
ACCURATE AND PRECISE NETWORK

PERFORMANCE TESTING

IN WINDOWS 2000

By

JOSEPH RYAN HERSHBERGER

Bachelor of Science in Electrical Engineering Technology

Oklahoma State University

Stillwater, Oklahoma

2003

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2005

ACCURATE AND PRECISE NETWORK

PERFORMANCE TESTING

IN WINDOWS 2000

 Thesis Approved:

Dr. Keith A. Teague

Thesis Adviser
Dr. George Scheets

Dr. Rao K. Yarlagadda

Dr. A. Gordon Emslie

Dean of the Graduate College

 ii

ACKNOWLEDGMENTS

Thanks are due to my fiancée, Rachel, for her patience, understanding, and

steadfast love during the crafting of this masterpiece. I also thank my parents, Art and

Londa Hershberger, for their continued encouragement and support.

I thank my advisor, Dr. Keith Teague, for his assistance and support. He has been

very good to me throughout my years here. I truly look up to him.

I thank Kellen Harwell for assisting with the Visio diagrams. I also thank the many

people who helped me make revisions.

I dedicate this in memory of my good friend Austin Beman Barker (1980 – 2005).

He loved spending time among God’s beautiful creations. His love for adventure

ultimately cost him the highest price. May he rest in peace and may the comfort of the

Holy Spirit be with his fiancée and his family.

 iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ..1

2. FUNDAMENTALS OF NETWORK PERFORMANCE ANALYSIS3

2.1. Measurements...3
2.2. Requirements..4
2.3. Timing Location...6

2.3.2. User Mode Application ...7
2.3.3. Protocol Driver..8
2.3.4. NIC Driver ..9
2.3.5. NIC Hardware ...11

2.4. Timing Methods ...12
2.4.1. Real-Time Clock ...12
2.4.2. Multimedia Timer ...13
2.4.3. Pentium Time Stamp Counter.......................................13
2.4.4. Performance Counter ..14
2.4.5. Dedicated Time and Frequency Processor....................15

2.5. Clock Synchronization ...16
2.5.1. NTP Synchronization ..16
2.5.2. Time Processor Calls in User-Mode17
2.5.3. Time Processor Calls in Kernel-Mode..........................21
2.5.4. Sub-Microsecond Synchronization22

3. RELATED WORK...23

3.1. Original Network Performance Test Application23
3.2. Measurements Using Clocks Not Synchronized with GPS24

3.2.1. Vern Paxson’s Work ...25
3.2.2. ICMP Based Profiling...26

3.3. Measurements Using Clocks Synchronized with GPS26
3.3.1. NTP Software Clock Synchronized with GPS..............26
3.3.2. Time Processor Card...27
3.3.3. DAG Based Measurements ...28
3.3.4. Other GPS Solutions ...29

4. BC637PCI DRIVER...31

 iv

4.1. Getting Started..32
4.2. Read Time ..33
4.3. Configuration ...35

5. WINPCAP ..37

5.1. Structure ...37
5.2. Capabilities...38
5.3. Modifications ...39

6. GENERIC SOCKET EMULATION CLASS ..43

6.1. Supported Protocols ...43
6.2. Establishing a Connection..44

6.2.1. Selecting a Device...44
6.2.2. Bind a Socket in Winsock...45
6.2.3. Create Packet Template...45

6.3. Listening for a Connection...46
6.3.1. Selecting a Device...46
6.3.2. Bind a Socket in Winsock...47
6.3.3. Receive an Association Packet......................................47
6.3.4. Create Packet Template...47
6.3.5. Reply with Verification Packet48

6.4. Sending Packets..48
6.4.1. Creating the Packet ...48
6.4.2. Send...49
6.4.3. SendDelayed ...49
6.4.4. Queue / SendQueue / GetQueueSentTimes50

6.5. Receiving Packets ..50

7. LOW BIT-RATE NETWORK JITTER AND LATENCY TESTER51

8. STATISTICAL ANALYSIS TOOLS ..55

8.1. Classical Statistics ..55
8.2. Robust Statistics ...55

8.2.1. Median ..56
8.2.2. Inter-Quartile Range ...56

8.3. Probability Density Function ...56

9. RESULTS...58

9.1. Final System...58
9.2. System Validation ..61

9.2.1. Timing-Location Error ..61
9.2.2. Network-Latency Scaling..71
9.2.3. Hardware Based Error...78

 v

10. EXAMPLE NETWORK TESTS..80

10.1. Broadband Networks..80
10.1.1. SBC Global Asynchronous Digital Subscriber Line

Internet Service Tests..81
10.1.2. Cox Cable Internet Service Tests..................................85

10.2. Wireless LANs ...88
10.2.1. Bluetooth Tests ...89
10.2.2. 802.11a Tests ..92
10.2.3. 802.11b Tests ..97
10.2.4. 802.11g Tests ..100
10.2.5. 802.11b NIC with 802.11g Access Point Tests...........104
10.2.6. 802.11g NIC with 802.11b Access Point Tests...........107

10.3. Cellular Data Networks..111
10.3.1. Windows XP Connection Sharing Tests112
10.3.2. Sprint CDMA 1xRTT Tests ..113
10.3.3. AT&T Wireless EDGE Tests......................................116

10.4. Concatenated Networks..119
10.4.1. EDGE and Cable Concatenated Tests.........................120
10.4.2. Bluetooth and Cable Concatenated Tests....................123

11. CONCLUSIONS ..127

11.1. System Performance...127
11.2. Future Work ...128

REFERENCES ..129

APPENDIXES ...132

APPENDIX A - INTRODUCTION TO NETWORKING133
A.1. Physical Layer...133
A.2. Data Link Layer ..134
A.3. Network Layer ..134
A.4. Transport Layer...135
A.5. Address Resolution Protocol.......................................136

APPENDIX B - INTRODUCTION TO ROUTING..138
B.1. Default Gateway..138
B.2. Network Address Translation138

APPENDIX C - INTRODUCTION TO WINDOWS DEVICE DRIVERS140
C.1. User Mode versus Kernel Mode140
C.2. Interrupt Request Level...140
C.3. I/O Control Operations..141
C.4. Direct-Call Interface..142

 vi

LIST OF TABLES

Page

Table 11.1 – System Error .. 127
Table A.1 – OSI Model Layers... 133
Table A.2 – Non-Routable IP Address Ranges .. 135

 vii

LIST OF FIGURES

Page

Figure 2.1 – MELP Stream Packetization... 5
Figure 2.2 – Available Timing Locations ... 7
Figure 2.3 – System Clock Correction using GPS.. 19
Figure 2.4 – System Clock Comparison ... 20
Figure 2.5 – Latency Computed from System Clock Comparison Test 21
Figure 7.1 – Test Parameters Dialog... 52
Figure 7.2 – Application Flow Chart .. 53
Figure 8.1 – A sample Histogram and its Associated Time Series................................... 57
Figure 9.1 – Layout of the Network Testing Application... 60
Figure 9.2 – System Validation Test Configuration ... 62
Figure 9.3 – 100Mb/s Dual-Processor Sourced NIC to Protocol Corrections.................. 63
Figure 9.4 – 100Mb/s Single-Processor Sourced NIC to Protocol Corrections 63
Figure 9.5 – 100Mb/s Dual-Processor Sourced Inter-Transmission Time 65
Figure 9.6 – 100Mb/s Single-Processor Sourced Inter-Transmission Time..................... 65
Figure 9.7 – 100Mb/s Dual-Processor Sourced Inter-Reception Time............................. 67
Figure 9.8 – 100Mb/s Single-Processor Sourced Inter-Reception Time 67
Figure 9.9 – 100Mb/s Dual-Processor Sourced Jitter ... 69
Figure 9.10 – 100Mb/s Single-Processor Sourced Jitter... 69
Figure 9.11 – 100Mb/s Dual-Processor Sourced Latency .. 70
Figure 9.12 – 100Mb/s Single-Processor Sourced Latency.. 70
Figure 9.13 – 10Mb/s Dual-Processor Sourced NIC to Protocol Corrections.................. 72
Figure 9.14 – 10Mb/s Single-Processor Sourced NIC to Protocol Corrections 72
Figure 9.15 – 10Mb/s Dual-Processor Sourced Inter-Transmission Times...................... 73
Figure 9.16 – 10Mb/s Single-Processor Sourced Inter-Transmission Times 73
Figure 9.17 – 10Mb/s Dual-Processor Sourced Inter-Reception Times 74
Figure 9.18 – 10Mb/s Single-Processor Sourced Inter-Reception Times......................... 74
Figure 9.19 – 10Mb/s Dual-Processor Sourced Jitter ... 75
Figure 9.20 – 10Mb/s Single-Processor Sourced Jitter... 75
Figure 9.21 – 10Mb/s Dual-Processor Sourced Latency .. 76
Figure 9.22 – 10Mb/s Single-Processor Sourced Latency.. 76
Figure 9.23 – Packet Clustering by the NIC... 79
Figure 10.1 – DSL Broadband Test Configuration... 81
Figure 10.2 – EDU to DSL Jitter (Downstream) .. 82
Figure 10.3 – EDU to DSL Latency (Downstream) ... 82
Figure 10.4 – DSL to EDU Jitter (Upstream) ... 83

 viii

Figure 10.5 – DSL to EDU Latency (Upstream) .. 83
Figure 10.6 – DSL to EDU Jitter (Upstream) – Alternative Test 84
Figure 10.7 – DSL to EDU Latency (Upstream) – Alternative Test 84
Figure 10.8 – Cable Broadband Test Configuration... 85
Figure 10.9 – EDU to CABLE Jitter (Downstream)... 86
Figure 10.10 – EDU to CABLE Latency (Downstream).. 86
Figure 10.11 – CABLE to EDU Jitter (Upstream) ... 87
Figure 10.12 – CABLE to EDU Latency (Upstream)... 87
Figure 10.13 – Bluetooth Test Configuration ... 89
Figure 10.14 – Bluetooth Access Point to NIC Jitter.. 90
Figure 10.15 – Bluetooth Access Point to NIC Latency... 90
Figure 10.16 – Bluetooth NIC to Access Point Jitter.. 91
Figure 10.17 – Bluetooth NIC to Access Point Latency... 91
Figure 10.18 – 802.11a Test Configuration .. 93
Figure 10.19 – 802.11a Access Point to NIC Jitter... 94
Figure 10.20 – 802.11a Access Point to NIC Latency.. 94
Figure 10.21 – 802.11a NIC to Access Point Jitter... 95
Figure 10.22 – 802.11a NIC to Access Point Latency.. 95
Figure 10.23 – 802.11b Test Configuration.. 97
Figure 10.24 – 802.11b Access Point to NIC Jitter .. 98
Figure 10.25 – 802.11b Access Point to NIC Latency ... 98
Figure 10.26 – 802.11b NIC to Access Point Jitter .. 99
Figure 10.27 – 802.11b NIC to Access Point Latency ... 99
Figure 10.28 – 802.11g Test Configuration.. 101
Figure 10.29 – 802.11g Access Point to NIC Jitter .. 102
Figure 10.30 – 802.11g Access Point to NIC Latency ... 102
Figure 10.31 – 802.11g NIC to Access Point Jitter .. 103
Figure 10.32 – 802.11g NIC to Access Point Latency ... 103
Figure 10.33 – 802.11b NIC and 802.11g Access Point Test Configuration 104
Figure 10.34 – 802.11g Access Point to 802.11b NIC Jitter .. 105
Figure 10.35 – 802.11g Access Point to 802.11b NIC Latency 105
Figure 10.36 – 802.11b NIC to 802.11g Access Point Jitter .. 106
Figure 10.37 – 802.11b NIC to 802.11g Access Point Latency 106
Figure 10.38 – 802.11g NIC and 802.11b Access Point Test Configuration 108
Figure 10.39 – 802.11b Access Point to 802.11g NIC Jitter .. 109
Figure 10.40 – 802.11b Access Point to 802.11g NIC Latency 109
Figure 10.41 – 802.11g NIC to 802.11b Access Point Jitter .. 110
Figure 10.42 – 802.11g NIC to 802.11b Access Point Latency 110
Figure 10.43 – Connection Sharing Test Configuration... 112
Figure 10.44 – CDMA Test Configuration... 113
Figure 10.45 – CDMA to EDU Jitter (Upstream)... 114
Figure 10.46 – CDMA to EDU Latency (Upstream).. 114
Figure 10.47 – EDU to CDMA Jitter (Downstream).. 115
Figure 10.48 – EDU to CDMA Latency (Downstream)... 115
Figure 10.49 – EDGE Test Configuration .. 116
Figure 10.50 – EDGE to EDU Jitter (Upstream).. 117

