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CHAPTER 1

INTRODUCTION

This chapter introduces several aspects of this thesis work, namely the background,

motivation, current problems, and objectives. Also included are two clerical items to

the thesis: the outline and definition of terms. In this chapter we will make a case

for using different strategies for assessing image quality based upon the level of visual

distortions in the image. Ultimately, we will present a new measure of image fidelity

coined Most Apparent Distortion (MAD). Section 1.1 presents an annotated history

of image fidelity assessment algorithms. Then, section 1.2 illustrates the need for this

evaluation study, in terms of quantifying the direction image fidelity metrics should

pursue. Section 1.3 gives some examples that motivate the decoupling of quality

assessment strategies for high and low quality images. Finally, Section 1.4 details the

key questions this thesis addresses.

1.1 Background

Various image processing disciplines require subjective ratings of fidelity based upon a

reference image. Image compression, printing calibration, image enhancement, water-

marking, image transmission, computer graphics, etc. all rely on producing a visually

pleasing result. Many times, this means quantifying a user’s ability to detect artifacts

in images and the degree to which visible artifacts degrade or enhance its perceived

fidelity. As it turns out, the fidelity of an image can be judged quite easily and con-

sistently by a human. That is to say, given a reference image and distorted version of

the image, a group of individuals will give roughly the same scoring for the image [1].
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In image compression, for example, given subjective feedback and a target bit/pixel

ratio, a system can be optimized to create the most visually pleasing result. Therein

lies the problem. Using human feedback inside an iterative process is impractically

slow. It predicates the need for a machine evaluation of image fidelity.

The first image quality metrics used computationally convenient measures such as

mean-squared error(MSE) and peak signal-to-noise ratio(PSNR). Though still widely

used at present, these metrics do not correspond well with subjective ratings of fi-

delity [2] for a wide range of images. For example, Figure 1.1 shows three images

of the exact same MSE. However, observers would rank the quality of these images

radically different.

(a) (b) (c)

Figure 1.1: Three pictures are shown with the same mean squared error.
The distortions present are (a) additive white Gaussian noise, (b) JPEG
compression artifacts, and (c) JPEG2000 compression artifacts. It can be
easily seen that the images shown do not illustrate what the average observer
would consider equal quality images.

It seems obvious from the example in Figure 1.1 that to improve our estimation

of fidelity we need to use properties of the human visual system (HVS). However,

which properties of the HVS are most important to model is not exactly clear. Dur-

ing the evolution of fidelity prediction, metrics began to follow one of two distinct

lines. The first line of fidelity prediction algorithms use only bottom-up properties of

the HVS (such as masking and contrast sensitivity). Another line of fidelity metrics

define quality based upon what they believe the HVS is ultimately trying to achieve,

namely structural and information content. The first camp is rooted in near thresh-
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old psychophysics and the second in biologically motivated aspects of visual signal

processing.

1.1.1 Metrics based upon near threshold psychophysics

The first improvement to MSE and PSNR built upon them using contrast properties

of low level vision. For example, weighted signal-to-noise ratio(WSNR) takes contrast

sensitivity into account when assessing error. Visual contrast sensitivity experiments

show that the HVS peaks in sensitivity at about 1-6 cycles per degree of visual angle,

commonly referred to as the contrast sensitivity function(CSF)[3][4][5][6]. WSNR

exploits the CSF to weight errors that occurr in high frequency areas less when

predicting fidelity. Although only a slight improvement to PSNR, WSNR opened the

door to using bottom-up properties of vision for fidelity assessment.

In addition to contrast sensitivity, it is well known that masking is effected by

properties of the image onto which the distortion appears. Typically, regions of

high spatial frequency can mask distortion better than smooth areas[7][8]. Spatial

frequency masking is commonly captured using statistics of oriented sub-band filters.

Fidelity algorithms soon evolved to account for spatial frequency masking using

multi-channel filtering and different models of contrast sensitivity thresholds [9] [10].

Daly’s Visual Difference Predictor (VDP) [11] was one of the first and most com-

prehensive algorithms to use contrast sensitivity and detection mechanisms to define

the perceived fidelity of an image. The concept of elevated masking thresholds versus

spatial frequency is key to its performance. However, when the VDP prediction maps

are collapsed into a single measure of image quality, the overall performance is only

marginally better than PSNR.

When the wavelet was shown to correlate highly with human cortical responses[12],

fidelity algorithms were quick to exploit the use of wavelet based decompositions. Al-

gorithms soon expanded to efficiently define contrast sensitivity and distortion mask-
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ing through wavelet sub-bands [13] [14]. Although these metrics are better models of

subjective fidelity, they are still far from being exact predictions.

The incorporation of masking models and image fidelity prediction has been lim-

ited mainly from the fact that most models of masking are motivated by detection

thresholds. It is still largely unclear if the same principles can be applied when dis-

tortions are clearly supra-threshold. This is one of the key questions that this thesis

addresses.

1.1.2 Metrics based upon structural and information content

A second camp of image quality metrics evolved based upon measures of image struc-

ture and information extraction. Namely, Mean Structural SIMilarity (MSSIM or

SSIM) [15] and multi-scale MSSIM [16] bases measures upon statistical differences

between the reference and distorted image using a Gaussian weighted sliding window

approach. This method has been shown to correlate highly with subjective ratings of

distortion. However, there is no explicit use of a masking model or contrast thresholds

in SSIM.

Another approach, Information Fidelity Criterion(IFC), uses statistics of wavelet

sub-band coefficients to quantify the amount of information in a reference and dis-

torted image [17]. The information content is judged based upon a Gaussian mixture

model learned from natural scene statistics. An extension of this metric, Visual In-

formation Fidelity(VIF), builds upon IFC using a wavelet based model of natural

scene statistics and human vision [18]. Even so, the HVS model used in VIF is crude

and does not contain an explicit masking threshold to speak of. The performance of

VIF has been shown to correlate highly with subjective ratings of image fidelity, even

without a sophisticated masking model.

More recently, a metric, Visual Signal-to-Noise Ratio(VSNR), took both visual

detection thresholds and perception of distortion in natural images into account [19].
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This metric uses the detectability of distortion, perceived contrast, and degree of

global precedence disruption to predict fidelity (defined by wavelet subband statis-

tics). More information on SSIM, VIF, and VSNR can be found in Chapter 2.

1.1.3 Top-down approaches to image fidelity prediction

Other metrics have evolved for quality assessment based upon top-down properties

of human vision, but have had limited success. Preliminary work was performed

by Osberger et al., that attempted to quantify importance based upon low level

properties of an object such as size, location, and shape [20]. The importances are

then used to weight errors differently in the distorted image. The results, however,

only show slight improvement over PSNR. Still others believe that weighting more

salient regions in images helps in studying fidelity. In [21], [22], and [23] saliency

maps and eye-tracking data were incorporated into existing metrics of visual quality.

The improvements, however, are only marginally better than the baseline metrics. In

[24], the use of content based region-of-interest maps was applied to existing quality

metrics. The improvements, however, are also insignificant. In light of these results

we have chosen not to employ saliency or region of interest information into our

measure of fidelity.

1.2 Motivation

Before moving on, it is interesting to clarify what benchmarks for defining quality

might be possible. Subjective scores for fidelity assessment are not identical from

observer to observer. There is a degree of variance to the data. Sheikh, et al. devised

a measure known as the outlier ratio that defines a false fidelity prediction score as

one that lies outside two standard deviations above or below the average subjective

fidelity score [1]. If we divide the false predictions by the total predictions, we get a

percentage of correctness, Rout =
Nfalse

Ntotal
. In this way, we can evaluate different metrics
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without ignoring the variations that exist between observers. However, even the best

fidelity assessment predictors have false predictions over 50% of the time. The current

state of the art is not wholly acceptable. This leads us to ask what factors are we not

addressing in image fidelity assessment? What else could be used to augment fidelity

predictors, such that they can achieve near perfect correlations?

Clearly, current metrics are capable of defining different aspects of fidelity assess-

ment. However, they fail to capture all features that define fidelity, as denoted by

the high outlier ratios. This motivates the need for a different strategy of quality

assessment prediction. In this thesis we argue that the most informative features for

image quality assessment are (1) the perception of structural appearance degrada-

tions when the distortions are highly supra-threshold, (2) the perception of masking

and local error intensity when the distortions are mild, and (3) effectively modeling

the interaction of the two strategies as the distortions become increasingly visible.

(a) Reference Image (b) Mild Dist. (c) Heavy Dist.

Figure 1.2: A reference image and two distorted images are shown. The
distortions present are additive pink Gaussian noise. Observe that in the high
quality image we rate quality largely on how well we can see the distortions,
but we rate the low quality image based on how much the distortion disrupt
appearance.

1.3 Problem Description

This section describes image quality assessment as a task with different objectives

depending on the overall visibility of distortions. It may not be obvious why we
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have chosen to decouple the estimation of quality based upon the visibility of the

distortions. We present the problem and argument using some motivating examples.

Figure 1.2 shows a reference image and two distorted versions of the image, one

with mild distortion and another with heavy distortion. For the high quality image,

imagine trying to rank the quality of many similarly distorted images. In this regime,

it is easy to see how we might interpret quality assessment as a detection task. We

begin carefully looking for any distortions in the images and determine quality based

upon how many distortions we can detect and how intense the distortions appear.

Now imagine performing a ranking for images similar to the heavily distorted

image. Would we again judge quality using the same objectives? We believe not.

In the low quality regime, the task of judging quality shifts from detection to one

of appearance recognition. We no longer care about distortion intensity; we want

to know how different distorted regions look compared to their original appearance.

Note that when we say appearance here, we are referring to how similar two regions of

an image look. We will further define our exact definition of appearance in Chapter 3.

In a nutshell, we would like to capture how the distortion alters the visual appearance

of textures and edges in the image.

Let us return to the high quality regime for a moment. To further motivate

the importance of masking and detection thresholds in high quality images, look at

Figure 1.3. A reference image and distorted version are shown with the difference

image (additive noise source) between the two. Notice from the difference map that

the distortion is nearly uniform across the image (except for some clipping in overly

dark regions), but that the distortion is only visible in smooth areas of the image. It

is easy to see from this example that we need to account for some degree detection

thresholds when assessing the quality of an image.

