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CHAPTER 1 

Introduction  

The main objective of this research is to establish the importance of defining 

“regions of interest” in an image for improving the perceived fidelity of the image and 

propose an algorithm that would find these regions automatically in an image. The 

“regions of interest” or popularly known as the “ROI” can be defined as the objects or 

regions to which a viewers attention is naturally drawn. In simple terms it is the most 

important regions of the image. The term non-ROI can be very confusing. It usually 

refers to the regions in the image like the sky or the ground which do not attract our 

attention when we look at the image.  

The problem of identifying regions of interest in a given image is an important 

one considering the wide range of applications it can be applied to. This concept can be 

affectively applied to improve the image quality assessments. The distortion metrics that 

are presently being used are not very affective in determining the different distortions 

present in an image accurately. This can be attributed to the fact that they do not take into 

account where the distortions occur in an image. Of late it has been accepted that 

distortions present in the ROI have a greater impact in determining the quality rating of 

an image when compared to distortions in non-ROI. Thus developing a new metric by 

taking into account where these distortions actually occur could really be useful.  

The compression techniques that are presently being employed use uniform 

quantization for all the regions of an image. But the results obtained from the experiment 

done in this research; on varying amounts of distortions in ROI and non-ROI indicate that 
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it would be better to use more number of bits for the interesting regions in an image. Thus 

this concept can be used in compression to reduce the bit rate while retaining the quality 

of the image. This can be done by allocating very little bandwidth for unimportant 

regions in an image like the background. Digital watermarking is a pattern of bits inserted 

into a digital image that identifies the file's copyright information. The purpose of digital 

watermarks is to provide copyright protection for intellectual property that's in digital 

format.  The actual bits representing the watermark must be scattered throughout the file 

in such a way that they cannot be identified and manipulated. But for better results it is 

suggested that these bits be placed in regions of the image like the background. Thus 

placing these bits along with the bit stream of the ROI should be avoided. 

This concept can also be used for unequal error protection. Most of the error 

protection techniques that are presently being used have equal error protection. That is all 

the bits in a bit have equal error protection. In recent times studies have showed that 

some regions in the image need to have better error protection compared to other regions. 

This stems from the fact that some regions have to be error free at any cost. Apart from 

this there is also a possibility of reduced computation wherein only the important regions 

are processed. 

 

1.1 Motivation 

      Inspite of having so many applications in various fields and the extensive research 

work going on in this field there have been very few image processing algorithms that 

could identify the ROI or predict an importance map accurately. A number of attempts 

have been made in this direction. Some of them use top-down approach while others use 
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bottom-up approach. But there still exists a need for an automated image processing 

algorithm that can predict the importance map for any given image. 

         Thus an attempt has been made in this research to establish the importance of 

identifying the ROI and an algorithm is proposed which would predict an importance 

map. Thus in this paper, I present research toward: 

1) Providing quantitative evidence that knowledge of ROI has an effect on the 

image quality. The effect of ROI on image quality in different surrounding 

is examined. 

2) Quantifying the relationship between measurable factors and perceived 

interest of each of these. 

3) Incorporate the above results into a semi-automated algorithm for 

determining the importance map for a given gray scale image. 

  The following section reviews previous attempts at identifying ROI’s. 

 

1.2 Previous work             

    There has been a lot of research going on in this field. Various attempts have been 

made to establish the importance of defining ROI in an image. Numerous experiments 

were performed to testify that ROI coding could be used to improve image quality. This 

presents the strong need for an automated image processing algorithm. Some of the 

important works in this field are mentioned below. 

The use of edge detectors was considered but the results were not satisfactory. 

Figure 1.1 shows the output of an edge detector. 
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                          (a)                                                                (b) 

Figure 1.1: (a) Image of a horse   (b) Output of the edge detector                  

Another obvious technique at identifying ROI’s is to use average region 

brightness. That is the image is divided into various regions and the average brightness 

value of each of the regions is calculated. The importance map is then constructed based 

on its importance value. One such importance map is shown below 

        
                          

(a)                                                                     (b) 

Figure 1.2:     (a) Input image   (b) Output importance map based on brightness 
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Andrew Bradley [1] in his paper investigates the possibility of improving the 

overall perception of image quality by preferentially coding certain regions of interest 

(ROI) in an image. Experiments were conducted utilizing an automated algorithm for 

visual attention to detect the primary ROI(s) in an image, and then encoding the image 

using the maxshift algorithm of JPEG 2000. The results indicate that, while there is no 

overall preference for the ROI encoded images, there is an improvement in perceived 

image quality at low bit rates (below 0.25 bits per pixel). Liu and Fan [4] in their paper 

propose a new ROI coding method called Partial Significant Bit planes Shift (PSBShift) 

that combines the advantages of the two standard ROI coding methods defined in 

JPEG2000. The PSBShift method not only supports arbitrarily shaped ROI coding 

without coding the shape, but also enables the flexible adjustment of compression quality 

in ROI and background. 

 

Privitera and Stark [5] use Eye-fixations to determine the human defined ROIs. 

They also use some image processing algorithms to find the algorithmically defined 

ROIs. These hROIs and aROIs are then compared through analysis of their spatial 

locations and analysis of the temporal order or sequential binding. These results measure 

the capability of image processing algorithms in finding the ROI’s. Nguyen and 

Chandran [6] analyze the spatial and temporal characteristics of the human visual 

attention system as recorded from an eye-tracking device at the encoding end. They 

establish that human visual attention mechanisms direct the viewer’s eye movements 

around the image to provide a sequence of fixations. These fixations are analyzed, 
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clustered and classified into regions of interest (ROI). These ROIs are used to selectively 

encode and prioritize regions such that an improved image content recognition 

performance can be achieved. 

