown to allow the reader to make

their own judgments.

 For this experiment, KinfuLS was compiled to run using either the 256 or 512 voxel

setting. ROS was not for this experiment to ensure that the results were not affected by the

netbook’s processing power or network speed.. Instead the Xtion Pro Live sensor was connected

directly to the server computer. The surrounding area was then carefully scanned, using the same

path for both settings. The outputs of the two scans were used to compare the differences. The

results of this experiment can be seen in Table 4 and Figure 32 and 33.

Voxel Size 256 512 Ratio

Exported Points 245,390 1,947,012 12.60%

PCD File Size (KB) 3,839 30,427 12.62%

Shifting Time (ms) 65 231 28.14%

Average FPS 23.37 17.78 131.44%

Table 4: Results of testing dividing the TSDF volume into 256 or 512 voxels in each dimension.

57

Figure 32: A comparison between dividing the TSDF volume into 256 (left) or 512 (right) voxels
along each dimension.

 The results of this experiment were very accurate with my predictions set forth earlier in

this thesis. The voxel size setting %9 determines the total numbers of voxels by the equation:; 	
%96. Therefore, but cutting the voxel size in half, the number of voxels is decreased to <$5=6 	
 $> 	 0.125. Both the exported number of points and the resulting PCD file size were reduced to

nearly this fraction, at 12.60% and 12.62% respectively. This is a substantial saving in memory

and hard drive space. By reducing the voxel size we also decreased the shifting time by over

70%. This is important because if the user is moving the camera quickly during a shift, it can

cause a long pause between frames. This pause can lead to the camera getting lost and ruining the

3D mapping attempt. A final interesting effect of the voxel size is the average frames per second.

In these scans we were able to increase the frames per second by 31% simply by adjusting the

voxel size. As covered in Section 4.2, frames per second are vital for the usability of the system.

 Looking at Figure 32, you can see that the 512 voxel size setting does provide more detail

than the 256 setting. However, the objects in the 256 setting are still easily recognizable. You can

clearly make out the keyboard, notebook, and coffee maker. To reiterate, if this project was aimed

at mapping smaller areas, a 512 voxel size setting would be recommended. However, with large

environments, the slight sacrifice in detail is worth the difference in file size, frame rate, and

shifting time. Figure 33 shows the resulting point cloud from using both settings. They are both

looking at the top of the printer in our lab.

similarly in both images, but the 256 setting has far less overall points.

Figure 33: A comparison of the resulting point cloud files from this experiment.

In order to utilize the cloud computing service, the user must be able to stream their depth data to

the server while downloading the status images from the server. The amount of bandwidth used

by these two streams is important to the quality of the scan.

communicate quickly with the server to ensure they are able to view what they are doing. For this

reason an experiment was created

58

environments, the slight sacrifice in detail is worth the difference in file size, frame rate, and

shows the resulting point cloud from using both settings. They are both

the printer in our lab. You can see how the overall shape is represented

similarly in both images, but the 256 setting has far less overall points.

: A comparison of the resulting point cloud files from this experiment.
is 256. Bottom: Voxel size is 512.

4.5 Bandwidth Requirements

In order to utilize the cloud computing service, the user must be able to stream their depth data to

the server while downloading the status images from the server. The amount of bandwidth used

by these two streams is important to the quality of the scan. The user must be able to

communicate quickly with the server to ensure they are able to view what they are doing. For this

was created that would test the bandwidth needed to stream both of these

environments, the slight sacrifice in detail is worth the difference in file size, frame rate, and

shows the resulting point cloud from using both settings. They are both

You can see how the overall shape is represented

: A comparison of the resulting point cloud files from this experiment. Top: Voxel size

In order to utilize the cloud computing service, the user must be able to stream their depth data to

the server while downloading the status images from the server. The amount of bandwidth used

The user must be able to

communicate quickly with the server to ensure they are able to view what they are doing. For this

that would test the bandwidth needed to stream both of these

59

images. In order to test this, the rostopic package from ROS was utilized [84]. It provides a

service that can measure the bandwidth each topic is using. The bandwidth was recorded during

mapping on one topic at a time. It was ensured the topics would publish a variety of images from

dark, light, and having a variety of shading. This is important as compression, and therefore the

bandwidth, can be affected by the image’s content. The results of this experiment can be seen in

Table 5.

