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CHAPTER 1

INTRODUCTION

This chapter introduces one of the important problems in thepublic transportation system-

bridge deck inspection. Currently, the bridge deck inspection is performed by a human

inspector. We propose a system which consists of a mobile robot to replace the human

inspector because of the capability of the mobile robot is better than the human inspector.

To implement this, we discuss several challenges that we need to address in this research.

We also discuss some literature on crack inspection that arerelated to our work.

1.1 Motivation

For many engineered transportation structures, includingcivil, mechanical and aerospace

structures, timely awareness of their structural health can prevent functional failures which

may lead to catastrophic consequences. On August 1, 2007, the collapse of the I-35W Mis-

sissippi river bridge (See Figure 1.1) that carried Interstate 35W across the Mississippi river

in Minneapolis left 13 dead and more than 100 injured [6], notto mention its big impact on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1.1: I-35W bridge over the Mississippi river in Minneapolis collapsed [1].
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Figure 1.2: A human inspector measures cracks for bridge deck maintenance.

the traffic and businesses in the surrounding areas. This accident has clearly demonstrated

the catastrophic results of structural failures and the importance of timely awareness of

structural health. Bridge decks are typically the elementsof first maintenance on a bridge.

Since the surface of a bridge deck is exposed to the environment, direct loading from vehi-

cles and exposure to deicing chemicals, constant maintenance is a must. Therefore bridge

deck inspection is helpful and can provide owners warning tothe future deterioration of the

bridge deck. Currently, bridge decks are inspected with very rudimentary methods in the

form of visual inspection by a trained engineer as shown in Figure 1.2. While these inspec-

tions are useful, they are only useful if the deterioration of the bridge deck is significant.

The inspectors usually walk though the bridges and measure the crack locations and crack

sizes. This kind of manual approach has the following disadvantages:

1. It is prone to human errors.

2. It has very limited accuracy due to the limited visual capability of human inspectors.

3. It cannot guarantee the full coverage of the whole bridge deck.

Additionally, conducting visual crack inspection of a bridge deck is a dangerous job with

passing traffic. Therefore, we need to develop a robotic crack inspection and mapping

(ROCIM) system which can conduct accurate assessment of cracking on bridge decks. The

ROCIM system will have the following features which outperform the human inspectors:
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1. A high resolution camera will be mounted on the mobile robot to achieve high accu-

racy of crack detection.

2. The crack locations can be accurately determined since the robot can localize itself

precisely.

3. Using mobile robots will reduce the chance of the loss of human life.

1.2 Challenges

In the ROCIM system, a mobile robot is utilized to create a twodimensional (2D) map of

the bridge deck using a laser sensor while a camera is used to collect images of the bridge

deck surface. The collected images are then processed usingimage processing techniques

to detect the cracks. We store the crack locations in the 2D map, which then becomes a

crack map. The crack map is useful for bridge deck maintenance in terms of measuring,

classifying and monitoring cracks periodically. In order to implement the ROCIM system,

there are several challenging problems that we need to address which are listed below:

1. The coordinate transformation. To create a crack map, thecrack location has to be

plotted in the global coordinate system which is the same coordinate system as the

2D map of the bridge deck. Since the cracks are detected in theimage coordinate

system, we have to map the crack locations from the image coordinate system to the

global coordinate system.

2. The path planning of mobile robot. The path planning should ensure the mobile robot

can inspect the whole area of the bridge deck surface in an efficient way. Unlike the

typical complete coverage path planning of a vacuum cleanerrobot, which uses the

robot body as the coverage, the mobile robot in ROCIM system is interested in the

union of camera field of view as the coverage, which poses somedifficulties in the

path planning.
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3. The mobile robot localization. To create the 2D map of the bridge deck, the mobile

robot needs to know its current position. Robot localization is a challenging problem

in robotic research.

1.3 Literature review

Recent years have witnessed growing research interests in structural health monitoring

(SHM) [7],[8],[9],[10],[11] for bridges, buildings and other civil infrastructures. Research

in structure inspection using robotic devices has resultedin several prototypes. Yuet al. [5]

presented an auto inspection system using a mobile robot fordetecting concrete cracks in a

tunnel. Their system consists of a mobile robot, a data storage system and a crack detector.

The crack is detected using image processing and the crack information is extracted using

Sobel and Laplacian operators [5]. In addition to their system, an illuminator is used to dis-

tinguish the crack and non-crack areas. Their mobile robot system has a complex imaging

system to reduce noise resulted from the mobility of mobile robot. Sinhaet al. [12] devel-

oped a statistical filter for crack detection in pipes. A two step algorithm is proposed. First,

crack features are extracted from the segmented image. Two filter detectors are applied

to extract the crack information. Then, both responses are merged to obtain a unique re-

sponse. Second, apply cleaning and linking operation to form the global cracks. Tunget al.

[13] proposed the development of a mobile manipulator imaging system for bridge crack

inspection. The manipulator system is equipped with a binocular charge coupled devices

(CCD) camera. Their system aims to replace human inspectors. Leeet al. [14] and Ohet

al. [15] proposed a bridge inspection system which consists of aspecially designed car, a

robotic mechanism and a control system for automatic crack detection. Their system mea-

sures the length and width of the cracks. The measurement result is stored in the database

which is utilized in the bridge management system. Sohnet al. [16] proposed an auto-

matic procedure for monitoring crack growth on concrete structures. Their system focuses

on quantifying the change of cracks from multi temporal images during the monitoring

4



period. A modified iterated Hough transform (MIHT) is developed to solve a 2D projec-

tion between 2D concrete surface and 2D digital image [17]. Ito et al. [18] demonstrated

an automatic measurement system for concrete block inspection by means of fine crack

extraction. Most of these studies classify, measure, and detect cracks. However, none of

these crack inspection studies finds the global location of cracks. In this thesis, we develop

an overall system for robotic crack inspection. We detect cracks using a high resolution

camera. Then we find the location of cracks in the 2D map. To ensure the completeness

of the crack map, the inspection has to cover the whole area ofthe bridge deck surface. In

other words, the complete coverage path planning must be applied for the ROCIM system.

There are several related works for complete coverage path planning using mobile

robots. Chosetet al. [19] [20] developed a complete coverage path planning usingbous-

trophedron motion. The environment is decomposed into cells and the back and forth

motion is applied for each cell. Two types of decomposition are discussed: boustrophedron

decomposition and trapezoidal decomposition. The boustrophedron decomposition gives

more efficient coverage path planning than trapezoidal decomposition because it has fewer

cells to be covered. Muzafferet al. [21] investigated a genetic algorithm to coverage path

planning for mobile robots. The coverage is modeled as a diskwhich represents the range

of sensing devices. The genetic algorithm is used to find an optimum or near optimum

path in order to cover the disk at least once. Pauloet al. [22] utilized a genetic algorithm

to find the most efficient coverage path in a static environment. The proposed algorithm

decomposes the region into sub regions to separate the obstacle and non obstacle area.

Their algorithm considers two common templates, zigzag andwindowing, to cover in the

sub region area. The fitness function of the genetic algorithm is defined based on distance

and time. Simonet al. [23] developed a neural network approach to complete coverage

path planning. The dynamic neural activity based on Hodgkinand Huxley’s [24] shunting

equation is used to develop the complete coverage path planning. The idea is unclean area

attracts the mobile robot and the obstacle pushes the mobilerobot away. The result shows
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that the number of robot turns and traveling distance are minimized. Most of these works

consider the robot body as the coverage and the camera field ofview (FoV) is not studied.