 

Marichal and Delmot [8] introduce a tool that attempts to find which regions are 

important in an image or in a video sequence. For this purpose, Fuzzy was used to 

modelize human Subjective knowledge. The resulting classification was used in a wide 

range of applications going from image coding to image quality. Peli [7] proposes an 

algorithm for the detection of visually relevant luminance features. The algorithm detects 

edges (sharp luminance transitions) and narrow bars (luminance cusps) and marks them 

with the proper polarity. The algorithm was robust with respect to variations in filter 

parameters and requires no use of quadrature filters or Hilbert transforms. 

 

Laurent Itti [10] proposes a neuro-behavioral model which takes into account 

bottom-up saliency and does not require any top-down guidance to shift attention. In this 

approach the input is decomposed into a set of topographic feature maps based on its 

color, intensity and orientation. Different regions then compete for saliency within a map 

such that only those standing out from the others get a higher priority. All these different 

maps are then combined into a single master ‘Saliency map’ detecting the important 

regions. 

 

When Itti’s code is applied to an image the output is as shown below. 
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(a)       (b) 

Figure 1.3: (a) Dog image    (b) Output of Itti’s algorithm 

 

 

Osberger and Maeder [9] propose a model based on human visual attention and 

eye characteristics. Several features that influence human visual attention are evaluated 

for each region of a segmented image. These are then combined to produce an 

importance map that shows the importance of each region. They investigate different 

features like Contrast, Size, Shape, Location, Color and Motion. Equations are then 

postulated to give the importance of each of these factors. All these factors are then 

combined to form an importance map. In spite of their results being good, one of their 

limitations is that there is no computational or experimental method for arriving at these 

equations. The algorithm also uses heuristic equations that have not been experimentally 

verified in terms of human vision. It also combines the various factors using simple sum 

of squares. Thus it is assumed that all of these factors are of equal importance. This is a 
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potential problem because each factor has its own importance. The results obtained by 

using their algorithm are shown below: 

 

       
  

(a) (b)  

Figure 1.4: (a) Image of man and dog   (b) Output of Osberger’s algorithm 

 

Thus as seen from the above results there still exists a need for an automated image 

processing algorithm that can predict the importance map for any given image. 

           One goal of this research is to use human psychophysics experiments to 

quantify the relationship between different factors like size, location, contrast, blur, 

category and the perceived importance. And a second goal of this work is to determine 

the best way to combine the individual perceived importance’s to arrive at the overall 

perceived importance of each region 
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1.3 Outline 

The thesis has been organized into five different chapters. The first chapter 

consists of this introduction and it highlights the motivations and contributions of this 

work. The second chapter consists of the experiment done to provide quantitative 

evidence that knowledge of ROI has an effect on the image quality. The importance of 

defining ROI in an image is clearly established in this experiment. Chapter three presents 

the second experiment performed to quantify the relationship between measurable factors 

that determine ROI and perceived interest of each of these. This explains in detail the 

importance of each of these factors in determining the ROI. Chapter four presents an 

algorithm to automatically predict an importance map for any given segmented image. 

An optimization is run on different factors to arrive at the best possible solution. Finally 

chapter five contains the conclusion and ideas for future work along the same line. 
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CHAPTER 2 

Experiment-1 

 

The main aim of this experiment was to quantitatively show that, the knowledge 

of ROI in a given image would have a considerable effect on image quality. The study is 

also aimed at showing that when this knowledge is applied during image compression 

there can be considerable improvement in image quality at almost the same bit-rate. The 

presence of persons, animals, objects in an image generally determine the important 

regions in an image and its effects are studied briefly. In this experiment, it is examined 

whether an image’s perceived fidelity is affected by the perceived fidelity of the regions 

of interest (ROIs) to a greater extent than it is by the perceived fidelity in the other 

regions. It is generally expected that subjects would prefer images containing most of the 

distortions in the non-ROI. However, we also expect that, at some point, the non-ROI 

becomes so distorted that the overall perception of fidelity is reduced. Thus this 

experiment was also aimed at predicting a good way of proportioning the distortion 

between the ROIs and the non-ROI. Insights into this issue are particularly important for 

the design of image processing systems which possess some control over the amount of 

distortion that is induced in different regions of images. 

Eleven images were distorted in one of three ways (white noise, blurring, and 

wavelet subband quantization distortion), and then ratings of perceived fidelity were 

obtained for the distorted images. 
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2.1 Methods 

2.1.1. Apparatus 

Stimuli were displayed on a high-resolution, Proview PS-910 19-inch monitor 

(Proview Technology, Inc., Garden Grove, CA, USA) with a 0.25 mm dot pitch and 

maximum horizontal and vertical scan frequencies of 85 kHz and 150 Hz, respectively. 

The display was operated at a resolution of 35.1 pixels/cm and a frame rate of 75 Hz. The 

display yielded minimum and maximum luminances of, respectively, 0.55 and 100.0 

cd/m2, and an overall gamma of 2.6. Luminance measurements were made by using a 

Minolta CS-100A photometer (Minolta Corporation, Tokyo, Japan). Stimuli were viewed 

binocularly through natural pupils in a darkened room at a distance of approximately 46 

cm resulting in a display visual resolution of 28.4 pixels/deg. 