Compression

Type

/depth/image topic /kinfuLS/status topic

Min (kB/s) Average (kB/s) Max (kB/s) Min (kB/s) Average (kB/s) Max (kB/s)

Raw 4,300 4,738 5,000 11,910 13,328 13,930

Compressed N/A N/A N/A 358 751 1,030

CompressedDepth 1,720 1,932 2,320 N/A N/A N/A

Theroa N/A N/A N/A N/A N/A N/A

Table 5: Bandwidth usage for both depth and status images with multiple compression types.

 The results of this experiment are slightly interesting. As we would expect the raw, or

uncompressed, images have a very high bit rate. These are beyond usable for this thesis. As

mentioned earlier, the compressed transport method only works on the status image because the

depth image is 16 bit and is not supported. The compressed transport method achieved good

compression, decreasing the bit rate from 13 MB/s to only 751 kB/s. The compressedDepth

transport did not perform nearly as well. It decreased the bit rate from 4.7 MB/s to 1.9 MB/s. The

compressedDepth transport uses lossless PNG compression which cannot achieve the results of

the lossy JPEG compression used by the compressed transport. The theora transport could not be

tested due to a bug in ROS’s newest release, ROS Fuerte, which is required for running this

project. It is likely that the theora would provide better compression for both topics if it were

working. This is because theora uses video compression which uses previous frames to help

further compress images. This is opposed to PNG or JPEG compression which compresses each

60

frame individually. The compressed depth and status images have been plotted to show the

variance with time. This can be seen in Figure 34. The bandwidth was measured by averaging

100 frames to create a single average. This graph covers roughly 5 minutes of mapping use.

Figure 34 : Bandwidth use for depth and status images over 60 measurements.

4.6 Triangulation

After testing the acquisition of the point clouds, the triangulation of each point cloud was tested.

This step is important because it must meet two criteria. The first criterion is that it must be done

in a reasonable amount of time. The user should not have to wait very long to get their result

from the 3D mapping process. The second criterion is that is must correctly triangulate the point

clouds. This is another subjective measurement that is hard to quantify. To test the triangulation

point clouds were collected from several scans and triangulated. During the scans it was

attempted to create output clouds of differing sizes in order to test the marching cubes algorithm

on different levels of data. The amount of time taken to triangulate each cloud was measured.

This provided data on the run time for triangulation. This data can be seen in Table 6. This data

has also been plotted in Figure 35The meshes were then loaded into MeshLab to inspect the

quality of the created surface and took screenshots as seen below in Figure 36.

0

500

1000

1500

2000

2500

1 11 21 31 41 51

k
B

/s

Bandwidth Use

Depth

Status

61

Mesh Points Triangulation
time (ms)

1 1,065,831 214
2 949,422 186
3 137,382 80
4 241,350 92
5 75,531 72
6 18,978 66
7 428,238 116
8 162,033 89
9 25,347 71
10 41,838 72

Table 6: Elapsed time for triangulating each point cloud.

Figure 35 : Run time for the marching cubes algorithm.

0

50

100

150

200

250

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

m
il

li
se

co
n

d
s

Vertices

Marching Cubes Run Time

Figure 36: An example of a triangulated mesh from our 3D ma

The results of this experiment are very satisfactory. We were able t

million vertices in just over 1 second. This experiment shows that extremely large environments

can be triangulated in a relatively small amount of time. By keeping all exported point clouds

around 250,000 vertices we would be able to

milliseconds per mesh. Typically, the number of vertices stays below 400,000 for each exported

point cloud. For the experiment a large number of vertices

Figure 36 shows one of the triangulated meshes. Overall it does a very good job. There are a few

holes that have occurred on the right side of the printer.

reflective or glossy surfaces. The other areas that are not filled in are ca

areas that are hidden out of the line of site of the depth camera.

62

: An example of a triangulated mesh from our 3D mapping application.

