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CHAPTER 1

INTRODUCTION

Wireless Multimedia Sensor Networks (WMSNS) are gaining popylantong researchers over
the past few years. Knowledge of the geographic locations oettsisnodes is very important
in such sensor networks. Location calibration is a method that usesnthectivity information,
the estimated distance information among the sensor nodes, as\iledl vision images to find
the location of the sensor nodes in WMSNSs.

Chapter 1 introduces the emerging field of Wireless Multim&diasor Networks (WMSNS).
First the motivation behind pursuing the research in WMSNSs is disduSecond the literature
is reviewed on localization in less expensive short range basedrseetworks. Then related
work on the calibration problem in multimedia sensor nodes in WMSHissussed which
reviews both single camera calibration and network camerdratin. The chapter is
summarized by highlighting the uniqueness of our methodology to perfetnibdied camera
calibration.

1.1 Motivation

Wireless Multimedia Sensor Networks [1] are a researcls twfpgrowing interest over the years
due to its wide applications. WMSNSs are a set of embedded dekatesave the capability of
processing and communicating video and audio streams collecradtlie environment in a
distributed fashion [1]. Wireless Multimedia Sensor Networks &pglication in surveillance
systems against crime and terrorist attacks. They carbalssed for traffic monitoring in cities
and highways. They are also very useful in military applicatioriecate the targets of interest

(such as enemy soldiers, tanks) in the battlefield and relay wtEges to the command center.
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The emergence of such new sensors has paved the way fdewa®pment of a variety of
effective, low power and low cost vision based sensing platforms [2, 3, 4, 5, 6, 7].

For most WMSN applications, it is imperative to have the knowledge of thedoadtthe nodes
in order to understand the multimedia data received. Therefore dreegreat need to develop a
sensor node calibration algorithm which can be implemented in embedusun s@des with
limited computational resources.

Traditionally calibration is the process of determining the intgpaeameters like focal length,
distortion, skew coefficient and external parameters like posiinmhorientation of a camera in
an environment [8]. Calibration is required to correct the errotsseth due to device
imperfections and aging [9]. With calibration, a camera senscg nad maintain up to date
information about its internal and external parameters in an envirdnewireless camera
sensor network operates either as a centralized or as a destritetivork. In the centralized
mode, all the nodes of the network communicate their data to a centi@l The central node
runs computational algorithms on the received data and sends backultetcethe respective
nodes. In the distributed mode, each sensor node runs computational akyanthits own
processor and may also exchange its results with its neighboring. iodie case of a large
scale sensor network operating in a centralized mode, data transmission talstaidn by the
other nodes increases the transmission overhead and consumes tirag.dlso increase the
power consumption at the central node at the expense of the remainingohdldeaetwork.
Failure of the central node will lead to the failure of therentietwork. Distributed camera
calibration [10, 11], on the other hand, has the advantage that a node neegerat on
centralized nodes for its calibration. A distributed node cabredd by itself and communicate

its position and orientation information to its neighbors. The sensor nmeté&sm complex



mathematical calculations to carry out the calibration on theim processors. However, the
growing need for low power and low cost sensing technology hatedinthe computational
ability of sensor nodes. Hence, there is a need to develop lightvweiljpration algorithms for
the purpose of configuring and operating these distributed sensor nodesato employ them
for potential applications. The main aim of this thesis is to developvative distributed
computational algorithm to calibrate a wireless multimedia@enstwork. In this thesis we
discuss the theoretical framework for distributed camera catibr@ased on vision data, local
inter-node distances and local topology.

1.2 Related Work

One of the most straightforward localization techniques is GlBbaltioning System (GPS)
based localization that relies on multilateration technique usmg af arrival of signals. It has
been operative since early 1990’s. For localization in an outdoor emerdn@PS works well.
Unfortunately, the signal from the GPS satellites is too weg@ehetrate most buildings, making
GPS useless for indoor localization. Likewise it has many sti@itcomings. Multipath effects,
delayed signals, and complex clock synchronization requirements lagig dtave limited the
usage of GPS to limited applications. Adding to above, the GPS units are veryiexpadsthis
makes it almost useless in case of commercial applicationseewhe overheads are mainly
specified in terms of financial constraints. This shifted theddowards less expensive, short
ranged sensor network. In recent years, researchers have be&pidgvdifferent localization
algorithms to localize these sensor networks.

One kind of technique is based on inter-node distance ranging. Thebasegeiechniques rely
on a method of finding the physical distance between any two nodewtwark that are within

communication range. This process is called ranging. Therewardasic techniques used to



perform ranging: received signal strength and signal propagaten Received signal strength
(RSS) is a way to do ranging by measuring the signaigitieof a message at the receiver [12,
16]. The receiver then uses knowledge of the sender's signal ngemight be contained
within the message) to determine the power loss. Finally the receiver agpkaewn model for
signal propagation behavior to convert the power loss to a distance, thus estimatiag éoayf
the sender is. This is an inaccurate technique. Radio signal propagathavior is highly
dependent on the environment (obstacles, signal fading, metals), andtheyncare highly
variable. Savvidest al.[17] describes experiments that tried to get good resultsvélyisbut the
results are unsatisfactory in most of the cases except for an extideadized one. In most real-
world ad-hoc networks, ranging by received signal strength is not accurate

The second method of ranging is possible by measuring the sigegation time [13] and
converting it back to inter-node distance with the knowledge of wglaoi the signal
transmitted. Time of arrival (ToA) [18] is one such measurergvilee time taken for wireless
signals (or packets) to travel from transmitter to receivenultiplied by the velocity of signal
(almost equal to light velocity) to obtain the inter-node distanBadio signals travel at the
speed of light (essentially instantaneous arrival), so it is fatsiible to measure this time
without using a high resolution clock to measure the time of flighis is very commonly used
in GPS-based ranging where the GPS receiver estimatesceistasing ToA from different
satellites which needs time synchronization. Given the inter-nogtandes, techniques like
multilateration can be used to locate them. To avoid complexstimeEhronizations between the
transmitter and receiver, we can consider return time of fligtgrein the receiver retransmits

the signal back to transmitter. The transmitter then calcullage$oA as half the return time of



flight. But the ToA parameter is affected by latency icereer response which may be due to
processing queue at the receiver.

