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CHAPTER 1 

INTRODUCTION 

Wireless Multimedia Sensor Networks (WMSNs) are gaining popularity among researchers over 

the past few years. Knowledge of the geographic locations of the sensor nodes is very important 

in such sensor networks. Location calibration is a method that uses the connectivity information, 

the estimated distance information among the sensor nodes, as well as the vision images to find 

the location of the sensor nodes in WMSNs. 

Chapter 1 introduces the emerging field of Wireless Multimedia Sensor Networks (WMSNs). 

First the motivation behind pursuing the research in WMSNs is discussed. Second the literature 

is reviewed on localization in less expensive short range based sensor networks. Then related 

work on the calibration problem in multimedia sensor nodes in WMSN is discussed which 

reviews both single camera calibration and network camera calibration. The chapter is 

summarized by highlighting the uniqueness of our methodology to perform distributed camera 

calibration. 

1.1 Motivation 
Wireless Multimedia Sensor Networks [1] are a research topic of growing interest over the years 

due to its wide applications. WMSNs are a set of embedded devices that have the capability of 

processing and communicating video and audio streams collected from the environment in a 

distributed fashion [1]. Wireless Multimedia Sensor Networks find application in surveillance 

systems against crime and terrorist attacks. They can also be used for traffic monitoring in cities 

and highways. They are also very useful in military applications to locate the targets of interest 

(such as enemy soldiers, tanks) in the battlefield and relay video images to the command center. 
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The emergence of such new sensors has paved the way for the development of a variety of 

effective, low power and low cost vision based sensing platforms [2, 3, 4, 5, 6, 7]. 

For most WMSN applications, it is imperative to have the knowledge of the location of the nodes 

in order to understand the multimedia data received. Therefore, there is a great need to develop a 

sensor node calibration algorithm which can be implemented in embedded sensor nodes with 

limited computational resources.  

Traditionally calibration is the process of determining the internal parameters like focal length, 

distortion, skew coefficient and external parameters like position and orientation of a camera in 

an environment [8]. Calibration is required to correct the errors caused due to device 

imperfections and aging [9].  With calibration, a camera sensor node can maintain up to date 

information about its internal and external parameters in an environment. A wireless camera 

sensor network operates either as a centralized or as a distributed network. In the centralized 

mode, all the nodes of the network communicate their data to a central node. The central node 

runs computational algorithms on the received data and sends back the results to the respective 

nodes. In the distributed mode, each sensor node runs computational algorithms on its own 

processor and may also exchange its results with its neighboring nodes. In the case of a large 

scale sensor network operating in a centralized mode, data transmission to a central station by the 

other nodes increases the transmission overhead and consumes time. It may also increase the 

power consumption at the central node at the expense of the remaining nodes of the network. 

Failure of the central node will lead to the failure of the entire network. Distributed camera 

calibration   [10, 11], on the other hand, has the advantage that a node need not depend on 

centralized nodes for its calibration. A distributed node can calibrate by itself and communicate 

its position and orientation information to its neighbors. The sensor nodes perform complex 
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mathematical calculations to carry out the calibration on their own processors. However, the 

growing need for low power and low cost sensing technology has limited the computational 

ability of sensor nodes. Hence, there is a need to develop lightweight calibration algorithms for 

the purpose of configuring and operating these distributed sensor nodes [3] so as to employ them 

for potential applications. The main aim of this thesis is to develop innovative distributed 

computational algorithm to calibrate a wireless multimedia sensor network. In this thesis we 

discuss the theoretical framework for distributed camera calibration based on vision data, local 

inter-node distances and local topology. 

1.2 Related Work 
One of the most straightforward localization techniques is Global Positioning System (GPS) 

based localization that relies on multilateration technique using time of arrival of signals. It has 

been operative since early 1990’s. For localization in an outdoor environment, GPS works well. 

Unfortunately, the signal from the GPS satellites is too weak to penetrate most buildings, making 

GPS useless for indoor localization. Likewise it has many other shortcomings. Multipath effects, 

delayed signals, and complex clock synchronization requirements and others have limited the 

usage of GPS to limited applications. Adding to above, the GPS units are very expensive and this 

makes it almost useless in case of commercial applications where the overheads are mainly 

specified in terms of financial constraints. This shifted the focus towards less expensive, short 

ranged sensor network. In recent years, researchers have been developing different localization 

algorithms to localize these sensor networks. 

One kind of technique is based on inter-node distance ranging. The range-based techniques rely 

on a method of finding the physical distance between any two nodes in a network that are within 

communication range. This process is called ranging. There are two basic techniques used to 
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perform ranging: received signal strength and signal propagation time. Received signal strength 

(RSS) is a way to do ranging by measuring the signal strength of a message at the receiver [12, 

16]. The receiver then uses knowledge of the sender's signal power (this might be contained 

within the message) to determine the power loss. Finally the receiver applies its known model for 

signal propagation behavior to convert the power loss to a distance, thus estimating how far away 

the sender is. This is an inaccurate technique. Radio signal propagation behavior is highly 

dependent on the environment (obstacles, signal fading, metals), and hence they are highly 

variable. Savvides et al. [17] describes experiments that tried to get good results this way, but the 

results are unsatisfactory in most of the cases except for an extremely idealized one. In most real-

world ad-hoc networks, ranging by received signal strength is not accurate. 

The second method of ranging is possible by measuring the signal propagation time [13] and 

converting it back to inter-node distance with the knowledge of velocity of the signal 

transmitted. Time of arrival (ToA) [18] is one such measure where the time taken for wireless 

signals (or packets) to travel from transmitter to receiver is multiplied by the velocity of signal 

(almost equal to light velocity) to obtain the inter-node distances. Radio signals travel at the 

speed of light (essentially instantaneous arrival), so it is not plausible to measure this time 

without using a high resolution clock to measure the time of flight. This is very commonly used 

in GPS-based ranging where the GPS receiver estimates distances using ToA from different 

satellites which needs time synchronization. Given the inter-node distances, techniques like 

multilateration can be used to locate them.  To avoid complex time synchronizations between the 

transmitter and receiver, we can consider return time of flight wherein the receiver retransmits 

the signal back to transmitter. The transmitter then calculates the ToA as half the return time of 
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flight. But the ToA parameter is affected by latency in receiver response which may be due to 

processing queue at the receiver.  

Time difference of arrival (TDoA) [19] is a variation of time of arrival and it is a preferred way 

of measuring distance by measuring the propagation time of signals. A sending node will 

transmit a radio signal and an ultrasonic signal at the same time. Because the radio signal arrives 

essentially instantaneously and the ultrasonic signal takes much longer, the receiver can measure 

the time difference between the arrivals, and thus deduce the traveled distance. The Cricket [20] 

system uses RF based TDoA ranging. One problem with ultrasound signal propagation is that it 

is subject to multipath effects, and to variations in the environment. It is desirable to recalibrate 

TDoA measurements according to these variations. Savvides et al.. give a way to perform this 

calibration, given enough redundancy in the distance data. Some researchers have described the 

Ad-Hoc Localization System (AHLoS) [17], an iterative way of discovering the absolute 

position of every node in a network. They assumed an ad-hoc network, in which anchors that 

know their own location at any given time form some percentage of the nodes. The focus is on 

two-dimensional localization, and the ranging method is TDoA. Signal processing methods have 

been developed for localizing a set of static sensor nodes and analyzing the error properties    

[21, 22, 23], using both TDOA and angle of arrival (AoA) measurements where ToA measures 

the distances and the AoA tells about the orientation apart from positioning. 

