
JOB SHOP OPTIMIZATION THROUGH MULTIPLE

INDEPENDENT PARTICLE SWARMS

By

 BRIAN IVERS

 Bachelor of Science in Electrical Engineering

 Oklahoma State University

 Stillwater, OK

 2003

Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 December, 2006

ii

JOB SHOP OPTIMIZATION THROUGH MULTIPLE

INDEPENDENT PARTICLE SWARMS

Thesis Approved:

Dr. Gary G. Yen
Thesis Advisor

Dr. Rafael Fierro

Dr. Carl D. Latino

A. Gordon Emslie
Dean of the Graduate College

iii

ACKNOWLEDGEMENTS

I thank my advisor, Dr. Gary Yen, for having confidence in me throughout this process
and for giving me the great opportunity to work with him. He has taught me how to think
critically which will prove invaluable during my engineering career. Also, thank you to
my family who has believed in me and encouraged me through this endeavor, especially

my Mom for her love and support and my Dad who has always been my advisor. A
special thanks to my Grandpa Ivers who I know will be sad to see me leave OSU and
who I hope approves of this research. And finally, to my girlfriend and high school

sweetheart, Louisa Kinder, for staying with me while I’ve worked toward my master’s
for the past 2½ years 500 miles away from her. Thank you so much.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION..1

1.1 Current Need..1

 1.2 Outline of Work ...5

II. THE JOB SHOP PROBLEM..6

2.1 The Job Shop Problem Defined ...7
 2.2 Related Scheduling Problems ..8
 2.2.1 The Flexible Job Shop Problem..9
 2.2.2 The Flow Shop Scheduling Problem ..9
 2.2.3 The Single Machine Weighted Tardiness Problem..9
 2.3 Types of Schedules ..10
 2.3.1 Semi-active Schedules ..10
 2.3.2 Active Schedules...12
 2.3.3 Non-Delay Schedules ...15
 2.3.4 Parameterized Active Schedules ..18
 2.4 Representation of Schedules ..19
 2.4.1 Direct Representation ...19
 2.4.2 Indirect Representation and Scheduling Algorithms....................................21
 2.4.2.1 Permutation with Repetition ..22
 2.4.2.2 The GT Scheduling Algorithm ..23

III. LITERATURE REVIEW ..26

3.1 The Job Shop Problem History and Early Methods of Optimization26
 3.2 Approximate Methods ...28
 3.2.1 Dispatching Rules...28
 3.2.2. Meta-heuristic Methods ...30
 3.2.2.1 Priority Lists ..30
 3.2.2.2 Particle Swarm Optimization...32

v

IV. PARTICLE SWARM OPTIMIZATOIN ..35

V. PROPOSED JSP/PSO ALGORITHM...43

5.1 From Continuous Space to Permutation Space..46
 5.2 From a Permutation to a Schedule ...47
 5.2.1 Permutation with Repetition Representation ..47
 5.2.2 Priority List Representation ..50
 5.3 The JSP/PSO Idea ..51
 5.4 Why PSO?..57

VI. RESULTS..62

6.1 JSP/PSO Program Specifics...62
 6.1.1 PSO Program Specifics ..62
 6.1.2 Schedule Building Specifics ...75
 6.2 Simulation Results ...79
 6.2.1 Time Delay Parameter of 0 (Non-Delay Schedules)81
 6.2.1.1 Non-delay Analysis ...82
 6.2.2 Time Delay Parameter of 10...83
 6.2.2.1 Parameterized Active Schedule Analysis..84
 6.2.3 All Active Schedules ..85
 6.2.3.1 Active Schedule Analysis..86
 6.2.4 Gantt Chart and Priority List Analysis ...86
 6.3 Comparative Analysis..97

VII. CONCLUSIONS..101

7.1 Lessons Learned...102
 7.1.1 Significance of Delay Parameter ..102
 7.1.2 GT Algorithm in General ...103
 7.1.3 Priority List Representation..103
 7.1.4 Cycling PSO Constants ..105
 7.2 Final Thoughts ...105

REFERENCES ..108

vi

LIST OF TABLES

Table Page

2.1 Scheduling Problem Example..8

2.2 Simple JSP Example..11

2.3 Small JSP ...20

2.4 Simple Job Shop Problem..22

3.1 Dispatching Rules ..30

3.2 Priority List Representation ...31

5.1 Simple Job Shop Problem..48

6.1 Time Delay of 0 Results Table ..81

6.2 Time Delay of 10 Results Table ..83

6.3 All Active Schedules Results Table...85

6.4 LA01 Job Shop Problem..87

6.5 LA01 Optimal Priority List..87

6.6 Priority List for Near Optimal LA01 ...89

6.7 Precedent Constraints for MT10..93

6.8 Comparative Results ..98

vii

LIST OF FIGURES

Figure Page

2.1 Non-semi-active Schedule Example ..11

2.2 Semi-active Schedule Example..12

2.3 Left Shifting (a)..13

2.4 Left Shifting (b) ...13

2.5 Active Schedule after Left Shifting ...14

2.6 Non-delay Schedule ...15

2.7 Active Schedule Example ..16

2.8 Relationship of Schedules (a) ..17

2.9 Relationship of Schedules (b) ..18

2.10 Infeasible Schedule ..20

2.11 Permutation with Repetition ..23

3.1 JSP Methods...27

4.1 Particle Swarm Optimization Equations..36

4.2 Particle Swarm Optimization Pseudo Code...38

4.3 Particle’s Initial Positions ..39

4.4 Particle’s Path to Optimum..40

4.5 Close Up Path to Optimum..41

5.1 Block Diagram of PSO/JSP Algorithm..45

viii

5.2 Space Transformation ..46

5.3 Permutation with Repetition Schedule...48

5.4 Priority List to a Particle (a)...52

5.5 Priority List to a Particle (b) ..53

5.6 JSP/PSO Block Diagram..54

5.7 JSP/PSO Swarm for an n x 5 JSP...55

5.8 JSP/PSO Linking ...56

5.9 JSP/PSO Personal and Global Best Position Example ..57

5.10 Six Dimensional Particle in Continuous and Permutation Space (a).........................59

5.11 Six Dimensional Particle in Continuous and Permutation Space (b)59

5.12 PSO Velocity and Position Update Equations ...60

6.1 Mutation Example..65

6.2 PSO Velocity and Position Update Equations ...66

6.3 Plot of One Particle’s Velocity ..69

6.4 Close up of One Particle’s Velocity...70

6.5 Three Different Particle’s Movement in the Same Dimension....................................71

6.6 Objective Value (Makespan) versus Iterations ..71

6.7 One Particle’s Movement in Six of its Dimensions...73

6.8 Objective Value (Makespan) versus Iterations ..73

6.9 Close up of One Particle’s Movement in Six of its Dimensions74

6.10 Gantt Chart of LA01 Solution..88

6.11 Gantt Chart for Near Optimal Solution of LA01...90

6.12 Gantt Chart of LA03 Solution..92

ix

6.13 Gantt Chart for Non-optimal MT10 Schedule ...94

6.14 Gantt Chart of LA31 Solution..96

1

CHAPTER ONE

INTRODUCTION

For several decades now much research has been conducted into the field of evolutionary

computation, or meta-heuristic search techniques. These techniques are preferred for

many optimization problems where the search space either very complex or very large.

One of the ways researchers can measure the effectiveness of their designed algorithms is

to test them on known optimization problems, such as the Job Shop Problem (JSP). Not

only does the JSP serve as a benchmark to judge various algorithms by, but also as a

model for which the field of scheduling theory can be advanced. Scheduling theory is

studied by researchers in many fields and a direct application to today’s industry. In the

real world, scheduling problems like the JSP can be thought of as production process or

production scheduling problems.

1.1 Current Need

It is fairly obvious that optimal production process is important to today’s commercial

industry. The online encyclopedia Wikipedia states that “scheduling (production process)

is an important tool for manufacturing and engineering”. This importance stems from the

desire to lower production costs and increase profits. It is often said that time is money.

While this general statement can’t be proven for every situation, it is definitely assumed

2

to be true when it comes to business. It is in the best interest of both the company and the

individual to use time efficiently. This is why it is important to study scheduling

problems like the job shop problem. The efficient use of time means lower costs and

higher profits. In many ways, our way of life, made possible by modern computer

technology and networking, demands efficient scheduling. For example, simply

consider the many postal or parcel services operating throughout the world, or air traffic

control centers directing thousands and thousands of planes to safe ground. Indeed,

optimal scheduling is a worthy area of research. The JSP is simply a helpful model to

help aid in the eventual development of scheduling software for industrial, personal or

commercial use. One only needs to perform a simple Google search to discover the many

scheduling software packages available for both personal and commercial use. If good

optimization methods can be developed for the scheduling models then perhaps they can

have a beneficial impact on the current production process scheduling software, and

thereby lower costs for industry.

Our ability to produce optimal schedules as engineers, scientists, employees and

employers has not necessarily progressed with the advance in technology and processing

power over the years. The amazing processing power of modern computers has

definitely helped researches evaluate many different methods of scheduling at fast

speeds, but in terms of finding a technique that consistently produces optimal schedules

for many different sizes of problems has not yet been fully developed. Even the modern

computer is hardly a match for the enormous combinatorial complexity of a medium

scale Job Shop Problem (JSP). The Job Shop Problem belongs to the class of NP-Hard

3

problems, and is commonly thought of as one of the “harder” problems in that class. NP-

Hard problems have an exponentially growing search space as the problem increases in

dimension. For example, the search space (possible combinations) for a Job Shop

Problem that consists of 10 jobs to be processed on 10 machines is (10!)10. Which is

equal to approximately 3.9594 × 1065 or

395,940,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00

0,000. Even though not all of these solutions are feasible, with this information we can

see how even modern processors which perform billions of calculations per second are

hardly a match for this kind of combinatorial space. Therefore, methods and algorithms

must be developed to provide good search directions within this space for our modern

computers to perform their calculations. This is where the great field of computational

intelligence holds much promise. Where exact methods of optimization search out the

best solution exhaustively by using mathematical formulations, methods of computational

intelligence rely on certain heuristic principles and ideas to explore and then converge to

the best found solution. Using computational intelligence computers are programmed to

evolve or grow a solution over a period of iterations, usually using populations of

solutions to accomplish this task. This population, or set of solutions to a given problem,

are assigned certain measures and fitness values and allowed to interact over “time” in a

competitive environment. These heuristics that seemingly magically govern such

behavior come from observation our physical world, such as the way neurons work in our

brain, or how species evolve over time, or even how schools of fish, flocks of birds, and

colonies of ants move around space. Deciphering these amazingly tuned biological

processes from mother nature and encoding them into computer programs presents quite

4

a challenge in most cases, since our natural world is governed by many delicate

interrelated equations. Yet, our rudimentary translation of these principles into computer

programs can produce great results, but leave much room for more improvement. With

every personal touch or new aspect of biological governance embedded into our

programs and commanded to evolve, we take a step closer to programs that will one day

be able to find solutions, consistently, to such large and important problems like the Job

Shop Problem.

A lot of research pertaining to optimization of the JSP in recent years has focused on the

many meta-heuristic methods, see Dimopoulos, and C., Zalzala, A., [4]. Most of the

research conducted in scheduling optimization uses the Genetic Algorithm, an algorithm

that is modeled after evolution and the “survival of the fittest” law. According to Jain

and Meeran [11], this evolutionary computation algorithm has had success with the JSP,

it hasn’t proven itself yet to be a superior method when compared to other computational

intelligent techniques. One field of computational intelligence which has shown promise

in solving other optimization problems is Particle Swarm Optimization (PSO). The PSO

Algorithm was originally modeled after the behavior of a flock of birds in flight. It is

currently considered one of the fastest converging techniques of computational

intelligence, and a well suited algorithm for multi-modal functions, Song and Gu [19].

As of yet, particle swarm behavior has not been solely applied to the traditional Job Shop

Problem. This could because of the fact that the PSO Algorithm doesn’t lend itself

inherently to the optimization of permutations, which are often use to indirectly represent

solutions to the JSP. Although, the PSO optimization technique has been applied to other

5

scheduling problems, such as the Flowshop problem (FSP) and the Flexible Job Shop

Problem (FJSP), see [12], [21], [22], [25], which are related problems and will be

discussed later. One of the strengths of the PSO algorithm is its speed. It is widely

hailed as very fast converging algorithm. Given the success of this optimization strategy

in other areas, and the ever present need for better heuristic methods for solving Job Shop

Problems, it is only fitting to try and make this connection of the PSO Algorithm to the

JSP, especially due to the fact that constructing a feasible schedule can be very

computationally expensive. Therefore, any algorithm that can prove itself faster will be

advantageous. And of course, any new strategy should be studied at least briefly if it

could open the door for more interesting research, which could lead to better optimization

methods in the long run. Because of the previously mentioned obstacle regarding the

continuous nature of the PSO and the permutation nature of an indirectly represented JSP,

a unique approach has been taken to make this optimization possible. This approach

involves giving each machine defined in a particular JSP its own independent particle

swarm.

1.3 Outline of Work

This thesis is organized as follows: The Job Shop Problem is introduced in Chapter Two,

and prior work is reviewed in Chapter Three. In Chapter Four, particle swarm

optimization is explained. Chapter Five introduces the proposed algorithm, the JSP/PSO,

and Chapter Six consists of the results from the proposed algorithm. Finally, in Chapter

Seven conclusions are presented.

6

CHAPTER TWO

THE JOB SHOP PROBLEM

The Job Shop Problem (JSP) is one of many types of scheduling problems that

researchers from many fields are currently attempting to solve optimally using various

meta-heuristic algorithms. The solution to these scheduling problems is simply the

determination of the optimal assignment of a finite number of resources to a finite

number of operations, while adhering to many pre-defined constraints, usually precedent

constraints. Precedent constraints, or technological constraints, dictate the order of

operations for each job, or the order of machines a job must visit. A solution to a Job

Shop Problem is a schedule specifying when each machine is to start processing certain

operations that does not violate any precedent constraints. The ultimate goal is to

minimize the makespan of the problem, or the minimum time required for all jobs to

finish processing. In the following sections the JSP is defined mathematically, and then

descriptions of the different types of schedules that can be constructed are explained.

Also, for distinction and clarification some of the other more famous problems in

scheduling theory are briefly explained.

7

2.1 The Job Shop Problem Defined

A)(mn× Job Shop Problem is defined by a specific number of jobs, n, each consisting

of an order of operations, m, which are equal to the number of machines or resources

specified in the problem. So a job, Ji is a predefined order of operations

Oi = (Oi,1, Oi,2, …, Oi,m). Each operation Oij has a processing time, or job duration, τij.

For the traditional JSP the following rules apply:

• Each job must be processed by each machine in a certain order (precedent

constraints)

• Each machine can only process one job at a time

• Each job can only be processed by one machine at a time

• Each job must be processed by each machine exactly once

• No preemption is allowed, or once a job has started processing it can not be

interrupted.

The specific order of operations, or the order of machines that a job must visit, are the

precedent constraints, or the technological constraints for that job. These precedent

constraints give the JSP its difficulty. A traditional Job Shop Problem is simply defined

by specifying the technological or precedent constraints and the processing times for each

operation. An example of a)1010(× JSP, the famous MT10 [14] problem, is shown in

Table 2.1.