 ix

Figure 10.51 – EDGE to EDU Latency (Upstream) ... 117
Figure 10.52 – EDU to EDGE Jitter (Downstream) ... 118
Figure 10.53 – EDU to EDGE Latency (Downstream) .. 118
Figure 10.54 – EDGE and Cable Concatenated Test Configuration 120
Figure 10.55 – CABLE to EDGE Jitter .. 121
Figure 10.56 – CABLE to EDGE Latency ... 121
Figure 10.57 – EDGE to CABLE Jitter .. 122
Figure 10.58 – EDGE to CABLE Latency ... 122
Figure 10.59 – Bluetooth and Cable Concatenated Test Configuration 123
Figure 10.60 – Bluetooth to CABLE to EDU Jitter (Upstream)..................................... 124
Figure 10.61 – Bluetooth to CABLE to EDU Latency (Upstream)................................ 124
Figure 10.62 – EDU to CABLE to Bluetooth Jitter (Downstream)................................ 125
Figure 10.63 – EDU to CABLE to Bluetooth Latency (Downstream)........................... 125
Figure B.1 – Network Address Translation .. 139

 x

LIST OF ACRONYMS

ACPI Advanced Configuration and Power Interface

ADSL Asynchronous Digital Subscriber Line

API Application Programming Interface

ARP Address Resolution Protocol

CDMA Code Division Multiple Access

DHCP Dynamic Host Configuration Protocol

FEC Forward Error Correction

GPS Global Positioning System

HPET High Precision Even Timer

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IP Internet Protocol

IOCTL I/O Control

IQR Inter-Quartile Range

IRP I/O Request Packet

IRQL Interrupt Request Level

ISR Interrupt Service Routine

LAN Local Area Network

 xi

MAC Medium Access Control

MELP Mixed Excitation Linear Prediction

NAT Network Address Translation

NDIS Network Driver Interface Specification

NIC Network Interface Card

NTP Network Time Protocol

OOB Out Of Band

OSI Open Systems Interconnection

PIC Programmable Interrupt Controller

PIT Programmable Interval Timer

PMT Power Management Timer

PPM Part Per Million

PPS Pulse Per Second

RTP Real-time Transport Protocol

RTT Round Trip Time

SMP Symmetric Multi Processing

TCP Transmission Control Protocol

UDP User Datagram Protocol

UTC Coordinated Universal Time

VoIP Voice over Internet Protocol

VPN Virtual Private Network

WAN Wide Area Network

WDM Windows Driver Model

 xii

CHAPTER 1

INTRODUCTION

Network performance greatly affects most applications that use a network to

transport data of some type. How much an application is affected is largely dependent

upon the type of data being sent and how closely the end user interacts with the data.

Accurately and precisely measuring different metrics for network performance can give

the network application developers valuable information to minimize the effects of the

network.

Measuring network performance, while valuable, can be costly. The most accurate

and precise methods to measure network performance require the use of specialized,

dedicated hardware. A hardware solution is not only expensive, it is also less versatile

than a software solution. With this in mind, it is both more cost-effective and practical to

design a software network performance analyzer with sufficient accuracy and precision

that will run on a standard Windows 2000 or Windows XP based personal computer with

only moderate hardware support. Because the application runs in this operating system

environment, testing a particular configuration will not require the installation of a new

operating system and subsequently bypasses the necessity to install any software support

that hardware in the new operating system might require.

 1

The application of interest in this case is low bit-rate Voice-over-IP

communication, specifically Mixed Excitation Linear Prediction (MELP), which is a

2400 bit-per-second voice coder. The goal of this study is to create a system that will

emulate the traffic of the application and accurately measure how that traffic is affected

by the network. Some of the typical metrics such as throughput and round-trip time are

either not important or do not apply and will therefore not be discussed. There are two

metrics that are specifically of interest: jitter and latency. These are discussed further in

Chapter 2.

Chapter 2 will discuss what measurements are important in this study as well as

some of the fundamental options available when measuring network performance such as

where the timestamp code can be implemented, what clock sources are available, and

what synchronization options are available. Chapter 3 will review some of the related

work discussed in literature and discuss some of the approaches taken in the past. The

next five chapters will detail the development of the system used to perform the network

tests. Chapter 9 discusses the resulting system and validates its design. In Chapter 10,

the results of some network performance tests are analyzed and finally, in Chapter 11,

some conclusions are made and future work is addressed.

 2

CHAPTER 2

FUNDAMENTALS OF NETWORK PERFORMANCE ANALYSIS

Network performance analysis can take many forms. This is because there are

several different factors of network performance that affect each different type of

network application. Some of the performance metrics that can be measured include

bandwidth, end-to-end latency, jitter, packet loss, and out-of-order packets (often caused

by multi-path routing). A framework for IP Performance Metrics is given in RFC 2330

[34].

2.1. Measurements

In the case of streaming low bit-rate audio, the two primary performance measures

of interest are jitter and end-to-end latency. Jitter is defined by the RTP standard [37]

and by RFC 3393 [14], which also refers to jitter as delay variation, to be the difference

between the end-to-end latencies of two consecutive packets. End-to-end latency,

referred to as one-way delay in RFC 2679, is defined to be the time difference between

the moment the first bit of a packet is transmitted to the moment the last bit is received

[7]. The reason end-to-end latency is considered only secondary is that it does not have

an adverse effect on the application’s ability to effectively deal with the network

conditions.

 3

The minimum end-to-end latency for a network path caused by the propagation

through each link and processing by each router sets a baseline for the perceived round

trip time for a conversation that the user experiences. Jitter, on the other hand, refers to

the random increases in the end-to-end latency on top of the baseline. It is typically

caused by queuing delays in routers along the path due to competing traffic.

A typical Voice-over-IP application implements a jitter buffer on its receiving side

to smooth the stream of audio frames before they are played. Understanding the jitter

characteristics of different networks is important in order to optimize the design of the

jitter buffer in a Voice-over-IP application. If the buffer is too large, the round-trip time

that the user perceives is higher, causing the user experience to seem more like a 2-way

radio conversation than a face-to-face conversation. If too small, buffer starvation occurs

and gaps in audio playback will severely reduce audio quality. These parameters can

vary with network conditions during a conversation. Ideally, the jitter buffer should be

designed to adapt to network conditions as they change [35].

2.2. Requirements

Useful measurement of jitter requires the measurements to be made as close to the

wire as possible for reasons described in Section 2.3 in addition to a precise clock. Only

the clock’s precision is important for this measurement, and not its accuracy, because it is

based on a difference of times, and any offset will cancel. This is required on both ends

of the test because the two differences are compared by the jitter calculation. The end-to-

end measurements have the added requirement that both clocks must be accurate

 4

(synchronized). In addition to measurements, it is also necessary to generate traffic that

closely resembles a system of interest. In this case, we are interested in the network’s

ability to support low bit-rate speech traffic. This means that the traffic generated should

closely resemble a Mixed Excitation Linear Prediction (MELP) audio stream. The

MELP audio codec generates a 7-byte frame of data for every 22.5ms of speech data.

These frames are typically sent between two and five at a time in a UDP packet. This

number of frames per packet is referred to as the bundling factor. For all of the tests

conducted in this study, a bundling factor of two will be used. This means that the data

source should generate a 56-byte UDP packet comprised of 42 bytes of Ethernet/IP/UDP

headers and 14 bytes of MELP data every 45ms as shown in Figure 2.1. The minimum

frame size for Ethernet is 64 bytes, which includes a frame-check sequence. This means

that the frames will also include 4 bytes of padding, which is completely wasted

bandwidth. It is clear that this is not very efficient, but sending more frames per packet

would increase the perceived delay.

MELP Stream

Network Stream

7 7 7 7 7 7

7

7

ETH

IP

UDP

7

7

ETH

IP

UDP

7

7

ETH

IP

UDP

0 22.5 45 67.5 90 112.5Time (ms)

Figure 2.1 – MELP Stream Packetization

 5

2.3. Timing Location

The location at which the measurements are taken is very important. The notion of

wire-time is defined in RFC 2330 [34] as the time the packet is transmitted or received on

the network in contrast with the host-time which is the time that the timestamp is

generated. In RFC 2679 [7] the difference between host-time and wire-time is defined to

be comprised of a systematic error and a random error. The farther away from the

Ethernet hardware the measurements are taken, the more the systematic and random error

will be added. High system utilization can greatly amplify the random error in Windows

2000/XP because they are not real-time operating systems. A real-time operating system

gives the guarantee that the program flow is deterministic (to some degree) thereby

eliminating a majority of the random timing errors that are location-related. Not only do

the number and priorities of other running processes affect the random error, but also the

frequency and processing time of hardware and software interrupts. There are at least

four locations where packets can be timestamped: a user-mode application, a protocol

driver, a NIC driver, or in the NIC hardware as shown in Figure 2.2.

 6

Context Switch Required

User Mode

Kernel Mode

Network Test
Application

Windows Sockets
Emulator

Windows Sockets
Emulator

Network Protocol
Drivers

Transport Driver Interface

NIC DriverNDIS

Network Card

Figure 2.2 – Available Timing Locations

2.3.2. User Mode Application

The least desirable place to take measurements is in the user mode application after

waiting to send or receive a packet through the Windows socket interface. The packet is

queued and processed for an unknown length of time by Winsock, the protocol drivers,

 7

the NIC driver, and the NIC itself in addition to the context switch required to change to

kernel mode. When sending, these delays not only affect the measurement, but also the

traffic generation.

2.3.3. Protocol Driver

A protocol driver sits just above the NIC driver and implements a network protocol

such as TCP or UDP. Timestamping packets in a protocol driver eliminates the context

switching and queuing associated with transferring data and control from kernel-mode to

user-mode. This reduces both the systematic error and the random error.

Unfortunately, when working with the kernel, there is typically not source code

available for a particular driver, so customizing it is not feasible. The only way to get

packet timestamps for IP packets from an unmodified protocol driver is through the IP

header option for timestamps. This timing is done by the IP protocol driver using an

unknown, implementation-specific clock. As such, it is not possible to synchronize it

with a reference clock except to assume it is based on the system clock and synchronize

that. The time format used is a 32-bit field that represents the number of microseconds

since midnight UTC.

There is an open source project known as WinPcap [6, 13, 36] which is

implemented partly as a protocol driver. WinPcap provides the framework for accessing

the packets while they are still in the kernel. It also provides a mechanism to return

 8

timestamps with the packets as they are received. Even if the timestamps were not

applied to the packets in WinPcap directly, its interface would be required to return the

timestamps since that is not possible through the Winsock interface.

2.3.4. NIC Driver

The NIC driver directly controls the NIC hardware and is notified with an interrupt

when a packet is sent or received by the NIC. The effects of the operating system on the

timing measurements are quite low in the NIC driver because context switching and

Network Driver Interface Specification (NDIS) queuing are eliminated. Some NICs, in

an effort to more efficiently communicate with the system by reducing the interrupt

frequency, will buffer multiple packets in hardware before interrupting and transferring

them to the host. This is another source of random error that can be introduced into the

measurements.

The NDIS includes a mechanism for passing additional information, referred to as

out-of-band (OOB) data, to higher level drivers. This OOB data includes the time a

packet was sent or received, formatted as the number of hundreds of nanoseconds since

midnight January 1st 1601. The existence of this mechanism means that the information

could be retrieved in the WinPcap protocol driver and passed on to the user mode,

allowing measurements that are closer to the wire. Unfortunately, the generation of this

information is optional and we have been unable to find any reference to any driver for

any NIC which does generate it. Without detailed hardware specifications of any

 9

particular NIC, writing a replacement driver that includes this functionality is infeasible.

Even with that detailed information it would be impractical.

The Microsoft Windows 2000 DDK [4] ships with a sample NDIS driver for the

Intel EtherExpress Pro/100+. Having device driver source code for a NIC that is fully

functional makes it possible to add small pieces of code without having to either know or

have access to the detailed hardware specifications for the NIC. The driver was modified

in two ways to provide timestamps that are based on the Pentium Time Stamp Counter

(chosen because if its extremely low call overhead). Within the interrupt service routine

(ISR) for the NIC, a timestamp value is read from the Pentium Time Stamp Counter.

This timestamp is stored until the type of interrupt is determined. If determined to be a

receive interrupt, then the raw timer value is stored in the OOB data. The protocol driver

can then check for the timestamp in the OOB data and, if present, read the Pentium Time

Stamp Counter again to compute the time that passed. If determined to be a

transmission-completion interrupt, the protocol driver will have generated a raw

timestamp made at the time that it generated its primary timestamp for the packet and

stored the timestamp in the OOB data. The timestamp generated in the ISR is subtracted

from the timestamp already in the OOB data and the result stored in its place. These

timestamps can then be used to adjust the primary timestamps to reflect a time that is

closer to the wire-time. This is discussed further in Chapter 5.

