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CHAPTER 1

INTRODUCTION

Digital images have found many important applications, in various fields, since the

early times when advances in digital technology were starting to be made. How-

ever, these applications were very expensive until image compression algorithms were

devised [3], [2].This is due to the tremendous amount of data required to directly

represent digital images which results in high storage and transmission costs.

The image compression technology finds a concise representation of digital images

significantly reducing the image size. This made the application of digital images to

be realizable for a wide variety of applications. The JPEG [3], for example, is a very

widely used image compression algorithm up to date. The basic principle behind this

image compression algorithm is that the information contained in digital images could

be captured with small number of coefficients when the images are represented in a

convenient basis. For this, all the coefficients of the digital image are first collected

and then they are projected onto another basis on which most coefficients will be

negligibly small. These negligibly small coefficients are then discarded while the

original data could still be recovered accurately.

A logical question to ask here would be if it is possible to only measure the few

image coefficients which capture most of the image information. This has been made

possible thanks to the new field of compressive sensing (CS).

Compressive sensing only measures the informative coefficients, in sparse or com-

pressible signals, which will not be discarded later on. In other words, compressive

sensing compresses digital signals while acquiring samples and hence the name com-
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pressive sensing. This significantly reduces the measurement cost and time, which

would otherwise have been spent to acquire the image coefficients and their trans-

form which would be discarded later on in the process. This is very important as

data collection is very expensive in certain applications.

A very good example of applications where compressive sensing significantly re-

duces the measurement time is MRI. MRI normally requires a significant amount

of time to acquire enough samples for producing a good quality image [4]. This is

however very inconvenient for real time application as people who need an MRI ex-

amination have to wait in the MRI device for the amount of time required to take

enough measurements. CS has been shown to provide very good images with less than

half the number of measurements required in conventional data acquisition methods

and hence significantly reducing the time required to acquire samples.

As it has been mentioned above, one of the most important characteristics of CS is

that it requires significantly smaller number of samples to reconstruct a digital signal.

This is especially very useful for image applications due to the huge size of typical

images. Several algorithms have been devised to enhance the basic compressive sens-

ing algorithms by exploiting the common structure of signals so as to further reduce

the required measurement cost [5], [6]. Most previous works have however focused on

the design of CS reconstruction algorithm. This thesis proposes two algorithms for

the encoding stage of CS. These algorithms are mainly inspired by a previous work

by Rahnavard et al. on unequal error protection rateless codes [7].

The first algorithm proposed for the encoding stage of CS exploits the known

structure of transform image coefficients. This algorithm is shown to significantly

reduce measurement cost required by state of the art CS algorithms, in terms of the

required number of measurements and measurement time. The proposed algorithm

makes use of the unequal error protection (UEP) principle, which is widely used in

the area of error control coding, to provide more protection to the more informative
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image coefficients as compared to the others. The proposed algorithm has been tested

on a number of standard images and has been shown to provide superior quality of

reconstructed images when compared with state of the art CS algorithms, for the

same number of measurements. The proposed algorithm is also shown to require

much less CPU time when compared with other model based CS algorithms, as a

result of its lower computational complexity.

In most applications involving digital images, a particular part of the image is

of a higher importance than the rest of the image. An example application is face

image. “When browsing a digital photograph album it is often the case that we are

looking for, or most interested in, the people/faces in those photographs.” The JPEG

2000 has been developed with a ROI (Region of interest) coding functionality for this

reason [8]. The ROI coding of the JPEG 2000 allows the recovery of the part of

an image that has been identified to be of more importance (the region of interest)

than the rest of the image. To the best of our knowledge, no work has been done to

provide better reconstruction quality for the more important part of a given image in

the CS technology. This thesis proposes a second algorithm which exploits the UEP

principle to recover the more important part of an image with more quality while the

rest part of the image is not significantly degraded. The proposed algorithm is shown

to be successful for both CS settings where images are represented in the spatial and

transform domains.
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CHAPTER 2

Compressive sensing and Unequal error protection

2.1 Compressive sensing

Conventional data acquisition mechanisms rely on the famous Nyquist theorem. This

theorem dictates that sampling rate of a signal should be at least twice the maximum

frequency present in the signal. A new sampling theorem has recently been developed

which asserts that certain signals could be recovered from much fewer number of

samples than what is required by Nyquist theorem. This new sampling technique is

known as compressive sampling (compressive sensing).

Compressive sampling technique is based on the fact that the information con-

tained in certain signals is much smaller than the sampling size dictated by the signal

size. This fact has been used in conventional image compression algorithms such as

JPEG.

The conventional image compression algorithms first manipulate the signal so as to

identify the most informative image coefficients. Then these informative coefficients

are stored while the others are discarded without causing significant perceptual loss.

The image is thus represented with fewer bits in this way and hence compressed.

Compressive sampling, however, attempts to sample only those significant coefficients.

As a result, compressive sampling compresses the signal while sampling and hence

the name compressive sampling. The working principle of the compressive sensing is

discussed with further detail in this section. The JPEG is also discussed further, in

the next section, as an example of the conventional image compression algorithms.

One requirement to guarantee the successfulness of compressive sensing is that

4



the signal must exhibit a property known as sparsity. A signal is sparse (exhibit the

sparsity property) if it has only few non-zero coefficients or if most of its coefficients

are very close to zero and only a few are large. More formally, Sparsity expresses

the idea that the ‘information rate’ of a continuous time signal may be much smaller

than suggested by its bandwidth, or that a discrete-time signal depends on a number

of degrees of freedom which is comparably much smaller than its (finite) length.

Sparse signals could be effectively represented with a small amount of data, which

contains the information of the sparse signal in a condensed form. Interestingly, most

natural signals which appear to be dense in the basis in which they are acquired have

a sparse representation in some other suitable basis. A very good example of such

signals are images. Most natural images are dense in the spatial domain but sparse

in the wavelet and DCT bases.

When images are represented in wavelet or DCT basis, ψ, most image coefficients

will be small while only a few coefficients are large. Most of the information is, how-

ever, captured in these few large coefficients. The image could, hence, be represented

with these large coefficients without much perceptual loss. This is the principle which

the JPEG and JPEG 2000 image compression standards are based on. From this, it

is also intuitive that the sparsity of a signal determines the degree to which a signal

could be compressed. The reason why a signal must exhibit a sparsity property for CS

to be successful should also be clear now. It is because, when a signal is sparse, the

signal information could be acquired without much perceptual loss by sampling only

the few large coefficients. CS further shows another implication of sparsity which is

that it has significant bearings on the acquisition process itself and that it determines

how efficiently one can acquire signals non adaptively.

Randomness is the sampling mechanism which is proposed as a nonadaptive signal

acquisition method in the ground braking CS papers. As signals have to be sparse

for CS technology to be successful, there is another useful property that must be
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exhibited by the sensing/sampling modality. This property is known as Incoherence.

Incoherence extends the duality between time and frequency and expresses the idea

that objects having a sparse representation in ψ must be spread out in the domain

in which they are acquired [9]. There are normally two bases, φ and ψ, in the CS

setting. The basis φ is used to sense the signal while the basis ψ is used to represent

the signal. The incoherence principle dictates that “unlike the signal of interest, the

sampling/sensing waveforms have an extremely dense representation in ψ. ”[9].

Assuming a pair of orthobasis φ and ψ of size n, coherence could formally be

defined as follows:

μ(φ, ψ) =
√
n.max1≤k,j≤n |〈φk, ψj〉|

Coherence measures the maximum correlation between the entries of φ and ψ.

The coherence will, hence, be large when the entries of φ and ψ are correlated and it

will be small when their entries are not correlated. As μ(φ, ψ) ∈ [1,
√
n] the coherence

measure will be bounded within this range. CS requires the coherence between these

orthobasis to be small (incoherent).