2.1.2. Stimuli 

Stimuli used in this study were 512 × 512-pixel grayscale images which 

subtended 18 × 18 degrees. The images were cropped from 768×512-pixel originals 

obtained from the McGill calibrated image database. Eleven original images were 

selected: Four of the images contained frontal/side views of human faces (kids, cyclists, 

students, man); three of the images contained animals (bird, dog, duck); and four of the 

images contained man-made objects or a combination of human/animal/plant and man-

made objects (boat, hydrant, flower, cityscape). The 11 original 8-bits/pixel RGB images 

were gamma-corrected for the acquisition process such that digital pixel values were 

proportional to luminances in the physical scenes (within limitations of the acquisition 

devices). [35] 
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Figure 2.1:  Eleven 512×512 grayscale images derived from the McGill calibrated image 

database. From top to bottom, left to right, the common names that have been assigned to 

these images are: bird, dog, kids, cyclists, boat, students, hydrant, flower, man, people, 

and duck. 



 13 

 

 

The images were then converted to grayscale via a pixel-wise transformation of I 

= 0.2989R + 0.5870G + 0.1140B, where I, R, G, and B denote the 8-bit grayscale, red, 

green, and blue intensities, respectively. The grayscale values were then transformed via 

I′ = γ/1I , 6.2=γ  so as to maintain the linear relationship between original pixel values 

and luminance when the images were shown on the display apparatus. These modified 

grayscale values were then scaled to span the range 0 − 255. 

A section of size 512×512 pixels was then cropped from each image so as to 

capture at least one region of interest. For each 512 × 512 grayscale image, one or more 

ROIs were manually selected by following these criteria: Regions of high contrast; larger 

regions; objects in the foreground; regions containing plants, animals, and humans. 

 A 512 × 512 binary mask was then created in which pixels with a value of 1 

corresponded to the selected ROIs. Figure 2.1 depicts the 512 × 512 images used in this 

study; Figure 2.2 depicts the corresponding masks.  
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Figure 2.2: Binary masks created by the author corresponding to each of the images in 

Figure 2.1. White pixels denote to the assumed ROI selected by author; black pixels 

denote the non-ROI. From top to bottom, left to right, these masks correspond to image: 

bird, dog, kids, cyclists, boat, students, hydrant, flower, man, people, and duck. 
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Each original 512 × 512 grayscale image was distorted in three ways: 

1. White noise in which the pixel values were drawn from a zero-mean Gaussian 

distribution with standard deviation adjusted to achieve the desired distortion 

contrasts. 

2. Blurring by using a length-37 finite impulse response filter with filter coefficients 

selected according the Gaussian function  

]18,18[),
2

)5.18/(
exp()(

2

2

−∈−= n
n

nh
σ

, 

with σ  selected to achieve the desired distortion contrasts; this one-dimensional 

filter was first applied to the rows of each image and then to the columns of that 

result to generate the final blurred image. 

3. Wavelet subband quantization distortion induced by (a) performing a 5-level 

discrete wavelet transformation of the image by using the 9/7 bi-orthogonal 

filters; then (b) uniformly quantizing the coefficients within each subband such 

that the mean squared error (MSE) within each subband was proportional to 

base
n D−2 , where n denotes the decomposition level and baseD denotes the baseline 

MSE selected to achieve the desired distortion contrasts; and then(c) performing 

an inverse DWT to generate the distorted image. 

                   The distortions were added separately to the ROI and non-ROI by using each 

image’s corresponding mask. Specifically, let ROII
^

 denote a distorted version of original 

image I such that the RMS contrast of the distortion in the ROI is ROIC . Let ROInonI −

^

 

denote a distorted version of I such that the RMS contrast of the distortion in the non-ROI 
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is ROInonC − . Let M denote the mask with pixel values in the range 0−1, where pixel values 

of 1 correspond to the ROI(s) and pixel values of 0 correspond to the non-ROI. The total 

distorted image 
^

I containing distortion at contrast ROIC  in the ROI and distortion at 

contrast ROInonC −  in the non-ROI was generated via 

^

I = M× ROII
^

 + (1 −M) × ROInonI −

^

.                                (1) 

The distortions were generated such that the RMS contrast of the distortions over the 

entire image was 0.15. The RMS distortion contrast in the ROI, CROI, was set to fixed 

values of either 0 (no ROI distortion) or max,ROIC  (all distortion in the ROI), where 

max,ROIC  denotes an image-specific value required to achieve a total RMS distortion 

contrast of 0.15. Six intermediate values of ROIC   were then selected according to a 

logarithmic spacing to fall between these two extremes: Three intermediate values of 

ROIC   were chosen to conform to a logarithmic spacing between [0.05, 0.15) and the 

remaining three intermediate values were chosen to conform to a logarithmic spacing 

between [0.15, max,ROIC ]. 

For distortions consisting of white noise and blurring, the desired distortion 

contrasts were met by adjusting the standard deviation of the underlying Gaussian. For 

the wavelet subband quantization distortion, the contrasts were met by adjusting the 

baseline MSE Dbase and thereby adjusting the granularity of the quantizer. Thus, a total 

of 588 images were used in Experiment I: Eleven original images and 264 distorted 

images (11 images × 3 distortion types × 8 ROI/non-ROI proportions). 

Figure 2.3 depicts representative distorted images used in the experiment containing 

white noise, blurring, or wavelet subband quantization distortion. 



 17 

   

   

   
 
Figure 2.3:  Representative distorted images used in Experiment 1. Top row: Image bird 

containing white noise. Middle row: Image kids containing blurring. Bottom row: 

Image flower containing wavelet sub band quantization distortions. Images in the first 

column have all distortion in the non-ROI (no distortion in the ROI). Images in the 

second column have equal distortion contrast in the ROI and non-ROI. Images in the 

third column have all distortion in the ROI (no distortion in the non-ROI). 
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2.1.3. Procedures 

Subjective ratings of fidelity were measured for each distorted image by using a 

modified version of the Subjective Assessment Methodology for Video Quality 

(SAMVIQ) testing procedure applied to still images. Each experimental session began 

with three minutes each of dark adaptation and adaptation to a blank 19.0 2/ mcd  

display. Subjects were then concurrently shown an original image and one of the eight 

distorted versions of that image; each of the eight distorted images contained the same 

type of distortion at a different ROI distortion contrast. The original image and the 

currently-visible distorted image were placed upon a uniform 19.0 2/ mcd background 

and horizontally separated by approximately 5 degrees (measured from the right edge of 

one image the left edge of the other); the original image was always located in the left-

hand position. Figure 2.4 shows a screen shot of the experimental setup. 