We would now like to present an example of how frequency effects the appear-

ance of images differently. Figure 1.4 shows an example image and two distorted
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versions. The first image is distorted by eliminating discrete cosine transform (DCT)

coefficients at a low frequency band. The second is distorted by eliminating the same

number of coefficients at a slightly higher frequency band. Both distortions are highly

supra-threshold but the lower frequency loss is more apparent. This example is meant

to motivate our creation of an appearance measure for low quality images. Clearly,

the appearance model will need to rank high frequency distortion as less important

than low frequency distortion. In this way the metric for low quality images will still

need to use elements of spatial frequency masking, albeit in a manner different from

that used when distortions are near threshold.

(a) Reference Image (b) Dist. Image (c) Error Image

Figure 1.3: A reference image and distorted image is shown. The distortion
present is additive white Gaussian noise. The absolute difference image is
also shown where gray represents no difference and white or black represent
differences between the reference and distorted image. The difference image
has been contrast enhanced to accentuate visibility. Observe that The dis-
tortion energy is largely uniform but only noticeable in the smoother area
of the image. Clearly a masking model is needed to correctly predict the
quality of this image.

We have presented exemplary evidence for decoupling the estimation of fidelity

based upon the degree to which distortions are visible. A key question in this type

of analysis is what occurs in the transition region. Some distortions may be near

threshold and others may degrade the appearance of the image. We believe that in

this regime observers use a mixture of the strategies presented. In the end, we decided

to use an α-blending of the two metrics to approximate this interaction. The exact

8



(a) Reference Image (b) Low Freq. Loss

(c) Mid Freq. Loss

Figure 1.4: A reference image and two distorted images are shown. The dis-
tortions present are artifacts from information loss of discrete cosine trans-
form (DCT) coefficients. (b) shows the result of throwing away a subset of
low frequency DCT coefficients. (c) shows the results of throwing away the
same number of DCT coefficients, only shifted to a slightly higher frequency.

implementation can be found in Chapter 3.

In this thesis we will present a metric that approximates both of the aforemen-

tioned strategies. Because the metric attempts to quantify which distortions are most

apparent to the observer, we have coined it Most Apparent Distortion (MAD).
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1.4 Research Objectives

The questions this research strives to find the answer to are listed below. The rami-

fications of each objective are briefly discussed.

1.4.1 Can a fidelity metric with visual masking compensation perform

well when the images are of high quality?

We wish to know how well a metric can comparatively perform when masking is

implemented on high quality images. We expect that at high quality, visual masking

will greatly help the prediction accuracy while it will be a hindrance at low quality.

1.4.2 Can a fidelity metric be tuned to recognize the extent of visual

appearance disruption for low quality images?

We wish to know how well a metric can identify the extent to which supra-threshold

distortions disrupt appearance. We expect such a model to approximate fidelity of

low quality images well, but perform poorly on high quality images.

1.4.3 Can predictions of perceived fidelity be significantly improved using

different strategies for low and high quality images?

This is the key objective of this thesis study. We expect strategic interaction modeling

to improve the accuracy of fidelity assessment. However, statistical significance is the

key issue here.

1.5 Outline

The outline of the Thesis is as follows:

• Chapter 2 discusses the current state of the art in fidelity assessment prediction

and introduces the intricacies of different metrics.
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• Chapter 3 explains our methodology, namely how we define a measure of fidelity

for low and high quality images and train their interaction. We also explain the

methods used to create a sufficient database for use in their evaluation.

• Chapter 4 summarizes our findings.

• Chapter 5 concludes this thesis and presents ideas for future work.

11



1.6 Definition of Terms

ς Skewness

κ Kurtosis

µ Mean

σ Standard Deviation

Rout Outlier Ratio

RSOD Sum Outlier Distance

CC Correlation Coefficient

CIELAB International Commision on Illumination Lightness and Color Opponent

CSF Contrast Sensitivity Function

DCT Discrete Cosine Transform

DMOS Differential Mean Opinion Score

HSV Human Visual System

IFC Information Fidelity Criterion

JPEG Joint Photographer Experts Group

LMSE Local Mean Squared Error

MAD Most Apparent Distortion

MSE Mean Squared Error

MSSIM Mean Structural Similarity

PSNR Peak Signal to Noise Ratio

RMSE Root Mean Squared Error

ROCC Rank Order Correlation Coefficient

VDP Visual Difference Predictor

VIF Visual Information Fidelity

VQEG Visual Quality Experts Group

VSNR Visual Signal to Noise Ratio

12



CHAPTER 2

STATE OF THE ART

This section expands on the annotated history from Chapter 1. In particular, we

explain several metrics of fidelity that are widely used by the research community

and that are used to evaluate our results against. Section 2.1 explains metrics used

for their computational efficiency. Section 2.2 explains Visual Signal to Noise Ratio

(VSNR)[19], a wavelet based measure of quality. Lastly Section 2.3 explains SSIM,

a measure devised by Wang et al.[25], and VIF, a measure introduced by Sheikh et

al.[18].

2.1 Pixel and luminance differences

Certainly PSNR is one the most used metrics of fidelity. It is defined as the decibel

measure of the maximum MSE over the actual MSE, as shown in equations (2.1) and

(2.2). For 8-bit grayscale images,

PSNR = 10 log10

(
2552

MSE

)
(2.1)

where

MSE =
1

MN

∑

i∈M,j∈N

(
̂I(i, j) − I(i, j)

)2

(2.2)

where M and N are the dimensions of the image, I is the original image, and Î

is the distorted image. The metric is based explicitly on the MSE and is a widely

used measure of quality in image processing. It contains no alterations for masking,

contrast sensitivity, or other factors that attempt to describe the HVS. The advantage

of PSNR is that it is (comparatively) efficient in terms of computational complexity.
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Many researchers will opt to use PSNR inside iterative processes as other metrics

can have substantially longer run times when used in this fashion. However, except

for the special case of white noise, PSNR cannot describe subjective ratings of image

fidelity with the accuracy of other metrics.

2.2 Wavelet Decomposition

VSNR attempts to define quality using concepts of visual contrast masking and global

precedence. The metric uses contrast detection thresholds for the reference image

and distortions to define if the distortions in the image are visible. VSNR, firstly,

computes the perceived contrast of the distortions in the image, denoted by dpc. It

then computes the degree to which these disrupt the global-precedence-preserving

contrast, defined by wavelet sub-band statistics in the reference image and distortion

channel. The measure of disruption is collapsed into a single distance measure, dgp.

The visual distortion is then defined as a linear combination of dpc and dgp.

V D = αdpc + (1 − α)
dgp√

2
(2.3)

where α is a tunable parameter for defining the relative contribution of each distance

measure. If C(I) is the RMS contrast of the reference image, then VSNR can be

defined according to:

V SNR = 10 log10

(
C2(I)

V D2

)
(2.4)

The result is a decibel measure of image quality. Note that VSNR is a measure

of image fidelity. If the distortions in the image are sub-threshold, VSNR returns a

value of ∞. VSNR also has the advantage of being more computationally relaxed than

other metrics of fidelity because it uses the separable 9/7 discrete wavelet transform

for image analysis.
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2.3 Information Content and Structure of Natural Scenes

SSIM attempts to account for the ”structure” differences between a reference image

and a distorted image. It is based on the assertion that, at a high level, the HVS scans

a scene (from the fovea outwards) and makes judgments about the luminance and

contrast in the scene. It attempts to mimic the fovea input by using a 13x13 pixel

Gaussian window. Running this window pixel by pixel across the reference image

and distorted image, the metric calculates a weighted approximation of the difference

between kernel luminance and kernel contrast in the images at each pixel. The kernel

difference is calculated using equation (2.5).

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2

x + σ2
y + C2

) (2.5)

where x and y are kernels from the reference and distorted images, σ is the variance

of each kernel or covariance between the kernels, and µ is the mean of each kernel.

Constants are added to prevent the equation from approaching infinity. This results

in a ”structural” map of the differences in the images as the kernel is passed across

the images. An example map appears in Figure 2.1. SSIM collapses the map into a

single measure of quality using the mean value.

The VIF criterion is by far the most computationally intensive algorithm looked

at in this thesis. The model uses the steerable pyramid and Gaussian scale mixtures

to characterize random fields in the wavelet domain. The steerable pyramid is a set

of multiple scale and orientation filters in quadrature. The use of the pyramid is not

essential for VIF. Without loss of generality, any multi-scale frequency decomposed

method of image analysis may be used, such as wavelet sub-bands or Gabor filter

banks. The general idea is to transform the image into a domain where the coeffi-

cients are less redundant than the spatial domain, making the calculation of mutual

information more accurate.

At the heart of the algorithm is the use of a covariance matrix of the steerable
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(a) Reference Image (b) Dist. Image

(c) SSIM Map

Figure 2.1: A reference image and Gaussian blurred distorted version are
shown. The SSIM map attempts to rate portions of high distortion less than
regions of the image that are not structurally distorted. Black corresponds
to regions that SSIM predicts to be of low quality.

pyramid coefficients to estimate a visual distortion model. The model is used to

estimate the amount of information (a single number) that the HVS could discern

from the reference image and the information actually discerned from the distorted

image. Once the ”information values” are found the two numbers are divided to

measure the amount of mutual information that they share, and subsequently, image

quality. Figure 2.2 shows the flowchart for VIF. To the best of our knowledge, VIF

has been shown to be the best performing algorithm for prediction of subjective image

quality.

Note that some strategies used in VIF are similar to those used in visual mask-

ing models. However, VIF ignores most aspects of visual masking such as contrast

sensitivity and conversion to luminance using the point spread function. VIF also
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Figure 2.2: The example model of the reference and distorted image infor-
mation used by VIF.

has the capability of detecting enhancements in images. For example, VIF predicts

that contrast enhancements will results in ratings of quality greater than the original

image.
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CHAPTER 3

METHODOLOGY

This chapter describes the various implementations used in MAD. In section 3.1, for

high quality images, the masking model and distortion energy model are discussed.

Then, for low quality images, section 3.2 introduces the appearance relation model

is discussed. Section 3.3 explains the implementation of blending the two strategies.

Finally, section 3.4 presents the methods used to create a new subjective image quality

database.

3.1 A Strategy for High Quality Images

We have argued that observers use a different strategy for assessing high quality

images. Namely, that assessing high quality images is a distortion detection task.