In the ROCIM system we are interested in covering the camera FoV. There are challenges

in the planning problem due to the configuration of the cameraand the mobility of the

robot. In addition, we present a solution to this problem based on genetic algorithm. The

solution of complete coverage path planning (CCPP) is developed under the condition that

the mobile robot knows their position. To solve this localization problem, we use Monte

Carlo localization algorithm [25]. We utilize an advanced range navigation laser (ARNL)

from the Mobilerobot Inc. [2] to implement the MCL algorithm.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 presents overview of the ROCIM system.

The camera calibration is discussed in Chapter 3, which findsthe intrinsic and extrinsic

parameters that describe the geometric mapping between the3D world and the 2D image.

Chapter 4 presents the algorithm for crack detection. Chapter 5 discusses the complete

coverage path planning for the ROCIM system. The path planning is developed using

genetic algorithm to ensure the complete coverage of camerafield of view (FoV) and to

minimize the traveling distance and the number of robot turns. The experiment results

for the overall ROCIM system and the complete coverage path planning are discussed in

Chapter 6. Finally, conclusions and future work are given inChapter 7.
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CHAPTER 2

ROCIM SYSTEM OVERVIEW

In this chapter, we first introduce the hardware setup of our ROCIM system. The main

hardware for the ROCIM system is a mobile robot, which travels in the inspection area and

collects images of the bridge deck surface. Then, the main principle of the ROCIM system

is presented as follows: navigation, data collection and crack map generation.

2.1 Hardware setup of the ROCIM system

Figure 2.1 shows the overall hardware setup of the ROCIM system which consists of:

• one Pioneer3-DX mobile robot

• one LMS-200 laser sensor

• one Pan-tilt-zoom (PTZ) Canon VC-C50i camera

• one laptop

Inside the mobile robot, there is an on-board computer with limited memory and processor

power. Therefore, we utilize a laptop computer to implementcomplicated algorithms such

as cracks detection, localization, and path planning.

The Pioneer3-DX is a two-wheel drive mobile robot and has an on-board computer.

The processor of the on-board computer is a Pentium III 533 Mhz with 128 MB RAM and

it also has a 44.2368 MHz Renesas SH2 32-bit RISC microprocessor with 32K RAM. The

communication between the two processors on this mobile robot is based on a client-server

architecture.
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Figure 2.1: ROCIM system in action.

 

 
 

Figure 2.2: Connection setup between the laptop and the mobile robot [2].

The laptop is an HP G62-140US which has a 2.13GHz Intel Core i3-330 Processor

and 4GB DDR3 system memory. The laptop and the mobile robot are communicating

via wireless technology through Transmission Control Protocol (TCP). The laptop controls

the microprocessor by sending TCP data packet to the on-board computer. This TCP data

packet is converted into serial data to communicate with themicroprocessor. The illustra-

tion of the wireless communication is shown in Figure 2.2. Inaddition, the ethernet access

point can also be removed by using a peer to peer wireless ethernet network between the

laptop and the on-board computer.

The LMS-200 laser sensor is used to create the 2D map of the bridge deck and localize

the robot during the inspection. This sensor has 1800 bearing angle and is able to estimate
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a range up to 15 meters [2]. This device connects to the on-board computer through serial

communication. Another important device is the PTZ Canon VC-C50i camera. It is a color

camera with a resolution of 860×640 and optical-zoom-in of 26. The orientation of this

camera can be changed and the ranges of the pan and tilt anglesare -1000 to 1000, 300

to 900, respectively. This camera produces high resolution images which can be used for

crack detection in concrete environments.

2.2 Principle of the ROCIM system

To conduct bridge deck crack inspection and mapping, as illustrated in Figure 2.3, we will

block half of the bridge. The ROCIM system will then be deployed to inspect the blocked

half of the bridge. Once completed, the traffic will be switched to the completed half and

the other half will be inspected. During the ROCIM operation, the images of the mobile

robot will get blurred due to the vibration caused by the passing traffic. To solve this

problem, an anti-shock device can be used underneath the camera. Moreover, when the

mobile robot collects the images, we assume the mobile robotcompletely stops in order to

capture a clear image.

There are three steps in crack inspection and mapping.

1. Navigation map building: A 2D bridge deck map will be created first, which will be

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Scenario of crack inspection and mapping using the ROCIM system.
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Figure 2.4: Principle of the ROCIM system.

used to localize the robot during the data collection step.

2. Data collection: The robot will navigate on the bridge deck to collect the image data

at different locations. The raw image data can be stored in the on-board computer or

transferred to a nearby laptop computer using wireless connection.

3. Crack detection and crack map generation: Cracks will be detected through image

processing. The crack map will be created by piecing together multiple local crack

maps. This step can be performed off-line on the laptop computer.

The proposed crack inspection system works according to Figure 2.4. To create a navi-

gation map, we use a simultaneous localization and mapping (SLAM) algorithm [26]. The

SLAM algorithm estimates the robot locations and creates the 2D map at the same time.

We utilize the Mapper3 software [2] to create the 2D map. After the map is created, the

mobile robot has a prior knowledge of the environment and therobot can localize itself

based on that map using a Monte Carlo localization (MCL) algorithm [25].

Camera calibration is used to find the relationship between the image coordinate system

and the robot coordinate system. Using the camera mounted ontop of the robot, the posi-

tion and orientation of the camera are assumed to be static. In other words, the relationship

between the camera and robot coordinate system is assumed tobe fixed once the camera

orientation is fixed. We denote this relationship as a camera-robot transformation. The

crack locations in the image coordinate system can be mappedto the robot coordinate sys-

tem through this transformation. During the inspection, the robot will travel on the bridge
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deck and localize itself according to the 2D map. Therefore,the relationship between the

robot coordinate system and the global coordinate system can be found using the MCL

algorithm. We denote this relationship as a robot-global coordinate system transformation.

Another transformation is an image-camera coordinate system transformation that can be

found from camera calibration. In order to create the crack map, we derive an image-global

coordinate system transformation which is a multiplication of image-camera, camera-robot

and robot-global coordinate system transformation.

After all images are collected, they will be processed usingthe Laplacian of Gaussian

(LoG) algorithm [27] [28] to detect the cracks. The LoG algorithm finds a zero-crossing

as an edge in the second differential of the image intensity.Since the cracks are detected

using the LoG algorithm, the crack locations are found in theimage coordinate system. In

order to create the crack map. We apply the image-global coordinate transformation to map

these crack locations to the global coordinate system.

To ensure the mobile robot collects all the images on the bridge deck in an efficient

manner, we explore using a complete coverage path planning (CCPP) algorithm for the

ROCIM system. We propose a robotic inspection path planningbased on the genetic algo-

rithm (RIP-GA) to solve this CCPP problem.The RIP-GA algorithm will run off-line after

the 2D map of the bridge deck is generated. The output of RIP-GA is a path which consists

of a sequence of robot locations in the 2D map with a particular robot and camera pose. To

implement this algorithm, the mobile robot has to travel according to this path and collects

an image at each location.