8

Table 2.1: Scheduling Problem Example

Machine Sequence (Processing Time)
Job 1: 0 (29) 1 (78) 2 (9) 3 (36) 4 (49) 5 (11) 6 (62) 7 (56) 8 (44) 9 (21)
Job 2: 0 (43) 2 (90) 4 (75) 9 (11) 3 (69) 1 (28) 6 (46) 5 (46) 7 (72) 8 (30)
Job 3: 1 (91) 0 (85) 3 (39) 2 (74) 8 (90) 5 (10) 7 (12) 6 (89) 9 (45) 4 (33)
Job 4: 1 (81) 2 (95) 0 (71) 4 (99) 6 (9) 8 (52) 7 (85) 3 (98) 9 (22) 5 (43)
Job 5: 2 (14) 0 (6) 1 (22) 5 (61) 3 (26) 4 (69) 8 (21) 7 (49) 9 (72) 6 (53)
Job 6: 2 (84) 1 (2) 5 (52) 3 (95) 8 (48) 9 (72) 0 (47) 6 (65) 4 (6) 7 (25)
Job 7: 1 (46) 0 (37) 3 (61) 2 (13) 6 (32) 5 (21) 9 (32) 8 (89) 7 (30) 4 (55)
Job 8: 2 (31) 0 (86) 1 (46) 5 (74) 4 (32) 6 (88) 8 (19) 9 (48) 7 (36) 3 (79)
Job 9: 0 (76) 1 (69) 3 (76) 5 (51) 2 (85) 9 (11) 6 (40) 7 (89) 4 (26) 8 (74)
Job 10: 1 (85) 0 (13) 2 (61) 6 (7) 8 (64) 9 (76) 5 (47) 3 (52) 4 (90) 7 (45)

Here each row is a job sequence Ji with processing time τij in parentheses. There are ten

rows, which mean there are ten jobs, and there are ten columns which mean there are ten

machines. Each row is a permutation of numbers representing the sequence of machines

that job must visit. For example, Job 3 must go to Machine 1 first for 91 time units, then

it must be processed on Machine 0 for 85 time units, then go to Machine 3 for 39 time

units and so on…

2.2 Related Scheduling Problems

The traditional Job Shop Problem has many “cousins”, or other scheduling problems with

the same goal, to produce an optimal schedule of a number of jobs through a number of

machines. The nature of the specified constraints, the number of resources available, and

the number of jobs are what differentiate one “shop” scheduling problem from the other.

In the following sections some of the other scheduling problems are briefly explained to

distinguish the traditional JSP, to add perspective on the scope of scheduling problems in

general, and to provide context to their references later in this paper.

9

2.2.1 The Flexible Job Shop Scheduling Problem Another scheduling problem that

proves itself to be computationally hard is the Flexible Job Shop Scheduling problem

(FJSP). In the FJSP an operation of a given job can be processed by multiple machines.

So each operation Oij has a pre-defined list of machines that are capable of performing

that operation. A FJSP with “total flexibility” means that any operation can be processed

by any machine. However, the processing times by each machine for a given operation

are all different, which lends to the need for optimization. Most FJSP problems are

optimized in two steps, first the optimal assignment of each operation to a machine is

made, then the optimal schedule is determined. The FJSP has an even bigger

computational space than the JSP, and in fact the JSP can be considered a general case of

the FJSP.

2.2.2 The Flow Shop Scheduling Problem The Flow Shop Scheduling Problem (FSP) is

another n job by m machine scheduling problem. The FSP differs from the JSP in that

each job j has the same order of operations, or precedent constraints. The goal is to

determine the optimal order of operations that all jobs will share that will minimize the

makespan.

2.2.3 The Single Machine Weighted Tardiness Problem In the Single Machine Weighted

Tardiness Problem (SMWTP) there is only one single machine and a list of operations to

be processed on that machine. At first thought, this does not seem to pose an

extraordinary scheduling problem, because with only one machine the makespan, or total

completion time, of any permutation of jobs will be the same. However, the problem’s

10

difficulty comes into play with the addition of due dates and weights for each job,

parameters not defined for the other scheduling problems in a non-dynamic environment.

The goal becomes to find the optimal order of operations not to minimize the makespan,

but to minimize the total weighted tardiness. In the SMWTP the tardiness of each job is

multiplied by its weight, and the summation of this weighted tardiness is the final cost

value of the schedule. Suddenly, with the addition of weighted tardiness and due dates,

this problem becomes a scheduling problem of great complexity like its other cousin

scheduling problems, especially for problems with 50 or more operations each with

different weights.

2.3 Types of Schedules

As stated before, a solution to a job shop problem is in essence a schedule of operations,

or a set of starting times for each operation, which does not violate any of the imposed

upon constraints. It turns out that schedules can be classified into different categories

depending upon how the sequencing of operations affects the makespan of the problem.

This will be explained in the following sections.

2.3.1 Semi-active Schedules Semi-active schedules are schedules in which the next

operation in a technological sequence is scheduled at the earliest allowable time. In

semi-active schedules no operation can be started earlier without changing the operating

sequence of any machine. Changing the operating sequence of a machine will not

necessarily violate precedent constraints. For example, if Jobs 1 & 2 are both waiting to

be processed by Machine 4 then it doesn’t necessarily violate any precedent constraints to

11

change the order of Jobs 1 & 2 on Machine 4. The fact that they will be scheduled at the

earliest allowable time makes it a semi-active schedule. To understand this concept, it is

easier to show visually what a semi-active schedule is NOT. Consider the following

simple JSP problem that will be used throughout this thesis shown in Table 2.2:

Table 2.2: Simple JSP Example

Job Machine Sequence (Processing Time)
Job 1 1 (3) 2 (5) 3 (2)
Job 2 1 (5) 3 (1) 2 (4)
Job 3 2 (4) 1 (2) 3 (1)

Figure 2.1 is a Gantt chart of one possible non-semi-active schedule for this simple

)33(× JSP.

Figure 2.1: Non-semi-active Schedule Example

Notice how the second and third operations on Machine 1 are not scheduled at the earliest

allowable time. The red boxes mark this unnecessary delay. Obviously, schedules that

are not semi-active are not optimal. To make this schedule semi-active the second and

third operations on Machine 1 can simply be moved left to the earliest allowable time.

12

Figure 2.2 shows this new semi-active schedule. Notice that no operation can be started

earlier without altering the operating sequence of any machine.

Figure 2.2: Semi-active Schedule Example

2.3.2 Active Schedules These are schedules in which no operation can be started earlier

without violating a precedent constraint, or increasing the total processing time of any

machine. The schedule above in Figure 2.2 is semi-active, which means no operation can

be started earlier without altering the operating sequence of any machine. However, if

we were to alter the operating sequence of any machine, an active schedule could be

produced. Now, it might be apparent that the semi-active schedule above is not optimal.

Semi-active schedules in general are not optimal. Optimal schedules lie in the space of

active schedules. It is possible to alter the operating sequence of the machines to produce

a schedule with a smaller makespan and preserve the precedent constraints of the

problem. To turn a semi-active schedule into an active one, permissible left shifts are

made. Permissible left shifting simply means switching the operating sequence of two

adjacent operations as long as it doesn’t violate any precedent constraint or cause a delay

in any of the machine sequences. When all permissible left shifts are made to a semi-

13

active schedule an active schedule is thereby obtained. This method is useful in turning

an already existing semi-active schedule into an active schedule. The following figures

demonstrate this left shifting procedure.

Figure 2.3: Left Shifting (a)

In Figure 2.3 the first two operations in Machine 3’s operating sequence are switched, or

left shifted. This move does not violate any of the precedent constraints of the problem

and does not delay any machines sequence. This left shift may seem pointless, because

the overall makespan of the problem did not decrease. However, it allows us to do the

next left shift shown below in Figure 2.4.

Figure 2.4: Left Shifting (b)

14

This time the first two operations in Machine 2’s sequence were shifted and scheduled at

the earliest allowable time. Figure 2.5 below shows the final active schedule.

Figure 2.5: Active Schedule after Left Shifting

Note the drastic improvement of the makespan obtained by permissible left shifting. This

is an active schedule because there are no more permissible left shifts without violating a

precedent constraint. For a simple)33(× JSP one might mistakenly think that there is

only one active schedule and it is optimal. However, this is not the case. Many more

active schedules could be generated for this problem, but obviously not all of them can be

optimal. The schedule above may or may not be optimal. Keep in mind the enormous

combinatorial space of the JSP as mentioned in the Introduction. For this)33(×

problem, there are (3!)3 = 196 possible schedules. Granted, many of these schedules are

infeasible, but depending upon how an optimization algorithm works those infeasible

schedules are still in the search space, which adds complexity.

15

2.3.3 Non-Delay Schedules These are schedules in which no machine is kept idle while it

could be processing an operation. The active schedule in Figure 2.5 is also happens to be

a non-delay schedule as well. The instant an operation becomes available for a machine

then it is scheduled without unnecessary delay. It might be tempting to think of optimal

schedules as non-delay schedules, however this is not always true. Often holding a

machine idle for a period of time so that more jobs become available for processing

(meaning they get done processing on other machines), and then scheduling one of these

newly available jobs can lend to optimal schedules. This is best illustrated with an

example. In the following figure, Figure 2.6, another possible Gantt chart is shown of the

JSP in Table 2.2 (the JSP of the previous example) with a single change. The processing

time of the first operation in Job Two has been increased to make this point. Clearly, this

an active non-delay schedule, since no machine is kept idle when it could be processing a

job.

Figure 2.6: Non-delay schedule

This schedule is a non-delay schedule, however it is not optimal. Notice when Job 1 is

done processing on Machine 2 it is immediately scheduled on Machine 3 (because it is

16

the first job to become available for that machine). Also notice how Job 2 on Machine 1

finishes not too long after the previously mentioned event. Now, notice how the next

operation for Job Two also happens to be for Machine 3. The point is both of these

operations require Machine 3 within a relatively small amount of time. With non-delay

schedule building, Job 1 is immediately processed first. It turns out it might be better to

delay processing on Machine 3 and process Job 2 instead of Job 1 first. This idea is

shown with the schedule below in Figure 2.7.

Figure 2.7: Active Schedule Example

The red box indicates the idle delay time for Machine 3. This delay and the resulting

processing of Job 2 before Job 1 on Machine 3 produced a more optimal solution. This is

why we can safely limit our search to the set of active schedules, but not necessarily the

set of non-delay schedules. This schedule is both active and semi-active, and should not

be confused with a non-semi-active schedule. A schedule that is not semi-active holds

machines idle for no benefit. It is important to understand the relationship of these

different types of schedules. The figure below should help the reader of this thesis.

17

Figure 2.8: Relationship of Schedules (a)

By looking at Figure 2.8 we can see that active schedules are a subset of semi-active

schedules and non-delay schedules are a subset of both active schedules and semi-active

schedules. We know that optimal schedules are active schedules, but not necessarily

non-delay schedules, therefore it is important to not limit your search to strictly non-delay

schedules. However, it should be obvious that optimal schedules will most likely be

schedules where the amount of delay time for any given machine is kept to a minimum.

In simple terms, most of the time it is desirable for operations on machines to start right

after another one finishes, however every once in a while it is desirable to schedule an

operation for a machine that will not be available immediately for processing when the

machine first becomes available. Therefore, it might be beneficial to limit searching to a

set of what are called Parameterized Active Schedules.

18

2.3.4 Parameterized Active Schedules Parameterized Active Schedules are non-delay

schedules where the delay is no more than a specified parameter. By specifying a

maximum amount of delay time for machines, researchers can limit the search space to a

subset of active schedules and a superset of non-delay schedules. The larger the

parameterized delay, the more active schedules are included in this set. Parameterized

active schedules are explained by Goncalves, Mendes and Resende [8]. Figure 2.9,

which is an adaptation from a figure in [8], illustrates this relationship below.

Infinite Space of all Schedules

Semi-active Schedules

Active Schedules

Parameterized
Active Schedules

Non-delay
Schedules

Figure 2.9: Relationship of Schedules (b)

Limiting a search to a set of parameterized active schedules is helpful in that the search

space is decreased, but risky because an optimal schedule could lie outside a set defined

by a parameter of delay/idle time. Obviously, when the parameter is zero, non-delay

schedules are produced, and if the parameter is very large semi-active and non-semi-

active schedules are produced. Parameterized active schedules played an important part

19

in this research, which will be explained in detail in Chapters 5 and 6. Now that the

different types of schedules have been discussed, how schedules are represented and built

can be explained.

2.4 Representation of Schedules

In the examples of previous sections, Gantt Charts have been used to show various

solutions to the Job Shop Problem. Gantt Charts allow a visual interpretation of a

schedule, which is helpful when analyzing the makespan of a Job Shop Problem, or the

classification of a schedule. Usually a Gantt chart is built from a representation of the

schedule in the form of numbers or in the form of permutations. This representation can

be of a direct fashion or indirect fashion, both have its advantages and disadvantages.

2.4.1 Direct Representation Direct representation of a schedule is precisely that. Direct

representation of a schedule is any form of representation that directly specifies when all

the operations are to begin processing on the machines. Optimization occurs directly in

the schedule space, perhaps by left-shifting. Another example would be creating

)(mn× set of starting times for a)(mn× Job Shop Problem and optimizing those

values directly, based on the makespan they produce. This type of relationship could be

well suited for meta-heuristic optimization since a meta-heuristic algorithm to learn or

evolve a set of starting times, simply based on an objective value, like the makespan. It is

obvious to see when using direct representation, infeasible schedules can be produced,

because the precedent constraints of the problem are not considered. Consider the same

Job Shop Problem of used in the previous examples shown in Table 2.3.

20

Table 2.3: Small JSP

Job 1 1 (3) 2 (5) 3 (2)
Job 2 1 (5) 3 (1) 2 (4)
Job 3 2 (4) 1 (2) 3 (1)

If direct representation was used in the form of starting times for each operation, the

solution might look like this after optimization, if tij is the starting time for operation Oij.

tij =

0.00.10.5
0.90.10.3
0.50.00.8

Which will produce the following schedule of Figure 2.10:

Figure 2.10: Infeasible Schedule

This is a very good schedule in terms of makespan, but it is infeasible, because it violates

several precedent constraints. For example, Job 1’s precedent constraints dictate it must

go to Machine 1, then Machine 2, then Machine 3, but this is not true for the above

example. These precedent constraints add difficulty to the problem, especially when

21

using a direct representation scheme, because additional measure must be taken in order

to produce feasible schedules. Since many meta-heuristic optimization algorithms

stochastically operate in the decision space of the problem many of their pure solutions

will violate precedent constraints. Therefore, if direct representation is implemented,

extra steps must be added for optimization to take place. Either infeasible schedules can

simply be removed from the population, or repair procedures can be performed to

transform infeasible schedules to feasible schedules (perhaps something like left-

shifting). Extra steps can also be added during the schedule building process itself to

ensure feasible schedules, however, technically the direct representation would then

become indirect representation, and the extra steps would become a scheduling

algorithm. The scheduling algorithm would then become necessary to interpret the

schedule. Direct representation is advantageous because of its simplicity and speed, but

not good because of its indiscriminate search of both feasible and infeasible schedules.

Indirect representation has the opposite characteristics.

2.4.2 Indirect Representation and Scheduling Algorithms One common way to avoid

violating precedent constraints is to represent a JSP schedule in an indirect fashion and

use a scheduling algorithm to transform the indirect representation into a feasible

schedule. The scheduling algorithm consults the precedent constraints of the problem

and uses the indirect representation of the problem to make decisions that ensure the

generation of a feasible schedule. This is advantageous because the optimization

operators can operate without venturing into infeasible space. These scheduling

algorithms can range from very simple to very complex, and can produce schedules

22

anywhere from semi-active to non-delay. The more restrictive the search of the schedule

space, the more complicated the scheduling algorithm becomes to produce those

schedules. The following two examples of a scheduling algorithm illustrate these facts.

2.4.2.1 Permutation with Repetition An example of an indirect representation is

Permutation with Repetition originally proposed by Bierworth [1]. In this representation

a permutation of job numbers)(mn× long is decoded into a feasible schedule by a

scheduling algorithm. Each number represents a job, and that number is repeated m

times. The kth repetition of job j represents the kth operation to be processed for job j.

This scheduling algorithm builds semi-active schedules by default, which include the

class of active and non-delay schedules. An example of the permutation with repetition

and the scheduler is shown in Figure 2.11. The corresponding precedent constraints of

the JSP are also shown in Table 2.4.

Table 2.4: Simple Job Shop Problem

Job 1 1 (3) 2 (5) 3 (2)
Job 2 1 (5) 3 (1) 2 (4)
Job 3 2 (4) 1 (2) 3 (1)

23

Figure 2.11: Permutation with Repetition

It is easy to understand by using an indirect representation with a corresponding

scheduling algorithm it is possible to ignore precedent constraints when searching in the

decision space (the)(mn× permutation of numbers for the example above). This is

because a scheduling algorithm will consult the precedent constraints before scheduling.

Permutation with Repetition is a simple and effective scheduling algorithm.

