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CHAPTER I 

 

 

INTRODUCTION 

 

1.1 Background  

In daily life, millions of financial transactions take place and large amounts of secure 

data gets communicated among numerous computers around the world. Information 

related to finance, defense, and other sensitive information is constantly processed by 

computers. To protect this sensitive information from attackers, traditionally computers 

rely on anti-virus software and firewalls to safeguard information. Hardware mechanisms 

provide higher security with a much lower overhead compared to software mechanisms. 

Several hardware security architecture models in uniprocessor and multiprocessor 

systems have been proposed. With the increasing role of multiprocessors and multicore 

architectures in e-commerce applications such as internet telephony, inventory 

management and database management applications which maintain medical records, 

credit history records etc. it is crucial to design efficient secure architectures and 

algorithms for these systems. This work proposes an enhancement to a secure 

architecture model for safeguarding the cache-to-cache communication in a shared 

memory multiprocessor system. The purpose of the scheme is to maintain confidentiality 

and the integrity of the bus data transfers with a minimum performance overhead. 
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1.2 Security Attacks 

 

The types of attacks [1] which are possible on a system can be classified as 

1. Physical attacks. 

2. Software attacks. 

3. Side channel attacks. 

Physical attacks:  

The manipulations of the physical components of a system to reveal some sensitive 

information are categorized as physical attacks. The following are some of the possible 

physical attacks: 

a. Modchips installed in Microsoft Xbox can allow the console to play pirated 

games [2]. 

b. Opening, probing and reverse-engineering of the chips. 

To protect the system from physical attacks, mechanisms that do not disclose information 

upon reverse engineering should be employed. For example, a device that checks for 

main memory corruption should be employed for devices which have direct memory 

access (DMA) support [1]. 

Software attacks: 

The type of attacks which take advantage of the vulnerabilities in the application 

software or the operating systems, fall under this category.  The most common types of 

software attacks are: 

a. Buffer overflow attack: This attack overwrites the data stored in the system 

beyond the size of the buffer when the user inputs large amounts of data. This can 
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cause the system to execute the user’s choice of code. This is termed stack 

smashing [1]. 

b. Message blocking, reordering and spoofing are some of the common attacks on a 

bus or communication channel [2]. 

c. Injecting malicious code that infects the system and reveals information of 

specific interest can also be possible. The most common types which come under 

this category that infects numerous computers all around the world are computer 

viruses, trojans, and worms.    

Side channel attacks: 

These forms of attacks reveal sensitive information when physical actions of 

computations are analyzed. Timing attacks and power attacks come under this category 

[1]. 

Timing attacks:  

The time taken for a computation depends upon the type of computation being 

performed. If a particular sequence of time patterns pertains to a set of operations that 

reveal some data, the corresponding information can be extracted by timing analysis.  

Power attacks: 

When computations are performed on a chip it consumes power.  When the power 

traces are analyzed, hidden data can be obtained. There are examples where a single 

power trace can be analyzed to extract a DES key from commercial smart cards. The 

differential power analysis techniques study the correlations between data and the power 

consumption [1]. 
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1.3 Hardware security mechanisms 

To safeguard the system from some of the above types of attacks traditionally 

vendors provide security through software-only-solutions. These include the anti-virus 

software and firewalls.  Despite their security features like encryption, inspection of 

network traffic and port monitoring, software solutions are still susceptible to attacks. 
This is the reason we often patch our Operating Systems and frequently update our anti-

virus software and firewalls. Hardware security mechanisms are efficient and provide 

higher security. As such several researchers have proposed hardware security architecture 

models [2, 4, 5, 7, 16, 17, 19, 20, 32] for both uniprocessor and multiprocessor systems. 

These systems provide security deriving trust just from the processor. Everything else 

outside the processor chip main-memory, I/O (input-output) interface are not trusted. In 

these models even the operating system is not trusted. Since these models have a small 

trusted computing base the points of vulnerability are very few. These architectural 

additions for providing security made at the hardware level can be incorporated on to the 

chip or may be a separate co-processor [6] or even a separate core.  Because of having 

dedicated hardware resources for providing security the performance of these systems is 

higher compared to that of their software counterparts. Some of the common security 

features [3] provided by these units are  

1. Confidentiality 

2. Integrity. 

3. Authentication. 

Confidentiality: A way of providing access to sensitive information only to authorized 

users and protecting from unauthorized group.  
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Integrity verification: A mechanism which helps a recipient to detect any tampering of 

the data on transmission and identifying a fake message. 

Authentication: A mechanism which helps the recipient to verify the origin and also 

detect any intruder. 