Time difference of arrival (TDoA) [19] is a variation of tinog arrival and it is a preferred way
of measuring distance by measuring the propagation time pélsigA sending node will
transmit a radio signal and an ultrasonic signal at the same Because the radio signal arrives
essentially instantaneously and the ultrasonic signal takes wigér) the receiver can measure
the time difference between the arrivals, and thus deduceatheded distance. The Cricket [20]
system uses RF based TDoA ranging. One problem with ultrasoymal propagation is that it
is subject to multipath effects, and to variations in the environntestdesirable to recalibrate
TDoA measurements according to these variations. Saveidals give a way to perform this
calibration, given enough redundancy in the distance data. Somechessdrave described the
Ad-Hoc Localization System (AHL0S) [17], an iterative way discovering the absolute
position of every node in a network. They assumed an ad-hoc network, dh afghors that
know their own location at any given time form some percentagieeohodes. The focus is on
two-dimensional localization, and the ranging method is TDoA. Sgaessing methods have
been developed for localizing a set of static sensor nodes andiagdilye error properties
[21, 22, 23], using both TDOA and angle of arrival (A0A) measurementsewli®gA measures
the distances and the AoA tells about the orientation apart from positioning.

Apart from the above mentioned techniques, range-free techniqueslsmbeen used widely.
An RF based proximity method was developed by [24], in which théidocaf a node is given
as a centroid generated by counting the beacon signals ttasimy a set of beacons pre-
positioned in a mesh pattern. Other methods that do not rely on ramagersmaents were also

developed. For example, the count of hops is used as an indicationdistdree to the beacon



nodes in some applications [25]. But the majority of the applicatielys an range based
localizations.

However, most of the literature is on localization of traditiomatless sensor networks and not
much has been discussed on localization in wireless multimedia setsamrks, which have
more sensing modalities than traditional ones.

The calibration of multimedia sensor nodes in WMSNSs is very irapbrtn existing literature,
camera calibration has been widely researched in the compuien w@smmunity and
photogrammetry. Self calibration is a technique that relies omti®n of a camera in a static
scene. It does not make use of any object to calibrate a caftegacamera captures a number
of images of a static scene while it is moved relative tethtec scene. The rigidity of the scene
from the captured images provides constraints on the internal cpaenaeters. With fixed
internal parameters the correspondence between at leasptiineecaptured images is sufficient
to recover both the internal (focal length and distortion) and extparameters For example,
Zhang [8] proposes a flexible calibration technique in which, fromcpured images of a
planar pattern, feature points are extracted to determinetdr@al and external parameters of
the camera.

Most camera calibration research is for a single camedaconducted in controlled laboratory
environments. Calibration of a camera network in real environmentseleasemerging. In [26],
Kulkarni et al. propose a technique to overcome the constraint of using landmarkropese
an approximate initialization technique to determine the relatigations and orientations of
camera sensors without the use of landmarks. In an environment witvaknef distributed
cameras, this technique determines the degree of overlap andgtba of overlap of each

camera sensor node with the other camera sensor nodes of the n€éhegsekparameters help in



achieving a desired probability of event detection and mainthabitagy in tracking a moving
object. A reference object of known size at random points in the environment. Tha canmsr
nodes are programmed to capture images of this referencet objea duty cycle basis. The
nodes estimate the degree of overlap with various sensor nodeedag3ing their respective
images and determining the reference points in their field @f.\By determining a subset of
reference points that are visible to two or more cameras, thenref overlap between the
cameras is given by the union of cells containing the refer@wioés visible to each camera. The
region of overlap of the camera is used to estimate the tartpetgmal hence provide reliable
information in estimating the next sensor node which has to takeh@/egacking responsibility.
Assuming that the origin of a reference frame is locatedeatenter of the sensor node, simple
optics is used to estimate the distance between the camettzearederence point. As the size of
the object as well as the values of the internal parametekaown, the sensor nodes can
calculate the orientation of the reference point with resped¢hén center. However, this
calibration technique only helps in determining the relative locabbrise reference point and
the orientations of the camera sensors. In this technique, the ttacgetlis not localized with
respect to a single measurement frame but is localized with respectedetiemce frame of each
camera. To simplify tracking, many applications require the umeagents for target localization
and camera calibration to be carried out in the same framecdimise achieved only when the
target and camera sensors are present in a single reference frame.

A single reference frame based calibration technique is ngezben [27]. In [27], Lee and
Aghajan present a collaborative technique to localize the nodesaofieéra sensor network using
opportunistic observations of a target. Each node uses lightweightlénimage processing to

extract the coordinates of the center of the blob of an objeckittdeA sensor node that detects
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an object sends trigger signals to its neighboring nodes. A neighlmaraiegy which also detects
the object, forms a reference coordinate system with the triggering nodeigfleeing node and
its neighbor (also called the helper node) act as reference fitdeseference nodes along with
more than one uncalibrated node can participate in tracking the.dbgett node uses a pin-hole
camera model to determine the angle between the optical aktsscaimera and the line joining
the center of its camera to the center of the detected blbtheAracking nodes collaborate with
one another and exchange the tracking information. Every node thenGasss—Newton
method [28] on the exchanged information to determine its position aedtairon in the
reference frame. However, this calibration algorithm relies hen @ssumption that all the
reference nodes and the uncalibrated nodes that are participativegtiacking must view the
target simultaneously. In order to perform the calibration, thihodetequires a minimum of
three sensor nodes and at least five observations of the targdiebebly each sensor node. In
[42] Vimal et al. propose a low power and low cost wireless camera sensor netwiidkmléo
perform distributed camera calibration. The sensor node uses théengmegpabilities in
cooperation with moving targets to determine their own positions and orientations.

The cooperative target-based self-calibration protocol in [30k uke target coordinate
information at four locations in the field of view of a camergadorm calibration. In [30], Liu
et al. propose an automated wireless self calibration protocol for easegrsor networks. This
work combines the principles of computer vision, optics and vectors withtdreal parameters
of a camera to estimate the location and orientation of theraamie work assumes that a
device equipped with an ultrasound based positioning sensor moves around thenamntirand
generates a set of reference points in the field of view df eamera that it encounters. To

perform calibration the camera is provided with the location indion of four reference points
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in its field of view by the moving object. The sensor node thenrdetes the vectors joining its
centre to each of the reference points. It then employs a n@m-loptimizer to estimate the
location of the camera. After determining its location, the sensede uses a subset of three
reference points to determine the orientation of its cameraobiagned external parameters of
the camera are iteratively refined by using additional eef@ points in the field of view of the
camera. The external parameters are now used to determirgite of overlap which helps in
localizing and tracking the moving object.