The results of this experiment are very satisfactory. We were able to triangulate over 3

million vertices in just over 1 second. This experiment shows that extremely large environments

can be triangulated in a relatively small amount of time. By keeping all exported point clouds

around 250,000 vertices we would be able to minimize the triangulation time to less than 100

Typically, the number of vertices stays below 400,000 for each exported

point cloud. For the experiment a large number of vertices were intentionally exported

one of the triangulated meshes. Overall it does a very good job. There are a few

holes that have occurred on the right side of the printer. This tends to occur more often on

reflective or glossy surfaces. The other areas that are not filled in are caused by “shadows” or

areas that are hidden out of the line of site of the depth camera.

ping application.

o triangulate over 3

million vertices in just over 1 second. This experiment shows that extremely large environments

can be triangulated in a relatively small amount of time. By keeping all exported point clouds

minimize the triangulation time to less than 100

Typically, the number of vertices stays below 400,000 for each exported

exported for testing.

one of the triangulated meshes. Overall it does a very good job. There are a few

This tends to occur more often on

used by “shadows” or

63

4.7 Mesh Optimization

Mesh optimization may be the most important part of this thesis. It takes these very dense meshes

and creates highly optimized meshes that are much more ideal for real time rendering. However it

must also preserve the shape and not degrade the quality significantly. Once again, this is a highly

subjective test and it is difficult to quantify the results. An experiment was run that involves

optimizing several meshes from a run of the software developed in this thesis. The level of

optimization is determined by the user who must judge how much optimization to apply. The user

may preview the level of optimization in order to make their decision. The input vertices,

triangles, and file size, the output vertices, triangles, and file size, as well as the run time for each

mesh was recorded. The input and output of some of the meshes have been displayed for

comparison. The results can be seen in Table 7.

Mesh
Input Output Runtime

(s) File Size
(kB)

Vertices Triangles
File Size

(kB)
Vertices Triangles

1 10,692 351,372 117,124 439 15,717 20,000 2.742

2 6,173 208,389 69,463 231 8,391 10,404 1.587

3 7,748 234,294 78,098 339 11,968 15,581 1.691

4 1,427 51,939 17,313 63 2,538 2,585 0.408

Total: 26,040 845,994 281,998 1,072 38,614 48,570 6.43

Table 7: Results of quadric mesh optmization on 4 meshes.

 The results of the mesh optimization are pretty astounding. The only result that is not

impressive is the run time. This optimization takes place on the CPU so it does not benefit from

the GPU acceleration. However, as the user optimizes each piece individually, they do not have to

wait for the sum of all the run times, just wait for the individual mesh to be optimized. This

should keep the user from ever waiting more than 3-4 seconds in the worst case. The other results

64

were very impressive. The file size was reduced from 26 MB to 1MB. This is a 96% decrease in

size. Similarly, the vertex count went down from 846,000 to 38,600. This represents a 95%

compression. Finally, the number of triangles was reduced from 282,000 to 48,600. This

optimization saves 83% of the triangle count. It is important to note that there are no meshes with

over 60,000 vertices. This is the limit for a static mesh to be imported into the Unreal Engine 3.

An example of the input and output mesh can be seen in Figure 37. You can see that the mesh is

significantly optimized while retaining most of the shapes well. You can also see that the quadric

mesh optimization will optimize areas with less detail such as floors, walls, and other flat areas

far more than objects that contain more curvature.

65

Figure 37: Before and after optimization was applied to several meshes.

4.8 Transformation Publishing

As mentioned earlier in this thesis, the kinfu package will publish the translation and

rotation of the depth sensor in case it is needed for other applications. While it is not intrinsically

66

useful in this application, an experiment was still run to ensure that it is working correctly. To test

this application the ROS package rxplot [73] was used. This package can subscribe to topics and

plot their results in real time. It was able to subscribe to the x, y, and z locations published to the

/tf topic. It would then plot the movement of the device in real time. This allowed me to test the

translation of the device. For the experiment a small square was made to test the movement. The

rxplot output can be seen in Figure 38. Another ROS package was used, rviz [82]. This package

can display the 6 DOF in real time. A screenshot of this part of the experiment can be seen in

Figure 39. This was used to test both the rotation and translation of the depth sensor.