2.4.2.2 The GT Scheduling Algorithm As mentioned before, the type of schedule

produced as a result of a scheduling algorithm very much depends upon the complexity

of the scheduling algorithm. A scheduling algorithm that simply schedules operations as

early as possible is liable to produce semi-active schedules, which include non-optimal

schedules. However, an algorithm that “looked ahead into the future” might produce

active schedules. Since all optimal schedules are active schedules it would be beneficial

to limit our search to the set of active schedules. The GT Algorithm does just this. It is

24

the most famous scheduling algorithm by far, and was developed by Giffler and

Thompson [12] in 1960 and has been used ever since. The algorithm is presented below:

Basically the algorithm builds a schedule one operation at a time. First it selects a

machine by determining which unscheduled operation has the earliest completion time,

EC, and what machine it requires to be processed on, r. It then looks ahead for

operations that can start to process on r before time EC, and places these operations in a

conflict set. It is called a conflict set because they all have an equal “right” to be

processed on machine r during the considered time EC. By default, the GT Algorithm

searches active schedule space. However, one of the great aspects of this algorithm is

that if the algorithm can be used to build only non-delay schedules by making EC equal

to zero. This means conflict sets will only be made from operations that already are

ready for machine r, not any that will become available. This should agree with what has

been explained about non-delay schedules previously. In fact, we can search the space of

parameterized active schedules, by making EC a value between 0 and EC. This idea is

explored in more detail in Chapter 6.

1. Let D be a set of all earliest schedulable operations in all
job sequences not yet scheduled.

2. Let operation, Ojr, be the operation with the earliest

completion time, EC, in set D. Ojr = min {O – D |
EC(O) }. Where j is the job and r is the machine.

3. Develop a conflict set for machine Mr consisting of all

operations that will require machine r before operation
Ojr will be completed. ES = Earliest Starting Time.

ES(Okr) < EC (Ojr).

4. Select an operation out of the conflict set, and schedule

it on Mr.

25

Once the conflict set has been generated which may consist of one or more operations, an

operation must be selected and scheduled. The GT Algorithm does not specify how to do

this, an active schedule will be built regardless. However, an optimal schedule will

require the right selections out of the conflict sets generated throughout the schedule

building process. This is where priority lists and dispatching algorithms come into play

with the GT Algorithm. These are explained in more detail in the following chapters. It

turns out that the proposed JSP/PSO Algorithm uses the GT Algorithm in conjunction

with priority list, which is explained in Chapters 5 and 6.

26

CHAPTER THREE

LITERATURE REVIEW

The job shop problem comes from the field of deterministic scheduling theory.

Scheduling theory is not a new area of scientific research. Rather, it has been around for

over 50 years. Since the advent of neural networks, evolutionary algorithm and other

meta-heuristic techniques the problem has lured researchers from many different fields in

a quest to find a better optimization technique. In this section some of the early defining

works in scheduling theory are mentioned, and then a literature review is performed on

the JSP and its history with some of the approximation methods used to solve it,

particularly the meta-heuristic technique, Particle Swarm Optimization.

3.1 The Job Shop Problem History and Early Methods of Optimization

One of the most famous and defining works in scheduling theory was published in the

early 1960’s. Giffler and Thompson’s “Algorithms for Solving Production Scheduling

Problems” [7] introduced the most famous and widely used scheduling algorithm, called

the GT algorithm. The GT algorithm insures the construction of an active schedule.

Active schedules are explained in Chapter 2. Three years later “Industrial Scheduling”

[14] by Muth and Thompson was published which introduced the first famous job shop

scheduling benchmark problem, a)1010(× problem that took 20 years to solve exactly,

27

because of the high combinational complexity, which are the nature of such problems.

Since then researchers have applied many deterministic algorithms to the JSP, and more

recently the use of heuristics and evolutionary techniques. In “A State-of-the-art Review

of Job-Shop” [11] Jain and Meeran divide the approaches to the solving this huge

combinatorial problem into two main techniques, efficient and exact. A visual

representation of these various methods and their relation is illustrated in Figure 3.1

below.

Exact MethodsApproximate
Methods

Local Search
Methods and

Meta-heuristics

Artificial
Intelligence

Priority
Dispatch

Rules

Neural
Networks

Simulated
Annealing

Tabu Search

Genetic
Algorithms

Particle
Swarm

Optimization

Branch and
Bound

Techniques
Mathematical
Formulations

Integer Linear
Programming

Bottleneck
Based

Heuristics

Figure 3.1: JSP Methods

Exact methods, obviously, use mathematical formulations to arrive exactly at the optimal

solution. Since the problem space of the JSP problem is so large, these exact methods are

not useful for anything but problems of small dimension, probably)1010(× or less.

28

This is why the MT10 problem, a)1010(× job shop problem introduced in 1963 took

20 years to solve exactly. The proposed research has focused on the application of a

meta-heuristic technique called Particle Swarm Optimization (PSO). As will be shown,

not much research has been conducted in the area of the JSP and the PSO, although the

JSP does have a long history exploiting other meta-heuristic techniques shown in Figure

3.1, especially the Genetic Algorithm.

3.2 Approximate Methods

Approximate methods, called approximate because they do not use mathematical

formulations, calculation of gradient for example, to arrive at an exact optimal solution.

Approximate methods have the ability to explore the solution space quickly and arrive at

a near optimal solution in a directed stochastic manner. Approximate methods hold the

key to generating the best schedules of problems of order)1010(× or higher. Because

of the exponentially growing search space of the JSP, to exhaustively and exactly

determine the optimal solutions for JSPs with order higher than)1010(× can be too

time consuming, even with modern computers. This was especially true back in the 50’s

and 60’s when today’s computing power was not available. To compensate engineers,

scientists and production managers relied on heuristics to help them produce a near

optimal schedule. These heuristics normally took the form of Dispatch Rules, and are

explained in the following section.

3.2.1 Dispatching Rules Dispatching rules are another way to indirectly determine the

schedule of a particular JSP. Dispatching rules are commonly used in conjunction with

29

the GT Algorithm which was developed around the same time period as the GT

Algorithm. Recall that the GT algorithm must select operations from a conflict set, step 4

from the GT Algorithm (explained in Chapter 2). This is where dispatching rules come

into play. Dispatching rules are heuristic guide lines which dictate which jobs should be

selected out of a conflict set according to some measurable standard, such as “shortest

processing time”. Developing good dispatching rules is where a lot of heuristics come

into play in the Job Shop Problem. Obviously, one can surmise that there might exist

intuitive ways of assigning priority to operations so as to generate a schedule with near

optimal makespan. Before the processing power of modern computers, a lot of focus was

given to the development of Dispatching Rules. In fact there are hundreds of dispatching

rules that have been tested through the years, starting in the 1950’and 60’s when Jackson

[9],[10], Smith [18], Rowe and Jackson [17] constructed the earliest work on dispatch

rules. Recently, in 1996 Chang [2] composed a survey on many dispatching rules and

compared them to each other. The most popular ones were summarized in a table by Jain

and Meeran [11]. This table, Table 3.1, is shown below to give an idea of the kind of

heuristics that are involved in this area of scheduling theory.

30

Table 3.1: Dispatching Rules

Name Rule
SPt/Twkr Smallest ratio of the processing time to total work time
Lrm Longest remaining work excluding the operation under consideration
Mwkr Most work remaining to be done
Mopr Most number of operations remaining
Spt/Twk Smallest ratio of processing time to total work
Fcfs The operation that arrived the earliest is processed first
Lso Longest subsequent operation
Spt Shortest processing time
Fhalf More than one half of the total number of operations remaining
Ning Next operation is on the machine with the fewest number of

operations waiting

3.2.2 Meta Heuristic Methods Meta heuristic techniques can be classified as Local Search

techniques because of the way they search and solve problems. Meta-heuristic

techniques all start at a certain initial solution, or group of solutions, and will iteratively

arrive at a near optimal solution by making small or local changes in the problem space.

Most research of meta-heuristic techniques and scheduling problems have focused on

using the Genetic Algorithm, although Simulated Annealing, Tabu Search, Particle

Swarm Optimization and Ant Colony Optimization have been applied as well.

3.2.2.1 Priority Lists Like dispatching rules, priority lists are another heuristic

way of selecting an operation out of a conflict set. Each machine is assigned a

processing priority of the jobs in the JSP. Operations are selected out of conflict sets by

referencing the machines processing priority for the jobs in the conflict set. Each

machine’s priority list can then be optimized by determining the best permutation of job

numbers or best permutation of the priority list. Therefore, this indirect representation

method lends itself much more conducive to meta-heuristic optimization than using

31

dispatching rules. In 1985 Davis [3] was the first to apply an evolutionary algorithm in

an effort to solve the Job Shop Problem. He used a genetic algorithm to evolve a priority

list for each machine. An example of a priority list for a)55(× problem is given in

Table 3.2.

Table 3.2: Priority List Representation

 First
Priority

Second
Priority

Third
Priority

Fourth
Priority

Fifth
Priority

Machine 1: Job 2 Job 4 Job 1 Job 5 Job 3
Machine 2: Job 1 Job 3 Job 5 Job 2 Job 4
Machine 3: Job 4 Job 2 Job 5 Job 1 Job 3
Machine 4: Job 3 Job 1 Job 2 Job 4 Job 5
Machine 5: Job 5 Job 3 Job 4 Job 2 Job 1

This use of priority lists, by Davis, is what first opened the door to the application of

meta-heuristic methods of solving the JSP. By evolving a priority list, Davis was able to

ignore the precedent constraints of the problem, which makes using a genetic algorithm

much easier. It should be noted that even though varying a machines priority list will

indirectly affect the schedule of a specific JSP, it will not always produce a unique

schedule. More than one priority list can easily generate the same schedule. This can

make the optimization process more difficult.

Since Davis’s work in [3], a large amount of research has been conducted into the

application of the many meta-heuristic techniques to the JSP. Most of the research has

been focused on the Genetic Algorithm (GA), although some consider the GA an

ineffective way to solve the JSP. When compared to Simulated Annealing (SA), Tabu

Search (TS), the GA seems to perform the poorest according to a comparative study done

by Pirlot [16].

32

3.2.2.2 Particle Swarm Optimization As of yet, Particle Swarm Optimization has

not been applied to the traditional Job Shop Problem, with one exception. In 2004

Weijun, et al. [24] applied a hybrid Simulated Annealing/PSO to the traditional JSP. In

their study, Simulated Annealing (SA) was used to fine tune solutions found by the PSO

algorithm. The results of this hybrid algorithm were very promising. Many of the most

widely used Job Shop test bench problems were solved to optimal or best known

solutions. This means that the implementation of a pure PSO algorithm might very well

be an efficient and effective way of solving these types of huge combinatorial problems

without using Simulated Annealing for fine tuning.

However, there is slightly more literature published on the application of the PSO

algorithm to some of the other scheduling problems, such as the Permutation Flowshop

Problem (PFSP) also called the Flow-shop Scheduling Problem (FSSP), or the Single

Machine Weighted Tardiness Problem (SMTWT). A brief description of these problems

can be found in Chapter 2. Tasgetiren, et al. [22] in 2004 applied PSO to the Single

Machine Weighted Tardiness problem. They developed the Smallest Value Position Rule

(SVP) in order to transform the continuous space of the PSO to the permutation space

used to represent a solution of the SMTWT problem. Tasgetiren also published a paper

on the PSO applied to the Permutation Flowshop Sequencing Problem, along with Liang,

Sevkli, and Gencyilmaz [21]. The same SPV rule was used for the necessary space

transformation from continuous to permutation space. This space transformation

concept, which is explained in detail in Chapter 5, was used for the Traveling Salesman

Problem by Pang, et al. [15] in 2004. Their method of space transformation was called

33

the GVP rule, or Greatest Value Priority. Using PSO and local search techniques they

were able to solve medium scale (50 – 75 city) TSP Problems.

Particle Swarm Optimization has also been applied to the Flexible Job Shop Problem

(FJSP) by Xia and Wu [25] recently in 2005. The FJSP is another scheduling problem

related to the Job Shop Problem and is described briefly in Chapter 2 of this thesis. They

used the PSO not to determine the schedule, but to assign each operation to a machine as

is required for the FJSP. Instead of using a Greatest Value Priority Rule (GVP) or

Smallest Value Position Rule (SVP), Xia and Wu simply limited the search space of the

PSO to the value of the highest number in the permutation and simply rounded off any

decimal values created from the PSO equations (see Chapter Four) to get an integer

value. This integer value then represented a particular machine in the problem at hand.

So the PSO in not necessarily new to the arena of scheduling problems, just the

traditional Job Shop Problem.

Not all researchers have used this particular space transformation technique to apply the

PSO in permutation problems. In 2003 Pang, et al. [23] developed a way to represent the

difference in two permutations as a function of Swap Operators (SO). These Swap

Operators perform a switch on two numbers in a permutation, and multiple swap

operators in a given order form a Swap Sequence (SS). A Swap Sequence can, therefore,

actually represent the difference between permutations. The authors then defined

mathematical operations for the SS so that the traditional PSO velocity and position

equations could be applied to an actual permutation. The velocity and position equations

34

for PSO are discussed in Chapter Four of this thesis. The authors’ methods were applied

to a simple 14 city TSP and were able to achieve the optimal solution. This achievement

demonstrated the success of their method, however harder and larger TSP problems were

not tested. Lian, Gu and Jiao [12] in 2005 developed a Similar Particle Swarm

Optimization Agorithm (SPSOA) and applied it to the Flow-shop Problem (FSSP or

PFSP). The Flow-shop problem is briefly described in Chapter 2. These researchers, like

Pang, et al. [23] developed a way for the PSO algorithms to operate directly in the space

of permutation problems. Their PSO algorithm is called “similar” because they used

crossover and mutation techniques, easily performed on permutations, but originally

developed for the Genetic Algorithms (GA). Their crossover and mutation operations

were used to update the velocity and position of the particles in the PSO-like algorithm.

Many of the meta-heuristic techniques used to solve sequencing problems like the TSP,

FSSP, SMWTP, FJSP and others, can also be adapted to solve the JSP since both

solutions can be represented by a permutations of numbers. However, the JSP and FJSP

are unique because their solution must be a permutation for every machine in the

problem. In other words, there must be a set of permutations—one for each machine in

the problem. Therefore, some extra steps might have to be implemented in the encoding

and decoding process of the permutations. This issue is explained in more detail in

Chapter 5. In the following chapter the general PSO Algorithm is discussed.

35

CHAPTER FOUR

PARTICLE SWARM OPTMIZATION

Particle Swam Optimization falls under the category of Swarm Intelligence. Swarm

Intelligence is an optimization strategy that draws upon the knowledge of many agents

interacting locally in an environment to find a global solution to a problem. There is no

global control of these agents and they interact randomly and share information about

their environment with one another. In the physical world, flocks of birds, schools of fish

and ant colonies are examples of this behavior. In 1995 [5] Kennedy, a social

psychologist, and Eberhart, an electrical engineer, first applied swarm intelligence

behavior to the search space of optimization problems. They were inspired by a

computer simulation of a flock of birds developed in 1990 by Heppner and Grenander.

Their concept was to give each particle a social component and an individual component.

Individual particles’ behaviors would be influenced by their best positions (in the search

space) found and by the best positions found by all particles in the swarm. Their hope

was to design a search method that was able to find multiple optima not just the global.

