
 BUS ENCRYPTION AND AUTHENTICATION UNIT

FOR SYMMETRIC SHARED MEMORY

MULTIPROCESSOR SYTEM USING GCM-AES

 By

 VARUN JANNEPALLY

 Bachelor of Technology in Electronics and

Communication Engineering

 Jawaharlal Nehru Technological University

Hyderabad, AP, India

2006

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2008

 ii

 BUS ENCRYPTION AND AUTHENTICATION UNIT

FOR SYMMETRIC SHARED MEMORY

MULTIPROCESSOR SYTEM USING GCM-AES

 Thesis Approved:

Dr. Sohum Sohoni

Thesis Adviser

Dr. Louis G. Johnson

Dr. James E. Stine, Jr.

Dr. A. Gordon Emslie

Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I sincerely thank my adviser Dr. Sohum Sohoni for giving me the opportunity to

work with him. Dr. Sohoni has offered me tremendous support and encouragement

throughout this study. It is an honor to have worked with him in the CAESAR Lab. I

gratefully acknowledge the funding provided by the CAESAR Lab throughout the course

of this study and making this work possible.

I would like to thank Dr. Louis G. Johnson and Dr. James E. Stine, Jr. for

agreeing to serve as my committee members. I specially thank them for their time and

cooperation.

It was a great experience working with my lab mates, especially David Fritz, Wira

Mulia and Ying Xiong (Lawrence). I thank them for their support that they offered me

whenever needed.

 I thank my family from the bottom of my heart for their unconditional love and

support. I finally dedicate this work to all my family members.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Background ..1

 1.2 Security attacks ..2

 1.3 Hardware security mechanisms ...4

 1.4 Organization ...5

II. RELATED WORK ...7

 2.1 Cryptography ...7

 2.2 Uniprocessor system security architecture models ..9

 2.3 Multiprocessor system security architecture models11

III. IMPLEMENTING ENCRYPTION AND AUTHENTICATION UNIT14

 3.1 Modes of operation of AES ...14

 3.2 CBC mode of operation ...15

 3.3 GCM mode of operation ..16

 3.4 Processor communication model ...19

 3.5 Operation of CBC-AES unit in an SMP ..22

 3.6 Operation of GCM-AES unit in an SMP ...23

 3.7 Bus attacks prevention mechanism ..29

 3.8 Storage estimate for security hardware unit in GCM and CBC schemes29

IV. SIMULATION METHODOLOGY ..32

 4.1 SIMICS a full system execution driven simulator ...32

 4.2 GEMS (memory system simulator) ...32

 4.3 GCM & CBC throughput schemes ..36

 4.4 Workload..36

 v

Chapter Page

V. DISCUSSION OF RESULTS ..38

 5.1 Effect of throughput in CBC and GCM schemes ..38

 5.2 Effect of varying cache line size ..45

VI. CONCLUSIONS AND FUTURE WORK ..46

REFERENCES ..48

 vi

LIST OF TABLES

Table Page

Table 4.1: Simulation parameters for 64-byte cache line size35

Table 4.2: Simulation parameters for 128-byte cache line size35

Table 4.3: Workload ..37

 vii

LIST OF FIGURES

Figure Page

Figure 2.1: Encryption and Decryption ..7

Figure 2.2: Hash Functions ...8

Figure 2.3: XOM Architecture ..10

Figure 2.4: Generalized security architecture model ..11

Figure 3.1: CBC Encryption and Decryption ..15

Figure 3.2: GCM Authenticated Encryption ..16

Figure 3.3: GCM Authenticated Decryption ..17

Figure 3.4: GCM Hardware ..19

Figure 3.5: Processor Communication Model ..21

Figure 3.6: Bus Encryption Model ..23

Figure 3.7: Implementing Authenticated Encryption in SMP 26

Figure 3.8: Security Hardware Unit Model for Encryption ..27

Figure 3.9: Security Hardware Unit Model for Decryption ...28

Figure 4.1: GEMS Simulator Model ..33

Figure 5.1: Total Performance loss for 64 byte cache line size for 2, 4, 8-Processor

systems to provide encryption and authentication ...40

Figure 5.2: Total Performance loss for 128 byte cache line size for 2, 4, 8-Processor

systems to provide encryption and authentication ...41

Figure 5.3: Total Performance loss for 64 byte cache line size for 2, 4, 8-Processor

systems to provide encryption and authentication for 10 transaction interval for CBC

scheme ...44

 1

CHAPTER I

INTRODUCTION

1.1 Background

In daily life, millions of financial transactions take place and large amounts of secure

data gets communicated among numerous computers around the world. Information

related to finance, defense, and other sensitive information is constantly processed by

computers. To protect this sensitive information from attackers, traditionally computers

rely on anti-virus software and firewalls to safeguard information. Hardware mechanisms

provide higher security with a much lower overhead compared to software mechanisms.

Several hardware security architecture models in uniprocessor and multiprocessor

systems have been proposed. With the increasing role of multiprocessors and multicore

architectures in e-commerce applications such as internet telephony, inventory

management and database management applications which maintain medical records,

credit history records etc. it is crucial to design efficient secure architectures and

algorithms for these systems. This work proposes an enhancement to a secure

architecture model for safeguarding the cache-to-cache communication in a shared

memory multiprocessor system. The purpose of the scheme is to maintain confidentiality

and the integrity of the bus data transfers with a minimum performance overhead.

 2

1.2 Security Attacks

The types of attacks [1] which are possible on a system can be classified as

1. Physical attacks.

2. Software attacks.

3. Side channel attacks.

Physical attacks:

The manipulations of the physical components of a system to reveal some sensitive

information are categorized as physical attacks. The following are some of the possible

physical attacks:

a. Modchips installed in Microsoft Xbox can allow the console to play pirated

games [2].

b. Opening, probing and reverse-engineering of the chips.

To protect the system from physical attacks, mechanisms that do not disclose information

upon reverse engineering should be employed. For example, a device that checks for

main memory corruption should be employed for devices which have direct memory

access (DMA) support [1].

Software attacks:

The type of attacks which take advantage of the vulnerabilities in the application

software or the operating systems, fall under this category. The most common types of

software attacks are:

a. Buffer overflow attack: This attack overwrites the data stored in the system

beyond the size of the buffer when the user inputs large amounts of data. This can

 3

cause the system to execute the user’s choice of code. This is termed stack

smashing [1].

b. Message blocking, reordering and spoofing are some of the common attacks on a

bus or communication channel [2].

c. Injecting malicious code that infects the system and reveals information of

specific interest can also be possible. The most common types which come under

this category that infects numerous computers all around the world are computer

viruses, trojans, and worms.

Side channel attacks:

These forms of attacks reveal sensitive information when physical actions of

computations are analyzed. Timing attacks and power attacks come under this category

[1].

Timing attacks:

The time taken for a computation depends upon the type of computation being

performed. If a particular sequence of time patterns pertains to a set of operations that

reveal some data, the corresponding information can be extracted by timing analysis.