In a nutshell, we argue that observers discriminate between high quality images by

asking two questions: Can we see the distortion? And, how much does the distortion

degrade the image?

In order to capture these aspects we first need a masking model that will tell us

if the distortion is visible and then we need a measure of how visible it appears.

However, current masking models are largely created from the point of view of com-

pression. Their main purpose is to evaluate where distortions appear in an image

first, not if an already present distortion is visible. In light of this, we decided to

create a new model of masking that is tuned to detect visibility given a distorted and

reference image. Once the masking map is created, we use the local energy of the

distortion as a measure of how much the distortion degrades quality.

18



3.1.1 A New Masking Model Tuned for Quality Assessment

When viewing many images of high quality, the only way to discriminate is to go

looking for distortions. In order to approximate that task we have chosen to com-

bine a masking map of visible distortions in the image with the local mean squared

error(LMSE ). In this way, we model observers detecting distortions and use distor-

tion energy as a means of quantifying how much each degrades quality. Previously,

we have stated that MSE is not a good model of quality. However, we will show

that when done locally and combined with the proper masking model, it is a good

indication of fidelity in high quality images.

(a) (b) (c)

Figure 3.1: Three pictures are shown with the same type an intensity of
distortions. The distortions present are JPEG blocking artifacts and DCT
edge effects. (a) Shows the visibility of artifacts in a smooth area of average
brightness, (b) shows the visibility of the distortions in busy areas, and (c)
shows the visibility in bright areas. It can be easily seen that the different
properties of the image illustrate how well the patch can mask distortions.

To effectively model the visibility of distortions in images we need to model var-

ious elements of low level vision. Firstly, pixel values must be converted to their

approximate luminance and then to their perceived level of brightness. Secondly, we

must account for contrast sensitivity using the CSF. If applied to the reference and

distorted version of the image, these modifications will bring the images into their

approximate perceived level of brightness and contrast. After this, we must account

for the fact that busy areas in an image can mask distortion better than smooth areas.

Also, we must account for luminance masking; that is to say we must model that it
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is more difficult to see errors in very bright regions.

Figure 3.2: Five pictures are shown with the increasing sinusoidal contrast
intensities from left to right. Notice that the smooth area shows the distortion
immediately and the turtle’s skin masks for quite several images afterward.
Also notice that the bright patch in the bottom right of the turtle’s skin
completely masks the distortion even after it is visible in other portions of
the skin. This illustrates both contrast and luminance masking.

Figures 3.1 and 3.2 show some examples of these masking elements. Notice that

smooth areas in the images are easy indicators of the added distortions. Also notice

that bright areas do well at hiding many of the distortions that are visible in other

areas.

We begin by converting pixel values to luminance according to

L = k × Iγ + b (3.1)

where I is the integer pixel values (0-255) in the reference or distorted images, and

the parameters are constants defined as γ = 2.2, k = 0.02874, and b = 0. Gamma

has a special meaning. In the days of the CRT, it was well known that the monitor

applied a nonlinear gamma curve to pixels. In response, image acquisition has long

adapted to the common CRT nonlinearity using an inverse gamma. The idea here is

that when displayed on a CRT, the images appear about how they looked originally.

For us, this means that before processing the pixels, we must undo the nonlinearity

imposed during image acquisition using γ = 2.2.

To convert them to luminance we use the k and b variables. This operation scales

the values into cd/m2 rather than their integer values. So L is the absolute luminance
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of the pixels in the image.

Once we have the approximate cd/m2, we then convert the absolute luminance

values into L∗ space using

L∗ =
3
√

L (3.2)

The idea here is that absolute luminance is not linearly associated with our perception

of brightness. L∗ is the luminance portion of the CIELAB color conversion and has

been shown to linearly approximate the average perception of greyness. We perform

this operation for the reference and distorted images, resulting in the respective per-

ceived luminances L∗ref and L∗dst. Of course, if one knows more about how the image

was acquired, the conversion parameters, γ, k, and b, can be tuned even further. We

just use the most common conversion values.

We then define the difference image according to Ldiff = L∗ref−L∗dst. We account

for contrast and spatial frequency by filtering the reference image and difference

image by the CSF. The CSF filtering is performed in the Fourier domain assuming a

maximum of 32 cycles per degree, and a rolloff of 3dB along the diagonals of the CSF.

We use a peak sensitivity of 6 cycles per degree as studies show that our sensitivity

peaks somewhere between 4 and 8 cycles. The filtered image is then converted back

to the spatial domain.

I ′

x = F−1 [CSF × F [L∗x]] (3.3)

where F [·] is the Fourier transform operation and F−1[·] is the inverse Fourier trans-

form operation. L∗x denotes the reference or difference image, with x replaced by ref

or diff . So at this point, I ′

ref and I ′

diff are the reference and distorted images that are

linearly associated with our perception of brightness and contrast. You can think of

I ′

diff as the distortions in the image that our eye could see if they were on a completely

smooth, medium brightness background. We now need to see if the reference image

is masking those distortions.

A good measure of the masking potential in an image is the local standard devia-
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tion of I ′

ref . Other researchers have used local Fourier amplitude slopes and wavelet

bases to measure this. Each method has it advantages and disadvantages, however,

the standard deviation is a simple and straight forward measure that can be performed

without losing spatial resolution.

We calculate the local standard deviation of the reference image in the pth patch

as σref(p), using a sliding window of 16x16 pixels, where each window overlaps three

quarters of the immediately surrounding windows. The idea is that large values of σref

indicate a busy texture (i.e.-high spatial frequency) and can mask well. The caveat,

however, is that edges will also have high σref values, but cannot hide distortion.

To overcome this limitation we use a modified measure of standard deviation. We

break the window into four sub-windows and set σref(p) to be the minimum standard

deviation of the sub-windows. So the standard deviation of the reference image

becomes

σref (p) = min [σ(p11), σ(p12), σ(p21), σ(p22)] (3.4)

where the four standard deviations of the sub-windows are denoted by σ(pxy) (x, y

represent the placement of the sub-window as seen in Figure 3.13).

The beauty of this is that when we encounter an edge (middle figure), it likely

does not intersect all four sub-windows. So the minimum standard deviation is in

sub-patch p21, and we know that the edge cannot mask. But when we get out to a

busy patch (assuming stationarity) the standard deviation will be about the same as

the block as a whole - and, thus, we get a measure of masking potential.

We then define the local contrast of the reference image using the modified stan-

dard deviation normalized by the mean, Cref(p) = σref(p)/µref(p), where µref(p) is

the local mean of each block p in the reference image, I ′

ref . This normalization ac-

counts for luminance masking in the image. Large values of Cref(p) indicate that the

block can mask distortions well.

We now want to know if the distortions in the difference image are visible. To do
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(a) (b)

(c)

Figure 3.3: The sliding window divided into subsections can be seen at two
points in the example image. As the window begins to overlap the edge of
the circle, you can see how the sub window method avoids large variances.
Because two of the sub-windows do not contain the edge, the minimum stan-
dard deviation is still small and we do nor falsely assume that the patch can
mask well.

this we compare the modified contrast of the reference image to the contrast of the

distortions in the difference image. The local contrast of the distortions is defined as:

Cdiff (p) =





σdiff (p)/µref(p), if µref(p) > 0.9 ;

0, otherwise

(3.5)

Here we use the standard deviation, σdiff , of the difference image, I ′

diff . Intense

distortions will have a large standard deviation. Notice that this has a luminance

threshold. The brightness threshold of 0.9 is meant to account for the fact the HVS

is insensitive to changes in extremely dark regions. We adjust our eyes to the sur-

rounding light so even on an LCD monitor, the blackest black can be outside of our

level of sensitivity, especially when in a well lit room. Low luminance values are thus

discarded.
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From here we can apply a threshold of visibility by comparing the local contrast

of each block. If Cdiff(p) > 0.75 × Cref(p), then the distortion is considered visible.

Or more formally,

V isib(p) =





1, if Cdiff (p) > 3
4
× Cref(p) ;

0, otherwise

(3.6)

The value of 0.75 was chosen experimentally by the author by comparing a set of

masking maps and distorted images. Figure 3.4 shows an example masking map with

the reference and distorted image. Notice that the masking inside the skin of the

turtle is captured well by the model. Note also that the masking map has different

levels of gray, but that any gray level other than black means the distortion is visible.

(a) (b) (c)

Figure 3.4: Three pictures are shown. (a) shows the reference image, (b)
shows the image with mild additive white Gaussian noise distortion, and (c)
shows the masking map. Bright areas do not show the noise, which the model
captures. In addition, the busy area on the turtle’s head masks well, which
is also captured by the model.

3.1.2 Combining the Masking Map and Local Errors

Once the map of visible distortions is created, we use the local distortion energy to

determine how much it degrades quality. We define the distortion energy using the

local mean squared error (LMSE ) of a 16x16 pixel block.

LMSE(p) =
1

162

∑

i,j∈Np

(
I ′

ref(i, j) − I ′

dst(i, j)
)2

(3.7)
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where Np is the set of pixels inside the pth 16x16 block. At this point we have a map

of the local errors and the local visibility of those erros. To define quality we use the

point wise multiplication of the two maps. In essence, this multiplication creates a

map of the LMSE of visible blocks in the image. Eventually, we plan to multiply the

LMSE map by an absolute measure of visibility. However, preliminary results show

that quality is well captured using a hard binary threshold for the visibility map (i.e.-

only 0’s or 1’s in the map). We define the quality of the image as:

Qhigh =
1

N

√∑

p∈Λp

V isib(p) × LMSE(p)2 (3.8)

where Λp is the set of all blocks where the masking model detects visible distortion,

and N is the number of blocks in the entire image. In this way, equation (3.8) collapses

the visible LMSE into a single quantity using the vector two norm. The two norm

gives more weight to larger local distortions than just taking the mean would. This

makes sense. The visibility of a distortion and the way it degrades an image do not

need to be linearly related. Our research indicates that the conversion from visibility

to quality degradation is well modeled by the two norm.

(a) (b)

Figure 3.5: This shows an overview of the entire process for high quality
using an example distorted image and reference -(a) and (b). The images are
first loaded into memory.