This way the particles can explore the search space and eventually converge to the global

optimum. The agents or particles in this algorithm search the problem space by “moving

through it” with a certain velocity. Each position a particle has in this space represents a

36

possible solution to the problem at hand. The particles in a traditional PSO algorithm are

governed by the following equations for a single dimension in Figure 4.1:

• i = 1, 2…p , p = number of particles in swarm
• pbest is the best position found by that particle so far
• gbest is the best position found by any particle so far
• v = velocity of particle in a single dimension
• x = position of particle in a single dimension
• t = iteration number
• w is the inertial constant
• c1, c2 are acceleration constants
• r1, r2 are random numbers evenly distributed between [0,1]

Figure 4.1: Particle Swarm Optimization Equations

After the particles are first instantiated in the search space they move around with a

certain direction and speed. As a particle “flies” through the search space the objective

value is evaluated from each position. The particle has a personal or cognitive

component and a social component that allow it to find better solutions to the objective

problem. The previous personal best position is remembered by each particle, as well as

the best position found by the whole swarm, which give it the personal and social

components. The personal and global bests are determined by the quality of the

37

solutions those particles provided at those positions in the search space. It is evident by

the equations above that both the personal best of a particle and the global best of all

particles in the swarm influence the velocity of an individual particle. The farther a

particle is away from their personal best or the global best, the larger the corresponding

components of the velocity equations will be. Of course, these component values are

subject to the random numbers r1, r2 and C1, C2. The inertial component labeled in green

controls the impact of the particles previous velocity. The right selection of w will insure

a particle that’s velocity does not blow up over time. In fact, it is usually desirable to

need a particle’s velocity to slow down over time, and thereby become more precise and

converge to the best found solution. It is also common to vary w with the iterations. The

two acceleration constants, c1and c2, can also be varied with the iterations. The

relationships between these two constants at any given iteration will put either an

emphasis on personal exploration, global, or both. The random numbers r1 and r2 add

the necessary stochastic quality that will ensure decent exploration of the search space.

Since many optimization problems have equality or inequality constraints it is usually

necessary to “block in” the particles within a certain region of the search space, by

ensuring their magnitude in a given dimension never exceeds a specified value. The

same cap, or minimum and maximum value restrictions, that might be placed on the

position of a particle may also be placed on the velocity. The pseudo code for PSO is

given below in Figure 4.2.

38

Figure 4.2: Particle Swarm Optimization Pseudo Code

The equations in Figure 4.1 are velocity and position update equations for a single

dimension. It might be obvious that for a multiple dimension problem, a particle will

have a velocity component in each dimension, because each particle must represent a

solution to the problem. So for a 3-dimensional problem, the equations in Figure 4.1 will

be used three times for a single particle, each time calculating the velocity in a single

dimension. The PSO concept is best illustrated in a simple 3-dimensional problem that

can be visually represented. Suppose the optimization problem that needed to be

minimized is the simple function shown below:

f(x) = x1
2 + x2

2 + x3
2 where x1, x2, x3 > 0

Begin
- Generate initial random positions and velocities for swarm

 - Initialize User Parameters: w, c1,c2, maxIterations
 - Store particles positions
 - Determine global best position and store

while(terminate != true or iterations != maxIterations),
 for all particles,
 Evaluate Fitness
 if fitness of current particle is <
personal best,
 personalBest =
current particle’s position
 end

if fitness of current particle is <
global best,
 globalBest =
current particle’s position
 end
 end

for all particles,
update velocity

39

Now, the solution is obviously f = [0.0 0.0 0.0]T, or the minimum will occur when x1, x2,

and x3 all equal zero. The problem space can be represented in a 3-dimensional cube. In

order to optimize this problem using PSO, we must randomly generate particles in the

search space. The size of our swarm will consist of only 3 particles in an effort to make

the graphics that follow easier to understand. Normally, the swarm size is much larger,

anywhere from the tens to the hundreds. The initial positions (representing three initial

solutions) are shown in Figure 4.3 below. The constants C1 and C2 for this example will

both be set to 2.

X1: .0772
X2: .3489
X3: 1.987

X1: .8395
X2: .5340
X3: .5647

X1: .0973
X2: 1.745
X3: 1.150

X2 X1

X3

Particle 1

Particle 2
Particle 3

Figure 4.3: Particle’s Initial Positions

40

When those particles’ values are plugged back into our objective function, we get the

following:

Particle 1: 4.0759
Particle 2: 4.3770
Particle 3: 1.3088

Neither of these solutions is very good, however the best solution is the solution represent

by Particle 3. Knowing how PSO works, we would expect the other two particles to

move in the direction of Particle 3, at least at first. This can be seen in the figure below.

After 100 iterations, the particles of traveled very close to the optimal solution. Their

paths are shown in the next two figures, Figure 4.4 and 4.5 from different distances.

X2 X1

X3

Figure 4.4: Particle’s Paths to Optimum

41

Figure 4.5: Close Up Path to Optimum

Notice how the 3 particles quickly converged to a fairly similar position and then moved

as a group toward the optimal solution of [0.0 0.0 0.0]T. By modifying the parameters in

velocity and position update equations, a different type of behavior could be obtained, if

desired.

The final best position of the three particles, or solutions, after 100 iterations is:

x1 = .0187
x2 = .0000
x3 = .0440

This yields a function value of:

f(x) = .0023

This simple 3 dimensional example demonstrates how PSO works for continuous

functions, such as the space of the previous example. Unfortunately, as previously

mentioned, the Job Shop Problem solution does not live in continuous space, but

42

combinatorial space, which can be represented by permutations. In the following

chapter, Chapter 5, this issue is dealt with when PSO is applied to the JSP.

43

CHAPTER FIVE

PROPOSED JSP/PSO ALGORITHM

Since the conception of this optimization strategy, the PSO algorithm has been applied to

many optimization problems, including permutation problems like the Traveling

Salesman Problem. However, PSO in its purest form is not well suited for searching the

permutation space of numbers. The particles in the PSO algorithm are designed to

explore continuous space, which was seen in the example of the previous chapter.

Therefore, extra care must be taken to adapt the PSO algorithm to permutation space. To

the best of my knowledge no one has tried to apply Particle Swarm Optimization (PSO)

to the traditional Job Shop Problem, save for [24] who applied a hybrid PSO/SA

technique. The PSO has been applied to other scheduling problems, which are similar to

the JSP. These other methods were discussed in Chapter 3 of this thesis. While there has

been research conducted on the application of the PSO algorithm to the Traveling

Salesman Problem, there has not been much research on the application of the PSO

algorithm to the JSP problem. Therefore, this research is focused on exploiting the

advantages of the PSO algorithm for the optimization of the JSP.

The proposed JSP/PSO Algorithm will use a set of permutations to indirectly represent a

solution to a JSP. There are two obstacles that will prevent immediate use of the PSO to

the JSP. One obstacle, which should be obvious, from studying the equations of the

44

traditional PSO algorithm in Figure 4.1, is that a permutation of numbers which can

represent a solution to the JSP (in the context of a scheduling algorithm) can not be

optimized directly with the PSO governing equations. There has to be a way to

transform the continuous space into permutation space. The other obstacle is deciding

how to transform this permutation(s) of numbers into a schedule, or in other words

deciding what kind of scheduling algorithm will be implemented. These two distinct

processes are shown in Figure 5.1 on the next page of the entire process for clarification.

The space transformation process is shown in blue, and the decoding of the permutation

into a schedule is shown in green. This chapter will discuss in detail how these two

previously mentioned “obstacles” are addressed in the proposed JSP/PSO Algorithm.

45

Decode Schedule

Build Representation of
Schedule in Permutation Space

Scheduling
Algorithm

Schedule
with

Makespan

Particle in N
Dimensional
Continuous

Space

Space
Transformation

Permutation
of N numbers

Makespan better than
personal best makespan for

particle?

Make particle’s
position its

personal best
position

YES

NO

Makespan better than
global best makespan?

YES

NO

Make particle’s
position the
global best

position for all
particles

Update Velocity and Position
PSO Equations

Initialize Particles
Randomly in

Continuous Space

Start

Terminate?
NO

End
YES

Update
Particle’s

Position and
Velocity

Figure 5.1: Block Diagram of PSO/JSP Algorithm

46

5.1 From Continuous Space to Permutation Space

In order to transform the continuous space of the particles into permutation space (shown

in blue in Figure 5.1) the Greatest Value Priority Rule, or GVP [15] was implemented.

The GVP rule is simply the assignment of each dimension or component of a particle in

continuous space an integer index. The sequence of these assignments put together make

up the permutation. So if there are n dimensions in continuous PSO space, the

permutation will be n values long. To determine the permutation a particle represents,

the dimension that has the greatest magnitude is given a 1 value. Then the dimension of

the particle that has the next greatest magnitude is assigned a value of 2. This process is

repeated for all dimensions of the problem. In the figure below, Figure 5.2, a particle in 3

dimensional space is transformed into a permutation using the procedure above.

X1: 1.396
X2: 1.72
X3: 1.187

X1: .3017
X2: .7567
X3: 1.767

X1 X2 X3 X1 X2 X3

3 32 1 2 1X3

X2

X1

X2

X1

X3

X2 > X1 > X2X3 > X2 > X1

Figure 5.2: Space Transformation

47

This permutation of 3 numbers could easily represent processing priority for a machine in

a JSP with 3 jobs. Obviously, for a JSP with n jobs, a particle with n dimensions in

continuous space could be used to determine a single machine’s schedule in a JSP. This

is how the GVP rule works. The rest of the PSO can behave the same way as was

discussed in the example of Chapter 4.

5.2 From a Permutation to a Schedule

Now, that the space transformation obstacle has been discussed, the next obstacle can be

explained. This next obstacle has to do with how exactly the schedule will be represented

by permutation of numbers, which now can be optimized by the PSO. This process is

shown in green in Figure 5.1. This section will address this issue specifically. The

advantages and disadvantages of two representation methods will be discussed,

permutation with repetition and priority list representation. The JSP/PSO Algorithm was

influenced by both of these representation methods.

5.2.1 Permutation with Repetition Representation Permutation with Repetition represents

a job shop schedule by using the job number in a sequence that is)(mn× long. Each

job number is repeated m times, or the number of machines there are in the JSP. Since

each job has a certain technological sequence, or processing order, each instance of the

job number in the sequence represents the next operation to be processed in that

technological sequence. By using a scheduling algorithm that simply schedules

operations specified by the permutation as early as possible, a semi-active schedule can

48

be generated. This process was shown and briefly explained in Chapter 2, but also shown

below in Table 5.1 and Figure 5.3 for convenience.

Table 5.1: Simple Job Shop Problem

Job 1 1 (3) 2 (5) 3 (2)
Job 2 1 (5) 3 (1) 2 (4)
Job 3 2 (4) 1 (2) 3 (1)

Figure 5.3: Permutation with Repetition Schedule

This is an easy way to represent and decode a schedule. However, there are a couple of

drawbacks. One drawback is the fact that this procedure is not guaranteed to produce an

active schedule. It is only guaranteed to produce a semi-active schedule, which contains

the classes of active and non-delay schedules. It is obvious that the schedule in the

example above is not an active schedule, rather semi-active. By simple left shifting the

3rd operation on Machine 2 with the one before it, a schedule with a shorter makespan is

produced. The other drawback is that many of the same permutations will produce the

49

same schedule. For example, the last two job numbers could be switched in the above

permutation and the same schedule will result. This is because both of those job numbers

are representing operations that require different machines. The lack of one to one

matching is not a surprise when considering that the space of permutations with repetition

is much greater than the number of possible semi-active schedules, feasible or infeasible.

In fact the permutation space of n numbers is n!. However, if the any of the numbers in

the permutation repeat the search space is reduced by a factor of the repetition number

factorialized. So, for a particle to represent a schedule in Permutation with Repetition

form, the particle will have to have n × m dimensions, which will consist of n numbers

that each repeat m times. Which in turn means that the search space for a particle

becomes

nm
mn
)!(

)!(×
.

For example, a)1010(× JSP has a combinatorial search space of

10)!10(
)!100(

≅ 2.357 × 1092.

This is huge, to say the least. This method seems like overkill especially when many of

the permutations will also result in the same schedule, and many will result in semi active

schedules as well. However, the benefits of using Permutation with Repetition might out

weigh these drawbacks. The main benefit of using this representation is that the

corresponding scheduling algorithm is very fast and simple, and therefore not

computationally expensive. This makes sense, because to build semi-active schedules

operations are simply scheduled at the earliest starting time, which is easily done when

decoding a schedule represented by a permutation. Limiting your search space to active

50

schedules usually involves a scheduling algorithm that looks ahead in time, which adds

computational time and complexity. The GT Algorithm is a good example of this, which

can be used with priority lists.

5.2.2 Priority List Representation It is actually possible to reduce the size of the search

space by using a priority list for each machine instead of an n × m set of numbers. In a

priority list representation each machine has its own priority of jobs that it prefers to

process of length n. This gives a combinatorial space of (n!)m. For a)1010(× JSP, this

is equal to (10!)10 ≅ 3.9594 × 1065. This is 5.9531 × 1026 smaller than the search space

of Permutation with Repetition. This reduction in search space should be helpful when

the appropriate scheduling algorithm is used to decode each machines priority list into a

schedule. The scheduling algorithm usually used with a priority list is the GT Algorithm.

This algorithm is discussed in Chapter 2. By using the GT Algorithm, I am guaranteed to

build active schedules. So not only is the search space reduced, but I can build active

schedules as well. An example of a priority list is given in Table 3.2 in Chapter 3.

However, to build active schedules, decisions must be made while the schedule is being

generated, which require looking ahead in time. Looking ahead in time is surprisingly

computationally expensive, because it requires many programming loops. For example,

the GT Algorithm looks ahead a certain amount of time from the current period to see

which operations will become available for processing on a given machine. A decision

must be made as to which operation to process from those that need that machine. This

process must happen for each operation in a JSP, and can take a significant amount of

51

time. This could make using a priority list not worth the benefit of the reduced search

space property of the GT Algorithm.

5.3 The JSP/PSO Idea

The research objectives of this thesis were two fold. The first was to apply a well known

successful meta-heuristic optimization method, the PSO Algorithm, to the Job Shop

Problem. The second stemmed from the first, which was to use it to solve the JSP

indirectly with a priority list because of the reduced search space as discussed previously.

This objective stemmed from the first because the traditional way to use PSO to solve

problems is to make each particle a solution to the problem at hand. The easiest way to

make each particle a solution to a Job Shop Problem would be to have each particle have

n × m dimensions. Then by using the space transformation procedure discussed earlier,

the particle could then be turned into a permutation with repetition schedule

representation. This way each particle represents a possible valid schedule. However,

even for a small)510(× JSP, a particle would have to have 50 dimensions, and the

search space becomes 10)!5(
)!50(

which is about 4.912 × 1043. And as shown before, the

same problem’s search space represented by a priority list is (10!)5, or 6.2924 × 1032.

So, the second research objective became using the priority list representation instead of

permutation with repetition.

Unfortunately however, because of the way the PSO algorithm works, i.e. information is

extracted solely through its position in n dimensional space. So, in order for each particle

52

to represent a complete solution, every operation in a JSP must get its own dimension in a

particle. This means that even if a priority list representation is used, there still must be a

dimension for every number in the priority list. This does not ultimately reduce the

search space. This dilemma is shown graphically below in Figure 5.4.

Figure 5.4: Priority List to a Particle (a)

Several creative ways could be developed to make this transformation, but in the end a

permutation of length n × m will be required. The figure above shows how having a

partitioned permutation of length n × m that divides up into a priority list does not reduce

the search space to (n!)m, as was the goal. Therefore, some other course must be taken.

To accomplish this task, the JSP/PSO encodes only part of a solution into a single

particle, and several particles will combined together to make a solution. Since the goal

53

is to solve the JSP by optimizing a priority list, the priority list will be divided by the

number of machines in the JSP, and a single particle will represent one machine’s priority

list. So for a)510(× Job Shop Problem (10 jobs and 5 machines) there will be 5

particles that combine to make a solution, each one representing a processing priority of

length n. See Figure 5.5 for an illustration.

Priority List
M1: 2 4 1 3 5
M2: 2 4 3 1 5
M3: 4 3 5 1 2
M4: 3 4 1 2 5
M5: 1 2 5 4 3

Particle in
Space

2 4 1 3 5

M1

Particle with
5

Dimensions

?

2 4 3 1 5
M2

4 3 5 1 2

M3

3 4 1 2 5

M4

1 2 5 4 3

M5

Particle with
5

Dimensions

Particle with
5

Dimensions

Particle with
5

Dimensions

Particle with
5

Dimensions

Figure 5.5: Priority List to Particle (b).

54

Technically, the arrows should be pointing from the particle to the permutation since the

permutation will come from the particles position in space, but this figure is simply

attempting to illustrate the space division concept. A better more detailed illustration of

the whole concept is presented in Figure 5.6.

