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CHAPTER 1

INTRODUCTION

This chapter introduces one of the important problems irpth#ic transportation system-
bridge deck inspection. Currently, the bridge deck ingpacis performed by a human
inspector. We propose a system which consists of a mobilet tobreplace the human
inspector because of the capability of the mobile robot tseb¢han the human inspector.
To implement this, we discuss several challenges that we teeaddress in this research.

We also discuss some literature on crack inspection thaksated to our work.

1.1 Motivation

For many engineered transportation structures, includiviy mechanical and aerospace
structures, timely awareness of their structural healthpravent functional failures which
may lead to catastrophic consequences. On August 1, 2@@ollapse of the I-35W Mis-
sissippi river bridge (See Figure 1.1) that carried IntaesB85W across the Mississippi river

in Minneapolis left 13 dead and more than 100 injured [6],tnohention its big impact on

Figure 1.1: I-35W bridge over the Mississippi river in Mirapolis collapsed [1].



Figure 1.2: A human inspector measures cracks for bridgle uhaintenance.

the traffic and businesses in the surrounding areas. Thideatdas clearly demonstrated
the catastrophic results of structural failures and theoirtgmce of timely awareness of
structural health. Bridge decks are typically the elemehfgst maintenance on a bridge.
Since the surface of a bridge deck is exposed to the envimmieect loading from vehi-

cles and exposure to deicing chemicals, constant mainteriara must. Therefore bridge
deck inspection is helpful and can provide owners warnirteduture deterioration of the

bridge deck. Currently, bridge decks are inspected witly vadimentary methods in the
form of visual inspection by a trained engineer as showngufé 1.2. While these inspec-
tions are useful, they are only useful if the deterioratibthe bridge deck is significant.

The inspectors usually walk though the bridges and meakareraick locations and crack

sizes. This kind of manual approach has the following diaathges:
1. Itis prone to human errors.
2. It has very limited accuracy due to the limited visual dajiy of human inspectors.
3. It cannot guarantee the full coverage of the whole bridegkd

Additionally, conducting visual crack inspection of a lg@ldeck is a dangerous job with
passing traffic. Therefore, we need to develop a robotickchagpection and mapping
(ROCIM) system which can conduct accurate assessmentaKiogeon bridge decks. The

ROCIM system will have the following features which outmenh the human inspectors:



1. A high resolution camera will be mounted on the mobile tab@chieve high accu-

racy of crack detection.

2. The crack locations can be accurately determined sireceothot can localize itself

precisely.

3. Using mobile robots will reduce the chance of the loss ohan life.

1.2 Challenges

In the ROCIM system, a mobile robot is utilized to create a tiwaensional (2D) map of
the bridge deck using a laser sensor while a camera is usedléstamages of the bridge
deck surface. The collected images are then processedinsugg processing techniques
to detect the cracks. We store the crack locations in the 2P, mhich then becomes a
crack map. The crack map is useful for bridge deck maintemamterms of measuring,
classifying and monitoring cracks periodically. In ordeiimplement the ROCIM system,

there are several challenging problems that we need to s&lddgich are listed below:

1. The coordinate transformation. To create a crack mapgrdnek location has to be
plotted in the global coordinate system which is the samedinate system as the
2D map of the bridge deck. Since the cracks are detected imthge coordinate
system, we have to map the crack locations from the imagelowie system to the

global coordinate system.

2. The path planning of mobile robot. The path planning stheakure the mobile robot
can inspect the whole area of the bridge deck surface in anegiffiwvay. Unlike the
typical complete coverage path planning of a vacuum clesoi®t, which uses the
robot body as the coverage, the mobile robot in ROCIM systeimterested in the
union of camera field of view as the coverage, which poses sbifireulties in the

path planning.



3. The mobile robot localization. To create the 2D map of thédge deck, the mobile
robot needs to know its current position. Robot localizatsa challenging problem

in robotic research.

1.3 Literature review

Recent years have witnessed growing research interestsuctwsal health monitoring
(SHM) [71,[8],[9],[10],[11] for bridges, buildings and beér civil infrastructures. Research
in structure inspection using robotic devices has resiuftedveral prototypes. Yet al. [5]
presented an auto inspection system using a mobile robdetecting concrete cracks in a
tunnel. Their system consists of a mobile robot, a data geosgistem and a crack detector.
The crack is detected using image processing and the créawknation is extracted using
Sobel and Laplacian operators [5]. In addition to theiresgstan illuminator is used to dis-
tinguish the crack and non-crack areas. Their mobile roggtesn has a complex imaging
system to reduce noise resulted from the mobility of molmleot. Sinheet al. [12] devel-
oped a statistical filter for crack detection in pipes. A twepsalgorithm is proposed. First,
crack features are extracted from the segmented image. Teodetectors are applied
to extract the crack information. Then, both responses amgea to obtain a unique re-
sponse. Second, apply cleaning and linking operation ta foe global cracks. Tunef al.
[13] proposed the development of a mobile manipulator imggystem for bridge crack
inspection. The manipulator system is equipped with a hitesacharge coupled devices
(CCD) camera. Their system aims to replace human inspedteeset al. [14] and Ohet
al. [15] proposed a bridge inspection system which consistssplegially designed car, a
robotic mechanism and a control system for automatic cratiation. Their system mea-
sures the length and width of the cracks. The measuremarit igstored in the database
which is utilized in the bridge management system. Sehal. [16] proposed an auto-
matic procedure for monitoring crack growth on concretedtires. Their system focuses

on quantifying the change of cracks from multi temporal ies&gluring the monitoring



period. A modified iterated Hough transform (MIHT) is dev@al to solve a 2D projec-
tion between 2D concrete surface and 2D digital image [16]et al. [18] demonstrated
an automatic measurement system for concrete block inepday means of fine crack
extraction. Most of these studies classify, measure, atetteracks. However, none of
these crack inspection studies finds the global locatiomaaflks. In this thesis, we develop
an overall system for robotic crack inspection. We deteatks using a high resolution
camera. Then we find the location of cracks in the 2D map. Tarernthe completeness
of the crack map, the inspection has to cover the whole ardsediridge deck surface. In
other words, the complete coverage path planning must Heedgpr the ROCIM system.
There are several related works for complete coverage gatinipg using mobile
robots. Choseet al. [19] [20] developed a complete coverage path planning usogs-
trophedron motion. The environment is decomposed inte @id the back and forth
motion is applied for each cell. Two types of decompositiendiscussed: boustrophedron
decomposition and trapezoidal decomposition. The boplsadron decomposition gives
more efficient coverage path planning than trapezoidalmeosition because it has fewer
cells to be covered. Muzaffet al. [21] investigated a genetic algorithm to coverage path
planning for mobile robots. The coverage is modeled as awlsk&h represents the range
of sensing devices. The genetic algorithm is used to find dimop or near optimum
path in order to cover the disk at least once. Patlal. [22] utilized a genetic algorithm
to find the most efficient coverage path in a static environim&he proposed algorithm
decomposes the region into sub regions to separate theclebatad non obstacle area.
Their algorithm considers two common templates, zigzagveindowing, to cover in the
sub region area. The fitness function of the genetic algorithdefined based on distance
and time. Simoret al. [23] developed a neural network approach to complete cgeera
path planning. The dynamic neural activity based on Hodgkith Huxley’s [24] shunting
equation is used to develop the complete coverage pathiptanphe idea is unclean area

attracts the mobile robot and the obstacle pushes the molhit¢é away. The result shows



that the number of robot turns and traveling distance aremiwed. Most of these works
consider the robot body as the coverage and the camera fieldvo{FoV) is not studied.