Power attacks:

When computations are performed on a chip it consumes power. When the power

traces are analyzed, hidden data can be obtained. There are examples where a single

power trace can be analyzed to extract a DES key from commercial smart cards. The

differential power analysis techniques study the correlations between data and the power

consumption [1].

 4

1.3 Hardware security mechanisms

To safeguard the system from some of the above types of attacks traditionally

vendors provide security through software-only-solutions. These include the anti-virus

software and firewalls. Despite their security features like encryption, inspection of

network traffic and port monitoring, software solutions are still susceptible to attacks.
This is the reason we often patch our Operating Systems and frequently update our anti-

virus software and firewalls. Hardware security mechanisms are efficient and provide

higher security. As such several researchers have proposed hardware security architecture

models [2, 4, 5, 7, 16, 17, 19, 20, 32] for both uniprocessor and multiprocessor systems.

These systems provide security deriving trust just from the processor. Everything else

outside the processor chip main-memory, I/O (input-output) interface are not trusted. In

these models even the operating system is not trusted. Since these models have a small

trusted computing base the points of vulnerability are very few. These architectural

additions for providing security made at the hardware level can be incorporated on to the

chip or may be a separate co-processor [6] or even a separate core. Because of having

dedicated hardware resources for providing security the performance of these systems is

higher compared to that of their software counterparts. Some of the common security

features [3] provided by these units are

1. Confidentiality

2. Integrity.

3. Authentication.

Confidentiality: A way of providing access to sensitive information only to authorized

users and protecting from unauthorized group.

 5

Integrity verification: A mechanism which helps a recipient to detect any tampering of

the data on transmission and identifying a fake message.

Authentication: A mechanism which helps the recipient to verify the origin and also

detect any intruder.

The hardware security models use encryption decryption units to provide confidentiality

and a hash verification unit to provide integrity. The operation of these units is explained

in detail in later sections. This work presents a secure architecture model for a symmetric

shared memory multiprocessor (SMP) to safeguard the cache-to-cache transfers. This

work proposes a hardware security mechanism, which employs Galois Counter Mode

(GCM) of advanced encryption standard (AES) and modifies it to work in an SMP

environment. The work focuses on why GCM is a better choice over cipher block

chaining mode (CBC) which is used in current state of the art systems. It estimates the

storage required by the additional hardware unit in both modes of operation. A full

system SMP simulation quantifies the performance overhead introduced by the additional

hardware unit in both schemes to safeguard the cache-to-cache transfers. The impact of

increasing cache line sizes and the effect of varying throughput of the AES units in both

the schemes is studied. Providing the same level of security a performance gain in the

range of 4X-9X over the existing scheme is achieved using GCM.

1.4 Organization

The rest of the sections are organized as follows. Chapter 2 covers the related work in

cryptography, and the hardware security architectural models in uniprocessor and

multiprocessor systems. Chapter 3 covers the implementation of encryption and

authentication unit for a symmetric shared memory multiprocessor system (SMP). To

 6

study the overhead of this unit we perform a full system simulation. The simulation

methodology and the results of our study are discussed in Chapter 4 and Chapter 5

respectively. Chapter 6 lists the conclusions and the scope for future work.

 7

CHAPTER II

RELATED WORK

2.1 Cryptography

Encryption is a process of mapping a plaintext message (P), using an encryption

function E and a key K, to a ciphertext (C). It is denoted as E (P, K) = C. Decryption is

the process of mapping the cipher text C back to the plaintext P using a decryption

function D and key K. It is denoted as D (C, K) = P. The type of encryption system which

uses the same keys in encryption and decryption processes is called symmetric

encryption system. This is shown in Fig 2.1. Key distribution is a problem in symmetric

encryption system and security lies in the confidentiality of the key [3].

ENCRYPTION

KEY

PLAINTEXT CIPHERTEXT
DECRYPTION

KEY

CIPHERTEXT PLAINTEXT

Figure 2.1: Encryption and Decryption

The type of encryption system which uses two different keys, one for encryption process

and the other for decryption is called public-key cryptosystem or asymmetric

encryption system. The decryption key is called the private-key and the key used for

encryption is called public-key. In general, it is computationally infeasible to derive

 8

the private key from the public-key, hence the public-key can be disseminated to the

parties that communicate with this type of system. Though key distribution is not a

concern in public-key cryptosystems, computation time is a constraint.

The symmetric encryption algorithms can be categorized into stream cipher and

block cipher algorithms. The block cipher algorithms work on blocks of data of equal

size and the stream cipher algorithms work on a stream of bits. The commonly used

symmetric block cipher encryption algorithms are data encryption standard (DES)

algorithm [8] and advanced encryption standard (AES) algorithm [9]. The commonly

used asymmetric algorithms are Diffie-Hellman [10] and Ron Rivest, Adi Shamir and

Leonard Adleman (RSA) algorithm [11].

Hash functions:

A hash function is one that takes a string of any length and returns an output string of

fixed length called hash, which is shorter than the input. Commonly used hash functions

are message-digest cryptographic hash function (MD5) [12] and secure hash algorithm

(SHA) [13]. Message authentication code (MAC) is generated using a one-way hash

function and a key. In this scenario only the parties having the key can produce and

verify the hash value. The schematic is shown in Fig 2.2. We can also modify the block

cipher algorithms to generate MACs [3].

KEYED HASH

FUNCTION

KEY

MESSAGE HASHHASH

FUNCTION

MESSAGE HASH

Figure 2.2: Hash Functions

 9

2.2 Uniprocessor system security architecture models

Thekkath et al. [4] proposed Execute-only memory (XOM) for a uniprocessor

system, one of the first schemes to propose that software solutions alone cannot handle

security attacks. This scheme provides privacy and integrity against some of the physical

attacks on memory or the system bus or even a compromised operating system. This

model is implemented by making additions like XOM virtual machine monitor (XVMM)

and tagging the registers, level 1 (L1), level 2 (L2) cache lines with XOM identifier tags.

It also has a private memory on chip to store the keys for the corresponding XOM

identifiers. When the data is sent off-chip, XVMM encrypts the data with the

corresponding XOM identifier keys and it also generates a MAC. This provides privacy

and also helps in verifying any tampering of the data when sent off-chip. It also protects

the system against spoofing attacks [14]. XOM uses a simple and direct approach to

provide these features, but has significant performance overhead as the security hardware

units are on the critical path. The security architecture model of XOM is shown in Fig

2.3.

AEGIS [5] is another processor architecture that is secure against physical attacks.

AEGIS uses physical random functions and a one-time pad (OTP) encryption scheme to

provide privacy. It uses a cached hash tree [15] for integrity verification of off-chip

memory. Shi et al. [16] proposed an efficient counter mode security architecture model

which hides the decryption latency by predicting the sequence numbers and

precomputing the pads. A pad is a value that can be pre-computed and is independent of

the plaintext/ciphertext data. Yan et al. proposed a memory encryption/authentication

 10

scheme using GCM mode of operation [32]. They address the memory authentication

latency problems posed by traditional hash algorithms such as MD5, SHA1. This scheme

reduces memory authentication latency significantly by using GCM mode. A generalized

security architectural model is shown in Fig 2.4. This figure shows an

encryption/decryption unit which encrypts/decrypts the processor to memory data flow, a

hash verification unit which computes the hash value of the data sent off-chip. It also

shows the trusted boundary and the un-trusted sources [5].