The hardware security models use encryption decryption units to provide confidentiality 

and a hash verification unit to provide integrity. The operation of these units is explained 

in detail in later sections. This work presents a secure architecture model for a symmetric 

shared memory multiprocessor (SMP) to safeguard the cache-to-cache transfers. This 

work proposes a hardware security mechanism, which employs Galois Counter Mode 

(GCM) of advanced encryption standard (AES) and modifies it to work in an SMP 

environment. The work focuses on why GCM is a better choice over cipher block 

chaining mode (CBC) which is used in current state of the art systems. It estimates the 

storage required by the additional hardware unit in both modes of operation. A full 

system SMP simulation quantifies the performance overhead introduced by the additional 

hardware unit in both schemes to safeguard the cache-to-cache transfers. The impact of 

increasing cache line sizes and the effect of varying throughput of the AES units in both 

the schemes is studied. Providing the same level of security a performance gain in the 

range of 4X-9X over the existing scheme is achieved using GCM. 

1.4 Organization 

The rest of the sections are organized as follows. Chapter 2 covers the related work in 

cryptography, and the hardware security architectural models in uniprocessor and 

multiprocessor systems. Chapter 3 covers the implementation of encryption and 

authentication unit for a symmetric shared memory multiprocessor system (SMP). To 
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study the overhead of this unit we perform a full system simulation. The simulation 

methodology and the results of our study are discussed in Chapter 4 and Chapter 5 

respectively. Chapter 6 lists the conclusions and the scope for future work. 

 

 



 7

CHAPTER II 

 

 

RELATED WORK 

 

2.1 Cryptography 

 

Encryption is a process of mapping a plaintext message (P), using an encryption 

function E and a key K, to a ciphertext (C). It is denoted as E (P, K) = C. Decryption is 

the process of mapping the cipher text C back to the plaintext P using a decryption 

function D and key K. It is denoted as D (C, K) = P. The type of encryption system which 

uses the same keys in encryption and decryption processes is called symmetric 

encryption system.  This is shown in Fig 2.1. Key distribution is a problem in symmetric 

encryption system and security lies in the confidentiality of the key [3].  

 

ENCRYPTION

KEY

PLAINTEXT CIPHERTEXT
DECRYPTION

KEY

CIPHERTEXT  PLAINTEXT

 

Figure 2.1: Encryption and Decryption 

The type of encryption system which uses two different keys, one for encryption process 

and the other for decryption is called public-key cryptosystem or asymmetric 

encryption system. The decryption key is called the private-key and the key used for 

encryption is called public-key. In general, it is computationally infeasible to derive  
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the private key from the public-key, hence the public-key can be disseminated to the 

parties that communicate with this type of system. Though key distribution is not a 

concern in public-key cryptosystems, computation time is a constraint. 

The symmetric encryption algorithms can be categorized into stream cipher and 

block cipher algorithms. The block cipher algorithms work on blocks of data of equal 

size and the stream cipher algorithms work on a stream of bits. The commonly used 

symmetric block cipher encryption algorithms are data encryption standard (DES) 

algorithm [8] and advanced encryption standard (AES) algorithm [9]. The commonly 

used asymmetric algorithms are Diffie-Hellman [10] and Ron Rivest, Adi Shamir and 

Leonard Adleman (RSA) algorithm [11]. 

Hash functions: 

A hash function is one that takes a string of any length and returns an output string of 

fixed length called hash, which is shorter than the input. Commonly used hash functions 

are message-digest cryptographic hash function (MD5) [12] and secure hash algorithm 

(SHA) [13]. Message authentication code (MAC) is generated using a one-way hash 

function and a key. In this scenario only the parties having the key can produce and 

verify the hash value. The schematic is shown in Fig 2.2. We can also modify the block 

cipher algorithms to generate MACs [3]. 

 

KEYED HASH 

FUNCTION

KEY

MESSAGE HASHHASH 

FUNCTION

MESSAGE HASH

 

Figure 2.2: Hash Functions 
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2.2 Uniprocessor system security architecture models 

Thekkath et al. [4] proposed Execute-only memory (XOM) for a uniprocessor 

system, one of the first schemes to propose that software solutions alone cannot handle 

security attacks. This scheme provides privacy and integrity against some of the physical 

attacks on memory or the system bus or even a compromised operating system. This 

model is implemented by making additions like XOM virtual machine monitor (XVMM) 

and tagging the registers, level 1 (L1), level 2 (L2) cache lines with XOM identifier tags. 

It also has a private memory on chip to store the keys for the corresponding XOM 

identifiers. When the data is sent off-chip, XVMM encrypts the data with the 

corresponding XOM identifier keys and it also generates a MAC. This provides privacy 

and also helps in verifying any tampering of the data when sent off-chip. It also protects 

the system against spoofing attacks [14]. XOM uses a simple and direct approach to 

provide these features, but has significant performance overhead as the security hardware 

units are on the critical path. The security architecture model of XOM is shown in Fig 

2.3.  

AEGIS [5] is another processor architecture that is secure against physical attacks. 