Both of these showed that the transformation was being published properly. One thing

that seems odd is that the output is in the depth sensor’s own coordinate frame. The tf ROS

package mentioned earlier is designed to handle many different coordinate frames. However, it

seems counter intuitive that moving vertically would not be directly along an axis. One reason for

this is that the depth sensor has no way of knowing which way is up or down. This is an issue that

arises when importing meshes into the UDK which will be addressed in the next section.

Figure

Figure 39 :

67

Figure 38: Rxplot plotting the depth sensors movement.

: Rviz vizualizing 6DOF output from kinfu in real time.

in real time.

 In this section, the work presented in this thesis is compared to the RGB

package in ROS [83] which is based on the work in

as a 3D mapping and localization package. A br

compare the performance. Due to memory restrictions, only a small area was able to be mapped

with RGB-D SLAM. The same area was then mapped using the method presented in this thesis.

 The map created by the RGB

map. It was able to map at around one frame per second. The map created using this thesis used

1.3 million points and 450,000 triangles before optimization.

represented using 70,000 vertices and 114,000 triangles. A visual comparison of their outputs

may be seen in Figure 40.

Figure 40: A comparison between RGB

68

4.9 RGB-D SLAM Comparison

In this section, the work presented in this thesis is compared to the RGB

which is based on the work in [9]. RGB-D SLAM is currently used in ROS

as a 3D mapping and localization package. A brief experiment was performed to measure and

compare the performance. Due to memory restrictions, only a small area was able to be mapped

D SLAM. The same area was then mapped using the method presented in this thesis.

The map created by the RGB-D SLAM program used 6.5 million points to represent the

map. It was able to map at around one frame per second. The map created using this thesis used

1.3 million points and 450,000 triangles before optimization. After optimization, the map was

using 70,000 vertices and 114,000 triangles. A visual comparison of their outputs

: A comparison between RGB-D SLAM and this thesis. Left: RGB-D SLAM Output.
Right: The output from this thesis

.

In this section, the work presented in this thesis is compared to the RGB-D SLAM

D SLAM is currently used in ROS

ief experiment was performed to measure and

compare the performance. Due to memory restrictions, only a small area was able to be mapped

D SLAM. The same area was then mapped using the method presented in this thesis.

SLAM program used 6.5 million points to represent the

map. It was able to map at around one frame per second. The map created using this thesis used

After optimization, the map was

using 70,000 vertices and 114,000 triangles. A visual comparison of their outputs

D SLAM Output.

69

4.10 Overall Experiment

 The end goal of this thesis is to create realistic renderings and visual displays of our

optimized mesh from our 3D maps. The Unreal Engine 3 was chosen as the tool of choice for this

rendering process. The details of why it was chosen and what has been done to allow the mesh to

be imported have been discussed in Section 3.5. After these previous experiments, we are now

ready to map a 3D environment and import it into the engine. For this process, ATRC 304 was

chosen as the area to be mapped. This room was discussed in Section 4.3. This experiment was

run from the beginning and did not use any outputs from the previous experiments.

To run this experiment, first the ATRC 304 lab was mapped. This produced a series of

meshes which needed to be optimized. These meshes were then imported into MeshLab and

optimized with the quadric mesh optimization function. They were then exported as Collada DAE

files and imported to Blender. Blender was used to apply a smoothing group. This is necessary

because it significantly decreases the number of vertices in a model, and also provides a

smoothed model that looks better when rendered. Blender then exported each file in the FBX file

type necessary for the Unreal Engine 3. Unreal Development Kit’s level editor was then used to

import the files. While the files are all correctly imported with respect to size and relative

location, they are not rotationally oriented to the Unreal Engine’s coordinate system. This is due

to the fact that the kinfu package does not know which way is up and down. Due to this fact, the

rotate tool was used to align the meshes into the game world.

At this point you are ready to drop into the engine and explore in first person mode. The

UDK comes with a default “game mode” that allows your character to walk around with the

standard WASD keys. There are several more features of the UDK that can be used to enrich this

experience. One such option is to apply collision meshes to the models when they are imported.

