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CHAPTER |

INTRODUCTION

In this thesis, a method is developed for the capurepresenting, and rendering of 3D
environments based on a depth sensor. This chajitérst cover the motivation in Section 1.1.
Related work will then be presented in Section Eigally, an overview of this thesis will be

covered in Section 1.3.

1.1 Motivation

The ability to create 3D maps has been a popusaareh topic for many years. 3D maps have
intrinsic values in many different fields of stufitgm robotics to visualization. Typically, these
maps have been created by reading in data fronolomere types of sensors. These readings are
then processed into a map of their surroundingspedding on the application requirements, a
2D or 3D map could be created. Most often, thegpaave been created from either a LIDAR
(Light Detection and Ranging) sensor or SONAR (SbiNavigation and Ranging) sensor.
However, since Microsoft released the Kinect seitsdlovember 2010 [1], using RGB-D

images to create 3D maps has been an aggresseselgrched topic

[4]8][9][14][15][17][19][20][21][22].



Map representation is an important issue. Usingaimto represent 3D maps is valuable
in many applications. By triangulating a 3D mdpriables the use of decades of research into
polygon rendering. Industry has provided a hugeedsf research into this area because of the
popularity of video games and computer generatedyéry (CGI). All modern rendering engines
are based on the concept of rendering a seriemogtes into a 2D image. We now have tools to
create photo-realistic renderings, process vegelaneshes, apply physics simulations and more.
We can use these tools to create interactive ey appealing displays for our 3D maps. One
application where this would be useful is in resthée. A property’s interior could be scanned
into a 3D map and uploaded online. Potential buyengld then be able to interactively tour the
property in its entirety. This would give a muchmnoatural feeling than viewing panoramic
images of the interior of the house. Figure 1 shawsndering of an interior room based on a
triangulated mesh. Similarly, robots can use thihihology to create maps that can help
autonomous navigation and be easily viewed by apexarhis can be very useful for search and
rescue, as well as reconnaissance. It would beteadentify and mark areas of interest on an

intuitively displayed 3D map.

This thesis aims to develop a portable 3D mappystesn using a depth sensor. Three
main issues are involved in this process: map ioreanap optimization, and map rendering.
Map creation is the process of acquiring the pdioiid representing the 3D space from a
sequence of depth images. Map optimization isriaadulation of the point clouds in to a mesh
and the optimization of the triangulated mesh. Maplering is creating a visual display of the

optimized map for a viewer.



Figure 1: An interior represented by a hand creai2dnesh [2].

There are several constraints that should be nwtdier to create a practical 3D mapping

application. These constraints are:

Portable: The system should allow the user to nfi@edy through their environments to

acquire complete maps.

e Cost: The price of the system should be reasorables purpose. For this paper we are
proposing a method that could be used by the gepepalation. This means that the
system should be affordable to an average consumer.

e Accuracy: The system should be able to createntdye with the accuracy required for
various 3D applications.

e System Requirements: The system should only dséhefshelf parts that are available

to all potential users.

Depth sensors such as the Kinect sensor or the Xéosors [42][43] provide a cheap sensor

for creating 3D maps with the required accuracipAR sensors can provide very accurate



results, but cost several thousand dollars. SONAfhe other hand is very cheap, but has poor
accuracy. The Kinect provides ample accuracy wdokting only a small fraction of what

LIDAR costs [3].

1.2 Related Work

This section will briefly discuss recent works that related to this thesis. As previously
mentioned, there has been a lot of research onsthef RGB-D images since the release of the

Kinect sensor.

1.2.1 RBG-D Mapping

Henryet al.introduced a method for mapping through the ocoeadf a dense point cloud
from RGB-D images [4]. They created these mapsdoytining both visual features and shape
based alignment. Their implementation detectsalieatures using the scale-invariant feature
transform (SIFT) algorithm [5]. It uses an RGB-Pritive closest point (ICP) algorithm [6] for
the shape based alignment. The RGB-D ICP is anneehngent of ICP specialized for the RGB-D
sensors. It uses the SIFT feature points projaented3D using the depth data as 3D features.
The random sample consensus (RANSAC) [7] algorithosed to find features that are
considered inliers between the source and targetdr ICP is then used to determine the
transformation from the previous frame. They alse vusual and depth information on key
frames to detect loop closures and applied cooedtr drift. A key frame is created any time
there are less than 3 inliers found between theentiframe and last key frame. Each time a key
frame is added, it is compared to previous key &sm an attempt to detect loop closure. Figure
2 shows two dense point clouds from their experisierhis implementation can run at

approximately one frame per second without merginigts.



Figure 2: Dense point clouds created with RGB-D Mag [4].

Huanget al.combined the previous work with a flying quadraaod was able to create
dense 3D point cloud maps for localization usinty éime onboard computer [8]. The dense point
cloud map was also used for stabilizing and colntigothe flight of the quadrotor. Engelhast
al. implemented a similar solution to Henry’s to emafgal-time 3D SLAM (Simultaneous
Localization and Mapping) with an RGB-D camera [8]their implementation they used
speeded up robust feature (SURF) [10] feature etidraon the RGB image combined with
RANSAC to estimate the relative transformationhaf tamera. They then refine this estimate
with a second estimate from a variant of the IGf@=adhm. This is all stored using a pose graph
optimization [11] to help form a globally consistenap. However, their implementation is only
able to run at approximately 2 seconds per fraAleof the previous work mentioned above has
used dense point clouds to store their 3D mapss®paint clouds can use a large amount of

memory when working with large areas.

The following papers created similar systems usargpus methods to reduce memory
usage. Hartmanet al. presented a method of RGB-D SLAM using a Kinect tavo feature
extraction algorithms, Oriented FAST [12]and RataBRIEF (ORB) [13][14]. In their paper

they use a landmark based mapping system thaquéreel for their FastSLAM algorithm. In this
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method, it stores a series of landmarks which merea point of interest. Each landmark will
hold the 3D position, the error covariance, aneéscdptor. While this implementation is very
fast and memory efficient, it does not retain tbeassary information to create a realistic
rendering. In another paper, Endet¢sl. evaluated RGB-D SLAM using three different
algorithms [15]. They tested SIFT, SURF, and ORBey stored their results in an OctoMap, an
octree-based voxel map proposed by Watral.[16]. Their research showed similar accuracies
for SURF and SIFT, while ORB did not perform quatewell. ORB and SIFT had similar run
times that were much faster than SURF on average STFT implementation was executed on
the GPU however. Zoet al. presented a method for indoor localization ands8éne
reconstruction using the Kinect [17]. Their reséaatso decided to use the aforementioned
OctoMap to efficiently deal with the large amouotslata. In their implementation they tested
four feature detectors: ORB, SURF, Shi-Tomasi (&¥pers [18], and FAST. They did not
utilize any GPU acceleration as the goal of thesearch was to run their software on mobile
robotics platforms with limited computing power. BRnd SURF were the only two to complete
both test environments successfully. FAST, howewes the fastest algorithm. It was closely

followed by ORB and ST corners.

The first virtual reality applications came alonbem Izadiet al. of Microsoft Research
released their paper on KinectFusion [19]. Kinestém presented a surface mapping and
tracking system based only on the depth framdilizes a coarse-to-fine ICP algorithm for
tracking. This implementation compares the curdepth map to the entire observed model. This
helps reduce drift over time that can be seenhierdmplementations. It also utilizes a highly
parallelized set of algorithms, which allows almalsthe software to be run on the GPU. The
limitation of their implementation is it only works a 3 meter cube. This makes it impractical
for scanning large environments. However it diceothe greatest quality tracking and rendering.

Figure 3 shows two examples of the original Kinesibn algorithm constructing models from



RGB-D images. This publication along with anothertloe same project [20] prompted a barrage

of research on extending this system.

Figure 3: KinectFusion output. Left: Raw Kinectaatith normals. Right: Constructed map.
[19].

Whelanet al.implemented an extension to the KinectFusion allgorinamed Kintinuous
[21]. This system runs the KinectFusion algorithmtioe 3 meter cube, but when the camera
moves towards the edge of the cube it exports aedpaint cloud and re-centers the cube on the
cameras location. This is performed by treatingcilige as a cyclical array. When the cube is re-
centered, or shifted, the area that is no longérdrcube is exported to CPU memory and
reassigned to the new area being shifted intodbe.cOpen source implementations similar to
KinectFusion and Kintinuous will be discussed ieajer detail in Section 3.1 of this thesis. Roth
and Vona developed a similar approach to extenidingctFusion that also uses a moving cube
[22]. Their implementation works by storing two estin GPU memory and swapping back and
forth as the user moves. Therefore their implemiamtaequires twice the memory of the

Kintinuous implementation.



1.2.2 Triangulation

Triangulation has been a research topic for decdwd@spans many different fields. In this
case triangulation of points in a dense point clisutecessary in 3D space. This has been a
widely researched area which has yielded many kxtedolutions. In 1998 Owen provided a
survey of the top triangulation methods [23]. Thesthods were Octree [24], Delaunay [25],
and Advancing Front triangulation [26]. A method &fficient and constrained Delaunay
triangulation in 3D space was introduced in 1994/Mgatherill and O’Hassan [27]. This method

is still widely used today and is much more poptitan the other two.

The method which was used in this thesis is knosvmarching cubes triangulation [28].
Marching cubes was introduced in 1987 by Lorenswh@ine as a method to triangulate models
of constant density. It was originally designediéal with medical data, but has since been
expanded to computer graphics. This method wassimghted using a GPU in 2006 by
Johansson and Carr [29]. This research allowed G@us the marching cubes algorithm in a

fraction of the time. This is important for workimgth large data sets such as dense point clouds.

1.2.3 Mesh Simplification

Mesh simplification is another research topic thed been popular for years. When computer
graphics were just beginning, the computing povig@mat exist to process large meshes. Many
researchers created algorithms to simplify mesbggoni, Montani, and Scopigno created a
comparison of various mesh simplification method&998 [30]. In their paper, the authors
compared 21 existing methods for simplifying a médtey analyzed everything from number of
triangles, runtime, local and global error, and mgnusage. Each method was applied over
various models to extensively test the strengtldsveaaknesses of each approach. The most

consistent method was using quadric error metiidslti-resolution decimation provided similar



guality but had nearly 20mes the runtime. Since their paper was publishisiiig quadric errc
metrics has been tmost popular method for mesh optimizati

Using quadric error metrics for mesh optimizaticasviirstused by Garland and Heckb
[31]. Their method is capabof creating high quality approximations of polygmeshes in .
relatively small amount of time compared to simitagthods. Their method works by iterativ
contracting vertex pairs and merging them. Twould even conjoin vertices that were 1
connectd by an edge. The most important aspect howevbeigse of the quadric error met
The algorithm works by computing a quadric errotnrdor each vertex. It then selects all ve
pairs. Each pair is given a contraction cost whieedower the co means it is a more ide
contraction. The pairs are then sorted from lowes$ighest and the contractions are iterati
performed until it reaches a stop condition. Aftach contraction, affected vertices will hi
their costs recalculate#figure < shows an example of Garland and Heckberts ressittg their

method.