In the ROCIM system we are interested in covering the cameYa Fhere are challenges
in the planning problem due to the configuration of the canaeré the mobility of the

robot. In addition, we present a solution to this problemeblasn genetic algorithm. The
solution of complete coverage path planning (CCPP) is dgesl under the condition that
the mobile robot knows their position. To solve this locatian problem, we use Monte
Carlo localization algorithm [25]. We utilize an advanceaige navigation laser (ARNL)

from the Mobilerobot Inc. [2] to implement the MCL algorithm

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 presentsymverof the ROCIM system.
The camera calibration is discussed in Chapter 3, which finesntrinsic and extrinsic
parameters that describe the geometric mapping betweeiDtweorld and the 2D image.
Chapter 4 presents the algorithm for crack detection. @ndpuiscusses the complete
coverage path planning for the ROCIM system. The path pianig developed using
genetic algorithm to ensure the complete coverage of cafredaof view (FoV) and to
minimize the traveling distance and the number of robotgurifhe experiment results
for the overall ROCIM system and the complete coverage plattnmg are discussed in

Chapter 6. Finally, conclusions and future work are giveGlvapter 7.



CHAPTER 2

ROCIM SYSTEM OVERVIEW

In this chapter, we first introduce the hardware setup of dDCR system. The main
hardware for the ROCIM system is a mobile robot, which trawekhe inspection area and
collects images of the bridge deck surface. Then, the mawipte of the ROCIM system

is presented as follows: navigation, data collection aadlcmap generation.

2.1 Hardware setup of the ROCIM system

Figure 2.1 shows the overall hardware setup of the ROCIMesysthich consists of:
e one Pioneer3-DX mobile robot
e one LMS-200 laser sensor
e one Pan-tilt-zoom (PTZ) Canon VC-C50i camera
e One laptop

Inside the mobile robot, there is an on-board computer wititéd memory and processor
power. Therefore, we utilize a laptop computer to implenoamhplicated algorithms such
as cracks detection, localization, and path planning.

The Pioneer3-DX is a two-wheel drive mobile robot and has mb@ard computer.
The processor of the on-board computer is a Pentium Il 533 With 128 MB RAM and
it also has a 44.2368 MHz Renesas SH2 32-bit RISC micropsocegsth 32K RAM. The
communication between the two processors on this mobiletislibased on a client-server

architecture.



Figure 2.1: ROCIM system in action.
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Figure 2.2: Connection setup between the laptop and thelenatiot [2].
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The laptop is an HP G62-140US which has a 2.13GHz Intel Co&3{BProcessor
and 4GB DDR3 system memory. The laptop and the mobile roltammunicating
via wireless technology through Transmission Control &rot (TCP). The laptop controls
the microprocessor by sending TCP data packet to the ordlmoanputer. This TCP data
packet is converted into serial data to communicate witifeeoprocessor. The illustra-
tion of the wireless communication is shown in Figure 2.2adidlition, the ethernet access
point can also be removed by using a peer to peer wireleseetheetwork between the
laptop and the on-board computer.

The LMS-200 laser sensor is used to create the 2D map of tigebdeck and localize

the robot during the inspection. This sensor has’ #@ring angle and is able to estimate



a range up to 15 meters [2]. This device connects to the ordlmmamputer through serial
communication. Another important device is the PTZ CanonrGADi camera. Itis a color
camera with a resolution of 86®40 and optical-zoom-in of 26. The orientation of this
camera can be changed and the ranges of the pan and tilt @mgle$08 to 10¢, 30°

to 9C°, respectively. This camera produces high resolution imaggch can be used for

crack detection in concrete environments.

2.2 Principle of the ROCIM system

To conduct bridge deck crack inspection and mapping, astiited in Figure 2.3, we will
block half of the bridge. The ROCIM system will then be degdyo inspect the blocked
half of the bridge. Once completed, the traffic will be swédHo the completed half and
the other half will be inspected. During the ROCIM operatitite images of the mobile
robot will get blurred due to the vibration caused by the paps$raffic. To solve this
problem, an anti-shock device can be used underneath theraariMoreover, when the
mobile robot collects the images, we assume the mobile @irapletely stops in order to
capture a clear image.

There are three steps in crack inspection and mapping.

1. Navigation map building: A 2D bridge deck map will be cezhfirst, which will be

The
navigation

............................ by d— path

World : : :
frmew G

Figure 2.3: Scenario of crack inspection and mapping usiadgrOCIM system.
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Figure 2.4: Principle of the ROCIM system.

used to localize the robot during the data collection step.

2. Data collection: The robot will navigate on the bridgeldexcollect the image data
at different locations. The raw image data can be storeddmothboard computer or

transferred to a nearby laptop computer using wirelesseaxdiion.

3. Crack detection and crack map generation: Cracks willdieated through image
processing. The crack map will be created by piecing togethaétiple local crack

maps. This step can be performed off-line on the laptop caenpu

The proposed crack inspection system works according tar&ig.4. To create a navi-
gation map, we use a simultaneous localization and map@ibgN) algorithm [26]. The
SLAM algorithm estimates the robot locations and create2th map at the same time.
We utilize the Mapper3 software [2] to create the 2D map. Afite map is created, the
mobile robot has a prior knowledge of the environment andrttet can localize itself
based on that map using a Monte Carlo localization (MCL) @digon [25].

Camera calibration is used to find the relationship betwieeimhage coordinate system
and the robot coordinate system. Using the camera mountesparf the robot, the posi-
tion and orientation of the camera are assumed to be statithér words, the relationship
between the camera and robot coordinate system is assunbedfit@ed once the camera
orientation is fixed. We denote this relationship as a casmavat transformation. The
crack locations in the image coordinate system can be mappbéd robot coordinate sys-

tem through this transformation. During the inspectioe, tbbot will travel on the bridge
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deck and localize itself according to the 2D map. Thereftire relationship between the
robot coordinate system and the global coordinate systenbeaound using the MCL
algorithm. We denote this relationship as a robot-globaldimate system transformation.
Another transformation is an image-camera coordinateesystansformation that can be
found from camera calibration. In order to create the craak nwe derive an image-global
coordinate system transformation which is a multiplicatbdimage-camera, camera-robot
and robot-global coordinate system transformation.

After all images are collected, they will be processed usiiregLaplacian of Gaussian
(LoG) algorithm [27] [28] to detect the cracks. The LoG algun finds a zero-crossing
as an edge in the second differential of the image intenSityce the cracks are detected
using the LoG algorithm, the crack locations are found inith@ge coordinate system. In
order to create the crack map. We apply the image-globabooate transformation to map
these crack locations to the global coordinate system.

To ensure the mobile robot collects all the images on thegkridieck in an efficient
manner, we explore using a complete coverage path planQi@§®) algorithm for the
ROCIM system. We propose a robotic inspection path planbasgd on the genetic algo-
rithm (RIP-GA) to solve this CCPP problem.The RIP-GA alg¢fum will run off-line after
the 2D map of the bridge deck is generated. The output of RARs@ path which consists
of a sequence of robot locations in the 2D map with a partiaolaot and camera pose. To
implement this algorithm, the mobile robot has to travelsding to this path and collects
an image at each location.