There are three options for collision meshes. You can either use a pre-modeled mesh, which we

70

do not have. The other two options are to use the actual graphical mesh or have UDK compute a

collision mesh for you. Either of these methods will work. Using the graphical mesh is much

slower, but provides much more accurate results. The UDK generated collision mesh generally

provides adequate collision meshes, but it can struggle with concave shapes.

There are dozens of other UDK features that could be applied to this project but are not

explored thoroughly. A brief list of these features is ambient noise, atmospheric lighting, time of

day lighting, and running on a mobile phone. These are a few of many, many features the UDK

has to offer.

The results of this experiment are given below. The 3D mapping process produced 27

total files. A screenshot of the dense point clouds and triangulated mesh before optimization can

be seen in Figure 41 along with a picture of the ATRC 304 lab for comparison. The triangulated

meshes were then optimized using MeshLab. They were then exported to the FBX file type and

imported into the Unreal Engine 3. The meshes were then placed into the level and rotated into

place. Table 8 shows the properties of several of these files throughout the experiment. You may

note that the FBX and DAE file types are capable of storing more properties than the PLY file,

and will be slightly larger when storing the same mesh. Also note the difference between the

optimized and UDK triangle and vertex counts are due to the way the different engines interpret

the mesh. Figure 42 shows the optimized meshes and a screenshot of the default UDK game

mode being played on a level composed of our optimized, smoothed meshes. Figure 43 shows the

entire mapped mesh of ATRC 304.

71

Figure 41:Top: Picture of ATRC 304 Lab. Center: Point clouds representing ATRC 304 lab.
Bottom: The 3D map of the same area.

72

Figure 42: Top: Optimized meshes in MeshLab. Bottom: In game screenshot of ATRC 304 lab.

73

Mesh
3D Mapping Output Optimized UDK

Vertices Triangles PLY File Size (kB) Vertices Triangles DAE File Size (kB) Vertices Triangles FBX File Size (kB)

1 850,020 283,340 26,281 39,299 56,556 4,410 27,446 42,721 4,557

2 996,483 332,161 31,476 46,934 66,394 5,241 32,366 47,037 5,380

3 123,213 41,071 3,570 6,572 10,252 732 4,898 8,000 804

4 273,576 91,192 8,408 7,804 11,382 840 5,669 9,043 940

5 2,253 751 64 159 187 16 117 126 92

6 384,972 128,324 11,331 24,478 32,003 2,478 15,093 20,985 2,764

7 315,687 105,229 9,047 17,883 26,244 1,969 12,942 18,626 2,076

8 464,289 154,763 13,446 26,378 38,606 2,937 18,923 28,835 3,037

9 339,165 113,055 9,979 21,285 28,194 2,177 13,585 18,756 2,421

10 10,212 3,404 282 630 847 61 573 760 142

Table 8: The optimization of 10 meshes from the output of the mapping process through the rendering in the Unreal Engine 3.

This thesis provides an implementation for creating 3D maps using a portable scanner and a depth

map. However, there are several problems that have been faced which could improve the overall

quality. These issues will be briefly discussed in this

the issues.

 One issue that this implementation suffers from is the reliability of the tracking. Areas

which do not provide enough features in the depth image are difficult to track. Tracking also only

uses the information currently in the TSDF volume to estimate the transformation. This means if

74

Figure 43 : ATRC 304 triangulated mesh

4.11 Problems

This thesis provides an implementation for creating 3D maps using a portable scanner and a depth

map. However, there are several problems that have been faced which could improve the overall

quality. These issues will be briefly discussed in this section to provide a better understanding of

One issue that this implementation suffers from is the reliability of the tracking. Areas

which do not provide enough features in the depth image are difficult to track. Tracking also only

e information currently in the TSDF volume to estimate the transformation. This means if

This thesis provides an implementation for creating 3D maps using a portable scanner and a depth

map. However, there are several problems that have been faced which could improve the overall

section to provide a better understanding of

One issue that this implementation suffers from is the reliability of the tracking. Areas

which do not provide enough features in the depth image are difficult to track. Tracking also only

e information currently in the TSDF volume to estimate the transformation. This means if

75

there are valid features, but they lie outside of the 3 meter cube, they are not used. This requires a

relatively tightly packed environment for a complete scan.