Figure 4 Mesh optimization of a model from 5,804 to 99325248, and 64 faces respectiv
using the queric mesh optimization method [31]

1.2.4 Rendering Engines

Trenholme and Smi published a survey of using computer game engimeggualizing
first person virtual environments in 2( [32]. They surveyed several key aspects of the 6
popular engines at the tim€ryENGINE[33], id Tech 3 and 4 [34]upiter EX, Sourc[35], and
Unreal 2 [36].The id Tech and 4engines as well as the Jupiter EX engine are ngei
available. CryENGINE, Source, and UnrEngineare still widely used and supported. Eacl

these wasound to have similar qualities by Trenholme andtBnAll three have very wid



community support, however CryENGINE and Unrealézevpraised for their graphics abilities
while Source was praised for its ability for moditig scripting, lip synchronization, and more

game specific features that are not necessarydihaésis.

Another engine that has been developed is theyBBitEngine [37]. It is a cross
platform game engine that supports several progiagifanguages, 3D software packages, and
many operating systems including Windows, Mac, i®&]jroid, and others. It is a newer engine
than the others mentioned so far and has less caitynawpport. It is growing quickly however.
At this time its graphics quality does not meetlthesls of CryENGINE and the Unreal Engine.

The cross platform capabilities of this engine midlkeepotential solution in the future.

However, for this thesis the Unreal Engine was ehdsecause of its graphics quality and
wide community support. It also has a new versiwhm@any new features that have been added
since Trenholme and Smith’s survey in 2007. Onefkature is that the engine can now publish
games for mobile devices, similar to the Unity eegiThere are existing apps for both iOS and
Android that utilize the Unreal Engine and haveywesalistic rendering. The graphics quality has
also progressed to such a realistic level thatliteing used for films and television shows, as wel
as visualization by architectural firms. Figurenaws the realism that is achievable with the

Unreal Engine.
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Figure 5: Screenshot from the Unreal Engine 3 [36]

1.3 Overview of the Thesis

This thesis implements a portable 3D mapping sy$terarge indoor environments. The system
will utilize both a client and server computer. Tdiient computer will interface with the depth
sensor needed for mapping the environment. Thédeyatge will be streamed to the server
where the computation to create the 3D map wilpé&dormed. An image will then be streamed
back to the client computer to provide a real t8taus update of the map creation. The client
computer will therefore only need the capabilityfoad 16 bit video while downloading 24 bit
video. These connection speeds are typical anthegttepeeds are increasing regularly. The
resulting map can then be shared and viewed ingereng engine after mesh simplification. This

system will meet all the criteria previously stafedthis project as explained below:

o Portable: A laptop or netbook using wireless inéémmould allow the user to explore and

map their environment without restriction.

11



e Cost: A laptop or netbook is very affordable angatly commonly owned. RGB-D
sensors are also affordable. An Xtion sensor atttbo& can be purchased for $120 and
$230 dollars respectively [38][39]. It is also vexymmon for users to already have an
existing wireless internet connection.

e Accuracy: The implementation will provide accurdbgt is suitable for large
environments by utilizing the methods from previewsk.

e System Requirements: All components necessarmhéouser are widely available off-

the-shelf.

This thesis is organized as follows: Chapter 2 piidisent the hardware setup for the map
creation system. It will discuss both the user'd and the cloud based computation, as well as
the networking connecting them. Chapter 3 will dsscthe software created in this project.
Chapter 4 will discuss and present the resultexiperiment performed for this project. Chapter 5

will discuss the conclusions and future work.

12



CHAPTER Il

HARDWARE PLATFORM

This chapter will describe the different types afdware used in this project. There are several
key hardware components for this thesis. The olveyatem setup will be discussed in section
2.1. The importance of each individual piece ofdlaaare will then be discussed. Section 2.2 will
cover the RGB-D sensor. Section 2.3 will discugsgbrtable client computer. Section 2.4 will

discuss the server computer and the networking.

2.1 Overall System Setup

The system designed for this thesis is composé&gammain parts. The first part is the portable
scanner, which in turn is composed of two part® filst part is the RGB-D sensor to capture the
depth images necessary for creating the 3D mapssé@tond part is the computer the user will
need to interface with the RGB-D sensor and to camoate with the server computer. They will
also need to have an active internet connecti@onemunicate with the cloud computing service.
The second main component is the server side cangtts the computer that runs the cloud
computing software. It must have a CUDA enabled @arder to run the software needed for
this thesis. It must also have access to an irteomection to communicate with the client

computer. Figure 6 shows a block diagram of thealleetup of this system.

13
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TCP/IP Connection

RGB-D Sensor

Server Computer
with CUDA GPU

Portable Scanner

Figure 6: A block diagram of the system setup

The overall system works as follows. The client pabar will capture a stream of depth
images from the RGB-D sensor. It will then comprtsgsimages and upload them over a TCP/IP
connection to the server computer. The server ctenpuill use the depth images to build up a
3D map. During this process the server will gereesastream of compressed images showing the
current 3D map so the user can see the progreke stan. This will also allow the user to see
what areas need to receive more attention to ceeatenplete map. When the process is
complete, the server will generate the 3D meshTites mesh file can be optimized by the client
using the quadric error optimization method. THiieves the user to select a level of optimization
that suites their purpose. This process could benzated to provide a set amount of optimization
if that is preferred. The file could then be shamed displayed using a game engine such as the

Unreal Engine.

2.2 RGB-D Sensor

The first popular RGB-D sensor released was MidttsKinect sensor [40]. It was originally
designed for use playing video games with MicrdsoftBox, but has since been used for many
other applications. The Kinect sensor uses a Viidene rate of 30 frames per second and a

resolution of 640 x 480. The RGB stream uses star8lait/channel or 24 bit color. The depth

14



sensor uses 11 bit depth which provides 2048 lefadepth [41]. To determine depth the Kinect
sensor emits a series of infrared dots. It thes tise deformation of these dots in the image to
calculate the depth map. Because all the paramgiténe camera are known, the Kinect is
capable of calculating absolute depth from the@es opposed to the relative depth of each
pixel. Figure 7 shows an example of a Kinect seneatput while looking at a typical desk. The
Kinect struggles to calculate the depth of objémbsclose to the sensor or that are too bright,
such as the monitors. This issue causes problentsgdinect in daylight. The infrared dots are
not strong enough to be picked up in direct sunlijhmay also struggle with reflective or clear

objects. You can also see there is a shadow idgpth image behind the monitor because the

infrared emitter and camera are slightly offsehimithe Kinect device.

Figure 7: Kinect sample output. Left: RGB imagentée: Depth image. Right: Infrared pattern.

Following the release of the Kinect, Asus releasarsimilar sensors. These sensors are
named the Xtion Pro and Xtion Pro Live [42][43]. TH&on Pro is only capable of sending the
depth image, while the Xtion Pro Live contains tieptage, RGB image, and audio information.
A key difference between the two Xtion sensors thiedKinect sensor is the Xtion sensors only
require a USB connection. The Kinect requires a @88 AC power connection. This makes the
Xtion sensors ideal for this project because tlaylwe carried around with a laptop. They will
not be constrained to being plugged into a walie Ktion sensors are also more compact and
lighter than the Kinect. These three sensors easebn side by side in Figure 8. This figure
helps provide an idea of the difference in sizevieen the three sensors.
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Figure 8: Left: Microsoft Kinect. Center: Asus Xti®ro. Right: Asus Xtion Pro Live

All three of these devices are compatible with@peenNI drivers [44]. OpenNl is an
open source framework for Natural Interaction (Ml)s an industry-led, not-for-profit
organization that maintains this framework. The @pleframework supports both Windows and
Ubuntu. The OpenNI framework provides code toirecstreams of depth maps, RGB images,
infrared images, and others such as audio, haritiggp®nd gesture tracking. Any code
developed using these drivers can use any of tee gensors interchangeably without adjusting

the code.

2.3 Portable Client Computer

The client computer is the device the user will tesebtain the depth images needed for creating
the 3D map. It must be capable of meeting a numberquirements. It must be portable so that
the user can easily scan large environments. It beiable to connect to the RGB-D device
through USB. It should also be able to connectlegdy to the internet. This could include the
802.11 standard or a cellular data network. Findllghould have the processing power and
memory requirements to compress and upload thé depisor image and download,
decompress, and display the status image if nege$sa this thesis many possibilities for the
portable client computer were researched. Onlycmméiguration was implemented for this

thesis, the netbook. First, using a netbook wiltlseussed in section 2.3.1. Then alternate
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configurations will be discussed such as the FRIRCSection 2.3.2, the single-board computer

configuration in 2.3.3, and using a mobile devit2.3.4.

2.3.1 Netbook

For the implementation of this thesis, a netbook wsed for the client computer. A
netbook is a relatively new category of computbed airose in 2007. They are a small laptop
computer that is inexpensive, has extended bdtferyand is much lighter. They often, however,
have less computing power than their laptop copatés. For this thesis, the Toshiba mini
NB305 model netbook [45] is used. It has a 1.66 Gt Atom N450 Processor, 1 GB of
DDR2 Memory, and a 10.1 inch 720p resolution scréeaiso has 3 USB 2.0 ports which can be
used to connect the RGB-D device. Finally, it dlas built in Wi-Fi wireless that can connect to
802.11b/g/n networks. 802.11n is an important feadis it is supports 300 Mbps wireless
transfer speeds. This is useful for the streamfrtjedepth images and status images. For this

thesis, Ubuntu 10.04 is used for the operatingesyst his netbook can be seen in Figure 9.

Figure 9: The Toshiba NB305 netbook used in thasith
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Using a netbook for this thesis is very convenfenitnany reasons. It meets all the
requirements stated in Section 1.1. Netbooks drer@mtly portable by design. They are
lightweight and easy to carry around which allotes eiser to map large 3D areas. They are also
already owned by many people. Alternatively, a-§idle laptop could be used in place of the
netbook with little or no change to the systemaptbp has higher performance in every category
except battery life and portability. Laptops aii# gery portable, but are slightly larger and

heavier than netbooks.