In the last part of the ROCIM system, there is an alignmentese to connect the
continuous crack in different images. Since the calibradad localization have certain
error due to distortion and noise, this alignment procesdeaised to improve the accuracy
of the crack map. In this thesis, we mainly focus on develgpihe overall solution for
crack detection and the path planning strategy for the RO§sem. We will solve the

alignment problem as part of our future work.
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CHAPTER 3

CAMERA CALIBRATION

In the ROCIM system, a mobile robot detects cracks in the eragrdinate system while
a crack map should be created in the global coordinate sysk&nce, camera calibra-
tion is needed to map the crack locations from the image toatel system to the global
coordinate system. In other words, we need to find a transftiom matrix to map these
crack locations. In this chapter, first, we discuss a pin bal@era model for the camera
calibration. Second, a Matlab camera calibration toollsdrtroduced to solve the camera
calibration [4]. Last, we discuss an overall coordinat@gfarmation to create the crack

map.

3.1 Camera model

Camera calibration is a process of geometric mapping betiiees3D world and 2D images
using a set of points. The geometric mapping consists oinsitrand intrinsic parameters.
Figure 3.1 illustrates the pure perspective projectiorhefggin hole camera model. Here,
we have a poinP in the global coordinate system and the center of the piojed at the
origin O of the camera coordinate systé&n The image planél is parallel to thexy plane
of the camera coordinate system with displacement of fecejth () along thezaxis. The
principal point is an intersection of plafitand thez axis. The coordinates of the principal
point in the image coordinate systérre [uo, Vo] "

The coordinate of P in the global coordinate systenXj¥]Z]". The coordinate op in
the image coordinate system is §]". The following homogeneous equation can be used

to express the transformation of these coordinate systems.

12
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whereF is the perspective transformation,is a scale factorL describes the intrinsic
matrix, andM denotes the mapping from the global coordinate system toahera coor-
dinate system which consists of rotatiBrand translation. The decomposition of matrix

L andM are shown in Equation 3.2 and Equation 3.3, respectively.

sf O,UO 0
L=] 0 f w O (3.2)
00 10
R t
M = (3.3)
01

wheret = [ty t,,t;]T andR can be defined by the three Euler angle®, andy. These

Prpjection center O
-:?/ w
Camera coordinate system C —_—

Image coordinate sylstem I Object point P

Global coordinate system G

Figure 3.1: lllustration of pinhole camera model [3].
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angles can be computed using the rotation marix

0 = sin*ra (3.4)
¢ = atarQ(—ﬁ ﬁ) (3.5)
co¥’ co¥ '
o1 11
= atal2(———, — 3.6
v ( coy’ co¥ (3.6)

The variabled,, ty,t,, 6, ¢, andy are called extrinsic parameters agsd, Uy, and vy are
denoted as intrinsic parameters.

Figure 3.1 shows the ideal projection of a point in the glalmrdinate system to the
image coordinate system. In practice, there will be an ddistortion) caused by the lens
system. Many research works have been proposed to addtbésthiiproblem. The main
approach is to decompose the distortion into radial andrdedag components [3]. Here,
we utilize the Matlab camera calibration toolbox to condinet camera calibration. The

interface of this toolbox is shown in Figure 3.2.

<) Camera Calibration Toolbox - Standard ¥ers o ] [T

Image names

Read images

Extract grid cormers

Calibration

Show Extrinsic

Reproject on images

Analyse ermar

Recomp, corners

AddiSuppress images

Save

Load

Exit

Comp. Extrinsic

Undistart image

Export calib data

Show calib results

Figure 3.2: Matlab camera calibration toolbox [4].

3.2 Camera calibration using Matlab toolbox

In this section, we briefly present the steps of using Mattaidbiox to solve the camera
calibration problem for the ROCIM system. The input of theslbox is a set of n points
in the image and the global coordinate system where 5. The output is the intrinsic
and extrinsic parameters of the camera calibration. Thegghare of the calibration in our

experiment is described as follows:

14



(a) Image for camera calibration (b) Corner extraction result

Figure 3.4: A chessboard is used for camera calibration.

1. Setup the experiment as shown in Figure 3.3. A chessbsarskd as the object for
the calibration. Since the grid has the same length butrdiftecolors for neighboring

grid cells, the location of the corner points can be estichateurately.

2. Capture an image of the chessboard using the mobile rabwt@ as shown in Fig-

ure 3.4(a). This image will be used as the input for the toalbo

3. Extract the grid corners to find the set of n points in thegenand the global coordi-

nate system. Figure 3.4(b) shows the result of the corneaaidn.

4. Run the calibration. The results of the calibration aegititrinsic parameters and the

15
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(a) camera-oriented view (b) global-oriented view

Figure 3.5: The result of camera calibration using Matlaijliox.

extrinsic parameters which are shown in Figure 3.5(a) agdrgi3.5(b).

3.3 Coordinate transformation

In this section we discuss the coordinate transformatiomap the crack location from
the image coordinate system to the global coordinate systsnwe mentioned before
that the mobile robot travels in the inspection area ancectdlthe image of the bridge
deck surface. The location and orientation of the mobileotaian be estimated using
Monte Carlo localization (MCL) algorithm [29] [25]. The MCalgorithm is a sampling-
based method to approximate a probability density ditiobwof the robot locations. Each
sample consists of a possible robot location and a prolbabikat the robot currently is at
that location. We use advanced range navigation laser (ARiRtary [2] to implement
the MCL algorithm. Figure 3.6 shows a graphic user interi@¥l) of the mobile eyes
software where the MCL result can be visualized [2]. The iederepresents the mobile
robot body. The green and blue dots denote previous andntigaeples, respectively.
These samples are measured using the laser sensor. Theatifor of the current position,
orientation and the probability for the current locatiom tee seen in this GUI.
Camera calibration finds the extrinsic and the intrinsi@paaters of the camera. Subse-

quently, we utilize those parameters to map all crack looatio the 2D map by assuming
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Figure 3.6: Graphic user interface for mobile eyes [2].

that the transformation between the camera coordinatersyand the robot coordinate
system is fixed, for a given camera orientation.

The ROCIM system involves five coordinate systems as showsguare 3.7. They
are: image coordinate systef, ], camera coordinate systeriRd), local coordinate sys-
tem (F_), robot coordinate systenfr{) and global coordinate systeriad). After we do the
camera calibration, we have the intrinsic and the extriparameters. The intrinsic param-

eters are focal lengthi ), skew value §) and the origin of image coordinate systeus, (/o)

Global coordinate system (Fg)

Z. G [0} Camera coordinate system (Fc)

Xc

Image coordinate system (Fy)

Yo

Local coordinate system (Fp)

0 X

Figure 3.7: Coordinate systems in the ROCIM system.
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as described in Equation (3.2). The extrinsic parametersaaation R) and translationt]
matrices as in Equation (3.3) [3]. These parameters defméraimsformation matriXT¢
and®T_, respectively. In the ROCIM system as the robot collectsitieges, it saves its
current location in the global coordinate system. After wéedt the crack in each image,
we should plot all the crack locations in the global coortéreystem. To do this, we have
the crack locations in the image coordinate systam)( We map the crack locations to
the robot coordinate systerX,Yg) using the camera-robot transformatiof, which is

derived from the multiplication of transformation matigcas below.
CTr=CT.'Tr (3.7)

The transformatiohTg can be calculated using pseudo-inverse as in Equation %62, H
D, andDg are a set of point locations in the local coordinate systedithe robot coordi-
nate system, respectively. We utilize an optical trackiygjesm to find the location of these
points [30].