SYMMETRIC

DECRYPTION

UNIT

MAIN MEMORY

L2 CACHE

XVMM

L1

INSTRUCTION

CACHE

L1 DATA

CACHE

PRIVATE

MEMORY

DECODE DATAPATH
REGISTER

FILE

PROTECTION BOUNDARY

XOM

IDENTIFIER

TAGS

XOM IDENTIFIER TAGS

XOM

IDENTIFIER

TAGS

XOM IDENTIFIER TAGS

AND VALID BITS

Figure 2.3: XOM Architecture

 11

REGISTER

BANK

ALU AND

DATAPATH

CACHE MEMORY

ENCRYPTION

AND

DECRYPTION

UNIT WITH

PRIVATE

MEMORY

INTEGRITY

VERIFICATION

UNIT WITH

PRIVATE

MEMORY

PRIVATE

KEY

MAIN MEMORY

UNTRUSTED O/S

& OTHER

MALICIOUS

APPLICATIONS

SOFTWARE

ATTACKS

SOFTWARE

ATTACKS
PHYSICAL

ATTACKS

I/O

UNTRUSTED

TRUSTED

Figure 2.4: Generalized security architecture model

2.3 Multiprocessor system security architecture models

In a multiprocessor system apart from encrypting the data between the processors and

memory we also need to encrypt the data communication in between the processors [2,

17]. To protect the bus communication from security attacks Zhang et al. [2] designed an

encryption scheme, SENSS, for a symmetric shared memory multiprocessor (SMP)

system, which is both secure and fast. This scheme encrypts/decrypts and also

authenticates the data flow between processors. The proposed scheme uses the cipher

 12

block chaining mode of the advanced encryption standard (CBC-AES) symmetric block

cipher [18] which is explained in detail in section 3.1. SENSS uses this cipher because of

its capability in message authentication. It provides architectural additions like PID

(processor ID) and GID (process ID) which earlier works [17] lack, and a secure

hardware unit capable of providing bus encryption and authentication. Though CBC-AES

provides authentication capability, it needs another invocation of the underlying block

cipher to compute the authentication tag. CBC cannot be pipelined to encrypt many

different blocks simultaneously.

Our study is an effort to increase the performance of SENSS in safeguarding the cache-

to-cache data transfers. Our scheme employs the Galois/Counter Mode of Operation

(GCM) [21], [22], a method which can use pipelined and parallelized implementations

with minimum computation latency. The purpose of the scheme is to maintain

confidentiality and the integrity of the bus data transfers for all types of bus attacks. The

objectives of the scheme are to provide a lower overhead of encryption latency and

message authentication even under heavy bus loads, while maintaining the same level of

security provided by SENSS. Lee et al. [19] proposed interconnect independent security

enhanced SMP (I
2
SEMS), which investigates security for SMP with varying size of

keystream pools and also the relationship between keystream hit rate and various cache

coherence protocols. We assume a fixed keystream pool size, that is the memory which

stores the pre-computed pads, and compare the performance losses of SENSS and our

scheme with increasing cache line sizes and varying the throughput of the AES units. We

estimate additional memory required to provide these features for both CBC and GCM

schemes.

 13

As security features developed for uniprocessor and SMP cannot be adapted directly for

safeguarding distributed shared memory multiprocessor (DSM), Rogers et al. [20]

proposed a security scheme for data protection in DSM, which is the first work to study

privacy and integrity in DSM. Yang et al. [7] proposed SecCMP: a secure chip-

multiprocessor (CMP) architecture which addresses the key protection and core

authentication issues in multi-core systems.

 14

CHAPTER III

IMPLEMENTING ENCRYPTION AND AUTHENTICATION UNIT

3.1 Modes of operation of advanced encryption standard algorithm (AES)

The modes of operation of an underlying block cipher commonly include cipher block

chaining mode (CBC), electronic book mode (ECB) and counter mode (CTR) [24]. ECB

mode is not secure because it reveals pattern information when processed offline. CBC

mode offers better security than the ECB mode [24, 23]. In CBC mode, encryption of the

block depends on the feedback of the previous block encipherment. CTR mode is equally

secure with no dependencies among different blocks, allowing operations to be fully

pipelined to achieve greater performance, but CTR mode lacks authentication capability

[24]. It is important to have an authentication capability, apart from encryption, in the

employed block cipher because any interruption or modification in the communication

must be detected. Galois counter mode (GCM) mode [21, 22] is another mode of

operation which can use pipelined and parallelized implementations with minimum

computation latency. GCM mode combines the efficiency of CTR mode with the

authentication capability of the CBC mode. The following sub sections discuss in detail

the CBC and GCM modes of operation.

 15

3.2 CBC mode of operation

In this mode the plaintext message is exclusive or’ed (XOR) with the previous

block encipherment. This is illustrated in Fig 3.1. If the plaintext message is divided into

‘i’ blocks and if E is the encryption cipher and K is the key. The ciphertext Ci is produced

by passing the XOR of Pi and Ci-1 (which is (i-1)
th

 ciphertext) through the encryption

function E.

A similar approach is followed on the decryption side. The ciphertext message Ci

is passed through the decryption function D. This result is XOR’ed with the (i-1)th

ciphertext to form the plaintext Pi. This is shown in Figure 3.1 [3].

E(K)

XOR

E(K)

XOR

Ci-1 Ci

Pi-1 Pi

CBC Encryption

E(K) E(K)

Pi-1 Pi

Ci-1 Ci

 CBC Decryption

XOR XOR

Figure 3.1: CBC Encryption and Decryption

 16

CBC-MAC: In CBC scheme MAC of a block is generated by invoking the underlying

block cipher as AES (block). The initialization vector for authentication is different from

that used in encryption. The least significant ‘s’ bits are taken to form MAC. In CBC ‘n’

blocks can be authenticated at a time by chaining all the MACs of the previous blocks

[2]. In CBC scheme we need another invocation of the underlying block cipher for

authentication. In addition we need to maintain separate masks (results of previous XOR

operations) for authentication and encryption [2].

3.3 GCM mode of operation

The operation of GCM mode includes two functions: authenticated encryption

and authenticated decryption. Authenticated encryption takes the plaintext data,

additional authentication data (AAD) and an initialization vector (IV) as inputs. The

output of the authenticated encryption function is cipher text and an authentication tag.

The schematic representation is shown in Fig 3.2. The authenticated decryption function

takes the ciphertext, the initialization vector, additional authentication data and

authentication tag as inputs. The output is the plaintext data only if the authentication tag

which is computed is equal to the authentication tag provided, as shown in Fig 3.3.

Authenticated

Encryption Function

Plaintext

Additional Authentication

Data

Initialization

Vector

Ciphertext

Authentication tag

Figure 3.2 GCM Authenticated Encryption

 17

Authenticated

Decryption Function Fail

Ciphertext

Additional

Authentication Data

Initialization

Vector

Authentication tag

Plaintext

Figure 3.3 GCM Authenticated Decryption

GCM authenticated encryption:

Step 1: The IV of length 96 bits is taken and appended with strings of 0’s and a 1 to make

it 128 bits in length.