 Apart from the above mentioned techniques, range-free techniques have also been used widely. 

An RF based proximity method was developed by [24], in which the location of a node is given 

as a centroid generated by counting the beacon signals transmitted by a set of beacons pre-

positioned in a mesh pattern. Other methods that do not rely on range measurements were also 

developed. For example, the count of hops is used as an indication of the distance to the beacon 
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nodes in some applications [25]. But the majority of the applications rely on range based 

localizations. 

However, most of the literature is on localization of traditional wireless sensor networks and not 

much has been discussed on localization in wireless multimedia sensor networks, which have 

more sensing modalities than traditional ones. 

The calibration of multimedia sensor nodes in WMSNs is very important. In existing literature, 

camera calibration has been widely researched in the computer vision community and 

photogrammetry. Self calibration is a technique that relies on the motion of a camera in a static 

scene. It does not make use of any object to calibrate a camera.  The camera captures a number 

of images of a static scene while it is moved relative to the static scene.  The rigidity of the scene 

from the captured images provides constraints on the internal camera parameters. With fixed 

internal parameters the correspondence between at least three of the captured images is sufficient 

to recover both the internal (focal length and distortion) and external parameters For example, 

Zhang [8] proposes a flexible calibration technique in which, from the captured images of a 

planar pattern, feature points are extracted to determine the internal and external parameters of 

the camera.  

Most camera calibration research is for a single camera and conducted in controlled laboratory 

environments. Calibration of a camera network in real environments has been emerging. In [26], 

Kulkarni et al. propose a technique to overcome the constraint of using landmarks. They propose 

an approximate initialization technique to determine the relative locations and orientations of 

camera sensors without the use of landmarks. In an environment with a network of distributed 

cameras, this technique determines the degree of overlap and the region of overlap of each 

camera sensor node with the other camera sensor nodes of the network. These parameters help in 
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achieving a desired probability of event detection and maintain reliability in tracking a moving 

object. A reference object of known size at random points in the environment. The camera sensor 

nodes are programmed to capture images of this reference object on a duty cycle basis. The 

nodes estimate the degree of overlap with various sensor nodes by processing their respective 

images and determining the reference points in their field of view. By determining a subset of 

reference points that are visible to two or more cameras, the region of overlap between the 

cameras is given by the union of cells containing the reference points visible to each camera. The 

region of overlap of the camera is used to estimate the target path, and hence provide reliable 

information in estimating the next sensor node which has to take over the tracking responsibility. 

Assuming that the origin of a reference frame is located at the center of the sensor node, simple 

optics is used to estimate the distance between the camera and the reference point. As the size of 

the object as well as the values of the internal parameters is known, the sensor nodes can 

calculate the orientation of the reference point with respect to their center. However, this 

calibration technique only helps in determining the relative locations of the reference point and 

the orientations of the camera sensors. In this technique, the tracked target is not localized with 

respect to a single measurement frame but is localized with respect to the reference frame of each 

camera. To simplify tracking, many applications require the measurements for target localization 

and camera calibration to be carried out in the same frame. This can be achieved only when the 

target and camera sensors are present in a single reference frame.  

A single reference frame based calibration technique is presented in [27]. In [27], Lee and 

Aghajan present a collaborative technique to localize the nodes of a camera sensor network using 

opportunistic observations of a target. Each node uses lightweight in-node image processing to 

extract the coordinates of the center of the blob of an object it detects. A sensor node that detects 
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an object sends trigger signals to its neighboring nodes. A neighboring node, which also detects 

the object, forms a reference coordinate system with the triggering node. The triggering node and 

its neighbor (also called the helper node) act as reference nodes. The reference nodes along with 

more than one uncalibrated node can participate in tracking the object. Each node uses a pin-hole 

camera model to determine the angle between the optical axis of its camera and the line joining 

the center of its camera to the center of the detected blob. All the tracking nodes collaborate with 

one another and exchange the tracking information. Every node then uses Gauss–Newton 

method [28] on the exchanged information to determine its position and orientation in the 

reference frame. However, this calibration algorithm relies on the assumption that all the 

reference nodes and the uncalibrated nodes that are participating in the tracking must view the 

target simultaneously. In order to perform the calibration, this method requires a minimum of 

three sensor nodes and at least five observations of the target be taken by each sensor node. In 

[42] Vimal et al. propose a low power and low cost wireless camera sensor network platform to 

perform distributed camera calibration. The sensor node uses the imaging capabilities in 

cooperation with moving targets to determine their own positions and orientations. 

The cooperative target-based self-calibration protocol in [30] uses the target coordinate 

information at four locations in the field of view of a camera to perform calibration. In [30], Liu 

et al. propose an automated wireless self calibration protocol for camera sensor networks. This 

work combines the principles of computer vision, optics and vectors with the internal parameters 

of a camera to estimate the location and orientation of the camera. The work assumes that a 

device equipped with an ultrasound based positioning sensor moves around the environment and 

generates a set of reference points in the field of view of each camera that it encounters. To 

perform calibration the camera is provided with the location information of four reference points 
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in its field of view by the moving object. The sensor node then determines the vectors joining its 

centre to each of the reference points. It then employs a non-linear optimizer to estimate the 

location of the camera. After determining its location, the sensor node uses a subset of three 

reference points to determine the orientation of its camera. The obtained external parameters of 

the camera are iteratively refined by using additional reference points in the field of view of the 

camera. The external parameters are now used to determine the region of overlap which helps in 

localizing and tracking the moving object. 

Overall, the existing camera calibration algorithms are either time-consuming, fit only in 

laboratory environments, or require specific cooperative or non-cooperative targets, which may 

not be realistic in many applications. Though our work involves network camera calibration it is 

different than the proposed approaches mentioned above in several ways. The first difference is 

the multimedia sensor node makes use of local inter-node distances and network topology as 

well as vision information to determine the coordinates of location of the nodes. The second 

difference is that most authors need to have a moving target for calibration; our method needs no 

such target as the sensor nodes develop the ability to self organize themselves globally. 

The remainder of this thesis is organized as follows. In Chapter 2, we discuss the design of the 

wireless multimedia sensor nodes we are developing in our laboratory and formulate the WMSN 

location calibration problem and propose an overall solution. In Chapter 3 we develop the 

detailed algorithm needed to solve such a challenging problem. We then discuss the simulation 

results in Chapter 4 and Chapter 5 concludes the thesis. 
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CHAPTER 2 

OVERVIEW  
 

 Chapter 2 formulates the problem of distributed camera calibration, and presents the overall 

approach to it. Then it explains the concept of multidimensional scaling, the algorithm for 

multidimensional scaling based localization and investigate the factors that impact the 

performance of multidimensional scaling based localization technique. 