‘“Tr = (D/D.) D/ Dg (3.8)

We apply another transformation from the robot coordingstesn to the global coordi-
nate system using the transformatféis, which can be calculated from the robot location
(x,y,6). Therefore from the image coordinate system to the globatdinate system, we

have the following transformation:

To =T TR T (3.9)
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CHAPTER 4
CRACK DETECTION

In this chapter, we discuss Laplacian of Gaussian (LoG)eastidick detection algorithm in
the ROCIM system. We present how to apply this algorithm tectecracks in each image
captured by the mobile robot. We also discuss our graphicinsaface (GUI) to detect

the cracks.

4.1 Crack detection algorithm

The main idea of detecting cracks is to find out the edge pands image. These edge
points can be detected by finding the zero-crossings of ttenskederivative of the image
intensity. However, calculating the second derivativeasnsensitive to noise. Hence, this
noise should be filtered out. To achieve this, the LaplacfaBaussian (LoG) algorithm

[31] is used. This method combines Gaussian filtering wighlthplacian for edge detec-
tion. In the LoG edge detection, there are mainly three phaskering, enhancement,

and detection. Especially, Gaussian filter is used for shingtand its second derivative

P

Figure 4.1: First and second order derivative of one dintnsignal [5].
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is used for enhancement. The detection criteria is the poesef a zero-crossing in the
second derivative with the corresponding large peak in teederivative as shown in Fig-
ure 4.1.

In this approach, the noise is firstly reduced by convolutigimage with a Gaussian
filter. Then isolated noise points and small structures #exdd out. With smoothing,
edges are spread out. Those pixels that have locally maxigradgient are considered
as edges by the edge detector in which zero-crossings oktteng derivative are used.
To avoid detecting insignificant edges, only the zero-engsswith corresponding first
derivative above some thresholds are selected as edgs.pbimre edge direction is obtained
by using the direction in which zero-crossing occurs.

The Laplacian is a 2D isotropic measure of the 2nd spatiaatére of an image. The
Laplacian of an image highlights regions of fast intensktgrege and is often used for edge
detection. We define a 2-D second order derivative as theacepl function which is
isotropic [31].

o>t o°f

2 e J— JE—
(V f)(X,y) - axz + ayz

(4.1)
The Laplacian is often applied to an image that has first besothed with a Gaussian
smoothing filter in order to reduce its sensitivity to noistence, the two variants will be
described together here. The operator normally takes &egyngy level image as input and
produces another gray level image as output. The Lapladpay)Lof an image with pixel
intensity values I(x,y) is given by:

ol ol

L(X, y) = ﬁ + (9_)/2 (42)

Since the input image is represented as a set of discretks pixe have to find a dis-
crete convolution kernel that can approximate the secondadizes in the definition of the
Laplacian.

Here we use two kernels with sizesX® and 1%17 in combination with the changing

thresholds and variances to check the effect of edges imthgas. Figure 4.2 shows the
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LoG kernel with kernel size equal to £I7. Using these kernels, the Laplacian can be
calculated using standard convolution methods. Becawsetkernels are approximating
a second derivative measurement on the image, they areemsitige to noise. To counter
this, the image is often smoothed using Gaussian filter bettoe Laplacian filter is ap-
plied. This pre-processing step reduces the high frequeaise components prior to the
differentiation step. Because the convolution operatsossisociative, we can convolve the
Gaussian smoothing filter with the Laplacian filter, and tbemvolve this hybrid filter with

the image to achieve the required result. Doing things tlaig aas two advantages:

¢ Since both the Gaussian filter and the Laplacian kernels sually much smaller

than the image, this method usually requires far fewer rzuétiic operations.

e The LoG kernel can be pre-calculated in advance so only omeodation needs to

be performed at run-time on the image.

The 2D LoG function centered on zero and with Gaussian stdriiviation has the form:

LoG(x,y) = —

1 X2+ Y2 2
7r0'4[ 202 ]e > (4.3)

If the image is pre-smoothed by a Gaussian low-pass filten we have the LoG operation

that is defined as
(Kyz # %(G, * =) = (Ky2 * #G,) * | = (VZGU) % x| (4.4)

where

1 [x2+y2 ]_xzwz

V3G, (x,Y) = ] 2|e 2 (4.5)

To find the places where the value of the Laplacian passesghrmero points and also
changes sign, we use the zero-crossing detector. We knawsubha points often occur at
edges where the intensity of the image changes rapidlyheytdlso occur at places that
are not easy to associate with edges. It is better to thinke&zero-crossing detector as

some sort of feature detector rather than as a specific edgetole Zero-crossings always
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Figure 4.2: LoG kernel.

lie on closed contours, and so the output from the zero-trgsetector is usually a binary

image with single-pixel lines showing the positions of tleeazcrossing points.

¢-10-D | GALD

(i—1,7+1)
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Figure 4.3: Zero-crossing.

The initial input for the zero-crossing detector is an imag#ch has been filtered
using the Laplacian of Gaussian filter. The resulting zeossings are strongly affected
by the size of the Gaussian used for the smoothing stagesodpigirator. As the smoothing
is increased, then fewer and fewer zero-crossing contourdevfound, and those that
remain will correspond to features of larger and largeresgathe image. The summary of

the crack detection algorithm is shown in Algorithm 1.
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Algorithm 1: Crack Detection
Step 1.Apply the LoG to the image.

Step 2.Apply the zero-crossing detector in the image.
Step 3.Filter the zero-crossings to keep only those strong oneggldifference
between the positive maximum and the negative minimum).

Step 4.Suppress the weak zero-crossings most likely caused bg.nois

4.2 Operation interface for crack detection

In this subsection, we discuss the operation interfacerfarkcdetection by using a graphi-
cal user interface (GUI) as shown in Figure 4.4. The inpugesscaptured by the robot are
collected and stored on the computer. There are two modgseodtion, first, we can select
the image irBrowse, then theManual-Run button will start the crack detection algorithm
and the crack results (white lines) are superimposed onutmibimage. Second, tn the
Auto-Run mode, it allows us to detect the cracks on all images autcalbti After the

cracks on each image is detected, the crack locations imthge coordinate system are

mapped to the 2D map.

GG GRS Fraple ah 2 e S h|

[ L S ]

Figure 4.4: GUI for crack detection and mapping.
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CHAPTER 5

COMPLETE COVERAGE PATH PLANNING

In this chapter, we present a new path planning algorithmahews the robot to travel
efficiently during the inspection. The path planning is impat for the ROCIM system to
save time and energy. We first formulate the problem, thennapegse two approaches to

solve this problem.