2.3.2 Fit PC2i

The FitPC2i is a small form computer that uses Vigttg power [46]. It packs a full
computer’s capability into a 4” x 4.5” x 1.05” cagd the same time it uses 94% less power than
a standard desktop computer. It uses from 6-8 wdtesn in use and only 1 watt on standby. The
Fit PC2i has an Intel Atom Z530 at 1.6 GHz. Thiamsolder model than the N450 that was in the
Toshiba netbook. It also has 1GB of memory. It4&SB 2.0 ports, though 2 of them use the
mini-USB connections. It also has built in 802.1direless support. The Fit PC2i can be seen in

Figure 10 below.

The Fit PC2i uses a 12V DC input. This makes itvemient to use a battery to power the
device. By using a battery we make the device nmcie portable. The weakness to this design
is there is no screen to display the current statage. This makes it difficult for a person to map
an environment. However, this could be ideal foolzotics application. The depth sensor could

be attached to a robot and the status image ceuttispblayed in a remote location to a user.

18



Figure 10: The Fit PC2i with a battery and an AXtien Pro Live.

2.3.3 Single-Board Computer

Single-board computers are complete computers dniib a single circuit board. This
includes the processor, memory, and many 10 devidesse types of systems have grown in
popularity recently. Some of the more notable sidgbard computers are the Arduino [47],
BeagbleBoard [48], and the Raspberry Pi [49]. Tlaegust a few of the most popular single-
board computers, but there are many more. Eadiesttboards has their own unique qualities
that would need to be considered for implementigthesis. The advantage to using a single-
board computer is that you could create a very Istoal-power, standalone device for 3D
mapping. Most single-board computers use DC powgplées and use a relatively low amount
of power. The single-board computer could be podiesebattery similar to the Fit PC2i in
Section 2.3.2. Figure 11 shows an example of hamstystem could be configured. It is an in

progress project that is being built in our AS@E that combines a Beagleboard xM with an
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Asus Xtion Pro sensor for tracking gestures. Byersing the direction of the camera it could

easily be repurposed for this thesis.

Figure 11: A single-board computer with an AsusKtPro.

2.3.4 Mobile Device

It would be desirable to be able to use a mobitenptor tablet as the client computer.
Almost everyone these days has a smart phone let.talvorldwide tablet sales are estimated to
be near 119 million in 2012 [50]. This is followig@ million sold in 2011. This is in addition to
the 472 million smart phones that were sold in 2[&11. Smart phones and tablets are beginning
to replace netbooks or even laptops for many pedlese mobile devices meet all the
requirements set forth in Section 1.1. They areeextly portable, have long battery life, and are
very easily obtainable. However, each device ltagviin set of specifications that may or may
not meet the system requirements for this projdost modern devices should have the required
computing capabilities and network speed for thésis. They also typically have a micro-USB

connection that could connect to the Kinect or Xtifevices using an adapter. Raymond Lo has
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been able to interface both the Kinect and Xtiamsees with an Android device and perform
finger tracking in real time [52][53]. He is usiag NVIDIA developer tablet with a Tegra 3
processor, which is considered state of the dhistime. Figure 12 shows a possible

configuration of this thesis using the Motorola Xotablet.

Figure 12: A Motorola Xoom with an Asus Xtion Privé.

2.4 Server Computer

The server computer will have a few tasks. Itd fisk is to receive the stream of depth images
from the client computer. It should decompressstheam and use the images for developing the
3D map. As the map is being developed in real tilme server computer should be able to
compress the current status image and streamkttbahe client computer or display it if
necessary. It is required that the server compiteuld use a CUDA enabled GPU. This is

necessary to run the software used in this thesjeqi.
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2.4.1 Server Hardware

For this thesis, a workstation PC in the ASCC fabded to act as the server computer.
This computer is the Dell T7500 Workstation. Thigrkstation is running two Intel Xeon X5570
guad-core processors at 2.93 GHz. It has 12 GBAM RWe swapped the NVDIA Quadro 4800
with the NVIDIA GTX 560 Ti GPU. The workstation ranning Ubuntu 12.04 LTS 64-bit. This
workstation is connected through Ethernet to aleserouter. This workstation meets the

performance requirements for this thesis.

2.4.2 CUDA enabled Graphics Processing Unit (GPU)

To utilize the research published in the KinectBogapers by Microsoft [19][20], it is
necessary to perform a large amount of processirgg®PU. The most popular method for
programming on a GPU is to use CUDA . CUDA is aaflal computing platform and
programming model invented by NVIDIA [54]. It all@yprogrammers to simply convert their
code to utilize parallel computing across hund@dbousands of cores. CUDA has been widely
used in the scientific community since its releddany computationally intensive programs can
greatly improve by using parallel processing. Mafghe algorithms used in this project fall into
this category. CUDA allows you to send C, C++, ortfan code directly to the GPU for

processing.

GPUs are ideal for parallel programming becausg #re designed to do graphical
calculations on each pixel. This made a highly lbglized architecture ideal. The CUDA
architecture is composed of grids, blocks, andaiiiseA grid is created for each function, or
kernel, that is called. The grid is assigned t@@ak and split up into many blocks. Each block
contains many threads. A block is assigned toemsting multiprocessor (SMP). Each SMP may
process several blocks. This is done to allow Btédnding. If one block is waiting on a memory

operation, the GPU will perform calculations on teo block while it is waiting. Each thread

22



within the block is assigned to a single proce$S@). Each SMP contains several SPs allowing
multiple threads to be computed simultaneouslyufed 3 provides an example of how grids,

blocks, and threads are divided.

Grid of Thread Blocks

Block | Block | Block
£0,1) | (1,1) | (2,1)
Block | Block | Block

(0,0) | (1,0) | (2,0)

/ —

/ = N

—

Thread Block (0,0)
Thread| Thread| Thread
(0,1) | (1,1) | (2;1)

Thread| Thread| Thread
(0,0) | (1,0) | (2,0)

Figure 13: Example of CUDA Grid, blocks, and thre#eb].

To use CUDA in your applications, you must hav@ldDA enabled NVIDIA GPU.
Every NVIDIA GPU created since the 8000 seriesd8@&is compatible with CUDA. However,
different GPUs have different compute capabilitesging from 1.0 to 3.5. The newer cards with
higher compute capabilities can make use of theenésatures of the CUDA architecture. For
this project a compute capability of 2.0 or higisensed. In our testing we used both a GTX 480

and GTX 560 Ti graphics cards.

2.4.3 Networking

This thesis uses a relatively simple networkingsétased off existing technologies. By

the NIST definition of cloud computing, this projeeould be considered Cloud Software as a
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Service (SaaS) by providing a consumer the alidityse the provider’'s applications running on a
cloud infrastructure [56]. By performing the prosiegl in the cloud we are able to decrease the
system requirements of the user to a low end coenuntd an internet connection. This makes

the system much more practical to users. Instepdir@hasing an expensive system, they can use
an existing computer they already own. Performimgnguting in the cloud is a relatively new

concept that is becoming more popular.
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CHAPTER IlI

SOFTWARE PLATFORM

This chapter will present the various pieces ofvgaife used and created for this thesis project.
First, in Section 3.1, KinectFusion will be discedsn greater detail. Triangulation will then be
described in Section 3.2. In section 3.3 mesh aptition will be described. Section 3.4 will
present the use of ROS (Robot Operating Systemmdtwork communication. Section 3.5 will

cover the rendering of the final 3D map.

3.1 Point Cloud Aquisition

Microsoft published their research paper on Kinasién, but did not provide the source code to
the public. The Point Cloud Library (PCL) is a stalone, large scale, open source project for
2D/3D image and point cloud processing [57]. Thaplemented their own version of
Microsoft’s KinectFusion algorithm based off théammation provided in the research papers.
The KinectFusion algorithm in PCL is known as Kifiud is expected to be released in version
1.7. They have also begun developing a KinfuL&iofu Large Scale implementation which is
similar to the research by Whelahal. mentioned in the previous work section. This safeus

still in the process of being developed. Accegshése two projects is currently available by
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downloading the source code from the trunk of t&&N. The main difference between

Microsoft's research and the PCL implementatioR@. does not use RGB information

The KinectFusion algorithms works through a cometof steps. The first step is to
run a bilateral filter on the depth image. Theteital filter works to remove noise through a
weighted average based on a Gaussian distributide wreserving hard edges. The depth image
can then be converted into a point cloud, or a&senf vertices in 3D space. This is a relatively
simple calculation of mapping each pixXe};, y;) to a 3D pointP(x, y, z) using the following
equations:

(xq — Cxq) X depth(xq,¥q)
fxd

X =

(J’d - Cyd) X depth(x4,yq)
fyd

y:

z =depth(xg,y4)

cxq @ndc,,, are the cameras principle points; andf,, are the focal points of the
camera [58]. This creates the points in the career@drdinate system. It must then be translated
into the global coordinate system using the traimsiaand rotation information from the ICP
algorithm. The normal of each vertex is also edttat this point. A GPU implementation of
the Iterative Closest Point (ICP) algorithm is num to estimate the transformation of the newest
frame with 6 Degrees of Freedom (DOF). ICP findsespondences between the new point
cloud and the existing model. The ICP algorithni aléo remove outlying vertices at this time
by testing the Euclidean distance and angle. Tl ptoud is then integrated into the volumetric
storage type. The data is stored in a truncatagedigistance function (TSDF) based of Curless
and Levoy's research [58]. The TSDF is a three dsimnal grid divided into many voxels. By

default, the TSDF is broken into 512x512x512 voxeld the grid is 3 meters. In my
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implementation a 256x256x256 TSDF was used to dserthe amount of data. Finally,
raycasting is then used to render an image of 8i@Ffor real time feedback to the user. Figure

14 shows a flowchart of this algorithm with examjpieges of each step.

ICP Outliers Raycasted Vertex &
Normal Map

Raw Depth
T T / i :
_“:ﬂ).. _'1-'"‘.*) f

6DOF Pose & Raw Data

' ‘_
a) Depth Map Conversion b) Camera c) Volumt_etric d) Raycasting
(Raw Vertex & Normal Map) Tracking (ICP) Integration (3D Rendering)

Figure 14: Flow chart of the KinectFusion algoritfif].