Several basis pairs have been studied and shown to be incoherent. To give a few

examples, the time and frequency domains have been shown to have maximum inco-

herence ( (i.e. μ2(φ, ψ) = 1). Noiselet measurement matrices, (φ) have been shown to

be incoherent with wavelets, spikes and Fourier basis. And more importantly, Ran-

dom measurement matrices, φ, were shown to be incoherent with any basis ψ. By

extension, random waveforms with independent identically distributed (i.i.d.) entries,

e.g., Gaussian or ±1 binary entries, will also exhibit a very low coherence with any

fixed representation Ψ.

Ideally n samples would have to be measured to successfully reconstruct a signal

of length n. However, CS makes it possible to successfully reconstruct the signal with

far less number of measurements (given the requirements for the successfulness of CS,

discussed above, are met). Let the signal of length n be sparse with only k significant
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coefficients (k-sparse). CS could recover this signal with m number of measurements

with m << n. More precisely:

m ≥ C.μ2(φ, ψ).K. log n

where C is a positive constant. From this equation, it is clear that smaller number

of measurement(m) is required when incoherence is larger. And the smallest number

of measurement(m), which is on the order of K log n, is sufficient for successful CS

reconstruction when the incoherence is close to the maximum value(i.e.μ2(φ, ψ) = 1).

With sparsity and incoherence in mind, the signal acquisition process of CS is a

standard setup where the signal needed to be acquired is measured with the measure-

ment matrix φ as follows:

y = φx

where x is the signal needed to be acquired and this signal is sparse in basis ψ (x = ψs)

where s is the sparse representation of signal x in ψ.

An important point to note about the CS acquisition process is that the measure-

ment is signal independent (non-adaptive) as randomness is the sensing mechanism.

Further more, a k-sparse signal could be reconstructed with any m set of measure-

ments, where m is on the order of K log n, and one does not have to choose these

samples carefully. “Almost any set of this size will work [9]”.

The next question to be addressed is, obviously, how to approximate the signal x

(of length n) from the information captured by y (of length m). This is an ill-posed

problem as m << n resulting in under determined linear system of equations. The

ground breaking papers in CS [1, 10, 11, 12] propose the use of l1-norm minimization

to solve this linear problem: i.e.

ŝ = argmin‖s‖1, s.t.y = φψs, (2.1)

where ‖s‖1 =
∑N

i=1
|si|. Finally, the reconstructed image is obtained by x̂ = ψŝ.

What this minimization means is that, of all the possible coefficient sequences(possible

7



ŝs) that satisfy y = φψŝ , the sparsest ŝ is chosen. When the signal is sparse enough,

it has been proved that the l1-norm minimization provides exact recovery when mea-

surements on the order of K. log n are taken.

The use of l2-norm instead of the l1-norm was studied in [1]. i.e. min ‖ŝ‖l2 so that

y = φψŝ assuming ‖s‖l1 =
∑n

i=1
|si| 2̂. This equation finds the minimum energy ŝ as

opposed to the sparsest ŝ that is obtained by the l1-norm minimization. The results

of the study in [1] showed that the results from the l2-norm don’t find the sparse

signal accurately but rather result in many small non-zero coefficients that are not

found in the original signal.

Figure 2.1: Performance of l1 and l2-norms in recovering sparse signal [1].

Although l1 minimization is the most popular CS reconstruction algorithm imple-

mented widely for CS applications, many other CS reconstruction algorithms have

been proposed. Basis pursuit, matching pursuits, method of frames, best orthogonal

basis and reconstruction algorithms proposed in [6] and [5] are some of the well known

CS reconstruction algorithms.

2.2 JPEG

The word JPEG stands for Joint Picture Experts Group which was formed to solve

the problem of large file sizes. This group came up with a lossy image compression
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algorithm which was named as JPEG. JPEG is designed in such a way that the loss is

not visually perceptible. Furthermore, JPEG allows users to adjust the image quality

or extent of compression (image size) as desired. Intuitively, the more the desired

image quality the larger the images size (smaller compression).

Although JPEG works for both gray level and colored images, only the gray

level case is described here to make the comparison easier as this thesis work mainly

makes use of gray level images. It was first observed that the human eye could hardly

perceive the difference between similar intensities. Interestingly, most natural images

have very gradual change in intensity. This could be well understood from Figure 2.2

below which gives the 256 gray level shades even though the human eye perceives the

image as having only 16 shades which correspond to the rows shown in the figure [2].

Figure 2.2: visual illusion, 256 gray level shades perceived as 16 shades [2].

From this, it is evident that one can replace the gray shades in each row with

a single value and store them as a single value. This is the basic idea for JPEG

compression, i.e it is sufficient to only store the gradual change in intensity instead

of each pixel value hence compressing the image.

It is well known that most signals and especially images have a concise repre-

sentation when represented in the frequency domain. The DCT transform, which
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transforms a signal in the spatial domain into a frequency domain, is used for JPEG.

In the spatial domain, the image is represented with pixels and each pixel represents

the luminosity (shade) at a particular position in the image. On the other hand,

when the image is represented in the frequency domain, the entries show how the

the luminosity changes across the image. Large entries show that the luminosity is

changing rapidly while small entries show the luminosity is changing gradually. The

DCT transform further goes additional step and separates (sorts) frequencies once

they have been computed. The step by step procedure for JPEG compression is

discussed below.

The first step for the JPEG compression is breaking down the image into blocks

of 8× 8 matrices. A two-dimensional DCT is then carried out on each of these small

blocks. This process outputs a matrix of 8-bit frequency values which is of the same

size as the original (i.e. 8 × 8). In this outputted matrix, the high frequencies are

located at the upper left section of each small matrix.

Once the output of the DCT transform is computed, the next step is quantization.

This is a process where each frequency in each small matrix is divided with the

corresponding entry from a quantization matrix. The quantization matrix is also

an 8 × 8 matrix. This quantization matrix determines how far apart the intensity

levels should be spaced. As mentioned earlier, the human eye is sensitive to large

luminance changes which are found at the top left corner of the small blocks. Hence,

the quantization table has small entries at the top left and large entries at the bottom

right. JPEG recommends certain quantization matrices that are developed based

on experiments with human visual system. Users could however specify their own

quantization matrices as desired. A quantization matrix given in JPEG standard is

shown in Figure 2.3(a).

The entries of the matrices resulting from the quantization process are then

rounded off to the nearest integer. This rounding off is clearly a lossy process es-
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(a) Quantization matrix. (b) Collecting entries of matrices after

quantization.

Figure 2.3: From left to right: Quantization matrix and collection process.

pecially as the exact outputs of DCT are not integers in general. The matrices that

result after the rounding off process are sparse where the high frequency, which cor-

respond to the areas in the image whose change the human eye is not sensitive to, are

rounded off to zeros. The quantization process could be expressed mathematically

as:

Round(
8× 8 DCT block

quantization table
) = sparse matrix

Once each small matrix is quantized to output such a sparse matrix, it is repre-

sented as a single column with 64 entries. This is done in a systematic way so that

the zero entries will be placed continuously at the bottom of the column. For this,

each single column is formed by collecting the entries of the small matrix in a zig-zag

order as shown in Figure2.3.

The Huffman or arithmetic coding is finally used to remove the zeros and encode

only the important information of the block. Each small matrix is coded separately

in this way. It is interesting to note that this process of coding is lossless and hence

does not affect the image quality.
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2.3 Unequal error protection with LDPC codes

2.3.1 Low-Density Parity-Check (LDPC) codes

Unequal error protection (UEP) has been an area of extensive research in the field of

error control coding. Error control coding is a sub-field of information theory which

is concerned with reducing the bit error rates of communications over noisy channels.

This error reduction is achieved by coding the information prior to transmission in

such a way that it would be possible to detect and correct errors at the receiver end.

One of the most popular codes which allow error correction are linear block codes.