Overall, the existing camera calibration algorithms are ithme-consuming, fit only in
laboratory environments, or require specific cooperative or non-comeetatgets, which may
not be realistic in many applications. Though our work involves neteamera calibration it is
different than the proposed approaches mentioned above in severallhaysst difference is
the multimedia sensor node makes use of local inter-node distance®taraitk topology as
well as vision information to determine the coordinates of locatioth@fnodes. The second
difference is that most authors need to have a moving targedlibration; our method needs no
such target as the sensor nodes develop the ability to self organize thenmsekigs g

The remainder of this thesis is organized as follows. In Ch2ptee discuss the design of the
wireless multimedia sensor nodes we are developing in our laboeatdrformulate the WMSN
location calibration problem and propose an overall solution. In Chapter 8ewedop the
detailed algorithm needed to solve such a challenging problem. Weligmiss the simulation

results in Chapter 4 and Chapter 5 concludes the thesis.
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CHAPTER 2

OVERVIEW

Chapter 2 formulates the problem of distributed camera calibratrah,presents the overall
approach to it. Then it explains the concept of multidimensiondingcahe algorithm for

multidimensional scaling based localization and investigate tlotorfa that impact the
performance of multidimensional scaling based localization technique.

2.1 Problem Formulation
We are developing a Wireless Multimedia Sensor Network (WMBN)military surveillance

applications. This surveillance network consists of a large seen$or nodes which have
omnidirectional vision, audio input and output, computation, and wireless comimmmica
capabilities. By forming a network they can provide battle-fi¢ddraness to military personnel.
Below we will first introduce the design of the sensor node ana e will formulate the
problem of location calibration in this WMSN.

As shown in Figure. 1, each sensor node is outfitted with an omnidiracvideo camera, an
array of microphones and speakers, a compass, modest computingee$Ba-level CPU),
and wireless communication capabilities (250 Kbits/sec data. rBfbe) sensor nodes can be
deployed by a solider and/or a ground vehicle or airplanes. The shasershe ability to self-
organize which implies that the sensor calibration and the estaieind of communications will
be performed autonomously. The form-factor of the sensor isvedlasmall, and so they can be
easily carried and deployed. The dimension of the sensor is cltisat tof a human fist and its
weight is less than two pounds. The Figure 2 shows an examplearhthdirectional camera at

ASCC lab.

13



Omnidirectional
camera
Microphone

Speaker

Figure 1: The design of the multimedia

Figure 2: Omnidirectional Camera
sensor node

We considem multimedia sensor nodes randomly deployed in a region as shownuire &g
The nodeN; has two neighborhoods defined, as can be seen in Figdfecdn communicate
with its neighbors and form eommunication neighborhoodSimilarly, nodeN; can see the
neighbors within vision rang®, through its omnidirectional camera. These nodes form its
vision neighborhood We assume that each node can measure the distance to K®mpne
neighbor in the communication neighborhood. Such a capability can besdettiough the
Time Difference of Arrival (TDoA) technique, which is basedtloa time difference between an
acoustic signal and a RF signal when they both travel from one node to the other.

The problem of location calibration in an WMSN is to find the re¢atocations and heading of
all the nodes in the deployed sensor network. If we have attteastbeacon nodes we can find

the absolute locations of all the nodes in the deployed network.
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Vision Neighborhood

2 - Hop Communication
Neighborhoo

L
A 4

Figure 3: The self-calibration of sensor node with respect to node ‘'

In this work we make the following assumptions:

1. There are no obstacles in the region described, so any sensavitiode distance,, to N;
can be observed hy;.

2. The nodes use a compass to know their heading.

3. The environment is considered to be flat and treated as a two dimensional space.

2.2 Overall Approach For Distributed Camera Calibration

In our proposed approach, distributed camera calibration algorithmsto$itwo main steps
which involve local map generation and global map generation. Firgenerate the local maps
for each sensor node. We then select a node with the least t&rttavish and validate its local
map to know whether it is a good base node to start with. We theat e next best node for
merging which has the maximum unknown IDs and at least three comaolVe then solve

the map merging problem to get the global map of sensor locations.
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Figure 4: Overall Approach

As illustrated in the Figure 4 we now describe the overall cgmbr for distributed camera
calibration. In the local map generation problem, each node éngrgtes a vision map from the
omnidirectional image and then estimates the location of each oeighinode within the
vision rangeR,. However, since all the sensor nodes have the same shape andheoldDs
cannot be determined on this vision map, which means that the visioprowages us with the
information of relative location of the nodes with a reasonable acgubut with no ID
information. Next, each node generates an ID map using the poputatimernsional scaling
(MDS) algorithm [13, 31] as described in chapter 1. Since eachaaodeeasure the distance to
its neighbors in the one-hop communication neighborhood, it can construaracdistatrix for
its 2-hop communication neighborhood and feed it to the MDS algorithreadteca relative map
of IDs. However, the MDS algorithm is not very accurate sindepends on the shape of the
network topology and the density of the network. Therefore, the IPpravides us only with
the information of the node IDs but not with accurate informatiothefrelative location of the

nodes. In this sense, the ID map and the vision map complement each other.
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Therefore, the local map generation problem is essentialllp aassociation problem that is to
associate the IDs in the ID map to nodes in the vision map. TotkelV® association problem,
we propose an algorithm based on the iterative closest point (ICP) algorithm [32

The local map obtained is not always correct since it retammeous results when there is
symmetry in the placement pattern. The symmetry in the plkgewof the nodes results in
multiple solutions to the ID association problem and hence the globhahanbbtained may not
be correct. Howeverwe can solve this problem by introducing the reflection matrix and
recalculate the global minima. We then use the map shdgogtam to further validate local
maps .Validation is needed since there are irregularitigdeeitDS resulting from the arbitrary
noise in the translation matrix returned from the classical M&8It. We hence introduce the
concept of good nodes. Local maps are said to be good when the Meaa Bagoametric
obtained from the map sharing algorithm is less than a preddéhneshold value. Nodes with
good local maps are then defined as good nodes.

We then solve the map merging problem. We do this by searchirnigefarext best node from
the set of good nodes, to merge with the initial arbitrarilgctetl node (base node) and thus
expand its local map. The next best node is the one with a locathagpas the maximum
number of unknown IDs and a minimum of at least than three commorThes. we merge
these two maps together. This process is repeated until all the nodes in the netwovieged.
The overall algorithm for the location calibration is summarized as follows:

1.Each node generates a local map

2.A node with the least ID selects itself to be a base Npd&he base node checks whether its

local map is a good local map using the map validation algorithm.
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3.1f the base node local map is identified to be bad we discard the node and randomly select the
next base node from the set of neighboring nodes and repeat step 2-3

4.Until a good base node is found, classify nodes as good and bad nodes from the base node’s
neighboring nodes.

5. Search for the next best node for merging, from the set of good nodes umrém partial
map ofN, and, request for the local map from the node selected

6.Merge the local maps from nodg and the node selected.

7.Update the current partial global map foh, and repeat steps 5-6 until all the nodes in the
network are localized.