The final measure of distortion, Qhigh, has the following properties: A value of
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(a) (b)

Figure 3.6: The masking map is created from the reference and distorted
images (a), using the contrasts, Cref and Cdiff . Separately, the map of the
LMSE is calculated - (b). Then the visibility map is thresholded to 0 or 1.

Figure 3.7: The two maps are multiplied together. The resultant map shows
the LMSE of only visible patches in the image. This map is collapsed using
the vector two norm of equation (3.8).

zero denotes the distortions in the image are not present or not visible. Increasing

values denote decreasing quality.

Figure 3.5 shows an overview of the entire process for high quality using an ex-

ample distorted image. The images are from the LIVE database[26]. The distorted

version shown contains JPEG blocking artifacts. Notice that the only real visible

distortions in the image are in the sky and the highway lines.

The images are first loaded into memory. Then, the masking map is created from

the reference and distorted images, using the contrasts, Cref and Cdiff from equation
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(3.6). Separately, the map of the LMSE is calculated. Figure 3.6 shows each of these

maps.

The visibility map is thresholded to 0 or 1 and the two maps are multiplied

together. The resultant map is shown at the bottom in Figure 3.7 and only displays

the LMSE of visibly distorted patches in the image. Notice that the map captures

well that some artifacts are visible in the sky but do not really degrade the image

quality, and that the most annoying artifacts occur in the street.

This map is collapsed using the vector two norm of equation (3.8). Thus, we are

left with a single measure of a high quality image. This is the complete methodology

for the high quality metric portion of MAD. The next section discusses how MAD

assesses low quality images.

3.2 A Strategy for Low Quality Images

At low quality we have argued that visual masking is of less importance to our per-

ception of quality. The distortions in the image are highly supra-threshold and we

are interested in the extent to which they degrade the edge and texture structure of

the image. Basically, the task of assessing quality changes from detecting distortion

to an appearance relation task - are edges and textures preserved?

We further argue that the degree to which supra-threshold distortions degrade

quality is based upon the degree to which they change what our vision system expects

to see. We propose using a biologically motivated model of appearance: local statistics

of multi-scale log-Gabor filters. This method has long been used by the computer

vision community to classify the appearance of textures[27], and we showed in [28]

that these statistics are good indicators of how camouflaged an animal appears in its

natural environment. In this respect, it shows great promise for approximating the

extent to which distortions disrupt appearance.

In [12] and [29] it was shown that the visual cortex may be performing a similar
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analysis strategy as log-Gabor filter banks. With the proper values for bandwidths

and frequency overlaps of each filter, one can theoretically approximate the function

of the first visual cortex. Furthermore, in [30] it was shown that synthetic textures

can be shifted visually using statistics of log-Gabors. It was also shown that changes

in these statistics were more discernible than changes in spatial statistics. All of these

studies indicate that the log-Gabor filter bank can be powerful tools for measuring

how distortions change the edges and textures in an image, approximating our needed

appearance relation task.

3.2.1 Assessing Quality Using the log-Gabor Filter Bank

The log-Gabor filter has been shown to approximate cortical responses in the visual

cortex [29]. In the frequency domain the log-Gabor filter is defined as:

Slog(f) = exp

(
− (log f/fo)

2

2 (log σs/fo)
2

)
(3.9)

where fo is the center frequency and σs/fo is a measure of the bandwidth. Notice

that Slog is only a function of the frequency, f , so it will be concentrically symmetric

about the origin in the 2D frequency domain. The parameters of Slog, fo and σs, must

be tuned to values of sensitivity and bandwidth for the mammalian visual system.

In addition the overlap between filters (ratio between increasing values of σs/fo in

each scale) must be calculated to be something biologically motivated. We use values

defined from the previous research of [31]. The Fourier spectrum of an example filter

can be seen in Figure 3.8.

In addition to frequency scaling, each filter has an orientation. In frequency, this

translates to a Gaussian defined in the angular component of the frequency domain.

or mathematically as,

Olog(θ) = exp

(
−(θ − µθ)

2

2σ2
θ

)
(3.10)

where µθ is the orientation of the filter and σθ is the angular spread. These values
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define the orientation of the filter and the overlap between adjacent filters in fre-

quency. These values are also chosen from [31] and are motivated biologically from

the mammalian vision system.

Each filter, then, is defined by the multiplication of the scaling and orientation

functions,

Gso = Olog × Slog (3.11)

where Gso is the filter defined at orientation o and scale s.

The final implementation of each filter bank contains four parameters for each

filter, fo, σs, µθ, and σθ. An example of this graphically can be seen in Figure 3.8.

Figure 3.8: Three images are shown of a single log-Gabor filter. The first
is the frequency scaling operation defined by equation (3.9) and the second
is the orientation defined by equation (3.10). The last is the multiplication
of the filters defined by equation (3.11). All pictures are magnitudes in the
frequency domain.

Sadly, the singularity of the log function in the Fourier domain prohibits the

definition of a closed form spatial solution. Additionally, we must talk about the

bandwidth of each filter in terms of octaves due to the log scale.

We begin our log-Gabor decomposition by filtering the image with filters at five

scales and four orientations. The value of σs/fo is set to 0.65, which translates to

each filter spanning between one and two frequency octaves. The bandwidth of each

frequency scale is chosen to minimize overlap between scales, but still uniformly cover

most of the frequency spectrum (as in the mammalian visual system). In the spatial

domain this translates numerically to convolving the image with log-Gabors of pixel
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size 3, 6, 13, 27, and 61, each at four different orientations. Figure 3.9 shows the

frequency domain equivalent of all the log-Gabor filters used in the analysis.

Figure 3.9: All scales and orientations of the log-Gabor filters are shown.
Each is a combination of the scale and orientations as seen in the example
from Figure 3.8

We can add the filter bank outputs to get the entire frequency domain coverage.

This is shown in Figure 3.10. Notice that it only covers one half of the frequency

spectrum. This may seem odd at first glance, but in actuality the entire domain is

covered. This can be explained by looking at the individual filters.

The individual filters are shown in Figure 3.9 and are only one sided, not symmet-

ric. By using non-symmetric filters in frequency we actually save some computation

time but cover the entire spectrum - it performs two filtering operations with only

one Fourier transform. We can achieve the one sided filters shown by adding two

symmetric filters of the same bandwidth, as shown in Figure 3.11. One filter is even

symmetric and the other is odd symmetric in frequency.

In the frequency domain, an even filter (with no orientation) is the equivalent of

a completely real spatial domain function. By the same respect, an odd frequency

filter (with orientation on the imaginary line) is the equivalent of a completely imag-
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Figure 3.10: All scales and orientations of the log-Gabor filters are added
together to form the complete coverage of the log-Gabors.

inary spatial domain filter. If we multiply the odd filter by j and add them, we can

get a non-symmetric filter. This means that when we filter and perform an inverse

transform using the non-symmetric filter, the spatial domain output will have a real

and imaginary component. The real part is the result of one filter; the imaginary is

the result of another filter (because it was multiplied by j before being added).

Since each non-symmetric filter result has same orientation and bandwidth, you

may also be wondering what the difference between the real and imaginary result is.

The real component is a log-Gabor that is even symmetric (in the spatial domain),

Geven, and the imaginary component is odd symmetric (in the spatial domain),Godd.

In this way, the one sided filter gives us results from even and odd log-Gabor con-

volutions. Odd log-Gabors tend to capture edges well and even log-Gabors tend to

capture bars well. This can be seen in Figure 3.12. The even convolution will be

maximized when it overlaps a bar of about the same size and the odd convolution

will be maximized when it overlaps an edge.

This is biologically motivated as well, as many believe that the HVS is performing
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Figure 3.11: All scales and orientations of the log-Gabor filters are added
together to form the complete coverage of the log-Gabors.

Figure 3.12: The bars and edge equivalents for the log-Gabor filters are
shown.

a bar and edge detection operation and that the visual cortex combines them to form

everything we see in between. We approximate this by collapsing the even and odd

output amplitudes into a single magnitude, Gout =
√

G2
even + G2

odd. This creates a

log-Gabor filter bank with 20 magnitude outputs (5 scales x 4 orientations).

At this point we have 20 analysis images (the filter outputs) for the reference

and distorted image. Each analysis image is the output of a filter at one scale and

orientation. We break up the analysis images further into 16x16 overlapping patches,

p. For each patch in the reference and distorted images, this results in 20 filter analysis

patches. We then compute the statistics in each of the reference and distorted image

patches. Namely, we compute the standard deviation, skewness, and kurtosis of each
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analysis filter patch (that is 20 values of standard deviation, skewness and kurtosis

per patch). We denote the standard deviation of the pth reference image patch as

σref
so (p), where so is the scale and orientation of the log-Gabor filter where the statistic

was calculated. Similarly, the skewness can be represented as ξref
so (p) for the reference

image and the kurtosis as κref
so (p). The distorted image statistics are signified by

σdst
so (p), ξdst

so (p), and κdst
so (p).

(a) (b)

Figure 3.13: An example of a reference image and highly distorted version
from the LIVE database are shown. The distortion image contains JPEG2000

artifacts.

The statistics of the log-Gabor filter outputs have been widely used to define visual

appearance and texture. Specifically, the change in standard deviation, skewness, and

kurtosis have been shown to be good indications of discriminable texture statistics[30].

To capture this characteristic, we compute absolute differences in patch statistics of

overlapping portions for the reference and distorted images according to equation

(3.12). This results in difference measures of local standard deviation, skewness,

and kurtosis for each scale and orientation from the filter bank outputs. We take a

weighted sum of the statistical differences between the reference and distorted image.

For the pth block in the image,

η(p) =
∑

s∈Sp,o∈Op

ws

[
|σref

so − σdst
so | + 2|ξref

so − ξdst
so | + |κref

so − κdst
so |
]

(3.12)

where Sp and Op are the set of all scales and orientations in patch p. σso, ξso, and κso
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are the standard deviation, skewness, and kurtosis of the patch at scale s and orienta-

tion o defined previously. Note that the skewness difference is multiplied by a factor

of 2 to bring it on approximately the same scale as the σ and κ differences. Notice

also that each scale is multiplied by a different weight, ws. This is to account for

the differences in perception of statistical distortions at different frequency octaves.