These codes first divide the information bits into several blocks of same length k. Let

u = [u1u2u3...uk] represent a single block of information also known as information

word. This information word is mapped to a longer block of length n, v = [v1v2v3...vn]

known as codeword where n > k. The fact that the codeword is longer than the

information word shows that there exists some redundancy in the codeword.

The mapping from the information word to the codeword is a linear mapping that

could be represented as: v = uG where G is a k × n matrix known as generator

matrix. A linear code can also be defined by its parity-check matrix H = [hi,j ]. This

parity-check matrix H has a size of (n− k)× n and is characterized by having rows

that are orthogonal to any given row of the generator matrix G. Mathematically,

GHT = 0.

For Low-Density Parity-Check (LDPC) codes, the parity-check matrix has a low

density (very sparse) and hence the name LDPC. In the same way, a codeword v is

a valid codeword if and only if HvT = 0. Each row of H corresponds to the parity

equation while each column of H corresponds to a single bit of the codeword.

LDPC codes could also be represented by Tanner graph (bipartite graph). The

bipartite graph has two types of nodes known as variable (message) nodes and check

nodes. The edges in the bipartite graph may only connect a variable node with a
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check node and the degree of a node is determined by the number of edges connected

to it. In the bipartite graph, the variable nodes represent bits of the codeword while

the check nodes represent the constraints of the parity-check. Furthermore, each

edge of the graph corresponds to a 1 in the parity-check matrix. In other words, the

columns of the parity-check matrix determine the connections of variable nodes while

the rows determine the connections of the check nodes. Hence, the ith variable node

is connected with the jth check node if and only if hi,j = 1. Figure 2.4 shows a tanner

graph for a code represented by the H matrix given as:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 1 1

1 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 0 0 0 1 0

0 0 1 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.3.2 Unequal Error Protection (UEP)

Providing unequal error protection (UEP) for information bits based on LDPC coding

has been studied in the field of error control coding. Several different methods have

been proposed to provide UEP property for LDPC codes. One of these methods is

based on the irregularity of degree distribution of variable and check nodes.

It is clear that a variable node estimates its value more accurately when it has a

higher degree. This is because higher degree for a variable node means that it gets

more information from its neighboring check nodes. On the other hand, smaller degree

is preferred for check nodes. This is because the lower the degree of a check node, the

more valuable is the information the check node transmits to its neighboring variable

nodes. This lays the foundation of UEP based on irregularity of degree distribution

of variable and check nodes.

Let us consider a case where four different levels of protection are desired for the
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variable nodes. Assuming the same degree for all the check nodes, the degrees to the

variable nodes are allocated in such a way that more edges are provided for variable

nodes to which more protection is desired. Figure 2.5 shows a schematic diagram for

the case where there are four protection levels.

The variable nodes are first classified into four classes and assigned different de-

grees (dvc1, dvc2, dvc3, dvc4), with variable nodes in each class having the same degree.

Figure 2.5 demonstrates a scenario where the required level of protection is assumed

to be highest for class 1 and decreases for the succeeding classes with class 4 having

the lowest protection. As a more protected class has to have more variable node

degree than a less protected one, the degree distribution will be as shown in Figure

2.5 (i.e. dvc1 > dvc2 > dvc3 > dvc4). In this way, it has been shown that UEP codes

could recover the more important classes with lower error rate while its overall error

rate is competent to other codes.
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Check nodes

C1 C1 C1 C1C1

V1 V2 V3 V4 V5 V6 V7 V8

Variable nodes

Figure 2.4: Tanner graph for the H matrix given above.

Variable nodes

Check nodes

Class 1 Class 2 Class 3 Class 4

Figure 2.5: Tanner graph for a code with four levels of protection.
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CHAPTER 3

Providing more protection for the Region of interest of images in CS

In this section, we consider the scenario where a particular part of a given image is

considered to be more important than the rest. An algorithm is proposed to recover

the more important part of the image with more quality. For this, the more important

coefficients (MICs) of the image have to be identified first.

3.1 Region of interest of images

In a given imagery, a certain part of the image is normally the center of interest.

For example, Viewers’ attention is naturally drawn to the face part of images when

browsing pictures in a digital album. Although identifying the main subject in an

image is a very simple task for humans, Main Subject Detection (MSD) is a difficult

task for computers. As a result, different algorithms have been developed which

identify the main subject in a given imagery [13].

A novel main subject detection algorithm proposed in [13] is adopted in this thesis

in order to identify the main subject of images. Figure 3.1 illustrate the output of

this main subject detection algorithm [13] on sample images from Microsoft Research

in Cambridge1. (All images have been resized to size of 128x128 and converted to

gray level for convenience.) In Figure 3.1, the part of the images identified as main

subject is shown bounded with rectangles.

As images could be viewed as a matrix of pixels and as the MICs are the image co-

efficients corresponding to the main subject, the location of the MICs is the location

1available at http://research.microsoft.com/en-us/projects/objectclassrecognition/
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(a) PPL2. (b) PPL10. (c) PPL11.

(d) PPL12. (e) PPL17. (f) PPL20.

Figure 3.1: Main subject detection algorithm’s output.

of the pixels representing the main subject in the image matrix. After identifying the

MICs and finding their location in the image matrix, the image matrix is reshaped

into a vector, x. This process simply concatenates the columns of the image matrix

into a single vector. As a result, MICs will be located at different discontinuous

locations in the reshaped image as exemplified in Figure 3.2. The location of these

MICs is then tracked in vector x since this information is required when designing

the UEP matrix, as will be discussed in Section 3.2.

1     2    3     4      5

1           2           3           4          5

vector x

MIC coefficients

LIC coefficients
MIC 

area

Figure 3.2: Main subject detection and distribution of its corresponding coefficients

in x.
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3.2 Non-Uniform Protection for the Region of interest

The region of interest in a given image is proposed to be recovered with a better

quality by constructing the measurement matrix, φ, in a special way as opposed to

the completely random structure normally employed in CS. The ability to provide

better quality to a region of interest is a very important functionality for image

compression algorithms that it has been included in the JPEG 2000.

Sparse φ matrix is implemented in our algorithm as sparse φ matrices perform as

good as dense ones and further provide less computational complexity for CS [14].

The performance comparison between dense and sparse φ matrices whose entries are

taken from independent and identically distributed (i.i.d.) Gaussian distribution is

shown in Figure 3.3. These matrices were chosen because they are incoherent with

any basis of sparsity ψ with high probability (universality property) [14].

Figure 3.3 shows the VIF of Lena images reconstructed with sparse and dense

φ matrices when different number of measurements (M) are taken. The number

of measurements are chosen to represent small(M = 2000, M = 4000), medium

(M = 6000) and large (M = 8000) number of measurements. From Figure 3.3, it

could be seen that sparse and dense φ matrices have very similar performances at all

number of measurements. The Lena images reconstructed using both the sparse and

dense φ matrices are given in Figure 3.4 below for visual comparison.

Assume the total number of image coefficients in an image is N . Let L 	 N be

the number of non-zero entries in each row of Φ, where Φ ∈ Rm×n. In equal error

protection (EEP) setup, these L non-zero elements are placed uniformly at random

across the columns of each row and independent of other rows. Therefore, φi,j the

element on the ith row and jth column of Φ is an entry from iid gaussian distribution

or a zero with probabilities L
N

and N−L
N

, respectively. This would clearly provide a

uniform capturing of x coefficients by M measurements (y), as y = Φx.

In order to recover the region of interest (ROI) of a given image with a higher qual-
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Figure 3.3: comparison of VIF for dense and sparse Gaussian matrices.

ity, more number of measurements have to be taken from coefficients that represent

the ROI. This idea is inspired by the working principle of UEP erasure coding [7, 15].

