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CHAPTER I 
 

 

INTRODUCTION 

 

I.1 Background 

Human beings have always used energy to improve their living conditions. The discovery 

of fire and use of wind brought revolutionary changes in the ways to utilize energy. The 

most prevalent ones are biomass for firewood, wind for sailing, insolation for grain 

drying and falling water for milling purposes. The ability to harvest and convert energy to 

usable forms continues to be an important activity of human beings. The industrial 

revolution brought an era of fossil fuels, which are concentrated forms of solar energy 

that has been stored over millions of years. Industrial revolution, globalization and 

growth in population have rapidly increased energy consumption. Technological and 

industrial progress today is heavily dependent on readily available energy, basically fossil 

fuels. Over a century, human beings have consumed this easily available finite resource 

very inefficiently. This increasing energy consumption based on fossil reserves has 

resulted in major depletion of the reserves, climate change, financial instability and 

political turmoil in the world. Initially generation of electricity from large power plants  
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was encouraged; as it was considered to be efficient than a large numbers of small 

dispersed power plants. Because of this trend in development along with depletion of 

fossil fuel reserves and the associated widespread environmental pollution, it has become 

increasingly urgent to find energy alternatives that are cost effective, sustainable and 

environment friendly. 

Renewable energy sources such as wind, solar, hydro and biomass will play an important 

role in the future to supply increasing global energy demand and provide energy security. 

Research and development in renewable energy technologies confirm that renewable 

energy sources are indeed sustainable and that green technologies can shift global 

dependence away from fossil fuels. Making the transition to a renewable energy intensive 

economy would provide environmental and other benefits that cannot be solely measured 

in standard economic accounts, but in terms of reduced pollution, socioeconomic 

development, land restoration, abatement of global warming and fuel supply diversity [1]. 

From socioeconomic and environmental view points, utilization of renewable energy 

increases supply security, provides local solutions, lowers environmental impacts, offers 

sustainable energy development and provides job opportunities. 

I.2 Current Energy Scenario and Energy Crisis 

Energy is one of the basic needs for humans to survive. The sun is the primary source of 

energy on earth for life to sustain. The uneven heating of the planet by sun generates 

wind, rain, rivers, waves etc. for sustaining life. These along with organic matter that 

makes up plant and biomass can be used for heat, electricity and liquid fuels. Although 

humans have been tapping renewable energy for several thousands of years, only a tiny 
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fraction of the available technical and economic potential of renewable energy sources 

has been captured and exploited so far. 

Increases in population and urbanization in developing countries have led to poor quality 

of life along with high and wasteful consumption of energy. At present fossil fuel is the 

dominant source of energy generation. The reasons for this are they are readily available, 

cheap, and highly concentrated. Government subsidies, financial backups and existence 

of infrastructure help in continued dependence on these fuels. If all the social and 

environmental factors were to be considered, the cost of fossil fuels would be double of 

what it is at present [2]. The ability of fossil fuels to enable fast economic growth in any 

country has led to increasing dependence on fossil fuels. As seen in Figure I.1, the world 

still depends heavily on fossil fuels for energy and the trend will continue to be the same 

in the years to come. Data have suggested that with the ongoing trend, oil will essentially 

run out in 40 years, natural gas will be depleted in about 60 years and coal reserves will 

be exhausted in 200 years [3]. 

 

Figure I.1: World total primary energy supply by fuel [4] 
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Recent catastrophic events, such as BP oil leak have caused significant environmental 

damage which will take years to restore, along with losses of regional economies. With 

climate change and excessive use of fossil fuels, which have given rise to various 

catastrophes and downgraded environment, it is time to decide that the insatiable demand 

for fossil fuels is costing more than humans can afford [5]. Alternatives must be 

developed as these fossil fuels progressively become scarce and expensive over time. 

Therefore, there is an imminent need to pave a way to use renewable energy sources to 

live sustainably in the years to come. Every energy user can be empowered in a new 

energy economy based on renewable energy sources to become energy producer by 

conserving energy, reducing carbon footprints and installing distributed renewable energy 

systems. 

Renewable energy is playing a significant role in mitigating climate change and carbon 

footprint in supplying energy needs. Recent developments and growth of solar, wind and 

biomass energy industries have shown that there has been a significant increase of 

renewable energy use in the energy sector. According to Global Wind Energy Council, 

there has been an increase of 24.1% in global wind installations in 2010, mostly in 

developing countries [6]. Just like the growth of wind energy, photovoltaic (PV) has an 

annual growth rate of 40% [7]. Similar are the cases for biomass, hydro and geothermal 

energy. Growth of these renewable technologies may be a result of decreased cost of 

energy generated and improvement in materials and technologies to harness these 

resources. Renewable energy can reduce the pressure on fossil fuels and can play an 

important role in realizing a sustainable world. 
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Figure I.2: Annual growth of renewable supply from 1971 to 2004 [6] 

I.3 Renewable Energy in Rural Sector 

The vast majority of global population lives in the developing world. And more than one 

third of developing nations comprise of rural areas with no access to commercial forms of 

energy. The main sources of income in developing countries are agriculture and tourism. 

Especially in rural areas people heavily depend on agriculture for all purposes and hence 

use traditional biomass such as firewood, charcoal, agricultural residues and animal dung 

for cooking and heating purposes. Poverty and illiteracy are the major problems in such 

areas. Poverty eradication, risk avoidance, environmental protection and sustainable 

economic growth are keys to transform the developing world energy scenario. 

Improvements in standard of living are linked to the availability of commercial energy, 

which facilitates economic development through job creation and transportation of 

products to the market, along with education and provision of health services. 

At present, most of the rural sectors are in darkness and rely on traditional firewood and 

animal waste for their energy needs. This is primarily because these rural areas have very 
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small loads and are isolated and far from the central grid, which makes it very expensive 

for the government to provide electricity. Providing electricity from the central grid 

would be inefficient and inconvenient as it would require adequate central generating 

capacity, high capital cost and would result in energy losses in long transmission and 

distribution lines. Hence, people in such areas continue to burn traditional fuels to fulfill 

their energy needs, which results in deforestation, air pollution and deterioration of their 

health. 

Developing countries have slow moving economies that depend on agriculture. In order 

to speed up the economy of the country and improve the quality of life, they tend to 

follow similar pattern of lifestyles as of developed countries. Not only they follow the 

lifestyles, they follow similar pattern for energy consumption as well. This results in 

devastating impacts on the economy of country, as the country may not be producing 

enough generation to match the demand of people.  Instead of blindly following, 

developing nations must learn from the experiences and mistakes made by industrialized 

nations which can offer a unique opportunity to select a sustainable energy route and 

develop the economy [8]. 

In an attempt to deal with energy problems, recent advances in renewable energy 

technology and techniques to harness renewable energy efficiently and economically 

have had a significant impact on developing nations. Unlike fossil fuels, renewable 

energy sources are fairly evenly distributed around the world. Even though renewable 

resources are site specific, have seasonal and diurnal variations and are highly stochastic 

in nature, they are eco-friendly, inexhaustible and pollution free. Harnessing locally 
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available renewable energy resources to supply energy to rural areas is one of the 

potential solutions. 

Many studies and papers have been published on the methods to supply electricity to 

rural sectors. Energy can be supplied by a single source or by a combination of sources 

such as hydroelectric power, intermittent renewable power sources (wind, solar-thermal 

electric and photovoltaic power), biomass power and geothermal power. Many have 

suggested hybrid renewable energy systems (HRES), with diesel generator as a backup 

power. In HRES, all the available energy sources are converted to one final form of 

energy, electricity that supplies the customer loads. Ramakumar [9-11] first proposed an 

integrated approach for harnessing available renewable energy sources to “energize” 

remote areas. Integrated Renewable Energy System (IRES) utilizes available renewable 

sources and supplies energy in various forms as per the need. This makes the system 

economical and efficient from the view point of end user. 

At present, even in the most remote areas, renewable energy is playing an important role 

in providing access to basic energy services, including lighting and communication, 

cooking, heating and cooling, water pumping and generating economic growth. PV 

household systems, wind turbines, micro-hydro power, biomass based system, and other 

renewable energy technologies are being employed in homes, schools, hospitals, 

agriculture and small industries in these remote areas. This will have beneficial impact if 

the barriers to accessing information and financing products are addressed. It has been 

estimated that over 44 million households in the world use biogas made in household bio-

digesters for lighting and cooking purposes, while 166 million households rely on 

improved biogas cooking stoves [12]. 
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I.4 Electrification and Energization 

Renewable energy sources are abundant and well distributed around the world. 

Insolation, wind, biomass and hydro have proved to be the most useful renewable energy 

sources and these resources are being harnessed in a number of ways world-wide. Solar 

energy can be used to generate electricity through PV panels or for heating purposes 

directly or by employing solar thermal system. Along with it, solar energy can be used 

for cooking, pumping water, refrigeration and desalination of water. The same is true for 

all the renewable energy sources. They can be harnessed to produce electric energy or 

any other forms of energy such as low-grade thermal, medium-grade thermal etc. 