 10

2.3.5. NIC Hardware

The ideal method of timestamping packets is using a hardware clock on the NIC

that timestamps the packets as they arrive. This eliminates all operating system effects

and measures the wire-time exactly. Unfortunately, most NICs do not have this

capability and most often, one of the previous methods will need to be employed.

Another possibility is to use devices such as the cards produced by Endace called

DAG cards [10, 22]. These cards provide a hardware clock and timestamp the packet at

the very beginning of its reception. Donnelly et al. [15] use this card to measure the

systematic and random delay errors of the RIPE NCC software-based measurement

system [40]. The cards are capable of being synchronized to several different time

sources including GPS or CDMA.

The CDMA signal provides a time signal nearly as accurate (within approximately

5µs) as GPS (within approximately 100ns) and does not require the clear view of the sky

that GPS does [1]. One limitation of these cards is that they only provide the ability to

receive packets, not transmit them. Another solution would still be needed to transmit the

packets, though a host using this card could passively monitor the traffic as it is

transmitted. We have been unable to acquire one these cards to compare its performance

with other methods and it is left as future work, though based on the design, it should be

superior to all other methods described here.

 11

2.4. Timing Methods

In a Windows environment it is difficult to get accurate and precise time sources.

There are several time sources natively available in Windows, but because Windows is

not a real-time operating system, no one of them performs well enough to be useful in the

tests. To be at all useful in this study, a clock that is precise to approximately 100µs is

needed. To truly be able to see the fine-grained jitter, a timer with a 1µs resolution is

required. In addition, the clock needs to be synchronized to UTC for end-to-end latency

measurements.

2.4.1. Real-Time Clock

The real-time clock, first added to the IBM-AT architecture in 1984, is relatively

accurate, however long-term drift can occur due to an uncontrolled oscillator. It is not a

good tool for precise, short-term measurements because it is only updated once every 10

to 15ms. It is accessed through calls to GetSystemTime() or GetTickCount().

Another interface available in the kernel is KeQueryInterruptTime(). In

Windows 2000, KeQueryInterruptTime() has a resolution of 15.625ms (the same

resolution as GetTicks()), but in Windows XP the resolution is 976.6 µs. It is

implemented as simply a memory read from a periodically updated location, so call

overhead is negligible (~8 cycles). This resolution is still not high enough to be useful.

 12

2.4.2. Multimedia Timer

The multimedia timer that is available in Windows is typically capable of

resolutions between 1 millisecond and 1,000 seconds. This timer is typically used for

timing in MIDI sequencers. This timer does not provide measurements with high enough

resolution to be useful. In addition, setting the resolution to 1ms will degrade system

performance. It is accessed through calls to timeGetTime(). This function is part of

the Windows Multimedia API which is not available in the kernel, making it of limited

usefulness anyway.

2.4.3. Pentium Time Stamp Counter

The Pentium Time Stamp Counter is a 64-bit internal counter register in the

processor. It counts at the speed of the processor. This means that on modern machines

the resolution of these timers is very good (less than 1ns). Unfortunately, modern

processors also have features such as throttling of the processor speed to reduce heat and

power consumption. These large, numerous changes in frequency make the time stamp

counter unreliable on some machines and therefore useless for timing. With this feature

disabled, the speed of the processor is observed to provide long-term accuracy (less than

0.1 PPM) [29]. It is very efficient to call; only approximately 15 cycles are required.

The time stamp counter is accessed through the rdtsc assembly instruction. In some

cases is it accessible through the performance counter API as discussed in Section 2.4.4.

 13

Attila Pàsztor and Darryl Veitch [29] make use of the Pentium Time Stamp

Counter to make a more accurate system clock in Linux, BSD, and RT-Linux. They

synchronize the clock using NTP, but focus on making a rate-stable clock as opposed to

the “ntpd” which attempts to stabilize the offset. This could be a good approach, but

their system was designed to run in a UNIX environment, so testing this method in

Windows is left as future work.

2.4.4. Performance Counter

The Performance Counter is typically a hardware counter in the chipset of the

computer. It is accessed through calls to QueryPerformanceCounter(), though it

can be implemented in different ways[2]. Two common counters that are accessed

through this API are the Programmable Interval Timer (PIT) provided by the 8254

Programmable Interrupt Controller (PIC), and the Power Management Timer (PMT) that

is part of the Advanced Configuration and Power Interface (ACPI). The PIT was

introduced in the IBM PC in 1981 and uses a 1,193,182Hz source, but the measurement

of the call overhead is not available because the PIT is only used on Pentium class and

older machines. The PMT uses a 3,579,545Hz source and has an approximate call

overhead of 600ns.

Another timer included as part of some new PC chipsets is called the High

Precision Even Timer (HPET). This timer specification was jointly developed by

Microsoft and Intel. It is specified to have source clock of at least 10MHz[2] but in

 14

practice, it is using a 14,318,180Hz clock [3]. We currently have no motherboard that

includes the HPET, but Microsoft Test Engineers found a 61% performance increase in

calls to KeQueryPerformanceCounter() [2].

In a Symmetric Multiprocessing Machine (SMP) the Performance Counter is

implemented with the Pentium Time Stamp Counter, so it will have similar performance

and slightly more overhead because it is accessed through the API.

2.4.5. Dedicated Time and Frequency Processor

A dedicated time and frequency processor, in this case the Symmetricom

BC637PCI card, provides both accurate and precise timing over long time periods. The

software provided with the card is written to allow access to the card only from User-

Mode, so eventually it was necessary to write a device driver for it that allowed access to

other drivers in the kernel, as discussed in the next chapter. It uses a 10 MHz master

clock and therefore has a resolution of 100ns. It is accurate to less than 2 µs when

synchronized to a GPS receiver and accurate to less than 5 µs when synchronized to other

equipment via the IRIG-B time-signaling protocol. The overhead required to access the

card is relatively high, about 1.3 µs, because it requires a bus access.

 15

2.5. Clock Synchronization

Clock synchronization is required to compute latency. Because latency is the time

it takes a packet to travel from one computer to another, it must be possible to read from

synchronized clocks on the two computers.

2.5.1. NTP Synchronization

The Network Time Protocol (NTP) is widely used on the Internet to synchronize

clocks to the atomic time standard [24]. The protocol utilizes a tiered approach to

synchronize clocks. The servers that are synchronized either directly to a Cesium clock

or to a GPS receiver are referred to at Stratum 1 servers. Stratum 2 servers are

synchronized to Stratum 1 servers and so on. The typical end device will connect to a

Stratum 2 server or higher, so as not to overload the primary servers.

NTP is used for synchronization of clocks on a large time scale such as minutes or

even days [31]. It makes use of changes at small time scales to provide the

synchronization at larger time scales. This means that NTP will actually make the clock

less reliable on a small time scale due to its adjustments and is clearly not an appropriate

technology for synchronization in this application.

The NTP implementation that is built into the Windows “net time” application

is only intended to keep the time synchronized to within a few minutes. This level of

synchronization is needed by the default authentication protocol (MIT Kerberos version

 16

5) for Windows 2000. Another option that comes with Windows 2000 is the

“W32Time” service [23] which is a fully compliant SNTP client [25] with about the

same synchronization target.

The “ntpd” operating system daemon can potentially achieve synchronization to

within a few milliseconds in ideal conditions, but in the networks of interest in this study

its actual performance is rarely better than hundreds of milliseconds.

Another implementation of NTP by Darryl Veitch et al. [41] makes use of the

Pentium Time Stamp Counter and the timestamping of NTP server packets and focuses

on rate synchronization and offset synchronization as separate problems. Assuming a

symmetric low-latency connection to a nearby NTP server, they were able to get

synchronization results of within 30µs and a rate of within 0.02 PPM. Even better offset

results (within 1µs with rate stability of 0.1 PPM) were achieved when using a Real-Time

operating system (RT-Linux) [29].

2.5.2. Time Processor Calls in User-Mode

The time synchronization issue is can be handled in hardware, instead of software,

if a dedicated time processing card, such as the Symmetricom BC637PCI is used. The

card can be synchronized to sources such as GPS, IRIG-B, IEEE-1344, or Pulse per

Second (PPS) signals independently of the software. Timestamps can then be directly

read from registers on the card. Due to the fact that the factory-supplied software does

 17

not provide access to the time processor card from within the kernel, an attempt was

made to relate system times that were measured in the kernel with those measured in

user-mode. The performance counter was synchronized to the system clock in user-mode

[27] to give a high resolution version of the system clock in user-mode. Plots of both the

kernel-mode system time and the user mode system time proved to be for the most part

linear. The user-mode clock was compared with the time processor’s clock and found to

be nearly linear, so it was assumed that the system clock was simply not running at quite

the correct frequency. To correct this using the time processor, a process was designed in

which two readings were taken in user mode of both the system clock and the time

processor’s clock: once at the beginning of the test and once at the end shown as events

“x” and “y” in Figure 2.3. This approach is similar to that taken by J. Curtis et al. [12]

with the exception that they made a comparison reading every second. These two points

were used to calculate a frequency error and an offset error for the system clock with

respect to the time processor’s clock by solving a linear system of equations. After the

test was over, all of the packet times were converted to times corresponding to the time

processor’s clock.

 18

Figure 2.3 – System Clock Correction using GPS

The results of these tests were poor. The latency measurements drifted and

sometimes became negative. It was clear that there was a serious problem with one of

the clocks which caused the drift in the measurements. Because of the drift, this method

was not acceptable and it became necessary to write a replacement driver for the time

processor card to allow access to the time processor’s clock from within the kernel as

well as in user-mode.

Using this new driver, it was possible to fully investigate the problem with the

original algorithm. In one case, shown in Figure 2.4, the user-mode system clock is seen

to be drifting away from the kernel-mode system clock at approximately 1 µs/s (an error

of 1 PPM). Given the nature of the measurements being taken, this is significant. Figure

2.5 shows the latency computed by this method for a test run on a LAN. It is clear that

the latency is not reasonable due to its steady increase. The rate of increase is based upon

the clock synchronization errors on both machines involved in the test. It was later

 19

discovered in the WinPcap protocol driver source code that the kernel-mode system clock

is not actually synchronized to the system clock, but is only initialized by the system

clock and is free-running from then on.

0 100 200 300 400 500 600
-12

-10

-8

-6

-4

-2

0

2
x 10-4

Time (s)

D
ev

ia
tio

n
fro

m
 G

P
S

 (s
)

Kernel-mode System Clock
User-mode System Clock

Figure 2.4 – System Clock Comparison

 20

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time (s)

La
te

nc
y

(s
)

Figure 2.5 – Latency Computed from System Clock Comparison Test

2.5.3. Time Processor Calls in Kernel-Mode

After a new driver for the time processor card was developed, it was used in the

kernel to directly measure the timing of the packet transmission and reception. Because

the time stamps are taken directly from the time processor cards and the time processors

are synchronized with one another, the time stamps are absolute (to within 2 µs) and can

be directly compared.

 21

2.5.4. Sub-Microsecond Synchronization

If the time processors are in close proximity, then it is possible to synchronize the

cards to within 100 nanoseconds. The BC637PCI card is equipped with an external event

pin and a register for adjusting for propagation delay. The register allows for correction

when using the IRIG-B time code bus between two Time Processors. To compute the

offset required for use in the propagation delay register, a pulse is generated external to

the two cards and routed through two equal length wires to the external event pins on the

cards. The event time registers are then read and compared. Because the event registers

should represent the same event and refer to the same moment in time, the difference

between the values should be used as the correction factor. In testing this method, it was

found that after setting the propagation delay register, the event times matched to within

100 nanoseconds for all subsequent events.

 22

CHAPTER 3

RELATED WORK

Researchers have focused on measuring many different aspects of Internet

dynamics and performance and have taken different approaches at measuring them.

Thomas Chen et al. review a majority of the different approaches for both active and

passive performance measurement [8]. In all of the studies of network performance,

some form of timestamping was required, though the choices varied greatly based on

required accuracy, deployment capability, and cost.

3.1. Original Network Performance Test Application

It was initially developed by a senior design II team in the school of Electrical and

Computer Engineering department at Oklahoma State University and was called Network

Performance Application (NetPerf). It has a Winsock network interface with user-mode

timing. The timing relied on NTP to synchronize the system clock which was then

queried via the GetSystemTimeAsFileTime() API. An attempt was made to

improve the resolution by making a call to QueryPerformanceCounter() when a

timestamp was needed but nothing was done to synchronize those calls with the system

clock. This means that the original system had large errors due to time measurements

being so far from the wire in addition to the poor clock being used to generate the

timestamps. What little statistical analysis it had was poorly documented. It was

 23

frequently hacked by others in an attempt to correct errors, even though they did not

understand how it was initially intended to work. The user interface was very simplistic

and utilitarian. Many variables were uninitialized leaving unfriendly default values when

requesting user input. The “Connection Parameters” dialog would discard values after

they were stored in the primary application, which meant that if a user needed to return to

the dialog to change one setting, it would be necessary to reenter all of the parameters for

the test. The tests were limited to only being able to send data from the machine that

originated the connection. When a test actually begins, the parameters of the test are sent

to the server, but in the original application, only integers were used to send data that

included the packet send rate (a floating point variable) so the value was truncated to its

integer part. This was not significant, however, because as stated earlier the server was

incapable of transmitting. This test system demonstrated a naïve approach to network

performance testing that was prone to significant errors as well as being unpredictable.