AEGIS uses physical random functions and a one-time pad (OTP) encryption scheme to 

provide privacy.  It uses a cached hash tree [15] for integrity verification of off-chip 

memory. Shi et al. [16] proposed an efficient counter mode security architecture model 

which hides the decryption latency by predicting the sequence numbers and 

precomputing the pads. A pad is a value that can be pre-computed and is independent of 

the plaintext/ciphertext data. Yan et al. proposed a memory encryption/authentication 
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scheme using GCM mode of operation [32]. They address the memory authentication 

latency problems posed by traditional hash algorithms such as MD5, SHA1. This scheme 

reduces memory authentication latency significantly by using GCM mode. A generalized 

security architectural model is shown in Fig 2.4. This figure shows an 

encryption/decryption unit which encrypts/decrypts the processor to memory data flow, a 

hash verification unit which computes the hash value of the data sent off-chip. It also 

shows the trusted boundary and the un-trusted sources [5]. 

SYMMETRIC 

DECRYPTION 

UNIT

MAIN MEMORY

L2 CACHE

XVMM

L1 

INSTRUCTION 

CACHE

L1 DATA 

CACHE

PRIVATE 

MEMORY

DECODE                         DATAPATH
REGISTER 

FILE

PROTECTION BOUNDARY

XOM 

IDENTIFIER 

TAGS

XOM IDENTIFIER TAGS

XOM 

IDENTIFIER 

TAGS

XOM IDENTIFIER TAGS 

AND VALID BITS

 

Figure 2.3: XOM Architecture 
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Figure 2.4: Generalized security architecture model 

 

2.3 Multiprocessor system security architecture models 

In a multiprocessor system apart from encrypting the data between the processors and 

memory we also need to encrypt the data communication in between the processors [2, 

17]. To protect the bus communication from security attacks Zhang et al. [2] designed an 

encryption scheme, SENSS, for a symmetric shared memory multiprocessor (SMP) 

system, which is both secure and fast. This scheme encrypts/decrypts and also 

authenticates the data flow between processors. The proposed scheme uses the cipher 
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block chaining mode of the advanced encryption standard (CBC-AES) symmetric block 

cipher [18] which is explained in detail in section 3.1. SENSS uses this cipher because of 

its capability in message authentication. It provides architectural additions like PID 

(processor ID) and GID (process ID) which earlier works [17] lack, and a secure 

hardware unit capable of providing bus encryption and authentication. Though CBC-AES 

provides authentication capability, it needs another invocation of the underlying block 

cipher to compute the authentication tag. CBC cannot be pipelined to encrypt many 

different blocks simultaneously.  

Our study is an effort to increase the performance of SENSS in safeguarding the cache-

to-cache data transfers. Our scheme employs the Galois/Counter Mode of Operation 

(GCM) [21], [22], a method which can use pipelined and parallelized implementations 

with minimum computation latency. The purpose of the scheme is to maintain 

confidentiality and the integrity of the bus data transfers for all types of bus attacks. The 

objectives of the scheme are to provide a lower overhead of encryption latency and 

message authentication even under heavy bus loads, while maintaining the same level of 

security provided by SENSS. Lee et al. [19] proposed interconnect independent security 

enhanced SMP (I
2
SEMS), which investigates security for SMP with varying size of 

keystream pools and also the relationship between keystream hit rate and various cache 

coherence protocols. We assume a fixed keystream pool size, that is the memory which 

stores the pre-computed pads, and compare the performance losses of SENSS and our 

scheme with increasing cache line sizes and varying the throughput of the AES units. We 

estimate additional memory required to provide these features for both CBC and GCM 

schemes.  
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As security features developed for uniprocessor and SMP cannot be adapted directly for 

safeguarding distributed shared memory multiprocessor (DSM), Rogers et al. [20] 

proposed a security scheme for data protection in DSM, which is the first work to study 

privacy and integrity in DSM. Yang et al. [7] proposed SecCMP: a secure chip-

multiprocessor (CMP) architecture which addresses the key protection and core 

authentication issues in multi-core systems. 
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CHAPTER III 

 

 

IMPLEMENTING ENCRYPTION AND AUTHENTICATION UNIT 

 

3.1 Modes of operation of advanced encryption standard algorithm (AES) 

The modes of operation of an underlying block cipher commonly include cipher block 

chaining mode (CBC), electronic book mode (ECB) and counter mode (CTR) [24]. ECB 

mode is not secure because it reveals pattern information when processed offline. CBC 

mode offers better security than the ECB mode [24, 23]. In CBC mode, encryption of the 

block depends on the feedback of the previous block encipherment. CTR mode is equally 

secure with no dependencies among different blocks, allowing operations to be fully 

pipelined to achieve greater performance, but CTR mode lacks authentication capability 

[24]. It is important to have an authentication capability, apart from encryption, in the 

employed block cipher because any interruption or modification in the communication 

must be detected. Galois counter mode (GCM) mode [21, 22] is another mode of 

operation which can use pipelined and parallelized implementations with minimum 

computation latency. GCM mode combines the efficiency of CTR mode with the 

authentication capability of the CBC mode. The following sub sections discuss in detail 

the CBC and GCM modes of operation. 
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3.2 CBC mode of operation 

In this mode the plaintext message is exclusive or’ed (XOR) with the previous 

block encipherment. This is illustrated in Fig 3.1. If the plaintext message is divided into 

‘i’ blocks and if E is the encryption cipher and K is the key. The ciphertext Ci is produced 

by passing the XOR of Pi and Ci-1 (which is (i-1)
th

 ciphertext) through the encryption 

function E. 