Y0 = IV || 0
31

1. (Where ‘||’ denotes concatenation operation).

Step 2: This is passed through an increment function (incr).

Yi = incr (Y (i-1)) for each i.

Step 3: The plaintext message Pi is XOR’ed with E(K, Yi). Where E is the encryption

function and K is the key.

Ci = Pi (XOR) E (K, Yi).

Step 4: The authentication tag is computed using the function GHASH. The inputs to the

GHASH function are the Ci, AAD. This is XOR’ed with E(K, Y). The most significant‘t’

bits (MSB) of this result form the authentication tag. GHASH function is a series of

multiplications in the galois field. The GHASH algorithm is defined in [22].

Authentication tag = MSBt (GHASH (Ci, AAD) XOR E (K, Y)).

 18

GCM authenticated decryption:

Step 1: Is same as the authenticated encryption step1.

Step 2: A new authentication tag is computed with the received ciphertext.

New Authentication tag = MSBt (GHASH (Ci, AAD) XOR E (K, Y)).

Step 3: If the new authentication tag computed is equal to the authentication tag provided,

then Yi is calculated.

Yi = incr (Y (i-1)) for each i.

Step 4: The plaintext data is produced by the XOR operation of Ci and E (K, Yi).

Pi = Ci (XOR) E (K, Yi)

The GCM hardware is shown in the figure below [21].

 19

AAD IV PLAINTEXT

INCR

PAD

XOR XOR

TAG CIPHERTEXT

E(K)
GHASH

Figure 3.4: GCM Hardware

3.4 Processor communication model

The objective of the study is to design a security hardware unit capable of encrypting and

authenticating the bus communication between the processors on a symmetric shared

memory processor (SMP) network using GCM-AES. In a multiprocessor system apart

from safeguarding the processor to memory data flow we also need to safeguard the

processor-to-processor (cache-to-cache) data communication. The security hardware unit

 20

that encrypts/decrypts the processor to memory communication cannot be used to

encrypt/decrypt processor to processor communication. This is because if we use the

same pads to encrypt both types of communication, if an adversary tracks the transfers

between the processors on the communication channel which use the same pad over a

long period of time, the adversary can gain information of the plaintext by XOR’ing the

transfers. For instance, let P be the pad and D the data. If the data D gets modified to D
׀

and if the transfers use the same pad P, information can be obtained by (P XOR D)

(XOR) (P XOR D
׀
) [2]. Therefore two separate encryption/decryption units that use

different pads should be used to encrypt the processor-to-memory transfers and

processor-to-processor transfers. This work only considers the design of the security

hardware unit that encrypts and authenticates processor-to-processor communication. The

schematic of the communication model is shown in Figure 3.5.

 21

Processor

1

Processor

2

Processor

3

L1 and L2

Cache

L1 and L2

Cache

L1 and L2

Cache

Security

Hardware Unit

Security

Hardware Unit

Security

Hardware Unit

Main Memory

Inter Connection

Network

Trusted

Boundary

Untrusted

Points

of

attack

Figure: 3.5 Processor communication model

Every processor on the network is assigned a public-private key pair. The private key is

hard burned on that particular processor node when manufactured and is not accessible.

Apart from its private key each processor also has the public keys of all other processors

stored on the processor node, the use is explained in the later sections. The security

hardware unit maintains the process ID’s of all the processes on that particular processor

node. The applications which are to be run on the SMP system with support for hardware

security are encrypted using a key K. In the next step the key K is encrypted with the

processor’s public key [2]. When the application is run for the first time, the processor

 22

decrypts the key K with its private key and next decrypts the application. This restricts

the use only to the processor entitled to decrypt the application.

3.5 Operation of CBC-AES unit in an SMP

 SENSS uses CBC mode to encrypt and authenticate transactions between the

processors. The sequence of operations for encryption in CBC:

1. X = Pi XOR Ci-1

2. Ci = AES (X, key)

3. Send Ci

But in the above scenario step 2 consumes time because of the invocation of AES. The

time this step consumes is equal to the latency of the underlying AES unit. SENSS

modifies this as follows

1. Ci = Pi XOR Mask last

2. Send Ci

3. Mask= AES (Ci , key)

In the above scenario step 2 is moved to step 3. The mask is updated in the background.

In this way the message (Pi) need not wait for the mask to be calculated. If we need to

encrypt another message before the mask is ready for the present transaction, we have to

wait for the mask update which is still a bottleneck. In SENSS for every process ID

running on that node, 2-masks are maintained one mask for the sending sequence and the

other mask for the receiving sequence for each process ID. We need to maintain separate

masks for each process ID as masks of one process ID cannot be shared with the other.

The encryption model is shown in Figure 3.6.

 23

AES MASK XOR MASKMASKXOR

COMMUNICATION BUS

KEY KEY

SENDING

SIDE

RECEIVER

SIDE

PROCESSOR

ID

PROCESS ID PROCESS ID

PROCESSOR

ID

Figure 3.6 Bus Encryption Model

Apart from encryption it also needs to maintain separate masks for authentication because

in CBC, authentication needs a separate invocation of the block cipher. This increases

space requirement and also consumes more time. The performance of SENSS can be

greatly improved by using GCM mode of operation which can encrypt as well as

authenticate transaction within a single invocation of the block cipher. We also need not

maintain separate masks for encryption, for each process ID as in CBC. This reduces

storage requirement by a significant fraction. The storage requirement is discussed in

section 3.8.

3.6 Operation of GCM-AES unit in an SMP

In a symmetric shared memory environment, where there are n processor nodes,

the individual nodes communicate among themselves using a shared bus. The security

hardware unit, which uses GCM-AES mode of operation, is embedded in all the nodes of

the network. The security hardware unit maintains the process IDs of all the active

processes on that particular processor. It also has the memory required for operation of

the GCM-AES unit. Our adaptation of GCM to work in an SMP environment is

 24

explained below. Figure 3.7 shows the details of this implementation. We assign a single

counter value for a particular processor communication pair. When communication is

initiated for the first time every processor node shares its counter value with the other

nodes by encrypting the counter value with the public key of the receiving processor. As

the communication proceeds, the counter value is incremented for each send and receive

request. The counter values for all the processors on the network are maintained by the

security hardware unit. The initialization vector is formed using this counter value and

the processor ID. This initialization vector is given as the input for the cipher block to

compute the pad. Since the computation of the pad is independent of the plaintext data,

pads can be pre-computed and stored in the security hardware unit’s memory. When a

request comes in, the processor first verifies the processor ID and process ID for the

incoming request with the ones maintained by the security hardware unit. If they match it

reads the associated counter value for the sending sequence for that processor ID. Next, it

computes the pad, if not pre-computed. This pad is XOR’ed with the plaintext data which

produces the ciphertext, as shown in Figure 3.7. The GCM-AES hardware keeps

generating the pads as they are consumed, for the subsequent transfers. As long as we

have pre-computed pads in the memory of the security hardware unit, the encryption and

decryption latency will only be a single cycle, i.e. for the XOR operation. The

performance of the scheme varies with the number of pre-computed pads.