Currently all of the power plants, either based on fossil fuels or renewable sources, 

convert all the available energy forms to electricity to supply loads. The end product, 

electricity, can then be used to provide energy for any of the needs such as heating, 

cooling, pumping water etc. This is mostly suitable for urban and industrial sectors where 

electricity is the only form required to supply any kind of need. However, the case is 

quite different in rural areas, where electrical loads are few as compared to other loads. 

Electrification of a rural society is not the efficient and economical way to achieve a 

sustainable society. 

As mentioned earlier, in remote areas electrical load is very small as compared to other 

energy needs such as cooking, heating etc. Hence, rural electrification is not the ideal 

solution in these areas. Providing energy needs in various forms to match the needs 

allows the end users to benefit from such system. For instance, medium grade heat 

required for cooking can be satisfied by biogas obtained from biomass. Water can be 
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pumped and stored in an overhead tank through solar and wind powered water pumps. 

Low grade heat required for crop processing and industrial heat can be satisfied by 

biomass and solar collectors. These needs can be satisfied via electricity, but it would be 

inefficient and expensive because of the number of components required for energy 

conversions. Direct use of the resources lowers the overall energy cost, initial investment 

and makes the system effective and efficient. Energization involves harnessing all 

possible available renewable resources in a way such that several forms of energy of 

different quality and characteristics provide a variety of energy. The key to implementing 

such system is to match energy needs with resources to maximize end-use efficiency 

[11]. 

I.5 Objective of the Study 

Ever growing demands of increasing world population has challenged the scientific and 

technical communities to supply quality energy in a sustainable manner. Dependence on 

fossil fuels has resulted in the depletion of the reserves and has a significant impact on 

global environment. The need to live a sustainable life has led to the use of renewable 

energy sources. This study is focused on the concept of IRES, which utilizes the locally 

available renewable energy sources to supply various forms of energy in an economical 

way. Using the IRES in conjunction with the micro grid concept, it is possible to create a 

self-sufficient sustainable rural community in cost effective and efficient way, without 

the need of central grid. Implementation of Integrated Renewable Energy System – Micro 

Grid (IRES-MG) in a rural area is proposed. The system is studied with cost optimization 

and then efficiency optimization to evaluate the suitability of the proposed system. 
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I.6 Organization of thesis 

A brief outline of all the chapters that follow is presented next. 

Chapter II: Review of Literature 

A review of the literature work close to this research is presented. Also it discusses the 

various renewable energy sources and technologies with their current status and potential. 

Technologies to harness these renewable sources are outlined along with a brief 

description of micro grid and optimization procedure. 

Chapter III: Integrated Renewable Energy System – Micro Grid (IRES-MG) 

This chapter introduces the concept of integrated renewable energy system – micro grid 

(IRES-MG) in detail. It discusses the features and components of IRES-MG, resources 

and energy needs in rural sector scenario.  

Chapter IV: Optimization of IRES-MG 

Cost and efficiency optimization of IRES-MG in rural scenario are presented. Simulation 

results obtained using HOMER and MATLAB are presented and discussed. 

Chapter V: Summary and Concluding Remarks 

This chapter summarizes the work discussed in this thesis and outlines the scope and 

areas for further work. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

II.1 Renewable Energy Sources 

Renewable energy sources are energy sources that are renewed periodically by natural 

processes and are therefore inexhaustible. Hydro, insolation, wind, biomass and wave 

energies are some examples of renewable energy sources. Wind power has been long 

used for sailing, grinding grains and running machinery, insolation for grain drying, 

geothermal for bathing and other heating purposes etc. [13]. These renewable energy 

sources are clean and green sources of energy and have minimal environmental impacts. 

Unlike fossil fuels, renewable resources are fairly evenly distributed all over the world 

and are available at no cost. Table II.1 shows annual energy use in the US and the World. 

It can be deduced that, the world still depends largely on fossil fuel for energy. Only a 

small fraction, about 12% of the world’s primary energy is provided by renewable energy 

sources [13]. Ever increasing energy needs and depleting fossil fuel reserves have led to 

increasing use of renewable energy sources to satisfy energy demands.  
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Sources US (Quads) World (Quads) 

Petroleum 40.1 168.0 

Natural Gas 23.0 103.0 

Coal 22.3 115.0 

Nuclear 8.2 28.0 

Biomass 3.0 30.0 

Hydro power 3.4 27.0 

Geothermal and Wind power 0.4 0.8 

Bio-fuels 0.5 0.9 

Total 100.9 472.7 

Table II.1: Energy use in U.S. and World in 2007 (1 quad = 1015Btu) [14] 

Globally, 1.4 billion people live without electricity and many people around the world 

face recurrent power outages. Growth of electricity demand, together with concerns 

related to climate change and suitability of other technologies has stirred interest in 

renewable energy technologies. Efficient use of diverse renewable energy sources can 

pave a path for sustainable development. Therefore, careful design and planning for 

utilizing renewable energy sources is required for sustainable development of a society. 

Renewable energy sources are capable of addressing global problems of energy security, 

climate change and sustainable development, so there is a pressing need to accelerate the 

development of renewable energy technologies. A brief description of various renewable 

energy sources along with their current status are presented next. 
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II.1.1 Solar Energy 

Direct solar energy is considered to be practically unlimited. If all the energy received 

from the sun could be converted to usable form in the earth, it would be able to supply 

more than the world’s current energy demand many times over. However, this is not 

possible because of cloud cover, rotation of the earth and amount of energy intercepted 

by the earth. It has been estimated that the desert area of southwestern United States 

could theoretically meet the electricity demand of the entire country with 10% conversion 

efficiency (Sandia National Laboratories 2001) [15]. 

Solar energy can be used directly to heat or light buildings and provide domestic hot 

water. It can also be used in concentrated form for cooking purposes, pumping water, 

desalinate water and refrigerate foods and medicines. Apart from the direct use of solar 

energy, it can be converted to usable forms through a variety of technologies; basically 

photovoltaic and thermal. Solar thermal technologies first convert solar energy to heat 

which can be used directly or stored in a medium, or converted to mechanical or 

electrical energy by an appropriate device. Photovoltaic devices directly absorb incident 

photons and convert the photon energy to either electricity or store it as chemical energy. 

Concentrating solar power systems (CSP) utilize mirrors to concentrate the solar 

radiation, so that it can be captured in the form of heat. This heat is then converted to 

electricity by a conventional thermal power plant or drive chemical processes. It is an 

advanced and proven technology suitable for combined heat and power (CHP) 

generation. CSP technology encompasses three approaches; trough, power tower and 

dish. Photovoltaic (PV) technology is growing rapidly worldwide (as shown in Figure 
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II.1). This growth is because of existing supporting policies, significant cost reductions 

and material improvements. PV is commercially available and is a reliable technology 

with a potential for a long term growth in all regions of the world. And at the end of 

2010, the total global installed PV capacity was 40GW. 

 

Figure II.1: World annual solar PV production [16] 

II.1.2 Wind Energy 

Extraction of energy from wind can be dated back to as early as 200 BC. Oil supply crisis 

of 1973 created a widespread interest in wind energy [13]. Due to lagging interest and 

drop in oil price, installation of wind turbines declined. Recent oil crisis, developments in 

wind technology and efforts to mitigate greenhouse gas emissions from fossil-fueled 

power plants have revived interest in wind power. Wind power is derived from solar 

energy due to uneven distribution of temperatures in different areas of the earth. The 

resulting movement of air mass is the source of mechanical energy that drives wind 

turbines for electricity generation, water pumping, milling, grinding grains and other 

uses.  
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Since energy in wind increases as the cube of wind speed, even a small wind speed 

difference plays a big role in determining the power generated from wind. The footprint 

of wind energy technology is minimal and the land around wind towers can be used for 

agriculture, providing locals an opportunity to increase their income. Advancements in 

wind turbine technologies have led to improvements in rotor blade efficiency, energy 

conversion techniques and reliability. At present, the cost of wind-generated electricity is 

competitive with coal-fired power plants and is continuing to decrease [17]. Current 

developments have made the goal of supplying 12% of world’s electricity demand from 

wind by 2020 within reach [6]. Figure II.2 shows the growth of globally installed wind 

capacity. At present total global wind generation capacity is 198GW with annual growth 

rate of 27%. Wind technology is attractive to developed countries because of its excellent 

environmental credentials and to developing nations because of its suitability for 

indigenous production and operation and avoidance cost of long distance transmission 

costs. 

 

Figure II.2: Global cumulative installed wind capacity [6] 
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II.1.3 Hydro Power 

Hydropower is a mature technology. It is a renewable energy resource resulting from 

stored potential energy in water that flows from higher to a lower elevation due to earth’s 

gravitational field. In most installations, hydro energy is converted to electricity by water 

flowing through turbines that rotate shafts which, in turn, drive electric generators. 

Technology to perform this conversion is mature and efficient. For several centuries 

hydropower had been used to produce mechanical power, used for grain milling, textile 

processing and other industrial operations.  