A similar approach is followed on the decryption side. The ciphertext message Ci 

is passed through the decryption function D. This result is XOR’ed with the (i-1)th 

ciphertext to form the plaintext Pi. This is shown in Figure 3.1 [3]. 

 

E(K)

XOR

E(K)

XOR

Ci-1 Ci

Pi-1 Pi

CBC Encryption

E(K) E(K)

Pi-1 Pi

Ci-1 Ci

    CBC Decryption

XOR XOR

 

Figure 3.1: CBC Encryption and Decryption 
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CBC-MAC: In CBC scheme MAC of a block is generated by invoking the underlying 

block cipher as AES (block). The initialization vector for authentication is different from 

that used in encryption. The least significant ‘s’ bits are taken to form MAC. In CBC ‘n’ 

blocks can be authenticated at a time by chaining all the MACs of the previous blocks 

[2]. In CBC scheme we need another invocation of the underlying block cipher for 

authentication. In addition we need to maintain separate masks (results of previous XOR 

operations) for authentication and encryption [2]. 

3.3 GCM mode of operation 

The operation of GCM mode includes two functions: authenticated encryption 

and authenticated decryption. Authenticated encryption takes the plaintext data, 

additional authentication data (AAD) and an initialization vector (IV) as inputs. The 

output of the authenticated encryption function is cipher text and an authentication tag. 

The schematic representation is shown in Fig 3.2. The authenticated decryption function 

takes the ciphertext, the initialization vector, additional authentication data and 

authentication tag as inputs. The output is the plaintext data only if the authentication tag 

which is computed is equal to the authentication tag provided, as shown in Fig 3.3. 

 

Authenticated 

Encryption Function

Plaintext

Additional Authentication 

Data

Initialization 

Vector

Ciphertext

Authentication tag

 

Figure 3.2 GCM Authenticated Encryption 
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Figure 3.3 GCM Authenticated Decryption 

GCM authenticated encryption: 

Step 1: The IV of length 96 bits is taken and appended with strings of 0’s and a 1 to make 

it 128 bits in length.  

Y0 = IV || 0
31

1. (Where ‘||’ denotes concatenation operation). 

Step 2: This is passed through an increment function (incr). 

Yi = incr ( Y (i-1) ) for each i. 

Step 3: The plaintext message Pi is XOR’ed with E(K, Yi). Where E is the encryption 

function and K is the key. 

Ci = Pi (XOR) E ( K, Yi). 

Step 4: The authentication tag is computed using the function GHASH. The inputs to the 

GHASH function are the Ci, AAD. This is XOR’ed with E(K, Y). The most significant‘t’ 

bits (MSB) of this result form the authentication tag. GHASH function is a series of 

multiplications in the galois field. The GHASH algorithm is defined in [22].  

Authentication tag = MSBt (GHASH (Ci, AAD) XOR E (K, Y)). 
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GCM authenticated decryption: 

Step 1: Is same as the authenticated encryption step1. 

Step 2: A new authentication tag is computed with the received ciphertext.  

New Authentication tag = MSBt (GHASH (Ci, AAD) XOR E (K, Y)). 

Step 3: If the new authentication tag computed is equal to the authentication tag provided, 

then Yi is calculated. 

Yi = incr ( Y (i-1) ) for each i. 

Step 4: The plaintext data is produced by the XOR operation of Ci and E (K, Yi). 

Pi = Ci (XOR)  E (K, Yi) 

The GCM hardware is shown in the figure below [21]. 
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Figure 3.4: GCM Hardware 

 

3.4 Processor communication model 

The objective of the study is to design a security hardware unit capable of encrypting and 

authenticating the bus communication between the processors on a symmetric shared 

memory processor (SMP) network using GCM-AES. In a multiprocessor system apart 

from safeguarding the processor to memory data flow we also need to safeguard the 

processor-to-processor (cache-to-cache) data communication. The security hardware unit 
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that encrypts/decrypts the processor to memory communication cannot be used to 

encrypt/decrypt processor to processor communication. This is because if we use the 

same pads to encrypt both types of communication, if an adversary tracks the transfers 

between the processors on the communication channel which use the same pad over a 

long period of time, the adversary can gain information of the plaintext by XOR’ing the 

transfers. For instance, let P be the pad and D the data. If the data D gets modified to D
׀
 

and if the transfers use the same pad P, information can be obtained by (P XOR D) 

(XOR) (P XOR D
׀
) [2]. Therefore two separate encryption/decryption units that use 

different pads should be used to encrypt the processor-to-memory transfers and   

processor-to-processor transfers. This work only considers the design of the security 

hardware unit that encrypts and authenticates processor-to-processor communication. The 

schematic of the communication model is shown in Figure 3.5. 
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Figure: 3.5 Processor communication model 

Every processor on the network is assigned a public-private key pair. The private key is 

hard burned on that particular processor node when manufactured and is not accessible. 