In the last part of the ROCIM system, there is an alignment process to connect the

continuous crack in different images. Since the calibration and localization have certain

error due to distortion and noise, this alignment process can be used to improve the accuracy

of the crack map. In this thesis, we mainly focus on developing the overall solution for

crack detection and the path planning strategy for the ROCIMsystem. We will solve the

alignment problem as part of our future work.
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CHAPTER 3

CAMERA CALIBRATION

In the ROCIM system, a mobile robot detects cracks in the image coordinate system while

a crack map should be created in the global coordinate system. Hence, camera calibra-

tion is needed to map the crack locations from the image coordinate system to the global

coordinate system. In other words, we need to find a transformation matrix to map these

crack locations. In this chapter, first, we discuss a pin holecamera model for the camera

calibration. Second, a Matlab camera calibration toolbox is introduced to solve the camera

calibration [4]. Last, we discuss an overall coordinate transformation to create the crack

map.

3.1 Camera model

Camera calibration is a process of geometric mapping between the 3D world and 2D images

using a set of points. The geometric mapping consists of extrinsic and intrinsic parameters.

Figure 3.1 illustrates the pure perspective projection of the pin hole camera model. Here,

we have a pointP in the global coordinate system and the center of the projection is at the

origin O of the camera coordinate systemC. The image planeΠ is parallel to thexy plane

of the camera coordinate system with displacement of focal length (f ) along thezaxis. The

principal point is an intersection of planeΠ and thezaxis. The coordinates of the principal

point in the image coordinate systemI are [u0, v0]T .

The coordinate of P in the global coordinate system is [X,Y,Z]T . The coordinate ofp in

the image coordinate system is [u, v]T . The following homogeneous equation can be used

to express the transformation of these coordinate systems.
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(3.1)

whereF is the perspective transformation,λ is a scale factor,L describes the intrinsic

matrix, andM denotes the mapping from the global coordinate system to thecamera coor-

dinate system which consists of rotationR and translationt. The decomposition of matrix

L andM are shown in Equation 3.2 and Equation 3.3, respectively.
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M =























R t

0 1























(3.3)

wheret = [tx, ty, tz]T andR can be defined by the three Euler anglesθ, φ, andψ. These
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Figure 3.1: Illustration of pinhole camera model [3].
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angles can be computed using the rotation matrixR.

θ = sin−1r31 (3.4)

φ = atan2(−
r32

cosθ
,

r33

cosθ
) (3.5)

ψ = atan2(−
r21

cosθ
,

r11

cosθ
) (3.6)

The variablestx, ty, tz, θ, φ, andψ are called extrinsic parameters ands, f , u0, and v0 are

denoted as intrinsic parameters.

Figure 3.1 shows the ideal projection of a point in the globalcoordinate system to the

image coordinate system. In practice, there will be an error(distortion) caused by the lens

system. Many research works have been proposed to address with this problem. The main

approach is to decompose the distortion into radial and decentering components [3]. Here,

we utilize the Matlab camera calibration toolbox to conductthe camera calibration. The

interface of this toolbox is shown in Figure 3.2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Matlab camera calibration toolbox [4].

3.2 Camera calibration using Matlab toolbox

In this section, we briefly present the steps of using Matlab toolbox to solve the camera

calibration problem for the ROCIM system. The input of this toolbox is a set of n points

in the image and the global coordinate system wheren > 5. The output is the intrinsic

and extrinsic parameters of the camera calibration. The procedure of the calibration in our

experiment is described as follows:
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Figure 3.3: Camera calibration for the ROCIM system.

 

 

 

 

 

(a) Image for camera calibration
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(b) Corner extraction result

Figure 3.4: A chessboard is used for camera calibration.

1. Setup the experiment as shown in Figure 3.3. A chessboard is used as the object for

the calibration. Since the grid has the same length but different colors for neighboring

grid cells, the location of the corner points can be estimated accurately.

2. Capture an image of the chessboard using the mobile robot camera as shown in Fig-

ure 3.4(a). This image will be used as the input for the toolbox.

3. Extract the grid corners to find the set of n points in the image and the global coordi-

nate system. Figure 3.4(b) shows the result of the corner extraction.

4. Run the calibration. The results of the calibration are the intrinsic parameters and the
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(b) global-oriented view

Figure 3.5: The result of camera calibration using Matlab toolbox.

extrinsic parameters which are shown in Figure 3.5(a) and Figure 3.5(b).

3.3 Coordinate transformation

In this section we discuss the coordinate transformation tomap the crack location from

the image coordinate system to the global coordinate system. As we mentioned before

that the mobile robot travels in the inspection area and collects the image of the bridge

deck surface. The location and orientation of the mobile robot can be estimated using

Monte Carlo localization (MCL) algorithm [29] [25]. The MCLalgorithm is a sampling-

based method to approximate a probability density distribution of the robot locations. Each

sample consists of a possible robot location and a probability that the robot currently is at

that location. We use advanced range navigation laser (ARNL) library [2] to implement

the MCL algorithm. Figure 3.6 shows a graphic user interface(GUI) of the mobile eyes

software where the MCL result can be visualized [2]. The red circle represents the mobile

robot body. The green and blue dots denote previous and current samples, respectively.

These samples are measured using the laser sensor. The information of the current position,

orientation and the probability for the current location can be seen in this GUI.

Camera calibration finds the extrinsic and the intrinsic parameters of the camera. Subse-

quently, we utilize those parameters to map all crack locations to the 2D map by assuming
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Figure 3.6: Graphic user interface for mobile eyes [2].

that the transformation between the camera coordinate system and the robot coordinate

system is fixed, for a given camera orientation.

The ROCIM system involves five coordinate systems as shown inFigure 3.7. They

are: image coordinate system (FI ), camera coordinate system (FC), local coordinate sys-

tem (FL), robot coordinate system (FR) and global coordinate system (FG). After we do the

camera calibration, we have the intrinsic and the extrinsicparameters. The intrinsic param-

eters are focal length (f ), skew value (s) and the origin of image coordinate system (µ0, ν0) 
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Figure 3.7: Coordinate systems in the ROCIM system.
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as described in Equation (3.2). The extrinsic parameters are rotation (R) and translation (t)

matrices as in Equation (3.3) [3]. These parameters define the transformation matrixITC

andCTL, respectively. In the ROCIM system as the robot collects theimages, it saves its

current location in the global coordinate system. After we detect the crack in each image,

we should plot all the crack locations in the global coordinate system. To do this, we have

the crack locations in the image coordinate system (u, v). We map the crack locations to

the robot coordinate system (XR,YR) using the camera-robot transformationCTR, which is

derived from the multiplication of transformation matrices as below.

CTR =
CTL

LTR (3.7)

The transformationLTR can be calculated using pseudo-inverse as in Equation 3.8. Here,

DL andDR are a set of point locations in the local coordinate system and the robot coordi-

nate system, respectively. We utilize an optical tracking system to find the location of these

points [30].