Figure 5.6: JSP/PSO Block Diagram

Using this technique, the search space has effectively become n! for each particle, and

taken together as a whole the search space is (n!)m. Now, some questions arise at this

point as to how the Particle Swarm Optimization will work in this fashion, because each

particle only represents a partial solution to the problem. It is clear there must be several

particles in a “swarm” so that a global best position can be shared with other particles.

However, the global best position of the particles representing the operating priority for

55

Machine 1 is not going to be the best position for the particles representing the operating

priority for Machine 2. Therefore, in the JSP/PSO there are m number of swarms, one for

each machine. This is simply illustrated in Figure 5.7.

Figure 5.7: JSP/PSO Swarm for an n x 5 JSP

Each machine in the JSP has its own swarm and thereby it’s own global best for the

particles to work toward. Which makes sense, because each machines priority list will

naturally be different. Notice, that the swarm size is 7 even though there are actually 35

particles. Here’s where things can get tricky, the personal best for each particle and the

global best for each swarm are determined by the makespan of the solution to the JSP that

they represent a partial solution to, 1/m to be exact. As stated earlier, one particle from

each swarm together represents a solution to the JSP problem. Which particles are

combined with which particles to form a complete solution is a critical variable in this

process. In the JSP/PSO Algorithm one particle in each swarm is “linked” to one other

particle in every other swarm and they remain “linked” together through the course of the

optimization. The linking is done at initialization and it is done randomly. Of course,

there is no actual real link (they don’t share information), basically this means that the

56

same particles from every swarm will always come together to form a solution. In other

words, “linked” particles share the same “fitness”, so to speak, every iteration. This is

shown graphically below in Figure 5.8.

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

One of Seven
Solutions

Figure 5.8: JSP/PSO Linking

This is an important concept to understand. Essentially, these particles move with no

knowledge of the other swarms, but their “fitness” or their best position in space is

definitely affected by the position of the other particles “linked” to it in the other swarms.

At first, this may not seem like it should work as an optimization method, and this space

division concept may not work well for other meta-heuristic methods, but because the

PSO requires that the particles store knowledge of their personal best position and the

global best position in space the PSO can be used in this situation. When a better

makespan is found by a certain set of linked particles, m number of separate best

positions are recorded, one for each of the m different swarms. If this makespan happens

to be the best one obtained so far, then each swarm notes that respective position obtained

by the particle in their swarm as the global best. Just because those particles have no

knowledge of the other swarms doesn’t mean they won’t work together indirectly to

57

explore areas that brought them the best fitness in the past. This idea is attempted to be

shown graphically in Figure 5.9 below. The arrows signify a pull in that direction.

Figure 5.9: JSP/PSO Personal and Global Best Position Example

It might be easy to understand now why particles should for the most part remain linked

to the same particles in other swarms throughout the optimization process. It should be

intuitively apparent that “re-linking” particles whose personal best positions were found

as a part of another set of linked particles would not be helpful. However, under the right

conditions this could be an interesting and possibly beneficial mutation operator.

5.4 Why PSO?

As stated earlier, I believe that PSO is particularly well suited to be the meta-heuristic

method to optimize the JSP in the fashion described in the previous section, specifically

the division of the search space by the number of machines in a particular JSP. The PSO

algorithm makes this possible by the knowledge each particle contains. The ability to

58

simply give the particles a search direction by the parameters of the PSO to either explore

new territory or to exploit previously known territory makes the optimization method

even more controllable. This makes the particles to work together in an indirect fashion.

Also, the fact that the particles aren’t assigned a specific fitness, but simply contain

knowledge of where good positions are in their search space makes this way of solving

the Job Shop Problem realistic. Since particles in other swarms will be drawn to the

areas in their space that corresponded with the good positions of the particles in the other

swarms. It would be interesting to see how other proven meta-heuristic optimization

methods would perform in place of the PSO for this optimization strategy.

Another reason, I believe that the PSO is worth exploring as a possible optimization

method in the JSP is because of the unique ability it has in combination with the space

transformation technique to search permutation space. The space transformation from

continuous space to permutation space, as explained earlier in this chapter, has a unique

ability to search permutation space. For example, let’s say for a)66(× JSP (6 Jobs, 6

Machines) a particle representing 1/6th of a priority list has the following dimensional and

permutation values shown in Figure 5.10 below.

59

Figure 5.10: Six Dimensional Particle in Continuous and Permutation Space (a)

Now, for simplicity lets assume that the particle is traveling significantly in only one

direction or one dimension, say dimension 3. If the velocity and position update PSO

equations change this dimensional value significantly from .6 to .15, then a drastic

change has taken place in the permutation space, while the particle in the continuous

space remains relatively the same. This is shown in Figure 5.11 below.

Figure 5.11: Six Dimensional Particle in Continuous and Permutation Space (b)

60

The permutation has changed fairly drastically by moving the particle in only one

direction. This should give an example of the kind of ability that PSO along with the

GVP Space Transformation Rule has to search permutation space. The ability of a

particle to move significantly in any dimension can be govern by the values of the user

defined coefficients of the PSO equations presented in the previous chapter, but shown

below for convenience. Also, by imposing maximum velocity constraints, we can

effectively limit the change in any particles position from iteration to iteration.

• i = 1, 2…p , p = number of particles in swarm
• pbest is the best position found by that particle so far
• gbest is the best position found by any particle so far
• v = velocity of particle in a single dimension
• x = position of particle in a single dimension
• t = iteration number
• w is the inertial constant
• c1, c2 are acceleration constants
• r1, r2 are random numbers evenly distributed between [0,1]

Figure 5.12: PSO Velocity and Position Update Equations

The equations shown above in Figure 5.12 are for one dimension only, the current

dimension i. It is easily realized that the way the programmer governs these equations

with the constants can drastically affect the results of the optimization. In fact, the

61

outcome of the optimization, or the priority list, is very sensitive to the way these

equations behave. The specific parameter values used in the optimization routines are

discussed in the next chapter as well as the results of the JSP/PSO Algorithm on test

bench Job Shop Problems.

62

CHAPTER SIX

RESULTS

In this chapter the relevant details of the computer program used for the proposed

JSP/PSO Algorithm are discussed, and a brief analysis on how they affect the

performance of the algorithm is given. Also, the performance of the JSP/PSO Algorithm

on many standard JSP test bench problems are presented for scrutiny. Finally, these

results are compared to results obtained from other JSP optimization methods in recent

literature.

6.1 JSP/PSO Program Specifics

The JSP/PSO was written and tested in MATLAB programming language. There are two

parts to this algorithm, the scheduling part and the optimization part, or the PSO part.

Much of both the scheduling part and the optimization (PSO) part have been generally

discussed. However, in the following two sections more details are disclosed as to

exactly how this program operated in these two areas.

6.1.1 PSO Program Specifics Obviously, the PSO user defined parameters control exactly

how the particles behave, which can have an effect on how the optimization

63

works in the long run. The user defined constants and parameters can have a drastic

effect on the outcome of the problem being optimized. Therefore, a lot of time was spent

fine tuning the PSO part of the program to achieve the optimal values for this type of

PSO application. In this section the details of how the PSO was programmed to behave

are presented.

First and foremost, a swarm size of 20 is used for all test bench problems. Some JSP

problems are easy enough that only 10 particles could be used in a swarm, but most

problems aren’t that simple. Swarm sizes of more than 25 did not seem to improve the

results appreciably, if at all, to justify the increased program running time. The particles

were confined to an arbitrary space of -.5 to .5 in all dimensions. If a particle travels, or

attempts to travel out of the allowed space, the particle can not simply be assigned the

maximum value or minimum value whichever the case may be. This is because of the

numerous dimensional values that might end up with the same value of .5 or -.5, which

will then make the permutation from space transformation procedure meaningless. This

was dealt with by only moving a particle half way to the boundary if it tried to step

outside the PSO search region. This avoided the problem of particles lying on the

boundary in multiple dimensions and adequately allowed the particles to move freely, but

also stay inside the search region. The reason this space is arbitrary is because it matters

not what the specific value of a particle is in a given dimension, only its relationship to its

other dimensional components. This is explained in Chapter Five in more detail. A

maximum and minimum velocity was also placed upon the particles of .5 and -.5

respectively. This can also be thought of as a maximum step size for a particle in a given

64

dimension for one iteration. This velocity restriction is important, because it can control

how fast a particle can move and thereby affect how quickly any dimensional component

can become less than or greater than the other dimensional components of the particle,

which in turn determines the permutation that particle represents. If a particle attempted

move faster than this maximum or slower than the minimum velocity, it was simply

assigned the appropriate maximum or minimum velocity value.

A mutation operator was also utilized in this program. In meta-heuristic methods,

mutation operators are used to help escape local optima, and ensure global coverage of

the search space. Typically, mutation operators randomly manipulate (in a specified

manor) what can be called the genotype of the problem, in this case a particle. Mutation

usually occurs at a very small rate, because using them too much would destroy any good

information contained in the population or swarm of individuals that might have already

been acquired through the optimization process. In this program, a particle has a 5%

chance of being selected for mutation. The mutational operator randomly selects two

dimensions of a particle (remember each dimension represents a job place in the priority

list). The value of the first dimensional component is removed from the particle and

reinserted at the place of the second randomly selected dimension. An illustration of this

simple process is provided in Figure 6.1 below.

65

Figure 6.1: Mutation Example

This mutation operator should help ensure that a good global exploration of the

permutation space is achieved by the PSO algorithm through the course of its

optimization.

Of course, the mutation operator is not the only way particles are able to explore the

search space in the PSO algorithm, the concept of the PSO algorithm are that particles

“swarm” through the search space, but remember their best position and the global best

position. As explained in Chapter 4, how “free” these particles are able to move away

from global best and personal best positions depends upon the C1, C2 and W constants

that are found in the velocity update PSO equations. The PSO equations are presented

again below for convenience in Figure 6.2.

66

Figure 6.2: PSO Velocity and Position Update Equations

For many PSO applications C1 and C2 are simply set to a constant value throughout the

optimization process. The number 2 is common to use for both C1 and C2, this means

that the particle will have an equal pull to the global best found solution and its personal

best found solution. Some researchers have taken this a step further and programmed C1

and C2 to change with respect to the number of iterations. The equations presented below

are one possible way of doing this.

() FinalInitialFinal C
axiterationM

iterationaxiterationMCCC 1111 +

 −

×−=

() FinalInitialFinal C
axiterationM

iterationaxiterationMCCC 2222 +

 −

×−=

() FinalInitialFinal W
axiterationM

iterationaxiterationMWWW +

 −

×−=

By making C1Initial a larger number than C1Final and C2Initial a smaller number than C2Final,

particles will be allowed to explore a larger territory at the beginning of the program and

then converge near the global solution toward the end of the program. Obviously, the

same can be done with the velocity constant W. This constant controls the impact of the

previous velocity of the particle. Dynamic constants were used as explained above, but

67

they were “cycled” over and over through the course of the optimization. Instead of the

constants taking the entire number of total iterations to go from an initial value to a final

value, they make this transition several times through the course of the iterations. To do

this, the common modulus operator was used. The main reason this was done, among

others, was to ensure that particles could escape a local optimum through the course of

the program simulation. The desire to have the particles converge to the best found

solution at some point is desirable, because the true optimal solution may very well lie

somewhere near a best found solution. However, schedules that are very close in

makespan can be extremely far apart in regard to the sequencing of operations, meaning

to go from a schedule with a makespan of x to a makespan of 1−x the particles may

have change their dimensional values significantly. However, the particles won’t be able

to do this very well if the constants of the PSO equations have already de-emphasized

exploration by decreasing the C2 parameter and increasing the C1 parameter. It is surely

conceivable that cycling these constants will help in this regard, because cycling allows

the particles to explore the search space more freely at certain times during the

optimization. This cycling method probably is not necessary in many applications of the

PSO, but it was found through the course of this research that since the JSP is such a

huge combinatorial problem that anything to aid the particles in escaping local optima is

helpful.

However, there is one problem with this idea. Even if the constants are cycled to allow

the particles to explore again, if they’ve all been drawn to the same area by a previous

large C2 constant at the end of the previous cycle, this hardly does any good. This is why

68

in the JSP/PSO the C2 global starts out small and does not increase much through its

cycle. This way particles are only slightly pulled to the global best during each “cycle”,

and then allowed to explore again when the C1 constant gets reset to a larger value.

Perhaps, this is better seen with examples of values that were used. The initial and final

values used for the C1, C2 and W constants are shown below.

C1Initial = 1 C1Final = .25

C2Initial = .01 C2Final = .25

WInitial = .9 WFinal = .8

Notice the large C1Initial value and small C2Initial value, which means a lot of emphasis is

placed on personal exploration at the beginning of each cycle. Also notice, how the

global best constant, C2, does not ever have a greater value than the personal best

constant, C1. They only equal each other for one iteration each cycle. This means that

for one cycle of the constants the particles will not be “drawn in” too much to the global

best search space per cycle, but will eventually get there through several cycles.

Essentially, if there are enough cycles the particles will eventually be “reigned into” the

global solution area, after going through periods of exploration and convergence in other

areas of the search space. The particles search behavior are fairly sensitive to the W

constant, because it is less than 1 so it has the effect of slowing down the particle over the

course of several iterations. It turns out that the W constant did not need to change too

much through the course of the optimization, because it always helped the optimization

process to let the particles have a decent amount of momentum.

69

This method of cycling the constants C1, C2 and W did improve the results that were

obtained through the simulations. Through the course of all testing, a cycle factor of 200

iterations and maximum iteration limit of 2,000 was used. So the constants were reset a

maximum of 10 times during one run of the program. To get an idea of how this method

affected particles behavior in space, graphs are presented below to better convey the

concepts that have been discussed so far. Figure 6.3 shows a single particles’ velocity in

a single dimension through iterations, and Figure 6.4 is a close up view of this velocity.

Figure 6.3: Plot of One Particle’s Velocity

70

Figure 6.4: Close Up of One Particle’s Velocity

Notice how this particle’s velocity for the most part seems to spike around the iterations

that are multiples of 200. This is because the cycle previously discussed is set to 200

iterations. Another way to illustrate how these “particles” are behaving is to plot multiple

particles in the same swarm. In Figure 6.5 below, one dimension of three different

particles are plotted versus the number of iterations. These particles are part of the same

swarm, and are thereby optimizing the priority list for the same machine. Also a graph of

the best found makespan, or objective function value, is presented in Figure 6.6 for

comparison of the objective function value to what was happening in the search space at

certain times in the optimization process.

71

Figure 6.5: Three Different Particle’s Movement in the Same Dimension

Figure 6.6: Objective Value (Makespan) versus Iterations

72

These plots might better help the reader understand what the particles are actually doing

during optimization. Remember that Figure 6.5 represents one dimension in space,

which corresponds to a certain job in the priority list of a JSP after space transformation

has been completed. What is interesting about this graph is how all three particles start

off in very different positions in space and are brought closer together throughout the

course of the optimization, hopefully the final value they converge too is the optimal

value for that dimension. Notice, however, that on every multiple of 200 iterations the

three particles are brought slightly closer to what is the current best global position, then

they are sent out to explore again. The particle plotted in red illustrates this concept

fairly well. Every two hundred iterations the red particle is brought only slightly closer to

what the global best position is, until around 1,800 iterations it has been brought in all the

way. It appears the best found value for this dimension was around -.2. Of course, this

specific value doesn’t mean much, until we know what the values of all the other

dimensions were at the end. The next figure, Figure 6.7, will help with this.

73

Figure 6.7: One Particle’s Movement in Six of its Dimensions

Figure 6.8: Objective Value (Makespan) versus Iterations

74

Figure 6.7 shows us what was happening to a single particle through the course of the

optimization, six different dimensions versus iterations. Figure 6.8 allows us to see what

was happening to the corresponding objective function value during these times.

Remember from the space transformation procedure that the dimension with the greatest

value will be given the permutation of 1, and so forth. According to Figure 6.7 the

dimension represented by the yellow color would be assigned the permutation 1, and the

dimension represented by the color green would be given the permutation 2, and so on.

Looking at the graph, one can get the idea that the particle is simple “sorting” its

dimensions out. To get a better idea of how fast these particles are moving the graph

below, Figure 6.9, has been provided, which is a zoomed in version of Figure 6.7.