Apart from its private key each processor also has the public keys of all other processors 

stored on the processor node, the use is explained in the later sections. The security 

hardware unit maintains the process ID’s of all the processes on that particular processor 

node. The applications which are to be run on the SMP system with support for hardware 

security are encrypted using a key K. In the next step the key K is encrypted with the 

processor’s public key [2]. When the application is run for the first time, the processor 
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decrypts the key K with its private key and next decrypts the application. This restricts 

the use only to the processor entitled to decrypt the application. 

 

3.5 Operation of CBC-AES unit in an SMP 

 SENSS uses CBC mode to encrypt and authenticate transactions between the 

processors. The sequence of operations for encryption in CBC: 

1. X = Pi XOR Ci-1  

2. Ci = AES (X, key) 

3. Send Ci     

But in the above scenario step 2 consumes time because of the invocation of AES. The 

time this step consumes is equal to the latency of the underlying AES unit. SENSS 

modifies this as follows 

1. Ci  = Pi XOR Mask last 

2. Send Ci  

3. Mask= AES (Ci , key)  

In the above scenario step 2 is moved to step 3. The mask is updated in the background. 

In this way the message (Pi) need not wait for the mask to be calculated. If we need to 

encrypt another message before the mask is ready for the present transaction, we have to 

wait for the mask update which is still a bottleneck. In SENSS for every process ID 

running on that node, 2-masks are maintained one mask for the sending sequence and the 

other mask for the receiving sequence for each process ID. We need to maintain separate 

masks for each process ID as masks of one process ID cannot be shared with the other. 

The encryption model is shown in Figure 3.6.  
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Figure 3.6 Bus Encryption Model 

Apart from encryption it also needs to maintain separate masks for authentication because 

in CBC, authentication needs a separate invocation of the block cipher. This increases 

space requirement and also consumes more time. The performance of SENSS can be 

greatly improved by using GCM mode of operation which can encrypt as well as 

authenticate transaction within a single invocation of the block cipher. We also need not 

maintain separate masks for encryption, for each process ID as in CBC. This reduces 

storage requirement by a significant fraction. The storage requirement is discussed in 

section 3.8. 

3.6 Operation of GCM-AES unit in an SMP 

In a symmetric shared memory environment, where there are n processor nodes, 

the individual nodes communicate among themselves using a shared bus. The security 

hardware unit, which uses GCM-AES mode of operation, is embedded in all the nodes of 

the network. The security hardware unit maintains the process IDs of all the active 

processes on that particular processor. It also has the memory required for operation of 

the GCM-AES unit. Our adaptation of GCM to work in an SMP environment is 
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explained below. Figure 3.7 shows the details of this implementation. We assign a single 

counter value for a particular processor communication pair. When communication is 

initiated for the first time every processor node shares its counter value with the other 

nodes by encrypting the counter value with the public key of the receiving processor. As 

the communication proceeds, the counter value is incremented for each send and receive 

request. The counter values for all the processors on the network are maintained by the 

security hardware unit. The initialization vector is formed using this counter value and 

the processor ID. This initialization vector is given as the input for the cipher block to 

compute the pad. Since the computation of the pad is independent of the plaintext data, 

pads can be pre-computed and stored in the security hardware unit’s memory.  When a 

request comes in, the processor first verifies the processor ID and process ID for the 

incoming request with the ones maintained by the security hardware unit. If they match it 

reads the associated counter value for the sending sequence for that processor ID. Next, it 

computes the pad, if not pre-computed. This pad is XOR’ed with the plaintext data which 

produces the ciphertext, as shown in Figure 3.7. The GCM-AES hardware keeps 

generating the pads as they are consumed, for the subsequent transfers. As long as we 

have pre-computed pads in the memory of the security hardware unit, the encryption and 

decryption latency will only be a single cycle, i.e. for the XOR operation. The 

performance of the scheme varies with the number of pre-computed pads. 

In the next step the ciphertext and the process ID, which is used as the additional 

authentication data, are processed to generate the authentication tag within the same 

invocation of the cipher block. In CBC, we would need another invocation of the 

underlying cipher. The ciphertext and the authentication tag are transferred on to the bus 
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by the security hardware unit. For the subsequent transfers, the counter value is increased 

and the associated pads are provided in the same way. The decryption part operates 

similarly and decrypts the cache line on the receiver node. It computes the tag and 

compares with the received tag and takes suitable action. The sequence of actions that 

take place in GCM authenticated encryption and decryption functions are shown in Fig 

3.8 and Figure 3.9 respectively [33]. 
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Figure 3.7 Implementing authenticated encryption in SMP 
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Figure 3.9 Security hardware unit model for decryption 
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3.7 Bus attacks prevention mechanism 

The three types of attacks that are possible on a shared bus in an SMP environment are 

blocking messages, message reordering and message spoofing [1, 2]. These attacks can 

be prevented using GCM-AES. If an attacker blocks some message from reaching a node, 

the authentication tag which is pre-computed will not be equal to the tag computed by the 

security hardware unit. Thus dropped messages can be detected. When reordering of 

messages take place, again the authentication tag generated differs hence these types of 

attacks can be detected. Message spoofing is not possible because the attacker does not 

have access to the sequence numbers maintained by the processors security hardware 

unit, which is on chip and secure. Moreover, the process ID is included as additional 

authentication data, due to which only the processors entitled to run the process can 

decrypt data [33]. 