LTR = (DT
L DL)−1DT

L DR (3.8)

We apply another transformation from the robot coordinate system to the global coordi-

nate system using the transformationRTG, which can be calculated from the robot location

(x, y, θ). Therefore from the image coordinate system to the global coordinate system, we

have the following transformation:

ITG =
ITC

CTR
RTG (3.9)
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CHAPTER 4

CRACK DETECTION

In this chapter, we discuss Laplacian of Gaussian (LoG) as the crack detection algorithm in

the ROCIM system. We present how to apply this algorithm to detect cracks in each image

captured by the mobile robot. We also discuss our graphic user interface (GUI) to detect

the cracks.

4.1 Crack detection algorithm

The main idea of detecting cracks is to find out the edge pointsin an image. These edge

points can be detected by finding the zero-crossings of the second derivative of the image

intensity. However, calculating the second derivative is very sensitive to noise. Hence, this

noise should be filtered out. To achieve this, the Laplacian of Gaussian (LoG) algorithm

[31] is used. This method combines Gaussian filtering with the Laplacian for edge detec-

tion. In the LoG edge detection, there are mainly three phases: filtering, enhancement,

and detection. Especially, Gaussian filter is used for smoothing and its second derivative
 

 

Figure 4.1: First and second order derivative of one dimension signal [5].
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is used for enhancement. The detection criteria is the presence of a zero-crossing in the

second derivative with the corresponding large peak in the first derivative as shown in Fig-

ure 4.1.

In this approach, the noise is firstly reduced by convolutingthe image with a Gaussian

filter. Then isolated noise points and small structures are filtered out. With smoothing,

edges are spread out. Those pixels that have locally maximumgradient are considered

as edges by the edge detector in which zero-crossings of the second derivative are used.

To avoid detecting insignificant edges, only the zero-crossings with corresponding first

derivative above some thresholds are selected as edge points. The edge direction is obtained

by using the direction in which zero-crossing occurs.

The Laplacian is a 2D isotropic measure of the 2nd spatial derivative of an image. The

Laplacian of an image highlights regions of fast intensity change and is often used for edge

detection. We define a 2-D second order derivative as the Laplacian function which is

isotropic [31].

(∇2 f )(x, y) =
∂2 f
∂x2
+
∂2 f
∂y2

(4.1)

The Laplacian is often applied to an image that has first been smoothed with a Gaussian

smoothing filter in order to reduce its sensitivity to noise.Hence, the two variants will be

described together here. The operator normally takes a single gray level image as input and

produces another gray level image as output. The Laplacian L(x,y) of an image with pixel

intensity values I(x,y) is given by:

L(x, y) =
∂2I
∂x2
+
∂2I
∂y2

(4.2)

Since the input image is represented as a set of discrete pixels, we have to find a dis-

crete convolution kernel that can approximate the second derivatives in the definition of the

Laplacian.

Here we use two kernels with sizes 15×15 and 17×17 in combination with the changing

thresholds and variances to check the effect of edges in the images. Figure 4.2 shows the
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LoG kernel with kernel size equal to 17×17. Using these kernels, the Laplacian can be

calculated using standard convolution methods. Because these kernels are approximating

a second derivative measurement on the image, they are very sensitive to noise. To counter

this, the image is often smoothed using Gaussian filter before the Laplacian filter is ap-

plied. This pre-processing step reduces the high frequencynoise components prior to the

differentiation step. Because the convolution operation is associative, we can convolve the

Gaussian smoothing filter with the Laplacian filter, and thenconvolve this hybrid filter with

the image to achieve the required result. Doing things this way has two advantages:

• Since both the Gaussian filter and the Laplacian kernels are usually much smaller

than the image, this method usually requires far fewer arithmetic operations.

• The LoG kernel can be pre-calculated in advance so only one convolution needs to

be performed at run-time on the image.

The 2D LoG function centered on zero and with Gaussian standard deviation has the form:

LoG(x, y) = −
1
πσ4

[

1−
x2
+ y2

2σ2

]

e−
x2
+y2

2σ2 (4.3)

If the image is pre-smoothed by a Gaussian low-pass filter, then we have the LoG operation

that is defined as

(K∇2 ∗ ∗(Gσ ∗ ∗I )) = (K∇2 ∗ ∗Gσ) ∗ ∗I = (∇2Gσ) ∗ ∗I (4.4)

where

∇2Gσ(x, y) =
1

2πσ4

[x2
+ y2

σ2
− 2
]

e−
x2
+y2

2σ2 (4.5)

To find the places where the value of the Laplacian passes through zero points and also

changes sign, we use the zero-crossing detector. We know that such points often occur at

edges where the intensity of the image changes rapidly, but they also occur at places that

are not easy to associate with edges. It is better to think of the zero-crossing detector as

some sort of feature detector rather than as a specific edge detector. Zero-crossings always
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Figure 4.2: LoG kernel.

lie on closed contours, and so the output from the zero-crossing detector is usually a binary

image with single-pixel lines showing the positions of the zero-crossing points.

 

 

 

 

 

Figure 4.3: Zero-crossing.

The initial input for the zero-crossing detector is an imagewhich has been filtered

using the Laplacian of Gaussian filter. The resulting zero-crossings are strongly affected

by the size of the Gaussian used for the smoothing stage of this operator. As the smoothing

is increased, then fewer and fewer zero-crossing contours will be found, and those that

remain will correspond to features of larger and larger scale in the image. The summary of

the crack detection algorithm is shown in Algorithm 1.
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Algorithm 1: Crack Detection
Step 1.Apply the LoG to the image.

Step 2.Apply the zero-crossing detector in the image.

Step 3.Filter the zero-crossings to keep only those strong ones (large difference

between the positive maximum and the negative minimum).

Step 4.Suppress the weak zero-crossings most likely caused by noise.

4.2 Operation interface for crack detection

In this subsection, we discuss the operation interface for crack detection by using a graphi-

cal user interface (GUI) as shown in Figure 4.4. The input images captured by the robot are

collected and stored on the computer. There are two modes of operation, first, we can select

the image inBrowse, then theManual-Run button will start the crack detection algorithm

and the crack results (white lines) are superimposed on the output image. Second, tn the

Auto-Run mode, it allows us to detect the cracks on all images automatically. After the

cracks on each image is detected, the crack locations in the image coordinate system are

mapped to the 2D map.

Figure 4.4: GUI for crack detection and mapping.
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CHAPTER 5

COMPLETE COVERAGE PATH PLANNING

In this chapter, we present a new path planning algorithm that allows the robot to travel

efficiently during the inspection. The path planning is important for the ROCIM system to

save time and energy. We first formulate the problem, then we propose two approaches to

solve this problem.

5.1 Problem formulation

The purpose of complete coverage path planning (CCPP) is to ensure the union of camera

field of views (FoV) covers the whole bridge deck surface. There are several issues that we

need to address in this CCPP problem. First, a typical camerainstallation is mounted on top

of the mobile robot as shown in Figure 5.1. Therefore, there is a blind spot which is caused

by the offset distance between the center location of the robot body and the center location
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Pioneer3-DX with the camera on top of it.
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Figure 5.2: Projection of mobile robot and field of camera view (FoV) to an XY plane.

of the FoV. Second, to allow the mobile robot to detect small cracks, the camera should

zoom in. Hence, it makes the size of FoV smaller than the size of robot body. To illustrate

these issues, we project the robot body and FoV to an XY-planeas shown in Figure 5.2.