In the next step the ciphertext and the process ID, which is used as the additional

authentication data, are processed to generate the authentication tag within the same

invocation of the cipher block. In CBC, we would need another invocation of the

underlying cipher. The ciphertext and the authentication tag are transferred on to the bus

 25

by the security hardware unit. For the subsequent transfers, the counter value is increased

and the associated pads are provided in the same way. The decryption part operates

similarly and decrypts the cache line on the receiver node. It computes the tag and

compares with the received tag and takes suitable action. The sequence of actions that

take place in GCM authenticated encryption and decryption functions are shown in Fig

3.8 and Figure 3.9 respectively [33].

 26

Incoming request

from a processor

Verify

processor ID

and process

ID

Is pad

ready ?

XO R
Cache line

(plain text)

Cipher text

A uthentication

A uthentication

tag

Process ID

(AAD)

Read counter

value and

processor ID

Generate IV

Compute pad

Send on the Bus

No

Yes

Match

Stop

No

match

Read pad

Figure 3.7 Implementing authenticated encryption in SMP

 27

Counter

memory for

sending

sequence for

all processors
Cipher Block

Invocation

Authentication

Authenticati

on Tag

If request

from

Processor 4,

compute the

pad for

sending or

read the

precomputed

pad

Counter

memory for

receiving

sequence for

all the

processors

P

r

o

c

e

s

s

o

r

I

D’

s

IV Pad

Memory

for Pre-

computed

pads

Process ID Ciphertext Data

XorVerify

Processor ID

and Process

ID

Processor

Communication Bus

Request

from a

processor

Cache line

 Figure 3.8 Security hardware unit model for encryption

 28

Counter

memory for

sending

sequence for

all processors
Cipher Block

Invocation

Authentication

Authenticati

on tag

If received

from

Processor 4,

compute the

pad for

receiving or

read the

precomputed

pad

Counter

memory for

receiving

sequence for

all the

processors

P

r

o

c

e

s

s

o

r

I

d’

s

IV Pad

Memory

for Pre-

computed

pads

Process ID Ciphertext data

XorVerify

Processor ID

and Process

ID

Processor

communication bus

Receive

from a

processor

Cache line

Compare with

the received

authentication

tag

Figure 3.9 Security hardware unit model for decryption

 29

3.7 Bus attacks prevention mechanism

The three types of attacks that are possible on a shared bus in an SMP environment are

blocking messages, message reordering and message spoofing [1, 2]. These attacks can

be prevented using GCM-AES. If an attacker blocks some message from reaching a node,

the authentication tag which is pre-computed will not be equal to the tag computed by the

security hardware unit. Thus dropped messages can be detected. When reordering of

messages take place, again the authentication tag generated differs hence these types of

attacks can be detected. Message spoofing is not possible because the attacker does not

have access to the sequence numbers maintained by the processors security hardware

unit, which is on chip and secure. Moreover, the process ID is included as additional

authentication data, due to which only the processors entitled to run the process can

decrypt data [33].

3.8 Storage estimate for security hardware unit in GCM and CBC schemes

The security hardware unit stores the public keys of all the other processors in the SMP

environment. It stores these keys because when we initiate communication for the first

time to share initial counter values with all the other processors we need to encrypt the

initialization vectors with the public keys of the respective processors. When the

processor receives the encrypted value it decrypts the same with its private key pair,

which is unique and no other processor can decrypt it. It stores its private key to decrypt

the counter values from the other processors. After the communication is initialized, each

processor will have all the counter values it shares with the other processors.

 30

If we have an 8 processor SMP environment, we need a storage space of

128 * 8

for public keys and 128 bits for the private key. To verify if a process is running on a

particular node, we need 9 bits of storage. If we have 110000101 on row 32 this implies

the process ID 32 is running on node 1, 2 and 8. The extra bit specifies whether the

process is valid or not. If we have a maximum of 100 processes running, we need a total

of

100 * 9 bits

of storage. The IV is formed from the counter value, which is 96 bits long and the

processor ID field, which is 3 bits long. Since the scheme maintains separate counter

values for sending sequence and receiving sequence, for a total of 8 processors it takes

(96 + 3) * (7 * 2) bits

Thus storage requirement, excluding the space for storing the pads, for an 8 processor

network is

(128 * 9) + (100 * 9) + (99 * 14) = 3672 bits, or 430 bytes

For higher performance, the pads are pre-computed. The number of pads to be pre-

computed depends on the bus speed and AES-GCM throughput. Based on our initial

simulations we found that storing 5 pre-computed pads per processor pair in every

processor node provides adequate performance. The pad size is equal to the size of the

cache line. This storage is to be provided in addition to the above storage. If we consider

a 64 byte cache line size, a total of

64 * 5 * 14 = 4480 bytes

 31

is required for pads storage. For a 128 byte cache line size, 8960 bytes of storage is

required. In SENSS, for a 64 byte cache line size the storage provided in SENSS for a 2-

mask system assuming 100 processes running on a processor is

12800 * 2 = 25600 bytes

for encryption as well as authentication masks. The amount of storage required in our

scheme is far less compared to SENSS. Also, our storage requirement for the pads is

independent of the number of processes and thus our scheme scales better with

increasing number of processes [33].

 32

CHAPTER IV

SIMULATION METHODOLOGY

To simulate the cache-to-cache transactions between processors on a

multiprocessor system, we simulate a full system SMP environment using both SIMICS

[25], a full system simulator and GEMS [26], a memory system extender of SIMICS.

4.1 SIMICS a full system execution driven simulator

 Simics is a full system execution driven simulator developed by Virtutech. It

supports various architectures such as Alpha, ARM, IA-64, MIPS, Sparc, x86 and x86-

64. It can simulate embedded systems, desktops, multiprocessor systems [29]. Virtutech

also provides disk dumps and kernel images to simulate various targets. This work uses

cashew target to simulate 2, 4, 8 – processor systems. Cashew target simulates Ultrasparc

processor architecture running Aurora 2.0 (Fedora core 3). It uses Linux kernel 2.6.15

which includes SMP support [35].

4.2 GEMS (memory system simulator)

General execution driven multiprocessor simulator (GEMS) is a memory system extender

for Simics. GEMS leverages the power of Simics to simulate multiprocessor systems [26,

27]. GEMS can be used to simulate uniprocessor, SMP systems, chip multiprocessor

 33

systems (CMP), multiple-CMP systems. GEMS provides RUBY memory system model

which includes physical components such as caches, system interconnect, memory and

coherence controllers. This is shown in Figure 4.1. CPU driver issues memory requests to

ruby, which simulates the requests and callbacks the driver with the latency [26, 28].

Ruby provides several SMP and CMP protocols such as MOSI_SMP_bcast [34],

MOSI_SMP_directory, MOESI_CMP_directory, MOESI_CMP_token, etc.