Figure 6.9: Close up of One Particle’s Movement in Six of its Dimensions

75

As mentioned before, there are two parts to this optimization process, the meta-heuristic

search method and the building of the corresponding schedule. The graphs and

explanations in this section have attempted to show how the search part is conducted, or

more specifically, how the particles have been programmed to behave. The result of this

part of the program is a priority list for each machine. Once a priority list has been built

the scheduling algorithm then builds a schedule. As will be explained in the next section

this scheduling algorithm has direct influence on the ability of our optimization technique

to find the optimal solution. The exact scheduling building specifics for my

implementation of the proposed JSP/PSO are presented in the following section.

6.1.2 Schedule Building Specifics The scheduling algorithm commonly used along with a

priority list is the GT scheduling algorithm, and both are used in the JSP/PSO Algorithm.

The GT scheduling algorithm was discussed previously in Chapter 2. Basically, the GT

scheduling algorithm builds active schedules by looking slightly forward in time. Active

schedules are schedules in which no operation can be started earlier without increasing

the processing time of any machine. The GT Algorithm is presented again below for

convenience.

 1. Let D be a set of all earliest schedulable operations in all job
sequences not yet scheduled.

2. Let operation, Ojr, be the operation with the earliest completion time
in set D. Ojr = min {O – D | EC(O) }. Where j is the job and r is the
machine.

3. Develop a conflict set for machine Mr consisting of all operations that
will require machine r before operation Ojr will be completed.

ES(Okr) < EC (Ojr).

4. Select an operation out of the conflict set, and schedule it on Mr.

76

Remember, all optimal schedules are active schedules. Therefore, it would seem

beneficial to search only within the set of active schedules. However, there are two

problems with this idea. One, it is computationally expensive to look ahead in the

schedule building process, and two, the set of active schedules is fairly large. Most of the

schedules in this active space, are very “non optimal” schedules, but active nonetheless.

Recall from Chapter 2 the set of non-delay schedules, which are a subset of active

schedules. These are schedules in which no machine is held open for any period of time

when it could be processing a job. For a more detailed explanation and examples, refer to

Chapter 2. Basically, non-delay schedule building corresponds to not looking ahead in

time, and not considering an operation for a machine which will become available in the

near future. One of the many things learned through the course of this research is that not

only searching non-delay schedules much faster computational wise, but many times the

optimal solutions can be found! Moreover, the optimal solutions that do not lie in the set

of non-delay schedules often lie just outside that space in the set of a 10 unit delay

schedule, or a 20 time until delay schedule, or some relatively small time unit delay.

Which means, instead of not looking ahead in time at all (non-delay), the scheduling

algorithm will consider operations that looks ahead in time only a specified parameter of

time units. As explained in Chapter 2, this set is called parameterized active schedules.

Of course, a 10 unit time delay doesn’t have any context to judge its significance by

unless you know some information about the JSP at hand, such as the average time for an

operation. It’s unfortunate, but one parameter of time considered small for one JSP might

be really large for another. This makes finding a robust parameterized active Job Shop

Scheduling algorithm even more difficult.

77

It should be stated for completeness just exactly how the GT algorithm looks ahead in

time, and how this can be adjusted for either a non-delay schedule or some parameterized

active schedule. This was briefly discussed in Chapter 2, and is explained again here for

convenience and context. The ability to build either a non-delay schedule, an active

schedule, or a parameterized active schedule lies in the 3rd step of the GT Algorithm. The

first step in the GT Algorithm is to select the operation with the earliest completion time

from all unscheduled operations, operation Ojr. Next, a conflict set for the machine that

is called for by Ojr is constructed, machine r. This conflict set is filled with operations

that will need that same machine, r, before Ojr is completed, hence a conflict set. This is

where the GT Algorithm looks ahead in time, specifically τjr units ahead, which is the

processing time of Ojr.

In order to create a parameterized active schedule, the algorithm should only look ahead a

certain parameter of time instead of all of τjr. To build a non-delay schedule, make this

parameter zero. Then conflict sets will only consist of operations that are already

available for processing by machine r. Since τjr will be different for every operation

considered the impact of a static value like 5, 10 or 20 will be varied. Remember that the

GT algorithm only schedules one operation at a time, so for a JSP with 100 total

operations, then 100 conflict sets must be generated, even if these conflict sets contain

only one operation. It is safe to assume that many optimal schedules could be built by

using non-delay schedule building (τjr = 0) except for a few times in which a delay

parameter should be used (τjr = Parameter). So another downside of specifying a static

delay parameter throughout the entire schedule building process is the increased search

78

space that is only necessary for a few operations! It might be easy to understand that

when the size of the parameter is increased, the size of the conflict set is usually

increased, thereby increasing the references to the priority list. This not only increases

computational time, but it requires a more “precise” priority list. It should be noted, if

not already understood that since a priority list is used in conjunction with a scheduling

algorithm the order of the priority list will not necessarily end up being the order of the

operations of the resulting schedule, in fact most likely not. It is unclear what kind of

impact this mismatch has on the optimization outcome, if any, but would be an

interesting topic of research. The reason this mismatch could be an issue is that one

different decision during the course of the schedule building procedure could change all

the conflict sets from that point on, seemingly making it advantageous to have a “precise”

priority list. However, the complications presented here, specifically relating to

parameterized active schedule building is just beyond the scope of this research, it is just

noted here to give the reader a better understanding of parameterized schedules and their

relationship to priority lists. Since there is no way to look at a Job Shop Problem and

determine whether the solution lies in the set of non-delay schedules or in some specific

set of “x” delay schedules, the safest schedule building is pure active schedule building.

However, as mentioned before this has significant draw backs. Through the course of the

simulations the enormous computational advantage was apparent of searching

parameterized active schedule space and non-delay schedule space. To help illustrate this

idea, and to better convey the strengths and weaknesses of the JSP/PSO algorithm, the

results of the test bench problems in the following section are presented according to the

delay parameter that was used. The reader can then draw their own conclusions about

79

usefulness of limiting the schedule building to all active schedules, parameterized

schedules or non-delay schedules, and also the possible danger of such a practice.

6.2 Simulation Results

All the information from my program has been explained in the previous sections, and

the proposed JSP/PSO Algorithm was explained in the previous chapter, so the reader

should have all the necessary information to understand how the following results were

obtained. Before the results are presented, the questions at stake are summarized below.

They are presented below in order of significance.

1. Search space division by each machine’s priority list.

2. Application of the PSO to the JSP in general.

3. The significance of limiting schedule searching to non-delay or just “outside”

the non-delay domain.

4. Cycling of the PSO constants, C1, C2 and w.

To test the proposed algorithm, two well known benchmark function suites were used,

the MT suite [14], which consist of 3 problems, and the LA suite [20], which consists of

40 problems. Three sets of the results from the optimization of these problems are

presented in this section according to the delay parameter used during the optimization

process. Each set consists of 15 runs, or 15 trials, of the JSP/PSO on the 43 bench

functions. It is not unusual to have trials consist of 50-100 runs, but 15 were used here

because of the significant amount of time it took to run 1 trial of a large JSP, on the order

of hours. Every trial either terminated by obtaining the optimal solution, obtaining a

80

stagnant non-optimal solution for more than 600 iterations, or reaching the maximum

iteration value of 2,000.

The first set are the results presented from building strictly non-delay schedules (τjr = 0)

are presented and discussed. Then the results are presented and discussed when using a

time delay parameter of 10 (τjr = 10), followed by the results and discussion of pure

active schedule building. Finally, these results are compared to results obtained from

another recent work in the JSP realm, Liu, Zhong, and Jiao [13].

81

6.2.1 Time Delay Parameter of 0 (Non-Delay Schedules)

Table 6.1: Time Delay of 0 Results Table

Makespan
Name Dimension (n x m) Optimal Found out of

15 Trials
Best Avg StDv

Avg. Function
Evals

MT06 6x6 55 0 57 57 0 10,563
MT10 10x10 930 0 956 985.6 15.43 16,975
MT20 20x5 1165 0 1180 1192.1 10.69 16,100
LA01 10x5 666 15 666 666 0 441.33
LA02 10x5 655 0 668 676.2 8.46 15,175
LA03 10x5 597 0 606 621.47 7.67 15,580
LA04 10x5 590 0 611 612 2.07 11,921
LA05 10x5 593 15 593 593 0 30.667
LA06 15x5 926 15 926 926 0 298.67
LA07 15x5 890 15 890 890 0 1,493.3
LA08 15x5 863 15 863 863 0 997.33
LA09 15x5 951 15 951 951 0 448
LA10 15x5 958 15 958 958 0 169.33
LA11 20x5 1222 15 1222 1222 0 650.67
LA12 20x5 1039 15 1039 1039 0 729.33
LA13 20x5 1150 15 1150 1150 0 334.67
LA14 20x5 1292 15 1292 1292 0 60
LA15 20x5 1207 13 1207 1212.3 13.90 3,924
LA16 10x10 945 0 988 1003.2 8.28 12,929
LA17 10x10 784 0 792 807.27 16.89 12,508
LA18 10x10 848 0 860 873.13 11.82 13,293
LA19 10x10 842 0 875 877 3.46 12,068
LA20 10x10 902 0 938 940.67 0.90 12,184
LA21 15x10 1046 0 1082 1119.4 19.77 19,079
LA22 15x10 927 0 977 998.4 14.90 19,184
LA23 15x10 1032 5 1032 1048.1 14.62 13,681
LA24 15x10 935 0 975 1004.7 11.07 16,741
LA25 15x10 977 0 1013 1053.9 18.72 18,744
LA26 20x10 1218 0 1237 1270.6 17.83 22,309
LA27 20x10 1235 0 1290 1317.7 18.17 23,911
LA28 20x10 1216 0 1251 1299.6 16.86 23,311
LA29 20x10 1152 0 1247 1281.4 24.40 24,828
LA30 20x10 1355 1 1355 1394.6 25.80 23,439
LA31 30x10 1784 13 1784 1787.9 14.16 6,990.7
LA32 30x10 1850 7 1850 1865.5 19.73 11,747
LA33 30x10 1719 4 1719 1735.5 18.58 21,365
LA34 30x10 1721 0 1748 1773.5 20.61 23,897
LA35 30x10 1888 7 1888 1906.5 32.65 17,920
LA36 15x15 1268 0 1332 1362.3 20.23 17,451
LA37 15x15 1397 0 1468 1490 14.52 18,320
LA38 15x15 1196 0 1280 1311.3 19.83 16,347
LA39 15x15 1233 0 1267 1320.2 18.45 14,864
LA40 15x15 1222 0 1286 1302.3 13.81 17,451

82

6.2.1.1 Non-Delay Analysis The results from the JSP/PSO using non-delay

schedule building are fairly polarized. With the exception of a few problems, the optimal

solution was either found exactly all 15 times, or found none of the times. One might

attribute this to the fact that the solutions to the problems that were never found might not

lie in the space of non-delay schedules, or perhaps the size of the problems were too large

for the given amount of iterations allowed. The solutions to many of the problems with

only 5 machines were found optimally, even if the number of jobs in the problem were 15

or 20. This might lead one conclude that real complexity of the problem increases more

with the number of machines in the problem instead of the number of jobs, and I believe

there is some truth to this. However, as will be shown in the next sections, the real

difficulty of finding an optimal solution to a JSP has more to do with where in schedule

space the solution lies. It gets much harder and takes longer to find a solution that lives

outside of non-delay space and into parameterized active space, or even past parameter

active space into total active schedule space.

83

6.2.2 Time Delay Parameter of 10

Table 6.2: Time Delay of 10 Results Table

Makespan
Name Dimension (n x m) Optimal Found out of

15 Trials
Best Avg StDv

Avg. Function
Evals

MT06 6x6 55 2 55 57.533 1.50 12,235
MT10 10x10 930 0 953 979.47 17.69 16,140
MT20 20x5 1165 0 1178 1189.3 9.34 19,007
LA01 10x5 666 15 666 666 0 554.67
LA02 10x5 655 0 665 674.67 10.39 15,139
LA03 10x5 597 2 597 613.33 10.68 14,045
LA04 10x5 590 0 611 611.67 1.75 12,589
LA05 10x5 593 15 593 593 0 85.333
LA06 15x5 926 15 926 926 0 377.33
LA07 15x5 890 14 890 890.6 2.32 3,197.3
LA08 15x5 863 15 863 863 0 1,909.3
LA09 15x5 951 15 951 951 0 968
LA10 15x5 958 15 958 958 0 381.33
LA11 20x5 1222 15 1222 1222 0 905.33
LA12 20x5 1039 15 1039 1039 0 1,144
LA13 20x5 1150 15 1150 1150 0 1,033.3
LA14 20x5 1292 15 1292 1292 0 228
LA15 20x5 1207 13 1207 1209.4 7.57 6,678.7
LA16 10x10 945 0 975 986.73 8.86 16,488
LA17 10x10 784 0 792 806.47 13.47 14,911
LA18 10x10 848 3 848 869.4 16.21 13,876
LA19 10x10 842 0 856 867.2 9.42 15,147
LA20 10x10 902 0 907 920.07 11.72 13,804
LA21 15x10 1046 0 1077 1114.8 15.38 20,628
LA22 15x10 927 0 948 979.8 17.06 21,964
LA23 15x10 1032 1 1032 1042.8 11.23 18,037
LA24 15x10 935 0 982 1000.9 15.42 19,951
LA25 15x10 977 0 1013 1041.1 16.76 19,039
LA26 20x10 1218 0 1243 1274.7 24.28 26,845
LA27 20x10 1235 0 1294 1334.5 25.30 26,099
LA28 20x10 1216 0 1279 1318.3 23.24 23,505
LA29 20x10 1152 0 1231 1279.3 32.09 25,819
LA30 20x10 1355 0 1373 1399.7 24.72 21,691
LA31 30x10 1784 2 1784 1796.4 12.84 20,148
LA32 30x10 1850 1 1850 1894.3 27.76 21,464
LA33 30x10 1719 0 1726 1763.6 22.23 20,176
LA34 30x10 1721 0 1747 1793.9 23.47 24,088
LA35 30x10 1888 1 1888 1919.4 28.51 23,853
LA36 15x15 1268 0 1335 1364.5 18.91 20,265
LA37 15x15 1397 0 1478 1493.1 10.27 19,469
LA38 15x15 1196 0 1259 1293.4 27.35 20,736
LA39 15x15 1233 0 1264 1298.1 23.23 17,416
LA40 15x15 1222 0 1269 1307.9 22.96 18,195

84

6.2.2.1 Parameterized Active Schedule Analysis Now the space of parameterized

active schedules is considered. As stated before, the parameter used for this set of

problems was 10. Most of the problems in the two test suites don’t have single operation

times that exceed 80, or fall below 20. Therefore, a parameter of 10 seemed like a good

guess to search just outside the set of non-delay schedules, as was the goal. If most of the

test problems had average operating times of say 20, then a parameter of 1-3 would have

been more appropriate in defining this set. So, for this set of trials the GT Scheduling

Algorithm considered operations for machines that aren’t available at that exact moment

in time, but almost available. Two aspects of the results are of interest to us here. One is

the fact that the optimal schedule was found twice for the MT06 scheduling algorithm,

where it was never found before when searching in the non-delay set. The same

observation can be made about the LA03 and the LA18 problems. I would say this is

evidence that those solutions don’t live in non-delay schedule space, but just outside of it.

However, the other aspect to note is the decreased number of times the optimal solution

was found in many of the other test problems, like LA07, LA15, LA23, LA30, LA31,

LA32, LA33, and LA35. Obviously, this is because the search space was increased too

much for the JSP/PSO Algorithm to still find the optimal solution in the same amount of

iterations. It is safe to assume that this trend will continue with a larger impact into the

much larger space of active schedules. The following table contains the results from

active schedule searching.