From the rule of matrix multiplication, it is clear that the ith image coefficient, xi,1

of vector x, is multiplied by the entries in the ith column of the measurement matrix,

φ. By extension, a non-zero at φj,i takes a sample of the ith image coefficient, xi,1.

Hence, we could take more measurements from the image coefficients representing

the ROI by constructing the measurement matrix, φ, in such a way that the columns

of φ sampling the ROI coefficients are non-zeros with a higher probability than the

rest of the image coefficients. As a result, the ROI will be recovered with a higher

accuracy in CS reconstruction.

Therefore, for the sake of simplicity and without loss of generality two levels of

importance2 is assumed for the N coefficients of x when designing the UEP property

for the measurement matrix matrix, Φ.

A sparse measurement matrix with fixed row weight, L, is proposed where each

entry is non-zero with a probability P1 or P2 depending on its location in the matrix.

Let α fraction of N coefficients be more important coefficients (MICs) and 1 − α

2We may also consider more than two levels of importance. However, this only increases the

complexity of the problem while not improving the contribution.
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(a) Lena image reconstructed

with dense Φ for M = 4000.

(b) Lena image reconstructed

with dense Φ for M = 6000.

(c) Lena image reconstructed

with dense Φ for M = 8000.

(d) Lena image reconstructed

with sparse Φ for M = 4000.

(e) Lena image reconstructed

with sparse Φ for M = 6000.

(f) Lena image reconstructed

with sparse Φ for M = 8000.

Figure 3.4: Visual performance comparison Lena images reconstructed with dense

and sparse EEP-Φs at different number of measurements.

fraction be less important coefficients (LICs). Clearly, the n1 = αN columns of Φ

capture MIC and the rest n2 = (1−α)N capture LIC. Further, let us define P1 =
kM
N

and P2 =
kL
N
, where kM and kL = 1−αkM

1−α
are the protection levels. Clearly, UEP and

EEP-Φs are built by setting kM > kL and kM = kL = 1, respectively.

The encoding is then done as

y = φx

and the recovery is done as :

ŝ = argmin‖s‖l1 s.t. y = θs (where θ = φψ).
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The estimated image, X̂, is finally obtained as:

X̂ = ψŝ

A regular basis pursuit (BP) reconstruction algorithm [12] (which is designed employ-

ing linear programming techniques) is then employed to solve the CS reconstruction

problem (2.1). The quality of reconstructed images is finally assessed using visual

information fidelity (VIF) [16]. This image quality assessment is chosen as it is able

to measure image quality that relates with visual perception. Note that VIF of a

reconstructed image varies between 0 and 1, where a higher value means a better

reconstruction quality.

3.3 Optimal Parameter values

Several experiments were carried out using the sample images, shown in Figure 3.1,

in order to find the optimal value for the row weight, L, of φ. Figure 3.5 shows

the reconstruction quality of Lena image at different L and kM values when M =

8192, α ≈ 0.15 and implementing the DCT as the basis of sparsity, ψ.
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(b) m=8192

Figure 3.5: VIF of reconstructed Lena image at m=8192, for different kM and L

values
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As it could be seen from Figure 3.5, different values of L result in similar recon-

struction quality for all kM values. However, the CPU time is significantly higher

when a large value of L is used. It could also be seen, from Figure 3.5, that the qual-

ity of the MICs increases while that of the LICs decreases when increasing the kM

values. However, the performance of neither theMICs nor the LICs show significant

change with various L values. Similar results were obtained for all the images exper-

imented with, for different number of measurements M and also when the wavelet

basis is used as the basis of sparsity, ψ. A row weight of 16, L = 16, is thus chosen

to be the optimal row weight in order to achieve fast encoding/decoding process.

Another parameter that is important for UEP on CS is the size of the image that is

selected to be the region of interest (ROI) as compared to the size of the whole image,

which is represented by α. Figure 3.6 below shows the reconstruction quality of Lena

image at different α and kM values when M = 8192, L = 16 and implementing the

DCT as the basis of sparsity, ψ.
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Figure 3.6: VIF of reconstructed Lena image at M=8192 and L=16 for different α

and kM values.

As it could be seen from Figure 3.6, a small size of ROI could be reconstructed

in such a way that the ROI is recovered with a quality better than the background

whereas the background is also reconstructed with an acceptable quality. Where
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as, the quality of the background significantly drops to an unacceptable level when

large ROIs are used. This is because, as the size of the ROI is large, most non-zeros

would be allocated for columns of φ measuring the ROI while the rest columns have

insufficient non-zero entries to successfully sample the background. Note that the

MICs represent the ROI while the LICs represent the background.

Another interesting relationship could be observed between kM values and MIC

sizes as shown in Figure 3.6. It could be seen that it is possible to reconstruct large

ROIs with a quality better the background while the background is also reconstructed

with an acceptable quality by using small kM values. In Figure 3.6, for example, the

quality of the LICs is very low for α = 0.25 when kM = 4. However, it could be seen

that the LICs are reconstructed with a significantly better quality when the kM value

is decreased to kM = 3. The trade off is that when a smaller kM value is used, the

difference between the quality of MICs and LICs decreases with kM = 1 being EEP

where the ROI and the background have similar qualities.

As it could be seen in Figure 3.6, the maximum MIC size that results in acceptable

recovery of LICs for a kM value of 4 is obtained when α ≈ 0.2 (i.e. when the ROI

covers 20% of the whole image coefficients). Similar result was obtained for a kM value

of 5. The largest of the ROIs for the sample images shown in Figure 3.1 approximately

covers 20% of the whole image (α ≈ 0.2). The size of the ROIs was purposely made

to be of this small size by adopting a slight modification in the MSD algorithm[13].

Moreover, a kM value of kM = 5 is used as it is found to provide good reconstruction

for both the ROI and background when α ≤ 0.2.

Some of the Lena images that correspond to the plot in Figure 3.6 are shown in

Figure 3.7 for Visual performance comparison.

Figure 3.7 shows the EEP (kM = 1) and UEP (for kM = 3 and kM = 4) recon-

struction of Lena images when different sizes of region of interest (ROI), and hence

different α values, are used. Lena images shown in Figures 3.7(a), 3.7(d), 3.7(g) and
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(a) EEP, α=0.1 (b) UEP, kM = 3 (c) UEP, kM = 4

(d) EEP, α=0.15 (e) UEP, kM = 3 (f) UEP, kM = 4

(g) EEP, α=0.2 (h) UEP, kM = 3 (i) UEP, kM = 4

3.7(j) are reconstructed using EEP-Φ. The rectangles in these figures show the part

of the image selected to be the regions of interest(ROIs) for the UEP application.

The values of α are α ≈ 0.1, α ≈ 0.15, α ≈ 0.2 and α ≈ 0.25 respectively for ROIs

shown in Figures 3.7(a), 3.7(d), 3.7(g) and 3.7(j).
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(j) EEP, α=0.25 (k) UEP, kM = 3 (l) UEP, kM = 4

Figure 3.7: Visual performance comparison of Lena image for different α and kM

values.

From Figure 3.7, we could see that the ROIs have been reconstructed with a

much better quality by using the proposed UEP-φ when compared with the EEP-

φ. Moreover, the ROI is reconstructed with a better quality for higher kM values.

It could also be seen that, when the portion of the image selected as the region

of interest (ROI) is not very large, the background is reconstructed with a quality

very close to the EEP. However, if the ROI is very large the background could be

significantly degraded for large kM values. In Figure 3.7 for example, the background

is significantly degraded when kM = 4 when α ≈ 0.25 (Figure 3.7(l)). This could be

avoided by using a smaller kM value, for example kM = 3 provides very good results

when α ≈ 0.25 as shown in Figure 3.7(k).