2.1 Problem Formulation 
We are developing a Wireless Multimedia Sensor Network (WMSN) for military surveillance 

applications. This surveillance network consists of a large set of sensor nodes which have 

omnidirectional vision, audio input and output, computation, and wireless communication 

capabilities. By forming a network they can provide battle-field awareness to military personnel.  

Below we will first introduce the design of the sensor node and then we will formulate the 

problem of location calibration in this WMSN. 

As shown in Figure. 1, each sensor node is outfitted with an omnidirectional video camera, an 

array of microphones and speakers, a compass, modest computing resources (PDA-level CPU), 

and wireless communication capabilities (250 Kbits/sec data rate). The sensor nodes can be 

deployed by a solider and/or a ground vehicle or airplanes. The sensors have the ability to self-

organize which implies that the sensor calibration and the establishment of communications will 

be performed autonomously. The form-factor of the sensor is relatively small, and so they can be 

easily carried and deployed. The dimension of the sensor is close to that of a human fist and its 

weight is less than two pounds. The Figure 2 shows an example of the omnidirectional camera at 

ASCC lab. 
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Figure 1: The design of the multimedia 
sensor node 

 

Figure 2: Omnidirectional Camera  

 
 
We consider n multimedia sensor nodes randomly deployed in a region as shown in Figure 3. 

The node �� has two neighborhoods defined, as can be seen in Figure 3. �� can communicate 

with its neighbors and form a communication neighborhood.  Similarly, node �� can see the 

neighbors within vision range R� through its omnidirectional camera. These nodes form its 

vision neighborhood.  We assume that each node can measure the distance to its one hop 

neighbor in the communication neighborhood. Such a capability can be realized through the 

Time Difference of Arrival (TDoA) technique, which is based on the time difference between an 

acoustic signal and a RF signal when they both travel from one node to the other. 

The problem of location calibration in an WMSN is to find the relative locations and heading of 

all the nodes in the deployed sensor network. If we have at least three beacon nodes we can find 

the absolute locations of all the nodes in the deployed network.  
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Figure 3:  The self-calibration of sensor node with respect to node ‘i’ 

 

In this work we make the following assumptions: 

1. There are no obstacles in the region described, so any sensor node within a distance R� to �� 

can be observed by ��. 

2. The nodes use a compass to know their heading. 

3. The environment is considered to be flat and treated as a two dimensional space. 

 

2.2 Overall Approach For Distributed Camera Calibration 
 
In our proposed approach, distributed camera calibration algorithm consists of two main steps 

which involve local map generation and global map generation. First we generate the local maps 

for each sensor node. We then select a node with the least ID to start with and validate its local 

map to know whether it is a good base node to start with. We then select the next best node for 

merging which has the maximum unknown IDs and at least three common IDs. We then solve 

the map merging problem to get the global map of sensor locations.  
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Figure 4: Overall Approach 
 
As illustrated in the Figure 4 we now describe the overall approach for distributed camera 

calibration. In the local map generation problem, each node first generates a vision map from the 

omnidirectional image and then estimates the location of each neighboring node within the 

vision range R�. However, since all the sensor nodes have the same shape and color, their IDs 

cannot be determined on this vision map, which means that the vision map provides us with the 

information of relative location of the nodes with a reasonable accuracy but with no ID 

information.  Next, each node generates an ID map using the popular multidimensional scaling 

(MDS) algorithm [13, 31] as described in chapter 1. Since each node can measure the distance to 

its neighbors in the one-hop communication neighborhood, it can construct a distance matrix for 

its 2-hop communication neighborhood and feed it to the MDS algorithm to create a relative map 

of IDs. However, the MDS algorithm is not very accurate since it depends on the shape of the 

network topology and the density of the network.  Therefore, the ID map provides us only with 

the information of the node IDs but not with accurate information of the relative location of the 

nodes. In this sense, the ID map and the vision map complement each other.  
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Therefore, the local map generation problem is essentially an ID association problem that is to 

associate the IDs in the ID map to nodes in the vision map. To solve the ID association problem, 

we propose an algorithm based on the iterative closest point (ICP) algorithm [32]. 

The local map obtained is not always correct since it returns erroneous results when there is 

symmetry in the placement pattern. The symmetry in the placement of the nodes results in 

multiple solutions to the ID association problem and hence the global minima obtained may not 

be correct. However, we can solve this problem by introducing the reflection matrix and 

recalculate the global minima. We then use the map sharing algorithm to further validate local 

maps .Validation is needed since there are irregularities in the MDS resulting from the arbitrary 

noise in the translation matrix returned from the classical MDS result. We hence introduce the 

concept of good nodes. Local maps are said to be good when the Mean Square Error metric 

obtained from the map sharing algorithm is less than a predefined threshold value. Nodes with 

good local maps are then defined as good nodes. 

We then solve the map merging problem. We do this by searching for the next best node from 

the set of good nodes, to merge with the initial arbitrarily selected node (base node) and thus 

expand its local map. The next best node is the one with a local map that has the maximum 

number of unknown IDs and a minimum of at least than three common IDs. Then we merge 

these two maps together. This process is repeated until all the nodes in the network are covered. 

The overall algorithm for the location calibration is summarized as follows: 

1. Each node generates a local map  

2. A node with the least ID selects itself to be a base node ��. The base node checks whether its 

local map is a good local map using the map validation algorithm. 
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3.If the base node local map is identified to be bad we discard the node and randomly select the 

next base node from the set of neighboring nodes and repeat step 2-3 

4. Until a good base node is found, classify nodes as good and bad nodes from the base node’s 

neighboring nodes. 

5.  Search for the next best node for merging, from the set of good nodes in the current partial 

map of �� and, request for the local map from the node selected 

6. Merge the local maps from node �� and the node selected. 

7. Update the current partial global map for �� and repeat steps 5-6 until all the nodes in the 

network are localized. 

2.3Multidimensional Scaling 
Multidimensional scaling is a popular technique for localization in wireless sensor networks 

since it uses the network topology and inter-node distance information to generate relative 

position map of 2 dimensions. In this section we explain the concept of MDS, types of MDS, 

mathematical background of MDS and algorithm for MDS based localization. Lastly, we 

investigate the factors that impact the performance of MDS algorithm. 