 

3.8 Storage estimate for security hardware unit in GCM and CBC schemes 

The security hardware unit stores the public keys of all the other processors in the SMP 

environment. It stores these keys because when we initiate communication for the first 

time to share initial counter values with all the other processors we need to encrypt the 

initialization vectors with the public keys of the respective processors. When the 

processor receives the encrypted value it decrypts the same with its private key pair, 

which is unique and no other processor can decrypt it. It stores its private key to decrypt 

the counter values from the other processors. After the communication is initialized, each 

processor will have all the counter values it shares with the other processors.  
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If we have an 8 processor SMP environment, we need a storage space of  

128 * 8 

for public keys and 128 bits for the private key. To verify if a process is running on a 

particular node, we need 9 bits of storage. If we have 110000101 on row 32 this implies 

the process ID 32 is running on node 1, 2 and 8. The extra bit specifies whether the 

process is valid or not. If we have a maximum of 100 processes running, we need a total 

of  

100 * 9 bits 

of storage. The IV is formed from the counter value, which is 96 bits long and the 

processor ID field, which is 3 bits long. Since the scheme maintains separate counter 

values for sending sequence and receiving sequence, for a total of 8 processors it takes 

 

(96 + 3) * (7 * 2) bits 

 

Thus storage requirement, excluding the space for storing the pads, for an 8 processor 

network is  

(128 * 9) + (100 * 9) + (99 * 14) = 3672 bits, or 430 bytes    

For higher performance, the pads are pre-computed. The number of pads to be pre-

computed depends on the bus speed and AES-GCM throughput. Based on our initial 

simulations we found that storing 5 pre-computed pads per processor pair in every 

processor node provides adequate performance. The pad size is equal to the size of the 

cache line. This storage is to be provided in addition to the above storage. If we consider 

a 64 byte cache line size, a total of  

64 * 5 * 14 = 4480 bytes 
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is required for pads storage. For a 128 byte cache line size, 8960 bytes of storage is 

required. In SENSS, for a 64 byte cache line size the storage provided  in SENSS for a 2-

mask system assuming 100 processes running on a processor is  

12800 * 2 = 25600 bytes 

for encryption as well as authentication masks. The amount of storage required in our 

scheme is far less compared to SENSS. Also, our storage requirement for the pads is 

independent of the number of processes and thus our scheme scales better with 

increasing number of processes [33]. 
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CHAPTER IV 

 

 

SIMULATION METHODOLOGY 

 

To simulate the cache-to-cache transactions between processors on a 

multiprocessor system, we simulate a full system SMP environment using both SIMICS 

[25], a full system simulator and GEMS [26], a memory system extender of SIMICS.  

 

4.1 SIMICS a full system execution driven simulator 

 Simics is a full system execution driven simulator developed by Virtutech. It 

supports various architectures such as Alpha, ARM, IA-64, MIPS, Sparc, x86 and x86-

64. It can simulate embedded systems, desktops, multiprocessor systems [29]. Virtutech 

also provides disk dumps and kernel images to simulate various targets. This work uses 

cashew target to simulate 2, 4, 8 – processor systems. Cashew target simulates Ultrasparc 

processor architecture running Aurora 2.0 (Fedora core 3). It uses Linux kernel 2.6.15 

which includes SMP support [35]. 

 

4.2 GEMS (memory system simulator) 

General execution driven multiprocessor simulator (GEMS) is a memory system extender 

for Simics. GEMS leverages the power of Simics to simulate multiprocessor systems [26, 

27]. GEMS can be used to simulate uniprocessor, SMP systems, chip multiprocessor
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systems (CMP), multiple-CMP systems. GEMS provides RUBY memory system model 

which includes physical components such as caches, system interconnect, memory and 

coherence controllers. This is shown in Figure 4.1. CPU driver issues memory requests to 

ruby, which simulates the requests and callbacks the driver with the latency [26, 28]. 

Ruby provides several SMP and CMP protocols such as MOSI_SMP_bcast [34], 

MOSI_SMP_directory, MOESI_CMP_directory, MOESI_CMP_token, etc. 

 

4.1 GEMS simulator model [28]  

Opal is used for out-of-order processor model, it implements Sparc instruction set 

architecture. This work uses only RUBY and an in-order processor model. The steps 

involved in simulating an SMP system are: 
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1. Creating checkpoints for multiprocessor system with pre-compiled workload 

using Simics. 