At present, hydropower plant technology on a small scale (mini and micro hydro) has 

gained popularity as it is associated with the fact that majority of rural areas have rivers 

and small water heads that can be used to power remote areas. Hydroelectric technology 

is proven, mature, and highly reliable and has low operation and maintenance (O&M) 

cost although it requires high initial investment. Its design life is more than a century, 

which is very high as compared to other electric power generation technologies. At the 

end of 2010, global installed hydropower capacity was 1010GW with an average growth 

rate of 3% per year [12]. It provides around 20% of world’s total electricity and accounts 

for 88% of electricity from renewable energy [18]. Hydropower can perform frequent 

start-ups and shut downs and has the ability to quickly respond to changing load 

demands. 
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Figure II.3: Renewable energy share of global electricity production in 2010 [12] 

Hydropower is playing a major role in power system management allowing planners to 

balance and regulate services by meeting peak load demands and helping in integrating 

variable renewable generation in energy mix. Several types of hydropower plants are in 

operation today. The three basic types are 

• Run-of-river hydroelectric plants: They are built along a river or stream without lake 

formation for water intake. The river course is not altered and the minimum flow will 

be the same or higher than that of the turbine power output. 

• Reservoir hydroelectric plants: They are developed with an accumulation reservoir. It 

has higher generation potential than run-of-river type plants and are very cost 

intensive. 

• Pumped storage hydroelectric plants: This type of plants store energy for use in peak 

demand periods by pumping water from lower reservoir to upper reservoir during off-

peak periods. 
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Many rural areas have the capability to build a mini or micro hydro plant with an 

overhead reservoir as needed and such plants are enough to supply the demand of the 

entire rural area. Hydroelectric plants also help countries to mitigate greenhouse gas 

emissions. 

II.1.4 Biomass Energy 

Biomass energy or bio-energy is the energy obtained from organic matter or organic 

wastes derived from plants, humans, animals and marine life. Trees, grasses, animal 

dung, sewage, agricultural wastes, garbage, wood chips and municipal wastes are all 

examples of biomass. In the past, biomass was the primary source of energy until the 

industrial revolution. Organic components from municipal and industrial waste, plants, 

agriculture and forest residues, home waste and landfills can be used very efficiently and 

they have the potential to reduce greenhouse gas emission worldwide. Energy crops such 

as fast-growing trees and grasses are called biomass feedstock. Use of biomass feedstock 

can help increase profits for the agricultural industry. 

A major part of the developing world depends on freely collected traditional biomass in 

the form of firewood, forest residue, household waste and animal dung. But it is being 

used unsustainably with higher consumption than replacement. Most of the rural areas 

use biomass in large quantities for heating and cooking purposes. The attractiveness of 

biomass energy lies in its availability, simplicity, familiarity and low cost. The main 

processes for utilizing biomass sources include direct combustion, gasification, biological 

conversion (anaerobic fermentation) and chemical or biochemical conversion. About 

5TW of human usage is associated with traditional burning of wood [17]. Most of the 
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biomass is in the form of woody forest materials and plants. Table II.2 shows the biomass 

energy potential and current use in different regions of the world in the year 2004. 

 

Table II.2: Biomass energy potential and current use in different regions 2004 [20] 

At present, biomass resource potential is significantly higher than its use and this 

potential can be further utilized in the production of heat, electricity and fuels for 

electricity generation and transport. Biomass can be utilized to produce bioethanol, 

biodiesel for transportation or biogas for cooking and lighting. Several CHP generation 

plants with biogas and industrial waste have been implemented in various countries. 

Biomass energy has the potential to make a significant contribution to carbon-constrained 

energy future and to meet the future energy demand in a sustainable way. 

When biomass undergoes anaerobic fermentation in bio-digesters, biogas is produced. 

Biogas contains about 50% by volume of methane and the rest carbon dioxide and has 

heating value of 5000 to 6000 kcal/m3. The by-product of biogas production can be used 

as a natural fertilizer. As mentioned earlier, over 44 million households worldwide use 

biogas for cooking and lighting purposes [12]. 
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II.1.5 Energy Storage 

Electrical energy storage has been considered a critical technology in order to have a 

viable energy system. Energy storage systems play an important role of unifying, 

distributing and increasing the capabilities of alternative and renewable energy 

distributed generating systems. An average central generation system is large enough not 

to be affected by residential and commercial load changes. But distributed generation 

(DG) is exposed to fluctuations of individual loads. Energy storage permits decoupling of 

energy supply and demand profiles which is desirable for both economic and technical 

reasons. Energy storage systems capable of smoothing out load fluctuations, making up 

for diurnal and seasonal variation in renewable energy sources and reacting to fast 

transient power quality needs contribute to efficient energy management of power 

systems [5]. 

As renewable energy resources are stochastic in nature, it is imperative that appropriate 

storage and reconversion systems be employed. Energy storage technologies are 

classified according to the energy, time and transient response required for their 

operation. It may be designed for rapid damping of peak surges, to counter momentary 

power disturbances, to provide a few seconds of ride-through while the back-up 

generators start in response to a power failure or to store energy for future demand. 

Storage batteries are widely used as energy backup. Nickel metal hydride, lead acid, 

Lithium ion and Sodium Sulphur (NaS) batteries are economical and are gaining 

popularity. Pumped hydro, compressed air, fuel tanks, flywheels, water dams, ultra 

capacitors, biofuels, superconducting magnetic energy storage (SMES), thermal storage 
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and other technologies are some of the options for energy storage. Figure II.4 illustrates 

mature and emerging energy storage technologies. 

 

Figure II.4: Energy storage ratings and discharge time [21] 

II.2 Approaches to Harness Renewable Energy Sources 

Various technologies and techniques can be used to harness available renewable energy 

sources. Two approaches, hybrid and integrated, are discussed below. 

II.2.1 Hybrid Renewable Energy System (HRES) 

Hybrid renewable energy system (HRES) combines two or more energy resources and 

these resources are converted to one form of energy, typically electrical (DC or AC) for 

aggregation and distribution to customers [22]. A few examples of HRES are PV/wind 

electric system, wind/diesel generator system, wind/PV/fuel cell hybrid system, 

biomass/wind/fuel cell system etc. Most of the hybrid systems use diesel generator as a 

backup generator. A typical hybrid system consisting of wind turbines, hydro turbine, 

diesel generator with battery backup is shown in Figure II.5 [23]. Hybrid power systems 
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can offer solutions and value to customers that individual technologies cannot match. 

Low end-use efficiency and high capital cost of HRES make it unsuitable for 

implementation in rural areas. 

 

Figure II.5: Block diagram of Hybrid Renewable Energy System 

II.2.2 Integrated Renewable Energy System (IRES) 

Integrated renewable energy system (IRES) is based on the fact that different types of 

energy needs require different forms and quality of energy. It utilizes locally available 

renewable energy resources and end use technologies to satisfy a variety of needs. These 

needs include domestic and community lighting, communication and educational devices, 

cold storage, cooking, domestic and potable water supply, low grade thermal energy, 

irrigation water, and small-scale industries [24]. This approach requires a careful and 

strategic planning for matching needs and available resources to maximize benefits and 

end use efficiencies. IRES has the potential to aggregate benefits resulting from the 

combination of renewable energy, energy efficiency and energy conservation. Figure II.6 



23 

 

shows one possible schematic representation of IRES employing multiple resources and 

needs at a particular site. 

Figure II.6: Schematic of a possible IRES combination [25] 

II.3 Micro Grid 

Micro grid is a localized grouping of electricity generation, energy storage and load that 

may operate in standalone or grid-connected mode. Micro grid encompasses a wide range 

of technologies such as gas turbines, photovoltaics, fuel cell, wind power, micro turbines, 

energy storage and reconversion systems and internal combustion engines. These 

technologies have lower emissions and lower cost negating traditional economies of 

scale. From the point of view of grid operator, micro grid can be controlled as if it was a 
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single entity and allows local control of the system. In the case of disturbances, micro 

grid can be separated from the central distribution system without affecting the 

transmission system. Smaller size of emerging generation technologies allow generators 

to be placed near the load, reducing line losses and allowing use of waste heat [26]. 

The micro grid structure assumes an aggregation of load and sources operating as a single 

entity providing both electricity and heat (Figure II.7). The sources must be integrated 

using power electronics to provide the required flexibility to insure controlled operation 

as a single entity. Micro grid increases local reliability and security. It can also be 

connected to the central grid but has to meet interface requirements as put forward by the 

IEEE P1547 standard.  

 

Figure II.7: A basic micro grid architecture [27] 
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II.4 Optimization of System 

The basic function of a power system is to supply its customers with quality electrical 

energy reliably and economically. Power system must be sustainable, secure and 

environmentally safe. As such, optimization plays an important role. This enables to 

minimize the cost of operation, initial investment and environmental impacts and 

maximize reliability, quality and efficiency. Nowadays, optimization of power system 

enables to take into account different types of constraints and to consider all probabilistic, 

deterministic, uncertain and fuzzy information as well. Straightforward application of 

computational tools for analysis may not yield recommendations as to how the 

construction of any system should be modified in order to improve its performance. 

Therefore, solving specific optimization problem may be required for better results. The 

objective of optimization task is to minimize the maximum value of risk caused by the 

uncertainty of information [28]. 

II.4.1 Cost Optimization 

Any system, standalone or grid-connected should be appropriately designed in terms of 

economic, reliability and environmental measures subject to physical and operational 

constraints. In the case of cost optimization, design of a system is usually done by 

searching the configuration and control that renders lowest total cost over the useful life 

of the system. 