2.3.1 Introduction to Multidimensional Scaling 
The roots of the Multidimensional Scaling [31, 33, 34] or MDS lie in the behavioral sciences like 

Psychometrics and Psychophysics wherein the personal traits of people are analyzed for 

important underlying distinctive characteristic features. Subsequently MDS proved to be an 

essential tool for many other researchers in diverse fields like Marketing, Sociology, Geography, 

and Psychology. Basically MDS is a data visualization algorithm that can describe the structure 

of the data. It involves multivariate statistical probing to describe proximity between the pairs of 

objects with the proximity data collected over time. 
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The term ‘proximity’ is an index defined over a pair of objects to quantity the degree to which 

the two objects are alike or different. Correlation coefficient, joint probabilities are two such 

examples of proximity measures which can explain the extent to which two objects show 

common attributes. A proximity measure helps in differentiating the objects and hence it can 

indicate either similarities or dissimilarities. Hence the term ‘proximity’ has varied contextual 

meanings based on the application in which the data visualization algorithms are employed. In 

general usage, the term proximity indicated by δij indicates the dissimilarity between the objects i 

and j 

 The Multidimensional Scaling algorithm takes the proximity measures as the input. And the 

chief output is a spatial representation, consisting of a geometric configuration of points. Each 

point in the configuration corresponds to one of the objects and the configuration as a whole 

reflects the hidden structure in the data making them easier to comprehend. This implies larger 

the dissimilarity between the two objects in comparison, the farther apart they would be placed in 

the spatial map.  

Table 1:Inter-city distance matrix 

 

MDS starts with a matrix representing the distances or dissimilarities between ‘n’ objects. The 

power of this algorithm lies in its ability to depict the dissimilarities or the proximities between 

the objects through a placement of points in a low dimensional plane where the Euclidean 

distances between the points resemble the actual proximities between the objects as closely as 
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possible. The best ever way to demonstrate the capabilities of MDS is by illustrating the classic 

example of cities and geographic map of Europe which is very widely used. 

Consider the inter-city distance matrix shown in table 1. Let us suppose that we know the inter-

city distances accurately for 10 popular cities of Europe. Essentially this would be a 10 by 10 

symmetric distance matrix with the principal diagonal being zeros(distance of a city to itself is 

always zero). The actual distances in miles are given by the following matrix: 

The numbers 1 through 10 correspond to each of the 10 cities shown on the Figure 5. This 

distance matrix is fed to the MDS. The distances are first scaled down suitably with a scaling 

factor. Now the 10 cities are placed in a 2-D coordinate axes in such a way that their Euclidean 

distances match very close to their scaled distances and the resulting centroid of the entire 

configuration of points is at the origin. This forms the Relative Map. Now we may also have 

specific idea on some of the cities. For instance, assume that we already know the geographical 

locations of at least three cities say Stockholm, Madrid and Rome. We can now translate and 

rotate the relative map in such a way that the relative locations of the above mentioned three 

cities conform very closely to the absolute locations. In this process, we find that the rest of the 

cities also reach their absolute locations. The accuracy depends on the precision of inter-city 

distances and the transformation of relative map to absolute map. 
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Figure 5 : Relative and absolute maps of cities of Europe 

2.3.2 Types of Multidimensional Scaling 
By now, we already understood that the MDS depends heavily on the proximity measure input in 

the dissimilarity matrix. In the above example, the inter-city distance was the proximity measure. 

While ‘distances’ are numerical figures, there are many other types of proximity measures also. 

Basically, the proximity variables can be divided into four broad categories: 

1. Nominal Scale : Classificatory data with no comparisons possible .(Ex: Gender) 

2. Ordinal Scale :  Comparable data with no quantitative measure(Ex: Grades A–E) 

3. Interval Scale: Difference in two values are meaningful but no zero (Celsius scale) 

4. Ratio Scale: Same as Interval, but with defined zero.( Kelvin Scale) 

 

Based on these four types of proximity measures, the classical Multidimensional Scaling is 

further classified into two types: 

1. Metric Multidimensional Scaling 

2. Non-Metric Multidimensional Scaling 
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Metric Multidimensional Scaling deals with the Interval and Ratio variables. This would include 

most of the models that deal with numerical scores, distances and other quantitative measures. 

This thesis work uses inter-subject distances and hence we will be using on Metric 

Multidimensional scaling only. The Non-metric Multidimensional scaling deals with the other 

two types of variables, nominal and ordinal. Mostly this model finds application in subjects 

involving abstract issues like behavior patterns, affinity determination and other issues which are 

hard to be quantified. This type of MDS is mostly used in Psychology, Marketing and other 

related fields. Now onwards we will be dealing with only Metric or Classical Multidimensional 

Scaling in which the Proximity variable refers to the distance between the subjects. 

 

2.3.3 Algorithm for MDS-Based Localization  

In the case of localization problem, the dissimilarity measure of N subjects is an N x N distance 

matrix. We now discuss the classical multidimensional scaling method first and then discuss the 

steps for localization using MDS. Let the proximities between any pair of nodes (r, s) be 

indicated by δrs where r, s= 1, 2…n and n is the total number of subjects. If the dissimilarities 

and the distances between the subjects are to be precisely Euclidean distances then Classical 

Multidimensional Scaling finds a configuration of points ensuring the equality  

drs = δrs                                             (1) 

where drs is the distance between the two subjects in the configuration. Generally the above 

equation is not a strict equality and through the configuration of points, MDS always tries to 

minimize the loss function given by 

Loss Function = ((∑ (drs -δrs)
2)/∑ (drs

2))1/2                                                       (2) 
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Given the above constraints on the inputs, the MDS can then plot these points with origin as the 

centroid. To get a perceivable output, there must be just 2 or 3 dimensions which are good 

enough to contain most of the information. Hence singular value decomposition is carried out on 

the distance matrix and only those dimensional are preserved which convey most of the 

information. In mathematical terms, these are the dimensions which are associated with 

correspondingly largest eigen values.  

 In summary, the localization problem can be addressed by the following steps using MDS [35] 

1. The shortest path between the pairs of nodes is computed. The distance measurement 

capacity of a node is limited by its communication range. A node can measure distances 

to its neighbors only and for the rest of the nodes which fall outside the communication 

range, an “infinite” value is assigned as the distance. (Typically “Infinite” takes the 

values of few tens of thousands so that it is always contextually large figure) 

2. Floyd’s Algorithm is used to compute the shortest paths between any pair of nodes using 

the connectivity information.  

  Floyd’s Shortest Path Algorithm 
This algorithm, which is also referred to as Floyd-Warshall’s algorithm [36], compares 

all possible paths through the connected graph between each pair of vertices. It does so 

by incrementally improving an estimate on the shortest path between two vertices, until 

the estimate is known to be optimal. Floyd’s shortest path algorithm uses a technique 

called Dynamic Programming [36] to solve the all-pair shortest path problem. The 

following explains the procedure involved.  

The first step is to create an Adjacency matrix which is computed for any paid of nodes 

(i, j) as follows: 
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Note that dij = ∞ when i and j are more than 1-hop away 

The adjacency matrix entries are recursively updated by the following function that 

searches exhaustively for all possible paths and picks the shortest path. The variable k 

indicates the possible number of iterations and there could be at the most k-1 intermediate 

nodes in between i and j in any iteration. The recursive function is given by the following 

expression with k equal to (1, 2…n) 
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This leads to a final updated version of Adjacency matrix with respective shortest path 

distances as the matrix elements. The computation complexity is given by n3. 