5.1 Problem formulation

The purpose of complete coverage path planning (CCPP) isstare the union of camera
field of views (FoV) covers the whole bridge deck surface.rélae several issues that we
need to address in this CCPP problem. First, a typical camstallation is mounted on top

of the mobile robot as shown in Figure 5.1. Therefore, theeehlind spot which is caused

by the offset distance between the center location of thetrdebdy and the center location

= "™

Figure 5.1: Pioneer3-DX with the camera on top of it.
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Figure 5.2: Projection of mobile robot and field of camerawf{EoV) to an XY plane.

of the FoV. Second, to allow the mobile robot to detect smaltks, the camera should
zoom in. Hence, it makes the size of FoV smaller than the direbmt body. To illustrate
these issues, we project the robot body and FoV to an XY-panghown in Figure 5.2.
To simplify the problem, the area of interest is partitiometd cells which have the same
size as the FoV. We define several concepts to develop thissolar this problem. These
definitions are described as follows:

Definition 1: Configuration of Inspection

Let (%,Y;) € R? be the center location of the mobile robétg [0, 2] be the orien-
tation of the mobile robot; and € [-n/2, 7/2] be the pan angle of the camera. Then, a
configuration of inspectio(Col') is defined as:

Col' £ (%, Y, 0, ¢) wherei denotes a cell.

Definition 2: Motion Template

A motion templateMT(i, j), is the mobile robot and camera motion plan that transstion
from Col to Col':

MT(i, j) £ Col' — Coll, j € N(i), hereN is the neighborhood of ceilas shown in
Figure 5.4(a).
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Figure 5.3: Twelve configuration of inspections (Col).

Definition 3: Inspection Path

An inspection pathlP, is a sequence of motion templates that ensure the uhano

era FoVs cover the whole area of interest. iAgpection paths defined as:

@)

of camera path to cover the whole area.
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Figure 5.4: (a) Four directions of camera path defines foightr cells. (b) An example
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Figure 5.5: Relationship between configuration of inspectCol), motion templates (MT)

and inspection path (IP).

IP £ [MT(i1,i2), MT(is, i3),..., MTli,_1in)] where {4, 5, ..in) is the camera path (a se-
qguence of all the cells). An example of camera path is shoviaigare 5.4(b).

In Figure 5.3, we show the twelve Cols where each Col has erdift robot orientation
(6) and camera pan anglg)(whered = (0°, 9, 18C, 27C) and¢ = (-45°, O°, 45°). We
use twelve Cols because the robot headigs(discretized into four values and the camera
pan angle ¢) is discretized into three values. We encode the Cols udpitphet from A
toL. S=(A, B, C,D,E,F G, H, I J, K, L) as shown in Figure 5.3. The glare
(darker square) is the mobile robot and the green squat@dligquare) is the FoV. The
relationship between the three definitions is shown in EEdub. In a free space, all the
twelve Cols can be applied to cover a dedls shown in Figure 5.6.

In Figure 5.4(a) we show that calhas four neighborsa(b, c, d) because we assume
the camera FoV moves only in four directions such as up, d@ftrand right. Therefore,
there are 512 (1212x4) different motion templates base on twelve Cols and fourera
path directions.

The problem of complete coverage path planning for the ROSistem is how the mo-

bile robot plans a path (inspection path) in order to havepteta coverage of the cells in an
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Figure 5.6: In free space, to inspect a cell, there are tvgeBads that can achieve it.

efficient manner. This can be done by selecting the comloinati Cols which minimizes
a fitness function. The fitness function consists of threepmmments: traveling distance,
robot turns, and camera turns. The robotic inspection patining based on genetic algo-
rithm (RIP-GA) is proposed to minimize the number of robahgiand traveling distance.
The last component (camera turns) is not considered betiagi®amera works in parallel
to the mobile robot. In summary, the CCPP problem can bedstetéollows:

Given an area of interest, which is partitioned into cellgdfian inspection path that
covers all the cells while minimizing the numbers of robot$tand traveling distance

In this thesis, we are interested in finding the sub-optimkltson because finding the
optimal solution is an NP-hard problem and the computationgases exponentially with

the number of cells.

5.2 Two approaches to complete coverage path planning

Many existing approaches cannot be directly applied toestite CCPP problem because
in these approaches, the robot body is used for the covet®j¢21] [22] [32] [33]. In
this section, we discuss two different approaches to theRC@Bblem. First, we present a
heuristic approach which provides a full coverage of céltsyever the traveling distance
and the number of robot turns are not optimized. Second, esept a RIP-GA approach

which gives a better solution than the heuristic approach.
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5.2.1 Heuristic Approach

In this approach, the robot plans the inspection path basd¢teorobot body movement.
Typical motion planning such as boustrophedron motion,[®@]I-following motion, and
spiral motion can be used to plan the path. After the roboérothe entire area using the
robot body, the coverage of FoV is considered. If the comeptetverage is not achieved,
the robot needs to inspect the uncovered cells by adding movements. Pseudo-code
of this approach is shown in Algorithm 1. We show some exampkng this approach
that can give a full coverage of the cells however the numbeolmot turns and traveling

distance are not minimized. The examples are presented@sgo

Example 1

We consider an empty rectangular map without any obstadle sise 8120 as in Fig-
ure 5.7(a). The map is discretized into square cells withstmae size as the FoV. The
boustrophedron motion from top to bottom is applied to thdéieaobot with camera fac-
ing forward, i.e.Colg. The mobile robot starts moving from %0, 30) to (5Q —30). These
are missing areas especially along the edges as shown ireFgi(a). The trajectory of
this robot motion is shown in Figure 5.7(b). To cover the migsareas, the robot needs to
re-plan the motion which results in a lot of overlapping patherefore, the solution is not

very good.

Algorithm 2: Heuristic Approach
Step 1.Generate a mobile robot path to cover the area.

if there is any uncovered cehen
Step 2.Find out the uncover cells and let the robot go back to cowesdicells.

else
| Step 3.Finish.
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(b) Trajectory of robot path

(a) Field of camera view

Figure 5.8: Trajectory of the wall following mobile robot tan with 45’ camera orienta-

tion.

Example 2

In this example we change the pan-orientation of camera t¢@sl:) which allows the

robot to inspect the cells along the edges. Then, we applyfalidwing motion for the

mobile robot to cover the entire area [28]. The coverage isfrtiotion planning is shown
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in Figure 5.8(a) and the trajectory of the robot motion isvehan Figure 5.8(b). The result
shows that full coverage is achieved. However there is wessEry overlap in the coverage
and robot paths. Therefore the traveling distance and th&eu of robot turns are not
satisfying. As the result, this heuristic approach doespnotide a good solution to the

CCPP problem.

5.2.2 RIP approach

The RIP approach finds an inspection path (IP) that minimizegotal traveling distance
and the number of robot turns by selecting the Configuratiomsgpection (Col). The
proposed algorithm extends the idea of the proposed RPReBBtic path planning based
on the camera path) [28]. The RPP-CP and RIP approaches assahthe camera path
is planned in the first step in order to have complete coveodgeV. Then, the robot and
camera motion are planned according to the camera path.