This weighting takes advantage of the observation that low frequency distortions are

perceptually more annoying than high frequency distortions. See Figure 1.4 for an

example of this. The values chosen for ws from the finest to coarsest scale are 1, 2,

6, 10, and 12. These parameters were chosen for best performance. They are not

optimized, however, but simply selected as the best performing integer weights. We

can also represent the integer weights as percentages. The finest scale contributes

3.2%, and increasing scales contribute 6.4%, 19.4%, 32.2%, and 38.7%. In this for-

mat, one can immediately notice the similarity between the chosen weights and the

weights recommended for lossy JPEG2000 encoded images. Even so, the weights

presented here are an area of further research. Adjustment of ws can greatly effect

the performance of the low quality metric.

At this point, the statistical differences accumulated in each patch are summed

together to form a stuctural difference map, η(p). To combine the accumulated dif-

ferences of each patch we use the vector two norm,

Qlow =
1

N

√∑

p∈PN

η(p)2 (3.13)

where PN is the set of all patches in the image and N is the total number of image

patches. This results in a single value of quality for highly distorted images where

zero denotes the highest quality and increasing values correspond to increasingly worse

image quality. Again, using the two norm weights larger statistical variations more

when collapsing the map (because they are squared; large values become larger).

Figure 3.13 shows an overview of the entire process for low quality using an ex-
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Figure 3.14: Various outputs from the log-Gabor filter bank outputs of the
light house image are shown. Statistics of these analysis filters are used to
create a difference map.

ample distorted image. The images are from the LIVE database[26]. The distorted

version contains JPEG2000 artifacts, namely ringing and blurring. Notice that the

most disturbing artifacts occur in the sky of the lighthouse image.

The images are first loaded into memory. Then, images are analyzed using the

log-Gabor filter bank. Some of the resultant analysis images are shown in Figure 3.14.

Then the statistical differences between the patches of the filter outputs are calculated

and summed together to form the statistical difference map, shown in Figure 3.15.

Notice that the map captures the most annoying artifacts, i.e.- ringing around the

hard edges in the image and blurring in the sky.

This map is collapsed using the vector two norm of equation (3.13), resulting in a
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Figure 3.15: An example map of the statistical differences in an image are
shown. The staistica are calculated in the log-Gabor analysis domain.

measure of fidelity for the low quality image. Thus, we have a single numeric value of

fidelity for a low quality image. This is the complete methodology for the low quality

metric portion of MAD. At this point, we still need to combine both metrics into a

single measure. The next section discusses this aspect.

3.3 Combining the Two Strategies

At this point we have two metrics of quality that must be combined into a single

measure based upon how apparently distorted the image is. High quality images

should attain their value mostly from Qhigh and low quality images from Qlow. We

argue that in the transition between high and low quality assessment, observers use a

mixture of strategies. This makes sense in images like those compressed with JPEG

or JPEG2000, for example. Some regions are of very high quality. Other regions

may contain highly visible blocking or ringing artifacts that disrupt appearance. An

example transition image can be seen in Figure 3.16. Clearly, the bridge has statistical

appearance changes (the wall is completely changed), but the trees and sky are largely

masking the distortions. In addition, the middle portion of the bridge looks mostly

normal, with some statistical changes and some masking.

To capture the interacting strategies, we propose using an α-blending of the two

metrics according to the output of the Qhigh quality measure. This makes sense as
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Figure 3.16: An example transition image with JPEG2000 compression ar-
tifacts is shown. Clearly, the bridge has statistical appearance changes (the
wall is completely changed), but the trees and sky are largely masking the
distortions. And middle part of the bridge looks mostly normal.

Qhigh will be a rough indication of how high the quality of the image is. When Qhigh

is low, MAD should mostly attain its value from Qhigh. Otherwise, it should attain

most of its value from Qlow.

Before blending, the two metrics must be brought to approximately the same

scale. To do this, we take the log10(·) of each metric. This operation makes the two

datasets appear as if they came from the same dataset when plotted versus the actual

image quality. If both dataset were plotted without the log (i.e. - a linear scale), then

there exists too much of a gap between the metrics. See Figure 3.17 for a graphical

interpretation of the log scaling operation. Therefore, the metrics become,

LQlow = log10 Qlow and LQhigh = log10 Qhigh (3.14)

Once on the same scale, we argue that we can capture the transition aspects by

blending the metrics together with a dual parameter sigmoid. We define the sigmoidal
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Figure 3.17: An example of how the log operation makes the two datasets
appear as if they are from the same dataset. If each is plotted verse the
perceived quality, the datasets might look like the leftmost lines. The log
operation turns thos lines into the rightmost intersecting lines, which are
more like they form one dataset when plotted together.

α-blending scheme according to LQhigh:

Λ(LQhigh) =
1

1 + exp
LQhigh−τ1

τ2

(3.15)

where τ1 and τ2 are free parameters that may be tuned to a specific database. We will

use values of -1.2 and 0.6 for τ1 and τ2, respectively. Later on, we will show that the

specific values are not crucial, as long as they define a gradual blend of the strategies.

Figure 3.18 shows an example of Λ plotted versus LQhigh. As shown, τ1 defines the

threshold value for blending the metrics. τ2 defines how soft the threshold is. Too

hard of a threshold will not capture the blending of strategies in transition. Too soft

will use an inappropriate strategy in the high or low quality range.

Figure 3.18: An example of the sigmoidal blending function as a function of
LQhigh is shown. τ1 and τ2 control the threshold value and threshold softness
for blending the metrics.
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We then present the final output of the MAD fidelity metric as:

MAD = 10(Λ×LQhigh+[1−Λ]×LQlow) (3.16)

where the metric is raised to a power of 10 to get rid of the non-linearity induced by

the log scaling operation. Note that MAD is a metric of fidelity, not quality. If the

distortions are not visible, it returns a value of one. This is an important property in

many applications. Increasing values indicate decreasing quality.

3.4 Building a New Subjective Quality Database

This section describes the methods used in creating a new quality database for various

images. The database is currently a preliminary model with ten images chosen to fit

into five categories. We are currently working to increase the number of observers

involved in the database and the total number of images. Eventually we plan to

have many images assigned by category, thus the name Categorized Subjective Image

Quality (CSIQ, pronounced sea-sick).

3.4.1 Subjective Ratings of Perceived Distortion

This section provides a summary of the psychophysical scaling experiment which was

performed to obtain subjective ratings of visual fidelity for images containing a variety

of distortion types.

Stimuli: Ten natural images, obtained from the National Park Image Archives

[32]served as original images in this study. The digital images were of size 512×512

pixels and were 24-bit RGB with each color channel ranging from 0-255. These images

were distorted with six types of distortions:

1. Additive Gaussian white noise (group NOZ).

2. Baseline JPEG compression of the image using the standard quantization matrix

(group JPG).
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3. JPEG-2000 compression of the image (group JP2).

4. Blurring by using a Gaussian filter (group BLR).

5. Additive Gaussian pink noise, 1/f noise (group FNZ).

6. Global Contrast reduction (group CST).

The distortions were generated such that five different PSNR levels were achieved

for each distortion type and each image. PSNR was calculated in the RGB color

space. For the compression-type distortions, these criterion PSNR levels were met

by adjusting the granularity of the quantizer; for the blurring, pink noise, and white

noise, the levels were met by adjusting the standard deviation of the underlying

Gaussian. The distortion was applied to each color channel separately and with the

same magnitude. Thus, a total of 310 images were tested: 10 original images and 300

distorted images (10 images × 6 distortion types × 5 PSNR levels). Groups NOZ,

FNZ, BLR, and CST had target PSNR levels of 20dB to 38dB spaced logarithmically.

Groups JPG and JP2 had target PSNR levels of 20dB to 33dB spaced logarithmically.

The different spacing for compression type images was chosen due to the high quality

of many images even at a PSNR of 33dB. We did not want the visually lossless images

to overpower the database.

Subjective Ratings: Subjective ratings of visual fidelity were obtained from four

adult imaging-expert observers by using a continuous rating system in which each

original image was tested against the distorted versions of that image. The images

were placed on a four monitor calibrated display array, with solid gray background;

the original was fixed in position at one end of the display array, and subjects were

instructed to position the distorted images such that the pixel displacement between

each distorted image and the original was linearly proportional to their subjective

assessment of distortion. Thus, images which were placed further away from the orig-

inal were judged to contain greater perceived distortion (lower visual fidelity) relative
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Figure 3.19: Some representative stimuli for the database are shown. Notice
that many distortions are included, including unconventional distortions such
as additive pink noise and contrast degradations.

to the original. Unlike pairwise comparison procedures, this technique allowed un-

limited, simultaneous comparisons of multiple images, and therefore allowed subjects

to account for any bias induced by previous judgments; subjects frequently made

adjustments to previous placements, and all subjects performed a final pass to ensure

their satisfaction in the results.

The four monitors were carefully calibrated to ensure the same appearance of the

images across the entire array. Even so, observers were asked to make comparisons

between images on the same display whenever possible. Stimuli were displayed on four

high-resolution, Sceptre X 22WG 22-inch LCD monitors with resolution of 1680x1050.

The displays yielded minimum and maximum luminance of respectively, 0.9 and 190

cd/m2, and an overall gamma of approximately 2.2; luminance measurements were

made by using a Minolta CS-100A photometer (Minolta Corporation, Tokyo, Japan).
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Stimuli were viewed binocularly through natural pupils in a darkened room at a

distance of approximately 46 cm (about one arm length) under D65 lighting.

Upon completion of the experiment, all subjects performed an additional realign-

ment using the same procedures, but with simultaneous presentation of all 310 images.

The original images were aligned and fixed in position at one end of the display array,

and subjects were instructed to position the distorted images such that the physical

displacement between each distorted image and its original was linearly proportional

to perceived distortion. This step provided the necessary factor by which to scale

the within-image results to obtain between-image scores. The raw scores for each ob-

server on each image were converted to z-scores (zero-mean and unit variance scores)

and the average z-scores over all subjects were scaled to span the range [0, 1.0], where

a score of 1.0 corresponded to the image containing the greatest perceived distortion

(i.e., the image placed furthest from the original). These within-image scores were

then scaled to between-image scores, and then the average scores over all observers

and over all images were rescaled to span the range [0, 100]. Some representative

stimuli for the CSIQ database can be seen in Figure 3.19.
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CHAPTER 4

RESULTS

The results obtained by MAD are reported on two databases of subjective image

quality. The LIVE database[33] and CSIQ database. Further information on the

CSIQ database can be found in section 3.4.