Dijkstra’s algorithm is another popular shortest path algorithm that can be used in this 

application. But Floyd’s algorithm is more robust and involves lesser computational 

overhead in large networks. Moreover practical experience also indicates that Floyd’s 

algorithm is faster than Dijkstra’s algorithm in MATLAB simulation. [35] 

3. The symmetric distance matrix obtained in the above step is input to the Classical MDS 

algorithm. As mentioned earlier, the CMDS does singular value decomposition and 

eliminates dimensions corresponding to non-significant eigen values, thereby 

constructing a relative map with 2 or 3 dimensions. An optional refinement step 

involving least-squares minimization can be included to best conform the inter-distances 

of the nodes to the measured distances. 
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4. The relative map obtained can be transformed into an absolute map, if provided with the 

minimum number of anchor nodes, (3 nodes for a 2-D and 4 nodes for a 3-D networks). 

First, a transformation function is created by mapping the relative coordinates of the 

beacons with their known absolute coordinates. This might involve some translations and 

rotations. The obtained transformation function is then applied to the rest of the nodes. 

An optional refinement step involving least-squares minimization can be included to 

conform the inter-distances of the nodes to the measured distances. 

2.3.4 Performance of MDS-Based Localization 
The performance of classical Multidimensional Scaling based localization is determined 

fundamentally by the network topology parameters. It was observed that the density of the 

network has direct relationship with the performance. Simulation results show that the denser 

networks exhibit less mean localization error. The second distinctive performance parameter is 

the shape of the network topology. If the nodes were deployed in a uniform pattern, the results 

were better. Contrastingly, irregular deployment increases the error and especially c-shaped 

networks yield highly unsatisfactory results.  

 In the view of the parameters identified, the MDS-based localization procedure is realizable in 

most of the cases where the nodes are deployed densely and regularly in a static network. Once 

deployed, the nodes do not change their locations and hence, the regularity of the network can 

possibly be addressed by a proper initial deployment of nodes. But the density is fixed and 

moreover this approach cannot be extended to a dynamic network where the nodes move around 

randomly and might end up forming an irregular network in due course of time. 

The performance of the MDS is restrained by the density of network and regularity in the 

locations of the deployed nodes. Hence this situation calls for an algorithm which comes into 
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picture once the nodes are deployed in a grid based network. It should be able to accommodate 

the issues of density and regularity to the best, though irregular networks are always a problem. 

These two issues are addressed in the Chapter 3. 
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CHAPTER 3 

DETAILED ALGORITHMS FOR DISTRIBUTED CALIBRATION 

OF WMSN 

Chapter 3 develops the detailed theoretical framework for performing the distributed calibration 

of wireless camera sensor nodes. First we discuss the local map generation algorithm which 

involves vision map generation and ID map generation. Secondly we examine the map validation 

algorithm and lastly we explore the map merging algorithm. 

As described in the chapter 2 we find the global minimum angle to generate the local maps by 

fusing the vision map and ID map and further refining the results using the iterative closest point 

algorithm (ICP) [26]. Then the node with the least ID selects itself as the base node and confirms 

whether it is a good node to start with. Once confirmed the node searches for the next best node 

to merge with and then performs the map merging algorithm to grow its local map to cover the 

entire environment. Also further analysis is done to account for the uncertainties in the MDS 

algorithm due to network topology and density of the network and thus develop algorithms for 

addressing the same innovatively. 

3.1 Local Map Generation 
 

3.1.1 Vision map generation  

The original idea of the omnidirectional vision sensors (ODVS) using a mirror in combination 

with a conventional imaging system has been proposed by Rees [37].  The idea makes use of a 

hyperboloidal mirror for acquiring an omnidirectional image that has a single center of 



 

28 
 

projection. That is, the omnidirectional image can be transformed into normal perspective 

images. 

 1990’s, saw the emergence of computer technologies which enabled real-time process of vision 

data and researchers made several types of omnidirectional vision sensor as vision systems for 

computers and robots. Yagi and Kawato [38] made an omnidirectional vision sensor using a 

conical mirror. Hong et al. [39] made an omnidirectional vision sensor using a spherical mirror. 

Their purpose was to navigate mobile robots with the omnidirectional vision sensor. The 

omnidirectional vision of a robot is convenient for detecting moving obstacles around the robot 

and for localizing itself. Then, Yamazawa and others [40] made again an omnidirectional vision 

sensor by using a hyperboloidal mirror. By utilizing the merit of the hyperboloidal mirror that the 

omnidirectional image can be transformed into perspective images, they proposed a monitoring 

system with the ODVS. 

Nayar and Baker [(Baker, 1997)] theoretically analyzed imaging systems using mirrors and 

developed an ideal omnidirectional vision sensor using a parabolic mirror and a tele-centric lens. 

The omnidirectional vision sensor using a hyperboloidal mirror can generate an image taken 

from a single center of projection in combination with a standard perspective camera. However, 

it has a disadvantage that one of the two focal points of the hyperboloid has to be set on the 

camera center [42]. This disadvantage makes it difficult to design the ODVS. On the other hand, 

the imaging system proposed by Nayar and Baker does not have such a disadvantage since it is 

using the tele-centric lens. As known well, the parabolic mirror has a focal point for light which 

is parallel to the main axis of the parabolic mirror. Further, the imaging system is superior in 

acquisition of non-blurred images and it can eliminate internal reflections of a hollow cylindrical 

or spherical glass which supports the mirror. 
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Figure 6 : A typical vision map with range and angle errors 
  

 In the proposed system each sensor node takes an image of the environment using its embedded 

omnidirectional camera. Figure 6 shows a simulated vision map. We provide random orientation 

to the vision maps in order to simulate different orientation for each vision map. 

From this image each node gets the relative distance and angle information (x, y, and θ for the 

camera) of each of its vision neighboring nodes. The distance information can be calculated 

based on the size of the image of the sensor node [43]. We assume that the distortion correction 

on the omnidirectional images has been done. We further assume that in the omnivision camera 

the mirror is facing downwards and hence we can see the neighbors in the vision map. Based 

on the above information, we can estimate the location of each node within the vision 

neighborhood.  
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3.1.2  ID map generation  

As explained in chapter 2 Multidimensional Scaling (MDS) algorithm is a popular statistical tool 

used to depict the dissimilarities or proximities between the objects through a placement of 

points in a low-dimensional plane where the Euclidean distances between the points resemble the 

actual proximities between the objects as closely as possible. We generate a distance matrix 

which is a dissimilarity measure for the sensor nodes within a two hop communication 

neighborhood. The distance matrix which is fed to the MDS algorithm must be a symmetric 

matrix with zeros on its principal diagonal. Given the above constraints on the inputs, the MDS 

can then plot these points with origin as the centroid. 