While the KinectFusion algorithm worked well, iasrbounded by the size of the TSDF
volume. This made it very impractical for many apgiions as it is limited to about a three meter
cube. KinfuLS looked to expand KinectFusion by alltg the user to shift the TSDF as the user
moved. The TSDF became a three dimensional cirtuitier. When the camera had moved a
given distance away from the center of the TSDE TE8DF would be realigned so that the
camera would be in the center. The area that woalldnger be inside the TSDF was converted
to a point cloud and extracted from the GPU mentonmypain memory. Figure 15 shows a visual
representation of this process. By allowing the FS@lume to shift, much larger areas could be

scanned. This is the method used by KinfuLS inRbmt Cloud Library.

The TSDF stores a value at each voxel that reptesiee signed distance from the voxel
to the surface along the line of sight from the eeanThe distance of the voxel is calculated by

summing the estimated distance for each frame antiptying it by the weight for that frame.
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This value is then divided by the total weight float voxel. The weight is calculated as the sum

of the weights for each frame. These equationdeaseen below:

€Y @
(Origin) (Origin)
Starting cube Starting cube

o —>0

TSDF Origin at {0, 0, 0} [voxels] TSDF Origin at {0, 0, 0} [voxels]
Camera at {1.5, 1.5, -0.3} [meters] Camera at {2.7, 1.5, -0.3} [meters]

Camera moved
close to the border

3) 4)
(Origin) . (Origin)
Starting cube  Shifted Cube Starting cube  Shifted Cube
+—>0 —>50
TSDF Origin at {0, 0, 0} [voxels] TSDF Origin at {0, 0, 0} [voxels]
Camera at {2.7, 1.5, -0.3} [meters] Camera at {2.7, 1.5, -0.3} [meters]
Calculate the shift that we want
to get to the shifted volume
Calculated shift is e.g. 128 voxels
5
) (Origin)

Shifted Cube

O

TSDF Origin at {128, 0, 0} [voxels]

Camera at {2.7, 1.5, -0.3} [meters]

Camera remains in global coordinates
TSDF Origin is updated

Figure 15: Method for shifting the TSDF in the Piiiplementation [60].
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D(x,y,z) =

_ ZWi(x»y' Z)di(x'y'z)

ZWL‘(X'}"Z)

Wy, = ) wix,2)

The distance of each voxel is signed to represeather it is inside or outside of the
surface. If the number is in the rangedok D(x,y,z) < 1 then it is considered outside the
surface. While the range froml < D(x,y,z) < 0 is considered inside the surface. This leaves
the surface represented by the functidi, y, z) = 0. The point cloud can be extracted by
iterating the TSDF finding the transitions from atige to positive numbers. Note that the value

of D(x,y, z) is not in meters but is a relative measurementexample of this can be seen in

Figure 16 below.

1 loslo2)%0.1]-06]| -1

1 Jo3]|,0 |-04]|-09] -1

Line of Sight 08|02 Mo1]-08] 1| -1
(0) >

08|02 ho1]-08] -1 -1

1 1ozl e |o04] 09| -1

1 loe|lo2w1]-08] -1

Figure 16: An example of a TSDF volumetric surfesgresentation

For this project a modified version of the PCL implkentation of KinectFusion Large

Scale (KinfuLS) was used. The version used has bemlified to work with the Robot
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Operating System (ROS) that will be discussed uti®e 3.4. Another modification made was
using a 256 x 256 x 256 TSDF size as opposed tddfailt 512 x 512 x 512. This eliminates
87.5% of the data which allows for faster transisiovhen shifting the TSDF on our system. With
higher end hardware it should be possible to us& 12 setting. The 512 settings has a total of
134 million voxels while the 256 setting only h&rillion voxels. The drawback from using the
smaller TSDF is you lose some detail in the mod#lish the 512 setting each voxel represents a
5.9 mm or 0.23 inch cube. The 256 setting on therdtand has each voxel representing a 1.172
cm or 0.46 inch cube. While you do lose some acgthe details are not as necessary when
scanning large environments. The TSDF size coulcbbéigured to use any multiple of 32, so it

could be configured to use 288 or 320 for instance.

The main modification added to the PCL implemeatedf KinfuLS was to triangulate
the point cloud into a mesh and optimize it. Thialdes the output file to be smaller in size and
also allows it to be rendered in real-time. Usimgdern mesh optimization techniques allows us

to significantly decrease the amount of points authosing much quality to the model.

3.2 Triangulation

Triangulation is the process of connecting unordeestices to create a series of triangles.
Triangulation has applications in many fields analyems. In this instance, the series of
triangles is used to create a mesh where the teamgpresent the surface of an object. The idea
of using triangulated vertices to represent 3D aBjes very common and is the backbone of
modern rendering. Rendering is the process ofiagat2D image from the three dimensional
data. Figure 17 shows an example of a triangléhrttest represents a dolphin. The same concept

is applied to all 3D models.
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Figurel7: A triangle mesh representing a dolphin [61]

In this thess project themarching cubes method was usedriangulate the point clout
as they were exported from the TSDF. The necessitave a series of smaller meshes
opposed to one large mesh, is described laterdtidde3.5. As mentioned in Section , the
marching abes method is ideal for meshes with consisterdgijeof points. This works well fc
our implementation because the TSwhich outputs the point cloud composed of an eve
density of voxels. While not every voxel outpufgsaint to thepoint cloud, adjacent points are
evenly spacedlhe second benefit to timarching abes algorithm is that it can kun in parallel
which makes it ideal for utilizing the power of dDUDA GPU For this project thmarching
cubes implementatioprovided within the Point Cloud Libre was usedThis implementation i
already optimized for running on the GPU using CUDAe GPU accelerated version is o

available on version 1.7 and higt

The marching ubes algorithr works by creating a cube wie each vertex is giver
single bit. Each cube’s results can be storeahi@ kit value, using the one bit for each of tt
vertices in the cube ( ). The vertex is given a value of 1 if it is fourtdite inside the

surface and a 0 if it is outke of the surface. You can see how this algoritta® similarities tc
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the way the TSDF stores a volumetric representati@nsurface. This provides us 256 different
possibilities for each cube. By utilizing two formEsymmetry, the number of different
possibilities can be reduced to 15 possibilitidse Tirst form is rotational symmetry; the second
is using complimentary cases. Cases with over éicesrcan invert the value of each bit and use
the complimentary configurations result and inteet normal of the surface. A lookup table is
created for each of these 15 configurations showkFigure 20. The output triangles can generate
from O to 12 verticese(, ... e11) to represent the surface as seen in Figure I #axtexe; is
located along an edge of the cube conneatjrandv,.. The exact location &f; along the edge is
linearly interpolated based on the distance figmndv,, to the surface. After the cube is done
being completed, the cube marches to the nextitocand performs the same operation. After all

areas have been operated on, a resulting mesmg@eted [28].

Figure 18: The vertices of a marching cube [28]

This algorithm is designed well for parallel compgt Each cube can be calculated
independently of the others. This allows for maoges to be working on their own cubes
simultaneously. By using the CUDA implementatidre triangulation of the point cloud can be

calculated in a short amount of time.
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The point cloud that is exported from the TSDFuwaé saves four values for each point.
It saves the X, y, and z coordinate and inten$ite x, y, and z coordinates map each point into
the 3D coordinate space. Each of these points dhieptesent exactly one voxel from the TSDF
volume. The intensity value is the result of thatalice functio® (x, y, z) in the TSDF
calculations. The TSDF extracts a point for evayg-one value in the TSDF. The points’ values
can be directly applied to each cube for the magchubes implementation. This can be done by
finding the point from the point cloud that woulplpdy to each vertex of the cube. If that point’s
intensity value is negative, it receives a valué.df the point’s intensity value is positive thien
receives a value of 0. If there is not a vertethapoint cloud that correlates to one of the cubes
vertices, than no mesh is generated for that célmeexample of triangulation can be seen in

Figure 19.

Figure 19: An example of triangulation with maraiicubes. Left: A point cloud of a chair.
Right: The chair triangulated with marching cubes.

33



N

w

10 1

Figure 20: The 15 possible marching cubes res28E [

3.3 Mesh Optimization

Mesh optimization is the technique of simplifyingn@sh to use less vertices and triangles while
maintaining while still accurately representingstsface. This is a very important process in this
thesis because point clouds do not efficiently@epnt a space, especially after triangulation. If
you imagine a large planar surface such as a oailing, floor, or tabletop, a point cloud will
represent this surface using thousands or millcdnqmoints. This is due to the fact that a point

cloud doesn’t have a surface representation; eaici fepresents an individual point along a
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surface. To properly represent the large surfagiet glouds must be densely packed along its
surface. However, a triangulated mesh does haudace representation. This allows any
perfectly rectangular surface to represented, iealth only 4 vertices connected by 5 edges.
This is far more efficient than the thousands dliomis of points. In practice we cannot optimize
it this perfectly, but we can remove many unneaggsaints without degrading the quality of the
mesh. This process does not only apply to plamdiaces. Most surfaces that are created from
the point cloud data contain a very dense meskctrdtins a higher level of detail than is
necessary. While simplifying the mesh does notgutlsf represent the original mesh, the

difference is minimal, depending on the level ofgiification.

Figure 21: A chair at 3 levels of optimizationoFRr left to right, each contains 42k, 10.6k and
7.4k triangles. The Top shows a smoothed meshb®tiem shows a wireframe rendering.

35



An example of a chair that was scanned during éveldpment of this thesis bei
optimized can be seen in Figutl. The original mesh contained 128,328ti¢es and 42,77
triangles. It was imported into MeLab [62]and optimized using quadric edge colla
decimation. Meshéab is open source software for processing anchediti 3D meshes. The chi
was optimized at different levels using the settithown in Figure 22The first level optimize:
the mesh to 25% of the original mesh resulting,#67 vertices and 10,687 triangles. A sec
level of optimization was applied resulting in 538€ertices and 7,479 triangles. You can see
the first levelof optimization has a very similar appearance &odtiginal mesh with only a sm:

fraction of the original data. This is our goal tbe mesh optimization proce

Quadric Edge Collapse Decimation |§|

Smity 2 mesh using 2 Quadhc based Edge Collaose
Strafegy. better than dusfening but siower

Target number of faces [User Input]
Percentage reduction (0., 1) [User Input]
Quality threshold 0.3

[7] Preserve Boundary of the mesh

Boundary Preserving Weight 1
[¥] Preserve Normal
JI Preserve Topology

[¥] Optimal position of simplified vertices

[¥]:Planar Simplification :

[T weighted Simplification
[¥] Post-simplification deaning

[] simplify only selected faces

| Default | | Help |

| Close | | Apply |

Figure 22 The setttings used for mesh optimization in MeshL
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For this thesis,the quadric edge decimation allgariin the MeshLab software was used.
This allowed feedback from the user. As mentioreatie¥, the scene is exported into several
separate meshes. Depending on the content in ezt ihcan be optimized to a different level.
By allowing the user to control the level of optaaiion we can achieve maximum compression
without compromising the validity of the mesh. Th@ution is ideal because setting a constant
level of compression can be very wasteful. Largedreas without significant detail can be
compressed to a much higher level than a meshmathy details such as a desk with many

objects on it.