To select the Col, we utilize a genetic algorithm as a stachasethod and greedy al-
gorithm as a deterministic method. Here, we denote RIPdyras the robotic inspection
path planning based on greedy algorithm. The genetic dlgoiis an optimization method
which mimics the natural evolution. The solution is genedlaising techniques such as mu-
tation, selection and crossover [34]. We model some parems#d fit the genetic algorithm

as follows:
e The gene is defined as the Col.

e The chromosomeQ!) is a sequence of Col§! = (Col*, Col2,Col?, ..., Col™) and

the length ofC! is the same as the number of cehs. (

Figure 5.10(a) shows the illustration of the chromosomeitnegresents the solution to this
CCPP problem. For each generation the genetic algoritlestivifind a better chromosome

by minimizing the fitness function.
F =20 (allq(i, ij)ll + Blud;, ij,1)ll) (5.1)
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Figure 5.9: Calculation of the fitness function.

Here, the functions, u basically are the traveling distance and robot turns, sfedy.
These functions are defined based on the path planning @lgoof the mobile robot. The
variablesy, 8 are the weight value for distance and time. In Figure 5.9 vegvsdn example
of fitness function calculation from one Col to another Col.

The pseudo-code of the RIP-GA algorithm is shown in Algant®. In the step 4 of
Algorithm 2, the multiple cross-over operation is appliedntate the nearest pair. This

operation is used to produce offspring (w'*?).
' =¢C +cCHM + (1-c - ¢)C (5.2)
W't = CM + 6Cl + (1- ¢ — ¢)ClH (5.3)

Equation 5.2 and 5.3 have to satisfy the following condgias follows:c,, ¢, €[0,1]
andc, + ¢, < 1. Herecy, ¢, is a percentage of the Col from one chromosome. For example,
let ¢, = 0.2, ¢ = 0.3 then the chromosome takes 70% genes fro®) to mate with 30%
of theC!*1. The illustration of the cross-over operation is shown igufe 5.10(b). Then,

the mutation operation is applied in order to avoid the geragorithm getting stuck in
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Figure 5.10: (@) Chromosom€(). (b) Multiple chromosome crossover.

local minimum. After the crossover and mutation are appliied offsprings¢', w'*?) are
evaluated with the parent€}(, C!*!). For each offspring, we calculate and compare the
fitness value to the parents. We discard two of these chromes¢offsprings and parents)
which have the most fithess value. In the step 6, we remove shmoenosome in the
population which have the most fithess value and new chromesare introduced to fill
in. The algorithm continuously runs until the fitness val@ithe top chromosome does not
change foiQ iterations.

We compare the genetic algorithm with the greedy algoritbrvalidate the proposed
RIP approach. The greedy algorithm searches locally fomtlremum fitness value for
the next Col along the camera path. The greedy algorithmhigstato select the Col but
it always gets stuck in local minimums. The pseudo-code eRIP-greedy algorithm is

shown in Algorithm 4.

33



Algorithm 3: RIP-GA

Step 1.Generate a camera pda@tiP(n) whereCP = (iy, iy, i3...,1n),N € Z.

for each CP(ndo
| Find a set of feasible Cg)
Step 2.Generate a population &l genetic strings randomly fro@P;

P' = (w), wh, wh...,wp) s 1=1, 2...,M.

while the genetic algorithm is not converged
1. Compute the fitness function using Equation 5.1

2. Rank the genetic strings from top to botto@i(l = 1,2,, M)

3. Put the top chromosome to the next generation (Elitism).

4. Mate the nearest pairs.

5. Mutate the offspring.

6. Kill the bottom genetic stringsg < M) and keep the top K parents.

7.New parents = KU R, and R is a random population to replace the bottom
genetic strings.

8. Evaluate the best chromosome

if the genetic algorithm is convergdiden
| GotoStep 3.

SIep 3.Generate the inspection path based on the Col sequencpsdlios path).

Algorithm 4: RIP-Greedy

Step 1.Generate a camera pdaiP(n) whereCP = (iy, iy, i3...,1n),N € Z.

for each CP(ndo
| Find a set of feasible Cg)
Step 2.Find the minimum motion templates for each cell.

Step 3.Generate the robot trajectory based on the Col (Inspecatm) p
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CHAPTER 6

EXPERIMENT RESULTS

We conducted both simulations and experiments to validetgtoposed ROCIM system
and the associated algorithms. In the first experiment, vdyape ROCIM system to
detect real cracks on the bridge deck. In the second expetjnve demonstrate the work-
ing of the ROCIM system in the indoor and outdoor environraerfinally, we evaluate
the complete coverage path planning (CCPP) algorithm ih bimhulation and real robot

implementation.

6.1 Real crack detection

In order to evaluate the performance of the ROCIM system, igtetésted our crack detec-
tion algorithm using real crack images which are collectedhfa bridge deck. The original
image is shown in Figure 6.1(a). The Laplacian of Gaussia®({Lalgorithm is applied to
the image, and the results are shown in Figure 6.1(b). Thectbat crack is superimposed
on the original image in Figure 6.1(c). Here, the resulttjeshows the LoG algorithm
successfully detects the crack in the image. The paramafténe LoG algorithm ares =
2.5 and threshold T = 3.

One of the limitations of the LoG algorithm is that it is diffit to find the optimal
parameters such asand T. For example, using < 1.5 and T = 2, the result shows too
much noise and the crack is barely detectable (See Figure@®@2he other hand, if we set
o or T too large, the LoG removes most of the crack informatiarfigure 6.2, we show
the result of the LoG algorithm using varioasand T to detect the crack. In addition, our

initial tests indicate that the smallest detectable cracgkeound 1 mm in width.
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(a) (b) (©)
Figure 6.1: Crack detection result on a real bridge deck.

Figure 6.2: Comparison of the LoG parameters for crack detec
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6.2 Validation of the ROCIM system

In this section, we demonstrate the working of the ROCIMeystThree types of environ-
ment are evaluated in this experiment. The first is a simgleon environment. We define
a grid by using the line of each tile as cracks. The secondasrgtex indoor environment.
We create artificial cracks by drawing curves on the grouné. U€ the cones to set the
inspection area. The third is an outdoor environment. Westigate the ROCIM system

to detect the crack on the concrete surface.

6.2.1 Simple indoor environment

The hardware setup for the simple indoor environment is shiavrigure 6.3. We use the
advanced range navigation laser (ARNL) and the Mapper3vaodtto create a 2D map of
the environment [2]. The 2D map of this environment is showirigure 6.4(a). Next,
the 2D map is used to localize the mobile robot during theenspn using Monte Carlo
localization (MCL) algorithm. Before we run the inspectiare calibrate the camera using

the grid on the floor. The image that we collected for the caneatibration is shown in

Figure 6.3: Experiment setup for simple indoor environment
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(a) A 2D map of the simple indoor environment. (b) Grids on the floor for camera calibration.

Figure 6.4: Simple indoor environment.