 A second issue is the lack of a loop closure algorithm to prevent drift. While the TSDF

tracking is accurate, it still suffers from accumulated drift. This problem was clearly shown in

Figure 31. Even a small amount of drift with each shifting of the TSDF can accumulate into large

errors when mapping a larger environment.

 While the image compression used in this implementation provided adequate bandwidth

for our testing, it would be ideal to further compress the depth map. Utilizing either video

compression or new research on depth image compression would decrease the uploading

requirements that may prohibit some users from using the current implementation.

 Another issue faced is the scanning of reflective or bright surfaces. Objects which are

very reflective or are brightly lit are difficult to scan because the infrared pattern will be either

reflected or diminished. This will often times result in an incomplete or incorrect map being

created.

 A final issue is the use of ROS for networking. ROS requires a static IP address and

several ports for communication. This is not ideal for many applications as it requires extensive

setup and cannot use networks which cannot forward the ports. For a more practical application,

ROS could be replaced by transmitting the images over a socket. The compression could be done

using OpenCV’s libraries [85].

76

CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis provides a method for generating 3D maps using a portable scanning device and cloud

computing. It also provides a method for the triangulation, optimization, and rendering of the 3D

map. Chapter 1 provided an introduction to the 3D mapping process and discussed several related

works. In chapter 2 the hardware setup used for this thesis was discussed and also a few

alternatives for the portable scanning device were mentioned. Chapter 3 covered the software

used in this thesis. This includes the point cloud acquisition through PCL’s KinfuLS,

triangulation using the marching cubes algorithm, and optimization using the quadric mesh

optimization algorithm. It then discussed using the Unreal Engine 3 for the rendering of this

optimized 3D map in a game engine to provide an easy to use method for exploring the map. In

chapter 4 the results of 9 experiments were provided to help validate the 3D mapping process and

provide a quantitative insight into the results.

 There are still several areas that could be further researched to improve upon this thesis.

One of these areas is the inclusion of RGB data into the process. RGB information could be used

to help track features in the images in which depth data does not provide adequate information to

77

accurately estimate the transformation. It could also be used to create more realistic renderings.

To use add color to the optimized meshes in the Unreal Engine would require the UV mapping of

the meshes. This cannot currently be automated and is manually performed. If the UV mapping

process were automated, it would enable the “baking” process to be added into this thesis. Baking

allows you to take a high resolution model and create normal maps, displacement maps, and color

textures for use with the optimized mesh. This would allow for much more realistic rendering.

 The second key areas for future work would be to correct the drift over time issue. This

could be done using the loop closure method from [4]. This would allow for much more accurate

results when scanning in larger areas. Many applications for this 3D mapping system would rely

on having accurate maps, so correcting the drift issue would be very important.

 Future work could be used to apply this thesis to many different fields. One area would

be to use robots to map areas using this method. 3D maps could be created that would be easy for

both the robots and humans to interpret. Collaborative mapping could also be used to allow

multiple robots to generate their own map. Then when the server detects that robots maps

overlap, they can be combined to create a unified larger map.

78

REFERENCES

[1] http://gizmodo.com/5563148/microsoft-xbox-360-kinect-launches-november-4
[2] http://aidsanity.deviantart.com/art/Interior-Design-wireframe-258796505
[3] http://www.softree.com/articles/LiDARWorkshop.pdf
[4] Henry, Peter, et al. "RGB-D mapping: Using depth cameras for dense 3D modeling of

indoor environments." the 12th International Symposium on Experimental Robotics
(ISER). Vol. 20. 2010.

[5] Lowe, David G. "Object recognition from local scale-invariant features." Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. Vol.
2. Ieee, 1999.

[6] Zhang, Zhengyou. "Iterative point matching for registration of free-form curves and
surfaces." International journal of computer vision 13.2 (1994): 119-152.

[7] Fischler, Martin A., and Robert C. Bolles. "Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography."
Communications of the ACM 24.6 (1981): 381-395.

[8] Huang, Albert S., et al. "Visual odometry and mapping for autonomous flight using an
RGB-D camera." International Symposium on Robotics Research (ISRR). 2011.