Quadric mesh optimization is a hovel method foirjing a mesh without
compromising the overall structure of the mesh.yThkey idea is that each vertex,
[vx vy v, 1]T, is associated with a 4x4 symmetric mat@x,The error for each vertex is defined
by the functiom(v) = v" Qv. TheQ matrix is a heuristic used to measure the geometrar at
each vertex. Its definition and derivation candsend in [31]. The algorithm then works as
follows. First, the@ matrix is calculated for each vertex. Second, eadid pair of vertices is
selected. A pair of vertices is considered valithdy are connected by an edge, or within a
threshold distance. Other parameters can be usell as if the vertex is on the edge of a mesh,
you can not include it for consideration as a vphdt. Next, you compute the optimal position
for the new vertex created by contracting a paiis Vertex is callea. This can be computed by
minimizing the functiom\(v). This can be found by solvirdp\/dx = dA/dy = dA/dz = 0.

It may be rewritten as:

11 912 913 414

12 d22 923 Q4|3 —

d13 923 (433 (34
0 0 0 1

_ oo o

The functionA() is now considered the cost of the contractiorhefitertex pair. These costs

can now be sorted from lowest to highest. The eatibn with the lowest cost will be performed.
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After each contraction, the costs of each affewtgtex and valid vertex pair can be updated.

This process is repeated until you meet the desinatber of triangles.

3.4 Robot Operating System

The Robot Operating System (ROS) is an open s@afteare frame work developed for
robotics [63]. It is not actually an operating gyat but provides operating system like
functionality such as low level hardware abstractiROS is supported on Ubuntu, but an
experimental version can be used on many otheatipgrsystems. ROS is built off a system of
packages. ROS itself comes with several packageptbvide many common functions. Other
users can contribute their own packages that teegldp. This has created a huge repository of
useful functions that can be used by anyone. Fig8rehows how rapidly the number of
packages within ROS is growing. ROS uses a publigiscribe architecture that allows
communication between packages. Each packagesthat is consideredraode Eachnodecan
subscribe to data that may be published by atbdes Thenodemay also publish its own
information that it creates. Published informati®called aopic. Eachtopic has a type that
could be anything from an integer to an image antpdoud. When information is published
over atopicit is called anessageAnother important feature built into ROS is tresworking
capabilities. In many instances, the multiple nag#isexist on the same computer. However,
ROS also supports running the nodes across muttgpteouters. All computers will connect

through the “ROS master” which provides lookup infation similar to a DNS server.
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Figure 23 Growth in ROS repositces and packages through 2([64]

ROS was used in this thesis project for severgiqaes. It was used for the network
capabilities, image compressi@and for OpenNI support.eseral existing ROS packa(were
utilized. The KinectFusion and triangulation ccwas also portetb a ROS nodeEach of the

packages usedill be briefly covere, followed bythe overall ROS setup for ttthesis.

The first package utilized in this thesis is openni_camergackagd65]. This package
provides the OpenNI drivers needed to use the KimeXtion sensors on the computer. T
package handles the interaction with the I-D sensors and publishes several topics. It publi
images and camera information for RGB, depth, deggfistered, and infrared type images.
camera information is published using the sensogsi@ameralnfo tyg [66]. It provides man:
details that are needed such as a distortion mainix the intrinsic camera mat The depth
images are published using unsigned 16 bit imadesaveach pixel represents a d:in

millimeters. Theopenni_camet publishes all images using timage_transpo package.

Theimage_transpo package is the standard method for publishing abdcsibing tc
images within ROS [67]t provides an abstracted layer of processingahaws images t

automatically be published in several ways. Witreding any extra code, images car
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published with raw data, image compression, orgu$imeora video codec. There are two types of
image compression, both of which are used in tigsis. The first is simply callesbmpresseth
ROS. It uses JPEG compression on the images. Thad¢ype is calledompressedDeptand

uses PNG compression. This method is designedfopressing the 16 bit depth images. PNG
compression is lossless, unlike JPEG compresdibetheoratype is based off the Theora
compression developed by Xiph.Org [68]. It is a&feend open lossy video compression format.

The Theora video compression currently has a bdgcanld not be used in this project.

Theimage_viewpackage is used for viewing the images that abfighed in this thesis
[69]. Primarily, it is used for displaying the statimage that is published back to the user on the

client computer. An example ghage_viewcan be seen in Figure 24.

Theroscorepackage is a collection and nodes and progranisrihist be running for ros
nodes to communicate [70]. The computer that isingtheroscorepackage is considered the
“ROS master” that was mentioned previously. Tétecorepackage is in charge of handling the
communication of topics between nodes across nwifti@chines. Two shell variables must be
set before running any nodes to ensure the netis@dt up correctly. The first is ROS_IP. It
should be set to the IP address of the node igygoibe run on. The second is
ROS_MASTER_URI. This variable needs to be set¢dfhaddress of the “ROS master”. It

must include “http://” followed by the IP addreswahen the port number proceeded by a colon.

The final package used was the one developed ifothtsis namekinfu. This package
combined the code written for 3D mapping and tridagon and combined it with ROS. It was
able to subscribe to tlmpenni_camera topics to allow the user to create 3D maps feom
remote computer. It is also able to publish theustanage back to the user. These images can be
seen in Figure 24. The depth image is compresseg tieecompressedDeptimode. The status

image is compressed using twmpressednode. The&infu node also publishes the relative
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transformation. When the mapping is being perforntieel software tracks the cameras location
as it moves with 6DOF. This information can be @i#d over the ROS network. It is very

common in robotics applications to have severahese topics being published. Typically, they
are published to the topic nartie This was also done in thénfu package created in this thesis.
ROS has packages that can manage several coorftarats and their relationships such as the
tf package [71]. This can be used for localizatioth sensor fusion. This information is not used

for anything in this thesis, but has made it alddldor future uses of this project.

@ =@ [kinfulS/status

Figure 24: The two images published with ROS is thesis. Left: The depth image published by
theopenni_cameraode. Right: The status image published bykih&u node.

Figure 25 shows the ROS graph created by runhisghesis. It is created by running
therxgraphtool provided with ROS [72]. It is configured talg show topics that are connected.
There are several other topics that are being husdi, but do not have any subscribers. These
include the RGB and infrared images being publidgheopenni_cameraThe bpenni_driver
node is created by running thpenni_camerg@ackage. It is publishing both the depth image and
camera information to thinfuLSnode. ThékinfuLSnode is also publishing the status image
over the topickinfuLS/statusYou can see an instance of image view subsctibé#us topic.

This is used to display the status image to the Ys®m can also se&infuLSpublishing thétf

topic as mentioned previously. In this instande lieing subscribed to biyplot,a ROS package
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used for plotting data from published topj@8]. Finally, the/rosouttopics and node you see are
created byoscoreand performs logging. In this setup, tkmfuLSnode andoscorewould be
running on the server computer while tbpenni_driverandimage_viewnodes would be

running on the portable client computer.

/rxplot_4229 1353284794198
/rosout

frosout
@ /KinfulS/status frosout @
{depth/camera_info /image_view_1353284693203705250

/depth/image_raw

Figure 25: The ROS graph when running this thesis.

3.5 Rendering

At this point we have created a 3D map using cloudputing. The 3D map is created by
exporting a point cloud which is then triangulaiieith several meshes. These meshes are then all
optimized using quadric mesh optimization. We ri@awve several meshes which represent a 3D
space and would like to be able to present theawiisually appealing manner. To accomplish
this task the Unreal Engine has been used. As arettiin the previous work section, the Unreal
Engine is a state-of-the-art rendering engine ¢hatbe used for everything from video games to
television shows. It has many features includingtprealistic rendering, real-time physics
simulations, and the capability of supporting veeyailed scenes. It has numerous other features;

however they are not relevant to this thesis.

The Unreal Engine provides a development kit nathedJnreal Development Kit

(UDK). The UDK provides a free edition of the netdareal Engine 3 to the public. It is free
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for noncommercial use. The UDK and the tools it provideehaon several awards for thi
technologies and availability. They also releaggila updates to give users access tinewest
technology and featurefieg most ecent being in November 2012 [74he UDK provides
developers with access to tools needed to develtige gjames based on Unreal Engine 3. It
provides them with a level creator that can be uiseneate custom levels and environme

This is the feature used in this thesis fororting and rendering our meshes and can be se¢

Figure 26.
-
@@ NightAndDayMap - Unreal Development Kit (b4-bit, DX3) ‘ . S | 5
File Edit. View Brush Build Play Tools Preferences Help
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Figure 26 A screenshot of the Unreal Developement Kit Lésgitor running a provided den
level.

There are several aspects of the Unreal Enginarthst be consired for this project
The first aspect is the world unit size. The Unieagine has its own unit size, dubbed the Ur
Unit. An Unreal Unitis equal to two centimete[75]. One unit in oukinfu ROS package is equ

to one meter. This discrepancy was handled byngctie size of the point cloud input to 1
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marching cubes algorithm. This was done using '$transforms functions. The point cloud
for each mesh was altered from the original 3 nset®50 Unreal Units. This ensures the output

of the marching cubes algorithm is consistent withsizes in the Unreal Engine.

A second consideration of the Unreal Engine istlagimum file size. Unreal Engine
only supports up to 65,535 vertices per static nfiééh In our 3D mapping application, this
eliminates the possibility of using one mesh taespnt the entire map. As explained earlier in
this thesis, we export a series of smaller mestdlseauser moves around. Each mesh maintains
its global coordinates so that when it is impotted the UDK, each mesh will be correctly

aligned with the others.