Figure 6.4(b). The intrinsic and extrinsic parametersliercamera calibration with respect

to the robot coordinate system are obtained as follows:

2203092 0 79500 0.0370 Q09993 00102 -414
L= 0 2203092 595000 M =1 0.7316 -0.0202 -0.6814 -115
0 0 10000 -0.6807 00327 -0.7318 1924

There are six images collected from different places. The®l oG algorithm is ap-
plied to detect the crack in each image as shown in FigureNest, we map all the crack
locations to the global coordinate system. Figure 6.6 dgiveoverall crack map based on
the six images. The blue and black lines represent the cractkh® 2D map, respectively.
The result shows that the transformation of the crack looatirom the image coordinate
system to the global coordinate system works well and thekamaap is successfully cre-

ated. However, it can also be noticed that there are somdigmisgents in the crack map.
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Figure 6.5: Crack detection result for simple indoor envinent.
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Figure 6.6: Crack map of the first experiment setup
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6.2.2 Complex indoor environment

In the second environment, we apply the ROCIM system to tlet@wed cracks in the
indoor environment. The hardware setup for this experirsestiown in Figure 6.7. Here,
the robot collects 18 images to cover the whole inspectiea ar order to create the crack
map. The procedure to create the crack map is the same astheys experiment. The
created 2D map of this environment is shown in Figure 6.8¢d)vae utilize a chessboard

for camera calibration as shown in Figure 6.8(b).

Figure 6.7: Experiment setup for complex indoor environtnen
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(a) A 2D map of the complex indoor environment. (b) A chessboard for camera calibration.

Figure 6.8: Complex indoor environment.
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(a) A ground truth image for complex indoor envi- (b) Image for the camera calibration.
ronment.

Figure 6.9: Ground truth of crack locations in the compledoor environment.

To evaluate the crack map for this environment, we captursthgle image which
has all the crack information as shown in Figure 6.9(a). lheorto create this ground
truth map, we detect the cracks on this image and transfoem tb the global coordinate
system. The transformation is calculated through the camaibration and Figure 6.9(b)
shows the calibration image.

We compare the result of the crack map with the ground truth asashown in Fig-
ure 6.10. Figure 6.10(a) shows the ground truth map of crackise global coordinate
system. Figure 6.10(b) shows the crack map created by the R@gstem. The result
shows some misalignments of the crack locations in the arzgegi. This is mostly due to
camera calibration and robot localization errors. We ats® some anomalies appear in
Figure 6.10(b) that are not shown in Figure 6.10(a). Thisuis t different thresholds of
crack detection algorithm. Figure 6.11 shows the overalticrmap. The black line and

blue lines represent the crack and the 2D map, respectively.
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(b) Cracks detected by the ROCIM system.

Figure 6.10: Comparison of the crack map with the groundhtrut

Figure 6.11: The global crack map.
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6.2.3 Outdoor environment

In this experiment, we deploy the mobile robot to detect tlaeks on a concrete surface.
The experimental setup for outdoor test is shown in Figut2.a-ere, the ROCIM system
has to handle an open environment and moving obstacles sualalking people. The

main problems with this experiment are poor robot localmatnd shadows. The robot
localization problem is caused by the limited sensing raofdke laser sensor which is not
sufficient to scan the whole area and the dynamic environmbith gives some noises to

the MCL algorithm.

Figure 6.12: Experiment setup to evaluate the ROCIM systetind outdoor environment.

The methodology to create the crack map is the same as indberiexperiment. We
collect 10 images to cover the whole environment. Figur8@)Lshows the crack image
in this environment and the crack map is shown in Figure 6ld2his result, we do not
evaluate the crack inspection in the shadow area and theignmiseents of the crack map

are still occurred.
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(a) Cracks in the outdoor environment.
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(b) Crack map for outdoor environment.

Figure 6.13: Outdoor experiment result.
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6.3 Complete coverage path planning

In this section we test our proposed robotic inspection jpédinning based on genetic
algorithm (RIP-GA) in both simulations and real experingerh simulation, we implement
our algorithm in both obstacle and obstacle-free envirammdn the real experiment, we

implement our algorithm using the real mobile robot, PioBe@X.

6.3.1 Obstacle-free environment

We define an environment without obstacles as in Figure &)1#&rst, the camera path is
planned using boustrophedron motion from top right to butteft. There are 55 cells in
this environment and each cell has to be covered in ordenv®d@mnplete coverage. There
are several parameters that need to be initialized beforemine RIP-GA algorithm, such
as the number of population M = 500, the weight parametets0.94,3 = 1.1, and the
stopping conditiorQ = 30. The values ok andg are found by measuring the time require
for traveling a unit distance and making the robot to do 4t@fs.

For each generation, we discard 50% of the population whashthe least rank and
introduce new chromosomes to fill in. We run the RIP-GA aldoni to find the sub-optimal
solution of the inspection path. After certain number ofatens, the RIP-GA algorithm
converges at 59.15. The performance of the RIP-GA algorittmach generation is shown
in Figure 6.15. Moreover, the RIP-GA algorithm finds morentlose solutions that have
the same fitness value and they are shown in Tabel 6.1.

We compare the result of the RIP-GA algorithm with the RIBagly algorithm as
shown in Table 6.2. Here, the result of the RIP-GA algoritlsnslightly better than that
of the RIP-greedy algorithm in terms of the number of robons$u traveling distance and
fitness value. The snapshots of the RIP-GA algorithm in thetamtbe-free environment are

shown in Figure 6.14.
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Figure 6.14: Snapshots of the simulation in the obstade-énvironment: (a), (b) and (c)
are the snapshot of the mobile robot position, (d), (e) anaréf the snapshot of the covered

camera view.
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Figure 6.15: Performance of RIP-GA algorithm for obstdcé® environment.
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Table 6.1: Several solutions with the minimum fitness value
Cols

LLLLBDDCDDBLLLLALLLBDDDDFFHJJJJIIIIHFFFGGFFFHJIJIIIBIFFF
LLLLLBDDCDDBLLLAALLBDDDCFFHJJJJIIIIIHFFFFFHIJIJIIAFFF
LLLLBDDCDDBLLLLLLLLLBDDCFFHJIJJIIIIIIHFFFGFFFFHJJJIBIFFF

Table 6.2: Comparison of complete coverage path planning
RIP-GA algorithm  RIP-Greedy algorithm

The number of robot turns 26 26
Traveling distance 325 395
fitness value 59.15 65.73

6.3.2 Obstacle environment

In this experiment, we evaluate the proposed algorithm endhstacle environment as
shown in Figure 6.16. Here, the obstacles are describeddoygeares. First, we decom-
pose the environment into eight regions. Then, the camdtaipglanned using bous-
trophedron motion from bottom to top for each region. Forhe@gion, we indicate the
starting and ending points by gray and black bullets, respdyg. In this experiment, the
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O®O
e}
%
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]

Figure 6.16: Map decomposition for obstacle environment.
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initialization parameters are the same as those in the dbdt&e environment except the
number of population (M). Since the obstacle environmedeisomposed into several re-
gions, we run the RIP-GA algorithm separately for each megive use different values of
M due to the different sizes of the region. We use M = 1000 fgiare 1 and 3, and M =
500 for the rest of regions.

The RIP-GA algorithm initializes the search with a randomnpke for each cell. The
random sample is basically Cols. In the obstacle environpseneral Cols can't be used
to cover the cells which locate in the corner or around thendaty. Therefore, we apply
a Col filtering to remove these infeasible Cols. In Table &8,show the result of the
Col filtering for the first region. The subscript indicates thrder of camera path and the
letters indicate the feasible Cols. For the first region, Riie-GA generates the random

population based on this table and the RIP-greedy calaihagleast fithess value for each

Col according to this table too. We run the RIP-GA and RIRedyealgorithm to find

Table 6.3: Feasible Cols in region 1.