4.1 GEMS simulator model [28]

Opal is used for out-of-order processor model, it implements Sparc instruction set

architecture. This work uses only RUBY and an in-order processor model. The steps

involved in simulating an SMP system are:

 34

1. Creating checkpoints for multiprocessor system with pre-compiled workload

using Simics.

2. Building Ruby memory system module.

3. Configuring Ruby.

4. Loading Ruby.

5. Running simulation and collecting statistics.

This work modifies the Ruby memory system to include the functionality for the

operation of the security hardware unit used for the encryption/decryption and

authentication of the cache-to-cache communication on an SMP network. The security

hardware unit is modeled to operate in both CBC and GCM modes. This functionality is

achieved by modifying the cache controller logic. The performance overhead introduced

by the additional hardware unit in both schemes to safeguard the cache-to-cache transfers

is studied using SPLASH2 benchmarks [30, 31]. The impact of increasing cache line

sizes and the effect of varying throughput of the AES units in both the schemes are

studied. This work simulates a 2, 4 and 8 processor SMP system with separate L1

Instruction and Data-cache and an integrated L2 cache. We simulate L2 caches with two

different line sizes of 64 and 128 bytes to show the impact of increasing line size. We

also vary the throughput of the AES unit from 0.8 GBps to 3.2 GBps. The simulation

parameters for 64 and 128-byte cache line sizes are given in Table 4.1 and Table 4.2

respectively.

 35

Processor Clock Frequency 1 GHZ

L1-Instruction Cache Size 64 KB

L1-Data Cache Size 64 KB

L2-Cache Size 1 MB

Main Memory 1 GB

AES throughput 0.8 GBps-1.6 GBps

Cache Line Size 64 bytes

L1 Hit Latency 4 cycles

L2 Hit Latency 10 cycles

Table 4.1: Simulation Parameters for 64-byte cache line size

Processor Clock Frequency 1 GHZ

L1-Instruction Cache Size 128 KB

L1-Data Cache Size 128 KB

L2-Cache Size 2MB

Main Memory 4GB

AES throughput 1.6 GBps-3.2 GBps

Cache Line Size 128 bytes

L1 Hit Latency 4 cycles

L2 Hit Latency 10 cycles

Table 4.2: Simulation Parameters for 128-byte cache line size

 36

4.3 GCM & CBC throughput schemes

The throughput in the simulations is varied from 0.8 GBPS to 3.2 GBPS.

This is derived as follows:

Throughput of the scheme = (Cache line size) * (Clock frequency) / AES latency.

CBC 0.8 GBPS scheme takes 320 cycles to encrypt a 64 byte cache line. CBC 1.6 GBPS

scheme takes 160 cycles to encrypt a cache line size of 64 bytes. Here 320 cycles and 160

cycles is the latency of the AES unit. Similarly to encrypt a 128 byte cache line size

GCM 1.6 GBPS scheme takes 320 cycles and GCM 3.2 GBPS scheme takes 160 cycles

respectively.

4.4 Workload

This work uses FFT, LUNC, LUC, and RADIX multiprocessor applications from

SPLASH2 [30, 31] benchmark suite. The overhead introduced by the security hardware

unit for these benchmarks is studied. The function of each benchmark is tabulated in

Table 4.3.

 37

Benchmark Function

FFT A complex 1-dimensional Fast Fourier Transform.

LUNC Factors a dense matrix into the product of lower

triangular and upper triangular matrix. The data

structure prevents blocks from being allocated

contiguously.

LUC Same function as LUNC, but allows blocks to be

allocated contiguously.

RADIX A program that performs an integer radix sorting.

Table 4.3 Workload

 38

CHAPTER V

DISCUSSION OF RESULTS

5.1 Effect of throughput in CBC and GCM schemes

In GCM scheme we maintain 5 pre-computed pads per processor pair to send as

well as to receive. On every send and receive transaction the associated pre-computed

pad is read without any delay. If the pad is not pre-computed it computes the pad and

performs an XOR operation with the plaintext/ciphertext. Results show that most of the

time the pad is pre-computed unless there is a series of cache-to-cache transactions which

consume all the pre-computed pads and the subsequent transactions have to wait for pad

computation. This might not be the case in CBC where the pad computation of the

current transaction depends on when the previous transaction has occurred. If there is a

series of transactions the present transaction should wait for the mask update whereas in

GCM scheme we can pre-compute the pads because there is no dependency between the

previous and present transaction. The number of transactions which consume all the pads

within the latency of AES unit is 2 in SENSS where the subsequent transaction might

have to wait for the mask if it occurs while the previous mask update. In our scheme,

since 5 pads are pre-computed, the series of transactions which consume all the pads

within the latency of the AES unit is 5. Hence this scope for performance improvement is

exploited using GCM. To compute the authentication tag in CBC, we need two

 39

invocations of the cipher block but in GCM the authentication tag can be computed with

an additional few cycles of latency within a single invocation of the cipher block.

Figure 5.1 and Figure 5.2 show the total percentage performance loss of CBC and

GCM schemes for 2, 4, and 8- processor systems with a cache line size of 64 bytes, 128

bytes respectively and AES unit throughput of 0.8 GBps, 1.6 GBps and 3.2 GBps. The

other parameters as shown in Table 4.1 and Table 4.2 and kept unchanged throughout the

simulation. The performance loss is calculated by taking the ratio of the difference of

execution time in cycles with the security features to a baseline system without any

security feature.

 40

Figure 5.1 Total Performance loss (given by the ratio of the difference of the execution

time in cycles with security features to a base line system without any security feature)

for 64 byte cache line size for 2, 4, 8-Processor systems to provide encryption and

authentication.

32.72

14.55

3.4

0.96

CBC 0.8GBps

CBC 1.6GBps

GCM 0.8GBps

GCM 1.6GBps

0 10 20 30 40

2
-P

ro
ce

ss
o
r
sy

st
em

24.78

14.14

2.45

2.02

CBC 0.8GBps

CBC 1.6GBps

GCM 0.8GBps

GCM 1.6GBps

0 10 20 30 40

4
-P

ro
ce

ss
o
r
sy

st
em

27.3

15.32

5.22

4.73

CBC 0.8GBps

CBC 1.6GBps

GCM 0.8GBps

GCM 1.6GBps

0 5 10 15 20 25 30 35

8
-P

ro
ce

ss
o
r
sy

st
em

 41

Figure 5.2 Total Performance loss (given by the ratio of the difference of the

execution time in cycles with security features to a base line system without any

security feature) for 128 byte cache line size for 2, 4, 8-Processor systems to

provide encryption and authentication.