3.4 Relationship between parameters and image quality

In this section, we discuss how the reconstructed image quality varies with the num-

ber of measurements, M , and the protection level kM . In Section 3.3, it has been

mentioned that results similar to those shown in Figures 3.5 and 3.6 are obtained for

different number of measurements, M . From the theory of CS, it is known that the

reconstruction error decreases when the number of measurements, M , is increased.
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As a result, it is clear that even though similar pattern as that of Figures 3.5 and 3.6

is obtained with different M values, the actual VIF values increase when M is large

and decrease when M is small.

Figure 3.8 shows the reconstruction quality of the Lena image at different number

of measurements,M . The results are presented for EEP (kM = 1) and UEP (kM = 4).

The row weight is set to a value of 16, L = 16, in both cases. A very important

observation that could be made from Figure 3.8 is the successfulness of UEP. More

precisely, it could be seen that the quality of the ROI (VIF of MICs) is significantly

better than the background (VIF of LICs). Moreover, the background is recovered

with a quality that is as good as the EEP.
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Figure 3.8: Reconstruction quality of Lena image for kM = 4, L = 16 and α = 0.15

at different M values.

Figure 3.9 further emphasizes the relationship between the VIF of ROIs (MICs)

and background (LICs) which could also be observed in Figure 3.6. The result shown

in Figure3.9 is for the Lena image when M = 8192, α ≈ 0.15 and L = 16. It

could be seen from this figure that the quality of the ROI increases when high kM

values are used where as the background is recovered with a quality as good as that

of EEP(kM = 1). It should however be noted that the size of the ROI must be

appropriate according to the the discussion in Section 3.3 for this relationship to
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Figure 3.9: Reconstruction quality of Lena image for M = 8192 and α = 0.15 at

different kM values.

hold.

3.5 Simulation results on sample images

In this section, the simulation results obtained when implementing the EEP- and

UEP-φs on the images shown in Figure 3.1 are presented. We remind that the pro-

posed UEP measurement matrix, designed as discussed in Section 3.2, is used at the

encoding stage (y = Φx). The recovery process is then carried out using a regular

basis pursuit (BP) reconstruction algorithm [12].

All images are first resized to a size of 128 × 128, resulting a total number of

16,384 coefficients (N = 16, 384). Then, the optimal parameter values (presented in

Section 3.3) are used to obtain all the simulation results presented in this section.

The number of measurement used for results presented in Table 3.1 is M = 6000. A

row weight value of L = 16 is used for all simulations while a kM value of kM=5 is

used for all the images except for sample images PPL12 and PPL20. A kM value of

kM=4 is used for PPL12 and PPL20 due to their large α values (please refer Table

3.1 for the αs of the images).

In Table 3.1, we compare the VIF of MIC area, LIC area, and the whole image for
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UEP-Φ encoding versus encoding with sparse and dense EEP-Φs. The VIF for EEP is

computed for the whole image. On the other hand, the VIF for UEP is computed for

the image as a whole and also for the MICs and LICs separately. The VIF computed

for the part of an image identified as the ROI, which is shown under a rectangle in

Figure 3.1, is shown as the VIF for the MIC. In a similar way, the VIF computed for

the whole image excluding the main subject is shown as the VIF for the LIC.

Table 3.1: VIF of CS reconstruction performance employing EEP-Φ and UEP-Φ.

Images P2 P10 P11 P12 P17 P20

VIF EEP Sparse 0.83 0.67 0.75 0.69 0.81 0.8

Dense 0.85 0.64 0.78 0.71 0.82 0.77

UEP MIC 1 0.98 0.99 0.96 1 0.97

LIC 0.81 0.64 0.74 0.69 0.84 0.76

Total 0.87 0.68 0.77 0.71 0.84 0.85

From Table 3.1, we can see that when UEP-Φ is employed in the encoding phase a

considerable improvement is obtained for the region of interest (ROI) at the expense

of a small quality loss in the background. For instance, for the image PPL11, the VIF

of MIC has increased from 0.77 (for dense EEP-Φ) to 0.99 (an almost perfect recon-

struction), while the VIF of LIC has a small decrease from 0.77 to 0.74. Therefore,

the deterioration in the background may not even be noticed even though the region

of interest (ROI) has been reconstructed with a quality very close to the original.

This could be clearly seen in Figure 3.12.

Finally, we present the images reconstructed from UEP-, sparse EEP- and dense

EEP-φs in Figures 3.10 to 3.15 for visual comparisons. Note that the DCT has been

used as the basis of sparsity for the simulations presented in this chapter. Results

obtained when implementing the wavelet basis are presented in Appendix A.

From Figures 3.10 to 3.15, we can see that the region of interest (ROI) has been
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(a) Sparse EEP-Φ (b) Dense EEP-Φ (c) UEP-Φ

Figure 3.10: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL2. Here, n = 16384 and m = 6000.

(a) Sparse EEP-Φ (b) Dense EEP-Φ (c) UEP-Φ

Figure 3.11: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL10. Here, n = 16384 and m = 6000.

(a) Sparse EEP-Φ (b) Dense EEP-Φ (c) UEP-Φ

Figure 3.12: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL11. Here, n = 16384 and m = 6000.
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(a) Sparse EEP-Φ (b) Dense EEP-Φ (c) UEP-Φ

Figure 3.13: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL12. Here, n = 16384 and m = 6000.

(a) Sparse EEP-Φ (b) Dense EEP-Φ (c) UEP-Φ

Figure 3.14: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL17. Here, n = 16384 and m = 6000.

(a) Sparse EEP-Φ (b) Dense EEP-Φ (c) UEP-Φ

Figure 3.15: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL20. Here, n = 16384 and m = 6000.

30



recovered with a better quality than the rest of image for all the images without

significant loss of quality in the background. Therefore, we have been able to better

protect the region of interest of images by employing our proposed structure of UEP-

Φ.
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CHAPTER 4

Providing more protection for images in transform basis

4.1 Providing more protection for the whole image

In this section, an algorithm is proposed which exploits the prior knowledge about

the structure of transform image coefficients so as to achieve a better recovery quality

for the whole image.

4.1.1 The structure of transform image coefficients

As it has been discussed in Section 2.2, images have a concise representation in

some transform basis such as DCT and wavelet. The representation of images in

these transform bases has a certain common structure. This is because, the standard

methods of finding the DCT and wavelet transforms also include a process of sorting

the obtained transform coefficients to provide a certain structure for the output.

Consider an image coefficients vector x and its sparse representation s. As men-

tioned in Section 2.2, high variations in the neighboring pixels cannot be seen in the

spatial representation of images due to the high correlation between these neighboring

pixels.

However, when the frequency components of a natural image is extracted employ-

ing the DCT transform, most coefficients of s are close to zero for high frequencies.

Therefore, the information of the image is confined within a few coefficients represent-

ing low frequencies. DCT further separates frequencies and places the low frequencies

at the beginning of the transform coefficients vector, s.

Similarly, when an image is projected onto the wavelet basis, the coefficients placed
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at the beginning of s correspond to the parent coefficients (the root of the wavelet

trees) [5]. Therefore, in wavelet domain as well as DCT domain the large transform

coefficients are concentrated at the beginning of the s.

Figures 4.1 and 4.2 below show the output of wavede2 command in Matlab, which

finds the two-dimensional wavelet decomposition of an image, and how it functions.

An image of size 512× 512 is assumed to undergo an n-level decomposition in Figure

4.1.

Figure 4.1: Two-dimensional wavelet decomposition in Matlab

The sparse transform coefficients vector, s, will be constructed as: s = [ A(n) |
H(n) | V(n) | D(n) | ... H(n-1) | V(n-1) | D(n-1) | ... | H(1) | V(1) | D(1) ].

where n is the level of decomposition and A stands for the approximation coef-

ficients vector while the H, V and D stand for the horizontal, vertical and diagonal

detail coefficients respectively.