131 13K21 13Ka1 AlJKLg; AlJKLg; AlJKLio1
H1J, HIJK22 HI1JKa42 ABHIJK Lgp ABHIJK Lgo ABHIIKLig2
H1Js HIJKz23 HI1JK43 ABHIJK Lgs ABHIJK Lgs ABHIJK o3

FGHIJ; EFGHIJKy; EFGHIJKsy ABCDEFGHIJKlgs ABCDEFGHIJKlgs ABCDEFGHIJIKlios

FGHIJs EFGHIJK;s EFGHIJKis ABCDEFGHIJKlgs ABCDEFGHIJKlgs ABCDEFGHIJIKlygs

FGHIJs EFGHIJKys EFGHIJKs ABCDEFGHIJKlgs ABCDEFGHIJKlgs ABCDEFGHIJIKligg

FGHI); EFGHIJK;; EFGHIJKs;  ABCDEFGHKlg;  ABCDEFGHKlgr ABCDEFGH L7

FGHIJy EFGHIJK;g EFGHIJKsg ABCDEFGHKlgs  ABCDEFGHKlgg ABCDEFGHLygg

FGHIJy EFGHIJKzy EFGHIJKse  ABCDEFGKlge ABCDEFGK lgg ABCDEFGligo

FGHIJo EFGHIJKs EFGHIJKsy ABCDEFGIJKl;s  ABCDEFGIJKlgy  ABCDEFGIJKlio

FGHIJ1 EFGHIJKs EFGHIJKs; ABCDEFGIJKl; ~ ABCDEFGIJKly — ABCDEFGIJKlyy

FGHIJ, EFGHIJKsz EFGHIJKs, ABCDEIJKLy, ABCDEIJK g, ABCDIJKL12

FGHIJs EFGHIJKss EFGHIJKsz  ABCDEHIJKlyg ABCDEHIJKlgs ABCDHIJKL13

FGHIJ EFGHIJKss EFGHIJKss  ABCDEHIJKlzg ABCDEHIJKlgs ABCDHIJKLy14

FGHIJs EFGHIJKss EFGHIJKss ABCDEFGHIJKl;s ABCDEFGHIJKlgs ABCDEFGHIJIKlys

FGHIJs EFGHIJKss EFGHIJKss ABCDEFGHKlzgs  ABCDEFGHKIgs ABCDEFGHL 16

FGHIJ7; EFGHIJKsy EFGHIJKs; ABCDEFGHKl;;  ABCDEFGHKIgy ABCDEFGHLl17
FGHis EFGHgs EFGHss BCDEFGyg BCDEFGyg BCDEFGyig
FGHig EFGHgo EFGHso BCDEFGyo BCDEFGyo BCDEFGy1o
FGao EFGuo EFGgo CDEFGg CDEFGgo CDEFGi20
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out the best combination of Cols to generate the inspectdm prhe comparison of both
algorithms based on the fitness function can be seen in Tabl¢edind that the RIP-GA
algorithm gives better solution than the RIP-greedy atbariin term of fitness value. The

snapshots of the RIP-GA algorithm in the obstacle envirartrase shown in Figure 6.17.

Table 6.4: Comparison of RIP-GA and RIP-greedy algorithm

Region | RIP-GA algorithm  RIP-Greedy algorithm

1 84.3600 88.1300
2 10.190 11.7600
3 70.0900 76.0600
4 14.8900 16.4600
5 47.4250 53.0000
6 19.1200 23.8300
7 5.4900 7.0600

8 8.3100 9.8800

(d) (e) ®
Figure 6.17: Snapshots of the simulation in the obstacleé@mwent: (a), (b) and (c) are

the snapshot of covered camera view, (d), (e) and (f) arert;yeshot of robot position.
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6.3.3 Real robot implementation

In the simulation, the RIP-GA algorithm gives a satisfagt@sult to solve the CCPP prob-
lem. In this section we discuss how to implement the propasgatithm on the real robot,
Pioneer3-DX. The result of the RIP-GA algorithm is an ingmetpath. This path is a
sequences of robot locations in the 2D map with a particolotrand camera orientation.
To implement this, the robot needs to travel from one locattanother according to the

inspection path.

Figure 6.18: Laboratory environment to test the path plagm a real robot.

The laboratory environment for this experiment is showniguFe 6.18. We use cones
to set the inspection area. The procedure of the implementat described as follows:
First, the mobile robot creates a 2D map of this environmsimigithe ARNL and Mapper3
software [2]. Second, we initialize the RIP-GA algorithm tgfining the size and the
number of cells in the 2D map. For this experiment, the inspea@rea is decomposed into
28 cells and the size of each cell is 5850 mm. Third, we run the RIP-GA algorithm
to find the sub-optimal of inspection path. Here, the RIP-Gdoathm uses the same
set of Cols as in the simulation. Figure 6.19 shows the redulie RIP-GA algorithm
which consists of robot locations (red star) and center &f Feecations (blue star). Last,

the robot path is given to the mobile robot to follow usingigation library [2]. For each
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Figure 6.20: lllustration of the inspection path.

location in the robot path, the robot collects the image lastilated in Figure 6.20. The
number indicates the sequence of Cols which is the sub-apsoiution from the RIP-
GA algorithm. Here, the complete coverage of FoV can be giieeal because the robot

localization is very good for indoor environment.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduce a robotic crack inspection amgpmng (ROCIM) system to
replace human inspectors for bridge deck crack inspecliba.aim of the ROCIM system
is to create a crack map which is useful for measuring, dlaegi, and analysis of crack
growth. Three main components of the ROCIM system are pted@mthis thesis: camera
calibration, crack detection and complete coverage pathnohg. We verify the proposed
framework of the ROCIM system with both simulation and expental result.

The Laplacian of Gaussian algorithm is used for the crackadiein. After the crack
is successfully detected in the image coordinate systenapply a transformation matrix
which is derived from camera calibration and robot locdia to map the crack locations
to the global coordinate system as a crack map. We tested@@&NR system in both
indoor and outdoor environment, and the result shows tieaRMCIM system works well.
However, there is an alignment error of the crack locatioa ttucamera calibration and
robot localization error.

For the complete coverage path planning, we introduce thatiminspection path plan-
ning based on the genetic algorithm (RIP-GA) to ensure thkileoobot collects all the
images in an efficient way. In simulation, the RIP-GA aldamit proves to be better than
the RIP-greedy algorithm in terms of robot turns, traveliiigtance and inspection time.
In addition, we implement the proposed algorithm on the meatbile robot, Pioneer3-DX.
The implementation result shows the reliability and robass of the proposed algorithm.

In the future work, we will improve the ROCIM system. Some lo¢ improvements

are as follows:

52



Crack detection algorithm: We will improve the image praieg techniques under

different lighting conditions.

Alignment process: The purpose of this process is to mirerthe misalignment of

crack locations. This process will improve the accuracyratk map.

On-line complete coverage path planning: The proposed®ARgorithm is devel-
oped for static environment and is an off-line path planmlggprithm. To deploy the
ROCIM system in the passing traffic, we need to develop arirengath planning

for dynamic environments.

Multi-robot cooperation: We will develop a multi-robot q@eration algorithm to

perform the inspection in order to save more time for thelcraspection.
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