Based on the classical MDS algorithm we discussed in Chapter 2 section 2.3.4, the method to 

generate the ID map consists of four steps which involves collecting the inter-node distance 

information, finding the shortest path using the Floyd’s algorithm, input this distance matrix to 

the MDS algorithm to generate a relative map of 2 dimensions and perform an optional 

refinement step to further conform to the inter-node distances. Figure 7 illustrates a typical ID 

map. 

Through the above steps, an ID map is generated in the two-hop neighborhood, which will be 

associated with the vision map of that node. 
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Figure 7: A typical ID map 
 

3.1.3 ID Association Algorithm 

We propose a map registration approach to solve the ID association problem. This approach has 

two steps. In step 1, we conduct a pre-registration to roughly align the ID map with the vision 

map. In step 2, we refine the registration with the ICP algorithm.  

Step 1: Pre-registration 

In this step we associate the nodes in the vision map (	�, ��) and ID map (	�, �� to find the 

best possible correspondence. This is done by searching the global minimum angle which can 

give the rough association. 

To find the global minimum angle, we perform the following steps: 

1. Translate the ID map in order to have an overlapped centroid with the vision map. 

2. For = 1:360 with increment of 1 degree do: 

Rotate the ID map by  degree; 
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Calculate the corresponding pairs between the nodes in the ID map and in the vision map 

based on the closest distance. 

Calculate the sum of the square of the distances between the corresponding pairs and find 

the minimum sum and its �. 

��� ∑��	� � 	�� � ��� � ��� 

3. Calculate the rotation matrix: 

����  �  ����� ����, ����� ����� 

4. For reflection due to symmetry 

� !�� �   ����" ���", � ���"  ���"� ,  

where " �180 degree 

IDmap = IDmap * � !��  (this gives x = -x, y =y) 

5. Recalculate the rotation matrix: 

����#�$= ����" ���", ����" ���"�, 

where " =0:360 with increment of 1degree 

6. Recalculate the sum of the square of the distances between the corresponding pairs and find 

the minimum sum and its ". 

7. Compare the minimum sum for R_prenew and R_pre using " �% � and select the appropriate 

rotation matrix for the new ID map generation. 

8. Generate the new ID map:   

IDmap_new = (R_pre) or (R_prenew) *IDmap 

Through the above steps, the ID map is rotated, reflected and brought close to the vision map, 

which will be further rotated in Step 2 for refinement. 
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Step2: ICP based refinement 

After the nodes in the vision map and in the relative ID map have been roughly associated in 

the above step, we run the iterative closest point algorithm [26] to refine the correspondence of 

the two maps to a higher degree of accuracy. 

The ICP algorithm finds the rotation and translation matrix between the preregistered ID map 

and the vision map by minimizing the least square errors among the closest node pairs. Based 

on the refined registration, we can improve the ID association between the nodes in the ID map 

and in the vision map. 

3.2 Local Map Validation 
After the ID association and the ICP registration algorithm, the nodes need to know that their 

local maps are correct. This ambiguity is mainly due to the uncertainty in the MDS result.  

In order to solve this problem we propose map validation technique.  

The node validating its local map requests for the local maps of the neighboring nodes. The 

common IDs in the local maps are subject to rotation, reflection, scaling and translation through 

the use of procrustes function [18]. We then calculate the MSE value for the node validating its 

local map and its neighbor. If the MSE value obtained is less than 1r units we define the node 

as a good node, where ‘r’ is the normalizing unit distance. If the MSE value is more than 1r 

units. 

We can summarize the algorithm in the steps below: 

1. Select the node which needs to validate its local map. 

2. Run the ID association algorithm to calculate the local map 

3. To check the local maps do: 
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• Neighboring nodes share the local maps with the node that needs to validate its local 

map 

• Compare the Mean Square Error metric between the original IDs in the new local 

map and the node that needs to validate its local map 

• The mean square error metric is calculated between the original IDs and the IDs in 

the local map of the node that needs to validate its local map 

• Check the magnitude of MSE value. if it is less than 1r units, where ‘r’ is the 

normalizing factor then we can declare the node as a good node. A good node is a 

node that has a good local map. 

3.3 Map Merging 

Each node knows whether it has a good local map after solving the local map generation problem 

and then running map validation algorithm as discussed above. Then we address the problem of 

base node selection and merging or growing the local maps by obtaining the best linear 

transformation from the set of good nodes to transform the coordinates of the common nodes in 

the base node local map to those in the neighboring nodes local maps. This enables us to localize 

all the nodes in the network. We call this the map merging algorithm. 

We select the node with the least ID (node with ID 1) as a base node to start with. We then run 

the map validation algorithm to know whether it is a good base node to start. If we validate the 

local map as a good node then we select node 1 as the base node. If we are not able to validate, 

we randomly select another node from the set of neighboring nodes of node 1 until we find a 

good node to start with. 

We define the following variables: 

&� : ' �	, �� , ()�* The partial global map of node  ��. 
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()�: The IDs in the local map of �� 

�	, ��  : The local map coordinates of node �� 

�+  : The next best node selected for merging 

&+ : , �	, �+, ()+-  The local map of node  

 ()+ : The IDs in the local map for the next best node �+ 

�	, �+ : The local map coordinates for the node �+. 

�	, �+
� : The local map coordinates for node �+ in node �� coordinate frame.  

           The following steps are involved in the map merging algorithm: 

1. For base node ��, find the neighboring node that has a local map with the maximum number 

of unknown IDs and minimum number of three common IDs. 

2. Request for the local map from the selected node.  

3. Find the linear transformation by using the Procrustes function.  Transform the next best node 

map &+ into node ��’s coordinate frame to get &+
� using: 

                                                  �	, �+
� =  �	, �+ * ( 

�.. �.�
��. ���

    ) + �/0 /1 

 where, R is a combination of the rotation and reflection factor and T is the translation factor 

4. Update the partial global map &� using 

 &� �    &�   2  &+
� 

5. Repeat steps 1-4 and thus update the partial global map until it contains all the nodes. 
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CHAPTER 4 

SIMULATION RESULTS 

 
In Chapter 4 we first present in detail the simulation environment. We then discuss the results 

obtained and evaluate the performance of the proposed framework. Different scenarios have 

been discussed which investigate the local map generation, base node selection, and map 

merging concepts developed previously in Chapter 3. 

4.1 Simulation Setup 

 We conducted computer simulation to evaluate the proposed approach. The simulation is carried 

out in MATLAB.  The PC used is a standard Dell Inspiron with an INTEL core 2 Duo T5750 @ 

2GHz processor and a 3GB RAM. 

In our simulation, nodes are placed in a square area. We model the placement errors as Gaussian 

noises. In this way, we can create a random sensor distribution mimicking, for example, airplane 

deployment. One hundred nodes are placed on a 10r x 10r grid; with a unit edge distance r. 

Figure 8 shows an example of the deployment with 10% placement error. The radio range is R = 

1.95r, which leads to an average connectivity of 8.14. In the graph, the points represent the 

sensor nodes and the edges represent the one-hop connectivity between neighbors. 