This two-dimensional DWT basically involves filtering and down sampling the

image coefficients as shown in Figure 4.2. In this decomposition, sparse coefficients

that correspond to the high activity area of the image are represented by the sub-

bands HL, LH and HH while the transform coefficients that correspond to the low
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activity area of the image are represented by the LL sub-band. These HL, LH, HH

and LL sub-bands correspond to the H, V, D and A of Figure 4.2 respectively.

Figure 4.2 shows the decomposition process carried out at each decomposition

level. When n-level of decomposition is required this process is repeated n times.

Obviously, the input for the first level decomposition is the image while the input for

the next levels of decomposition is the out put given by the LL sub-band from the

previous decomposition level.

Human eye is normally attracted to the low activity area of the image and hence

sensitive to changes in these areas. From Figures 4.1 and 4.2 these areas are evidently

represented by transform coefficients located at the beginning of s. Further more, as

discussed in Section 2.2, these areas are characterized by having significant values in

the frequency domain.

Figure 4.2: The decomposition process of the two-dimensional DWT. LPF and HPF

stand for Low-Pass Filter and High-Pass Filter respectively.

4.1.2 Non-uniform sampling of transform image coefficients

Assume an image has been already transformed to DCT or wavelet transform domains

and s = Ψ−1x = ΨTx has been obtained. In contrast to our algorithm in Section 3.2,
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the sampling is performed by y = Φs instead of y = Φx. We construct a UEP-Φ to

protect the more important transform coefficients with a similar setup described in

Section 3.2. This construction procedure for the proposed Φ is discussed again below

for the sake of completeness.

Let L	 N be the number of non-zero entries in each row of Φ. In the EEP setup,

these L non-zero elements are placed uniformly at random across the columns of each

row and independent of other rows. Therefore, φi,j the element on the ith row and

jth column of Φ is an entry from iid gaussian distribution or a zero with probabilities

L
N

and N−L
N

, respectively.

However, as we discussed in the previous section, we have the knowledge that sig-

nificant (important) coefficients are concentrated at the beginning of s. Consequently,

employing the idea of UEP erasure coding from [7, 15], we propose to concentrate the

L non-zero elements of Φ toward the beginning columns of Φ. This is because, more

important coefficients are incorporated in the generation of more measurements with

this setup. As a result, these coefficients will be recovered with a higher accuracy

in CS reconstruction. Consequently, a better reconstruction quality is achieved for

the whole image as opposed to the quality improvement provided particularly for the

ROI as proposed in the previous section (Section 3.2).

Therefore, for the sake of simplicity and without loss of generality we assume that

N coefficients of s are grouped into two levels of importance. Let α fraction of N

coefficients be more important coefficients (MIC) and 1−α fraction be less important

coefficients (LIC). Clearly, the first n1 = αN columns of Φ capture MIC and the rest

n2 = (1− α)N capture LIC.

Let P1 and P2 be the probabilities that an element in the first n1 or last n2 columns

of a particular row of Φ be non-zero, respectively. Further, let us define P1 = kM
N

and P2 =
kL
N
, where kM and kL = 1−αkM

1−α
are the protection levels. Clearly, UEP and

EEP-Φs are built by setting kM > kL and kM = kL = 1, respectively. In the next
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section, we implement our proposed algorithm and evaluate its performance.

4.1.3 Non-Uniform Sampling Implementation on Sample Images

First, without loss of generality we employ the wavelet transform to obtain the sparse

representation of images. In addition, we assume a regular basis pursuit (BP) recon-

struction algorithm [12] is employed to solve the CS reconstruction problems in this

section. We find the optimal values of α, L and kM for various values of M as in

Section 3.3. We found that for N = 16384 the optimal value of α, L, and kM are

approximately α≈ 0.25, L = 100, and kM = 5. This means that the 25% beginning

coefficients of s should be more protected than the rest.

We perform our simulations on the sample images (shown in Figure 3.1) with these

optimal parameters. Note that all the sample images have a size of 128 × 128. We,

then, compare the VIF of images reconstructed by employing our proposed algorithm

(UEP-φ for whole image, Section 4.1), EEP-Φ and TSWCS [5] in Table 4.1 for various

M values.

From Table 4.1, we can observe a considerable improvement in the quality of

the reconstructed images when UEP-Φ has been employed. We can observe that the

quality of images reconstructed by employing UEP-φ for whole image withM = 4000

is equivalent to the quality of the images reconstructed by employing EEP-Φ or

TSWCS with M = 8000. We also visually compare the performance of EEP and

TSWCS with UEP-φ for whole image using the sample images in Figures 4.3 to 4.8

when M = 4000.

From Figures 4.3 to 4.8 we can see that the quality of the reconstructed images is

significantly better when UEP-φ for whole image is employed. We can also see that

the quality of images reconstructed using the TSWCS is better than that obtained by

employing an EEP-Φ. However, TSWCS does not result in a reconstruction quality

as good as that achieved by employing UEP-φ for whole image.
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Table 4.1: VIF measure of the reconstructed images employing our proposed algo-

rithm versus TSWCS and encoding with EEP-Φ.

Image PPL2 PPL10 PPL11 PPL12 PPL17 PPL20

M = 2000

EEP-Φ 0.489 0.169 0.362 0.304 0.414 0.473

TSWCS 0.821 0.491 0.681 0.539 0.697 0.680

UEP-Φ 0.825 0.546 0.655 0.621 0.736 0.726

M = 4000

EEP-Φ 0.765 0.466 0.640 0.508 0.67 0.672

TSWCS 0.908 0.657 0.802 0.714 0.836 0.820

UEP-Φ 0.978 0.924 0.959 0.934 0.967 0.958

M = 6000

EEP-Φ 0.879 0.634 0.737 0.713 0.805 0.805

TSWCS 0.955 0.771 0.876 0.818 0.914 0.901

UEP-Φ 0.980 0.932 0.963 0.941 0.968 0.962

M = 8000

EEP-Φ 0.929 0.768 0.852 0.793 0.891 0.873

TSWCS 0.984 0.835 0.921 0.876 0.957 0.934

UEP-Φ 0.980 0.932 0.963 0.941 0.968 0.962

As we discussed earlier, our proposed algorithms are implemented at the encoding

phase only by altering the Φ construction. Therefore, our proposed algorithm can even

be combined with CS reconstruction algorithms that propose novel decoding based

on the known structure of images such as TSWCS [5]. We perform simulations to see

if the combination of our proposed algorithm with TSWCS, referred to as TSWCS
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(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

Figure 4.3: Visual performance comparison of various CS image reconstructions on

sample image PPL2. Here m = 4000 and L = 100.

(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

Figure 4.4: Visual performance comparison of various CS image reconstructions on

sample image PPL10. Here m = 4000 and L = 100.

+ UEP-Φ, can further improve the reconstruction quality of TSWCS. Therefore, to

extend our performance evaluation, we compare the performance of our algorithm

with TSWCS, TSWCS + UEP-Φ, and EEP employing a sparse and dense EEP-Φs

in Figure 4.9. Further, we compare the CPU runtime of our algorithm with that of

TSWCS in Figure 4.10.

Figure 4.9 shows that our proposed algorithm significantly improves the image

reconstruction quality compared to TSWCS, while it decreases the CPU+ runtime
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(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

Figure 4.5: Visual performance comparison of various CS image reconstructions on

sample image PPL11. Here m = 4000 and L = 100.

(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

Figure 4.6: Visual performance comparison of various CS image reconstructions on

sample image PPL12. Here m = 4000 and L = 100.

as observed in Figure 4.10. We can also see that employing a sparse EEP-Φ results

in a slight performance loss compared to a dense Φ. However, employing a sparse

Φ allows us to design UEP-Φ since a dense Φ uniformly captures all coefficients and

no UEP may be provided. We emphasize that in contrast to TSWCS, the decoder

remains intact when UEP-Φ is employed and the complexity of image reconstruction

is equivalent to that of EEP-Φ.