 

 

Figure 2.4: Screenshot of experimental set-up 
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Via keyboard input, subjects switched between the eight distorted images. Before 

a new distorted image was shown, a zero-contrast, 19.0 2/ mcd  image was displayed for 

750 ms so as to prevent apparent motion of the distortion. Subjects were instructed to 

provide for each distorted image a rating of perceived quality relative to the original on a 

scale from 0 − 100 (where 100 denoted a quality equal to the original). Subjects were free 

to switch between any of the eight distorted images and to change any previously 

reported ratings for those distorted images. No specialized instructions were given to the 

subjects regarding where in the images to look; subjects were instructed only to 

1) Provide a rating of quality relative to the original on a scale from 0−100,  

2)  Review and confirm their results for all eight images before moving on to 

the next set of images.  

After rating all eight distorted images corresponding to a particular original image, the 

experimental session continued with a new original image and eight distorted versions of 

the new original image. Ratings were reported verbally and recorded by a proctor. 

Each of the eight distorted images contained distortions with an RMS contrast in 

the ROI, ROIC , corresponding to values in the range [0, max,ROIC ] as described. All 

distorted images for a particular experimental session contained the same type of 

distortion (noise, blur, or wavelet compression). Thus, a single experimental session 

consisted of rating 88 images (8 distorted versions of 11 original images) containing the 

same type of distortion.  The entire experiment consisted of three experimental sessions, 

one for each type of distortion. The time-course of each experimental session was not 
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limited; however the majority of observers completed each session (rating 88 images) in 

approximately 35 minutes. The total time required to complete all three experimental 

sessions varied across subjects; however, all results were obtained within the course of 

three weeks. We acknowledge that adaptation had likely occurred during the course of 

each session, and that learning may likely have occurred over the course of the 

experiment. These are largely unavoidable secondary effects of the SAMVIQ paradigm. 

However, unlike pair wise comparison procedures which require remembering previous 

ratings, the paradigm employed here allowed subjects to account for any bias induced by 

previous judgments. Subjects frequently made adjustments to previous ratings, and all 

subjects performed a final pass on each set of images to ensure their satisfaction in their 

ratings. 

 

2.1.4. Subjects 

The author, two adult image-processing researchers familiar with the purpose of 

the study, and three naive adult subjects participated in the experiments. The image-

processing researchers had previously encountered the types of distortions used in this 

study (noise, blurring, and wavelet compression); however, only the author had previous 

exposure to the images. Subjects ranged in age from 22 to 31 years. All subjects had 

either normal or corrected-to-normal visual acuity. 
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2.1.5 Contrast Metric 

 Results are reported here in terms of RMS contrast, which is defined as the standard 

deviation of  luminances normalized by the mean luminance of the background. RMS 

contrast has been applied to a variety of stimuli, including noise, wavelet, and natural 

images. In this thesis, results are reported in terms of the RMS contrast of the distortions 

computed with respect to the mean luminance of the original image. The RMS contrast of 

the distortions, Crms , is given by                                            
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1µ
 denotes the average  luminance of the mean-offset distortions 

E = Î − I + µI . The quantities L(Ii ) and L(Ei ) correspond to the luminance of the ith 

pixel of the image and the mean-offset distortions, respectively.  
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2.2. Results and Analysis 

The eight ratings of perceived fidelity obtained for each observer on each image 

set (image/distortion-type combination) were converted to z-scores such that the ratings 

for each observer on each image set had a zero mean and unit standard deviation. 

Accordingly, these standardized subjective ratings are interpreted as relative values of 

perceived fidelity. The graphs are then drawn for change in perceived interest with 

respect to relative distortions. The graphs for all the different distortion types are shown 

below.  

Noise (high) refers to the high contrast noise condition wherein the noise is added 

to the image in such a way that the RMS contrast is 0.15. Similarly Noise (low) refers to 

the low contrast noise condition wherein the noise is added to the image in such a way 

that the RMS contrast is 0.75. 

Wavelet (high) refers to the high contrast wavelet distortion wherein the distortion 

is added to the image in such a way that the RMS contrast is 0.15. Similarly Wavelet 

(low) refers to the low contrast wavelet distortion wherein the distortion is added to the 

image in such a way that the RMS contrast is 0.75. 

Blur (high) refers to the high contrast blur condition wherein the Gaussian blur is 

added to the image in such a way that the RMS contrast is 0.15. Similarly Blur (low) 

refers to the low contrast blur condition wherein the Gaussian blur is added to the image 

in such a way that the RMS contrast is 0.75. 
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Figure 2.5: Subjective ratings of fidelity for images containing Gaussian white noise 
(High).  