This system aims to greatly improve the accuracy of the measurements made such that

detailed information about the networks being tested is visible.

3.2. Measurements Using Clocks Not Synchronized with GPS

Clocks not synchronized with GPS are easy to deploy and are typically relatively

low cost. Unfortunately, these clocks suffer from poor accuracy and cause lots of extra

post-processing work to compensate for that poor accuracy.

 24

3.2.1. Vern Paxson’s Work

Vern Paxson performed two experiments: one at the end of 1994 and one at the end

of 1995. The two experiments involved 35 different sites running his measurement

daemon. His PhD dissertation [31] discusses, in great detail, all aspects of his Internet

measurement experiments. He used TCP bulk transfers of 100 kilobyte files for traffic.

At the end of these 20,800 tests, he analyzed properties such as the route asymmetries,

bottleneck bandwidths, TCP implementation problems, packet loss patterns, and much

more. His measurement daemon uses libpcap [18] as the interface to the packet filter

on many different architectures running UNIX or BSD operating systems. This means

that the clock available for each measurement is of questionable quality. He later

attempted to improve the quality of the measurements by removing timing artifacts from

the data [32]. His work was followed by Sue Moon, et al. who approached the problem

as a linear program [26] and subsequently by Li Zhang, et al. who took a convex hull

approach [42].

The design of Paxson’s system is focused on deploying software test daemons to

many volunteer sites around the Internet. All of the supporting test sites provide a

machine on which to run the test software. These machines consist of a wide variety of

hardware architectures and operating systems, and as such, the software must be flexible

and able to function well on a large variety of configurations. Because of this, no

specialized hardware can be used to provide superior timestamping capability.

 25

3.2.2. ICMP Based Profiling

The most common form of simple network test is to measure the Round Trip Time

(RTT) using an ICMP ping packet. This approach was modified by Kimberly Claffy et

al. [9] to make use of ICMP Timestamp Request packets. This allowed them to measure

the end-to-end latency for both the outgoing and incoming path without requiring the

deployment of dedicated hosts or daemons. Naturally, the clocks used to make the

remote timestamps were completely unknown and most likely unsynchronized and, as

such, suffered from the same accuracy issues addressed by Paxson et al.

3.3. Measurements Using Clocks Synchronized with GPS

A clock synchronized with GPS has the obvious advantage of being accurate, but

most GPS solutions are expensive, not readily available, and require rooftop antenna

installation. For widely deployed test systems, antenna installation often eliminates GPS

as an option.

3.3.1. NTP Software Clock Synchronized with GPS

The RIPE Internet delay measurement project [40] was conducted at many ISPs in

Europe, the Middle East and parts of Central Asia. Each test point was an identical

machine that was provided by RIPE and placed at the border router of the ISP. Each test

point is a PC running BSD and using “ntpd” as the software synchronization protocol.

It is synchronized with an external GPS receiver through a “Totally Accurate Clock 2”

 26

[5] interface board using a Pulse Per Second (PPS) signal read by the PC’s parallel or

serial port. This software clock solution is the least precise and efficient of the GPS

solutions. It requires the constant adjustment of a relatively unstable software clock by

“ntpd” to maintain synchronization.

J. Jeong, in his M.S. thesis [19], argued for the necessity of one-way delay

measurements due to the asymmetric routes found commonly in the Internet. He used a

nearly identical configuration, with the exclusion of the “Totally Accurate Clock 2,” to

measure one-way packet delay and loss. This system was expected to be deployed within

the Korean Commercial Network and the Asia Pacific Advanced Network.

3.3.2. Time Processor Card

The Surveyor project [20] aims to provide delay and loss information as well as

routing information continuously and in near real-time (within 5 minutes of the current

time), thus providing researchers or network engineers valuable information about

current and past states of the Internet. Each measurement PC runs BSDI and contains a

TrueTime bus-level timing card that is similar to the BC637PCI to provide timestamps

for network events. Timestamps are recorded from within a modified BSDI network

driver to get as close to the wire-time as possible. This project by far most closely

resembles the study discussed in this document.

 27

3.3.3. DAG Based Measurements

The most accurate and precise Internet performance measurements make use of the

synchronized, hardware based timing solution provided by the DAG [10, 22] series cards.

These cards have an onboard clock that can be synchronized to GPS or CDMA [1] and

then used to timestamp each packet as it arrives in hardware. This not only takes the load

of generating timestamps and synchronizing the clock off of the CPU of the measurement

machine, but also provides an accurate and precise timestamp that represents the wire-

time of the packet.

Attila Pasztor et al. [30] use them in a receiver in conjunction with an RT-Linux

based traffic generator to implement an active probing infrastructure. They investigate

several options including Linux and FreeBSD, but ultimately choose this to be the

superior design. With this configuration, they achieve impressive timing results which

are necessary for determining link rates using low bit-rate probe streams that show

spaced out inter-arrival times on the receiver. This is the ideal solution for active probing

short of a fully dedicated hardware solution. The final configuration covered by this

document would closely resemble that of this active probing infrastructure if it were not

important to use Windows XP/2000 as described in Chapter 1.

Doru Constantinescu et al. [11] use the DAG cards in independent measurement

points to monitor traffic as well as actively probe the network. Their tests measure router

performance in loaded and unloaded conditions using UDP traffic that resembles TCP

 28

traffic patterns. The primary focus is on one-way transit time (end-to-end latency) and

how it is affected by routers.

Stephen Donnelly et al. [15] cover the use of DAG hardware to accurately measure

the error of the RIPE NCC software based active probing system [40]. They determine

the systematic error and the random error as described in RFC 2679 [7]. With this error

information, the systematic error can be removed and the measurements improved. The

random error distribution gives a range for the confidence in the results obtained from the

software system.

3.3.4. Other GPS Solutions

Ian Graham et al. [16] developed a system for passive measurement of network

traffic which made use of a GPS receiver’s PPS signal. This signal was read by the PC’s

ring indicate (data carrier detect is sometimes used instead) input of its serial port to

correct timestamps that were generated by libpcap in Linux. The packets were stored

once a second along with the GPS corrections. Any packets that could not be stored in

that one second were discarded.

Based upon the work of Ian Graham et al. [16], J. P. Curtis et al. [12] performed a

passive measurement study of Voice-Over-IP network traffic using standard libpcap

capturing and timestamping. To correct the timestamps generated by libpcap, they

inserted zero-length packets every second with the GPS interrupt. These corrections take

 29

care of inaccuracies in the system clock, but do nothing to address error introduced by the

difference between wire-time and the time the measurements are made in libpcap.

They took another approach with ATM traffic which allowed them to make use of some

limited hardware timestamping capabilities in the ATM NIC and get timestamps that

represent wire-time.

 30

CHAPTER 4

BC637PCI DRIVER

The BC637PCI Time and Frequency Processor card from Symmetricom (formerly

Datum (formerly Bancomm)) provides an independent hardware clock available through

the PCI bus in a PC. The original software provided with the card only included a simple

driver that mapped the memory resources of the card to user mode and then relied on a

user-mode DLL to implement all of the logic required to control the card. This meant

that, within the kernel, there was no way to access the driver.

A lot of effort went into avoiding the development of a replacement driver for the

BC637PCI, but after it was decided that the development was necessary, quick progress

was made in a relatively short amount of time with the guidance of Programming the

Microsoft Windows Driver Model by Walter Oney [28]. Some of the original reasons for

avoiding the development were the anticipated problems with making a reliable driver in

a reasonable amount of time, the added work of implementing the card configuration

portions of the driver to replace the configuration capability of the provided software, and

concerns about the required boilerplate code required for handling complex issues such as

power management and Plug ’N Play. The card configuration functions include setting

various modes and communicating with the onboard GPS module for determining

satellite coverage, which would be a majority of the work even though it is only needed

initially. It is possible to avoid this development by installing the old driver to configure

 31

the card and then installing the new driver for use during testing, however it is also

inconvenient.

4.1. Getting Started

To begin the development of the driver, the WDM Driver wizard supplied with

Oney’s book [28] was used to generate as much of the relevant driver boilerplate as

possible. This was a huge timesaver. Many of the functions that don’t need unique

handling on this card were written automatically and did not need to be modified. From

this initial code base, the first step was to acquire all of the card’s resources and keep

track of them. This card has two memory resources (Dual-Port RAM and Device

Registers) and an interrupt request line. The card’s interrupt is not currently handled or

enabled by the new driver because it is not needed for the testing system, but it is

initialized and stored so that it is easily available for use in the future.

It can be difficult to identify the two memory resources due to misleading

documentation. There are two other resources that get enumerated called device private

resources, but they are undocumented. They are interleaved with the memory resources

during the enumeration process. Each one only contains a single numeric parameter (one

contains “0” and the other contains “1”) that is presumably intended to be used to identify

which memory space is which, but it could just be circumstantial. The documentation for

the BC637PCI card [39] states that the Dual-Port RAM should be detected with a 0x1000

byte size and the Device Registers should be detected with a 0x40 bytes size, but both are

detected as 0x1000 bytes. It also states in a different section that the current size of the

 32

Dual-Port RAM is really only 0x800 bytes. This discrepancy was a bit misleading and

initially led to some implementation problems. After discovering the true identities of the

memory resources, they were mapped to kernel-mode memory space and stored in two

pointers for future use.

4.2. Read Time

The primary purpose of the driver is to be able to read the current time from the

card in both kernel mode and user mode. To initiate a time capture event on the card

from the driver, simply access the TIMEREQ register. The time is then immediately

latched into the TIME0 and TIME1 registers and can be read back. The format of the

TIME registers is selectable between a binary format and a decimal format. The binary

format provides the microseconds and the nanoseconds in TIME0 and a 32-bit UNIX

time in TIME1. The decimal format provides separate bits for the days of the year,

hours, minutes, seconds, microseconds, and nanoseconds. For the purposes of this system

and therefore this driver, the binary format will always be used for convenience.

The user-mode implementation of ReadTime is a synchronous I/O Control

(IOCTL) command. This will allow the function to be available to any process in user

mode that has access to open a handle to the kernel-mode driver. It would also be

possible to simply map the PCI memory to user space as the provided software did, but

this is not as easy to control because it doesn’t use the constructs provided by the kernel

interface. It is also not as flexible to use for the same reason, but it has the advantage that

 33

access to the card requires less overhead from user mode. This could be implemented in

parallel in the future if deemed necessary or useful.

The kernel-mode implementation was originally a synchronous

INTERNAL_IOCTL command to provide time services to other drivers in the system.

This implementation suffers from several inherent problems based on the interface. First

of all, the overhead of the interface is non-negligible. Also, because the interface is

synchronous, it could possibly cause the calling driver to be required to wait for a result.

This blocking is acceptable when running at PASSIVE_LEVEL, such as when timing

something that is happening based on a call from user-mode, but if timing something

generated by hardware, then it is not acceptable since the code is then run at

DISPATCH_LEVEL. Code running at DISPATCH_LEVEL cannot block!

The typical solution to this problem is to simply use an asynchronous

INTERNAL_IOCTL which will request the time and then call a completion routine when

the measurement is acquired. Because of the typical use of the time provider, this is

unacceptable. It would not be reasonable to try to handle the receipt of time

measurements asynchronously because of the large overhead of keeping track of requests

in the calling driver and trying to associate those with the events they are timing, which

would require extra buffering to keep those events in memory until their timestamp is

returned. The asynchronous interface also has a higher overhead than the synchronous

one because of its callback function.

 34

These difficulties are a result of the interface, not the underlying time request

function. To avoid them, ReadTime was implemented last as a direct-call interface.

This eliminated the limitations on IRQL and is more efficient because no IRP needs to be

allocated. This interface has similar overhead to that of the provided software in user

mode.

4.3. Configuration

The interface to the configuration of the card is through a Dual-Port memory

command protocol used in association with the ACK register. There are a few things

about accessing the Dual-Port RAM that are unlike accessing the PCI registers on the

card. For one thing, the Dual-Port RAM can’t be accessed more than one byte at a time

from within the mapped memory space. If larger accesses are attempted, then all bytes of

that variable will be equal to the most significant byte of the memory. Also, the memory

is implemented as Big-Endian whereas the PCI registers are Little-Endian. The top-most

8 bytes of the Dual-Port RAM contain pointers into the memory-space in which to find

the four main memory sections: the Input area, the Output area, the GPS Packet area, and

the Year area.