15.8

6.4

2.81

1.34

CBC 1.6GBps

CBC 3.2GBps

GCM 1.6GBps

GCM 3.2GBps

0 5 10 15 20 25 30

2
-P

ro
ce

ss
o
r
sy

st
em

17.52

9.69

1.86

1.38

CBC 1.6GBps

CBC 3.2GBps

GCM 1.6GBps

GCM 3.2GBps

0 5 10 15 20 25 30

4
-P

ro
ce

ss
o
r
sy

st
em

23.08

8.29

4.21

3.31

CBC 1.6GBps

CBC 3.2GBps

GCM 1.6GBps

GCM 3.2GBps

0 5 10 15 20 25 30

8
-P

ro
ce

ss
o
r
sy

st
em

 42

We can clearly see that the performance of GCM scheme is better compared to

SENSS which uses CBC. The performance of GCM scheme is better even with low

throughput of the AES unit. In CBC, we also need to accommodate another AES unit for

authentication since the masks used for authentication are different from those of

encryption. This increases space requirement, as discussed in Section 3.6. If we consider

a system with 128 byte cache line size, the performance loss of CBC 1.6GBps scheme is

high because any 2 back-to-back cache transfers within the current latency of the AES

unit, that is 320 cycles, will consume 2 masks. The additional mask generation for the

next waiting cache transfer takes 320 cycles. The performance of CBC 3.2 GBps is better

because for 2 masks to be consumed, any 2 back-to-back cache transfers should take

place within 160 cycles. The additional mask generation now takes 160 cycles. For every

single cache-to-cache transaction, we need another invocation of AES to authenticate

transactions. Authentication in CBC 3.2 GBps takes 160 cycles, whereas in CBC 1.6

GBps it takes 320 cycles. A similar discussion holds for 64 byte cache line size. If we

consider a 64 byte cache line size system with GCM 0.8 GBps, the number of back-to-

back cache transfers that consume all the pre-computed pads is 5, which is greater than in

the CBC schemes. If all the pads are consumed, the next pad generation takes an

additional 320 cycles. Similarly, in GCM 1.6 GBps the next pad generation takes 160

cycles. The authentication transaction interval for our scheme for both cache line sizes is

1. We can see that the performance does not vary drastically for authentication in GCM

as we can compute the authentication tag within a single invocation of AES with an

additional few cycles of latency, which is far less compared to the latency of two

 43

invocations of AES as in CBC. In this way, we can afford to authenticate every

individual transaction.

We generated performance numbers for CBC with an authentication interval of 10

transactions. This is shown in Figure 5.3. A performance improvement is seen compared

to single transaction authentication. As seen from Figure 5.3 in most cases GCM

outperforms CBC. Therefore, in CBC the performance varies with the authentication

transaction interval.

We can also see that the performance loss of GCM with reduced throughput is not

very high compared with a higher throughput design. This is because all the pre-

computed pads may not be consumed most of the times. In such a scenario, even pre-

computing more pads would not result in a performance gain. In CBC scheme the

throughput of the design plays a greater role [33].

 44

Figure 5.3 Total Performance loss (given by the ratio of the difference of the execution

time in cycles with security features to a base line system without any security feature)

for 64 byte cache line size for 2, 4, 8-Processor systems to provide encryption and

authentication for 10 transaction interval for CBC scheme.

8.9

5.7

3.4

0.96

CBC 0.8 GBps

CBC 1.6 GBps

GCM 0.8 GBps

GCM 1.6 GBps

0 2 4 6 8 10

2
-
P
ro

ce
ss

o
r
sy

st
em

4.47

2.85

2.45

2.02

CBC 0.8 GBps

CBC 1.6 GBps

GCM 0.8 GBps

GCM 1.6 GBps

0 1 2 3 4 5

4
-
P
ro

ce
ss

o
r
sy

st
em

7.9

5.1

5.22

4.73

CBC 0.8 GBps

CBC 1.6 GBps

GCM 0.8 GBps

GCM 1.6 GBps

0 2 4 6 8 10

8
-
P
ro

ce
ss

o
r
sy

st
em

 45

5.2 Effect of varying cache line size

On a full system scale, though the performance of both schemes are improved in 128 byte

cache line size system compared to the 64 byte cache line size, because of the reduced

number of back-to-back cache transfers, GCM performs much better when compared to

the CBC scheme.

 46

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This work proposes a security mechanism for a symmetric shared memory

multiprocessor environment to safeguard the cache-to-cache data transfers. This work is

closely related to SENSS [2]. This work focuses on improving the performance of the

existing scheme by adapting the GCM-AES mode of operation as the underlying

algorithm. The impact of increasing cache line sizes and the effect of varying throughput

of the AES units in CBC and GCM modes is studied. Results show that a performance

gain in the range of 4X-9X over the CBC scheme is achieved. This scheme consumes less

space on chip while providing the same level of security as in SENSS. This scheme can

be used to protect the SMP system from common bus attacks. It can detect any fake

messages, reordered messages and blocked messages on the communication bus in an

SMP environment. It protects the system from hardware security attacks such as modchip

installations. It also secures the system against software attacks by providing

confidentiality and authentication mechanisms.

Future work

This work considers the implementation of a security hardware unit to secure only the

cache-to-cache communication. A model which also secures the processor to memory

data flow can be included in an SMP system. The bus traffic increase for providing the

 47

security features can also be simulated for GCM scheme. A prototype of the security

hardware unit can also be developed on a field programmable gate array (FPGA). This

work can also be extended to safeguard the communication among CMP’s in a multiple-

CMP system.

 48

REFERENCES

[1] Sean W. Smith, Trusted Computing Platforms: Design and Applications,

Springer, New York, NY, USA, 2005, pp 21-34.

[2] Zhang, Y., Gao, L., Yang, J., Zhang, X., and Gupta, R. 2005. SENSS: Security

Enhancement to Symmetric Shared Memory Multiprocessors. In Proceedings of

the 11th international Symposium on High-Performance Computer Architecture

(February 12 - 16, 2005). HPCA. IEEE Computer Society, Washington, DC, 352-

362.

[3] Bruce Schneier, Applied Cryptography, John Wiley & Sons, US, 1996

[4] Thekkath, D. L., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and Horowitz,

M. 2000. Architectural support for copy and tamper resistant software. SIGARCH

Comput. Archit. News 28, 5 (Dec. 2000), 168-177.

[5] Suh, G. E., O'Donnell, C. W., Sachdev, I., and Devadas, S. 2005. Design and

Implementation of the AEGIS Single-Chip Secure Processor Using Physical

Random Functions. SIGARCH Comput. Archit. News 33, 2 (May. 2005), 25-36.

[6] http://www-03.ibm.com/security/cryptocards/pcicc/faqcopvalidity.shtml

[7] Yang, L. and Peng, L. 2006. SecCMP: a secure chip-multiprocessor architecture.

In Proceedings of the 1st Workshop on Architectural and System Support For

Improving Software Dependability (San Jose, California, October 21 - 21, 2006).

ASID '06. ACM, New York, NY, 72-76.

[8] Data Encryption Standard Federal Information Processing Standards Publication

46-3, http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[9] Elbirt, A.J.; Yip, W.; Chetwynd, B.; Paar, C., "An FPGA-based performance

evaluation of the AES block cipher candidate algorithm finalists," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol.9, no.4,

pp.545-557, Aug 2001.

[10] Diffie, W.; Hellman, M., "New directions in cryptography," IEEE Transactions

on Information Theory”, vol.22, no.6, pp. 644-654, Nov 1976.

[11] http://en.wikipedia.org/wiki/RSA

 49

[12] R. Rivest, MIT Laboratory for Computer Science and RSA Data Security, Inc,

The MD5 Message-Digest Algorithm, http://tools.ietf.org/rfc/rfc1321.txt.