To simplify the problem, the area of interest is partitionedinto cells which have the same

size as the FoV. We define several concepts to develop the solution for this problem. These

definitions are described as follows:

Definition 1: Configuration of Inspection

Let (xr , yr) ∈ R2 be the center location of the mobile robot;θ ∈ [0, 2π] be the orien-

tation of the mobile robot; andφ ∈ [−π/2, π/2] be the pan angle of the camera. Then, a

configuration of inspection(CoIi) is defined as:

CoIi , (xr , yr , θ, φ) wherei denotes a cell.

Definition 2: Motion Template

A motion template, MT(i, j), is the mobile robot and camera motion plan that transitions

from CoIi to CoIj:

MT(i, j) , CoIi → CoIj, j ∈ N(i), hereN is the neighborhood of celli as shown in

Figure 5.4(a).
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Figure 5.3: Twelve configuration of inspections (CoI).

Definition 3: Inspection Path

An inspection path, IP, is a sequence of motion templates that ensure the union of cam-

era FoVs cover the whole area of interest. Aninspection pathis defined as:
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Figure 5.4: (a) Four directions of camera path defines four neighbor cells. (b) An example

of camera path to cover the whole area.
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Figure 5.5: Relationship between configuration of inspection (CoI), motion templates (MT)

and inspection path (IP).

IP , [MT( i1, i2), MT(i2, i3),..., MT(in−1in)] where (i1, i2, ..in) is the camera path (a se-

quence of all the cells). An example of camera path is shown inFigure 5.4(b).

In Figure 5.3, we show the twelve CoIs where each CoI has a different robot orientation

(θ) and camera pan angle (φ) whereθ = (00, 900, 1800, 2700) andφ = (−450, 00, 450). We

use twelve CoIs because the robot heading (θ) is discretized into four values and the camera

pan angle (φ) is discretized into three values. We encode the CoIs using alphabet from A

to L: S = (A, B, C, D, E, F, G, H, I, J, K, L) as shown in Figure 5.3. The redsquare

(darker square) is the mobile robot and the green square (lighter square) is the FoV. The

relationship between the three definitions is shown in Figure 5.5. In a free space, all the

twelve CoIs can be applied to cover a celli as shown in Figure 5.6.

In Figure 5.4(a) we show that celli has four neighbors (a, b, c, d) because we assume

the camera FoV moves only in four directions such as up, down,left and right. Therefore,

there are 512 (12×12×4) different motion templates base on twelve CoIs and four camera

path directions.

The problem of complete coverage path planning for the ROCIMsystem is how the mo-

bile robot plans a path (inspection path) in order to have complete coverage of the cells in an
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(c)

Figure 5.6: In free space, to inspect a cell, there are twelves CoIs that can achieve it.

efficient manner. This can be done by selecting the combination of CoIs which minimizes

a fitness function. The fitness function consists of three components: traveling distance,

robot turns, and camera turns. The robotic inspection path planning based on genetic algo-

rithm (RIP-GA) is proposed to minimize the number of robot turns and traveling distance.

The last component (camera turns) is not considered becausethe camera works in parallel

to the mobile robot. In summary, the CCPP problem can be stated as follows:

Given an area of interest, which is partitioned into cells, find an inspection path that

covers all the cells while minimizing the numbers of robot turns and traveling distance.

In this thesis, we are interested in finding the sub-optimal solution because finding the

optimal solution is an NP-hard problem and the computation increases exponentially with

the number of cells.

5.2 Two approaches to complete coverage path planning

Many existing approaches cannot be directly applied to solve the CCPP problem because

in these approaches, the robot body is used for the coverage [19] [21] [22] [32] [33]. In

this section, we discuss two different approaches to the CCPP problem. First, we present a

heuristic approach which provides a full coverage of cells,however the traveling distance

and the number of robot turns are not optimized. Second, we present a RIP-GA approach

which gives a better solution than the heuristic approach.
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5.2.1 Heuristic Approach

In this approach, the robot plans the inspection path based on the robot body movement.

Typical motion planning such as boustrophedron motion [19], wall-following motion, and

spiral motion can be used to plan the path. After the robot covers the entire area using the

robot body, the coverage of FoV is considered. If the complete coverage is not achieved,

the robot needs to inspect the uncovered cells by adding moremovements. Pseudo-code

of this approach is shown in Algorithm 1. We show some examples using this approach

that can give a full coverage of the cells however the number of robot turns and traveling

distance are not minimized. The examples are presented as follows:

Example 1

We consider an empty rectangular map without any obstacle with size 80×120 as in Fig-

ure 5.7(a). The map is discretized into square cells with thesame size as the FoV. The

boustrophedron motion from top to bottom is applied to the mobile robot with camera fac-

ing forward, i.e.,CoIB. The mobile robot starts moving from (−50, 30) to (50,−30). These

are missing areas especially along the edges as shown in Figure 5.7(a). The trajectory of

this robot motion is shown in Figure 5.7(b). To cover the missing areas, the robot needs to

re-plan the motion which results in a lot of overlapping path. Therefore, the solution is not

very good.

Algorithm 2: Heuristic Approach
Step 1.Generate a mobile robot path to cover the area.

if there is any uncovered cellthen

Step 2.Find out the uncover cells and let the robot go back to cover these cells.

else
Step 3.Finish.

29



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

x

y

(a) Field of camera view
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(b) Trajectory of robot path

Figure 5.7: Mobile robot trajectory with 00 camera orientation.
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(b) Trajectory of robot path

Figure 5.8: Trajectory of the wall following mobile robot motion with 45o camera orienta-

tion.

Example 2

In this example we change the pan-orientation of camera to 450 (CoIC) which allows the

robot to inspect the cells along the edges. Then, we apply wall-following motion for the

mobile robot to cover the entire area [28]. The coverage of this motion planning is shown
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in Figure 5.8(a) and the trajectory of the robot motion is shown in Figure 5.8(b). The result

shows that full coverage is achieved. However there is unnecessary overlap in the coverage

and robot paths. Therefore the traveling distance and the number of robot turns are not

satisfying. As the result, this heuristic approach does notprovide a good solution to the

CCPP problem.

5.2.2 RIP approach

The RIP approach finds an inspection path (IP) that minimizesthe total traveling distance

and the number of robot turns by selecting the Configuration of Inspection (CoI). The

proposed algorithm extends the idea of the proposed RPP-CP (robotic path planning based

on the camera path) [28]. The RPP-CP and RIP approaches assume that the camera path

is planned in the first step in order to have complete coverageof FoV. Then, the robot and

camera motion are planned according to the camera path.

To select the CoI, we utilize a genetic algorithm as a stochastic method and greedy al-

gorithm as a deterministic method. Here, we denote RIP-greedy as the robotic inspection

path planning based on greedy algorithm. The genetic algorithm is an optimization method

which mimics the natural evolution. The solution is generated using techniques such as mu-

tation, selection and crossover [34]. We model some parameters to fit the genetic algorithm

as follows:

• The gene is defined as the CoI.

• The chromosome (CI
r ) is a sequence of CoIs,CI

r = (CoIi1,CoIi2,CoIi3, ...,CoIin) and

the length ofCI
r is the same as the number of cells (n).

Figure 5.10(a) shows the illustration of the chromosome andit represents the solution to this

CCPP problem. For each generation the genetic algorithm tries to find a better chromosome

by minimizing the fitness function.