The main command protocol is implemented through the Input and Output areas.

A command and its operands are written to the Input area and then bit 7 of the ACK

register is set. This tells the Time Processor to read the command. When the command

is completed, the Time Processor sets bit 0 of the ACK register, after which the Output

area will contain any results from the command. Packets can also be sent to or requested

 35

from the GPS module on the card. This is done by putting the GPS packet in the GPS

Packet area of the Dual-Port RAM, writing the appropriate command to the Input area,

and then setting bit 7 of the ACK register. Any incoming GPS packets are signaled by the

Time Processor in two ways: bit 2 of the ACK register is set and the GPS Packet interrupt

is signaled.

The configuration operations are written as IOCTL commands to provide access to

user or kernel mode processes running at PASSIVE_LEVEL, though it is expected that

calls will only occur from user mode. The general command interface is implemented in

the driver, but at this time, only the commands for setting the timing mode and setting the

propagation delay are exposed. The rest of the configuration command set can be

implemented very easily, but are not needed at this time.

A small configuration utility has been written to access the IOCTLs from user-

mode to facilitate testing and card configuration. It is far from a complete

implementation, but it does enough to allow a user to get the card ready to use with the

current system. A replacement DLL for that supplied with the card was also written to

allow applications that use that old DLL interface to access the card through the new

driver. The functions exported by the DLL that are not implemented in the driver simply

do nothing. This allows the device capabilities to be easily extended and old software to

function as well as new software written to directly access the driver.

 36

CHAPTER 5

WINPCAP

WinPcap [6] is an open source library for packet capture and protocol analysis on

Win32 platforms. It was originally adapted from the libpcap BSD library [18], but

now provides extended functionality on the Win32 platforms. This is the protocol driver

that is used by the test system to access packets from any NIC in the computer.

5.1. Structure

WinPcap includes a kernel-level packet filter named npf.sys, a low-level

dynamic link library named packet.dll, and a high-level and system-independent

library named wpcap.dll, which is based on libpcap [18].

The packet filter is a device driver that enables Windows 95, 98, ME, NT, 2000,

XP and 2003 to capture and send raw data from a network card. It is implemented as an

NDIS protocol driver.

Packet.dll is an API that can be used to directly access the functions of the

packet driver, offering a programming interface independent of the Microsoft OS.

 37

Wpcap.dll exports a set of high level capture primitives that are compatible with

libpcap, the well known UNIX capture library. These functions allow a developer to

capture packets independent of the operating system and the underlying network

hardware.

5.2. Capabilities

The WinPcap library provides an interface to the network subsystem in Windows

that is typically hidden from user mode applications. It allows all packets that arrive at

the NIC to be captured using the NDIS before any processing is done to it by the typical

protocol drivers such as TCP or UDP. This allows even packets that are corrupted to be

captured before they would be thrown away when the checksum is discovered to be bad.

It is possible to configure the NIC in promiscuous mode so that even packets that are not

destined for the NIC can be captured. The driver in WinPcap is capable of efficiently

filtering incoming packets as they are received. The filter is implemented as a compiled

string that is processed by a virtual machine in the driver. The virtual machine code is

then compiled to the host machine language just before execution. It is an

implementation of the Berkley Network Packet Filter [21].

WinPcap extends the functionality of libpcap specifically on Win32 platforms in

several ways. One, when incoming packets are captured, they are time-stamped by a

precise clock that is synchronized to the RTC in the kernel as soon as it passes the filter.

Another feature provided is the ability to inject packets directly into the network without

going through the WinSock interface. A subset of this feature allows a program to queue

 38

packets with time-stamps and send them synchronously. All of the packet send times are

relative to their time-stamps based on the time-stamp of the first packet in the queue.

5.3. Modifications

The interface provided by WinPcap is great for packet capture and protocol

analysis applications, but to analyze network performance there are a few more things

that are needed. Three changes were made to the transmission functionality of WinPcap

to make it suitable.

The first modification required changes to the driver and the packet DLL. This

modification causes the driver to time-stamp each packet as it is injected into the

network. The time-stamp is stored in the packet header and is then copied back to the

packet DLL where it overwrites the buffer that was passed into the send function. This

allows an application to know when the packet was injected into the network. The

limitation here is that the timestamp is made when the NIC driver is asked to inject the

packet, and is not directly related to when it is actually injected. An improvement would

be to use the OOB data in NDIS and a modified NIC driver to timestamp and return the

actual time that the packet was injected. Because packet injection is an asynchronous

process, it required a structural change to the protocol driver. It was necessary to cause

the IOCTL that initiates the packet-queue transmission return a pending status to the

protocol driver until the transmission-completion interrupt had triggered for every packet

sent from the queue. It was also necessary to keep track of the packets after they were

transmitted so that the timestamp returned from the NIC driver could modify the

 39

timestamp in the buffer and be returned to user mode. It was then necessary to monitor

when a queue had been fully transmitted so that the IRP could be completed and control

returned to user-mode.

When using the timestamp correction on an SMP computer, it is necessary to

guarantee that both timestamps for the correction, meaning the timestamp in the protocol

driver and the timestamp in the NIC driver, be processed by the same CPU. This is

because the timestamps are acquired from the Pentium Time Stamp Counter which is

unique to each processor and so they are not guaranteed to be synchronized. On the

receive side, this is not a problem because the reception handler is initiated by an

interrupt, which means that the computer is operating in an arbitrary thread context. The

received packet it then notified up to the protocol driver in the same context. This means

that the same processor must be recording the timestamps. On the sending side, the

application requests a transmission so the protocol driver is executed in the context of the

application. The completion interrupt, on the other hand, is executed in an arbitrary

thread context, which means it could be executing on a different processor and the

difference in the values read would have no meaning. This can be avoided by assigning a

processor affinity to the application, which will restrict it’s execution to a single

processor. This con be done directly using the task manager. An affinity must also be set

for the interrupts in the NIC driver so that they can be guaranteed to execute on the same

processor. To accomplish this, a filter driver supplied with the Windows 2003 Resource

Kit called “IntFiltr” is used. This filter driver is installed in the driver stack above the

 40

NIC driver and provides a graphical interface to set the processor affinity for the

interrupts in that driver.

The second modification was to replicate the PacketSendPackets function in the

packet DLL as PacketSendPacketsRef and change the new function to allow the reference

times for synchronous transmission to be specified as parameters. The reason this is

important is that when sending a queue of packets synchronously with

PacketSendPackets, the reference times are always the time-stamp of the first packet in

the queue and the current time. If all of the packets to be sent throughout a long

transmission sequence are not available at the beginning of a transmission or if the

number of packets to be sent is prohibitively large, there is no way to accurately set the

time that should pass between the last packet in one queue and the first packet in the next

queue. By providing the reference times explicitly, that delay can be accurately

implemented. This change was later extended to propagate the timing reference all the

way into the driver. This way the transmission restart does not have the added delay of

switching to kernel-mode after the appropriate send time is reached.

The third modification was to replicate the pcap_sendqueue_transmit function in

the wpcap DLL as pcap_sendqueue_transmit_persist. The new function was then

modified to retain the time-stamp of the first packet in the first queue passed to it as a

reference. In subsequent calls, that same reference is used instead of the time-stamp of

the first packet in the current queue. This reference in then passed to the

PacketSendPacketsRef function in the packet DLL.

 41

These changes extend WinPcap’s functionality to transmit packets close to the

requested time while knowing what the error in transmission time is. The reception

capabilities provided by WinPcap are already sufficient and do not require modification

with the exception of timestamping. It was necessary to replace the time stamping call

with a call to the time processor, if available, and to modify the primary timestamp with a

timestamp from the NIC driver, if present.

 42

CHAPTER 6

GENERIC SOCKET EMULATION CLASS

Simply having access to the network interface is not sufficient for sending packets

across wide area networks. Many other capabilities are required to traverse the varying

topologies that are of interest. The CPCapSocket class was developed to handle these

issues and provide a simple interface to send and receive packets and collect the

timestamps associated with those events. It attempts to closely emulate the interface

provided by the Winsock.

6.1. Supported Protocols

For the purposes of VoIP testing there are two protocols of interest that are

supported by the CPCapSocket: UDP and a UDP variant that does not include the data

payload in the checksum. UDP is of interest because it is the most often used transport

protocol for VoIP systems. The variant is an ideal protocol because many voice codecs

have the ability to handle bit errors and make use of the data that is preserved. Some

even have FEC capability and can actually fix errors. If the checksum protects this data,

then a bit-error in the data will cause the entire packet to be discarded. In a real-time,

low-latency system like VoIP there is no time to request a retransmission without

creating an unacceptable delay for the user. Therefore, retaining all possible data is far

more desirable than discarding it all. It is still necessary to have a checksum protect the

 43

header, because if a bit error occurs in the header, it is possible that the packet is not even

part of the stream and will corrupt the system.

6.2. Establishing a Connection

The communication channels used by this system are not technically connections,

because they simply transfer datagrams between hosts. However, if there is a NAT

between the two machines that must communicate, a route must be established. An

association packet is used to establish that route and a return packet is sent to verify that

the route is operational.

6.2.1. Selecting a Device

The first step in establishing a connection is deciding which NIC to use for the

connection. As the system exists now, any device that is registered as a NIC in Windows

2000 can be used as a communication device. Unfortunately, this excludes dial-up

networking connections, which are used by modems, VPN connections, and some

cellular devices. This is an unfortunate limitation of the WinPcap, but may be available

in the future. Choosing a NIC is done by looking in the routing tables maintained by

Windows to find the default gateway device. This device is then opened with WinPcap

and its MAC address and default IP address are stored as the local addresses for the

device.

 44

6.2.2. Bind a Socket in Winsock

WinPcap is not a true reception interface; it is simply a sniffing interface. Because

of this, a socket on the desired local port must be allocated and bound in Winsock to

prevent Winsock from sending “Destination Unreachable” ICMP packets back for every

packet received. A random local port number is selected between ports 2000 and 4000

until a socket is successfully bound.

6.2.3. Create Packet Template

At this point, all of the initialization needed for the local side of the communication

is complete. Because the local host is establishing the connection, the remote IP address

and port are provided by the user. The only other information needed is the MAC

address to send the packet to, such that the packet will reach the desired remote host.

ARP is used to attempt to resolve the MAC address of the remote host from its IP

address. This will only be successful if the remote host is on the LAN and is reachable

by the broadcast ARP packets. In most non-trivial cases, such as those of interest in this

study, this is not true. If the ARP for the remote host fails, the routing tables are used to

determine the best route to the remote host. This route contains the IP address of the next

hop of the route. ARP is then used again to resolve the MAC address of the next hop in

the route, based on its IP address. If this does not succeed, then there is no route to the

remote host and the connection will fail.

 45

Now that a remote MAC address for the communication with the remote host has

been determined, a packet template is generated that will be used for the creation of all

packets. It contains such things as the MAC address, IP address, and port for the local

host and remote host or next hop in the route to the remote host. The remote host IP

address and the local host port number are used to create a receive filter for WinPcap so

that only packets sent by the remote host and associated with this communication channel

are sent to the opened interface on the local host. Finally, the association packets are

exchanged to finalize the connection process.

6.3. Listening for a Connection

For a client to successfully listen for an incoming connection, it must either have an

Internet routable address or some other pre-established route such that the initial

association packet will reach it.

6.3.1. Selecting a Device

When listening for a connection, it can be difficult to know what interface to listen

on. As the system is set up now, if the remote host IP address (or some IP address on the

same network segment) is known, the device associated with the best route to that

address is used. If no address is provided, a device that is associated with a remote route

is selected. In the future it may be useful to allow a user to directly select which interface

to listen on, but at this point that is unnecessary.

 46

6.3.2. Bind a Socket in Winsock

Just as in the connection process, it is necessary to allocate and bind a Winsock

socket to the local port to prevent Winsock from sending “Destination Unreachable”

ICMP packets in response to all received packets. In this case, the local port that is

bound is a fixed port number that is not random, but one requested by the user.

6.3.3. Receive an Association Packet

Before any further information about the connection can be determined, a packet

from the connection host must be received. A temporary receive filter is set in WinPcap

so that only packets destined for the local port that is being listened on are sent to the

opened interface. When an association packet is received, the remote host’s IP address

and port are garnered and stored. The packet filter in WinPcap is then updated to include

the remote host’s IP address in addition to the local port. This has the effect of no longer

listening for packets from any host but from then on only accepting packets from the

associated host.

6.3.4. Create Packet Template

The packet template is created in the same way that it was on the connection side.