To utilize the physics engine of Unreal Engin&v8,need to create a collision mesh. A
collision mesh is a very low polygon mesh thatas rendered to the user. The collision mesh is
only used in physics calculations. By using a laMygon mesh, the physics engine can check for
collisions in a small fraction of the time compatedhe full mesh. Many times physics
calculations do not need the details that rendareegls, so using a collision mesh still creates a
realistic visualization for the user. An exampleadafollision mesh is shown in Figure 27. The
green, lower polygon mesh is the collision meste Blue, dense mesh is the graphic mesh. You
can see that they are very similar in size andifiee would most likely not notice the difference

in the physics.
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Figure 27: Collision mesh example [#]

The Unreal Engine 3 uses the FBX file type fosttic meshes. FBX is a filetype
designed by Autodesk [77]. It includes capabilifies2D, 3D, audio, video, and properties. Itis
designed to provide interoperability between ddfdrcontent creation applications. The file type
is used widely in several different applicationsdugse of its ability to work with multiple
software applications. Unfortunately MeshLab did adopt the FBX file type, and instead chose
the Universal 3D (U3D) file format [78]. Becausetloifs, the optimized mesh must be ran
through another program to convert it into the FBXneeded for Unreal Engine 3. In this thesis
Blender is used to convert the file to FBX. Blentea free, open-source 3D content creation

suite that is available for many operating systgf% To do this conversion the mesh is saved
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out of MeshLab in the Collada format (.dae) andangd it into Blender. The mesh could then

be exported in the FBX file necessary for UnreajiBe 3.
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CHAPTER IV

EXPERIMENTS

For this thesis several experiments were perforometthe 3D mapping and rendering system.
Each experiment was designed to test differentcsé the system. In this chapter, the details
of each experiment run will be discussed, as vwglivnat aspects were tested, and the results of

each of the experiments.

4.1 Accuracy

My first several experiments were geared towastrtg the mapping of the system.
There were several aspects of the 3D mapping tetad to be tested. The first aspect to test
was the accuracy. This experiment was designeddore that the measurements in the created
map and mesh would be accurate to the measureimeaetity. To test this, a 3D map of a room
with many known measurements was created. The &goresh file was then imported into
MeshLab. MeshLab has a measuring tool that allawsty find the distance between two points
along a mesh. A screenshot of one of the measutsrimeleshLab is provided in Figure 28. To
perform this experiment a large portion of our\eds mapped, ensuring that the TSDF volume

was shifted several times and that there were phelltheshes exported. This allowed us to
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Measurement | Actual (m) | Experimental (m) | Difference(m) | Error | Multi-TSDF
Printer 0.41¢ 0.408 -0.011 2.63% No
Cone 0.457 0.454 -0.003 0.66% No

Box 0.371 0.342 -0.029 7.82% No
Drawer 0.40¢ 0.402 -0.004 0.99% No

Bench Width 1.71¢ 1.654 -0.06 3.50% Yes

Bench to Desk 2.61¢ 2.51 -0.106 4.05% Yes

Box to Robot 1.94: 1.859 -0.084 4.32% Yes

Room Width 6.29¢ 6.022 -0.277 4.40% Yes

Table 1:Experimental results of measuring real objectstaediirtually 3D mapped objec

Figure 28 Measuring the drawer width of a 3D Map in Mesr
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measure the accuracy of not only the distancesmatir SDF volume, but the accuracy across

larger areas. The results of this experimenshosvn in Table 1.

The results of the experiment show consistent te$ot most measurements. The
measurements that took place within the same TSiDFne had very accurate results with the
exception of the box measurement. This is likelplaxed by the position of the box. The box
was in the corner of the room and did was always tilee maximum distance from the depth
sensor. Another cause for error is the lower te¢gwi TSDF volume. By decreasing its size from
512 to 256 we lose a small amount of accuracy. [Qtteasurements within the same TSDF
provided very accurate results. The drawer and cmggsurements both resulted in less than 1%
error. The multi-TSDF measurements provided vensdent results. In all four cases the
measurements were between 3.5% and 4.4% smaltethteactual measurements. This
discrepancy could easily be taken care of by adjgishe transform when converting to Unreal
Units. Overall, every experimental measurementlessthan the actual measurement. This
encourages the transformation to provide more ateuesults. By adding a 4% increase to the

transformation we can achieve the numbers provirdable 2.

Measurement | Actual (m) | Experimental (m) | Difference(m) | Error | Multi-TSDF
Printer 0.419 0.42432 0.00532 1.27% No
Cone 0.457 0.47216 0.01516 3.32% No
Box 0.371 0.35568 -0.01532 4.13% No
Drawer 0.406 0.41808 0.01208 2.98% No

Bench Width 1.714 1.72016 0.00616 0.36P06 Yes

Bench to Desk 2.616 2.6104 -0.0056 0.21% Yes

Box to Robot 1.943 1.93336 -0.00964 0.50P% Yes

Room Width 6.299 6.26288 -0.03612 0.57% Yes

Table 2: Adjusting the transformation provides maceurate and consistent results.
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By adjusting the transformation, more consistestlts were achieved. On the
measurements within a single TSDF volume, we dicashieve the level of accuracy as before,
but also did not have as large of range of errowéler, on the multi-TSDF volume
measurements, we have decreased our error to @ framg 0.21% - 0.57%. This is a very high
level of accuracy. As mentioned previously, thissik in designed for scanning in larger areas.
Therefore we are more concerned with the accuratarger measurements than the accuracy of

measuring small details. These results are wétlimithe desired accuracy for this thesis.

4.2 Processing Speed

In the previous work section we discussed sewémnglar works that utilized RGB
features to assist in finding their transformatiofise limitations of these methods was that it
required extra processing time and would decrdaseverall frame rate to only a few frames per
second (FPS) and in some cases below one FPSmipdstant to provide the user with a frame
rate that allows for fluid, natural motion and tdaes not appear to have a high latency. Ideally

the software should be able to run at a minimurbGFPS.

In this experiment, the software was run for séveiautes scanning in a large
environment and recorded the frames per secondc8yning in a large area it could be
determined if the overall memory size would catseftame rate to drop. The lab room was
mapped very carefully for over 10 minutes. It ceelad world containing over 3.6 million points.
The frames per second and elapsed time were tratkechumber of frames per second was
calculated by finding the elapsed time per everjr&@es processed. The results of this
experiment can be seen in Figure 29. The framestayed around 20 frames per second for most
of the mapping process. There were occasionaldtips to the 13 FPS range when the TSDF

was shifted. This is expected and was one reasgritwas necessary to use the 256 voxel size
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in the TSDF volume. The overall average for thisekment was 19.94 FPS. This is an adequate
frame rate for using this system. There did notappo be a drop in the average FPS as the time
went on. The frame rate is high enough that evéin thie drops while shifting it still met the
requirements put forth for this thesis. For mogtligations, such as 3D mapping for rendering, it
should only take a few minutes to map the entiea alf this software was going to be used in
another way, such as robotics, where it would Ib@ing for an extended period of time, the

decrease in FPS while shifting may need to be addde

Theopenni_cameraode publishes images at 30 frames per secowigah conditions.
Its frame rate was tested when publishing overtineless network. The frame rate ranged from
15.6 FPS when frame sizes were averaging over B0 R9.6 FPS when frames were
compressed to less than 20 kB. The frame rate wpasatly in the range of 25 FPS. This
experiment was run on the netbook from Sectioril2.3he limitation to the publishing was the
processing power of the netbook. Running an idahtést on the workstation from Section 2.4.1

results in a constant rate between 29 and 30 FPS.

Frames Per Second
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Figure 29 : Frames per second during a 3D map@ssian.
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4.3 Alignment Reliability

One of the key weaknesses of the Kinfu systemaisitistruggles to keep track of the camera’s
location when the depth sensor does not containgéndetail. In areas that are predominantly
flat and featureless, the Kinfu algorithm will i able to detect where the camera is moving.
This is one reason why many of the previous wonklémentations used RGB features to assist
in tracking. Currently the algorithm handles gegtiast by acting as though it had shifted back to
the origin. It will extract everything in the TSD#6lume to a point cloud, similar to what it would
do during a shift. This prevents having lost datanerging multiple scans in different coordinate
systems into one TSDF. Once everything has befeduut, it will reset the cameras current
location to the origin and restart the mapping pssc This can result in having misaligned
meshes output. It can be recovered by manuallglating the misaligned meshes to align them
with the others. MeshLab has built in functionafity alignment with minimal user input. While
this will allow for Kinfu to work, even when gettiriost, it is not an ideal solution. It also does

not allow the user to scan areas with few featassthe system will constantly be considered lost.

In an effort to test the reliability of the systéoproperly align the cameras location
within the coordinate system, an experiment wassaeMo test it under different conditionsThe
3D mapping system was run in three different emritents, and the number of times the system
was considered to be lost was recorded. The fmat@nment is ATRC 304. It is a typical sized
room with many features that should be relativelgyefor the algorithm to align. The second
environment is the ATRC hallway. This environmeas wvery few features and the algorithm
could struggle to track the movement. The thirdiramment is ATRC 320. This is a large lab
room that has many features, but they are spread &pich could prove challenging for the
depth image to show. Each environment is mappectlgxane time. This is done because the
system should not require users to perform multempts to map one area. A user should be

able to successfully map their environment on tfiest attempt.
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Location Features Frames Lost
ATRC 304 Rich 2013 1
ATRC 320 Dispersed 2376 3
Hallway Few 924 5

Table 3:Results from reliability testing

This experiment behaved similar to the predictidging the scan of ATRC 304 the
software only became lost one time. It was notraldaat made it get lost on that frame. ATRC
320 has many features but there are large areasdethem. In the areas with lots of features it
behaved very well and did not get lost. Howevethmareas without features it became lost three
times. The algorithm is not designed to track acedside the TSDF. If you are centered in the
3m x 3m x 3m TSDF volume, anything beyond 1.5 nseitefront of you cannot be used for
tracking. This was the issue for ATRC 320. Whiégnlg lost only three times is not devastating,
it makes it very difficult for the user to reconstt their 3D map when they are complete. Finally
the hallway was tested. The hallway is nearly cetghy devoid of features that the depth sensor
could pick up on. If you used these features, yamud:scan small areas while these features are
in the frame. However, the mapping of the hallwaswnsuccessful due to the large areas where
there are no depth features. The depth and RGBasnaige shown below in Figure 30 so you can

see the depth map in each of the different typeseironments.
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= [rgb/image_raw

== [rgbfimage_raw

Figure 30: Depth and RGB images for each of theetenvironments tested. Top: ATRC 304.
Middle ATRC 320. Bottom: Hallway.

This experiment clearly shows that the reliabilityacking in large areas. The results
can be seen in Table 3. This has been a known wEsludinectFusion since its release. There is

discussion within the PCL developers to use the R@®@mation, if it is available, when the
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depth image cannot provide enough features to atalyrfind the transformatic[80]. This
solutionwould help for mapping large environms with empty spaces. There has been rest
in other areas for improving upon this problem sashusing motion captu[58] and IMU
information [81].Also, because this implementation does not utdizeop closure algorithm :
done in [4] drift can occur over time. An example of thisIgean can be clearly seen in Figt

31.