From Figure 4.9 we can see that combining TSWCS and UEP-Φ provides recon-
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(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

Figure 4.7: Visual performance comparison of various CS image reconstructions on

sample image PPL17. Here m = 4000 and L = 100.

(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

Figure 4.8: Visual performance comparison of various CS image reconstructions on

sample image PPL20. Here m = 4000 and L = 100.

struction quality better than that obtained by the TSWCS. We visually compare the

quality of the reconstructed images using TSWCS + UEP-Φ, TSWCS and UEP-φ for

whole image when M = 4000 in Figure 4.11. The reconstruction quality obtained by

combining UEP-Φ with TSWCS is however better than our algorithm only for very

small values of M as could be seen in Figures 4.9 and 4.11.
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Figure 4.9: Image reconstruction performance comparison of our proposed algorithm

versus existing algorithms.
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Figure 4.10: The CPU runtime comparison of proposed algorithm and TSWCS versus

M .

4.2 Prioritized ROI protection

Providing more protection for the whole image coefficients has been discussed in

Section 4.1. In this section we are interested in providing further protection for the

ROI while the whole image coefficients are protected as discussed in Section 4.1.
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(a) Reconstruction employing

TSWCS.

(b) Reconstruction employing

UEP-Φ.

(c) Combined UEP-Φ encoding

and TSWCS reconstruction.

Figure 4.11: Visual performance comparison of various CS schemes for images for

m = 4000.

4.2.1 wavelet trees

One of the characteristics of the wavelet transform that makes it very important is

the temporal information it provides. In other words, the wavelet transform captures

the frequency and location information of each image coefficient. The frequency

information provided by the wavelet coefficients was mainly used for the application

discussed in Section4.1. The location information provided by the wavelet transform is

implemented in this section to provide more protection to a part of an image identified

to be the region of interest (ROI). The importance of providing more importance to

the ROI of a given imagery has been discussed in Sections 3.1 and 3.2.

The transform coefficients vector, s, could be represented in the form of a tree

structure known as the wavelet tree. Figure 4.12(a) shows a three level wavelet

decomposition on Lena image and Figure 4.12(b) shows the wavelet tree structure.

The block represented by A on top left contains the approximate coefficients which

are the largest transform coefficients. The blocks represented with l = 1, l = 2 and

l = 3 contain the transform coefficients in the first, second and third decomposition

levels.

As it is shown in Figure 4.12(b), each coefficient in the second and higher decompo-
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sition levels has four children in the next lower decomposition level. In Figure4.12(b),

for example, it could be seen that each coefficient in the third decomposition level has

four children in the second decomposition level. Each of these four coefficients in the

second level has four children in the first decomposition level. This process could also

be described in terms of down sampling process starting from the first decomposition

level as will be discussed in the next subsection.

A Ɩ=1

Ɩ=
1

Ɩ=2

Ɩ=
2

A

Ɩ=3

Ɩ=
3

(a) Third level decomposition.

A Ɩ=1Ɩ=2Ɩ=3

Ɩ=
1

Ɩ=
2

A
Ɩ=
3

(b) wavelet tree.

Figure 4.12: Wavelet decomposition of Lena image and wavelet tree.

4.2.2 Protecting ROI transform coefficients

In order to provide better reconstruction quality for the ROI of a given imagery,

the transform coefficients corresponding to this ROI must be incorporated into more

measurements during the encoding process. As a result, the transform coefficients

of a given imagery which correspond to the ROI must first be identified to provide

better reconstruction quality for the ROI.

The wavelet decomposition process could be viewed as a filtering and a down

sampling process as shown in Figure 4.2. Assume a particular area of an image

(represented in the spatial domain) is identified to be the region of interest. Let

the size of this ROI be 8 × 8. In the first decomposition level, the image is filtered

and the columns and rows are down sampled by a factor of two. The ROI will,
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hence, be represented by transform coefficients of size 4 × 4 located in each of the

three blocks containing transform coefficients of level one decomposition (l = 1 in the

Figure 4.12(b)). This process is repeated resulting in a 2 × 2 transform coefficients

representing the ROI in the second decomposition level (l = 2). In Figure 4.12(b),

this process is repeated one more time resulting in a single transform coefficient in

each of the three blocks containing transform coefficients of the third decomposition

level (l = 3).

For our application, a Matlab program is developed which tracks the transform

coefficients in the transform coefficient vector, s, using the coefficients’ relationship

as discussed above. The significant transform coefficients located at the beginning

of s are considered to be MICs as discussed in Section4.1. This provides a good

reconstruction quality for all the image parts as a whole. Further more, the transform

coefficients that correspond to the ROI are also treated as MICs to provide further

protection for the ROI. The measurement matrix φi,j is thus constructed so as an entry

at in the jth column of Φ for any row is made to be a non-zero with a probability of

P1 or P2 depending on whether sj is an MIC or an LIC as discussed in Section 3.2.

Table 4.2 shows the simulation results obtained implementing this algorithm on

our test images. The ROI is assumed to be the part of the sample images identified to

be the main subject as shown in Figure 3.1. The parameters used for these simulations

are: L = 100 and kM = 5 while the MICs are set to be the first 1024 coefficients and

those transform coefficients that represent the ROI.

In Table 4.2, the VIF values presented under the title ‘MIC’ are measured for the

ROIs of the images; Whereas, those under ‘LIC’ are measured for the rest part of

the image. The entries under the titles ‘UEP’ and ‘TSWCS’ are obtained using the

algorithms proposed in Section 4.1 and contribution [5] respectively. These values are

those presented in Table 4.1. They are presented here again for convenience.

As it could be seen from Table 4.2, the ROI has been reconstructed with a better
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quality for all the images while the quality of the rest of the image is not significantly

degraded. Sample images are shown in Figures 4.13, 4.14 and 4.15 for subjective

comparison.

(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

Figure 4.13: Visual performance comparison of various CS image reconstructions for

sample image PPL2. Here m = 8000 and L = 100.

(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

Figure 4.14: Visual performance comparison of various CS image reconstructions for

sample image PPL10. Here m = 8000 and L = 100.

From Figures 4.13 to 4.18, we can see that the region of interest (ROI) has been

recovered with an even better quality with the prioritized ROI protection method,

while the the background is recovered with a quality as good as UEP-φ for whole
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(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

Figure 4.15: Visual performance comparison of various CS image reconstructions for

sample image PPL11. Here m = 8000 and L = 100.

(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

Figure 4.16: Visual performance comparison of various CS image reconstructions for

sample image PPL12. Here m = 8000 and L = 100.

image (Section 4.1). It has further been shown in Section 4.1 that UEP-φ for whole

image results in a reconstruction quality better than most state of the art recon-

struction methods. As a result, the prioritized ROI protection method recovers the

background with a quality better than most state of the art CS reconstruction schemes

and recovers the ROI with an even better quality.
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(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

Figure 4.17: Visual performance comparison of various CS image reconstructions for

sample image PPL17. Here m = 8000 and L = 100.

(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

Figure 4.18: Visual performance comparison of various CS image reconstructions for

sample image PPL20. Here m = 8000 and L = 100.
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Table 4.2: VIF of images reconstructed by UEP-φ for whole image, TSWCS and

prioritized ROI protection algorithms.