It will be used to transmit all packets to the remote host.

 47

6.3.5. Reply with Verification Packet

At this point, the communication channel should be fully functional. This is

verified by sending the association packet back to the connecting host. If this packet is

successfully received by the connecting host, then the bidirectional channel is established

and ready to use.

6.4. Sending Packets

The CPCapSocket class provides several interfaces for sending packets. They each

have their own advantages and limitations. Individual circumstances dictate the best

choice of interface.

6.4.1. Creating the Packet

Before data can be sent to a remote host, it must be wrapped up in a packet. If the

data is larger than the maximum allowed datagram size of 1500 bytes then it must be

broken into separate packets before it is transmitted. The packet template created during

the connection process is used to initialize a majority of the packet header fields. The

only fields that must be generated for each packet are the various size and checksum

fields.

 48

6.4.2. Send

The most basic interface allows the immediate transmission of one packet over the

open socket. Internally, this is implemented by creating a send queue, adding the packet,

and sending the queue. This interface is only used to send the association packet during

the connection process.

6.4.3. SendDelayed

The sendDelayed() interface allows for the transmission of a packet a fixed

amount of time after the transmission of the previous packet. This is useful when it is

desirable to specify the delay from one packet to the next without having to keep track of

when the previous packet was transmitted and at what time the new packet should be

transmitted. This is also implemented as a queue with a single packet added before

transmission, but it makes use of the new

pcap_sendqueue_transmit_persist() function that was added to WinPcap to

allow for the transmission time to be referenced from the previous transmission time.

This interface is one possibility for the transmission of test packets. It has the advantage

of being able to update the status after each packet; however, it is far less efficient for

sending a long sequence of packets and is far more likely to allow operating system

delays to change the transmission time.

 49

6.4.4. Queue / SendQueue / GetQueueSentTimes

This interface allows a user to queue packets for transmission at set offsets using

the queue() function. That queue of packets can then be sent with the sendQueue()

function. It makes use of the same pcap_sendqueue_transmit_persist()

function that allows the next queue that is sent to still be relative to the previous queue’s

initial transmission time. After a queue has been successfully transmitted, the exact times

at which the packets were actually transmitted can be retrieved with the

getQueueSentTimes() function. Although the packets should be sent at the exact

time specified, this is typically not the case due to the fact that the system does not run on

a real-time operating system. The actual times of transmission are used to compute the

jitter and latency instead of the desired transmission time so that only the effects of the

network are measured.

6.5. Receiving Packets

Packet reception makes use of a somewhat simpler interface. The recv()

function simply blocks, waiting for the receipt of a packet that passes the filter that was

set in the connection process. When a packet is received, the rest of the packet is

validated. The checksums are verified to match before the payload is copied into the

output buffer. The timestamp associated with the receipt of the packet is also passed

back to the user.

 50

CHAPTER 7

LOW BIT-RATE NETWORK JITTER AND LATENCY TESTER

The Low Bit-rate Network Jitter and Latency Tester (LoBiNeJiLaTe) is the

software that makes use of all of the software described in previous chapters. Then

establishing a connection, all of the desired test settings are entered in the dialog pictured

in Figure 7.1. These settings are stored in the registry to that it is not necessary to reenter

them if they are not to be changed. It is not necessary to open the connection parameters

dialog at all. If the settings that were used the last time the application was used are still

appropriate, then all that is necessary is opening the application and clicking the “Start

Connection” button.

It is a multithreaded application with the basic flow shown in Figure 7.2. The

control thread is responsible for managing the tests. The scheduler will delay the

execution of the control thread if desired. The TCP thread is responsible for transferring

the test parameters from the client to the server before a test begins and then transferring

the server’s packet log file back to the client after the test is completed. The UDP thread

actually conducts the test by sending packets or receiving them. The file thread is used to

write the packet logs asynchronously during a test. The main application thread is left to

run the user interface.

 51

Figure 7.1 – Test Parameters Dialog

 52

Start Connection

Start Control
Thread

Scheduled
Test?

Scheduled
Time?

No

Yes

Yes

No

Start TCP
Thread

Transfer Test
Parameters

Start UDP
Thread

Start File
Thread

Test Time
Reached

Transfer
Packet

Store
Packet Data

Transfer
Server File

Kill UDP
Thread

Kill File
Thread

Yes

No

Kill TCP
Thread

Kill Control
Thread

Compute
Statistics

Legend
Application

Scheduler Thread

Control Thread

TCP Thread

UDP Thread

File Thread

End

Figure 7.2 – Application Flow Chart

 53

The networking code for the test packets is implemented with the CConnection

class. This class implements Winsock code to create and use TCP and UDP connections

in addition to containing the CPCapSocket class discussed in the last chapter. This

greatly simplifies the code required to run a test. This means that is it possible to use the

same object to communicate via Winsock or the WinPcap interface.

The statistics are implemented in a simple, direct way such that modifying them

and adding to them should be straightforward. Four measurements are computed for each

test: Jitter, Latency, Inter-Transmission Time, and Inter-Arrival Time. The minimum,

maximum, average, variance, median, and inter-quartile range are computed for each

measurement as discussed in Chapter 8.

 54

CHAPTER 8

STATISTICAL ANALYSIS TOOLS

The results of the network tests are analyzed using three different classes of

statistical tools. The first is classical statistics: the minimum, maximum, mean, and

standard deviation. The second is robust statistics: the median and the inter-quartile

range. The final is the Probability Density Function (PDF) in the form of a histogram.

Each of these measures is applied to the four metrics at the end of the test: the inter-

transmission time, inter-reception time, end-to-end latency, and jitter.

8.1. Classical Statistics

The minimum, maximum, mean, and standard deviation paint a good picture for the

overall properties of a dataset. This can be very informative if the data is consistent,

however, if the data contains outliers, these functions can give misleading results as they

are dominated by the outliers.

8.2. Robust Statistics

Robust statistics are highly immune to outliers. They are often used when data is

polluted with impulsive noise or otherwise abnormal points.

 55

8.2.1. Median

The median is a robust substitute for the mean. It measures the 50th percentile of a

series. When the number of points in the series is odd, the median is the center point

after the data is sorted. When even, it is the mean of the two center points.

8.2.2. Inter-Quartile Range

The inter-quartile range, also known as the central variation, is a robust substitute

for the standard deviation. It gives a sense of the variation in the main body of the data,

excluding outliers. It is the difference between the 25th and the 75th percentile. The IQR

of a series can be directly compared to the variance of that series if the IQR is multiplied

by 0.7413.

8.3. Probability Density Function

The probability density function, in the form of a histogram, is useful for

determining how the data is distributed which is not obvious from the times series. The

x-axis is the sequence of bins for values found in the time series and the y-axis is the

number of times a measurement was within one of those bins. Figure 8.1 shows an

example of a histogram and its associated time series. The large spike at just over 25ms

shows up as a small mark at 25ms on the histogram. The majority of the data is around

11.5ms and as such, the largest spike in the histogram is at about 11.5ms.

 56

0 200 400 600 800 1000 1200 1400
0

0.005

0.01

0.015

0.02

0.025
Time Series

Packet Number

La
te

nc
y

(s
)

0 0.005 0.01 0.015 0.02 0.025
0

50

100

150

200

250
Histogram

Latency (s)

Figure 8.1 – A sample Histogram and its Associated Time Series

 57

CHAPTER 9

RESULTS

All of the components described in the previous chapters combine to create a test

system capable of accurately and precisely measuring the jitter and latency of a network

connection in the context of low-bit-rate VoIP streams. The resulting system is detailed

in Figure 9.1. The system, having precise and accurate timing, allows versatile network

testing that utilizes a wide variety of NICs. If the Intel EtherExpress Pro/100+ NIC is

used when applicable, it is possible to achieve more accurate results. The NIC can also

be used to get a general idea of the magnitude of the error incurred by the NDIS interface

and the interrupt processing.

9.1. Final System

The final system provides several options for testing networks depending on the

required flexibility versus required accuracy. For maximum flexibility, if the modified

version of WinPcap does not detect a time processing card, it will automatically use the

Pentium Time Stamp Counter instead. This will allow measurements of jitter with

reasonable precision. However, without a synchronized clock the latency calculations

will be meaningless. Advanced software clock synchronization could possibly be used to

get somewhat accurate timing in the future to produce meaningful latency data for low

bandwidth links such as cellular data when the time processor is not available.

 58

When the time processor is available, all packet timestamps are applied in the

protocol driver, npf.sys, at the earliest and latest times possible for reception and

transmission, respectively. This produces results sufficient to measure all but the fastest

of measurements without the error becoming noticeable. This mode is used most

frequently because the protocol driver is abstracted away from the hardware by the

operating system and any device that appears as a NIC in the PC can be used in

measurements.

If further accuracy and precision are required and it is possible to use 10 or

100Mbit Ethernet, then the Intel EtherExpress Pro/100+ NIC can be used. The driver for

this card is modified to record a timestamp as soon as the hardware interrupts the PC to

notify it of a newly received packet or a transmission that has successfully completed.

Because the Pentium Time Stamp Counter has low call overhead and high precision, it is

used to generate a differential timestamp to correct the GPS timestamp for call

placement. This has the effect of recording the time in the interrupt of the NIC without

slowing down the interrupt with a call to the timer processor.

 59

Context Switch
Required

User Mode

Kernel Mode

Windows Sockets
Emulator

Windows Sockets
Emulator

TCP / UDP
Protocol Drivers

Transport
Driver Interface

Other NIC
DriversNDIS

Other Network
Cards

LoBiNeJiLaTe

CConnection

CPCapSocket

wpcap.dll

packet.dll

npf.sys

Intel EtherExpress
Pro/100+ NIC Driver

Intel EtherExpress
Pro/100+

BC637PCI

Figure 9.1 – Layout of the Network Testing Application

 60

9.2. System Validation

Though no hardware timing solution, such as a DAG card, is available, we will

attempt to show that the results of the network performance tests are sensible, or at least

not obviously grossly incorrect. Two issues will be addressed: the host-time to wire-time

discrepancies and network latency scaling. In all of the tests, the transmitter is running at

real-time priority in an attempt to make the transmissions as accurate as possible. All of

the packets that are transmitted are queued up 60 seconds at a time. This allows the

transmitter to remain in kernel space for 60 seconds at a time, which greatly reduces

context switches and improves accuracy. This section will attempt to show the

approximate error in the system. As Vern Paxson states in Strategies for Sound Internet

Measurement [33], it is important to state how accurate a test is when reporting its

results.

9.2.1. Timing-Location Error

Though it is not possible to fully measure the wire-time to host-time error without a

DAG card, a fairly good approximation can be made using the Intel EtherExpress

Pro/100+ NIC (e100b) with the modified driver. It modifies the timestamps generated in

the protocol driver such that they represent the time that the NIC notifies the computer

that it has received or started transmitting a packet. This means that the only sources of

error are the delay in the hardware itself and any interrupt processing delay caused by

other frequently interrupting devices.

 61

62

When transmitting packets, the e100b provides an interrupt when the packet data

has been successfully copied out of memory and into the NIC’s controller. This

eliminates the delays in NDIS queuing the time required to copy the data. The correction

of this transmission time was tested on two computers: one having two processors and

one having only one.

The delay introduced between a packet notification and its processing in a protocol

driver is dependent upon the PC on which the tests are run. An SMP machine can much

more efficiently process interrupts and as such, the performance is much better meaning

that the packets are processed in the protocol driver relatively close to the wire-time. In a

single-processor machine, the CPU must handle all aspects of the system and will not

have near the performance of an SMP machine for time critical operations because it will

often be busy with system operations while a time critical function is pending.

Intel EtherExpress Pro/100+ Intel EtherExpress Pro/100+

Crossover Cable

Figure 9.2 – System Validation Test Configuration

0 200 400 600 800 1000 1200 1400
16

18

20

22

24

26
Transmission Correction

Packet Number

C
or

re
ct

io
n

(u
s)

0 200 400 600 800 1000 1200 1400
10

15

20

25

30
Reception Correction

Packet Number

C
or

re
ct

io
n

(u
s)

Figure 9.3 – 100Mb/s Dual-Processor Sourced NIC to Protocol Corrections

0 200 400 600 800 1000 1200 1400
10

20

30

40

50

60
Transmission Correction

Packet Number

C
or

re
ct

io
n

(u
s)

0 200 400 600 800 1000 1200 1400
0

5

10

15

20
Reception Correction

Packet Number

C
or

re
ct

io
n

(u
s)

Figure 9.4 – 100Mb/s Single-Processor Sourced NIC to Protocol Corrections

 63

On the dual-processor machine, the transmission error was relatively white with no

structure to speak of. The average delay is 20 µs. The single processor machine showed

delay that was much more structured. This can be attributed to system interference with

the processing of the transmission request. There seem to be many instances in which

another regularly timed process on the computer is apparently interfering with the testing.