2.3Multidimensional Scaling
Multidimensional scaling is a popular technique for localization in wirelssos networks

since it uses the network topology and inter-node distance information to genetate re
position map of 2 dimensions. In this section we explain the concept of MDS, types of MDS,
mathematical background of MDS and algorithm for MDS based localizationy Lastl

investigate the factors that impact the performance of MDS algorithm.

2.3.1 Introduction to Multidimensional Scaling
The roots of the Multidimensional Scaling [31, 33, 34] or MDS lie in the behavioesices like

Psychometrics and Psychophysics wherein the personal traits ofe paplanalyzed for
important underlying distinctive characteristic features. SubsdguBtidS proved to be an
essential tool for many other researchers in diverse figdeldarketing, Sociology, Geography,
and Psychology. Basically MDS is a data visualization algorithat can describe the structure
of the data. It involves multivariate statistical probing to dbsgoroximity between the pairs of

objects with the proximity data collected over time.
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The term ‘proximity’ is an index defined over a pair of objectguantity the degree to which
the two objects are alike or different. Correlation coefficienititj probabilities are two such
examples of proximity measures which can explain the extenthiohwtwo objects show
common attributes. A proximity measure helps in differentiativeg objects and hence it can
indicate either similarities or dissimilarities. Hence teem ‘proximity’ has varied contextual
meanings based on the application in which the data visualizagonthins are employed. In
general usage, the term proximity indicatedpwdicates the dissimilarity between the objects i
and |

The Multidimensional Scaling algorithm takes the proximity mess as the input. And the
chief output is a spatial representation, consisting of a geongetnicguration of points. Each
point in the configuration corresponds to one of the objects and the catiiguas a whole
reflects the hidden structure in the data making them easoamprehend. This implies larger
the dissimilarity between the two objects in comparison, the fartherthpgnivould be placed in
the spatial map.

Table 1:Inter-city distance matrix
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MDS starts with a matrix representing the distances aindisrities between ‘n’ objects. The
power of this algorithm lies in its ability to depict the dissarities or the proximities between
the objects through a placement of points in a low dimensional plaeeevihe Euclidean

distances between the points resemble the actual proximitiesdrethe objects as closely as
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possible. The best ever way to demonstrate the capabilities ofiMBSillustrating the classic
example of cities and geographic map of Europe which is very widely used.

Consider the inter-city distance matrix shown in table 1. Leuppose that we know the inter-
city distances accurately for 10 popular cities of Europe. EsBgritiss would be a 10 by 10
symmetric distance matrix with the principal diagonal beimgpséistance of a city to itself is
always zero). The actual distances in miles are given by the follonartigx:

The numbers 1 through 10 correspond to each of the 10 cities shown Biguhe 5. This
distance matrix is fed to the MDS. The distances are fiaed down suitably with a scaling
factor. Now the 10 cities are placed in a 2-D coordinate #xssch a way that their Euclidean
distances match very close to their scaled distances and thienge€entroid of the entire
configuration of points is at the origin. This forms the Relativ@pMNow we may also have
specific idea on some of the cities. For instance, assume thalteaely know the geographical
locations of at least three cities say Stockholm, Madrid and R@eecan now translate and
rotate the relative map in such a way that the relative totatf the above mentioned three
cities conform very closely to the absolute locations. In thisga® we find that the rest of the
cities also reach their absolute locations. The accuracy depentle precision of inter-city

distances and the transformation of relative map to absolute map.
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Figure 5 : Relative and absolute maps of cities of Europe

2.3.2 Types of Multidimensional Scaling
By now, we already understood that the MDS depends heavily on the fiyoxieasure input in

the dissimilarity matrix. In the above example, the inter-@isgance was the proximity measure.
While ‘distances’ are numerical figures, there are manyrdgipes of proximity measures also.
Basically, the proximity variables can be divided into four broad categories:

1. Nominal Scale : Classificatory data with no comparisons possible .(Ex: Gender

N

Ordinal Scale : Comparable data with no quantitative measure(Ex: Grades A-E)

Interval Scale: Difference in two values are meaningful but no zero (Cetsile$ s

w

4. Ratio Scale: Same as Interval, but with defined zero.( Kelvin Scale)

Based on these four types of proximity measures, the claddidédimensional Scaling is
further classified into two types:
1. Metric Multidimensional Scaling

2. Non-Metric Multidimensional Scaling
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Metric Multidimensional Scaling deals with the Interval andi®aariables. This would include
most of the models that deal with numerical scores, distances lardgoiantitative measures.
This thesis work uses inter-subject distances and hence we wilislng on Metric
Multidimensional scaling only. The Non-metric Multidimensionallisgadeals with the other
two types of variables, nominal and ordinal. Mostly this model findsicgtigin in subjects
involving abstract issues like behavior patterns, affinity detetioimand other issues which are
hard to be quantified. This type of MDS is mostly used in PsyghplMarketing and other
related fields. Now onwards we will be dealing with only Mett Classical Multidimensional

Scaling in which the Proximity variable refers to the distance betweeauljects.

2.3.3 Algorithm for MDS-Based Localization

In the case of localization problem, the dissimilarity meastifé subjects is an N x N distance
matrix. We now discuss the classical multidimensional scatiethod first and then discuss the
steps for localization using MDS. Let the proximities between pair of nodes (r, s) be
indicated byd,s where r, s= 1, 2...n and n is the total number of subjects. If thendessiies
and the distances between the subjects are to be preciselgeanctiistances then Classical
Multidimensional Scaling finds a configuration of points ensuring the equality

drs = rs (@H)
where ¢ is the distance between the two subjects in the configuration.réignine above
equation is not a strict equality and through the configuration of pdMIS always tries to
minimize the loss function given by

Loss Function = [{ (dis -8:9%)/3. (dis))*? 2)
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Given the above constraints on the inputs, the MDS can then plot thasewith origin as the
centroid. To get a perceivable output, there must be just 2 or 3 dimengnxcis are good
enough to contain most of the information. Hence singular value decimpds carried out on
the distance matrix and only those dimensional are preserved wbroley most of the
information. In mathematical terms, these are the dimensions wdrehassociated with

correspondingly largest eigen values.
In summary, the localization problem can be addressed by the following stepM$n@5]

1. The shortest path between the pairs of nodes is computed. The distameament
capacity of a node is limited by its communication range. A madiemeasure distances
to its neighbors only and for the rest of the nodes which fall outs&leommunication
range, an “infinite” value is assigned as the distance. (@lpic¢infinite” takes the

values of few tens of thousands so that it is always contextually large)figure
2. Floyd’s Algorithm is used to compute the shortest paths betwaepaanof nodes using

the connectivity information.