4.2  Results 

In the results section we examine the performance of the algorithms discussed in chapter 3. First 

we examine the results for local map generation which includes pre-registration and refinement 

due to ICP algorithm. Also we tabulate the results of ID association in local maps for different 

vision ranges. In the second subsection we evaluate the map validation algorithm. We tabulate 
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the results for the same. In the third subsection we investigate the map merging algorithm and 

observe several simulations illustrating the same. We then tabulate the results calculating the 

accuracy metric at each stage of map merging. We have performed simulation tests on the above 

described irregular grid network.  

 

 

Figure 8: The ground truth of the sensor deployment (100 nodes, R=1.99r, placement 
error=10%) 
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Figure 9: The ground truth for ID map (green stars) of the sensor nodes and the vision map 
obtained (black triangles). 

 
4.2.1 Local Map Generation 

We now observe the results for local map generation algorithm. In the first evaluation scenario 

the node 55 was selected as the good base node to start with. Figure 9 shows the result of the ID 

map (green stars) based on the two-hop communication neighborhood of the base node. It can be 

seen that the center of the ID map is the origin (0, 0), and it has a different orientation than the 

original network. 

 Figure 10 shows the result after performing pre-registration and associating the IDs in both the 

ID map and in the vision map for node 55. It can be seen that there is still a significant distance 

error between the corresponding pairs in the two maps for base node ID 55.  In Figure 11, the 

result shows the IDs in the ID map match the ground truth IDs of vision map after performing 

the ICP refinement algorithm for base node ID 55.  
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Figure 10:  ID Association using pre-registration. The nodes in the vision map are brought 
closer to the nodes in the ID map for node ID 55 

 

 

Figure 11: The map shows the correct ID association between the ID map and the vision 
map after performing the ICP refinement algorithm for node 55. The IDs shown in the 

figure indicate that they have the perfect match. 
 
We now consider a different example for the local map generation algorithm. In the Figure 12 

we illustrate the pre registration step for node ID 66 and in Figure 13 we demonstrate the 

refinement step due to ICP algorithm. 



 

 

Figure 12: Pre-registration example. Before the implementation of iterative closest point 

 

Figure 13: The map shows the correct ID association between the ID map and 
map after performing the ICP refinement algorithm

40 

example. Before the implementation of iterative closest point 
algorithm for node ID 66 

: The map shows the correct ID association between the ID map and 
map after performing the ICP refinement algorithm for node ID 66

 
 
 

 
example. Before the implementation of iterative closest point 

 

: The map shows the correct ID association between the ID map and the vision 
for node ID 66. 
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In the third scenario the node ID 33 was selected as a good base node to start with. The pre-

registration step in obtaining the local map is illustrated in Figure 14 and the result after ICP 

refinement is shown in Figure 15. 

 
 

 
Figure 14: Pre-registration - Nodes in Vision map brought close to nodes in ID map for 

base node 33 

 
Figure 15:  Local Map generated for base node ID 33 
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We now compare the results for various radio range and vision range. The average degree of 

connectivity in all four cases is greater than 5 and the noise in the placement error is 10% 

Gaussian noise. The table shows that with the increase of the radio communication range, the ID 

map results will be better and the registration error will be smaller. We can also observe that the 

radio range needs to be greater than 1.5R for correct ID association. The number of neighbors 

covered for a typical 2 hop neighborhood with 1.5R is 25% of the total number of nodes 

deployed in a network. In Table 2, we have listed the true mean square error (MSE) of the 

locations in the vision map and in the ID map for base node ID 55. This table summarizes the 

results for various radio ranges. 

TABLE 2 : TRUE MEAN SQUARE ERROR OF THE LOCATIONS IN THE VISION  
MAP AND THE ID MAP R_V=3.1 

 
Noise  10% 10% 10% 10% 10% 

Radio 

Range 

2R 1.75R 1.5R 1R 0.75R 

True MSE 0.0176 0.0988 0.1057 3.885 4.605 

ID 

association 

correct correct correct incorrect incorrect 

 

In the Table 3 we discuss the true mean square obtained for a vision map range of 4.1 for 

decreasing range of radio error starting from 2R. We can observe that the error for the radio 

range of less than 1.5R is larger. We now discuss the results for incorrect ID association due to 

symmetry and the correction applied. Figure shows the incorrect ID association resulting due to 
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symmetry. 10% noise in the placement of nodes results in 30% asymmetry, due to the 3σ noise 

in the deployment of the nodes. 

TABLE 3: TRUE MEAN SQUARE ERROR OF THE LOCATIONS IN THE VISION 
MAP AND THE ID MAP R_V=4.1 

 
Noise  10% 10% 10% 10% 10% 

Radio 

Range 

2R 1.75R 1.5R 1R 0.75R 

True MSE 0.0293 0.1288 0.157 4.47 5.18 

ID 

association 

correct correct correct incorrect incorrect 

 

4.2.2 Symmetry Correction Algorithm 
 
In this section we examine the map validation algorithm. The ambiguity in local map generated 

basically results due to the irregularities in the MDS algorithm hence there is a need to validate 

the local maps further.  

We have performed simulations for different vision ranges while keeping the radio range 

constant. The figure 16 and figure 17 illustrate the incorrect ID association scenarios for node ID 

37. It can be observed that the True MSE value is higher than the threshold value of 1r units and 

hence the local map obtained is incorrect. After improving the algorithm with the investigation 

for reflection factor, the magnitude of the MSE value is found to be less than the threshold of 1r 

units. The figure 18 clearly shows the improved local map for node ID 37. 



 

 

Figure 16: Incorrect ID association. The MSE value is 3.83
 

Figure 17: Incorrect ID association. The MSE value is 2.79
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: Incorrect ID association. The MSE value is 3.83 

: Incorrect ID association. The MSE value is 2.79 
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Figure 18: Correct ID association after applying reflection and comparing the MSE values. 
The MSE value obtained is 0.07 

 
 

In Table 4 we have tabulated the true MSE metric for incorrect ID association due to symmetry. 

The true MSE is a measure of how accurately the algorithm can correct the symmetry error. The 

radio range is kept constant at 1.95R. The vision range is varied from 2.1r units to 3.1r units. For 

the vision range below 1.5r units the density of the nodes is very less and hence is not 

appropriate for simulation. 
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TABLE 4: CORRECTION IN SYMMETRY ERROR 
Radio range 1.95R 1.95R 1.95R 

Noise (Gaussian) 10% 10% 10% 

Range error (MDS) 2% 2% 2% 

Vision Radius 4.1 3.1 2.1 

True MSE 

symmetry 

2.7961 2.4263 1.398 

ID Association Incorrect Incorrect Incorrect 

True MSE 0.0748 0.0648 0.348 

ID Association correct correct correct 

 

4.2.3 Map Merging 
 
In the map merging algorithm we examine the simulation results for merging of base node 55. 