It is more prevalent on single processor machines, presumably because the system shares

the processor with the testing software all of the time. This supports the use of a real-

time operating system on such hardware, which would greatly reduce these effects. The

average delay on the single-processor machine is 21 µs.

 64

0 200 400 600 800 1000 1200 1400
44.98

44.99

45

45.01

45.02
Protocol Driver Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.98

44.99

45

45.01

45.02
Corrected Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

Figure 9.5 – 100Mb/s Dual-Processor Sourced Inter-Transmission Time

0 200 400 600 800 1000 1200 1400
44.985

44.99

44.995

45

45.005

45.01
Protocol Driver Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Corrected Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

Figure 9.6 – 100Mb/s Single-Processor Sourced Inter-Transmission Time

 65

As a result of these adjustments, the timestamp data is less perfect than the original

timestamps from the protocol driver, which should be expected. It is not reasonable to

expect that every packet is transmitted within 1 µs of the desired time. This appears to be

the case based on the fact that without the network driver correction, there are few

options for variation. The timestamping in the protocol driver is a small, fixed number of

instructions away from the code which waits for the correct time to schedule the

transmissions. This means that the only transmission error the clock will measure is the

amount of time that the scheduling clock delayed beyond the scheduled time. The

scheduler was not converted to use the time processor due to the fact that scheduling

performance was already sufficient. This means the timestamp measurement would

measure any error in the scheduler since they are not based on the same clock.

For these tests the inter-reception time should be the same as the inter-transmission

time, 45ms, because the network is simply a crossover cable and should not produce any

additional delays. Figures 9.7 and 9.8 show that the corrections significantly reduce the

deviations from 45ms. This depends on the transmission, though, because if the packets

were not sent at exactly 45ms intervals, then the reception of the packets will not

approach 45ms intervals.

 66

0 200 400 600 800 1000 1200 1400
44.98

44.99

45

45.01

45.02
Protocol Driver Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.98

44.99

45

45.01

45.02
Corrected Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

Figure 9.7 – 100Mb/s Dual-Processor Sourced Inter-Reception Time

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Protocol Driver Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Corrected Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

Figure 9.8 – 100Mb/s Single-Processor Sourced Inter-Reception Time

 67

It is not really possible to validate the packet reception or transmission timing

capabilities independently. The received packets are sent from an imperfect transmitter

so both are needed to compute the effects of the network. Without a good reference for

the packets received and it is not possible to distinguish whether the error is in the

reception timing or in the transmission timing. If the packets are transmitted at a time

other than the time they are believed to be transmitted, then it is correct for the receiver to

see deviation from the specified transmission rate. Because the reception test is run

between two e100b cards at 100Mbits per second over a cross-over cable, it should not be

possible for the network to inject any error other than a small, constant propagation delay.

Anything other than this seen in the latency plots must be due to errors in the

measurement system.

After correcting the jitter calculations, the errors are less than 10µs for both the

single-processor and dual-processor tests. Because of the low level of jitter, the latency is

consistent. With consistent latency in these validation tests, the system is shown to

provide precise measurements of network effects on packet transfer. This means that any

jitter revealed in network tests will reveal jitter that is actually caused by the network and

not by the test system, above the margin of error in these validation tests.

 68

0 200 400 600 800 1000 1200 1400
-20

-10

0

10

20
Protocol Driver Data

Packet Number

Ji
tte

r (
μs

)

0 200 400 600 800 1000 1200 1400
-10

-5

0

5

10
Corrected Data

Packet Number

Ji
tte

r (
μs

)

Figure 9.9 – 100Mb/s Dual-Processor Sourced Jitter

0 200 400 600 800 1000 1200 1400
-40

-20

0

20

40
Protocol Driver Data

Packet Number

Ji
tte

r (
μs

)

0 200 400 600 800 1000 1200 1400
-15

-10

-5

0

5

10

15
Corrected Data

Packet Number

Ji
tte

r (
μs

)

Figure 9.10 – 100Mb/s Single-Processor Sourced Jitter

 69

0 200 400 600 800 1000 1200 1400
40

45

50

55

60

65
Protocol Driver Data

Packet Number

La
te

nc
y

(μ
s)

0 200 400 600 800 1000 1200 1400
8

10

12

14

16

18

20
Corrected Data

Packet Number

La
te

nc
y

(μ
s)

Figure 9.11 – 100Mb/s Dual-Processor Sourced Latency

0 200 400 600 800 1000 1200 1400
30

40

50

60

70

80
Protocol Driver Data

Packet Number

La
te

nc
y

(μ
s)

0 200 400 600 800 1000 1200 1400
10

15

20

25

30
Corrected Data

Packet Number

La
te

nc
y

(μ
s)

Figure 9.12 – 100Mb/s Single-Processor Sourced Latency

 70

9.2.2. Network-Latency Scaling

The validation of jitter measurements is more straightforward than latency because

they are differential. Directly validating latency requires a known reference, such as a

DAG card. Without that option being available, the latency measurements can be

indirectly validated by comparing the measurements made at different link speeds. The

e100b cards were configured to communicate at 10Mbits per second instead of 100Mbits

per second. The resulting latencies were then compared with the tests in Section 9.2.1 to

evaluate the measurement error associated with the single-processor source and the dual-

processor source systems.

 71

0 200 400 600 800 1000 1200 1400
16

18

20

22

24

26

28
Transmission Correction

Packet Number

C
or

re
ct

io
n

(u
s)

0 200 400 600 800 1000 1200 1400
5

10

15

20

25

30

35
Reception Correction

Packet Number

C
or

re
ct

io
n

(u
s)

Figure 9.13 – 10Mb/s Dual-Processor Sourced NIC to Protocol Corrections

0 200 400 600 800 1000 1200 1400
15

20

25

30

35

40
Transmission Correction

Packet Number

C
or

re
ct

io
n

(u
s)

0 200 400 600 800 1000 1200 1400
0

20

40

60

80
Reception Correction

Packet Number

C
or

re
ct

io
n

(u
s)

Figure 9.14 – 10Mb/s Single-Processor Sourced NIC to Protocol Corrections

 72

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Protocol Driver Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Corrected Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

Figure 9.15 – 10Mb/s Dual-Processor Sourced Inter-Transmission Times

0 200 400 600 800 1000 1200 1400
44.9

44.95

45

45.05

45.1

45.15
Protocol Driver Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.9

44.95

45

45.05

45.1

45.15
Corrected Data

Packet Number

In
te

r-T
ra

ns
m

is
si

on
 T

im
e

(m
s)

Figure 9.16 – 10Mb/s Single-Processor Sourced Inter-Transmission Times

 73

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Protocol Driver Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.96

44.98

45

45.02

45.04
Corrected Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

Figure 9.17 – 10Mb/s Dual-Processor Sourced Inter-Reception Times

0 200 400 600 800 1000 1200 1400
44.9

44.95

45

45.05

45.1

45.15
Protocol Driver Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

0 200 400 600 800 1000 1200 1400
44.9

44.95

45

45.05

45.1

45.15
Corrected Data

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(m
s)

Figure 9.18 – 10Mb/s Single-Processor Sourced Inter-Reception Times

 74

0 200 400 600 800 1000 1200 1400
-30

-20

-10

0

10

20

30
Protocol Driver Data

Packet Number

Ji
tte

r (
μs

)

0 200 400 600 800 1000 1200 1400
-15

-10

-5

0

5

10

15
Corrected Data

Packet Number

Ji
tte

r (
μs

)

Figure 9.19 – 10Mb/s Dual-Processor Sourced Jitter

0 200 400 600 800 1000 1200 1400
-100

-50

0

50

100
Protocol Driver Data

Packet Number

Ji
tte

r (
μs

)

0 200 400 600 800 1000 1200 1400
-15

-10

-5

0

5

10

15
Corrected Data

Packet Number

Ji
tte

r (
μs

)

Figure 9.20 – 10Mb/s Single-Processor Sourced Jitter

 75

0 200 400 600 800 1000 1200 1400
90

100

110

120

130
Protocol Driver Data

Packet Number

La
te

nc
y

(μ
s)

0 200 400 600 800 1000 1200 1400
70

75

80

85
Corrected Data

Packet Number

La
te

nc
y

(μ
s)

Figure 9.21 – 10Mb/s Dual-Processor Sourced Latency

0 200 400 600 800 1000 1200 1400
80

100

120

140

160

180
Protocol Driver Data

Packet Number

La
te

nc
y

(μ
s)

0 200 400 600 800 1000 1200 1400
70

75

80

85

90
Corrected Data

Packet Number

La
te

nc
y

(μ
s)

Figure 9.22 – 10Mb/s Single-Processor Sourced Latency

 76

The NIC to protocol driver corrections in Figures 9.13 and 9.14 almost identically

match Figures 9.3 and 9.4. This means that regardless of the speed of the network

connection, the same delays are incurred by the communication between the protocol

driver and the NIC. To compute the remaining error, that introduced by the NIC

hardware and interrupt processing latency, it is possible to compare the latencies of two

tests whose only variation is the link speed. The error should be independent of the link

speed, while the true latency should be directly affected by the link speed. In the case of

the dual-processor tests, the latency at 10Mb/s was 75µs and at 100Mb/s was 14µs.

Because the link speeds are known, the theoretical latencies can be computed. They are

dominated by the transmission rate (800ns/byte at 10Mb/s and 80ns/byte at 100Mb/s),

because a short cable was used causing the propagation delay to be approximately 5ns.

This can be described as a system of two linear equations with two unknowns. The

unknowns are the number of bytes transmitted and the amount of erroneous delay, which

is independent of the link speed.

758.0 =+⋅ en (9.1)

1408.0 =+⋅ en (9.2)

The solution to these equations is n = 85 bytes and e = 7µs. The same process can

be used for the single-processor tests which yield n = 85 bytes and e = 12µs. These

errors in general can be added to the NIC driver to Protocol driver errors found in Section

9.2.1 to find the expected constant error for the measurements. This agreement in n

suggests that the link-based delay is constant regardless of machine setup. The actual

 77

data transmitted on the wire is 72 bytes, made up of a 7-byte preamble, a 1-byte start of

frame delimiter, and the 64-byte payload. The additional 13 bytes of time computed

above are assumed to be the time required by the collision detection mechanism before

the start of the preamble.

9.2.3. Hardware Based Error

The hardware can cause timing errors if it does not notify the computer after each

packet it receives. Some NICs are designed to hold packets in a buffer and notify the PC

of multiple packets with a single interrupt to reduce the card’s interrupt frequency during

heavy-load traffic conditions. In Figure 9.23, two packets near the end of the test were

processed by the same interrupt. This is a rare occurrence; it was only encountered once

in all of the testing conducted for this study.

 78

0 200 400 600 800 1000 1200 1400
0

0.01

0.02

0.03

0.04

0.05

0.06

La
te

nc
y

(s
)

0 200 400 600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

Packet Number

In
te

r-R
ec

ep
tio

n
Ti

m
e

(s
ec

) Two Packets Processed by One Interrupt →

Figure 9.23 – Packet Clustering by the NIC

 79

CHAPTER 10

EXAMPLE NETWORK TESTS

There are many network configurations that a person may need support for when

using a VoIP application. In this chapter, we explore the VoIP performance of cellular

connections, broadband connections, and wireless LAN connections. In all of the tests,

the educational network link at Oklahoma State University is assumed to represent the

Internet without any additional network impairments due to its significantly higher link

speed than those of the networks discussed here. These tests are in no way meant to be

exhaustive or fully representative of a given communication standard. They are simply

intended to demonstrate the capabilities of the measurement system and investigate some

of the properties of the networks that are revealed by the tests. They are all, however,

believed to be accurate measurements of the given network conditions at the time.

10.1. Broadband Networks

Broadband network connections are widely replacing dial-up services providing

Internet connectivity in homes and small offices. Many of them are even using that

broadband connection to replace their circuit-switched telephone connections with

services such as Vonage and Cox digital telephone service. These connections were

originally designed to provide Web browsing and digital content download services. The

systems provide more downstream bandwidth than upstream bandwidth due to the

 80

81

assumption that the endpoint will be primarily consuming content as opposed to

producing it. This asymmetric bandwidth is likely to cause asymmetric delay properties

as well. The two broadband connections tested were SBC Global ADSL Internet service

and Cox High-Speed Cable Internet service.

10.1.1. SBC Global Asynchronous Digital Subscriber Line Internet Service Tests

The ADSL service does not allow a direct connection to the Internet through the

DSL modem. A connection must be made with an SBC server using the Point to Point

Protocol over Ethernet (PPPOE). This provides a separate IP address that is routable on

the Internet. The EnterNet 300 PPPOE software was used in these tests to establish the

DSL connection.