[9] Engelhard, Nikolas, et al. "Real-time 3D visual SLAM with a hand-held RGB-D
camera." Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European
Robotics Forum, Vasteras, Sweden. Vol. 2011. 2011.

[10] Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. "Surf: Speeded up robust features."
Computer Vision–ECCV 2006 (2006): 404-417.

[11] Grisetti, Giorgio, et al. "Hierarchical optimization on manifolds for online 2D and 3D
mapping." Robotics and Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010.

[12] Rosten, Edward, and Tom Drummond. "Machine learning for high-speed corner
detection." Computer Vision–ECCV 2006 (2006): 430-443.

[13] Rublee, Ethan, et al. "ORB: an efficient alternative to SIFT or SURF." Computer
Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011.

[14] Hartmann, Jan, et al. "Real-Time Visual SLAM Using FastSLAM and the Microsoft
Kinect Camera." Robotics; Proceedings of ROBOTIK 2012; 7th German Conference
on. VDE, 2012.

[15] Endres, Felix, et al. "An evaluation of the RGB-D SLAM system." Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012.

[16] Wurm, Kai M., et al. "OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems." Proc. of the ICRA 2010 workshop on best practice
in 3D perception and modeling for mobile manipulation. Vol. 2. 2010.

[17] Zou, Yuhua, et al. "Indoor localization and 3D scene reconstruction for mobile robots
using the Microsoft Kinect sensor." Industrial Informatics (INDIN), 2012 10th IEEE
International Conference on. IEEE, 2012.

[18] Shi, Jianbo, and Carlo Tomasi. "Good features to track." Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference
on. IEEE, 1994.+

79

[19] Izadi, Shahram, et al. "KinectFusion: real-time 3D reconstruction and interaction using
a moving depth camera." Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 2011.

[20] Newcombe, Richard A., et al. "KinectFusion: Real-time dense surface mapping and
tracking." Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International
Symposium on. IEEE, 2011.

[21] Whelan, Thomas, et al. "Kintinuous: Spatially Extended KinectFusion." (2012).
[22] Roth, Henry, and Marsette Vona. "Moving Volume KinectFusion." British Machine

Vision Conf.(BMVC),(Surrey, UK). 2012.
[23] Owen, Steven J. "A survey of unstructured mesh generation technology." 7th

International Meshing Roundtable. Vol. 3. No. 6. 1998.
[24] Yerry, Mark A., and Mark S. Shephard. "Automatic three‐dimensional mesh generation

by the modified‐octree technique." International Journal for Numerical Methods in
Engineering 20.11 (2005): 1965-1990.

[25] Watson, David F. "Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes." The computer journal 24.2 (1981): 167-172.

[26] Löhner, Rainald. "Progress in grid generation via the advancing front technique."
Engineering with Computers 12.3 (1996): 186-210.

[27] Weatherill, Nigel P., and Oubay Hassan. "Efficient three‐dimensional Delaunay
triangulation with automatic point creation and imposed boundary constraints."
International Journal for Numerical Methods in Engineering 37.12 (1994): 2005-2039.

[28] Lorensen, William E., and Harvey E. Cline. "Marching cubes: A high resolution 3D
surface construction algorithm." ACM Siggraph Computer Graphics. Vol. 21. No. 4.
ACM, 1987.

[29] Johansson, Gunnar, and Hamish Carr. "Accelerating marching cubes with graphics
hardware." 2006.

[30] Cignoni, Paolo, Claudio Montani, and Roberto Scopigno. "A comparison of mesh
simplification algorithms." Computers & Graphics 22.1 (1998): 37-54.

[31] Garland, Michael, and Paul S. Heckbert. "Surface simplification using quadric error
metrics." Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997.

[32] Trenholme, David, and Shamus P. Smith. "Computer game engines for developing
first-person virtual environments." Virtual reality 12.3 (2008): 181-187.