4.1 Results on LIVE Fidelity Database

The LIVE database contains 29 original images, 26 to 29 distorted versions of each

original image, and subjective ratings of fidelity (differential mean opinion score,

DMOS values) for each distorted image. The distortions present in the database

were: Gaussian blurring, additive white noise, JPEG compression (DCT based),

JPEG2000 compression (wavelet based), and simulated data packet loss of trans-

mitted JPEG2000 compressed images. For the remainder of this section we will refer

to the following groups:

1. Group ALL, the set of all 779 distorted images in the LIVE database.

2. Group JP2, the set of 169 JPEG2000 compressed images.

3. Group JPG, the set of 175 JPEG compressed images.

4. Group NOZ, the set of 145 addititive white noise compressed images.

5. Group BLR, the set of 145 Gaussian blurred images.

6. Group RAY, the set of 145 simulated fast fading packet loss JPEG2000 com-
pressed images.

The DMOS values were computed by averaging z-scores obtained from subjective

ratings of fidelity on a continuous linear scale that was divided into five equal regions
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labeled ”Bad,” ”Poor,” ”Fair,” ”Good,” and ”Excellent.” Approximately 20 to 29 hu-

man observers rated each distorted image. Note that the DMOS values were provided

as part of the LIVE image database; they were not experimentally determined nor

verified in the current study.

The images ranged in size from 408×704 pixels to 768×512 pixels: Six of the

images were of size 408×704, three of the images were of size 640×512, and 14 of the

images were of size 768×512; the remaining six images ranged in size from 608×416

to 608×480. Grayscale versions of the original and distorted images were obtained

via a pixel-wise transformation of I = 0.2989 R + 0.5870 G + 0.1140 B, where I, R,

G, and B denote the 8-bit grayscale, red, green, and blue intensities, respectively.

We will compare our results to those obtained by PSNR, MSSIM, VSNR, and VIF

on LIVE. Before comparing performance on the database it is customary to apply a

logistic transform to each metric that brings it on the same scale and linearity as the

DMOS values. The logistic transform recommended by the Video Quality Experts

Group (VQEG) is a four parameter sigmoid [34]:

f(x) =
τ1 − τ2

1 + exp x−τ3
τ4

+ τ2 (4.1)

The parameters τ1, τ2, τ3, and τ4 are chosen such that they minimize the MSE between

the DMOS values and metric output. The parameters are found using the Nelder-

Mead downhill simplex method at many random starting parameters [35]. The logistic

transform is completely monotonic and chosen mainly for its ability to bring the

datasets to the same scale. Once applied, it enables the use of various performance

measures.

The first measures of performance reported are the Pearson correlation coefficient

(CC) and Spearman rank order correlation coefficient(ROCC). The Pearson CC pro-

vides a measure of how similar two sets of data are. The Spearman ROCC assigns a

rank to increasing values in each dataset and then calculates the CC. In this way, it

provides a measure of how similar each metric ranks the ordering of image qualities. It
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is important to note here that the CC and Spearman ROCC are not perfect measures

of similarity in regression problems. The CC is only a good comparison measure for

regression when the compared fits satisfy the property of residual homoskedasticity

(also known as homogeneity of variance). Basically, we assume that the variance of

the residuals is independent of the x value; no portion of the data is better fit than

any other portion. Because of this we will report on various measures of performance,

not just CC. Also note that the CC does not provide a linear measure of similarity.

For instance, a CC of 0.8 does not mean that the fit is twice as good as a fit with CC

0.4.

Table 4.1: This table contains a comprehensive review of the performance of
each metric for group ALL in the LIVE database. The group contains 779
ratings of quality. The Correlation Coefficient (CC), Spearman rank-order
correlation coefficient(SROCC), root mean-squared error(RMSE), outlier ra-
tio, Rout, and sum outlier distance, RSOD, are given.

ALL PSNR SSIM VSNR VIF MAD
CC 0.8707 0.9378 0.9233 0.9595 0.9700

SROCC 0.8763 0.9473 0.9278 0.9633 0.9705
RMSE 375.03 264.84 292.90 214.92 185.43
Rout 0.682 0.592 0.588 0.546 0.399
RSOD 4943.3 2814.1 3246.8 1890.4 1270.3

Table 4.1 shows the CC, Spearman ROCC, and root mean squared error (RMSE)

for different metrics on group ALL from the LIVE database. The RMSE is defined

from squared differences between the DMOS and logistically transformed metric out-

put. Also shown in the table are two measures, the outlier ratio, Rout and the sum

outlier distance, RSOD. These two measures attempt to account for the inherent vari-

ation in human subjective ratings of quality. If the perceived quality of a particular

image has large variation between observers, then the average DMOS rating is not

necessarily a good measure of what the metric should predict. Instead, some leeway

should be given around certain ratings. The outlier ratio is defined as [1]:

Rout =
Nfalse

Ntotal

(4.2)
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where Nfalse is the number of predictions outside two standard deviations of the

average observer and Ntotal is the total number of predicted qualities. In this way, we

have a percentage for the metric predicting quality inside a range of inherent error

bars. Two standard deviations was chosen because it ensures inclusion of 95% of the

observer’s scores.

The RSOD is a new performance measure that we have devised. In addition to

knowing if the metric is inside the error bars, we want to know how close the metric

is from the closest error bar when it fails. Mathematically,

RSOD =
∑

x∈Xfalse

min |f(x) − [DMOS(x) ± 2σobs(x)]| (4.3)

where σobs is the standard deviation of ratings from different observers and Xfalse is

the set of all quality ratings outside 2σobs.

As seen from table 4.1, MAD performs superiorly to all other metrics with respect

to every performance measure. Note that these figures do not report if MAD has

statistically significant performance. Significance involving regression is somewhat

tricky and is given a separate subsection. To the best of our knowledge, these are the

best performance measures achieved on the LIVE database to date.

It is also interesting to look at the performance on a per distortion rate. Some

metrics can capture specific distortions better than others. To measure this, each

metric was fit logistically to the DMOS ratings of a particular distortion category.

Tables 4.2 through 4.6 show performance for each distortion group. Observe that for

group JP2, MAD also has the best performance across all measures. For group JPG,

MAD performs slightly worse than VIF, but better than all other metrics.

For group NOZ, the best performing metric is PSNR, followed by MAD for all per-

formance measures except SROCC. In terms of rank order, VIF performs superiorly,

followed by PSNR, followed by MAD.
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For group BLR, VIF outperforms every metric, followed by MAD. It is of note

that the performance of VIF in this category is quite substantial. MAD is a (com-

paratively) distant second when predicting quality of Gaussian blurred images.

For group RAY, VIF performs the best in all categories except outlier ratio, where

MAD performs best. It seems that MAD predicts subjective quality well in this region,

but when it guesses incorrectly, the answer is comparatively far from the DMOS. The

statistical significance of these performances can be seen in the next section.

Table 4.2: This table contains a comprehensive review of the performance of
each metric for group JP2 in the LIVE database. The group contains 169
ratings of quality. The measures are the same as those given in table 4.1.

JP2 PSNR SSIM VSNR VIF MAD
CC 0.8993 0.9662 0.9629 0.9771 0.9785

SROCC 0.8947 0.9607 0.9560 0.9694 0.9704
RMSE 143.44 84.60 88.52 69.81 67.65
Rout 0.604 0.467 0.485 0.385 0.325
RSOD 780.1 304.4 312.3 183.5 174.8

Table 4.3: This table contains a comprehensive review of the performance of
each metric for group JPG in the LIVE database. The group contains 175
ratings of quality. The measures are the same as those given in table 4.1.

JPG PSNR SSIM VSNR VIF MAD
CC 0.8883 0.9784 0.9723 0.9863 0.9836

SROCC 0.8814 0.9755 0.9657 0.9844 0.9809
RMSE 193.51 87.14 98.43 69.56 76.04
Rout 0.634 0.394 0.457 0.257 0.303
RSOD 1173.0 249.0 330.5 137.5 182.8

To further our comparison, the graph of logistic MAD and the next best perform-

ing metric versus DMOS are shown in Figure 4.1, Figure 4.2, and Figure 4.3 for the

overall and per distortion groupings. Notice from the overall fit (Figure 4.1) that

MAD fails on a subset of about seven high quality images. Also notice from the

compression distortion fits (Figure 4.2) that all residuals appear to be homoskedastic

except for group RAY. MAD is fitting low quality images in group RAY better than
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Table 4.4: This table contains a comprehensive review of the performance of
each metric for group NOZ in the LIVE database. The group contains 145
ratings of quality. The measures are the same as those given in table 4.1.

NOZ PSNR SSIM VSNR VIF MAD
CC 0.9858 0.9700 0.9777 0.9839 0.9841

SROCC 0.9852 0.9691 0.9785 0.9854 0.9807
RMSE 56.67 81.91 70.78 60.28 59.75
Rout 0.262 0.531 0.414 0.352 0.317
RSOD 103.2 282.7 200.3 136.0 118.6

Table 4.5: This table contains a comprehensive review of the performance of
each metric for group BLR in the LIVE database. The group contains 145
ratings of quality. The measures are the same as those given in table 4.1.

BLR PSNR SSIM VSNR VIF MAD
CC 0.7836 0.9450 0.9329 0.9744 0.9524

SROCC 0.7813 0.9512 0.9418 0.9731 0.9517
RMSE 138.18 72.75 80.08 49.97 67.83
Rout 0.717 0.545 0.476 0.372 0.469
RSOD 830.1 268.5 321.8 112.3 217.5

high quality. This could be an indication that the masking model is failing for this

particular distortion type.

Looking at the photographic distortions (Figure 4.3), MAD tends to have a non-

linear relationship with Gaussian blurring. Again high quality images are not fit as

well as low quality images. This may be partly the fault of the masking model used.

However, notice that MAD predicts the fidelity of high quality white noise distorted

images extremely well. In light of this, we may be able to further improve MAD using

a distortion adaptive masking model.

4.1.1 Statistical Significance on LIVE

When we talk about statistical significance of two metrics fitting to DMOS we usually

approach it like a regression analysis: Which set of data better fits the observations

and is the fit significant?