2. Building Ruby memory system module. 

3. Configuring Ruby. 

4. Loading Ruby. 

5. Running simulation and collecting statistics. 

This work modifies the Ruby memory system to include the functionality for the 

operation of the security hardware unit used for the encryption/decryption and 

authentication of the cache-to-cache communication on an SMP network. The security 

hardware unit is modeled to operate in both CBC and GCM modes. This functionality is 

achieved by modifying the cache controller logic. The performance overhead introduced 

by the additional hardware unit in both schemes to safeguard the cache-to-cache transfers 

is studied using SPLASH2 benchmarks [30, 31]. The impact of increasing cache line 

sizes and the effect of varying throughput of the AES units in both the schemes are 

studied. This work simulates a 2, 4 and 8 processor SMP system with separate L1 

Instruction and Data-cache and an integrated L2 cache. We simulate L2 caches with two 

different line sizes of 64 and 128 bytes to show the impact of increasing line size. We 

also vary the throughput of the AES unit from 0.8 GBps to 3.2 GBps. The simulation 

parameters for 64 and 128-byte cache line sizes are given in Table 4.1 and Table 4.2 

respectively. 
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Processor Clock Frequency 1 GHZ 

L1-Instruction Cache Size 64 KB 

L1-Data Cache Size 64 KB 

L2-Cache Size 1 MB 

Main Memory 1 GB 

AES throughput 0.8 GBps-1.6 GBps 

Cache Line Size 64 bytes 

L1 Hit Latency 4 cycles 

L2 Hit Latency 10 cycles 

Table 4.1: Simulation Parameters for 64-byte cache line size 

 

Processor Clock Frequency 1 GHZ 

L1-Instruction Cache Size 128 KB 

L1-Data Cache Size 128 KB 

L2-Cache Size 2MB 

Main Memory 4GB 

AES throughput 1.6 GBps-3.2 GBps 

Cache Line Size 128 bytes 

L1 Hit Latency 4 cycles 

L2 Hit Latency 10 cycles 

Table 4.2: Simulation Parameters for 128-byte cache line size 
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4.3 GCM & CBC throughput schemes  

The throughput in the simulations is varied from 0.8 GBPS to 3.2 GBPS.  

This is derived as follows: 

Throughput of the scheme = (Cache line size) * (Clock frequency) / AES latency. 

CBC 0.8 GBPS scheme takes 320 cycles to encrypt a 64 byte cache line. CBC 1.6 GBPS 

scheme takes 160 cycles to encrypt a cache line size of 64 bytes. Here 320 cycles and 160 

cycles is the latency of the AES unit. Similarly to encrypt a 128 byte cache line size 

GCM 1.6 GBPS scheme takes 320 cycles and GCM 3.2 GBPS scheme takes 160 cycles 

respectively.  

4.4 Workload  

This work uses FFT, LUNC, LUC, and RADIX multiprocessor applications from 

SPLASH2 [30, 31] benchmark suite. The overhead introduced by the security hardware 

unit for these benchmarks is studied. The function of each benchmark is tabulated in 

Table 4.3. 
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Benchmark Function 

FFT A complex 1-dimensional Fast Fourier Transform. 

LUNC Factors a dense matrix into the product of lower 

triangular and upper triangular matrix. The data 

structure prevents blocks from being allocated 

contiguously. 

LUC Same function as LUNC, but allows blocks to be 

allocated contiguously. 

RADIX A program that performs an integer radix sorting. 

Table 4.3 Workload 
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CHAPTER V 

 

 

DISCUSSION OF RESULTS 

 

5.1 Effect of throughput in CBC and GCM schemes 

In GCM scheme we maintain 5 pre-computed pads per processor pair to send as 

well as to receive. On every send and receive transaction the associated pre-computed 

pad is read without any delay. If the pad is not pre-computed it computes the pad and 

performs an XOR operation with the plaintext/ciphertext. Results show that most of the 

time the pad is pre-computed unless there is a series of cache-to-cache transactions which 

consume all the pre-computed pads and the subsequent transactions have to wait for pad 

computation. This might not be the case in CBC where the pad computation of the 

current transaction depends on when the previous transaction has occurred. If there is a 

series of transactions the present transaction should wait for the mask update whereas in 

GCM scheme we can pre-compute the pads because there is no dependency between the 

previous and present transaction. The number of transactions which consume all the pads 

within the latency of AES unit is 2 in SENSS where the subsequent transaction might 

have to wait for the mask if it occurs while the previous mask update. In our scheme, 

since 5 pads are pre-computed, the series of transactions which consume all the pads 

within the latency of the AES unit is 5. Hence this scope for performance improvement is 

exploited using GCM. To compute the authentication tag in CBC, we need two
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invocations of the cipher block but in GCM the authentication tag can be computed with 

an additional few cycles of latency within a single invocation of the cipher block. 