The cost objective function is the total net present cost (NPC) of a system, which includes 

the cost of initial investment and discounted present values of all future costs over the 

lifetime of the system. The cost of the system to be taken into account is the sum of the 
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cost of all individual components such as cost of PV, wind turbine, battery, hydro, fuel 

cell and converter, etc. along with the installation cost. Cost of each of the individual 

components comprises of capital cost or initial cost, replacement cost, operations and 

maintenance cost and cost of fuel consumed. Some of the costs depend on control 

strategy selected amongst the possible strategies. 

II.4.2 Efficiency Optimization 

When a system design is proposed, it is usually done with the optimization problem 

where either, the cost and carbon dioxide emission are minimized or reliability, quality 

and efficiency is maximized. In the case of efficiency optimization, the overall efficiency 

of the system is maximized. Efficiency optimization of a system results in a maximum 

efficiency for a particular combination of the system components and individual 

component efficiency. 

II.5 Current Status of Renewable Energy in Rural Sector 

Currently, PV, solar collectors, solar home lighting systems, solar water heaters, wind 

energy conversion systems, micro hydro and biogas digesters are the various components 

that serve basic necessities such as lighting, communication, potable and domestic water, 

and education, etc. in rural areas. With enlightened government policies and 

developments in renewable energy technologies, millions of people in the rural sector 

have access to electricity and are benefitting from the installation of such systems. 

As mentioned earlier, nearly one third of the world’s population has no access to clean 

commercial energy. Utilizing locally available renewable energy resources in remote 

areas has made it possible to energize such areas. Currently, over 50 million households 
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are served by small scale hydro power plants, around 10 million households are lighted 

by biogas and almost 1.1 million households use solar home systems or solar lanterns. 

Community scale wind power is serving more than 200,000 households [29]. Similarly, 

wind and PV powered water pumps have been serving millions of people for irrigation as 

well as providing water for domestic purposes. With the advancement in biogas 

technology, people have started using improved cooking stoves or efficient biogas stoves, 

for cooking and heating purposes which are more efficient and safe as compared to the 

use of traditional biomass for the same purpose. 

The local as well as national governments of developing nations are playing a significant 

role in providing sustainable energy to remote areas, through various programs, projects 

and subsidies. United Nations Economic and Social Commission for Asia and the Pacific 

(UNESCAP) has undertaken a number of activities to assist green growth in Asia and 

Pacific regions. Grameen Shakti in Bangladesh has reported the installation of about 

100,000 solar home systems, while Vietnamese government has successfully installed 

more than 2500 micro hydro plants to serve 200,000 households [28]. These types of 

projects are funded by the UN, World Bank or other international agencies to help the 

people in rural sector of under developed and developing nations. Such projects are a 

huge success and many countries such as Nepal, India, Bangladesh and some African 

countries, have also participated in such programs. 

The current projects and programs are focused on one-resource or hybrid energy system 

with electricity as the end product. In order to fully achieve the potential of renewable 

energy sources, the concept of “energization”, “integration” and “resource-need 

matching” must be brought into the picture. IRES-MG has amalgamated all these 
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concepts in the system architecture to energize a community, rural or urban, in an 

effective manner. 
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CHAPTER III 
 

 

INTEGRATED RENEWABLE ENERGY SYSTEM – MICRO GRID (IRES-MG) 

 

III.1 Introduction 

The objective of IRES-MG is to supply the basic needs of people in rural sector in an 

economical and efficient way by utilizing two or more locally available renewable energy 

resources and end-use technologies. Available energy resources must be matched with 

the needs to provide energy in different forms efficiently. 

IRES-MG is suitable in rural areas because of its low cost and its ability to provide 

different forms of energy as required by end users. This system is typically operated in 

stand-alone mode and if grid extension is possible, it can be operated with the utility grid. 

The key to supplying different forms of energy is ‘a-priori’ matching of available 

resources and needs. Matching resources, needs, energy conversion devices, energy 

storage and utilization technologies help to maximize end use efficiencies and benefits 

for end users. 

IRES-MG can supply both DC and AC loads, making the system efficient and cost 

effective by avoiding the use of multiple converters. It can be operated as DC, AC 
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or hybrid micro grid depending on types of loads. Figure III.1 shows a possible schematic 

of IRES-MG. 

 

Figure III.1: Schematic diagram for IRES-MG 
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Renewable energy resources are stochastic in nature, site specific, fairly evenly 

distributed around the world and have no or minimal environmental impacts. Integrated 

use of these renewable energy sources will help overcome weakness of one resource by 

the strength of the other in some aspect. Integrated approach is suitable in rural areas 

where biomass is in abundance and solar, wind and hydro may be sparsely available 

depending on the terrain and other geographical factors. Along with energization, IRES-

MG provides job opportunities and upgrades socio-economic conditions of rural 

communities. 

III.2 Resources and Needs 

Even today, people in rural areas use traditional biomass such as firewood, animal dung, 

straw, and charcoal to satisfy their daily energy needs. They use animal dung, charcoal, 

firewood, etc. for cooking, kerosene for lighting purposes and expensive dry cell batteries 

for communication purposes. These pose threat not only to the surrounding environment 

but also to their health. Therefore, renewable energy technologies must be promoted to 

play a vital role to improve their quality of life and provide a sustainable and safe 

environment to live. 

IRES-MG provides energy by harnessing locally available renewable energy resources. 

Among all the available renewable energy sources, the following four are considered as 

inputs for IRES-MG. 

a. Insolation 

b. Wind 

c. Hydro 
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d. Biomass 

Solar energy can be utilized in two ways; thermal and photovoltaic to supply thermal and 

electrical loads. Insolation can be used for cooking with solar cookers, heat water using 

solar water heaters, dry crops with solar driers and solar PV system can be used for 

domestic and street lighting, to power communication devices and DC loads. Wind 

energy can also be used for pumping water for domestic use and small scale irrigation. 

Wind energy can be utilized by Wind Electric Conversion Systems (WECS) to generate 

electricity. Potential energy of water is utilized by micro hydro plant to generate 

electricity. The mechanical system used in micro hydro can be used for milling and 

grinding grains as well. Instead of using biomass in conventional ways, it can be 

converted to biogas, biofuels or biodiesel, which can be used in engines to produce power 

or transport fuels. Biogas can be used directly for cooking, and supplying thermal loads 

or generating power through CHP, conventional engine or micro turbine, while biofuels 

or biogas can be used as fuel in fuel cells with high conversion efficiencies. Biomass 

powered generator can also be included in IRES-MG if woody biomass is available. 

Concept of IRES-MG is based on the fact that some technologies are more efficient than 

others for supplying some forms of energy needs at minimum cost. For instance, using 

biogas directly for cooking would be efficient and cheap as compared to using biogas in 

biogas powered engines for producing electricity and using this electricity for cooking 

purpose. Different types of energy needs are discussed next based on quality and type of 

energy required. 
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Medium grade thermal energy needs 

Medium grade heat (MGH) refers to thermal loads with temperatures in the range of 100 

to 300°C. Medium grade heat is required in households for cooking, in small scale 

industries for process heat and crop processing and drying. Biogas and concentrating 

solar collector can provide medium grade heat requirements. 

Low grade thermal energy needs 

Low grade heat (LGH) refers to thermal loads requiring temperatures less than 100°C. 

Low grade heat is used for water heating, space heating, crop drying and process heat. 

Solar flat plate collector provides low grade heat. The waste heat obtained from CHP can 

also be used to supply low grade heat. 

Water supply needs 

Water supply (WS) refers to water needs for domestic, irrigation and drinking purposes. 

Water needs can be satisfied through PV or wind powered water pumps or water stored 

from streams or rivers. If required and possible, solar system can be used for desalination. 

Electrical loads 

Electrical loads can be either AC or DC. DC loads comprise of domestic and street LED 

lightings, communication and educational devices and computers while AC loads 

comprise of small scale industry, motors, pumps, and milling and grinding machines. The 

main power consumers are health center, school, small shops and small scale industry. 

Table III.1 shows the various possible combinations of available resources and needs that 

can be utilized in IRES-MG system [31]. 
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Cooking 

Improved cooking stoves 

Biogas from biogas digester 

Solar cooker 

Water supply (domestic and 

community) 

PV driven water pumps 

Wind powered water pumps 

Biogas fueled engine generator set 

Water supply (irrigation) 
PV driven water pumps 

Wind powered water pumps 

Lighting (domestic and street) Electricity from community level IRES-MG  

Educational and Communication 

devices 
Electricity from IRES-MG 

Small scale industries, shops, school Electricity from IRES-MG 

Medium grade thermal energy 

(crop processing, industrial heat) 

Solar concentrating collectors 

Biogas powered CHP 

Low grade thermal energy 

(space heating, water heating, crop 

drying) 

Flat plate solar collectors 

Improved heating stoves 

Solar crop dryers 

Cold storage Electricity from IRES-MG 

Energy storage 

Biomass and biogas energy storage 

Potential energy of water 

Battery storage 

Table III.1: Resource – Need combination for IRES-MG 
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III.3 Components of IRES-MG 

Out of many possible combinations, one possible IRES-MG configuration is shown in 

Figure III.1. IRES-MG comprises of WECS, solar PV system, anaerobic digesters, biogas 

driven generators, micro hydro plants, solar collectors, energy storage devices, water 

storage tanks and water pumps.  