Floyd's Shortest Path Algorithm
This algorithm, which is also referred to as Floyd-Warshaillggorithm [36], compares

all possible paths through the connected graph between each pair @désvdttdoes so

by incrementally improving an estimate on the shortest pathelkettwo vertices, until

the estimate is known to be optimal. Floyd's shortest path digonitses a technique
called Dynamic Programming [36] to solve the all-pair shorpegh problem. The

following explains the procedure involved.

The first step is to create an Adjacency matrix whictomputed for any paid of nodes

(i, j) as follows:
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0 if i=j

d, if i#] (15)

A(i,J')={

Note that ¢g= o when i and j are more than 1-hop away

The adjacency matrix entries are recursively updated byfallmving function that
searches exhaustively for all possible paths and pickshtineest path. The variable k
indicates the possible number of iterations and there cowdtitbe most k-1 intermediate
nodes in between i and j in any iteration. The recursiveaiamgs given by the following
expression with k equal to (1, 2...n)

q, ={A(i,j) when k=0 (16)

d,  mind®?,di® +d{™®) when k>0

This leads to a final updated version of Adjacency matitkh vespective shortest path
distances as the matrix elements. The computation complegiteis by 1.

Dijkstra’s algorithm is another popular shortest path algorithat can be used in this
application. But Floyd’s algorithm is more robust and involvessde computational
overhead in large networks. Moreover practical experiet®e indicates that Floyd's

algorithm is faster than Dijkstra’s algorithm in MATLAB simulati¢85]

. The symmetric distance matrix obtained in the above step is tmplhe Classical MDS
algorithm. As mentioned earlier, the CMDS does singular vdkesomposition and
eliminates dimensions corresponding to non-significant eigetuesa thereby
constructing a relative map with 2 or 3 dimensions. An optioeinement step
involving least-squares minimization can be included to l@dbom the inter-distances

of the nodes to the measured distances.
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4. The relative map obtained can be transformed into an aesuokp, if provided with the
minimum number of anchor nodes, (3 nodes for a 2dD4anodes for a 3-D networks).
First, a transformation function is created by mapping tlegive coordinates of the
beacons with their known absolute coordinates. This mightievamme translations and
rotations. The obtained transformation function is theriegpo the rest of the nodes.
An optional refinement step involving least-squares minimizatam lee included to

conform the inter-distances of the nodes to the measutedchbs.

2.3.4 Performance of MDS-Based Localization
The performance of classical Multidimensional Scaling basedlifation is determined

fundamentally by the network topology parameters. It wesemied that the density of the
network has direct relationship with the performance. Simulagsnlts show that the denser
networks exhibit less mean localization error. The secorithclise performance parameter is
the shape of the network topology. If the nodes were geglan a uniform pattern, the results
were better. Contrastingly, irregular deployment increasesethor and especially c-shaped
networks yield highly unsatisfactory results.

In the view of the parameters identified, the MDS-baseditat®mn procedure is realizable in
most of the cases where the nodes are deployed demskhggularly in a static network. Once
deployed, the nodes do not change their locations arcehdre regularity of the network can
possibly be addressed by a proper initial deployment oésioBut the density is fixed and
moreover this approach cannot be extended to a dynataonkevhere the nodes move around

randomly and might end up forming an irregular networtua course of time.

The performance of the MDS is restrained by the dengitgetwork and regularity in the

locations of the deployed nodes. Hence this situation callarfalgorithm which comes into
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picture once the nodes are deployed in a grid based ketlivehould be able to accommodate
the issues of density and regularity to the best, thougbular networks are always a problem.

These two issues are addressed in the Chapter 3.
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CHAPTER 3

DETAILED ALGORITHMS FOR DISTRIBUTED CALIBRATION

OF WMSN

Chapter 3 develops the detailed theoretical framework fdonpeing the distributed calibration
of wireless camera sensor nodes. First we discuss thienhaga generation algorithm which
involves vision map generation and ID map generation. Scare examine the map validation
algorithm and lastly we explore the map merging algorithm.

As described in the chapter 2 we find the global minimunteatoggenerate the local maps by
fusing the vision map and ID map and further refiningréseilts using the iterative closest point
algorithm (ICP) [26]. Then the node with the least ID seliéstdf as the base node and confirms
whether it is a good node to start with. Once confirmed the searches for the next best node
to merge with and then performs the map merging algorithgrow its local map to cover the
entire environment. Also further analysis is done to acctamthe uncertainties in the MDS
algorithm due to network topology and density of the netvamitk thus develop algorithms for

addressing the same innovatively.

3.1 Local Map Generation

3.1.1 Vision map generation

The original idea of the omnidirectional vision sensors (ODMSHg a mirror in combination
with a conventional imaging system has been proposed kg/[B€e The idea makes use of a

hyperboloidal mirror for acquiring an omnidirectional image thas a single center of
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projection. That is, the omnidirectional image can be trangfdrinto normal perspective
images.

1990’s, saw the emergence of computer technologies wehighled real-time process of vision
data and researchers made several types of omnidirdctieima sensor as vision systems for
computers and robots. Yagi and Kawato [38] made an oraditnal vision sensor using a
conical mirror. Honget al. [39] made an omnidirectional vision sensor using a splenaror.
Their purpose was to navigate mobile robots with the omnidiredtigision sensor. The
omnidirectional vision of a robot is convenient for detectingimp obstacles around the robot
and for localizing itself. Then, Yamazawa and others d8{le again an omnidirectional vision
sensor by using a hyperboloidal mirror. By utilizing theitadrthe hyperboloidal mirror that the
omnidirectional image can be transformed into perspective sndgey proposed a monitoring
system with the ODVS.

Nayar and Baker [(Baker, 1997)] theoretically analym@dging systems using mirrors and
developed an ideal omnidirectional vision sensor usingabphc mirror and a tele-centric lens.
The omnidirectional vision sensor using a hyperboloidalanican generate an image taken
from a single center of projection in combination with a stah@arspective camera. However,
it has a disadvantage that one of the two focal points ofyperboloid has to be set on the
camera center [42]. This disadvantage makes it difficulegigth the ODVS. On the other hand,
the imaging system proposed by Nayar and Baker dddsave such a disadvantage since it is
using the tele-centric lens. As known well, the parabolicaninas a focal point for light which
is parallel to the main axis of the parabolic mirror. Furtliee imaging system is superior in
acquisition of non-blurred images and it can eliminate interfiact®ns of a hollow cylindrical

or spherical glass which supports the mirror.
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vision map with noise

180

270

Figure 6 : A typical vision map with range and angle errors

In the proposed system each sensor node takes an afnidogeenvironment using its embedded
omnidirectional camera. Figure 6 shows a simulated vision Wapprovide random orientation
to the vision maps in order to simulate different orientatioe&wh vision map.