Figure 5.1 and Figure 5.2 show the total percentage performance loss of CBC and 

GCM schemes for 2, 4, and 8- processor systems with a cache line size of 64 bytes, 128 

bytes respectively and AES unit throughput of 0.8 GBps, 1.6 GBps and 3.2 GBps. The 

other parameters as shown in Table 4.1 and Table 4.2 and kept unchanged throughout the 

simulation. The performance loss is calculated by taking the ratio of the difference of 

execution time in cycles with the security features to a baseline system without any 

security feature. 
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Figure 5.1 Total Performance loss (given by the ratio of the difference of the execution 

time in cycles with security features to a base line system without any security feature) 

for 64 byte cache line size for 2, 4, 8-Processor systems to provide encryption and 

authentication. 
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Figure 5.2 Total Performance loss (given by the ratio of the difference of the 

execution time in cycles with security features to a base line system without any 

security feature)  for 128 byte cache line size for 2, 4, 8-Processor systems to 

provide encryption and authentication. 
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We can clearly see that the performance of GCM scheme is better compared to 

SENSS which uses CBC. The performance of GCM scheme is better even with low 

throughput of the AES unit.  In CBC, we also need to accommodate another AES unit for 

authentication since the masks used for authentication are different from those of 

encryption.  This increases space requirement, as discussed in Section 3.6. If we consider 

a system with 128 byte cache line size, the performance loss of CBC 1.6GBps scheme is 

high because any 2 back-to-back cache transfers within the current latency of the AES 

unit, that is 320 cycles, will consume 2 masks. The additional mask generation for the 

next waiting cache transfer takes 320 cycles. The performance of CBC 3.2 GBps is better 

because for 2 masks to be consumed, any 2 back-to-back cache transfers should take 

place within 160 cycles. The additional mask generation now takes 160 cycles. For every 

single cache-to-cache transaction, we need another invocation of AES to authenticate 

transactions. Authentication in CBC 3.2 GBps takes 160 cycles, whereas in CBC 1.6 

GBps it takes 320 cycles. A similar discussion holds for 64 byte cache line size. If we 

consider a 64 byte cache line size system with GCM 0.8 GBps, the number of back-to-

back cache transfers that consume all the pre-computed pads is 5, which is greater than in 

the CBC schemes. If all the pads are consumed, the next pad generation takes an 

additional 320 cycles. Similarly, in GCM 1.6 GBps the next pad generation takes 160 

cycles. The authentication transaction interval for our scheme for both cache line sizes is 

1. We can see that the performance does not vary drastically for authentication in GCM 

as we can compute the authentication tag within a single invocation of AES with an 

additional few cycles of latency, which is far less compared to the latency of two 
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invocations of AES as in CBC.  In this way, we can afford to authenticate every 

individual transaction.  

We generated performance numbers for CBC with an authentication interval of 10 

transactions. This is shown in Figure 5.3. A performance improvement is seen compared 

to single transaction authentication. As seen from Figure 5.3 in most cases GCM 

outperforms CBC. Therefore, in CBC the performance varies with the authentication 

transaction interval. 

We can also see that the performance loss of GCM with reduced throughput is not 

very high compared with a higher throughput design. This is because all the pre-

computed pads may not be consumed most of the times. In such a scenario, even pre-

computing more pads would not result in a performance gain. In CBC scheme the 

throughput of the design plays a greater role [33]. 
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Figure 5.3 Total Performance loss (given by the ratio of the difference of the execution 

time in cycles with security features to a base line system without any security feature)  

for 64 byte cache line size for 2, 4, 8-Processor systems to provide encryption and 

authentication for 10 transaction interval for CBC scheme. 
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5.2 Effect of varying cache line size  

On a full system scale, though the performance of both schemes are improved in 128 byte 

cache line size system compared to the 64 byte cache line size, because of the reduced 

number of back-to-back cache transfers, GCM performs much better when compared to 

the CBC scheme. 

 



 46

CHAPTER VI 

 

 

CONCLUSIONS AND FUTURE WORK 

 

This work proposes a security mechanism for a symmetric shared memory 

multiprocessor environment to safeguard the cache-to-cache data transfers. This work is 

closely related to SENSS [2]. This work focuses on improving the performance of the 

existing scheme by adapting the GCM-AES mode of operation as the underlying 

algorithm. The impact of increasing cache line sizes and the effect of varying throughput 

of the AES units in CBC and GCM modes is studied. Results show that a performance 

gain in the range of 4X-9X over the CBC scheme is achieved. This scheme consumes less  

space on chip while providing the same level of security as in SENSS. This scheme can 

be used to protect the SMP system from common bus attacks. It can detect any fake 

messages, reordered messages and blocked messages on the communication bus in an 

SMP environment. It protects the system from hardware security attacks such as modchip 

installations. It also secures the system against software attacks by providing 

confidentiality and authentication mechanisms.   

Future work 

This work considers the implementation of a security hardware unit to secure only the 

cache-to-cache communication. A model which also secures the processor to memory 

data flow can be included in an SMP system. The bus traffic increase for providing the
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security features can also be simulated for GCM scheme. A prototype of the security 

hardware unit can also be developed on a field programmable gate array (FPGA). This 

work can also be extended to safeguard the communication among CMP’s in a multiple-

CMP system. 
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