 

 

 



                                                                      24 
 

 

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 kids

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 dog

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 bird

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 students

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 boat

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 cyclists

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 man

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 flower

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 hydrant

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 all images

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 duck

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

0.0 0.5 1.0

-2.0

-1.0

0.0

1.0

2.0 people

 

 

 

 

 DC
 PR
 SP
 KB
 EL
 VN

Relative ROI Distortion Contrast 
Noise low 

R
el

at
iv

e 
P

er
ce

iv
ed

 F
id

el
ity

 (
z-

sc
or

e)
 

 

Figure 2.6: Subjective ratings of fidelity for images containing Gaussian white noise 

(Low) 
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Figure 2.7: Subjective ratings of fidelity for images containing wavelet subband 
quantization distortion (High) 
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Figure 2.8: Subjective ratings of fidelity for images containing wavelet subband 
quantization distortion (Low) 
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Figure 2.9: Subjective ratings of fidelity for images containing Gaussian blurring 

(High) 
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Figure 2.10: Subjective ratings of fidelity for images containing Gaussian blurring 

(Low) 
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Figures 2.5 – 2.10 depict results obtained for images containing white noise, 

wavelet subband quantization distortion and blurring, respectively. 

 

Each graph in Figures 2.5 – 2.10 depict results obtained for individual images. 

The horizontal axis denotes the relative RMS distortion contrast in the ROI (the ratio of 

the distortion contrast in the ROI to max,ROIC ). The vertical axis denotes relative perceived 

fidelity (z-score). Individual data points correspond to a particular rating from a particular 

subject; filled symbols correspond to results obtained from the subjects who were 

familiar with the purpose the experiment (the author); open symbols correspond to results 

obtained from the naive subjects. The solid line in each graph denotes the best-fitting 

sigmoid function, provided to help visualize general trends. The graph in the lower right-

hand corner of each figure depicts results averaged over all 11 images for each subject. 

Although there is clearly variability in the results obtained for different subjects on 

different images, several general observations can be drawn from these data.  

 

First, observe from Figures 2.5 and 2.6 (results for white noise) that relative 

perceived fidelity tends to decrease as more of the distortion is moved from the non-ROI 

into the ROI. For the majority of images, perceived fidelity begins to demonstrate a 

marked drop as the relative ROI distortion contrast increases to approximately 0.4−0.5. In 

addition, relative ROI distortion contrasts below 0.4 tend to give rise to similar relative 

perceived fidelity, an effect which is likely attributable to masking. Furthermore, for the 
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majority of images, a relative ROI distortion contrast of 1.0 tends to give rise to the least 

(or amongst the least) relative perceived fidelity. 

With notable exceptions, these trends are also suggested by the data in Figures 

2.7-2.10 (results for blurring and wavelet subband quantization distortion, respectively). 

For the majority of images, perceived fidelity begins to demonstrate a marked drop as the 

relative ROI distortion contrast increases to approximately 0.4-0.5. The major exceptions 

to this finding appear to occur for images boat, hydrant, and cityscape, which contain a 

substantial amount of man-made structure, and in which the selected ROIs are not 

overwhelmingly more interesting than the selected non-ROIs. Notice from these data that 

images boat, hydrant, cityscape, and flower tend to demonstrate the most variability 

among subjects for all three types of distortion. Conversely, images which contain human 

or animal faces tend to demonstrate the least variability across subjects. 

 

When the results for individual images are compared across distortion type, the 

results are substantially more image-specific. Observe from Figures 2.5-2.10 that images 

which contain animal and human faces demonstrate roughly the same general trend for 

all three types of distortion (e.g., dog, kids, students, man). Images which lack such 

features, e.g., boat and hydrant, exhibit marked distortion-type-specific trends. Also 

observe that white noise, which is uncorrelated with the image’s edges, appears to induce 

less of an image-specific effect on perceived fidelity than blurring and wavelet subband 

quantization distortion, distortions which tend to degrade the image’s edges. 
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Overall, the results of this experiment are consistent with the assertion that overall 

perceived fidelity is affected by what in the image is distorted. Here, we have shown this 

effect to occur for all three types of distortion: white noise, blurring, and wavelet subband 

quantization distortion. For the images tested here, our results suggest that for a fixed 

total RMS distortion contrast, a relative ROI distortion contrast of approximately 0.4−0.5 

can be induced in the ROI without substantially affecting perceived fidelity.  

 

However, our results have also demonstrated that the extent to which perceived 

fidelity is affect by ROI vs. non-ROI distortion is largely dependent on the extent to 

which the ROI is more interesting than the non-ROI. For all three types of distortion, 

images in which the ROIs were not overwhelmingly more interesting than the non-ROIs, 

demonstrated the greatest variability in perceived fidelity across subjects; whereas images 

in which the ROIs were substantially more interesting than the non-ROIs (e.g., images 

containing faces) demonstrated the least variability across subjects. 
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CHAPTER 3 

Experiment – 2 

 

In this experiment an attempt has been made to estimate the importance of various 

factors in determining the ROI for a given image. We examined from a psychological 

standpoint how each of these factors was influencing the ROI. Different factors like Size, 

Location, Blur and Contrast were tested in our experiment. Here an assumption was made 

that all these factors are independent of each other, so each of these factors was tested 

independently.  A set of images were then shown to different subjects to get their 

objective ratings. Based on these ratings importance graphs for each of them were 

predicted. 

 

3.1 Methods 

3.1.1. Apparatus 

Stimuli were displayed on a high-resolution, View sonic VA912b 19-inch monitor 

with a 0.25 mm dot pitch and maximum horizontal and vertical scan frequencies of 85 

kHz and 150 Hz, respectively. The display yielded minimum and maximum luminance of 

respectively, 2.7 and 207.0 2/ mcd , and an overall gamma of 2.9. Luminance 

measurements were made by using a Minolta CS-100A photometer (Minolta 

Corporation, Tokyo, Japan). Stimuli were viewed binocularly through natural pupils in a 

darkened room at a distance of approximately 46 cm resulting in a display visual 

resolution of 28.4 pixels/deg. 
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3.1.2. Stimuli 

A single grayscale natural scene obtained from the van Hateren database [37] 

served as a common background for all stimuli. The original image was of size 1536 × 

1024 pixels with 16-bit pixel values in which each pixel value was proportional to 

luminance in the original physical scene. This image was modified by (1) resizing the 

image to 1024×768 pixels; then (2) applying a point-wise power function of f(x) = 9.2/1x  

(where x denotes the original pixel value) such that the displayed pixels were 

proportional to luminance in the original physical scene; and then (3) scaling the pixel 

values to lie in the range [0, 255]. 