Insolation is tapped by solar photovoltaic arrays to produce DC power. Insolation can be 

utilized by flat plate and concentrating solar collectors to serve thermal loads. Wind is 

harnessed by wind turbines to generate AC power. Anaerobic fermentation of biomass 

produces biogas, which is used as a fuel to drive engine-generator sets or for fuel cells. 

Biogas is used directly for cooking and it can be stored for future use. Water from the 

stream runs micro hydro turbines which drives generator to generate electricity. Water 

pumped by PV and wind powered water pumps can be stored in overhead water tanks 

and the stored water can be used for irrigation. After serving the electrical loads, the 

remaining energy from IRES-MG charges batteries, which may be required during faults 

or emergency situations. Detailed information regarding available resources and energy 

needs are required before the implementation of IRES-MG. 
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CHAPTER IV 
 

 

OPTIMIZATION OF IRES-MG 

 

IV.1 Cost Optimization of IRES-MG 

Cost optimization of IRES-MG determines the best possible configuration of IRES-MG 

that results in the lowest amount of total Net Present Cost (NPC) and Cost of Energy 

(COE). The Hybrid Optimization Model for Electric Renewable (HOMER) software, 

developed by the National Renewable Energy Laboratory (NREL), is used to perform the 

random selection of sizing and operational strategy of generating system in order to 

obtain the finest solution of IRES-MG with lowest possible net present cost and cost of 

energy. 

HOMER facilitates the design of stand-alone or grid-connected electric power systems 

that utilizes renewable energy sources. It compares and evaluates small scale energy 

generation technologies to find the option that gives least life-cycle cost. In order to 

perform simulation of the proposed system, HOMER requires information on available 

resources, technologies required to harness the resources, component types and cost, load 

profile, economic constraints and control strategy. After simulation, HOMER displays a 

list of all possible configurations sorted according to the increasing NPC [32]. 
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IV.1.1 System Description in HOMER 

As mentioned earlier, HOMER requires information on the available resources and 

details of individual components before starting simulation. In this case study, it is 

assumed that the study area is a remote village dependent on agriculture, with no grid 

extension. The village consists of 700 people and 450 cattle including poultries, bovines, 

swine etc. [33]. The energy demands are summarized in Table IV.1 below. The latitude 

and longitude of the study area are 30° 32’ N and 78° 03’ E respectively [35]. The 

proposed IRES-MG consists of PV array, wind energy sub-system, micro hydro, biogas 

fueled generator, fuel cell with biogas as fuel and battery storage sub-system [36-38]. 

Energy Need Energy Demand 

Low Grade Heat 400 kWh/day (Pmax = 65kW, Pmin = 0kW) 

Medium Grade Heat 700 kWh/day (Pmax = 100kW, Pmin = 0kW) 

DC load 178 kWh/day (Pmax = 22kW, Pmin = 3kW) 

AC load 272 kWh/day (Pmax = 30kW, Pmin = 5kW) 

Water Need 120 m3/day 

Table IV.1: Summary of energy demand in the study area [33] [34] 

IV.1.1.1 Solar Radiation and PV Array 

Solar resource indicates the amount of global solar radiation that strikes earth’s surface. 

Solar radiation for this study area was obtained from the NASA Surface Meteorology and 

Solar Energy website. An average solar radiation of 5.224kWh/m2/day and a clearness 

index of 0.6 were identified for the study area. Clearness index is the ratio of the solar 
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radiation striking earth’s surface to the solar radiation striking the top of atmosphere. 

Figure IV.1 shows the average monthly solar radiation and clearness index for the study 

area. The mathematical model of PV array using solar radiation available on the surface 

is given as in equation 4.1 [39-41], 

E���kWh� 	 G�t� � A � η��        (4.1) 

Where, G(t) is hourly solar irradiance in kWh/m2, A is the surface area of PV array in m2 

and ηPV is the efficiency of PV array. 

 

Figure IV.1: Global horizontal radiation of study area 

The PV array modeled in HOMER gives DC output in direct proportion to incident solar 

radiation. The installation cost of PV array is taken $3500/kW [42] and replacement cost 

is $3000/kW. Operation and maintenance (O&M) cost is practically zero and its lifetime 

is 25 years. A derating factor of 80% is applied to each panel to account for the degrading 

factors caused by temperature, soiling, tilt, shading etc. 
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IV.1.1.2 Wind Speed and Wind Turbine 

Wind speed data are measured at a height of 10m and average wind speed is determined 

to be 5.184m/s. Weibull parameter is estimated as k = 2 and 8 hours of daily peak wind 

speed is assumed. Technical information of wind turbine is presented below in Table 

IV.2 [43] and Figure IV.2 shows monthly average wind speed. Expression 4.2 defines the 

hourly energy generated by wind generator. 

E�����kWh� 	  
�

�
 ρ���� A � v� �  C� � η���� � t     (4.2) 

Where, ρwind is the density of air, A is the rotor swept area in m2, v is the velocity of wind 

in m/s, Cp is the maximum power coefficient or Betz limit, which is 0.59 theoretically, 

ηWECS is the efficiency of WECS and t is the hours of operation of WECS per day. 

Manufacturer Bergey Wind Power 

Turbine Type BWC Excel S 

Output 10kW AC 

Rotor Diameter 7m 

Capital Cost $31,770 

Replacement Cost $28,000 

Operation and Maintenance Cost $65 per year 

Lifetime 30 years 

Table IV.2: Technical information of wind turbine 
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Figure IV.2: Monthly average wind speed 

IV.1.1.3 Hydro Resource and Micro Hydro 

In the study area, the stream has a monthly average flow of 47L/s. With design flow of 

45L/s (0.045m3/s), 30m head and 70% efficiency, it is determined that a run-of-river type 

micro hydro plant of 9.27kW rated capacity can be installed. The capital cost for the 

installation of micro hydro is taken as $23,200 with replacement cost of $19,470 and 

operation and maintenance (O&M) cost of $475 per year [23]. The electrical power 

generated by micro hydropower generator in kW is given by, 

P !��kW� 	  η"#�$%
&.(��)�*+,-./�"

�000
       (4.3) 

Where, ηhydro is the efficiency of hydro power plant, Q is the discharge in m3/s, ρwater is 

the density of water in kg/m3 and h is the available head in m. 
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Figure IV.3: Monthly average stream flow 

IV.1.1.4 Biomass Resource and Biogas Generator 

As mentioned earlier, biomass comprises of wood chips and wastes from wood industry, 

agricultural and forest residues, animal wastes, kitchen wastes and energy crops if 

available. Biomass undergoes anaerobic fermentation to produce biogas in community 

scale or household scale biogas digesters. Biogas is used as fuel to generate power from 

engine-generator set. The average biomass available in study area is 3.9tonnes per day 

and monthly available average biomass resource is shown in Figure IV. 4. The capital 

cost of biogas powered generator is $1,000/kW with replacement cost of $850/kW and 

O&M cost of $0.01/hour [44]. The hourly energy generated by biogas generator is given 

by, 

E12 �kWh� 	  P12 � η12 � t        (4.4) 

Where, PBG is the rated power of biogas powered generator in kW, ηBG is the efficiency 

of biogas generator and t is the hours of operation of biogas generator in a day. 
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Figure IV.4: Monthly average available biomass resource 

IV.1.1.5 Fuel Cell and Hydrogen Tank 

Reformer uses hydrocarbon fuel to generate pure hydrogen and the produced hydrogen is 

stored in hydrogen tank which is used by fuel cell to generate DC electricity. The cost 

details of reformer, hydrogen tank and fuel cell is given in Table IV.3. Biogas is used as 

the hydrocarbon fuel, as it is cheap, readily available and renewable resource. The 

heating value of biogas is 20MJ/kg or 5.56kWh/m3 and the cost of biogas is assumed to 

be $0.3/m3 [38]. 

 Reformer Hydrogen Tank Fuel Cell 

Capital Cost $2,000/(kg/hr) $1,500/kg of H2 $2,000/kW 

Replacement Cost $2,000/(kg/hr) $1,400/kg of H2 $1,500/kW 

O&M Cost $15/yr $10/yr $0.02/hr 

Table IV.3: Cost details of reformer, hydrogen tank and fuel cell 
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IV.1.1.6 Energy Storage Devices 

Battery bank is the collection of one or more individual batteries. HOMER models a 

single battery as a device capable of storing a certain amount of DC electricity at a fixed 

round trip efficiency. It is assumed that battery properties remain constant throughout its 

lifetime and are not affected by external factors. The detail of battery used for IRES-MG 

in HOMER is listed in Table IV.4. Surrette 6CS25P is a deep cycle, high capacity, lead-

acid battery and is most suitable for renewable energy application [44]. 