F = Σn
j=1(α‖q(i j , i j+1)‖ + β‖u(i j, i j+1)‖) (5.1)
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Figure 5.9: Calculation of the fitness function.

Here, the functionsq, u basically are the traveling distance and robot turns, respectively.

These functions are defined based on the path planning algorithm of the mobile robot. The

variablesα, β are the weight value for distance and time. In Figure 5.9 we show an example

of fitness function calculation from one CoI to another CoI.

The pseudo-code of the RIP-GA algorithm is shown in Algorithm 2. In the step 4 of

Algorithm 2, the multiple cross-over operation is applied to mate the nearest pair. This

operation is used to produce offspring (ωI , ωI+1).

ωI
= c1C

I
r + c2C

I+1
r + (1− c1 − c2)C

I
r (5.2)

ωI+1
= c1C

I+1
r + c2C

I
r + (1− c1 − c2)C

I+1
r (5.3)

Equation 5.2 and 5.3 have to satisfy the following conditions as follows:c1, c2 ∈[0,1]

andc1+c2 ≤ 1. Here,c1, c2 is a percentage of the CoI from one chromosome. For example,

let c1 = 0.2, c2 = 0.3 then the chromosomeωI takes 70% genes fromCI
r to mate with 30%

of theCI+1
r . The illustration of the cross-over operation is shown in Figure 5.10(b). Then,

the mutation operation is applied in order to avoid the genetic algorithm getting stuck in
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Figure 5.10: (a) Chromosome (CI
r ). (b) Multiple chromosome crossover.

local minimum. After the crossover and mutation are applied, the offsprings (ωI , ωI+1) are

evaluated with the parents (CI
r ,C

I+1
r ). For each offspring, we calculate and compare the

fitness value to the parents. We discard two of these chromosomes (offsprings and parents)

which have the most fitness value. In the step 6, we remove somechromosome in the

population which have the most fitness value and new chromosomes are introduced to fill

in. The algorithm continuously runs until the fitness value of the top chromosome does not

change forQ iterations.

We compare the genetic algorithm with the greedy algorithm to validate the proposed

RIP approach. The greedy algorithm searches locally for theminimum fitness value for

the next CoI along the camera path. The greedy algorithm is robust to select the CoI but

it always gets stuck in local minimums. The pseudo-code of the RIP-greedy algorithm is

shown in Algorithm 4.
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Algorithm 3: RIP-GA
Step 1.Generate a camera pathCP(n) whereCP= (i1, i2, i3..., in), n ∈ Z.

for each CP(n)do
Find a set of feasible CoI(S)

Step 2.Generate a population ofM genetic strings randomly fromCP;

PI
= (ωI

1, ω
I
2, ω

I
3..., ω

I
N) ; I = 1, 2...,M.

while the genetic algorithm is not convergeddo
1. Compute the fitness function using Equation 5.1

2. Rank the genetic strings from top to bottom,CI (I = 1, 2, ,M)

3. Put the top chromosome to the next generation (Elitism).

4. Mate the nearest pairs.

5. Mutate the offspring.

6. Kill the bottom genetic strings (B < M) and keep the top K parents.

7. New parents = K∪ R, and R is a random population to replace the bottom

genetic strings.

8. Evaluate the best chromosome

if the genetic algorithm is convergedthen
Go toStep 3.

Step 3.Generate the inspection path based on the CoI sequences (Inspection path).

Algorithm 4: RIP-Greedy
Step 1.Generate a camera pathCP(n) whereCP= (i1, i2, i3..., in), n ∈ Z.

for each CP(n)do
Find a set of feasible CoI(S)

Step 2.Find the minimum motion templates for each cell.

Step 3.Generate the robot trajectory based on the CoI (Inspection path).
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CHAPTER 6

EXPERIMENT RESULTS

We conducted both simulations and experiments to validate the proposed ROCIM system

and the associated algorithms. In the first experiment, we apply the ROCIM system to

detect real cracks on the bridge deck. In the second experiment, we demonstrate the work-

ing of the ROCIM system in the indoor and outdoor environments. Finally, we evaluate

the complete coverage path planning (CCPP) algorithm in both simulation and real robot

implementation.

6.1 Real crack detection

In order to evaluate the performance of the ROCIM system, we first tested our crack detec-

tion algorithm using real crack images which are collected from a bridge deck. The original

image is shown in Figure 6.1(a). The Laplacian of Gaussian (LoG) algorithm is applied to

the image, and the results are shown in Figure 6.1(b). The detected crack is superimposed

on the original image in Figure 6.1(c). Here, the result clearly shows the LoG algorithm

successfully detects the crack in the image. The parametersof the LoG algorithm are:σ =

2.5 and threshold T = 3.

One of the limitations of the LoG algorithm is that it is difficult to find the optimal

parameters such asσ and T. For example, usingσ ≤ 1.5 and T = 2, the result shows too

much noise and the crack is barely detectable (See Figure 6.2). On the other hand, if we set

σ or T too large, the LoG removes most of the crack information.In Figure 6.2, we show

the result of the LoG algorithm using variousσ and T to detect the crack. In addition, our

initial tests indicate that the smallest detectable crack is around 1 mm in width.
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(c)

Figure 6.1: Crack detection result on a real bridge deck.

 

 

 

 

Figure 6.2: Comparison of the LoG parameters for crack detection.
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6.2 Validation of the ROCIM system

In this section, we demonstrate the working of the ROCIM system. Three types of environ-

ment are evaluated in this experiment. The first is a simple indoor environment. We define

a grid by using the line of each tile as cracks. The second is a complex indoor environment.

We create artificial cracks by drawing curves on the ground. We use the cones to set the

inspection area. The third is an outdoor environment. We investigate the ROCIM system

to detect the crack on the concrete surface.

6.2.1 Simple indoor environment

The hardware setup for the simple indoor environment is shown in Figure 6.3. We use the

advanced range navigation laser (ARNL) and the Mapper3 software to create a 2D map of

the environment [2]. The 2D map of this environment is shown in Figure 6.4(a). Next,

the 2D map is used to localize the mobile robot during the inspection using Monte Carlo

localization (MCL) algorithm. Before we run the inspection, we calibrate the camera using

the grid on the floor. The image that we collected for the camera calibration is shown in
 
 
 

 

Figure 6.3: Experiment setup for simple indoor environment.
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(a) A 2D map of the simple indoor environment.
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(b) Grids on the floor for camera calibration.

Figure 6.4: Simple indoor environment.

Figure 6.4(b). The intrinsic and extrinsic parameters for the camera calibration with respect

to the robot coordinate system are obtained as follows:
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−0.6807 0.0327 −0.7318 1924









































There are six images collected from different places. Then,the LoG algorithm is ap-

plied to detect the crack in each image as shown in Figure 6.5.Next, we map all the crack

locations to the global coordinate system. Figure 6.6 givesthe overall crack map based on

the six images. The blue and black lines represent the crack and the 2D map, respectively.