 

Figure 3.1: Background from van Hateren Database 
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Three additional high-resolution single-object images were obtained from the 

Microsoft ClipArt collection [38] to serve as the regions (objects) of interest. These 

objects consisted of an image of a human (image soldier), an image of an animal (image 

dog), and an image of a non-human/non-animal object (image hydrant). The original 24-

bits/pixel color images were converted to 8-bit grayscale, and then a mask was drawn 

such that only the pixels within each object were non-transparent.  

                      

                                           (a)                      (b)                      (c)  

 Figure 3.2: (a) Dog (b) Soldier (c) Hydrant       
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To each of the three single-object images, the following manipulations were applied: 

1. Size: The single-object images were resized (via bi-cubic interpolation) such that 

the number of pixels in the object were 1%, 2%, 3%, 6%, and 12% of the number 

of pixels in the natural-scene background. These objects were then placed within 

the natural-scene background centered horizontally and displaced vertically so as 

to create a natural impression of depth. Figure 3.3 shows an example of variations 

in size. 

           
 

                             
  

Figure 3.3: Five images showing variation in size 

 

2. Location: The objects were placed within the natural-scene background at 

horizontal offsets from the center of the image of 0%, 20%, 39%, 59%, and 78% 

of the natural-scene’s half-width (512 pixels). Here, the size was held constant at 

3% of the number of pixels in the natural-scene background. Figure 3.4 shows an 

example of variations in location. 
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Figure 3.4: Five images showing variation in location 

 

3. Blur: The objects were blurred by using a length-15 Gaussian filter with one-

dimensional impulse response ]7,7[),
2

)5.7/(
exp()(

2

2

−∈−= n
n

nh
σ

, with σ values 

of 0 (no blurring), 0.14, 0.29, 0.5, and 1.0; the blurred objects were then placed 

within the natural-scene background. Here, the size was held constant at 3% of 

the number of pixels in the natural-scene background, and the location was held 

constant at 59% of the natural-scene’s half-width. Figure 3.5 shows an example of 

variations in blur. 
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Figure 3.5: Five images showing variation in blur 

 

4. Contrast: The RMS contrast of the objects was adjusted to values of 0.1, 0.225, 

0.35, 0.475, and 0.6; the contrast-adjusted objects were then placed within the 

natural-scene background. Here, the size was held constant at 3% of the number 

of pixels in the natural-scene background, the location was held constant at 59% 

of the natural-scene’s half-width, and the objects were not blurred. Figure 3.6 

shows an example of variations in contrast. 
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Figure 3.6: Five images showing variation in contrast 

 

 

3.1.3. Procedure 

          Subjective ratings were measured for each set of stimuli by using a modified 

version of the Subjective Assessment Methodology for Video Quality (SAMVIQ) 

testing procedure applied to still images. The experiment was divided into four 

sessions: One session for each of the four factors (size, location, blur, contrast). Each 

session was further divided into three sub-sessions: One sub-session for each object 

type (man, dog, hydrant). Thus, each sub-session entailed rating the five images 

consisting of a single object which varied over the five values of the corresponding 

factor. Figure 3.7 shows a screen shot of the experimental setup. 
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Figure 3.7: Screenshot of experimental set-up  

During each sub-session, subjects were initially shown one of the five images. Via 

keyboard input, subjects switched between the five images and were instructed to provide 

for each object (man, dog, or hydrant) a rating of interest for the object on a scale from 0-

100 where 100 corresponded to the greatest possible interest; the natural-scene 

background was not judged in this experiment. Subjects were instructed to view all five 

images before reporting any ratings, and subjects were also allowed to change any 

previously reported ratings during the course of each sub-session. The time-course of 

each experimental session was not limited, however the majority of observers completed 

all four experimental sessions in under 60 minutes. 
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3.1.4. Subjects 

A total of five different subjects were used. The first two subjects were 

researchers in image processing. The other three were master’s students naïve to the 

purpose of experiment. Subjects ranged in age from 21 to 28 years. All subjects had 

either normal or corrected-to-normal visual acuity. 

 

 Results 

 

The raw scores for each subject on each set of five images (corresponding to a 

single object/factor combination) were converted to z-scores; the per-subject z-scores 

were then averaged across all subjects. Figure 3.8 depicts the results obtained from this 

experiment: Figure 3.8(a) depicts perceived importance as a function of object size; 

Figure 3.8(b) depicts perceived importance as a function of object location; Figure 3.8(c) 

depicts perceived importance as a function of the amount of object blurring; and Figure 

3.8(d) depicts perceived importance as a function of object contrast. 
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Figure 3.8: Subjective ratings of visual interest. (a) Perceived interest vs. object size; 

 (b) perceived interest vs. object location; (c) perceived interest vs. amount of object 

blurring; (d) perceived interest vs. object RMS contrast. 

 

The results of this experiment revealed that:  

(1) As object size increases, perceived interest increases but exhibits diminished 

gains for larger sizes;  

(2) As an object moves from the center of the image toward the image’s edge, 

perceived interest decreases in a nearly linear fashion with distance;  

(3) Blurring an object initially imposes a substantial decreases in perceived interest, 

but this drop in interest is relatively lessened for highly blurred images;  
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(4) As an object’s RMS contrast is increased, perceived interest increases in a nearly 

linear fashion; and 

(5) The relationship between each of the four factors and perceived interest is similar 

for all three categories (human, animal, non-human/non-animal object).  