Battery Type Surrette 6CS25P 

Nominal Voltage 6V 

Nominal Capacity 1,156Ah (6.94kWh) 

Lifetime Throughput 9,654kWh 

Capital Cost $1,250 

Replacement Cost $1,100 

O&M Cost $15/yr 

Table IV.4: Technical details of battery bank 

IV.1.1.7 Converter 

A converter is a device that converts DC power to sinusoidal AC power in inversion 

process and from AC to DC power in rectification process. The bidirectional converter 

costs $800/kW, has replacement cost of $750/kW and O&M cost of $15/yr for a lifetime 

of 30 years. The inverter and rectifier efficiencies are assumed to be 85% and 90% 

respectively [45]. 
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IV.1.1.7 Daily Electrical Load Profile 

Generally, load refers to the electrical or thermal energy demand. Serving load is the 

primary purpose of any power system. Daily electrical load profile is acquired based on 

basic demands of utilities such as lighting, cooling, communication and other household 

appliances etc. for each household. A school, health care center and a small scale industry 

are the major power consumers. The total electrical load consumption is 450kWh/day 

with average DC load demand of 178kWh/day and average AC load demand of 

272kWh/day. Figure IV.5 shows the daily load profile [35]. 

 

Figure IV.5: Daily electrical load profile of study area 

IV.1.1.8 Economics Constraints and Control Strategy 

A control strategy determines the operation of any system. It may require hourly 

decisions about the operation of generators, charging and/or discharging of batteries, 

grid-connection or stand-alone mode. Dispatch strategy must be applied for any system 
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with battery bank. It can be either load-following or cycle-charging. Under load-

following strategy, generator produces enough power to serve load and does not charge 

battery bank. While under cycle-charging strategy, generator runs at maximum rated 

capacity to serve load as well as charge battery bank. 

Economics play an important role in determining NPC and feasibility of a system. 

Annual interest rate of the project is assumed to be 8% and the project lifetime is set to 25 

years. Cycle-charging dispatch strategy is considered for the proposed IRES-MG. 

IV.1.2 HOMER Simulation Model 

The proposed model of IRES-MG for cost optimization in HOMER is shown in Figure 

IV.6. PV array, fuel cell and battery bank are connected to DC bus while wind turbine, 

biogas generator and hydro turbine are connected to AC bus. These AC and DC buses are 

connected through bidirectional converter. 
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Figure IV.6: IRES-MG model in HOMER for cost optimization 

IV.1.3 Simulation Result 

Simulation of IRES-MG in HOMER for cost optimization provides results in terms of 

optimal system configurations based on total net present cost and cost of energy. Several 

simulations were performed for different sizes of PV array, biogas generator, and 

converter, number of wind turbines and battery banks. The search space for each 

component is widened by introducing various sizes for each simulation to find the 

optimal system configurations. Combination of the equipment depends on the 

optimization parameters and sensitivity variable, if present. HOMER identifies and lists 

out all possible configurations for IRES-MG. Figure IV.7 shows optimization results of 

IRES-MG. 
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Figure IV.7: Cost optimization results for IRES-MG in HOMER 

HOMER uses following equation to calculate the net present cost [46]. 

Net Present Cost 	  
�,99,-;-,<

�=>��,?�
        (4.5) 

Where, Cann,total is the total annual cost, ‘i’ is the annual real interest rate, N is the project 

lifetime, and CRF (i, N) is the capital recovery factor given by  

CRF�i, N� 	  
���C��D

��C��DE�
          (4.6) 

Levelized cost of energy is calculated as, 

COE 	  
�,99,-;-

�G/HIC�J.KC�L/HJ,M,<.M
         (4.7) 

Where, Eprim and Edef are total amount of primary and deferrable loads respectively, 

served per year and Egrid,sales is amount of energy sold to grid per year. In the proposed 
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system, deferrable loads are not considered and the system is not grid-connected so, Edef 

and Egrid,sales are both zero. 

The optimal configuration of IRES-MG obtained from HOMER consists of 3kW of PV 

array, 1 number of BWC Excel S 10kW AC wind turbine, 9.27kW rated micro 

hydropower plant, 25kW biogas powered generator system, 4kW fuel cell, 8 numbers of 

Surrette 6CS25P battery banks of 1156Ah nominal capacity and 15kW bidirectional 

converter. Simulation result also provided the costs of optimal IRES-MG for given 

configuration. The total net present cost for IRES-MG over the project lifetime is 

$151,506. The capital cost, operating cost and levelized cost of energy for IRES-MG is 

around $122,470, $2,270 per year and $0.086 per kWh respectively. Table IV.5 shows a 

summary of the system components. 

Components 
Rated 

Capacity 

Capacity 

Factor (%) 

Production 

(kWh/yr) 

Annual Hours of 

Operation 

PV Array 3kW 19.7 5168 4380 

Wind Turbine 10kW 24.7 21640 8226 

Micro Hydro 9kW 89.0 72246 8760 

Biogas Generator 25kW 37.5 82079 5434 

Fuel Cell 4kW 0 0 259 

Battery (1156Ah) 8 nos. N/A 4128 N/A 

Inverter 15kW 0 N/A 43 

Rectifier 15kW 46.2 N/A 8317 

Table IV.5: Summary of cost optimization of IRES-MG in HOMER 
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Table IV.6 shows annual AC and DC primary load consumption as determined by 

optimization result from HOMER.  

Load AC Primary Load DC Primary Load Total 

Consumption (kWh/year) 99,280 64,905 164,186 

Fraction 60% 40% 100% 

Table IV.6: Annual AC and DC load consumption 

The levelized cost of energy of IRES-MG (8.6¢/kWh) is less than the present day cost of 

electricity in the US, which is around 11.6¢/kWh for residential customers [47]. Also, it 

is cheaper than cost of electricity from PV, CSP, natural gas and competitive with that 

from wind and coal. This shows that cost of energy from IRES-MG is competitive and 

therefore, suitable in rural areas. 

Emission from IRES-MG is also less compared to coal fired plant or diesel engine. The 

yearly emission from IRES-MG is shown in Table IV.7. Planting trees after consumption 

of forest residues for biogas production will minimize this emission. 

Pollutant Emission (kg/yr) 

Carbon dioxide 65.40 

Carbon monoxide 2.46 

Unburned hydrocarbons 0.27 

Particulate matter 0.18 

Nitrogen oxides 21.90 

Sulphur dioxide 0.0 

Table IV.7 Emissions from IRES-MG 
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Simulation in HOMER was done a number of times to evaluate the relationship of 

aggregate cost of energy with the biogas generator capacity. The graph below (Figure 

IV.8) shows the variation of cost of energy in $/kWh with change in biogas generator 

capacity in kW. 

 

Figure IV.8: Variation of total unit cost of energy with biogas generator rating 

The graph implies that as the capacity of biogas generator increases, the total cost of 

energy from IRES-MG decreases. This is because biogas is a cheap source of energy and 

biomass required to produce biogas is available at minimum or no cost. Also, the 

operation and maintenance cost of biogas generator does not increase with the increase in 

the capacity of generator. When the capacity of biogas generator is increased to see the 

variation in COE, capacity of some other generation sources is decreased, so that the 

same amount of energy is generated in each case. In this particular case, the capacity of 

PV and fuel cell was decreased. Since, the cost of electricity from PV is very high, 

decreasing the capacity, decreased the overall cost of energy from IRES-MG. 

0.06

0.07

0.08

0.09

0.10

0.11

0.12

18 20 22 25 28 30 32 35

T
ot

al
 C

os
t 

of
 E

ne
rg

y 
($

/k
W

h)

Biogas Generator Capacity (kW)

Aggregated Cost of Energy vs biogas generator 
capacity



51 

 

The cost optimized IRES-MG resulted in optimal configuration with a 3kW PV array, 1 

number of 10kW WECS, 9.27kW of micro hydro, 25kW biogas powered generator, 8 

numbers of battery bank with nominal capacity of 1156Ah, 4kW of fuel cell and 15kW 

bi-directional converter. These rated capacities of IRES-MG components are now used 

for efficiency optimization. 

IV.2 Efficiency Optimization of IRES-MG 

One of the features of IRES-MG is the power generation from more than one renewable 

energy sources. Integrating these sources help to overcome the weakness of one resource 

by the strength of other, thus helping to achieve high efficiency and/or improved 

performance. Also, combined heat and power operations of micro turbine or fuel cell will 

improve the overall efficiency than either system can achieve. Theoretical efficiency of 

any system cannot be achieved due to losses and material limitations. 

The objective in efficiency optimization is to maximize the overall efficiency of IRES-

MG. Efficiency can be defined as 

ηN%NOP 	  
�;Q-GQ-

�H9GQ-
          (4.8) 

Where, Poutput is the output power of a system (kW) and Pinput is the input power (kW). 

Efficiency also depends on the size and type of generators and engines. 