Then we illustrate similar results for base node 66 and base node 33.  We then tabulate our 

results by observing the accuracy metric at each stage of merging for node 55 and node 66. We 

further simulate the map merging for different noisy environments keeping the other parameters 

constant for base node 55 and tabulate the true MSE metric for the global map obtained in each 

case. 

Figure 19 and Figure 20 illustrate the intermediate nodes selected for merging for base node 55. 

The nodes 37, node 33 and node 77 are the intermediate nodes selected. Figure 21 illustrates the 

global map obtained after performing successful map merging algorithm. The vision range for 

scenarios is kept at 3.1r units and the radio range id 1.95R units. 
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Figure 19: Merging of local map of node 55 with local map of node 37 
 

 

Figure 20: Intermediate global maps for nodes 37, 33, 77 merged with local map of the base 
node 55 
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Figure 21: The global map for base node 55 

 

Figure 21 shows the global map for the randomly selected node 55 chosen as the base node in 

this case.  

We discuss another example wherein we started with the least ID as a base node and finally 

selected node 66 as the node to start with. As seen in Figure 22 node 47 is selected as the best 

node for merging with the base node 66 with 22 unknown IDs for a vision range of 3.1 and radio 

range of 1.95R. The Figure 23 illustrates the intermediate step where nodes 47, 25, 63 have been 

selected with unknown IDs 22, 18, 12. In the Figure 24 shows the global map obtained for node 

66 for the vision range of 3.1.  
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Figure 22: Base node 66 merged with node 47 

 

 
Figure 23: Intermediate global maps for nodes 47, 25, 63 merged with local map of the base 

node 66 
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Figure 24: Global map for base node 66 

 
The Figure 25 illustrates another example of base node local map for selected node ID 33 

wherein the nodes selected for merging are IDs 55  58  73  28  78  12   3  70 with a vision radius 

of 3.1 and radio range of 1.99R and noise 10% (3sigma = 30%). 

 

 

Figure 25: Global Map for base node 33  
 



 

51 
 

Table 5 shows the MSE for variations introduced in the placement errors. The mean square error 

for the placement error increases as more noise is introduced in the placement of the nodes. With 

increase in the gaussian noise above 20% the MDS results are observed to be incorrect which 

results in an incorrect global map. From our simulations, we also find that the ID association 

results are not good for sparse networks. When the average degree of connectivity is below 5 the 

ID map results will be bad, which will cause wrong pre-registration and wrong ID association. 

This will then lead to an incorrect map merging, and the global map obtained would be 

erroneous. 

 
 

TABLE 5: % OF GOOD NODES IN THE LOCAL MAP OF THE BASE NODE 55 
Next Node 

Selected For 

Merging 

Number Of 

Good 

Nodes  

Number Of Good 

Nodes ( symmetry 

correction) 

Total 

Nodes 

% 

(good nodes with 

symmetry correction / 

total nodes) 

37 19 36 48 75 

58 31 42 61 68.85 

28 38 57 74 77.07 

77 38 60 86 69.76 

2 40 65 94 69.14 

69 48 74 100 74 

 

 

The Table 6 shows the number of good nodes selected at each step of merging with base node 

66. The table illustrates the improvement in the accuracy due to symmetry detection and 
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correction. The number of good nodes can be seen to be around 80% of the total number of 

nodes. This implies that there are 80% of nodes with correct local maps. 

TABLE 6: % OF GOOD NODES FOR BASE NODE 66 
Next Node 

Selected For 

Merging 

Number Of 

Good 

Nodes  

Number Of Good 

Nodes ( symmetry 

correction) 

Total 

Nodes 

% 

(good nodes with 

symmetry correction / 

total nodes) 

47 15 38 48 80 

25 28 52 64 81.25 

63 32 55 77 71.42 

88 41 58 85 68.23 

18 46 67 91 73.62 

12 48 74 96 74 

72 49 79 99 79.79 

 
   

Table 7 shows the MSE metric for variations introduced in the placement errors. The mean 

square error for the placement error increases as more noise is introduced in the placement of the 

nodes. With increase in the Gaussian noise above 20% the MDS results are observed to be 

incorrect which results in an incorrect global map. 
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TABLE 7: MEAN SQUARE ERROR FOR VARIOUS PLACEMENT ERRORS  (NOISE) 
FOR A SELECTED VISION RANGE OF 3.1 

Gaussian Noise 

(%) 

MEAN SQUARE ERROR 

BETWEEN THE COMMON ID 

GLOBAL MAP OBTAINED 

   

5 0.03 Correct  

10 0.031                          Correct  

15 

20   

25 

0.033 

0.046 

2.38 

 Correct  

 Correct 

 Incorrect 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The thesis work provides a solution to the network camera localization calibration problem in a 

distributed fashion. In chapter 1 we introduced the emerging field of wireless multimedia sensor 

networks and we discuss the related work starting from GPS based localization to range based 

localization techniques. Then we explored the single camera calibration techniques and the 

problems associated with the same. This led us to shift our focus to network camera calibration 

and we investigate the techniques for the same. Chapter 2 focused on developing the problem 

statement and the overall proposed solution which is a two step process involving local map 

generation and map merging algorithm. The detailed theoretical framework of local maps was 

put forth in chapter 3. As explained in the third chapter, in the local map generation algorithm we 

explained the ID map generation and ID association algorithm taking into account the refinement 

due to ICP algorithm. We then discussed the map validation algorithm to check the uncertainties 

due to classical MDS. Here the node checks whether its local map is correct by sharing its local 

map with the neighboring nodes and comparing the mean square error with a predefined 

threshold value and classifies itself as a good node. In the second part, we explained the map 

merging algorithm. The map merging algorithm consists of finding the next best node, and then 

merging the partial global map and the selected local map from the set of good nodes by finding 

the best possible linear transformation between the coordinates of these maps. The simulation 

results stand in accordance to all of the specified conclusions over a variety of radio and vision 

range. 

The major contribution of our thesis lies in developing the theoretical framework for distributed 

camera calibration based on vision data, local inter-node distances and local topology. Moreover 
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our work does not need any moving targets to perform distributed camera calibration. We further 

develop innovative algorithms for local map generation and map merging. We evaluated the 

proposed approach through computer simulations.  This location calibration algorithm can thus 

be used to develop self-organized wireless multimedia sensor networks. 

Our thesis work caters to wide variety of applications which include surveillance systems during 

crime and terrorist attacks. They are also useful for traffic monitoring in cities and highways. 

Military applications include locating the targets of interest (such as enemy soldiers, tanks) in the 

battlefield and relay video images to the command center. 

The errors due the network topology and grid based deployment of the sensor nodes are not 

completely eliminated and hence not all nodes have a good local map. Future work could involve 

investigating the key factors contributing to the same. Also the future work would include 

finding the heading of the wireless camera sensor nodes without using the compass. The method 

described in the thesis is performed only in simulation environment, and the performance of the 

algorithm needs to be evaluated in real time camera sensor networks. 
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