From this image each node gets the relative distance gteliaformation (x, y, an@ for the
camera) of each of its vision neighboring nodes. The distarformation can be calculated
based on the size of the image of the sensor nodeViJA&8assume that the distortion correction
on the omnidirectional images has been done. We furisenge that in the omnivision camera
the mirror is facing downwards and hence we can seedighbors in the vision map. Based
on the above information, we can estimate the location of eade within the vision

neighborhood.
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3.1.2 ID map generation

As explained in chapter 2 Multidimensional Scaling (MDS) aflgm is a popular statistical tool
used to depict the dissimilarities or proximities between the obfbeotsigh a placement of
points in a low-dimensional plane where the Euclidean distdetegen the points resemble the
actual proximities between the objects as closely as possildegénerate a distance matrix
which is a dissimilarity measure for the sensor nodes withitwa hop communication
neighborhood. The distance matrix which is fed to the MD®rifgn must be a symmetric
matrix with zeros on its principal diagonal. Given the abovesitaints on the inputs, the MDS
can then plot these points with origin as the centroid.

Based on the classical MDS algorithm we discussed in Chapection 2.3.4, the method to
generate the ID map consists of four steps which invatediecting the inter-node distance
information, finding the shortest path using the Floyd’s algarjtimput this distance matrix to
the MDS algorithm to generate a relative map of 2 dimessemd perform an optional
refinement step to further conform to the inter-node distarkigare 7 illustrates a typical ID
map.

Through the above steps, an ID map is generated in thadw neighborhood, which will be

associated with the vision map of that node.
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Figure 7: A typical ID map

3.1.3 ID Association Algorithm

We propose a map registration approach to solve the Weiatisn problem. This approach has
two steps. In step 1, we conduct a pre-registration tohiguadign the ID map with the vision
map. In step 2, we refine the registration with the ICPrilgo.

Step 1: Pre-reqistration

In this step we associate the nodes in the vision mapy) and ID map %,,,, ,»,) to find the
best possible correspondence. This is done by seartifénglobal minimum angle which can
give the rough association.

To find the global minimum angle, we perform the followingste

1. Translate the ID map in order to have an overlapped céhtrith the vision map.

2. For ¢=1:360 with increment of 1 degree do:

Rotate the ID map k¥degree;
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Calculate the corresponding pairs between the nodes in thmdp and in the vision map
based on the closest distance.
Calculate the sum of the square of the distances betweenrtespmnding pairs and find

the minimum sum and ifs

min F((xv — xm)* + v — Ym)?)

. Calculate the rotation matrix:

Ryre = [cos® sin®, —sin® cos@]

. For reflection due to symmetry

Rpip = [cos6 sinf, — sinf cos6],
wheref =180 degree

IDmap =IDmap * Ry, (this gives x = -x, y =y)

. Recalculate the rotation matrix:

Ryrenew= [c0s6 sin, —sind cosb],
wheref =0:360 with increment of 1degree
. Recalculate the sum of the square of the distances betweeorteésponding pairs and find
the minimum sum and ifs
. Compare the minimum sum for R_prenew and R_pre @simgd and select the appropriate
rotation matrix for the new ID map generation.
. Generate the new ID map:

IDmap_new = (R_pre) or (R_prenew) *IDmap

Through the above steps, the ID map is rotated, reflestddorought close to the vision map,

which will be further rotated in Step 2 for refinement.
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Step?2: ICP based refinement

After the nodes in the vision map and in the relative ID naapetbeen roughly associated in
the above step, we run the iterative closest point algorithnt¢2@ffine the correspondence of
the two maps to a higher degree of accuracy.

The ICP algorithm finds the rotation and translation matrix eetwthe preregistered ID map
and the vision map by minimizing the least square erromngrthe closest node pairs. Based
on the refined registration, we can improve the 1D assonigtween the nodes in the ID map
and in the vision map.

3.2 Local Map Validation
After the ID association anithe ICP registration algorithm, the nodes need to know that their

local maps are correct. This ambiguity is mainly due to tleerainty in the MDS result.
In order to solve this problem we propose map validatidmiqae.
The node validating its local map requests for the local magseaneighboring nodes. The
common IDs in the local maps are subject to rotation, teflecscaling and translation through
the use of procrustes function [18]. We then calculate t8& Malue for the node validating its
local map and its neighbor. If the MSE value obtained isthess 1r units we define the node
as a good node, where ‘r’ is the normalizing unit distaifcékhe MSE value is more than 1r
units.

We can summarize the algorithm in the steps below:

1. Select the node which needs to validate its local map.

2. Run the ID association algorithm to calculate the local map

3. To check the local maps do:

33



e Neighboring nodes share the local maps with the node tlegisrte validate its local
map

e Compare the Mean Square Error metric between the oridgipgin the new local
map and the node that needs to validate its local map

e The mean square error metric is calculated between the atigds and the IDs in
the local map of the node that needs to validate its local map

e Check the magnitude of MSE value. if it is less than 1r unitxenti is the
normalizing factor then we can declare the node as a godd.rA good node is a

node that has a good local map.

3.3 Map Merging
Each node knows whether it has a good local map aftengdhe local map generation problem
and then running map validation algorithm as discussedeabtven we address the problem of
base node selection and merging or growing the local mapbtaining the best linear
transformation from the set of good nodes to transfornedbedinates of the common nodes in
the base node local map to those in the neighboring tmcedsnaps. This enables us to localize
all the nodes in the network. We call tthe map merging algorithm
We select the node with the least ID (node with ID 1) asse bode to start with. We then run
the map validation algorithm to know whether it is a good hade to start. If we validate the
local map as a good node then we select node 1 as thadmes If we are not able to validate,
we randomly select another node from the set of neigidpandes of node 1 until we find a
good node to start with.
We define the following variables:

My, : { (x,¥)p, 1Dy} The partial global map of nod¥,.
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ID,: The IDs in the local map a@f,

(x,¥)p : The local map coordinates of nallg

N; : The next best node selected for merging

M; :{ (x,¥);,1D;} The local map of node

ID; : The IDs in the local map for the next best nide

(x,¥); : The local map coordinates for the ndge

(x, y)? : The local map coordinates for nalein nodeN,, coordinate frame.

The following steps are involved in the map merglgorithm:
1. For base nod#,, find the neighboring node that has a local map with the maximnumber
of unknown IDs and minimum number of three common IDs.
2. Request for the local map from the selected node.