Thus this chapter presents us with a way of converting each of the factors influencing the 

ROI and its importance into the perceived score. 
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CHAPTER 4 

Experiment-3 

 

Now that the importance of each of the factors has been established we have tried 

to use them and formulate a semi automated algorithm for finding the importance maps 

of a gray scale image. 

For this an experiment was conducted to find out the importance of different 

regions in an image based on viewer’s ratings. Thus ideal importance maps were obtained 

for different images. Then each of these factors was optimized to give the best solution 

for predicting the importance maps. 

 

4.1 Methods 

 

4.1.1. Apparatus 

Stimuli were displayed on a high-resolution, ViewSonic VA912B 19-inch 

monitor. The display yielded minimum and maximum luminance of respectively, 2.7 and 

207 cd/m2, and an overall gamma of 2.9; luminance measurements were made by using a 

Minolta CS-100A photometer (Minolta Corporation, Tokyo, Japan). Stimuli were viewed 

binocularly through natural pupils in a darkened room at a distance of approximately 46 

cm through natural pupils under D65 lighting. 
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4.1.2. Stimuli 

Stimuli used in this experiment were 15 gray scale images of different sizes. The 

original images were obtained from the calphotos database [33] and the stoch.xchng 

expert database [34]. These different color images were then converted to grayscale using 

the gimp software conversion for RGB to Gray. They were then resized such that the 

lower dimension was 512. Each of these images was then segmented into different 

regions. Figure 4.1 shows the different images used in the experiment and figure 4.2 

shows the masks with the segmented regions for different images. The masks were hand 

drawn by the author. 
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Figure 4.1: Fifteen different images used in the experiment 
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Figure 4.2: Masks showing segmented regions for the images  

 



                                                                      47 
 

4.1.3. Procedure 

Each experimental session began with three minutes each of dark adaptation and 

adaptation to a blank 19.0 cd/m2 display. Each of the original images was displayed on 

the screen and printout of the segments regions was handed out to the subject. The 

subjects were then given time to familiarize with the different regions in the image. Once 

they had the knowledge of different regions they were asked to rate the importance of 

each and every region in the image on a scale of 0-100 where 100 was the most important 

region. Ratings were reported verbally and recorded by a proctor. The time-course of 

experiment was not limited, however the majority of observers completed in 

approximately 50 minutes. We acknowledge that adaptation had likely occurred during 

the course of experiment, and that learning may likely have likely occurred. 

 

4.1.4. Subjects 

A total of 6 different subjects were used for this experiment. Two of the subjects 

were familiar with the purpose of the experiment. . Subjects ranged in age from 21 to 28 

years. All subjects had either normal or corrected-to-normal visual acuity. 

 

4.2 Results and algorithm 

 

The raw scores for each subject on each set image were converted to z-scores; the 

per-subject z-scores were then averaged across all subjects. They were then normalized 

on a scale of 0 to 1. Thus every image had an ideal importance map with the importance 

of every region being proportional to the normalized value. 
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4.2.1. Algorithm 

All the different regions in an image were divided into four categories. They were 

Humans, Animals, Objects and Background. The background included sky, ground and 

water. As observed from the previous experiment the different factors that were found to 

influence the ROI were selected. A new factor namely the Category is also introduced. 

Thus the five different factors to be used in this optimization process are 

1) Size 

2) Location 

3) Contrast 

4) Blur and 

5) Category 

The 15 different images used in the previous experiment were taken and for each of the 

images the following calculations were applied 

1) The size of each and every region in an image was calculated using matlab 

code. This size was then converted as a percent of the total image. 

2) The center of mass of each of the regions was calculated using the matlab 

code and that was assumed to be the location of that region 

3) The local object contrast of the different regions in the image was 

calculated. 

4) As far as blur was concerned the different regions were given the ratings 

for blur based on perceived blur by the student and the advisor. 

5) The different regions were categorized into four different categories as 

explained above. 
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Thus the raw scores for each of these factors were obtained. 

Then 

1) Figure 3.8 (a) was used to convert the raw score for size into perceived 

interest. 

2) Figure 3.8 (b) was used to convert the raw score for location into perceived 

interest. 

3) Figure 3.8 (c) was used to convert the raw score for contrast into perceived 

interest. 

4) Figure 3.8 (d) was used to convert the raw score for blur into perceived 

interest. 

5) For finding the importance of each of the category the following procedure 

was applied. From the set of 15 images used in Experiment-3 all the regions 

containing humans were selected and the normalized value or the importance 

of each of these regions was averaged over all the humans. The value obtained 

was the perceived interest for that category. The same process was repeated 

for Animals, Objects and Background. The values obtained were as follows. 

 

 

 

 

Table 4.1: Importance of each of the categories. 

 

Humans Animals Objects Background 

1.000 0.896 0.584 0.047 
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Based on Figures 3.8(a), 3.8(b), 3.8(c), 3.8(d) equations were developed for each 

of these factors. These equations were the best possible fit that could be obtained. 

 

1) Size:  The best possible fit for the size was the sigmoidal fit. It was a Boltzman 

log data fit function. The equation was 

 

                                                                              3 

 

 

Where each of the factors is shown below 

              1A              2A                0x             dx 

           -5.345               1          -4.07596        3.02675 

 

Table 4.2: Parameters in equation three 

 

The graph obtained is shown below 
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             Figure 4.3: Sigmoidal fit for Size factor 

The perceived interest for size was then calculated using a max operator. 