85

6.2.3 All Active Schedules

Table 6.3: All Active Schedules Results Table

Makespan
Name Dimension (n x m) Optimal Found out of

15 Trials
Best Avg StDv

Avg. Function
Evals

MT06 6x6 55 2 55 57.733 1.83 14,995
MT10 10x10 930 0 997 1040 21.71 23,143
MT20 20x5 1165 0 1224 1285.6 29.91 22,888
LA01 10x5 666 1 666 688.93 16.60 17,481
LA02 10x5 655 0 672 712.73 26.81 17,608
LA03 10x5 597 0 621 638.47 13.64 17,581
LA04 10x5 590 0 610 628.6 13.96 16,341
LA05 10x5 593 13 593 593.6 1.68 3,989.3
LA06 15x5 926 11 926 928.27 6.41 12,167
LA07 15x5 890 7 890 900.53 14.10 16,688
LA08 15x5 863 0 866 888.93 18.14 20,395
LA09 15x5 951 1 951 968.33 9.89 22,451
LA10 15x5 958 12 958 959.67 4.36 8,474.7
LA11 20x5 1222 7 1222 1230.9 10.90 18,987
LA12 20x5 1039 1 1039 1055.1 14.12 22,357
LA13 20x5 1150 4 1150 1170.9 17.34 23,376
LA14 20x5 1292 15 1292 1292 0 2,196
LA15 20x5 1207 0 1212 1265.3 27.87 26,484
LA16 10x10 945 0 982 1027.5 18.92 17,015
LA17 10x10 784 0 793 837.53 20.63 17,323
LA18 10x10 848 0 896 938.33 20.98 18,909
LA19 10x10 842 0 887 922.13 20.45 20,417
LA20 10x10 902 0 951 990.13 17.48 16,945
LA21 15x10 1046 0 1187 1244.1 39.65 24,400
LA22 15x10 927 0 1099 1135.5 30.61 22,785
LA23 15x10 1032 0 1142 1191.6 28.33 24,320
LA24 15x10 935 0 1100 1131.1 25.26 26,144
LA25 15x10 977 0 1112 1171.3 40.56 20,903
LA26 20x10 1218 0 1448 1495.1 21.85 25,519
LA27 20x10 1235 0 1446 1532.7 40.08 24,115
LA28 20x10 1216 0 1485 1512.5 21.91 25,561
LA29 20x10 1152 0 1383 1444.3 31.00 23,961
LA30 20x10 1355 0 1540 1582.3 23.35 22,572
LA31 30x10 1784 0 1966 2008.8 24.51 24,109
LA32 30x10 1850 0 2084 2137.5 28.63 25,240
LA33 30x10 1719 0 1900 1967.5 40.60 22,471
LA34 30x10 1721 0 1999 2019.6 17.18 20,843
LA35 30x10 1888 0 2068 2106.7 35.74 18,723
LA36 15x15 1268 0 1464 1517.3 38.21 25,645
LA37 15x15 1397 0 1585 1638.4 31.19 23,501
LA38 15x15 1196 0 1398 1454.8 23.59 23,409
LA39 15x15 1233 0 1447 1488.9 32.46 25,089
LA40 15x15 1222 0 1404 1444.9 22.08 27,939

86

6.2.3.1 Active Schedule Analysis The results from active schedule building are

not too promising. Going from using a time delay parameter of 10, to the space of all

active schedules, reduced the number of times optimal solutions were found for all test

problems, with the one exception of the LA14 problem, and the MT06 problem where the

solution found only twice. The time it took to run 15 trials of each problem increased

significantly, because of the increased size of the conflict set for each operation

scheduled, which thereby increases the computational cost. This increased time is on the

order of tens of hours.

6.2.4 Gantt Chart and Priority List Analysis In reality, we are interested only in the

makespan of a particular solution to the JSP, which is just a number. However, it is

interesting and helpful at times to look at the schedule in the form of a GANTT chart. It

is possible to “kind of” judge the complexity of a problem by looking at the complexity

of its solution. In this section some priority lists and corresponding Gantt charts of some

of the solutions the JSP/PSO produced to give the reader some visual feedback.

The following figure is a Gantt chart of the LA01 Problem. This (10 x 5) problem was

solved optimally by non-delay scheduling. As can be seen by looking at the Gantt chart,

the problem seems fairly easy to solve as compared to some other Gantt charts which will

be shown later. Notice how most of the time all machines are processing an operation,

this is a result of how the problem happens to be defined, the precedent constraints and

processing times happen to allow for very efficient use of time. Presented in Table 6.4

along with the Gant chart in Figure 6.10 is the actual LA01 problem definition. Also

87

presented in Table 6.5 is the optimal priority list that was optimized by the PSO, which

obviously indirectly represents an optimal schedule. As mentioned before the optimal

priority list does not really come close to matching the order operations on the Gantt

chart.

Table 6.4: LA01 Job Shop Problem

Machine Sequence (Time)

Job 1: 2 (21) 1 (53) 5 (95) 4 (55) 3 (34)
Job 2: 1 (21) 4 (52) 5 (16) 3 (26) 2 (71)
Job 3: 4 (39) 5 (98) 2 (42) 3 (31) 1 (12)
Job 4: 2 (77) 1 (55) 4 (79) 2 (66) 3 (77)
Job 5: 1 (83) 4 (34) 3 (64) 2 (19) 5 (37)
Job 6: 2 (54) 3 (43) 5 (79) 1 (92) 3 (62)
Job 7: 4 (69) 5 (77) 2 (87) 3 (87) 1 (93)
Job 8: 3 (38) 1 (60) 2 (41) 4 (24) 5 (83)
Job 9: 4 (17) 2 (49) 5 (25) 1 (44) 3 (98)
Job 10: 5 (77) 4 (79) 3 (43) 2 (75) 1 (96)

Table 6.5: LA01 Optimal Priority List

Machine 1: 2 1 9 5 10 6 4 3 8 7
Machine 2: 1 6 3 4 2 7 9 5 10 8
Machine 3: 10 2 5 4 1 8 6 7 9 3
Machine 4: 7 3 1 2 5 8 9 6 4 10
Machine 5: 9 6 4 7 3 2 1 5 8 10

88

Fi
gu

re
6.

10
:G

an
tt

ch
ar

to
fL

A
01

So
lu

tio
n

89

One of the greatest examples of the complexity of the Job Shop Problem is how drastic a

difference between two schedules can be with approximately the same makespan. There

is nothing about the JSP would lend one to expect schedules that are close in makespan

are also “close” in combinatorial space. Which means that to go from a makespan of say

668 to 666 may require significant changes in the order of the operations of all the

machines. Needless to say, this makes optimization very difficult. If this is not more

evidence to support the cycling of the PSO constants that was explained earlier, then it is

definitely evidence to support the idea that particles should not necessarily be

programmed to all converge to the best found solution toward the end of optimization.

Figure 6.11 is a Gantt chart of a solution obtained by the JSP/PSO to the LA01 problem

of the previous example, however, it is not the optimal solution. The solution has a

makespan of 668, two time units longer than the optimal. Notice the overall drastic

difference in the two schedules, and contemplate how difficult it would be for particles

searching from the near schedule below to find the optimal schedule of Figure 6.10. This

could be why the meta-heuristic optimization method of Simulated Annealing has had

success in solving the Job Shop Problem, which is an optimization construct that accepts

“up hill” moves with a certain probability. The priority list for this non-optimal schedule

is also shown below for comparison to the optimal priority list of the previous figure.

Table 6.6: Priority List for Near Optimal LA01.

Machine 1: 9 2 8 6 7 10 4 5 1 3
Machine 2: 10 3 6 5 8 2 4 7 1 9

 Machine 3: 4 3 6 10 5 7 9 1 8 2
Machine 4: 5 7 9 6 10 8 1 3 4 2

 Machine 5: 2 6 9 7 1 4 3 5 8 10

90

Fi
gu

re
6.

11
:G

an
tt

C
ha

rt
fo

r
N

ea
r

O
pt

im
al

So
lu

tio
n

of
L

A
01

91

Another benefit of looking at the actual schedule of a solution is ability to see whether or

not non-delay scheduling was needed. For example, the LA03 problem was one of the

harder)510(× problems to solve, however it was solved optimally a couple of times by

using parameterized active scheduling, see Table 6.2, and it wasn’t solved optimally at all

using non-delay scheduling, see Table 6.1. By looking at the Gantt chart of the optimal

schedule of LA03, we can see where this delay parameter was necessary. In Figure 6.12

below this delay is circled in red. Notice after Job 9 gets done processing on Machine 1

at time 286 that it does not start processing an operation until time 295, even though both

Jobs 1, 8 and 10 are ready for processing by Machine 1. Instead it waits 9 time units for

Job 5 to get done processing on Machine 5. Obviously, the delay parameter of 10 was

just enough for finding of this optimal solution. Not only does the Gant chart in Figure

6.12 allow us to see where active scheduling is necessary, but it also illustrates an even

better point. This delay of Machine 1 was the only time when it was necessary to not

process waiting operations. So for 50 operations, only one needed parameterized active

scheduling. So the schedule is largely non-delay. However, a constant delay parameter

of 10 time units was used to schedule every operation! In other words, the search space

was increased unnecessarily for every other operation. This fact is manifested in the

results of the JSP/PSO Algorithm where the solution was only found 2 times out of 15 for

parameterized active schedule searching, shown in Table 6.2, and 0 out of 15 times for

the search all active schedules, shown in Table 6.3. I believe that this predicament could

easily be the subject of more research.

92

Fi
gu

re
6.

12
:G

an
tt

C
ha

rt
fo

r
L

A
03

So
lu

tio
n

93

Lastly, to give the reader yet more context into the complexity of Job Shop Problems,

two more Gantt charts are presented below. The first one, Figure 6.13, is a non-optimal

schedule of the MT10 problem. This is a very hard)1010(× JSP that unfortunately was

never solved by the JSP/PSO. It isn’t hard to see why the problem is difficult to solve

optimally. Notice how all the operations slant from the top left to the bottom right, this

indicates how most of jobs all require the same machines at the same time through out the

course of the schedule. This is seen more easily in the problems precedent constraints

shown below.

Table 6.7: Precedent Constraints for MT10

Machine Sequence
Job1: 1 2 3 4 5 6 7 8 9 10
Job2: 1 3 5 10 4 2 7 6 8 9
Job3: 2 1 4 3 9 6 8 7 10 5
Job4: 2 3 1 5 7 9 8 4 10 6
Job5: 3 1 2 6 4 5 9 8 10 7
Job6: 3 2 6 4 9 10 1 7 5 8
Job7: 2 1 4 3 7 6 10 9 8 5
Job8: 3 1 2 6 5 7 9 10 8 4
Job9: 1 2 4 6 3 10 7 8 5 9
Job10: 2 1 3 7 9 10 6 4 5 8

94

Fi
gu

re
6.

13
:G

an
tt

C
ha

rt
fo

r
N

on
-o

pt
im

al
M

T
10

Sc
he

du
le

95

Also, notice how in contrast to some of the previously presented schedules, there is a lot

of idol time for all of the machines. The operations don’t flow consecutively on any of

the machines without down time. Simply put, this is just a very tough problem to solve

because of the way it’s defined. It might be tempting to think that the larger the problem

is the harder it is to solve it. While there is some truth to this, it is not entirely true. It is

obvious that the JSP/PSO had trouble solving the MT10 problem, so it might be tempting

to think that it would have an even more difficult time solving a larger JSP. The Gantt

chart in Figure 6.14 is the optimal schedule of the LA31 problem, a)1030(× JSP. This

solution is a non-delay solution and was found 13 times out of 15 by non-delay schedule

searching and 2 times out of 15 by parameterized schedule searching. Looking at Figure

6.14 it is easy to see the shear combinatorial oblivion that the solution lies in and it is also

easy to see that unlike the MT10 solution there is hardly any idol time for any of the

machines. Perhaps, this fact, more than problem size is an indication of how hard a

particular JPS is to solve.

96

Fi
gu

re
6.

14
:G

an
tt

C
ha

rt
of

L
A

31
So

lu
tio

n

97

6.3 Comparative Analysis Now that the performance of the JSP/PSO has been presented

and analyzed, the significance of this algorithm will be discussed by comparing its results

to results of another recent JSP algorithm. As of this writing the most recent and

complete publication of the results from many of the same JSP test functions came from

Liu, Zhong, and Jiao [13], published in February of 2006. They used a multi-agent

system, which is another emerging meta-heuristic optimization method, to solve the MT,

LA and ORB test bench suites. The results they obtained are quite good. They have

been taken from [13] and presented in the following table for comparison purposes.

98

Table 6.8: Comparative Results

Makespan Name Dimension (n x m) Optimal Best Avg StDv Function Evals

MT06 6x6 55 55 55 0 450
MT10 10x10 930 930 944.45 7.81 2,270,375
MT20 20x5 1165 1165 1178.89 4.80 3,106,852
LA01 10x5 666 666 666 0 1,631
LA02 10x5 655 655 655.39 1.95 296,570
LA03 10x5 597 597 598.86 2.79 409,782
LA04 10x5 590 590 591.41 1.50 635,362
LA05 10x5 593 593 593 0 262
LA06 15x5 926 926 926 0 349
LA07 15x5 890 890 890 0 1,540
LA08 15x5 863 863 863 0 2,519
LA09 15x5 951 951 951 0 802
LA10 15x5 958 958 958 0 316
LA11 20x5 1222 1222 1222 0 495
LA12 20x5 1039 1039 1039 0 865
LA13 20x5 1150 1150 1150 0 1,061
LA14 20x5 1292 1292 1292 0 321
LA15 20x5 1207 1207 1207 0 5,578
LA16 10x10 945 945 945.79 .41 1,408,499
LA17 10x10 784 784 784 0 225,340
LA18 10x10 848 848 848.22 .97 719,109
LA19 10x10 842 842 853.79 5.16 2,174,830
LA20 10x10 902 902 908.11 1.92 2,042,142
LA21 15x10 1046 1046 1068.11 11.09 4,153,326
LA22 15x10 927 927 940.88 5.27 4,110,514
LA23 15x10 1032 1032 1032 0 68,246
LA24 15x10 935 937 958.79 11.66 4,188,613
LA25 15x10 977 977 993.50 8.39 3,738,814
LA26 20x10 1218 1218 1219.15 3.54 1,939,943
LA27 20x10 1235 1236 1263.83 8.38 6,812,466
LA28 20x10 1216 1216 1225.55 7.13 6,351,364
LA29 20x10 1152 1167 1201.88 15.60 5,972,694
LA30 20x10 1355 1355 1355 0 727,852
LA31 30x10 1784 1784 1784 0 37,799
LA32 30x10 1850 1850 1850 0 79,068
LA33 30x10 1719 1719 1719 0 26,238
LA34 30x10 1721 1721 1721 0 228,581
LA35 30x10 1888 1888 1888 0 105,840
LA36 15x15 1268 1274 1295.49 8.30 4,992,731
LA37 15x15 1397 1397 1429.24 14.32 5,517,937
LA38 15x15 1196 1204 1242.42 16.36 5,956,429
LA39 15x15 1233 1239 1258.61 11.85 6,011,274
LA40 15x15 1222 1224 1247.06 11.07 5,770,028

99

The most amazing fact about these results is that they were obtained using permutation

with repetition, a semi-active schedule building representation! This means their search

space was larger than the search space used by the JSP/PSO, but obtained much better

results. This is probably the result of a couple of differences between the two programs.

The main difference being the fact building schedules with permutation with repetition is

much faster than using a priority list and GT Algorithm. Therefore, Liu, Zhong, and Jiao

were able to perform many more iterations and function evaluations than I was using the

JSP/PSO. This can be seen when comparing the number of average function evaluations

in the above table with the number of average function evaluations from the JSP/PSO

tables, particularly the table representing the non-delay set. For example, the average

number of function evaluations it took for the JSP/PSO to solve the LA01 problem

optimally 15 times is 441.33, where it took [13] an average of 1,631 function evaluations.

A more drastic difference can be seen in the MT20 problem. The JSP/PSO never solved

this problem optimally in any of the three sets, however, in the non-delay set its Average

Makespan value came close to matching the same Average Makespan value of [13], but

its average function evaluations was only 19,007 compared to 3,106,852 of [13]. This is

a common occurrence through all three sets of results, that is, the fact that [13] had to

perform several million function evaluations to arrive at the optimal solution.

Unfortunately, it is very computationally expensive to perform a single function

evaluation using the GT Algorithm and a priority list. So it would take too long to

perform a million of them. This leads one to wonder how the JSP/PSO could fair if it

was faster and was allowed to run a ½ million function evaluations to optimize a

problem. I believe that if the JSP/PSO were a little faster then the results could have been

100

better. However, all is not lost here, because solutions were found and that indicates that

there the space division concept worked. It actually works well for small Job Shop

Problems whose solution lies in the set of non-delay schedules.