The result shows that the transformation of the crack locations from the image coordinate

system to the global coordinate system works well and the crack map is successfully cre-

ated. However, it can also be noticed that there are some misalignments in the crack map.
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Figure 6.5: Crack detection result for simple indoor environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Crack map of the first experiment setup
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6.2.2 Complex indoor environment

In the second environment, we apply the ROCIM system to detect curved cracks in the

indoor environment. The hardware setup for this experimentis shown in Figure 6.7. Here,

the robot collects 18 images to cover the whole inspection area in order to create the crack

map. The procedure to create the crack map is the same as the previous experiment. The

created 2D map of this environment is shown in Figure 6.8(a) and we utilize a chessboard

for camera calibration as shown in Figure 6.8(b).

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Experiment setup for complex indoor environment.
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(a) A 2D map of the complex indoor environment.
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(b) A chessboard for camera calibration.

Figure 6.8: Complex indoor environment.
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(a) A ground truth image for complex indoor envi-

ronment.

 

 

 

 

 

 

 

 

 

 

 

 

(b) Image for the camera calibration.

Figure 6.9: Ground truth of crack locations in the complex indoor environment.

To evaluate the crack map for this environment, we captured asingle image which

has all the crack information as shown in Figure 6.9(a). In order to create this ground

truth map, we detect the cracks on this image and transform them to the global coordinate

system. The transformation is calculated through the camera calibration and Figure 6.9(b)

shows the calibration image.

We compare the result of the crack map with the ground truth map as shown in Fig-

ure 6.10. Figure 6.10(a) shows the ground truth map of cracksin the global coordinate

system. Figure 6.10(b) shows the crack map created by the ROCIM system. The result

shows some misalignments of the crack locations in the crackmap. This is mostly due to

camera calibration and robot localization errors. We also see some anomalies appear in

Figure 6.10(b) that are not shown in Figure 6.10(a). This is due to different thresholds of

crack detection algorithm. Figure 6.11 shows the overall crack map. The black line and

blue lines represent the crack and the 2D map, respectively.
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(a) The ground truth of the crack in the complex indoor environment.
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(b) Cracks detected by the ROCIM system.

Figure 6.10: Comparison of the crack map with the ground truth.
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Figure 6.11: The global crack map.
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6.2.3 Outdoor environment

In this experiment, we deploy the mobile robot to detect the cracks on a concrete surface.

The experimental setup for outdoor test is shown in Figure 6.12. Here, the ROCIM system

has to handle an open environment and moving obstacles such as walking people. The

main problems with this experiment are poor robot localization and shadows. The robot

localization problem is caused by the limited sensing rangeof the laser sensor which is not

sufficient to scan the whole area and the dynamic environmentwhich gives some noises to

the MCL algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Experiment setup to evaluate the ROCIM system in the outdoor environment.

The methodology to create the crack map is the same as in the indoor experiment. We

collect 10 images to cover the whole environment. Figure 6.13(a) shows the crack image

in this environment and the crack map is shown in Figure 6.12.In this result, we do not

evaluate the crack inspection in the shadow area and the misalignments of the crack map

are still occurred.
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(a) Cracks in the outdoor environment.

 

 

 

 

 

 

 

 

 

 

 

 

 

-50005001000

-3000

-2500

-2000

-1500

-1000

-500

0

500

(b) Crack map for outdoor environment.

Figure 6.13: Outdoor experiment result.
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6.3 Complete coverage path planning

In this section we test our proposed robotic inspection pathplanning based on genetic

algorithm (RIP-GA) in both simulations and real experiments. In simulation, we implement

our algorithm in both obstacle and obstacle-free environments. In the real experiment, we

implement our algorithm using the real mobile robot, Pioneer3-DX.

6.3.1 Obstacle-free environment

We define an environment without obstacles as in Figure 6.14(a). First, the camera path is

planned using boustrophedron motion from top right to bottom left. There are 55 cells in

this environment and each cell has to be covered in order to have complete coverage. There

are several parameters that need to be initialized before werun the RIP-GA algorithm, such

as the number of population M = 500, the weight parametersα = 0.94, β = 1.1, and the

stopping conditionQ = 30. The values ofα andβ are found by measuring the time require

for traveling a unit distance and making the robot to do a 900 turns.

For each generation, we discard 50% of the population which has the least rank and

introduce new chromosomes to fill in. We run the RIP-GA algorithm to find the sub-optimal

solution of the inspection path. After certain number of iterations, the RIP-GA algorithm

converges at 59.15. The performance of the RIP-GA algorithmfor each generation is shown

in Figure 6.15. Moreover, the RIP-GA algorithm finds more than one solutions that have

the same fitness value and they are shown in Tabel 6.1.

We compare the result of the RIP-GA algorithm with the RIP-greedy algorithm as

shown in Table 6.2. Here, the result of the RIP-GA algorithm is slightly better than that

of the RIP-greedy algorithm in terms of the number of robot turns, traveling distance and

fitness value. The snapshots of the RIP-GA algorithm in the obstacle-free environment are

shown in Figure 6.14.
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Figure 6.14: Snapshots of the simulation in the obstacle-free environment: (a), (b) and (c)

are the snapshot of the mobile robot position, (d), (e) and (f) are the snapshot of the covered

camera view.
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Figure 6.15: Performance of RIP-GA algorithm for obstacle-free environment.
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Table 6.1: Several solutions with the minimum fitness value
CoIs

LLLLBDDCDDBLLLLALLLBDDDDFFHJJJJIJJJHFFFGGFFFHJJIIJJJHFFF

LLLLLBDDCDDBLLLAALLBDDDCFFHJJJJIJJJJHFFFFFHJJJJIIJJJHFFF

LLLLBDDCDDBLLLLLLLLLBDDCFFHJJJJJJJJHFFFGFFFFHJJJJJJJHFFF

Table 6.2: Comparison of complete coverage path planning

RIP-GA algorithm RIP-Greedy algorithm

The number of robot turns 26 26

Traveling distance 325 395

fitness value 59.15 65.73

6.3.2 Obstacle environment

In this experiment, we evaluate the proposed algorithm in the obstacle environment as

shown in Figure 6.16. Here, the obstacles are described by red squares. First, we decom-

pose the environment into eight regions. Then, the camera path is planned using bous-

trophedron motion from bottom to top for each region. For each region, we indicate the

starting and ending points by gray and black bullets, respectively. In this experiment, the
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7 

Figure 6.16: Map decomposition for obstacle environment.
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initialization parameters are the same as those in the obstacle-free environment except the

number of population (M). Since the obstacle environment isdecomposed into several re-

gions, we run the RIP-GA algorithm separately for each region. We use different values of

M due to the different sizes of the region. We use M = 1000 for region 1 and 3, and M =

500 for the rest of regions.