The problem formulation in IRES-MG differs depending on the configuration and system 

components. Inputs to IRES-MG are insolation, wind, water flow and biogas and the 

outputs are DC, AC and thermal loads. Since we have already determined the rated 
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system capacity from HOMER for cost optimization, the same rated system capacity is 

used for efficiency optimization. The efficiency optimization problem can be defined as 

Maximize  ηN%NOP 	  
�J.I,9J

�H9GQ-
         (4.10) 

Where, P�WXO�� 	  PY� Z P[� Z P 2! Z P\2!      (4.11) 

P���]N 	 P��^ Z P���� Z P̂ N$WOX Z P_�%`O^,12 Z P_�%`O^,>� Z P_�%`O^,N"W$XOP   (4.12) 

Pins is the power input to the PV array (kW), Pwind is the input power to wind turbine 

(kW), Pstream is the input power to hydro power plant (kW), Pbiogas,BG is power input to 

biogas generator(kW), Pbiogas,FC is the input power of fuel cell (kW) and finally 

Pbiogas,thermal is the biogas as an input for thermal load (kW). It is difficult to determine the 

input power of these components. But, efficiency and output of all the components are 

known. Equation (4.12) can be rewritten as follows [46], 

P���]N 	  
�ab

cab
Z  

�defg

cdefg
Z

�hi

chi
Z

�jk

cjk
Z

�lf

clf
Z

�mH;L,M

cmH;L,M
      (4.13) 

From equations 4.11, 4.12, and 4.13, we can write, 

Maximize  ηN%NOP 	  
�nfC�ofC�hkiC�pki

aab
qab

C 
adefg
qdefg

C
ahi
qhi

C
ajk
qjk

C
alf
qlf

C
amH;L,M

qmH;L,M
 
     (4.14) 

Subject to constraints: 

0 s P�� s 3kW , 3kW is the rated capacity of PV array 

0 s P���� s 10kW , 10kW is the rated power output of WECS 

0 s P ! s 9kW , 9kW is the rated power output of micro hydro 
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0 s P12 s 25kW , 25kW is the rated output of biogas powered generator 

0 s P>� s 4kW , 4kW is the rated capacity of fuel cell 

0s P_�%`O^ s 100kW , 100kW is the maximum power of biogas for thermal load 

0 s PY� s 22kW , 22kW is the peak DC load 

0 s P[� s 30kW , 30kW is the peak AC load 

0 s P 2! s 100kW , 100kW is the maximum MGH demand 

0 s P\2! s 65kW , 65kW is the maximum LGH demand 

IV.2.1 System Description 

For efficiency optimization of IRES-MG, the highest possible efficiency of each system 

component is considered. Efficiencies of various system components used in IRES-MG is 

shown below in Table IV.7. 

System Component Efficiency System Component Efficiency 

PV array 12% AC to DC converter 90% 

WECS 35% AC Power Supply 90% 

Micro Hydro 70% DC to AC Converter 85% 

Biogas Generator (CHP) 80% DC to DC Converter 97% 

Fuel Cell 68% MPPT 99% 

Battery 77% Biogas for Cooking 60% 

Concentrating Solar 

Collector (CSC) 
73% 

Flat Plate Solar 

Collector (FPC) 
72% 

Table IV.8: Efficiency of various system components 
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The concept of ‘resource-need’ matching is implemented in IRES-MG, so that the end 

use efficiencies are maximized. Energy generated by PV, WECS, micro hydro plant, 

biogas generator and fuel cell is used to meet the electrical demands, i.e. DC and AC 

loads. DC load is first served by IRES-MG and then the remaining energy generated 

serves AC loads. Medium grade thermal energy (MGH) requirements are met by biogas 

and concentrating solar collectors. Flat plate solar collectors serve low grade thermal 

energy (LGH) requirements. If solar collectors cannot satisfy thermal loads, electricity 

from IRES-MG is utilized to serve thermal loads. Finally, water supply needs for 

domestic and irrigation purposes are satisfied by wind powered and solar powered water 

pumps. If water supply demand is high than that can be served by water pumps, water is 

pumped from the stream from electricity generated by IRES-MG. 

IV2.2 Simulation Result 

For the simulation, following assumptions are made. 1kW solar powered water pump 

could pump 1000 gallons of water per hour i.e. 3.785m3 of water per hour [49]. Wind 

powered water pump of rotor diameter 4.5m and pumping head of 10-40m could pump 

30-70m3 of water per day [50]. 

Biomass comprises of animal wastes, forest and agricultural residues and household 

wastes. The minimum available biomass in rural area is about 2000kg/day and maximum 

available biomass is 3900 kg/ day. 1 kg of biomass produces 0.0625m3 of biogas and the 

energy value of biogas is 5.6kWh/m3. 

Flat plate collector and concentrating solar collector are used to serve thermal loads. The 

area of flat plate collector and concentrating solar collector is 100m2. 
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Simulation was performed in MATLAB. The energy needs and resource availability were 

varied randomly on an hourly basis. Simulations for 10 time steps were generated and 

time step of one hour was considered. The time step of one hour is sufficient as these 

renewable resources do not vary significantly over an hour. Apart from the water needs, 

all the energy needs and resources are in kWh and the water supply needs and resources 

are in m3/hr.  

Figures IV.9 to IV.14 show the variations of available resources, i.e. energy generated 

from photovoltaic, WECS, biogas powered generator, micro hydro, fuel cell, flat plate 

and concentrating solar collectors and biogas for thermal load in hourly basis. 

 

 

Figure IV.9: Energy generation from photovoltaic and fuel cell 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8 9 10

kWh

Time step (hrs)

Energy generation from PV and Fuel Cell  

PV

FC 



56 

 

 

Figure IV.10: Energy generation from WECS and micro hydro 

 

 

Figure IV.11: Energy generation from biogas powered generator 
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Figure IV.12: Energy generation from biogas to serve thermal load 

 

 

Figure IV.13: Energy generation from concentrating and flat plate solar collector to serve 

thermal load 
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Figure IV.14: Water pumped by solar and wind powered water pump 

Figures IV.9 to IV.11 show hourly energy generation from PV array, WECS, micro 

hydro, biogas and fuel cell. Figure IV.12-13 show hourly energy generation from biogas 

and solar collectors. And Figure IV.14 shows the amount of water pumped in an hour by 

solar and wind powered water pumps. 

Next, Figures IV.15 to IV.19 show DC, AC, MGH and LGH energy demands and water 

supply demands served by the energy generated from IRES-MG. 
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Figure IV.15: DC load served by PV, WECS, micro hydro and biogas generator 

 

IRES-MG first serves DC load as shown in Figure IV.15. Energy generated by PV is 

utilized first to meet the DC load. Since PV array is rated only 3kW, in most of the cases 

it is not enough to satisfy DC load. Therefore, WECS, micro hydro (MH) and biogas 

generator (BG) is utilized to serve DC loads. The remaining energy generated from these 

sources is then utilized to meet AC loads. If all the energy generated from any of these 

sources is consumed by DC load, it would not be able to supply AC loads. Here, PV 

cannot be utilized in serving AC load, as all the energy generated from PV is consumed 

by DC load. 
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Figure IV.16: AC load served by WECS, micro hydro, biogas generator, fuel cell and 

battery 

 

Figure above shows energy generated by WECS, MH, BG, fuel cell (FC) and battery is 

utilized in serving AC load. PV is not available as the energy generated by PV array is 

consumed by DC load. 9th time step shows that MH, BG and FC were not enough to 

satisfy AC load, so battery and fuel cell was used to serve the remaining AC load. The 

remaining energy, if available, after serving DC and AC loads, is then used to serve 

thermal loads, in case biogas and solar collectors are not enough. 
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Figure IV.17: Biogas, concentrating solar collector and electricity serves MGH demand 

 

Figure IV.17 shows MGH demand served by thermal resources. Biogas is first used to 

meet MGH load and if biogas is not able to fulfill all MGH load, concentrating solar 

collector is used. If these two are not capable to serve entire MGH load, electricity is 

used. As shown in Figure, in 2nd, 4th and 8th time step MGH load is served by biogas and 

concentrating solar collector along with electricity, as biogas and solar collector were not 

enough to serve MGH load. 
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Figure IV.18: LGH demand is satisfied by flat plate solar collector and electricity 

 

LGH load is served by flat plate solar collector most of the time. Normally, solar 

collector is enough to serve LGH load, but in cases where insolation is not enough, 

electricity from IRES-MG is used to serve LGH load. 4th time step in Figure IV.18 shows 

LGH demand is satisfied by flat plate solar collector and electricity.  
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Figure IV.19: Water supply needs satisfied by solar and wind powered water pump  

 

Water supply in this study area is needed for irrigation and domestic purposes. Wind 

powered and solar powered water pumps are used to pump water to fulfill water supply 

demand. Both water pumps, stores the water pumped in the overhead tank. If these two 

are not enough to supply water needs, water is pumped by electricity from IRES-MG 

from the stream to fulfill the water supply needs, as shown in Figure IV.19. 

The efficiency of IRES-MG was calculated using, 
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Where, EDC, EAC, EMGH and ELGH are the hourly energy demands in kWh for DC, AC, 

MGH and LGH loads respectively. EPV, EWECS, EMH, EBG, EFC, EBATT, Ebiogas and ESC are 

the hourly energy generated in kWh by PV array, WECS, micro hydro, biogas generator, 

fuel cell, battery, biogas and solar collectors respectively. The graph of overall efficiency 

of IRES-MG for the 10 random simuation is shown in Figure IV.20. 