101

CHAPTER SEVEN

CONCLUSION

The proposed JSP/PSO Algorithm is capable of solving Job Shop Problems. This is

significant because of the way this optimization progressed, through the division of the

search space by the machines in the problem. As of this writing, I am not aware of any

other researcher taking this approach in the Job Shop Realm. This space division

technique shows that independent swarms or populations working toward a common goal

may not have to have knowledge of such a “group effort”. This may have been already

known in the meta-heuristic optimization community, but to my knowledge never applied

to the Job Shop Problem. Also, what I believe to be beneficial to the research community

is my research on the significance of searching parameterized active delay schedules, and

perhaps the complications that go along with indirect scheduling. Of course this search

space division has application to huge combinatorial problems such as the JSP, however,

what I consider a more important conclusion is the possibility of greater success of an

algorithm developed that uses the same search space division by machines, but does

facilitate information sharing between separate swarms or populations. It seems to me

that if the proposed JSP/PSO Algorithm can work to solve small to medium Job Shop

Problems, then a better algorithm that specifies a way of sharing information between

swarms could do much better. I would think that a Neural Network would have great

application here. I believe a neural network might be able to be trained to select specific

102

particles from each of the swarms that should come together to form a schedule, or

priority list, instead of the static linking that occurs in the JSP/PSO. In the following

sections the specific conclusions of lessons learned and things to do differently are

discussed, as this just important as things that worked well.

7.1 Lessons Learned

7.1.1 Significance of Delay Parameter Probably the most unexpected discovery during

my research was the criticalness of the delay parameter used by the GT Scheduling

Algorithm. Recall that this parameter effectively limited the amount of active schedules

in the search space. Early in my research, I thought that most optimal schedules would

lie far away from non-delay schedules, but I have concluded that I was wrong. It turns

out that many optimal schedules are non-delay schedules and those that aren’t non-delay

are “close” to it. It also turns out that the optimal non-delay schedules are the easiest to

find, as seen the results of my simulations. This delay parameter is critical and it isn’t

easy to determine before hand. When my searches were limited to a parameterized active

schedules not only did my program run faster, I also achieved better results. This is one

of many issues I have with the use of active schedule building. To build semi-active

schedules, this delay parameter isn’t an issue. And even though the search space is

increased significantly the solutions that result from strictly semi-active schedules are

usually so bad that the search quickly narrows to exclude them. I believe an interesting

area of research would be to develop a dynamic delay parameter that could easily adapt

itself to all different sizes of Job Shop Problems by extracting problem specific

information like average processing time for an operation.

103

7.1.2 GT Algorithm in General Another critical discovery I made through the course of

my research and simulation was the enormous computational time of the GT Algorithm.

As mentioned before the GT Algorithm looks ahead in time and uses priority lists to

make decisions, this required many programming loops. For problems of)1010(× or

bigger this was a big problem. Simulations took a large amounts of time, on the order of

tens of minutes. However, as stated previously, using the JSP/PSO normally didn’t

require the large number of function evaluations as other methods did such as

permutation with repetition. The JSP/PSO required less function evaluations, but they

took longer to perform. Thankfully, this complies with the “no free lunch” theorem.

Overall, I now believe that using the GT Algorithm to search only active schedules is not

worth the computational expense. At the beginning of my research using the algorithm

seemed like an obvious choice, but then I discovered the ease of searching simply in

semi-active schedule space, like permutation with repetition. This ease stems from the

actual simple code of such an algorithm and the incredible speed of running it compared

to the GT algorithm. There seem to be many success stories of algorithms that search

semi-active space, such as the multi-agent system in [13].

7.1.3 Priority List Representation Related to the drawback of the GT Algorithm is the

drawback of priority lists in general. I believe that attempting to optimize something

such as a priority list which indirectly affects the objective function is probably not the

best way to solve a JSP, or at least not the best way to use a meta-heuristic technique.

Just like how many different “permutation with repetition” instances will result in the

same schedule, many different priority lists will also result in the same schedule, making

104

hard for meta-heuristic optimization. Both permutation with repetition and priority lists

are examples of indirect scheduling, however at least permutation with repetition

schedules are much faster to build. Since many computational intelligence optimization

techniques rely on “survival of the fittest” principles, like selection pressure, having

changes in the genotype (the particle in this case) not directly affect the phenotype (the

schedule) does not work as well as it possibly could. In the case of the JSP there is a

whole other algorithm (the scheduling algorithm) that stands in the way of the particles

“output” and the resulting objective function. In many cases, two operations on a certain

machine in a resulting schedule will be in the opposite order how they appear on the

priority list. Some researchers have tried to fix this problem by using a technique known

as “forcing”. Fenton, P. and Walsh P. briefly review this concept, its purpose and

effectiveness in [6]. Basically, forcing is the manipulation of the genotype to more

accurately match the phenotype, or in this case the direct manipulation of the particles to

more accurately match the schedule that they produced. However, this technique is not

considered to help all that much in the JSP realm. It seems likely to me that using direct

scheduling, and thereby having to deal with infeasible solutions might be a better trade

off than using indirect scheduling and having a genotype/phenotype mismatch. For

future research in this area, this would be my number one change. Using direct

scheduling would also eliminate the use of the GT Algorithm, which would save on

computation time. Also, it is very possible that a significantly less computationally

expensive scheduling algorithm other than the GT Algorithm could be developed to be

used in conjunction with the standard priority list. This would be an easy modification

that might produce better results, but certainly improve computational expense.

105

7.1.4 Cycling PSO Constants The cycling of constants used during the Particle Swarm

Optimization process worked well, seemingly better than having them not cycled, and

definitely better than keeping them static. Although, there were no results presented as

evidence of such a claim, it seems that I should disclose my practice of doing so and

whether or not I believe it helped. One reason I believe this concept worked better

because of the huge combinatorial space that is being searched by the particles, and

regular non-linearity of it. Using the cycling C1, C1 and W constants allowed me to have

more control over my program, especially if I wanted to terminate the program early, or

keep it running more iterations. I don’t consider this a big finding, but work mentioning

for possible future study the PSO realm.

7.2 Final Thoughts

While no earth shattering discoveries were made, the results of my research do show

promise and possibility for future work. The proposed JSP/PSO Algorithm did solve Job

Shop Problems, and in some instances very quickly. To wrap up and be clear my specific

conclusions are presented in the bulleted list below.

• The Proposed Algorithm works fairly well and shows promise.

• The GT Algorithm is computationally too expensive to justify its use.

• It is computationally worth searching the set of non-delay and parameterized

active schedules.

• Cycling PSO constants works (granted, there was no proof of this, but feel

like I should state it nonetheless).

106

I have found, probably like many students and professors, hard to wrap up my research

and conclude with the results that I have. This is mainly due to the learning and better

grasp of the subject matter that seems to happen constantly while running simulations and

doing research. My situation is no exception to this. It is obvious that no incredible

discoveries were made, but many discoveries of what “doesn’t work so well” were made.

Through the course of my research I grew to have a much deeper understanding of and

respect for the Job Shop Problem. At first thought, it doesn’t seem like much more than a

big combinatorial problem, but after probing deeper, it is easy to get lost in it, especially

the different classifications of schedules and the different ways to search them. What’s

interesting about this problem is its history and stubbornness to remain difficult to solve

even with modern computing. I believe that there is a future area of research for the JSP

and the PSO Algorithm, this is only the beginning of the combination of the two. No

doubt the PSO Algorithm is strong and could be powerful against the JSP, and no doubt

that there might be better ways to conduct the space transformation needed to use PSO in

the JSP realm. Even more promising is the possible connection between the different

swarms for the different machines in the JSP/PSO. It seems natural to think that if the

optimization can work without some overall coordination, then it could work better with

it.

It looks like the production line managers and routing coordinators will have to wait a

little longer for a miraculous program that will dictate optimal schedules to them without

trouble, the JSP/PSO is good, but it’s not that good yet. It’s just a particle in the swarm

of meta-heuristic literature. Just like each particle in the JSP/PSO algorithm works

107

independently of the others and represents only part of the solution, but comes together

with others to construct a solution, individuals in the research arena each work

independently to complete the puzzle at hand one piece at a time. Hopefully, this work is

a piece of that puzzle, one particle among a swarm of ideas.

108

REFERENCES

[1] Bierwirth, C. A Generalized Permutation Approach to Job Shop Scheduling
with Genetic Algorithms. OR Spektrum, 17:87-92. 1995.

[2] Chang, Y. L, Sueyoshi, T. and Sullivan, R. S. Ranking Dispatching Rules by Data
Envelopment Analysis in a Job-Shop Environment, IIE Transactions, 28(8): 631-642.
1996.

[3] Davis, L., Job Shop Scheduling with Genetic Algorithms, Proceedings of the 1st
International Conference on Genetic Algorithms, Pittsburgh, PA, 136-140. 1985.

[4] Dimopoulos, C., Zalzala, A., Recent Developments in Evolutionary Computation for
Manufacturing Optimization: Problems, Solutions, and Comparisons, Transactions on
Evolutionary Computation, 4(2): 93-113. 2000.

[5] Eberhard, R.C., and Kennedy, J., A New Optimizer Using Particle Swarm Theory,
Proceedings. of the Sixth International Symposium on Micro Machine and Human
Science, Nagoya, Japan, 39-43. 1995.

[6] Fenton, P., Walsh, P., Improving the Performance of the Repeating Permutation
Representation Using Morphogenic Computation and Generalized Modified Order
Crossover, The 2005 IEEE Congress on Evolutionary Computation, 2: 1372-1379. 2005.

[7] Giffler, B. and Thompson, G.L. Algorithms for Solving Production Scheduling
Problems, Operations Research, 8(4): 487-503. 1960.

[8] Goncalves, J. F, Mendes, J.J, and Resende, M.C.G., A Hybrid Algorithm for the Job
Shop Scheduling Problem, AT&T Technical Labs Report TD-5EAL6J. 2002.

[9] Jackson, J. R., Scheduling a Production Line to Minimize Maximum Tardiness,
Research Report 43, Management Science Research Projects, University of California,
Los Angeles, USA. 1955.

[10] Jackson, J. R. Simulation Research on Job-Shop Production, Naval Research
Logistics Quarterly, 4: 287-295. 1957.

[11] Jain, A.S. and Meeran, S., A State-of-the-Art Review of Job-Shop Scheduling
Techniques, European Journal of Operations Research, 113: 390-434. 1999.

109

[12] Lian, Z., Gu, X., Jiao, B., A Similar Particle Swarm Optimization Algorithm for
Permutation Flowshop Scheduling to Minimize Makespan, Applied Mathematics and
Computation, 2005.

[13] Liu, J., Zhong, W., Jiao, L., A Multiagent Evolutionary Algorithm for Constraint
Satisfaction Problems. IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, 36: (1): 54-73.2006.

[14] Muth J.F., Thompson G.L., Industrial Scheduling, Englewood Cliffs, New Jersey,
Prentice Hall. 1963.

[15] Pang, W., Wang, K., Zhou, C., Dong, L., Liu, M., Zhang, H., Wang, J., Modified
Particle Swarm Optimization Based on Space Transformation for Solving Traveling
Salesman Problem. Proceedings of the Third International Conference on Machine
Learning and Cybernetics, Shanghai, 4: 26-29. 2004.

[16] Pirlot, M., General Local Search Methods, European Journal of Operational
Research, 92: 493-511. 1996.

[17] Rowe, A. J., Jackson, J. R., Research Problems in Production Routing and
Scheduling, Journal of Industrial Engineering., 7: 116-121. 1956.

[18] Smith, W. E., Various Optimizers for Single Stage Production, Naval Research
Logistics Quarterly, 3: 59-66. 1956.

[19] Song, M., Gu, G., Research on Particle Swarm Optimization: A Review,
Proceedings of the 2004 Iternational Conference on Machine Learning and Cybernetics,
4: 26-29. 2004.

[20] Lawrence, S., Resource Constrained Project Scheduling: An Experimental
Investigation of Heuristic Scheduling Techniques (Supplement), Graduate School Ind.
Adm.. Pittsburgh, PA, Carnegie Mellon Univ., 1984.

[21] Tasgetiren M. F., Yun-Chia Liang, Sevkli M., Gencyilmaz G., Particle Swarm
Optimization Algorithm for Makespan and Maximum Lateness Minimization in
Permutation Flowshop Problem, 4th International Symposium on Intelligent
Manufacturing Systems, Sakarya, Turkey, 431-441. 2004.

[22] Taşgetiren M. F., Sevkli M., Yun-Chia Liang, Gençyılmaz G., Particle Swarm
Optimization Algorithm for Single-machine Total Weighted Tardiness Problem,
Congress on Evolutionary Computation, Portland, OR, 2: 19-23. 2004.

[23] Wang, K., Huang, L., Zhou, C., Pang, W., Particle Swarm Optimization for
Traveling Salesman Problem. Proceedings of the Second International Conference on
Machine Learning and Cybernetics, 3: 2-5. 2003.

110

[24] Weijun, X., Zhiming, W., Wei, Z., and Genke, Y., A New Hybrid Optimization
Algorithm for the Job Shop Scheduling Problem. Proceeding of the 204 American
Control Conference. Boston, MA, 6: 5552-5557. 2004.

[25] Xia, W., Wu, Z., An Effective Hybrid Optimization Approach for Multi-Objective
Flexible Job-Shop Scheduling Problems. Computers and Industrial Engineering, 48: 409-
425. 2005.

VITA

Brian Patrick Ivers

Candidate for the Degree of

Master of Science

Thesis: JOB SHOP OPTIMIZATION THROUGH MULTIPLE INDEPENDENT
 PARTICLE SWARMS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born March 19, 1981 in Oklahoma City, Oklahoma. Son of Phil
and Michele Ivers.

Education: Graduated from Notre Dame High School, Cape Girardeau,

Missouri in May 1999. Attended 1 year of college at Southeast Missouri
State University, 1999 – 2000. Transferred to Oklahoma State
University in August 2000. Graduated with Bachelors degree in
Electrical Engineering Technology in December 2003. Completed
requirements for Master of Science Degree in Electrical Engineering at
Oklahoma State University in December 2006.

Experience: Employed as a Work Study student at the Oklahoma State

University Theater Department from August 2002 – January 2004.
Worked as a Teaching Assistant during the Spring Semester of 2004.
Interned at Noranda Aluminum in New Madrid Missouri, Summer 2005.
Employed as a Work Study Student at the ITLE Department at
Oklahoma State University, August 2005 – May 2006.

Name: Brian Patrick Ivers Date of Degree: December, 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: OPTIMIZATION THROUGH MULTIPLE INDEPENDENT

PARTICLE SWARMS

Pages in Study: 110 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: This study examines the optimization of the Job Shop

Scheduling Problem (JSP) by a search space division scheme and use of the meta-
heuristic method of Particle Swarm Optimization (PSO) to solve it. The Job Shop
Scheduling Problem (JSP) is a well known huge combinatorial problem from the
field of Deterministic Scheduling. It is considered the one of the hardest in the
class of NP-Hard problems. The objective is to optimally schedule a finite
number of operations to a finite number of resources while complying with
ordering constraints. The Particle Swarm Optimization Algorithm (PSO) is a new
meta-heuristic optimization method modeled after the behavior of a flock of birds
in flight. It initializes “particles’ in the search space of a particular problem
assigns them a velocity and position. They fly through the search space with out
direct control, but are given both a cognitive personal component and a global or
social component of the best positions (thereby solutions) in space. The PSO
algorithm is considered a very fast algorithm and is emerging as a widely studied
widely used algorithm for optimization problems. This study uses this meta-
heuristic to solve the JSP by assigning each machine in the problem an
independent swarm of particles.

Findings and Conclusions: It turns out that the PSO can be applied to successfully solve

many JSP problems. However, the success depends largely upon the type of
schedules being constructed. The idea of space division according to machine
shows promise indeed, but could benefit from a custom made scheduling
algorithm to accompany it.

ADVISER’S APPROVAL: Dr. Gary Yen