The RIP-GA algorithm initializes the search with a random sample for each cell. The

random sample is basically CoIs. In the obstacle environment, several CoIs can’t be used

to cover the cells which locate in the corner or around the boundary. Therefore, we apply

a CoI filtering to remove these infeasible CoIs. In Table 6.3,we show the result of the

CoI filtering for the first region. The subscript indicates the order of camera path and the

letters indicate the feasible CoIs. For the first region, theRIP-GA generates the random

population based on this table and the RIP-greedy calculates the least fitness value for each

CoI according to this table too. We run the RIP-GA and RIP-greedy algorithm to find

Table 6.3: Feasible CoIs in region 1.
IJ1 IJK21 IJK41 AIJKL61 AIJKL81 AIJKL101

HIJ2 HIJK22 HIJK42 ABHIJKL62 ABHIJKL82 ABHIJKL102

HIJ3 HIJK23 HIJK43 ABHIJKL63 ABHIJKL83 ABHIJKL103

FGHIJ4 EFGHIJK24 EFGHIJK44 ABCDEFGHIJKL64 ABCDEFGHIJKL84 ABCDEFGHIJKL104

FGHIJ5 EFGHIJK25 EFGHIJK45 ABCDEFGHIJKL65 ABCDEFGHIJKL85 ABCDEFGHIJKL105

FGHIJ6 EFGHIJK26 EFGHIJK46 ABCDEFGHIJKL66 ABCDEFGHIJKL86 ABCDEFGHIJKL106

FGHIJ7 EFGHIJK27 EFGHIJK47 ABCDEFGHKL67 ABCDEFGHKL87 ABCDEFGHL107

FGHIJ8 EFGHIJK28 EFGHIJK48 ABCDEFGHKL68 ABCDEFGHKL88 ABCDEFGHL108

FGHIJ9 EFGHIJK29 EFGHIJK49 ABCDEFGKL69 ABCDEFGKL89 ABCDEFGL109

FGHIJ10 EFGHIJK30 EFGHIJK50 ABCDEFGIJKL70 ABCDEFGIJKL90 ABCDEFGIJKL110

FGHIJ11 EFGHIJK31 EFGHIJK51 ABCDEFGIJKL71 ABCDEFGIJKL91 ABCDEFGIJKL111

FGHIJ12 EFGHIJK32 EFGHIJK52 ABCDEIJKL72 ABCDEIJKL92 ABCDIJKL112

FGHIJ13 EFGHIJK33 EFGHIJK53 ABCDEHIJKL73 ABCDEHIJKL93 ABCDHIJKL113

FGHIJ14 EFGHIJK34 EFGHIJK54 ABCDEHIJKL74 ABCDEHIJKL94 ABCDHIJKL114

FGHIJ15 EFGHIJK35 EFGHIJK55 ABCDEFGHIJKL75 ABCDEFGHIJKL95 ABCDEFGHIJKL115

FGHIJ16 EFGHIJK36 EFGHIJK56 ABCDEFGHKL76 ABCDEFGHKL96 ABCDEFGHL116

FGHIJ17 EFGHIJK37 EFGHIJK57 ABCDEFGHKL77 ABCDEFGHKL97 ABCDEFGHL117

FGH18 EFGH38 EFGH58 BCDEFG78 BCDEFG98 BCDEFG118

FGH19 EFGH39 EFGH59 BCDEFG79 BCDEFG99 BCDEFG119

FG20 EFG40 EFG60 CDEFG80 CDEFG100 CDEFG120

48



out the best combination of CoIs to generate the inspection path. The comparison of both

algorithms based on the fitness function can be seen in Table 3. We find that the RIP-GA

algorithm gives better solution than the RIP-greedy algorithm in term of fitness value. The

snapshots of the RIP-GA algorithm in the obstacle environment are shown in Figure 6.17.

Table 6.4: Comparison of RIP-GA and RIP-greedy algorithm

Region RIP-GA algorithm RIP-Greedy algorithm

1 84.3600 88.1300

2 10.190 11.7600

3 70.0900 76.0600

4 14.8900 16.4600

5 47.4250 53.0000

6 19.1200 23.8300

7 5.4900 7.0600

8 8.3100 9.8800
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Figure 6.17: Snapshots of the simulation in the obstacle environment: (a), (b) and (c) are

the snapshot of covered camera view, (d), (e) and (f) are the snapshot of robot position.
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6.3.3 Real robot implementation

In the simulation, the RIP-GA algorithm gives a satisfactory result to solve the CCPP prob-

lem. In this section we discuss how to implement the proposedalgorithm on the real robot,

Pioneer3-DX. The result of the RIP-GA algorithm is an inspection path. This path is a

sequences of robot locations in the 2D map with a particular robot and camera orientation.

To implement this, the robot needs to travel from one location to another according to the

inspection path.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Laboratory environment to test the path planning in a real robot.

The laboratory environment for this experiment is shown in Figure 6.18. We use cones

to set the inspection area. The procedure of the implementation is described as follows:

First, the mobile robot creates a 2D map of this environment using the ARNL and Mapper3

software [2]. Second, we initialize the RIP-GA algorithm bydefining the size and the

number of cells in the 2D map. For this experiment, the inspection area is decomposed into

28 cells and the size of each cell is 550×550 mm. Third, we run the RIP-GA algorithm

to find the sub-optimal of inspection path. Here, the RIP-GA algorithm uses the same

set of CoIs as in the simulation. Figure 6.19 shows the resultof the RIP-GA algorithm

which consists of robot locations (red star) and center of FoV locations (blue star). Last,

the robot path is given to the mobile robot to follow using navigation library [2]. For each

50



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

-8000-6000-4000-20000200040006000

Cones 

Robot location 

Center of cells  

2D Map 

Figure 6.19: Robot locations for each cell in the 2D map. 
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Figure 6.20: Illustration of the inspection path.

location in the robot path, the robot collects the image as illustrated in Figure 6.20. The

number indicates the sequence of CoIs which is the sub-optimal solution from the RIP-

GA algorithm. Here, the complete coverage of FoV can be guaranteed because the robot

localization is very good for indoor environment.

51



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduce a robotic crack inspection and mapping (ROCIM) system to

replace human inspectors for bridge deck crack inspection.The aim of the ROCIM system

is to create a crack map which is useful for measuring, classifying, and analysis of crack

growth. Three main components of the ROCIM system are presented in this thesis: camera

calibration, crack detection and complete coverage path planning. We verify the proposed

framework of the ROCIM system with both simulation and experimental result.

The Laplacian of Gaussian algorithm is used for the crack detection. After the crack

is successfully detected in the image coordinate system, weapply a transformation matrix

which is derived from camera calibration and robot localization, to map the crack locations

to the global coordinate system as a crack map. We tested the ROCIM system in both

indoor and outdoor environment, and the result shows that the ROCIM system works well.

However, there is an alignment error of the crack location due to camera calibration and

robot localization error.

For the complete coverage path planning, we introduce the robotic inspection path plan-

ning based on the genetic algorithm (RIP-GA) to ensure the mobile robot collects all the

images in an efficient way. In simulation, the RIP-GA algorithm proves to be better than

the RIP-greedy algorithm in terms of robot turns, travelingdistance and inspection time.

In addition, we implement the proposed algorithm on the realmobile robot, Pioneer3-DX.

The implementation result shows the reliability and robustness of the proposed algorithm.

In the future work, we will improve the ROCIM system. Some of the improvements

are as follows:
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• Crack detection algorithm: We will improve the image processing techniques under

different lighting conditions.

• Alignment process: The purpose of this process is to minimize the misalignment of

crack locations. This process will improve the accuracy of crack map.

• On-line complete coverage path planning: The proposed RIP-GA algorithm is devel-

oped for static environment and is an off-line path planningalgorithm. To deploy the

ROCIM system in the passing traffic, we need to develop an on-line path planning

for dynamic environments.

• Multi-robot cooperation: We will develop a multi-robot cooperation algorithm to

perform the inspection in order to save more time for the crack inspection.
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