To establish significance we compare the residuals of each metric. Ideally, all the
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Table 4.6: This table contains a comprehensive review of the performance of
each metric for group RAY in the LIVE database. The group contains 145
ratings of quality. The measures are the same as those given in table 4.1.

RAY PSNR SSIM VSNR VIF MAD
CC 0.8921 0.9481 0.9023 0.9613 0.9497

SROCC 0.8928 0.9554 0.9054 0.9648 0.9488
RMSE 155.02 109.07 147.90 94.51 107.43
Rout 0.566 0.579 0.648 0.441 0.386
RSOD 763.3 399.0 699.7 287.6 338.2

(a) (b)

Figure 4.1: The DMOS ratings are plotted verse the logistic transformed
MAD prediction for group ALL in the LIVE database. VIF, the next best
performing metric, is also shown.

residuals would equal zero and have no variance. Smaller residual variance denotes

a better fit. In addition to this, if the residuals are Gaussian, we can establish the

probability that the samples are drawn from two different distributions or from the

same Gaussian distribution. Given the number of parameters in each dataset and the

variance of each set, we can use the incomplete Beta function, Ix(z, w), to determine

the probability that the residuals are drawn from the same underlying distribution.

This type of analysis is commonly known as the F-statistic or F-test. We assume that

the datasets are part of the same group (the NULL hypothesis) and see with what

confidence we can reject this hypothesis.

If the variance of the residuals of one dataset are smaller than another and we

can say with 99% that the two datasets are not drawn from the same underlying
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distribution, then we can say that one fit is statistically better than the other. Note

that if the residuals are not Gaussian, the test for significance is considerably more

difficult and many times inconclusive.

If the skewness is between -1 and 1, and kurtosis is between 2 and 4, we assume that

the residuals can be deemed Gaussian. However, a more formal test of Gaussianity

is the Jarque-Bera Statistic or J.B Test[36]. This test assumes the NULL hypothesis

that the dataset is from a Gaussian distribution. If it cannot say with 95% confidence

that the dataset is not Gaussian, then we assume Gaussianity. If the JB statistic is

sufficiently small enough, then we are safe to assume it is Gaussian. Larger values of

the JB statistic denote how far from Gaussian the distribution lies.

Table 4.7 shows the summary for overall statistical performance of each metric.

An F-test is performed between each pair of metrics. A ”-1” denotes that the metric

in the row has statistically larger residuals with confidence greater then 99%. A

”0” denotes that there is statistically no difference between the residuals of the two

metrics. Table (b) contains the measures of Gaussianity. A zero in the Gaussian

row denotes that the NULL hypothesis holds, according to the JB test. Notice that

the F-tests conclude that MAD has statistically smaller residuals than every other

metric. However, MAD is also deemed as the most non-Gaussian of all the metrics

as denoted by the JB statistic and abnormally high kurtosis. It is interesting to look

at why MAD has such high kurtosis.

Figure 4.5 shows the histogram of residuals for MAD. Notice that the distribution

is mostly Gaussian except for about seven outlying images where MAD fails by a

large amount. If these images are removed, the residuals can be deemed Gaussian

with p value of 0.42 to reject the NULL hypothesis and JB statistic = 1.2. MAD rates

these images as being low quality, even though they have fairly low DMOS values.

All of the DMOS values are around 15, while MAD predicts that they have a rating

of around 50. Figure 4.4 shows the two images where MAD performs the worst. Both

50



Table 4.7: Table (a) shows the statistical relationships between the metrics
in the rows and columns on group ALL of the LIVE database. A ”1” denotes
that the metric in the row has statistically smaller residuals with confidence
greater then 99%. A ”-1” denotes that the metric in the row has statistically
larger residuals with confidence greater then 99%. A ”0” denotes that there
is statistically no difference between the residuals of the two metrics. Table
(b) contains the measures of Gaussianity. A zero in the Gaussian row denotes
that the NULL hypothesis holds, according to the JB test. A one denotes
that with 95% confidence the residuals are not Gaussian. Also reported are
the p-value confidences and residual skewness and kurtosis.

(a) Significance Table

ALL PSNR SSIM VSNR VIF MAD
PSNR 0 -1 -1 -1 -1
SSIM 1 0 1 -1 -1
VSNR 1 -1 0 -1 -1
VIF 1 1 1 0 -1
MAD 1 1 1 1 0

(b) Measures of Gaussianity

ALL PSNR SSIM VSNR VIF MAD
Gaussian 1 0 1 0 1

Conf. 0.007 0.257 0.001 0.081 0.001
JB Stat 11.768 2.583 20.011 4.843 246.610
Skew 0.292 -0.139 0.091 0.170 -0.518
Kurt 3.143 2.957 3.764 2.818 5.554

are from group RAY. The fundamental failure of MAD for these images occurs in the

masking model used. Each image contains heavy ghosting, but it is largely masked.

Our model predicts that the the distortions are visible, but the LMSE gives them

such weight that MAD assesses quality using the log-Gabor structural content, which

is a large value due to the change that ghosting induces. Perhaps a better model of

masking here would help to correctly classify the images as being below the detection

threshold.

Tables 4.8 through 4.12 show the statistical significance of all metrics per distortion

group. For group JP2 and JPG, MAD, SSIM, and VIF are statistically the same and

have the best performance. For group NOZ, MAD, VIF, PSNR, and VSNR are

statistically the same. Only VSNR does not perform better than SSIM. For group
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BLR, VIF performs significantly better than all other metrics. For group RAY, MAD,

SSIM, and VIF perform the best and are statistically no different from one another.

Table 4.8: Residual significances and statistics are shown for group JP2 in
LIVE database, containing 169 images. The measures are the same as those
explained in table 4.7

(a) Significance Table

JP2 PSNR SSIM VSNR VIF MAD
PSNR 0 -1 -1 -1 -1
SSIM 1 0 0 0 -1
VSNR 1 0 0 -1 -1
VIF 1 0 1 0 0
MAD 1 1 1 0 0

(b) Measures of Gaussianity

JP2 PSNR SSIM VSNR VIF MAD
Gaussian 0 0 0 0 0

Conf. 0.406 0.500 0.063 0.500 0.185
JB Stat 1.559 0.908 5.019 0.065 2.832
Skew -0.207 0.085 -0.007 -0.046 0.005
Kurt 3.224 2.683 3.844 3.026 3.634

Tables 4.8 through 4.12 show significance for each distortion group. Note that

because the groups are smaller, it is easier to make a type II error (that there is

no significant difference when one actually exists). The only way to be certain is to

collect more subjective ratings for more images of the particular distortion type.

A possible explanation for the performance of MAD on LIVE is that it has two

additional free parameters that help to fit it to the database from the α-blend sigmoid.

This certainly seems like a plausible explanation at first glance. For fairness, we

adjusted the parameters of the α-blend sigmoid and noted when the results were

significantly better than VIF, significantly worse than VIF, or the same. Figure 4.6

shows the sensitivity of each parameter graphically using three plots. Each plot has

a constant bias parameter, from equation (3.15) τ1 is held constant and τ2 is adjusted

from 0.2 to 1.4 in steps of 0.2. τ1 takes values -1.5, -1.2, and -0.8 in each plot. Red

sigmoids denote that MAD is significantly inferior to MAD with 95% confidence. Blue
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Table 4.9: Residual significances and statistics are shown for group JPG in
LIVE database, containing 175 images. The measures are the same as those
explained in table 4.7

(a) Significance Table

JPG PSNR SSIM VSNR VIF MAD
PSNR 0 -1 -1 -1 -1
SSIM 1 0 0 -1 0
VSNR 1 0 0 -1 -1
VIF 1 1 1 0 0
MAD 1 0 1 0 0

(b) Measures of Gaussianity

JPG PSNR SSIM VSNR VIF MAD
Gaussian 0 0 1 1 0

Conf. 0.500 0.334 0.021 0.003 0.500
JB Stat 1.161 1.879 8.587 19.728 0.052
Skew -0.199 0.249 0.521 0.678 0.042
Kurt 2.989 3.099 3.305 3.930 3.001

sigmoids denote that MAD is statistically the same as VIF. Green sigmoids denote

that MAD is significantly superior to VIF with 95% confidence. No red sigmoids are

present in the graphs. Also notice that insignificant blends can be explained because

they do not capture enough of each metric in each quality region or apply too hard

of a threshold.

Note that it is possible to make MAD inferior to VIF using parameters of the

blend. Again, this usually occurs such that the α-blend does not mix the strategies,

but rather applies a hard threshold or uses too much of one metric in a quality range

that it is not suited for.

4.2 Results on CSIQ Fidelity Database

The CSIQ database consisted of six different types of distortions at five different

levels. Details can be seen in section 3.4. Currently, the database includes 10 original

images and 300 distorted versions of the images. We are currently working to expand

the database, but we wish to report our preliminary findings from four observers. We
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Table 4.10: Residual significances and statistics are shown for group NOZ in
LIVE database, containing 145 images. The measures are the same as those
explained in table 4.7

(a) Significance Table

NOZ PSNR SSIM VSNR VIF MAD
PSNR 0 1 1 0 0
SSIM -1 0 0 -1 -1
VSNR -1 0 0 0 0
VIF 0 1 0 0 0
MAD 0 1 0 0 0

(b) Measures of Gaussianity

NOZ PSNR SSIM VSNR VIF MAD
Gaussian 0 0 0 0 0

Conf. 0.500 0.073 0.343 0.500 0.089
JB Stat 0.294 4.563 1.791 1.069 4.131
Skew 0.108 0.059 0.238 0.113 0.003
Kurt 2.952 2.139 3.266 2.645 3.827

will not talk about the individual groups of distortions in the database as the limited

number of ratings prohibits a valid statistical analysis. However, we can talk above

overall performance on the database. When the database is completed, it will be

freely available to others for use. We believe that this is the only way for the research

community to work together in solving the problem of image quality. We further

push for other researchers to make their databases freely available so that they may

be peer reviewed and be open for other researchers to compare results.

Table 4.13 shows the performance of PSNR, SSIM, VSNR, VIF, and MAD on the

CSIQ database. Observe that MAD is the superior measure of quality. Also notice

that the results are similar to those from the LIVE database, with MAD having the

best performance, followed by SSIM and VIF.