[13] Secure Hash Standard, Federal Information Processing Standards Publication

180-1, http://www.itl.nist.gov/fipspubs/fip180-1.htm#FORE_SEC.

[14] http://home.eng.iastate.edu/~zzhang/courses/cpre585-f04/presentations/mikel-

reggie.ppt

[15] Gassend, B., Suh, G. E., Clarke, D., van Dijk, M., and Devadas, S. 2003. Caches

and Hash Trees for Efficient Memory Integrity Verification. In Proceedings of the

9th international Symposium on High-Performance Computer Architecture

(February 08 - 12, 2003). HPCA. IEEE Computer Society, Washington, DC, 295.

[16] Shi, W., Lee, H. S., Ghosh, M., Lu, C., and Boldyreva, A. 2005. High Efficiency

Counter Mode Security Architecture via Prediction and Precomputation. In

Proceedings of the 32nd Annual international Symposium on Computer

Architecture (June 04 - 08, 2005). International Symposium on Computer

Architecture. IEEE Computer Society, Washington, DC, 14-24

[17] Shi, W., Lee, H. S., Ghosh, M., and Lu, C. 2004. Architectural Support for High

Speed Protection of Memory Integrity and Confidentiality in Multiprocessor

Systems. In Proceedings of the 13th international Conference on Parallel

Architectures and Compilation Techniques (September 29 - October 03, 2004).

PACT. IEEE Computer Society, Washington, DC, 123-134.

[18] http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-

block_chaining_.28CBC.29.

[19] Lee, M., Ahn, M., and Kim, E. J. 2007. I2SEMS: Interconnects-Independent

Security Enhanced Shared Memory Multiprocessor Systems. In Proceedings of

the 16th international Conference on Parallel Architecture and Compilation

Techniques (September 15 - 19, 2007). PACT. IEEE Computer Society,

Washington, DC, 94-103.

[20] Rogers, B., Prvulovic, M., and Solihin, Y. 2006. Efficient data protection for

distributed shared memory multiprocessors. In Proceedings of the 15th

international Conference on Parallel Architectures and Compilation Techniques

(Seattle, Washington, USA, September 16 - 20, 2006). PACT '06. ACM, New

York, NY, 84-94.

[21] D. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM).

Submission to NIST Modes of Operation Process, 2004.

 50

[22] Morris Dworkin, National Institute of Standards and Technology Special

Publication 800-38D Natl. Inst. Stand. Technol. Spec. Publ. 800-38D 37 pages

(November 2007).

[23] Morris Dworkin, National Institute of Standards and Technology Special

Publication 800-38A 2001 ED Natl. Inst. Stand. Technol. Spec. Publ. 800-38A

2001 ED, 66 pages (December 2001).

[24] Francisco, N.A. Saqib, Arturo, Kaya, Cryptographic Algorithms on

Reconfigurable Hardware, Springer, New York, NY, USA, 2006, p. 254-256.

[25] Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G.,

Högberg, J., Larsson, F., Moestedt, A., and Werner, B. 2002. Simics: A Full

System Simulation Platform. Computer 35, 2 (Feb. 2002), 50-58.

[26] Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M.,

Alameldeen, A. R., Moore, K. E., Hill, M. D., and Wood, D. A. 2005. Multifacet's

general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH

Comput. Archit. News 33, 4 (Nov. 2005), 92-99.

[27] http://www.cs.wisc.edu/gems/

[28] http://www.cs.wisc.edu/gems/doc.html ISCA 2005 Tutorial slides.

[29] David Jakob Fritz, Out of context cache prefetching, Master’s Thesis, Oklahoma

State University, 2008.

[30] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. 1995. The

SPLASH-2 programs: characterization and methodological considerations.

SIGARCH Comput. Archit. News 23, 2 (May. 1995), 24-36.

[31] http://www.capsl.udel.edu/splash/, The Modified SPLASH-2 Home Page.

[32] Yan, C., Englender, D., Prvulovic, M., Rogers, B., and Solihin, Y. 2006.

Improving Cost, Performance, and Security of Memory Encryption and

Authentication. SIGARCH Comput. Archit. News 34, 2 (May. 2006), 179-190.

[33] Varun Jannepally, Sohum Sohoni, “Fast Encryption and Authentication for

Cache-to-Cache Transfers using GCM-AES”, to be published in the Proceedings

of the International Conference on Sensors, Security, Software and Intelligent

Systems, Coimbatore, India, Jan, 2009.

 51

[34] MOSI broadcast cache coherence protocol,

http://www.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/Protocols.

[35] https://www.simics.net/

VITA

VARUN JANNEPALLY

Candidate for the Degree of

Master of Science

Thesis: BUS ENCRYPTION AND AUTHENTICATION UNIT FOR SYMMETRIC

SHARED MEMORY MULTIPROCESSOR SYTEM USING GCM-AES.

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Hyderabad, Andhra Pradesh, India on September 9,

1984

Education: Received the B.Tech. degree from Jawaharlal Nehru Technological

University, AP, India in 2006, in Electronics and Communication

Engineering; Completed the requirements for the Master of Science in

Electrical Engineering at Oklahoma State University, Stillwater,

Oklahoma in December, 2008.

Experience: Research Assistant at Computer Architecture Evaluation,

Simulation Research Lab in the School of Electrical and Computer

Engineering, Oklahoma State University from December 2006 to

December 2008.

ADVISER’S APPROVAL: Dr. Sohum Sohoni

Name: Varun Jannepally Date of Degree: December, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: BUS ENCRYPTION AND AUTHENTICATION UNIT FOR

SYMMETRIC SHARED MEMORY MULTIPROCESSOR SYSTEM

USING GCM-AES

Pages in Study: 51 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: Hardware security mechanisms in uniprocessor and

multiprocessor systems have been proposed to safeguard information more

efficiently. This work presents a secure architecture model for a symmetric shared

memory multiprocessor (SMP) to safeguard the cache-to-cache transfers. This

work proposes a hardware security mechanism, which employs Galois Counter

Mode (GCM) of advanced encryption standard (AES) and modifies it to work in

an SMP environment. The work focuses on why GCM is a better choice over

cipher block chaining mode (CBC) which is used in current state of the art

systems. It estimates the storage required by the additional hardware unit in both

modes of operation. A full system SMP simulation quantifies the performance

overhead introduced by the additional hardware unit in both schemes to safeguard

the cache-to-cache transfers. The impact of increasing cache line sizes and the

effect of varying throughput of the AES units in both the schemes is studied.

Findings and Conclusions: Results show that a performance gain in the range of 4X-9X

over the CBC scheme is achieved by using GCM mode of operation. The work

shows that the throughput of the AES design has a greater impact on the

performance of the CBC scheme. The performance loss is very high in CBC

scheme with a lower throughput of the AES design compared to GCM. The

performance in CBC scheme varies according to the authentication interval while

authentication interval does not affect the GCM scheme, thus providing higher

security. The presented work using GCM consumes less space on chip providing

the same level of security as in the CBC scheme.