3. Find the linear transformation by using the Procrustes functibransform the next best node

mapM; into nodeN,’s coordinate frame to g@tlj” using:

= )t (R g )+ ™)
where, R is a combination of the rotation and reflection faatat T is the translation factor
4. Update the partial global maj;,, using
My= M, UM

5. Repeat steps 1-4 and thus update the partial globalungipt contains all the nodes.
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CHAPTER 4

SIMULATION RESULTS

In Chapter 4 we first present in detail the simulation envirenm#&'e then discuss the results
obtained and evaluate the performance of the proposetework. Different scenarios have
been discussed which investigate the local map generatise, f@de selection, and map
merging concepts developed previously in Chapter 3.

4.1 Simulation Setup

We conducted computer simulation to evaluate the propogedaa. The simulation is carried
out in MATLAB. The PC used is a standard Dell Inspirathvan INTEL core 2 Duo T5750 @
2GHz processor and a 3GB RAM.

In our simulation, nodes are placed in a square areanddel the placement errors as Gaussian
noises. In this way, we can create a random sensor diginlbmimicking, for example, airplane
deployment. One hundred nodes are placed on a 10r grith) with a unit edge distanae
Figure 8 shows an example of the deployment with 10% ipleseerror. The radio range is R =
1.95r, which leads to an average connectivity of 8.14théngraph, the points represent the
sensor nodes and the edges represent the one-hogtoatnkbetween neighbors.

4.2 Results

In the results section we examine the performance ofigloeithms discussed in chapter 3. First
we examine the results for local map generation which inclpoesegistration and refinement
due to ICP algorithm. Also we tabulate the results of ID@ation in local maps for different

vision ranges. In the second subsection we evaluate thesatidption algorithm. We tabulate
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the results for the same. In the third subsection we invéstiga map merging algorithm and
observe several simulations illustrating the same. We then tabbé&tesults calculating the
accuracy metric at each stage of map merging. We hafaped simulation tests on the above

described irregular grid network.
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Figure 8: The ground truth of the sensor deployment (100 nodes, R=1.99r, placeme
error=10%)
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Figure 9: The ground truth for ID map (green stars) of the sensor nodes anthé¢ vision map
obtained (black triangles).

4.2.1 Local Map Generation

We now observe the results for local map generation algarithtine first evaluation scenario
the node 55 was selected as the good base node to stafigitie 9 shows the result of the ID
map (green stars) based on the two-hop communicatiohbwelgpod of the base node. It can be
seen that the center of the ID map is the origin (0, @),itanas a different orientation than the
original network.

Figure 10 shows the result after performing pre-registratmshassociating the IDs in both the
ID map and in the vision map for node 55. It can be searthere is still a significant distance
error between the corresponding pairs in the two magsak® node ID 55. In Figure 11, the
result shows the IDs in the ID map match the ground trustofvision map after performing

the ICP refinement algorithm for base node ID 55.
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Figure 10: ID Association using pre-registration. The nodes in the sion map are brought
closer to the nodes in the ID map for node ID 55
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Figure 11: The map shows the correct ID association between the ID map atie vision
map after performing the ICP refinement algorithm for node 55. The IDs Bown in the
figure indicate that they have the perfect match.
We now consider a different example for the local maprg¢ioa algorithm. In the Figure 12
we illustrate the pre registration step for node ID 66 arkigare 13 we demonstrate the

refinement step due to ICP algorithm.
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Figure 12: Pre-registration example. Before the implementation of iterative cleest point
algorithm for node ID 66
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Figure 13 The map shows the correct ID association betweehe ID map andthe vision
map after performing the ICP refinement algorithm for node ID 6€.
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In the third scenario the node ID 33 was selected asalggse node to start with. The pre-
registration step in obtaining the local map is illustrated inréigd and the result after ICP

refinement is shown in Figure 15.
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Figure 14: Pre-registration - Nodes in Vision map brought close to nodes iD map for
base node 33
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Figure 15: Local Map generated for base node ID 33
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We now compare the results for various radio range &idnvrange. The average degree of
connectivity in all four cases is greater than 5 and the nnigbe placement error is 10%

Gaussian noise. The table shows that with the increase @dizecommunication range, the 1D

map results will be better and the registration error will be smalle can also observe that the
radio range needs to be greater than 1.5R for correas$dciation. The number of neighbors
covered for a typical 2 hop neighborhood with 1.5R %8620f the total number of nodes

deployed in a network. In Table 2, we have listed the tnean square error (MSE) of the

locations in the vision map and in the ID map for base mbde5. This table summarizes the

results for various radio ranges.

TABLE 2 : TRUE MEAN SQUARE ERROR OF THE LOCATIONS IN THE VISION
MAP AND THE ID MAP R_V=3.1

Noise 10% 10% 10% 10% 10%
Radio 2R 1.75R 1.5R 1R 0.75R
Range

True MSE | 0.0176 | 0.098§ 0.1057 3.885 4.603

ID correct correct| correct incorregt incorrect

association

In the Table 3 we discuss the true mean square obtaimea ¥ision map range of 4.1 for
decreasing range of radio error starting from 2R. W alaserve that the error for the radio
range of less than 1.5R is larger. We now discuss #udtsefor incorrect ID association due to

symmetry and the correction applied. Figure shows the extold association resulting due to
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symmetry. 10% noise in the placement of nodes results ing@y¥metry, due to thesoise
in the deployment of the nodes.

TABLE 3: TRUE MEAN SQUARE ERROR OF THE LOCATIONS IN THE VISION

MAP AND THE ID MAP R_V=4.1

Noise 10% 10% 10% 10% 10%
Radio 2R 1.75R 1.5R 1R 0.75R
Range

True MSE | 0.0293 | 0.1288 0.157| 4.47 5.18

ID correct | correct| correct incorrect incorrect
association

4.2.2 Symmetry Correction Algorithm

In this section we examine the map validation algorithm. Theganty in local map generated
basically results due to the irregularities in the MDS algoritlemch there is a need to validate
the local maps further.

We have performed simulations for different vision rangésle keeping the radio range
constant. The figure 16 and figure 17 illustrate the incofetssociation scenarios for node 1D
37. It can be observed that the True MSE value is higherttie threshold value of 1r units and
hence the local map obtained is incorrect. After improvingatgerithm with the investigation
for reflection factor, the magnitude of the MSE value is tbtmbe less than the threshold of 1r

units. The figure 18 clearly shows the improved local nmaméde ID 37.
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Figure 18: Correct ID association after applying reflection and comparingtie MSE values.
The MSE value obtained is 0.07

In Table 4 we have tabulated the true MSE metric for iecbiiD association due to symmetry.
The true MSE is a measure of how accurately the algogdmtorrect the symmetry error. The
radio range is kept constant at 1.95R. The vision ranggrisd from 2.1r units to 3.1r units. For
the vision range below 1.5r units the density of the nodegelg less and hence is not

appropriate for simulation.
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TABLE 4: CORRECTION IN SYMMETRY ERROR

Radio range 1.95R 1.95R 1.95R
Noise (Gaussian) 10% 10% 10%
Range error (MDS) 2% 2% 2%
Vision Radius 4.1 3.1 2.1

True MSE 2.7961 2.4263 1.398
symmetry

ID Association Incorrect Incorrect Incorrect
True MSE 0.0748 0.0648 0.348

ID Association correct correct correct

4.2.3 Map Merging

In the map merging algorithm we examine the simulation reBrltserging of base node 55.
Then we illustrate similar results for base node 66 and mede 33. We then tabulate our
results by observing the accuracy metric at each stagergfing for node 55 and node 66. We
further simulate the map merging for different noisy envirents keeping the other parameters
constant for base node 55 and tabulate the true MSE nwatticef global map obtained in each
case.