The logistic transform of each metric can be seen in figure 4.7. Observe that

MAD is obviously the tightest fit. Also note that VSNR has a band of images at

high quality that it does not predict accurately. Also note that the residuals of many

of the metrics appear to be heteroskedastic, indicating that CC should not be the
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Table 4.11: Residual significances and statistics are shown for group BLR in
LIVE database, containing 145 images. The measures are the same as those
explained in table 4.7

(a) Significance Table

BLR PSNR SSIM VSNR VIF MAD
PSNR 0 -1 -1 -1 -1
SSIM 1 0 0 -1 0
VSNR 1 0 0 -1 0
VIF 1 1 1 0 1
MAD 1 0 0 -1 0

(b) Measures of Gaussianity

BLR PSNR SSIM VSNR VIF MAD
Gaussian 0 0 0 0 1

Conf. 0.243 0.500 0.494 0.401 0.003
JB Stat 2.328 0.336 1.222 1.550 20.758
Skew 0.298 -0.113 0.177 -0.173 -0.613
Kurt 2.826 2.933 3.277 2.629 4.390

primary means of comparison. In that respect, the considerably higher CC achieved

by MAD could be in part be attributed to the homoskedasticity of its residuals.

The statistical significance of each metric comparatively can be seen in table 4.14

along with the measures of Gaussianity. In CSIQ as with LIVE, MAD performs

significantly better than any other metric. Also notice that without the packet-loss

distortions present in the LIVE database, MAD also has highly Gaussian residuals

according to the JB statistic. The results from CSIQ are encouraging. However, we

caution readers from placing extensive trust in the exact degree of performance. The

database is a work in progress and needs more observers and more images before its

reliability can be without question.

It is of note that the correlations on the database are markedly lower than on

LIVE. We believe this is due to the contrast distortions in CSIQ. None of the metrics

were constructed to handle these types of distortions. Even still, MAD performs well,

even with the contrast distortions present. To make the measures more valid, we also

look at the performance and significance of each metric on CSIQ without the contrast
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Table 4.12: Residual significances and statistics are shown for group RAY in
LIVE database, containing 145 images. The measures are the same as those
explained in table 4.7

(a) Significance Table

RAY PSNR SSIM VSNR VIF MAD
PSNR 0 -1 0 -1 -1
SSIM 1 0 1 0 0
VSNR 0 -1 0 -1 -1
VIF 1 0 1 0 0
MAD 1 0 1 0 0

(b) Measures of Gaussianity

RAY PSNR SSIM VSNR VIF MAD
Gaussian 0 0 0 0 1

Conf. 0.500 0.500 0.239 0.056 0.001
JB Stat 0.079 0.054 2.359 5.258 102.025
Skew 0.044 -0.006 -0.222 0.448 -1.139
Kurt 3.072 2.906 3.439 3.262 6.420

Table 4.13: This table contains a comprehensive review of the performance
of each metric for group ALL in the CSIQ database. The group contains 300
ratings of quality. The Correlation Coefficient (CC), Spearman Rank-Order
Correlation Coefficient (SROCC), root mean-squared error(RMSE), outlier
ratio, Rout, and sum outlier distance, RSOD, are given.

ALL PSNR SSIM VSNR VIF MAD
CC 0.8455 0.8893 0.8472 0.9079 0.9507

SROCC 0.8428 0.9019 0.8577 0.9063 0.9484
RMSE 235.65 201.82 234.45 185.01 136.85
Rout 0.356 0.305 0.282 0.339 0.228
RSOD 782.3 497.1 737.9 577.8 300.4

images. Table 4.15 shows the performance of each metric and table 4.16 shows the

corresponding statistical significances. After this adjustment, MAD performs even

better. However, VIF only increases marginally in performance and VSNR becomes

statistically indistinguishable from MAD. This development has several repercussions.

First, VIF is a decent measure of contrast distortion. Secondly, the performance of

VSNR was greatly dampened by contrast distortions. And lastly, MAD is the only

metric that has approximately the same performance on both databases. In this way,

the reliability of the MAD is further verified.
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Table 4.14: Table (a) shows the statistical relationships between the metrics
in the rows and columns for the CSIQ database group ALL. A ”1” denotes
that the metric in the row has statistically smaller residuals with confidence
greater then 99%. A ”-1” denotes that the metric in the row has statistically
larger residuals with confidence greater then 99%. A ”0” denotes that there is
statistically no difference between the residuals of the two metrics. Table (b)
contains the measures of Gaussianity. A zero in the ”Gaussian” row denotes
that the NULL hypothesis holds, according to the JB test. A one denotes
that with 95% confidence the residuals are not Gaussian. Also reported are
the p-value confidences and residual skewness and kurtosis.

(a) Significance Table

ALL PSNR SSIM VSNR VIF MAD
PSNR 0 -1 0 -1 -1
SSIM 1 0 1 0 -1
VSNR 0 -1 0 -1 -1
VIF 1 0 1 0 -1
MAD 1 1 1 1 0

(b) Measures of Gaussianity

ALL PSNR SSIM VSNR VIF MAD
Gaussian 0 1 1 0 0

Conf. 0.500 0.003 0.001 0.500 0.425
JB Stat 0.414 17.619 24.255 0.652 1.560
Skew -0.053 -0.303 -0.569 0.084 0.108
Kurt 3.149 4.026 3.812 3.156 3.281

Figure 4.8 shows the logistic transformed metrics with contrast removed from the

database. Notice that MAD and VSNR get noticeably tighter fits. PSNR improves

greatly as well, but the overall fit is lackluster.

Also of note is that the α-blend parameters of MAD were held at the same value

as on the LIVE database. Tuning these parameters to the CSIQ database results in

a CC of 0.9521, Rout of 0.2215, and RSOD of 264.76, including the contrast images.

Without contrast, tuned MAD can achieve a CC of 0.9659, Rout of 0.2200, and RSOD

of 215.30. These performance measures clearly delineate MAD as a superior measure

of image fidelity prediction.
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Table 4.15: This table contains a comprehensive review of the performance
of each metric for the CSIQ database group ALL, without group CST. The
group contains 250 ratings of quality. The Correlation Coefficient (CC),
Spearman Rank-Order Correlation Coefficient (SROCC), root mean-squared
error(RMSE), outlier ratio, Rout, and sum outlier distance, RSOD, are given.

ALL-CST PSNR SSIM VSNR VIF MAD
CC 0.9178 0.9313 0.9499 0.9263 0.9637

SROCC 0.9185 0.9364 0.9478 0.9294 0.9594
RMSE 166.55 152.80 131.10 158.11 111.94
Rout 0.344 0.316 0.240 0.312 0.236
RSOD 447.9 383.3 256.6 387.0 237.1

Table 4.16: The measures submitted here are identical to those used in table
4.7 except performed on the CSIQ database group ALL without group CST.

(a) Significance Table

ALL-CST PSNR SSIM VSNR VIF MAD
PSNR 0 0 -1 0 -1
SSIM 0 0 0 0 -1
VSNR 1 0 0 1 0
VIF 0 0 -1 0 -1
MAD 1 1 0 1 0

(b) Measures of Gaussianity

ALL-CST PSNR SSIM VSNR VIF MAD
Gaussian 0 1 1 1 1

Conf. 0.500 0.001 0.003 0.004 0.044
JB Stat 0.699 26.441 17.912 15.964 6.055
Skew 0.127 -0.172 -0.292 0.408 0.022
Kurt 3.054 4.556 4.174 3.932 3.761
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The DMOS ratings are plotted verse the logistic transformed
MAD prediction for each type of compression distortion in the LIVE
database. Also shown are the best or next best (if MAD is best) performing
metric.
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(a) (b)

(c) (d)

Figure 4.3: The DMOS ratings are plotted verse the logistic transformed
MAD prediction for each type of photographic distortion in the LIVE
database (Gaussian white noise and Gaussian blurring). These distortions
are common in photography. Also shown are the best or next best (if MAD
is best) performing metric.
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(a) Reference Image 1 (b) Distorted Image 1

(c) Reference Image 2 (d) Distorted Image 2

Figure 4.4: Two reference and distorted images are shown. The distortions
present are fast fading Rayleigh simulated packet loss distortion.

Figure 4.5: The residual histogram of metric MAD. Notice that the distri-
bution is quite Gaussian except for some large outlier images which MAD
believes are of higher quality than rated by observers.
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(a) (b)

(c)

Figure 4.6: Three plot are shown with varying parameters for the α-blend of
the two metrics. Each plot has a constant bias parameter, τ1 from equation
(3.15) and τ2 is adjusted from 0.2 to 1.4 in steps of 0.2. τ1 takes values -1.5, -
1.2, and -0.8 in plots (a), (b), and (c), respectively. Red sigmoids denote that
MAD is significantly inferior to MAD with 95% confidence. Blue sigmoids
denote that MAD is statistically the same as VIF. Green sigmoids denote
that MAD is significantly superior to VIF with 95% confidence.
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(a) (b)

(c) (d)

(e)

Figure 4.7: The DMOS ratings are plotted verse the logistic transformed
prediction for each metric on the CSIQ database for group ALL.
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(a) (b)

(c) (d)

(e)

Figure 4.8: The DMOS ratings are plotted verse the logistic transformed pre-
diction for each metric. Contrast distortions are removed from the database.
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CHAPTER 5

CONCLUSIONS

We have presented a metric that uses properties of both low level vision and visual

appearance to define a measure of fidelity. As far as we know, it achieves the highest

level of performance thus far at predicting subjective image fidelity.

Because of the excellent performance of MAD, we foresee its usefulness in com-

pression optimization, dynamic image bandwidth allocation, calibration for denoising,

image resizing, or any algorithm were the idea is to preserve quality. MAD could also

be used in assessing print quality and inside consumer electronics (camera phones,

etc.).

In addition, because MAD is also modular for high and low quality, it can be

used in a highly efficiently fashion if the relative quality range of images is known

beforehand. Also, the low quality range of the metric may be useful in predicting

human recognition tasks or restoring highly degraded images.

We are currently working to integrate a more sophisticated model of masking into

MAD and decrease the complexity of the algorithm (MAD++) so that it can be

more easily used inside an optimization loop. We are also working to expand MAD

to video, high-dynamic range images, and photography.
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