 

                     Perceived Interest (Size) = max (0, y)                 [y is from equation 3] 

 

2)  Blur: The best possible fit for the blur was the sigmoidal fit. It was a Boltzman 

log data fit function. The equation was 

 

                                                                              4 
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Where each of the factors is shown below 

              1A              2A                0x             dx 

               1            0.028          1.551        0.705 

 

Table 4.3: Parameters in equation four 

The graph obtained is shown below 

 

                  Figure 4.4: Sigmoidal fit for Blur factor 

The perceived interest for blur was then calculated using equation four 

 

                   Perceived Interest (Blur) = y                 [y from equation 4] 
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3)   Contrast: The best possible fit for the size was the sigmoidal fit. It was a 

Boltzman log data fit function. The equation was 

 

                                                                              5 

 

Where each of the factors is shown below 

 

              1A              2A                0x             dx 

           -0.185               1          -0.275        0.106 

 

Table 4.4: Parameters in equation five 

 

The graph obtained is shown below 
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           Figure 4.5: Sigmoidal fit for Contrast factor 

 

The perceived interest for Contrast was then calculated using a max operator. 

 

                Perceived Interest (Contrast) = max (0, y)            [y is from equation 5] 

 

Now that we have the perceived interest for each of the five factors we have tried 

to develop an algorithm that would predict the importance map based on these factors of 

perceived interest. The basic goal was to produce an algorithm that would eventually 

predict the importance map for any given segmented gray scale image. 
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An optimization loop was run on all of these factors using a “Nelder-Mead 

Downhill Simplex Search”. This search was basically run to optimize for the weights of 

each of these factors. The search yielded the following results. The following weights 

were found to be optimal for each of the categories. 

 

 

 

 Table 4.5: Optimal weights for the categories. 

The Correlation R was reported as R = 0.9704,   the graph is as shown below 

predicted ratings y = 1.0071x - 0.0005

R2 = 0.9416

-0.2
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0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.6: The graph showing the trend line and the equation for the best fit (proposed 

algorithm) 

 

Thus the final equation for the importance of a region is given by 

 

Size Location Contrast Blur Category 

0.0321     0.1653     0.0976     0.2511     0.2527 
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Importance = (0.0321*Size) + (0.1653*Location) + (0.0976*Contrast) +    

(0.2511*Blur)            + (0.2527*Category)                                         6 

 

The same search was performed on Osberger’s five factors and the results are as shown 

below 

Contrast  Size Location Background  Shape 

0.0845     0.0630     0.6420     0.2079     0.0326 

 Table 4.6: Optimal weights for Osberger’s factors. 

 

The correlation R was reported as R = 0.8377, the graph is as shown below 

 

osbergers factors y = 0.8214x + 0.1547

R2 = 0.7019

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

 

Figure 4.7: The graph showing the trend line and the equation for Osberger’s algorithm 
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When the same search was performed without the category that is with just the four other 

factors the following results were observed 

 

 

 

 Table 4.7: Optimal weights with no category. 

 

The correlation R is R = 0.8499, the graph is as shown below 

predicted ratings (w/o category) y = 0.89x + 0.05

R2 = 0.7224
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Figure 4.8: The graph showing the trend line and the equation for the algorithm with no 

category. 

 

Size Location Contrast Blur 

0.0000     0.3377     0.1359     0.3682 
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Thus it is clear from the above figures and correlations that the proposed algorithm is a 

lot better at predicting human ratings when compared to Osberger’s algorithm. The 

correlation R for the proposed algorithm was 0.9704 which is a lot higher than the 

correlation for Osberger’s algorithm which was 0.8377. 

 

 

 

 

4.3 Comparison 

Then finally a comparison has been between three algorithms 

1) the algorithm suggested in the thesis 

2) Laurent itti’s algorithm based on biological model 

3) Wilfried Osberger’s algorithm based on his factors. 

 

The results are shown below: when the given image is figure 1.4 (a) 
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Figure 4.9: Output of the proposed algorithm. The intensity of the regions being 

proportional to its importance, where white denotes the most important region. The 

importance of each of the regions is calculated from equation 6 
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Figure 4.10: Output of the Osberger’s algorithm (the different factors were applied to 

human segmented regions). The intensity of the regions being proportional to its 

importance, where white denotes the most important region. 
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Figure 4.11: Output of Laurent Itti’s algorithm (no human segmentation). The intensity of 

the regions being proportional to its importance, where white denotes the most important 

region. 

 

It is clearly evident from the above results that the importance maps given by the 

proposed algorithm are a lot better when compared to importance maps from other 

algorithms. The proposed algorithm is very good at predicting the human ratings. 
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CHAPTER 5 

Conclusions and Future Work 

 

The Importance of defining ROI for still images was clearly established by 

providing concrete evidence on the basis of experimental results. These results also 

suggested a way of proportionating the distortion between ROI and non-ROI. From these 

facts it has been established that knowledge of ROI has an effect on the image quality. 

The various factors influencing the ROI have been studied and the relationship between 

these factors and the perceived interest has been established.  

Based on the results of the previous experiments a semi-automated algorithm has 

been proposed to produce an importance map for a segmented gray scale image. The 

results of the algorithm have been found to be satisfactory. A comparison was made 

between the proposed algorithm and two other widely used algorithm and the proposed 

algorithm has significantly better results. 

The main drawback of this algorithm is the fact that it uses hand segmented 

regions and one of the factors “Category” is also user defined. Our future work is aimed 

at making both of these automatic. Thus a segmentation algorithm that is capable of 

segmenting the image into regions and identifying the category of different regions is 

being worked upon. This concept can also be effectively applied to color images and 

video. 
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