Figure 19 and Figure 20 illustrate the intermediate nodes sklectenerging for base node 55.
The nodes 37, node 33 and node 77 are the intermedid#s selected. Figure 21 illustrates the
global map obtained after performing successful map ingergjgorithm. The vision range for

scenarios is kept at 3.1r units and the radio range id LIAGER
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Figure 21: The global map for base node 55

Figure 21 shows the global map for the randomly selectdd B chosen as the base node in

this case.

We discuss another example wherein we started with thel@ass a base node and finally

selected node 66 as the node to start with. As seen in FAgunede 47 is selected as the best

node for merging with the base node 66 with 22 unknovenféida vision range of 3.1 and radio

range of 1.95R. The Figure 23 illustrates the intermedigpevgtere nodes 47, 25, 63 have been

selected with unknown IDs 22, 18, 12. In the Figurel®izvs the global map obtained for node

66 for the vision range of 3.1.
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Figure 24: Global map for base node 66
The Figure 25 illustrates another example of base node toap for selected node ID 33
wherein the nodes selected for merging are IDs 55/3&8 78 12 3 70 with a vision radius

of 3.1 and radio range of 1.99R and noise 10% (3sigB@00).
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Table 5 shows the MSE for variations introduced in the plaoéerrors. The mean square error
for the placement error increases as more noise is uteodn the placement of the nodes. With
increase in the gaussian noise above 20% the MDS reseltshserved to be incorrect which
results in an incorrect global map. From our simulationsalse find that the ID association
results are not good for sparse networks. When thegveegree of connectivity is below 5 the
ID map results will be bad, which will cause wrong pre-regfigtn and wrong ID association.
This will then lead to an incorrect map merging, and the glolgp obtained would be

erroneous.

TABLE 5: % OF GOOD NODES IN THE LOCAL MAP OF THE BASE NODE 55

Next Node Number Of| Number Of Good| Total %
Selected For Good Nodes (symmetry Nodes (good nodes with
Merging Nodes correction) symmetry correction

total nodes)

37 19 36 48 75
58 31 42 61 68.85
28 38 57 74 77.07
77 38 60 86 69.76
2 40 65 94 69.14
69 48 74 100 74

The Table 6 shows the number of good nodes selectzttlatstep of merging with base node

66. The table illustrates the improvement in the accuracyods@mmetry detection and
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correction. The number of good nodes can be seenambad 80% of the total number of
nodes. This implies that there are 80% of nodes with @dieal maps.

TABLE 6: % OF GOOD NODES FOR BASE NODE 66

Next Node Number Of| Number Of Good Total %
Selected For Good Nodes ( symmetry Nodes (good nodes with
Merging Nodes correction) symmetry correction

total nodes)

47 15 38 48 80

25 28 52 64 81.25
63 32 55 77 71.42
88 41 58 85 68.23
18 46 67 91 73.62
12 48 74 96 74

72 49 79 99 79.79

Table 7 shows the MSE metric for variations introduced irptheement errors. The mean
square error for the placement error increases asmo@e is introduced in the placement of the
nodes. With increase in the Gaussian noise above 20% tiserb4Dlts are observed to be

incorrect which results in an incorrect global map.
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TABLE 7: MEAN SQUARE ERROR FOR VARIOUS PLACEMENT ERRORS (NOISE)
FOR A SELECTED VISION RANGE OF 3.1

Gaussian Noise MEAN SQUAREERROR ~ GLOBAL MAP OBTAINED

(%) BETWEEN THE COMMON ID
5 0.03 Correct
10 0.031 Correct
15 0.033 Correct
20 0.046 Correct
25 2.38 Incorrect
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The thesis work provides a solution to the network camegrdization calibration problem in a
distributed fashion. In chapter 1 we introduced the emeff@ityof wireless multimedia sensor
networks and we discuss the related work starting from &R8d localization to range based
localization techniques. Then we explored the single camditzrat®n techniques and the
problems associated with the same. This led us to shifioous to network camera calibration
and we investigate the techniques for the same. Chaptauged on developing the problem
statement and the overall proposed solution which is a twopsteeess involving local map
generation and map merging algorithm. The detailed theoretaraktvork of local maps was
put forth in chapter 3. As explained in the third chaptethénocal map generation algorithm we
explained the ID map generation and ID association algotdking into account the refinement
due to ICP algorithm. We then discussed the map validationitalgn to check the uncertainties
due to classical MDS. Here the node checks whether itsrmaalis correct by sharing its local
map with the neighboring nodes and comparing the mearresqueor with a predefined
threshold value and classifies itself as a good node. Isebend part, we explained the map
merging algorithm. The map merging algorithm consists dfirign the next best node, and then
merging the partial global map and the selected local maptfrerset of good nodes by finding
the best possible linear transformation between the coordiobtegese maps. The simulation
results stand in accordance to all of the specified conclusiersa variety of radio and vision
range.

The major contribution of our thesis lies in developing thertiaal framework for distributed

camera calibration based on vision data, local inter-node destaand local topology. Moreover
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our work does not need any moving targets to performiuliséd camera calibration. We further
develop innovative algorithms for local map generation angd marging. We evaluated the
proposed approach through computer simulations. This lacesiibration algorithm can thus
be used to develop self-organized wireless multimedia saesgorks.

Our thesis work caters to wide variety of applications whiclude surveillance systems during
crime and terrorist attacks. They are also useful fofidraionitoring in cities and highways.
Military applications include locating the targets of interest (ssatn@my soldiers, tanks) in the
battlefield and relay video images to the command center.

The errors due the network topology and grid based deot of the sensor nodes are not
completely eliminated and hence not all nodes have a goalht@p. Future work could involve
investigating the key factors contributing to the same. Alsofuh#&e work would include
finding the heading of the wireless camera sensor nodesuwitising the compass. The method
described in the thesis is performed only in simulation enmiemt, and the performance of the

algorithm needs to be evaluated in real time camera sertsarke
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