[33] http://www.crytek.com/cryengine
[34] http://www.idsoftware.com/business/history/
[35] http://source.valvesoftware.com/
[36] http://www.unrealengine.com/
[37] http://unity3d.com/
[38] http://www.newegg.com/Product/Product.aspx?Item=N82E16826785047
[39] http://www.newegg.com/Product/Product.aspx?Item=N82E16834215243
[40] http://www.xbox.com/en-US/KINECT
[41] http://openkinect.org/wiki/Main_Page
[42] http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO/
[43] http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO_LIVE/
[44] http://www.openni.org/
[45] http://www.csd.toshiba.com/cgi-

bin/tais/support/jsp/modelContent.jsp?ct=SB&os=&category=&moid=2523338&rpn=P
LL3FU&modelFilter=NB305-N310&selCategory=2756709&selFamily=2336267

[46] http://www.fit-pc.com/web/fit-pc/fit-pc2i-specifications/
[47] http://www.arduino.cc/

80

[48] http://beagleboard.org/
[49] http://www.raspberrypi.org/
[50] http://www.gartner.com/it/page.jsp?id=1980115
[51] http://www.gartner.com/it/page.jsp?id=1924314
[52] http://pointclouds.org/blog/nvcs/raymondlo84/index.php
[53] http://raymondlo84.blogspot.com/2012/09/using-accelerometer-with-kinectxtion-

on.html
[54] https://developer.nvidia.com/what-cuda
[55] http://www.visualization.hpc.mil/wiki/CUDA_Programming_Model
[56] Mell, Peter, and Timothy Grance. "The NIST definition of cloud computing (draft)."

NIST special publication 800 (2011): 145.
[57] Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)."

Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011.

[58] Du, Jianhao, Ou, Yongsheng and Weihua Sheng. “Improving 3D Indoor Mapping with
Motion Data.” IEEE International Conference on Robotics and Biomimetics. IEEE,
2012.

[59] Curless, Brian, and Marc Levoy. "A volumetric method for building complex models
from range images." Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. ACM, 1996.

[60] http://www.pointclouds.org/blog/srcs/fheredia/all.php
[61] http://en.wikipedia.org/wiki/Triangle_mesh
[62] http://meshlab.sourceforge.net/
[63] http://www.ros.org/wiki/
[64] http://www.ros.org/news/2011/11/celebrating-the-fourth-anniversary-of-ros-and-the-

first-roscon-2012.html
[65] http://ros.org/wiki/openni_camera
[66] http://www.ros.org/doc/api/sensor_msgs/html/msg/CameraInfo.html
[67] http://www.ros.org/wiki/image_transport
[68] http://www.theora.org/
[69] http://www.ros.org/wiki/image_view
[70] http://www.ros.org/wiki/roscore
[71] http://ros.org/wiki/tf
[72] http://www.ros.org/wiki/rxgraph
[73] http://www.ros.org/wiki/rxplot
[74] http://www.unrealengine.com/en/udk/downloads/
[75] http://udn.epicgames.com/Three/UnrealUnits.html
[76] http://udn.epicgames.com/Three/FBXStaticMeshPipeline.html
[77] http://usa.autodesk.com/fbx/
[78] Ecma International, Universal 3D File Format, 3rd Edition, June, 2006, ECMA 363
[79] http://www.blender.org/
[80] http://www.pcl-developers.org/Kinfu-Improvements-td5135752.html
[81] des Bouvrie, Bas. "Improving RGBD Indoor Mapping with IMU data." (2011).
[82] http://ros.org/wiki/rviz
[83] http://www.ros.org/wiki/rgbdslam
[84] http://www.ros.org/wiki/rostopic
[85] http://opencv.willowgarage.com/wiki/

81

APPENDICES

ROS Commands used for this thesis:

To run the mapping software:

rosrun kinfu kinfuLS _image_transport:=compressedDepth

To view the status image:

rosrun image_view image_view ige:=/kinfuLS/status compressed

To plot 6DOF transformations in real time:

rxplot -M 3d /tf/transforms[0]/transform/translation/x:y:z

To view real time 6DOF pose:

rosrun rviz rviz

To run the roscore:

roscore

VITA

CRAIG MOUSER

Candidate for the Degree of

Master of Science

Thesis: REALTIME 3D MAPPING, OPTIMIZATION, AND RENDERING BASED

ON A DEPTH SENSOR

Major Field: Electrical and Computer Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical and
Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in
December 2012.

Completed the requirements for the Bachelor of Science in Electrical and
Computer Engineering at Kansas State University, Manhattan, Kansas in May
2011.