Figure 31 An example of drift occuring during a scanin aetaagular roon

4.4 VVoxel Size

For the thirdexperiment on the point cloud acquisitithe goal waso gather some informatic
on using different voxel sizes for the TSDF voluiAs mentioned previously, for this thes

256 x 256 x 256 TSDF representing a 3 meter x me8 meter cul is usedThis was done to
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eliminate much of the data and in turn allow fatéa processing. It was done at the cost of
increased detail in the 3D map. The goal of thjgeeiment is to validate these two claims by
showing the difference in data, speed, and detdiié scene. Since the amount of detail in a
scene is not easily quantifiable, images of thaltesvill be shown to allow the reader to make

their own judgments.

For this experiment, KinfuLS was compiled to using either the 256 or 512 voxel
setting. ROS was not for this experiment to enthaethe results were not affected by the
netbook’s processing power or network speed.. &astiee Xtion Pro Live sensor was connected
directly to the server computer. The surroundirgpawas then carefully scanned, using the same
path for both settings. The outputs of the two scaere used to compare the differences. The

results of this experiment can be seen in TableddFigure 32 and 33.

Voxel Size 256 512 Ratio
Exported Points 245,390 1,947,012 12.60%
PCD File Size (KB) 3,839 30,427 12.62%
Shifting Time (ms) 65 231 28.14%
Average FPS 23.37 17.78 131.44%

Table 4: Results of testing dividing the TSDF votumto 256 or 512 voxels in each dimension.
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Figure 32: A comparison between dividing the TSDRine into 256 (left) or 512 (right) voxels
along each dimension.

The results of this experiment were very accunatie my predictions set forth earlier in

this thesis. The voxel size settingdetermines the total numbers of voxels by the éogua, =
- . - . 3
v,3. Therefore, but cutting the voxel size in halg ttumber of voxels is decreasec@é =

% = 0.125. Both the exported number of points and the reguRCD file size were reduced to

nearly this fraction, at 12.60% and 12.62% respelsti This is a substantial saving in memory
and hard drive space. By reducing the voxel sizalse decreased the shifting time by over
70%. This is important because if the user is ngpWre camera quickly during a shift, it can
cause a long pause between frames. This pauseadiol the camera getting lost and ruining the
3D mapping attempt. A final interesting effect o tvoxel size is the average frames per second.
In these scans we were able to increase the fraaresecond by 31% simply by adjusting the

voxel size. As covered in Section 4.2, frames peosd are vital for the usability of the system.

Looking at Figure 32, you can see that the 512Wsize setting does provide more detail
than the 256 setting. However, the objects in B setting are still easily recognizable. You can
clearly make out the keyboard, notebook, and caffaker. To reiterate, if this project was aimed

at mapping smaller areas, a 512 voxel size settmgd be recommended. However, with large
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environments, the slight sacrifice in detail is thdhe difference in file size, frame rate, ¢
shifting time. Figure 33hows the resulting point cloud from using bothiisgs. They are bot
looking at the top othe printer in our lal You can see how the overall shape is represt

similarly in both images, but the 256 setting rerdéss overall point

Figure 33 A comparison of the resulting point cloud filesrh this experimenTop: Voxel size
is 256. Bottom: Voxel size is 512.

4.5 Bandwidth Requirements

In order to utilize the cloud computing services tiser must be able to stream their depth dz¢
the server while downloading the status images fiteserver. The amount of bandwidth u
by these two streams is important to the qualitthefscanThe user must be able
communicate quickly with the server to ensure thieyable to view what they are doing. For

reason an experimewnias createthat would test the bandwidth needed to stream diotthese
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images. In order to test this, thastopicpackage from ROS was utilized [84]. It provides a

service that can measure the bandwidth each tepising. The bandwidth was recorded during
mapping on one topic at a time. It was ensuredapies would publish a variety of images from
dark, light, and having a variety of shading. Tieisnportant as compression, and therefore the

bandwidth, can be affected by the image’s conféme. results of this experiment can be seen in

Table 5.
Compression /depth/image topic /KinfulL S/statustopic
Type Min (kB/s) | Average (kB/s) | Max (kB/s) | Min (kB/s) | Average (kB/s) | Max (kB/s)
Raw 4,300 4,738 5,000 11,910 13,328 13,980
Compressed N/A N/A N/A 358 751 1,030
CompressedDepth | 1,720 1,932 2,320 N/A N/A N/A
Theroa N/A N/A N/A N/A N/A N/A

Table 5: Bandwidth usage for both depth and stiatages with multiple compression types.

The results of this experiment are slightly instireg. As we would expect the raw, or
uncompressed, images have a very high bit rateseTaee beyond usable for this thesis. As
mentioned earlier, theompressetransport method only works on the status imagalbse the
depth image is 16 bit and is not supported. ddrapressettansport method achieved good
compression, decreasing the bit rate from 13 M8y 751 kB/s. TheompressedDepth
transport did not perform nearly as well. It deseghthe bit rate from 4.7 MB/s to 1.9 MB/s. The
compressedDeptinansport uses lossless PNG compression whiclotachieve the results of
the lossy JPEG compression used byctirapressetransport. Théheoratransport could not be
tested due to a bug in ROS’s newest release, R@&e-which is required for running this
project. It is likely that théheorawould provide better compression for both topidswere
working. This is becaugéeorauses video compression which uses previous fraonesip

further compress images. This is opposed to PNIFPBG compression which compresses each
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frame individually. The compressed depth and statages have been plotted to show the
variance with time. This can be seen in FigureT3# bandwidth was measured by averaging

100 frames to create a single average. This grapérs roughly 5 minutes of mapping use.

Bandwidth Use
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Figure 34 : Bandwidth use for depth and status e@saxyer 60 measurements.

4.6 Triangulation

After testing the acquisition of the point cloutise triangulation of each point cloud was tested.
This step is important because it must meet tweriai. The first criterion is that it must be done
in a reasonable amount of time. The user shoulthaee to wait very long to get their result
from the 3D mapping process. The second critéddhat is must correctly triangulate the point
clouds. This is another subjective measurementsheird to quantify. To test the triangulation
point clouds were collected from several scanstaadgulated. During the scans it was
attempted to create output clouds of differing simeorder to test the marching cubes algorithm
on different levels of data. The amount of timestako triangulate each cloud was measured.
This provided data on the run time for triangulatidhis data can be seen in Table 6. This data
has also been plotted in Figure 35The meshes Wwerelvaded into MeshLab to inspect the

quality of the created surface and took screens®seen below in Figure 36.
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Mesh | Points Tri_angulation
time (ms)
1 1,065,831 214
2 949,422 186
3 137,382 80
4 241,350 92
5 75,531 72
6 18,978 66
7 428,238 116
8 162,033 89
9 25,347 71
10 41,838 72

Table 6: Elapsed time for triangulating each polatd.
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Figure 35 : Run time for the marching cubes albamit
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Figure 36 An example of a triangulated mesh from our 3Lpping applicatior

The results of this experiment are very satisfactdfe were ableo triangulate over
million vertices in just over 1 second. This expet shows that extremely large environm
can be triangulated in a relatively small amourtim&. By keeping all exported point clot
around 250,000 vertices we would be ab minimize the triangulation time to less than :
milliseconds per mesfypically, the number of vertices stays below 400,8r each exporte
point cloud. For the experiment a large numbererfige: were intentionallyexporte( for testing.
Figure 36 showsne of the triangulated meshes. Overall it doesrg good job. There are a fe
holes that have occurred on the right side of tiveqy. This tends to occur more often
reflective or glossy surfaces. The other areasatrenot filled in are wused by “shadows” ¢

areas that are hidden out of the line of site efdapth camer
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4.7 Mesh Optimization

Mesh optimization may be the most important pathef thesis. It takes these very dense meshes
and creates highly optimized meshes that are muck ideal for real time rendering. However it
must also preserve the shape and not degrade ality gignificantly. Once again, this is a highly
subjective test and it is difficult to quantify thesults. An experiment was run that involves
optimizing several meshes from a run of the softwteveloped in this thesis. The level of
optimization is determined by the user who musgguiow much optimization to apply. The user
may preview the level of optimization in order take their decision. The input vertices,

triangles, and file size, the output verticesnglas, and file size, as well as the run time fmhe
mesh was recorded. The input and output of sontleeafneshes have been displayed for

comparison. The results can be seen in Table 7.

Input Output Runti
untime
Mesh File Size Vertices | Triangles File Size Vertices | Triangles ()
(kB) (kB)
1 10,692| 351,372 117,124 439 | 15,717 20,000 2.742
2 6,173| 208,389 69,463 231 8,391 10,404 1.587
3 7,748| 234,294 78,098 339| 11,968 15,581 1.691
4 1,427 51,939 17,313 63 2,538 2,585 0.408
Total: 26,040, 845,994| 281,998 1,072| 38,614 48,570 6.43

Table 7: Results of quadric mesh optmization oreéhmas.

The results of the mesh optimization are prettgwasding. The only result that is not
impressive is the run time. This optimization takéece on the CPU so it does not benefit from
the GPU acceleration. However, as the user optsreaeh piece individually, they do not have to
wait for the sum of all the run times, just wait the individual mesh to be optimized. This

should keep the user from ever waiting more thdns8conds in the worst case. The other results
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were very impressive. The file size was reducethfg® MB to 1IMB. This is a 96% decrease in
size. Similarly, the vertex count went down fron6&00 to 38,600. This represents a 95%
compression. Finally, the number of triangles veauced from 282,000 to 48,600. This
optimization saves 83% of the triangle count. ltmportant to note that there are no meshes with
over 60,000 vertices. This is the limit for a statiesh to be imported into the Unreal Engine 3.
An example of the input and output mesh can be iseEigure 37. You can see that the mesh is
significantly optimized while retaining most of tehapes well. You can also see that the quadric
mesh optimization will optimize areas with lessailetuch as floors, walls, and other flat areas

far more than objects that contain more curvature.
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Figure 37: Before and after optimization was apptieseveral meshes.