Images P2 P10 P11 P12 P17 P20

M=6000

MIC 0.994 0.996 0.984 0.976 0.997 0.986

LIC 0.983 0.944 0.954 0.928 0.98 0.949

Total 0.985 0.947 0.964 0.925 0.975 0.969

TSWCS 0.956 0.771 0.876 0.818 0.914 0.902

UEP 0.98 0.932 0.963 0.942 0.969 0.963

M=8000

MIC 0.998 0.996 0.993 0.996 1.000 0.999

LIC 0.987 0.944 0.963 0.947 0.982 0.963

Total 0.989 0.947 0.974 0.952 0.979 0.981

TSWCS 0.985 0.836 0.922 0.876 0.957 0.934

UEP 0.98 0.932 0.963 0.942 0.969 0.963
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CHAPTER 5

CONCLUSIONS

In this thesis work, we proposed to incorporate the unequal error protection (UEP)

ideas, from error correction codes, into compressive sensing (CS) algorithm for image

reconstruction. We proposed a novel measurement matrix construction method, for

CS encoding phase, by which a higher protection can be assigned to more important

coefficients.

It is well-known that images usually have at least one main subject which draws

the viewers attention and conveys the image’s information. Hence, in our first study,

the main subject area is assumed to be more important than the rest of the image.

Therefore, we proposed to capture this area in more number of measurements by

implementing unequal compressive sampling to increase its reconstruction accuracy.

We observed that this significantly improves the reconstruction quality of the main

subject, while resulting in slight degradation in the less important areas.

In our second approach, we make use of the well-known fact that the sparse repre-

sentation of an image has most of its significant coefficients (that convey the most of

the image’s information) concentrated at the beginning of the transform coefficients’

vector. Therefore, we proposed to generate samples from the signal such that these

more important coefficients of the sparse signal are more strongly captured by the

measurements. We showed that this would significantly improve the overall image

reconstruction quality. Furthermore, we showed that our proposed algorithm surpass

exiting CS algorithms for image reconstruction while providing low complexity.

Finally, we employ the known tree structure of wavelet transform coefficients to lo-
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cate the coefficients that correspond to the main subject in the transform coefficients’

vector. We then propose to capture the more informative transform coefficients (which

are located at the beginning of the transform coefficients’ vector) and also the trans-

form coefficients that correspond to the main subject more strongly than the rest of

the transform coefficients. We, then, showed that this would provide an improved

reconstruction quality for the whole image while the main subject is reconstructed

with an even better quality.

This work could be broadened by considering multiple main subjects and multiple

levels of importance. Employing saliency map to find the main subject could also

be experimented with as it could trick the visual system into perceiving the recon-

structed image to be of more quality. This is because the transition between the

more important and less important image coefficient would be less visible after CS

reconstruction. Another interesting extension would be the integration of our first

algorithm (Chapter with the single pixel camera [17].
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APPENDIX A

Supplementary for Chapter 3

In Chapter 3, the DCT was used as a basis of sparsity. Results obtained when the

two-dimensional DWT is used as a basis of sparsity are presented below in Table A.1.

Table A.1: VIF of CS reconstruction performance employing EEP- and UEP-Φs for

wavelet ψ.

Images P2 P10 P11 P12 P17 P20

α 0.18 0.13 0.17 0.21 0.17 0.19

VIF EEP Sparse 0.81 0.44 0.61 0.59 0.77 0.72

UEP MIC 1 0.94 0.98 0.97 1 1

LIC 0.62 0.45 0.57 0.54 0.77 0.6

Total 0.75 0.51 0.6 0.61 0.74 0.73

The parameter values used in order to obtain the results presented in Table A.1 are

similar to that used of Chapter 3 (i.e. L = 16, kM = 5, N = 16, 384 and M = 6000).

The reconstructed images employing the EEP- and UEP-Φs are shown in Figures

A.1, A.2 and A.3 for images PPL2, PPL10 and PPL11.
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(a) Sparse EEP-Φ (b) UEP-Φ

Figure A.1: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL2.

(a) Sparse EEP-Φ (b) UEP-Φ

Figure A.2: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL10.

(a) Sparse EEP-Φ (b) UEP-Φ

Figure A.3: Reconstruction quality comparison of UEP-φ versus dense and sparse

EEP-φs for sample image PPL11.
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APPENDIX B

Supplementary for Chapter 4

In Chapter 4, the two-dimensional DWT was used as a basis of sparsity. Results

obtained when the DCT is used as a basis of sparsity are presented below in Table

B.1.

Table B.1: VIF measure of the reconstructed images employing EEP- and UEP-Φs

for DCT ψ.

VIF Images P2 P10 P11 P12 P17 P20

M=2000

EP 0.51 0.17 0.33 0.31 0.42 0.42

UEP 0.77 0.51 0.66 0.58 0.71 0.67

M=4000

EP 0.74 0.4 0.57 0.51 0.65 0.6

UEP 0.91 0.79 0.87 0.81 0.86 0.83

M=6000

EP 0.83 0.6 0.74 0.66 0.78 0.75

UEP 0.92 0.8 0.88 0.82 0.86 0.83

M=8000

EP 0.9 0.75 0.83 0.77 0.86 0.83

UEP 0.92 0.8 0.88 0.82 0.86 0.83

The parameter values used in order to obtain the results presented in Table B.1
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are similar to that used of Chapter 4 (i.e. α≈ 0.25, L = 100, and kM = 5 and

N = 16, 384). The reconstructed images employing the EEP- and UEP-Φs are shown

in Figures B.1, B.2 and B.3 for images PPL2, PPL10 and PPL11 when M = 4000.

(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying UEP-Φ.

Figure B.1: Visual performance comparison of various CS image reconstructions on

sample image PPL2.

(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying UEP-Φ.

Figure B.2: Visual performance comparison of various CS image reconstructions on

sample image PPL10.

Supplementary images for Section 4.1, Table 4.1.

The performance of EEP and TSWCS with UEP-φ for whole image using the

sample images are shown below in Figures B.4 and B.5 when M = 6000.
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(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying UEP-Φ.

Figure B.3: Visual performance comparison of various CS image reconstructions on

sample image PPL11.

Supplementary images for Section 4.2, Table 4.2.

The images reconstructed for M = 8000 has been shown in Section 4.2, Figures

B.6 and B.7. Images reconstructed for M = 6000 are shown below.
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(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

(d) Image reconstruction em-

ploying EEP-Φ.

(e) Image reconstruction em-

ploying TSWCS.

(f) Image reconstruction em-

ploying UEP-Φ.

(g) Image reconstruction em-

ploying EEP-Φ.

(h) Image reconstruction em-

ploying TSWCS.

(i) Image reconstruction em-

ploying UEP-Φ.

Figure B.4: Visual performance comparison of various CS image reconstructions on

sample images for M = 6000.
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(a) Image reconstruction em-

ploying EEP-Φ.

(b) Image reconstruction em-

ploying TSWCS.

(c) Image reconstruction em-

ploying UEP-Φ.

(d) Image reconstruction em-

ploying EEP-Φ.

(e) Image reconstruction em-

ploying TSWCS.

(f) Image reconstruction em-

ploying UEP-Φ.

(g) Image reconstruction em-

ploying EEP-Φ.

(h) Image reconstruction em-

ploying TSWCS.

(i) Image reconstruction em-

ploying UEP-Φ.

Figure B.5: Visual performance comparison of various CS image reconstructions on

sample images for M = 6000.
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(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

(d) TSWCS reconstruction. (e) UEP-Φ for whole image. (f) UEP-Φ with prioritized

ROI reconstruction.

(g) TSWCS reconstruction. (h) UEP-Φ for whole image. (i) UEP-Φ with prioritized ROI

reconstruction.

Figure B.6: Visual performance comparison of various CS image reconstructions on

sample images for M = 6000.
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(a) TSWCS reconstruction. (b) UEP-Φ for whole image. (c) UEP-Φ with prioritized

ROI reconstruction.

(d) TSWCS reconstruction. (e) UEP-Φ for whole image. (f) UEP-Φ with prioritized

ROI reconstruction.

(g) TSWCS reconstruction. (h) UEP-Φ for whole image. (i) UEP-Φ with prioritized ROI

reconstruction.

Figure B.7: Visual performance comparison of various CS image reconstructions on

sample images for M = 6000.
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