 

Figure IV.20: Graph showing total efficiency of IRES-MG after efficiency optimization 

 

Figure IV.21-22 shows the variation of efficiency with input energy and energy demand 

of IRES-MG for randomly generated values. 
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Figure IV.21: Variation of overall efficiency of IRES-MG with energy demand 

 

 

Figure IV.22: Variation of overall efficiency of IRES-MG with energy input 

Figures IV.20-22 shows that, efficiency of IRES-MG is as high as almost 90% to as low 

as 58%. This shows that efficiency of IRES-MG is high than the individual efficiency of 

the components. Also the overall efficiency depends on demand and input of IRES-MG. 
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IV.2.3 Efficiency Comparison with HRES 

Figure IV.23 shows the block diagram of HRES and Figure III.1 shows the block 

diagram of IRES-MG for efficiency comparison between these two systems. 

Figure IV.23: Schematic of hybrid-coupled Hybrid Renewable Energy System 

 

Table IV.9 shows the efficiency comparison of IRES-MG with HRES for different 

resources like PV, WECS, micro hydro, biogas generator and fuel cell for DC, AC and 

thermal energy demands. 
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PV system 

IRES-MG 

  MPPT DC-DC DC-AC AC PS overall η 

DC loads 0.99 0.97     0.960 

AC loads 0.99   0.85 0.90 0.757 

  Solar collector     overall η 

thermal 
load 

0.72     0.720 

HRES 

  MPPT DC-DC DC-AC AC PS overall η 

DC loads 0.99 0.97     0.960 

AC loads 0.99 0.97 0.85 0.90 0.735 

  MPPT DC-AC AC PS 
AC-heat 
pump 

overall η 

thermal 
load 

0.99 0.85 0.90 0.50 0.379 

 

 

Wind System 

IRES-MG 

  AC-DC DC-DC AC PS Overall η 

DC loads 0.90 0.97   0.873 

AC loads     0.90 0.900 

HRES 

  AC-DC DC-DC AC PS overall η 

DC loads 0.90 0.97   0.873 

AC loads     0.90 0.900 
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Micro Hydro 

IRES-MG 

  AC-DC DC-DC AC PS overall η 

DC loads 0.90 0.97   0.873 

AC loads     0.90 0.900 

HRES 

  AC-DC DC-DC AC PS overall η 

DC loads 0.90 0.97   0.873 

AC loads     0.90 0.900 

 

Fuel Cell 

IRES-MG 

  DC-DC DC-AC AC PS overall η 

DC loads 0.97     0.970 

AC loads 0.97 0.85 0.90 0.742 

HRES 

  DC-DC DC-AC AC PS overall η 

DC loads 0.97     0.970 

AC loads 0.97 0.85 0.90 0.742 

 

Battery Storage 

IRES-MG 

  DC-DC DC-AC AC PS overall η 

DC loads 0.97     0.970 

AC loads 
 

0.85 0.90 0.765 

HRES 

  DC-DC DC-AC AC PS overall η 

DC loads 0.97     0.970 

AC loads 0.97 0.85 0.90 0.742 
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Biogas Generator System/Microturbine 

IRES-MG 

 
AC-DC DC-DC AC PS overall η 

DC loads 0.90 0.97 
 

0.873 

AC loads 
  

0.90 0.900 

 
Cooking 

 
overall η 

Thermal load 0.6 
 

0.600 

HRES 

 
AC-DC DC-DC AC PS overall η 

DC loads 0.90 0.97 
 

0.873 

AC loads 
  

0.90 0.900 

 
AC PS AC-stove overall η 

Thermal load 
(cooking) 

0.90 0.50 0.450 

Table IV.8: Efficiency comparisons of IRES-MG with HRES 

The efficiency comparison table includes only the efficiency of the system components 

excluding PV array, WECS, micro hydro, biogas generator, fuel cell and battery storage 

system. For this particular HRES, the efficiency with which the sources can supply DC 

and AC loads is the same as that of IRES-MG. In case of thermal loads, the efficiency 

with which HRES can supply thermal loads is less than that of IRES-MG. This is because 

HRES has only one final form of energy, electricity, unlike IRES-MG which can directly 

supply thermal load. For example, IRES-MG can serve thermal load in appropriate 

energy form unlike HRES, which converts all the energy sources to electricity and then to 

suitable form to serve thermal load. Lot of energy conversion and losses makes HRES 

inefficient and expensive. Therefore, overall efficiency of IRES-MG is higher than that of 

HRES. 
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CHAPTER V 
 

 

CONCLUDING REMARKS 

 

V.1 Summary 

IRES-MG is an effective and efficient system that can be employed to energize rural 

areas by harnessing locally available renewable energy sources. The resource-need 

matching employed by IRES-MG enables effective and economic means to provide 

energy in such areas. Optimization study of IRES-MG in for a rural community shows 

that the system can be implemented in cost effective manner as compared to other 

systems such as HRES and other present day system. 

The study area is a remote rural village located at 30° 32’ N latitude and 78° 03’ E 

longitude. The village has a population of 700 with 60 scattered households and 450 

cattle including bovine, poultries, swine etc. The study area has adequate sunshine, low to 

moderate wind speeds, falling water and abundant biomass year round. 

IRES-MG is first cost optimized in HOMER software that resulted in an optimal 

configuration with a 3kW photovoltaic system, 10kW wind generator system, 9kW hydro 

turbine-generator, 25kW biogas powered generator system, 4kW fuel cell backed up by 

eight batteries with nominal capacity of 1156Ah. The optimized IRES-MG had a capital  
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cost of $122,470, total net present cost (NPC) of $151,506, operating cost of $2,720 per 

year and aggregated unit cost of energy 8.6¢/kWh. 

After the system is cost optimized, efficiency of IRES-MG was studied in some detail. 

Efficiency of IRES-MG as obtained from simulation is as high as 90% and the efficiency 

comparison has shown that it is more efficient than hybrid system and individual systems. 

Simulation results have shown that efficiency of IRES-MG is greater, especially in the 

case of thermal loads, as IRES-MG can supply thermal load directly, unlike HRES or 

grid connection. 

IRES-MG is flexible enough to be adapted and upgraded, so that it can be implemented 

not only in a remote rural area, but also in urban communities or in a building setting. 

The system is self-sufficient and it can open up job opportunities as well. The 

implementation of IRES-MG will also bring about socio-economic benefits such as 

improved quality of life, lighting for studies, street lights, educational activities, 

communication, and provisions of water near farms and homes. As can be seen from the 

simulation result, biogas usage is high because of the year round availability of biomass. 

Using biogas for cooking and heating instead of traditional biomass results in a 

significant improvement in women’s health. IRES-MG can be modified according to the 

changes in resources, needs and requirements of the community as well as the availability 

of new and cheaper technologies. 

V.2 Scope for Future Work 

Since IRES-MG utilizes the locally available renewable energy sources, it is site specific. 

In order to implement IRES-MG, consultation with rural communities and a detailed 
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study of area must be done before-hand. This helps in learning about the needs and 

resources of the site for the resource-need matching of IRES-MG. A detailed 

optimization using MATLAB optimization toolbox and genetic algorithm can be done in 

future. A comprehensive study can be undertaken to evaluate the system performance 

under various conditions. Issues as voltage regulation, stability, power quality, etc. can be 

studied so that the system under consideration can be designed to deliver energy 

effectively and reliably. IRES-MG can be automated with digital devices by employing 

sensors and intelligent control. 

IRES-MG’s capability to “energize” a community with locally available renewable 

energy resources is based on its inherent efficient and flexible design. Hence, it can be 

concluded that IRES-MG will prove to be a very economical and efficient energy system, 

not only in the rural sector but in urban communities as well. 
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APPPENDIX A 
 

 

 

Hourly energy generation from renewable energy resources 

 

  PV WECS MH BG FC BATT biogas CSC FPC 

 kWh kWh kWh kWh kWh kWh kWh kWh kWh 
1 1.22 8.44 8.23 9.42 3.51 7.85 27.42 18.21 17.96 
2 1.48 6.55 8.78 13.46 1.13 9.76 19.51 16.84 16.61 
3 1.95 5.16 7.65 16.54 0.47 1.48 28.42 25.46 25.12 
4 0.64 5.20 8.98 12.25 2.78 4.11 26.00 4.54 4.48 
5 1.10 3.69 8.37 14.95 3.16 3.68 26.67 21.15 20.86 
6 0.52 3.91 8.66 20.08 0.24 3.99 24.68 15.91 15.69 
7 2.38 5.77 7.88 6.44 3.01 2.29 24.47 34.98 34.50 
8 1.30 6.55 7.22 23.34 0.75 2.66 18.12 14.87 14.67 
9 0.30 1.42 7.34 4.91 1.27 3.16 20.57 30.28 29.86 
10 0.54 0.45 8.45 8.69 2.64 3.84 31.02 40.63 40.08 
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Appendix B 

 

Randomly generated energy demand, energy efficiency and the efficiency of IRES-MG. 

 

S.N. Energy demand(kWh) Energy input (kWh) Efficiency 

1 79.30 102.27 0.78 

2 69.28 94.12 0.74 

3 73.70 112.26 0.66 

4 59.81 68.98 0.87 

5 54.48 103.63 0.53 

6 65.98 93.68 0.70 

7 68.14 121.72 0.56 

8 71.26 89.48 0.80 

9 73.09 99.10 0.74 

10 77.39 136.33 0.57 
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