4.8 Transformation Publishing

As mentioned earlier in this thesis, #iefu package will publish the translation and

rotation of the depth sensor in case it is neededther applications. While it is not intrinsicall
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useful in this application, an experiment was stiti to ensure that it is working correctly. Tottes
this application the ROS packagelot [73] was used. This package can subscribe to topics and
plot their results in real time. It was able to stiibe to the X, y, and z locations published & th
/tf topic. It would then plot the movement of the devin real time. This allowed me to test the
translation of the device. For the experiment allssgaare was made to test the movement. The
rxplot output can be seen in Figure 38. Another ROS ppchas usedyiz [82]. This package

can display the 6 DOF in real time. A screenshahisf part of the experiment can be seen in

Figure 39. This was used to test both the rotadimhtranslation of the depth sensor.

Both of these showed that the transformation wasghgublished properly. One thing
that seems odd is that the output is in the degiiB@’s own coordinate frame. TH&ROS
package mentioned earlier is designed to handley miiffierent coordinate frames. However, it
seems counter intuitive that moving vertically webnbt be directly along an axis. One reason for
this is that the depth sensor has no way of knowihigh way is up or down. This is an issue that

arises when importing meshes into the UDK which el addressed in the next section.
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4.9 RGB-D SLAM Comparison

In this section, the work presented in this thestompared to the RC-D SLAM
package in ROS [83}hich is based on the work [9]. RGB-D SLAM is currently used in RO
as a 3D mapping and localization package. ief experiment was performed to measure
compare the performance. Due to memory restrictionly a small area was able to be mag

with RGB-D SLAM. The same area was then mapped using thieauigtresented in this the:

The map created by the R-D SLAM program used 6.5 million points to represérat
map. It was able to map at around one frame pensed he map created using this thesis |
1.3 million points and 450,000 triangles beforeimj#ation After optimization, the map we

representedsing 70,000 vertices and 114,000 triangles. Aalisomparison of their outpu

may be seen in Figure 40.

Figure 40 A comparison between R(-D SLAM and this thesis. Left: RGB-SLAM Output.
Right: The output from this thesis
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4.10 Overall Experiment

The end goal of this thesis is to create realigtinterings and visual displays of our
optimized mesh from our 3D maps. The Unreal Engimeas chosen as the tool of choice for this
rendering process. The details of why it was ch@sehwhat has been done to allow the mesh to
be imported have been discussed in Section 3.8r &fese previous experiments, we are now
ready to map a 3D environment and import it ine@ ehgine. For this process, ATRC 304 was
chosen as the area to be mapped. This room wassdestin Section 4.3. This experiment was

run from the beginning and did not use any outfrots the previous experiments.

To run this experiment, first the ATRC 304 lab weepped. This produced a series of
meshes which needed to be optimized. These mesreshen imported into MeshLab and
optimized with the quadric mesh optimization fuonti They were then exported as Collada DAE
files and imported to Blender. Blender was useapioly a smoothing group. This is necessary
because it significantly decreases the number mites in a model, and also provides a
smoothed model that looks better when renderechd®iethen exported each file in the FBX file
type necessary for the Unreal Engine 3. Unreal ewent Kit's level editor was then used to
import the files. While the files are all correctiyported with respect to size and relative
location, they are not rotationally oriented to Urareal Engine’s coordinate system. This is due
to the fact that thkinfu package does not know which way is up and down.tDleis fact, the

rotate tool was used to align the meshes into démeegworld.

At this point you are ready to drop into the engané explore in first person mode. The
UDK comes with a default “game mode” that allowsiyoharacter to walk around with the
standard WASD keys. There are several more featirée® UDK that can be used to enrich this
experience. One such option is to apply collisi@shes to the models when they are imported.

There are three options for collision meshes. Yaueither use a pre-modeled mesh, which we
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do not have. The other two options are to use ¢hebgraphical mesh or have UDK compute a
collision mesh for you. Either of these methodd wiark. Using the graphical mesh is much
slower, but provides much more accurate results.JBK generated collision mesh generally

provides adequate collision meshes, but it camygleuwith concave shapes.

There are dozens of other UDK features that coeldgplied to this project but are not
explored thoroughly. A brief list of these featuresmbient noise, atmospheric lighting, time of
day lighting, and running on a mobile phone. Thergea few of many, many features the UDK

has to offer.

The results of this experiment are given below. 3Bemapping process produced 27
total files. A screenshot of the dense point ckoadd triangulated mesh before optimization can
be seen in Figure 41 along with a picture of thdR&€T304 lab for comparison. The triangulated
meshes were then optimized using MeshLab. They thereexported to the FBX file type and
imported into the Unreal Engine 3. The meshes wae placed into the level and rotated into
place. Table 8 shows the properties of severdiadd files throughout the experiment. You may
note that the FBX and DAE file types are capablstofing more properties than the PLY file,
and will be slightly larger when storing the samesim Also note the difference between the
optimized and UDK triangle and vertex counts are tiuthe way the different engines interpret
the mesh. Figure 42 shows the optimized meshea anckenshot of the default UDK game
mode being played on a level composed of our opéthismoothed meshes. Figure 43 shows the

entire mapped mesh of ATRC 304.
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Figure 41:Top: Picture of ATRC 304 Lab. Center:rRaiouds representing ATRC 304 lab.
Bottom: The 3D map of the same area.
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@ Unreal Developrment Kit Editor Preview (64-bit, DX9)

LIGHTING HEEDS TO BE REBUILT

Figure 42: Top: Optimized meshes in MeshLab. Boitimgame screenshot of ATRC 304 lab.
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€L

Mesh 3D Mapping Output Optimized UDK
Vertices | Triangles | PLY File Size (kB) | Vertices | Triangles | DAE File Size (kB) | Vertices | Triangles | FBX File Size (kB)
1| 850,020 283,340 26,281 39,299 56,556 4,410 27,446 42,721 4,557
2| 996,483 332,161 31,476 46,934 66,394 5,241 32,366 47,037 5,380
3| 123,213 41,071 3,570 6,572 10,252 732 4,898 8,000 804
4| 273,576 91,192 8,408 7,804 11,382 840 5,669 9,043 940
5 2,253 751 64 159 187 16 117 126 92
6 | 384,972 128,324 11,331 24,478 32,003 2,478 15,093 20,985 2,764
7 | 315,687 105,229 9,047 17,883 26,244 1,969 12,942 18,626 2,076
8 | 464,289 154,763 13,446 26,378 38,606 2,937 18,923 28,835 3,037
9| 339,165 113,055 9,979 21,285 28,194 2,177 13,585 18,756 2,421
10 10,212 3,404 282 630 847 61 573 760 142

Table 8: The optimization of 10 meshes from theoubf the mapping process through the renderinigarinreal Engine 3.




Figure 43 : ATRC 304 triangulated mesh

4.11 Problems

This thesis provides an implementation for creaiBgmaps using a portable scanner and a ¢
map. However, there are several problems that bega faced which could improve the ove
quality. These issues will be briefly discussethis section to provide a better understandin

the issues.

One issue that this implementation suffers frotésreliability of the tracking. Are¢
which do not provide enough features in the deidigie are difficult to track. Tracking also o

uses te information currently in the TSDF volume to esttenthe transformation. This mean
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there are valid features, but they lie outsidénef2 meter cube, they are not used. This requires a

relatively tightly packed environment for a complstan.

A second issue is the lack of a loop closure @lgorto prevent drift. While the TSDF
tracking is accurate, it still suffers from accuated drift. This problem was clearly shown in
Figure 31. Even a small amount of drift with eablitsg of the TSDF can accumulate into large

errors when mapping a larger environment.

While the image compression used in this implewt#on provided adequate bandwidth
for our testing, it would be ideal to further corags the depth map. Utilizing either video
compression or new research on depth image conpmnessuld decrease the uploading

requirements that may prohibit some users fromguia current implementation.

Another issue faced is the scanning of refleativbright surfaces. Objects which are
very reflective or are brightly lit are difficulbtscan because the infrared pattern will be either
reflected or diminished. This will often times riésn an incomplete or incorrect map being

created.

A final issue is the use of ROS for networking. Rf@quires a static IP address and
several ports for communication. This is not idealmany applications as it requires extensive
setup and cannot use networks which cannot foretergorts. For a more practical application,
ROS could be replaced by transmitting the images awsocket. The compression could be done

using OpenCV's libraries [85].
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis provides a method for generating 3Dsmeging a portable scanning device and cloud
computing. It also provides a method for the trilation, optimization, and rendering of the 3D
map. Chapter 1 provided an introduction to the 3bping process and discussed several related
works. In chapter 2 the hardware setup used fertki@sis was discussed and also a few
alternatives for the portable scanning device waeationed. Chapter 3 covered the software
used in this thesis. This includes the point claaduisition through PCL'’s KinfuLS,

triangulation using the marching cubes algorithnd eptimization using the quadric mesh
optimization algorithm. It then discussed using tinreal Engine 3 for the rendering of this
optimized 3D map in a game engine to provide ay tmase method for exploring the map. In
chapter 4 the results of 9 experiments were pravidenelp validate the 3D mapping process and

provide a quantitative insight into the results.

There are still several areas that could be furdsearched to improve upon this thesis.
One of these areas is the inclusion of RGB datatime process. RGB information could be used

to help track features in the images in which dejatta does not provide adequate information to
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accurately estimate the transformation. It couss dde used to create more realistic renderings.
To use add color to the optimized meshes in the&lriEngine would require the UV mapping of
the meshes. This cannot currently be automatedsamdnually performed. If the UV mapping
process were automated, it would enable the “bdlpnocess to be added into this thesis. Baking
allows you to take a high resolution model and ter@armal maps, displacement maps, and color

textures for use with the optimized mesh. This wallow for much more realistic rendering.

The second key areas for future work would beotoect the drift over time issue. This
could be done using the loop closure method frgmT[dis would allow for much more accurate
results when scanning in larger areas. Many agjoits for this 3D mapping system would rely

on having accurate maps, so correcting the daftdsvould be very important.

Future work could be used to apply this thesimamy different fields. One area would
be to use robots to map areas using this methodn&i could be created that would be easy for
both the robots and humans to interpret. Collabarahapping could also be used to allow
multiple robots to generate their own map. Thenmihe server detects that robots maps

overlap, they can be combined to create a unifieger map.
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APPENDICES

ROS Commands used for this thesis:

To run the mapping software:

rosrun kinfu kinfuLS _image_transport:=compressepiide

To view the status image:

rosrun image_view image_view ige:=/kinfuLS/statospressed

To plot 6DOF transformations in real time:

rxplot -M 3d /tf/transforms[0]/transform/translatidx:y:z

To view real time 6DOF pose:

rosrun rviz rviz

To run the roscore:

roscore
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