Internet

3c980c-TXM 3c905B-TX
SpeedStream 5360

EnterNet 300 PPPOE

Figure 10.1 – DSL Broadband Test Configuration

0 1000 2000 3000 4000 5000 6000 7000
-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Jitter

Packet Number

Ji
tte

r (
s)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

500

1000

1500

2000
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 0.476371 s
Median: 0.000079 s
IQR: 0.000753 s

Figure 10.2 – EDU to DSL Jitter (Downstream)

0 1000 2000 3000 4000 5000 6000 7000
0.01

0.015

0.02

0.025

0.03
Latency

Packet Number

La
te

nc
y

(s
)

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
0

500

1000

1500
Latency Histogram

Latency (s)

Average: 0.011701 s
Variance: 0.232436 s
Median: 0.011689 s
IQR: 0.000480 s

40s

40s

40s
40s

40s

Figure 10.3 – EDU to DSL Latency (Downstream)

 82

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Jitter

Packet Number

Ji
tte

r (
s)

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

200

400

600

800
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 117.904699 s
Median: 0.001556 s
IQR: 0.015601 s

Figure 10.4 – DSL to EDU Jitter (Upstream)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.01

0.02

0.03

0.04

0.05
Latency

Packet Number

La
te

nc
y

(s
)

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

150
Latency Histogram

Latency (s)

Average: 0.023710 s
Variance: 58.427357 s
Median: 0.022558 s
IQR: 0.009880 s

Figure 10.5 – DSL to EDU Latency (Upstream)

 83

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-3

-2

-1

0

1

2

3
x 10-3 Jitter

Packet Number

Ji
tte

r (
s)

-3 -2 -1 0 1 2 3

x 10-3

0

50

100

150

200

250
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 0.838973 s
Median: 0.000131 s
IQR: 0.000751 s

Figure 10.6 – DSL to EDU Jitter (Upstream) – Alternative Test

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.01

0.011

0.012

0.013

0.014

0.015

0.016
Latency

Packet Number

La
te

nc
y

(s
)

0.0115 0.012 0.0125 0.013 0.0135 0.014 0.0145 0.015 0.0155
0

50

100

150

200

250
Latency Histogram

Latency (s)

Average: 0.012938 s
Variance: 0.415103 s
Median: 0.012935 s
IQR: 0.000576 s

Figure 10.7 – DSL to EDU Latency (Upstream) – Alternative Test

 84

85

The DSL tests revealed some periodic delay spikes in the downstream channel at

40 second intervals. It is unknown what would cause these spikes, but they will certainly

have adverse effects on a VoIP application. There was some inconsistency in the

upstream that is possibly due to varying channel allocation or a non-static route. The

connection shown in Figures 10.6 and 10.7 ended less than one minute before the

connection shown in Figures 10.4 and 10.5 was opened. The test in Figures 10.6 and

10.7 very closely resemble the downstream link with the exception of the impulsive

delay. The most jitter seen in any test was less than 20ms, which is less than one frame.

The longest delay seen was less than 70ms and typically below 40ms. This suggests that

DSL should be able to support VoIP well because of low levels of both jitter and latency.

10.1.2. Cox Cable Internet Service Tests

The cable modem Internet connection is made through a router which implements

NAT for the computers on the internal LAN.

Internet

3c980 c-TXM 3c905B-TXLinksys BEFW11S4 V.2 Dlink DCM-200

Figure 10.8 – Cable Broadband Test Configuration

0 500 1000 1500 2000 2500 3000
-5

0

5
x 10-3 Jitter

Packet Number

Ji
tte

r (
s)

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10-3

0

200

400

600

800
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 0.086646 s
Median: -0.000003 s
IQR: 0.000212 s

Figure 10.9 – EDU to CABLE Jitter (Downstream)

0 500 1000 1500 2000 2500 3000
0.009

0.01

0.011

0.012

0.013

0.014

0.015
Latency

Packet Number

La
te

nc
y

(s
)

0.009 0.01 0.011 0.012 0.013 0.014 0.015
0

200

400

600

800

1000

1200
Latency Histogram

Latency (s)

Average: 0.009956 s
Variance: 0.045842 s
Median: 0.009959 s
IQR: 0.000131 s

Figure 10.10 – EDU to CABLE Latency (Downstream)

 86

0 1000 2000 3000 4000 5000 6000 7000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Jitter

Packet Number

Ji
tte

r (
s)

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

200

400

600

800
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 10.441892 s
Median: 0.000104 s
IQR: 0.003015 s

Figure 10.11 – CABLE to EDU Jitter (Upstream)

0 1000 2000 3000 4000 5000 6000 7000
0.01

0.02

0.03

0.04

0.05
Latency

Packet Number

La
te

nc
y

(s
)

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

200

400

600

800

1000
Latency Histogram

Latency (s)

Average: 0.017972 s
Variance: 5.251139 s
Median: 0.017728 s
IQR: 0.001903 s

Figure 10.12 – CABLE to EDU Latency (Upstream)

 87

The tests on the Cable connection were very consistent. The downstream had a

typical delay of around 10ms and rarely had a spike above 12ms. The largest delay spike

seen on the downstream was 60ms. The typical jitter was less than 1ms. On the

upstream, delays were higher, as expected. The average delay was around 18ms and

rarely went above 35ms. The largest delay seen in the upstream was 50ms. The jitter

was nearly always below 10ms. From this data, it appears that a Cable Internet

connection will easily support a VoIP system. This is supported by its broad commercial

use for that purpose.

The DSL and Cable tests revealed that a Cable connection has better characteristics

for VoIP, but only by a narrow margin. The overall characteristics of DSL are actually

superior if the upstream connection consistently produced results like those in Figures

10.6 and 10.7. The differences are negligible, though, as both systems are easily capable

of providing excellent quality of service for VoIP.

10.2. Wireless LANs

Wireless LANs are fast appearing in many public places such as airports, coffee

shops, stadiums, and libraries. Some cell phones now support the ability to use a wireless

LAN instead of cellular service for voice and data service in those areas with wireless

LAN infrastructure. They are also often used in homes to connect PCs to a broadband

connection. The wireless LANs tested were Bluetooth, 802.11b, and 802.11g. In

addition, an 802.11b NIC was used to connect to an 802.11g access point and an 802.11g

NIC to an 802.11b access point.

 88

89

10.2.1. Bluetooth Tests

The Bluetooth connections were made using the Personal Area Network (PAN)

profile to an Ethernet access point.

Anycom 220 3c905B-TXAxis 9010

Figure 10.13 – Bluetooth Test Configuration

.

0 200 400 600 800 1000 1200 1400
-0.03

-0.02

-0.01

0

0.01

0.02
Jitter

Packet Number

Ji
tte

r (
s)

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

200

400

600

800

1000
Jitter Histogram

Jitter (s)

Average: 0.000003 s
Variance: 29.065324 s
Median: -0.002031 s
IQR: 0.000022 s

10.7ms 10.7ms

Figure 10.14 – Bluetooth Access Point to NIC Jitter

0 200 400 600 800 1000 1200 1400
0.005

0.01

0.015

0.02

0.025

0.03

0.035
Latency

Packet Number

La
te

nc
y

(s
)

0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

20

40

60

80
Latency Histogram

Latency (s)

Average: 0.018195 s
Variance: 19.047075 s
Median: 0.018082 s
IQR: 0.006150 s

Figure 10.15 – Bluetooth Access Point to NIC Latency

 90

0 200 400 600 800 1000 1200 1400
-0.04

-0.02

0

0.02

0.04
Jitter

Packet Number

Ji
tte

r (
s)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

100

200

300

400

500
Jitter Histogram

Jitter (s)

Average: -0.000001 s
Variance: 142.386045 s
Median: -0.004981 s
IQR: 0.019521 s

10ms 10ms 10ms

Figure 10.16 – Bluetooth NIC to Access Point Jitter

0 200 400 600 800 1000 1200 1400 1600
0

0.01

0.02

0.03

0.04

0.05

0.06
Latency

Packet Number

La
te

nc
y

(s
)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

20

40

60

80

100
Latency Histogram

Latency (s)

5ms

70μs/s

Average: 0.021818 s
Variance: 54.210060 s
Median: 0.021294 s
IQR: 0.010516 s

Figure 10.17 – Bluetooth NIC to Access Point Latency

 91

Bluetooth was originally designed to replace cables to devices such as mice,

keyboards, and scanners on a desktop and as such, it was not designed with high

bandwidth capabilities (only 721 kbps). It is considered here because it is often used to

connect handheld computers or cell-phones to a network connection or to share the

network connection provided by the phone. The average delay of a Bluetooth connection

is about 20ms with peaks that are frequently above 50ms. That is more than 2 frames of

speech data so the jitter is non-negligible, but will most likely not severely degrade

quality of service if the jitter buffer on the receiver is configured properly. There is a

very rigid structure in the Bluetooth data that is presumably due to the synchronization

scheme used. The access point was observed to only vary the delay by multiples of

10.7ms offset from zero by 2.1ms as seen in Figure 10.14. This results in the high

frequency appearance of the latency in Figure 10.15. The NIC apparently uses a slightly

different timing scheme in which the delay is varied only in multiples of 10ms offset

from zero by 4.8ms as seen in Figure 10.16. Because the offset is so close to 5ms (half of

the interval), the latency appears to have the slowly increasing structure seen in Figure

10.17. Because Bluetooth has a jitter of nearly 40ms, it should probably be avoided if

convenient alternatives are available.

10.2.2. 802.11a Tests

The 802.11a connections were established using the Microsoft wireless zero

configuration service in Windows XP.

 92

93

SMC 2735W
3c905B-TX

802.11a

SMC 2755W

Figure 10.18 – 802.11a Test Configuration

Figure 10.19 – 802.11a Access Point to NIC Jitter

Figure 10.20 – 802.11a Access Point to NIC Latency

 94

0 2000 4000 6000 8000 10000 12000 14000
-0.01

-0.005

0

0.005

0.01
Jitter

Packet Number

Ji
tte

r (
s)

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
0

2000

4000

6000

8000

10000

12000
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 0.034663 s
Median: 0.000000 s
IQR: 0.000008 s

Figure 10.21 – 802.11a NIC to Access Point Jitter

0 2000 4000 6000 8000 10000 12000 14000
0

0.002

0.004

0.006

0.008

0.01

0.012
Latency

Packet Number

La
te

nc
y

(s
)

0 0.002 0.004 0.006 0.008 0.01 0.012
0

2000

4000

6000

8000

10000

12000
Latency Histogram

Latency (s)

Average: 0.000189 s
Variance: 0.017341 s
Median: 0.000183 s
IQR: 0.000006 s

71.69s period

Figure 10.22 – 802.11a NIC to Access Point Latency

 95

The tests of the 802.11a network showed excellent baseline latency (less than

200µs). When the NIC transmitted to the access point, the jitter was always less than

12ms, which should not affect VoIP. When packets were sent the other way, the jitter

was nearly an order of magnitude higher. With these delays of over 90ms the VoIP

application would need to buffer an additional four frames to avoid buffer starvation.

This is certainly doable, but it will add to the total latency perceived by the user. The

jitter spikes in both cases are periodic. The small spikes generated by the NIC have a

period of 71.69s and the large spikes generated by the access point have a period of 63s.

The source of the 71.69s spikes is unknown and assumed to be caused by some feature of

the access point. The 63s spikes were determined to be caused by the wireless zero

configuration scanning for new access points.

In addition to the large delay, the traffic generated by the NIC included many

duplicate receptions. The timestamps on the duplicates were between 70µs and 110µs.

Vern Paxson suggests that packet filter software can sometimes duplicate packets [33].

Guy Harris posted on the Ethereal forum that many wireless drivers will errantly provide

two copies of each packet to WinPcap [17]. The large difference in timestamps leads me

to believe that these two possibilities are probably not true. Srikant Sharma explains that

802.11 will retransmit packets on a wireless link at MAC level if an acknowledgment is

not received [38]. This is below the transport layer and is therefore transparent to UDP.

However, the 802.11 endpoint is responsible for removing duplicate packets based on

sequence numbers in the 802.11 header. It is possible that the access point is failing

remove unneeded retransmissions. The duplicate packets come in a single large chunk.

 96

97

In one test, 5111 packets were duplicated all consecutively, all with similar delays from

the original, with each duplicated exactly once. This doesn’t seem likely to be caused by

network error.

10.2.3. 802.11b Tests

The 802.11b connections were established using the Microsoft wireless zero

configuration service in Windows XP.

Cisco Systems 350
3c905B-TX

802.11b

BEFW11S4 V.2

Figure 10.23 – 802.11b Test Configuration

0 200 400 600 800 1000 1200 1400
-0.01

-0.005

0

0.005

0.01
Jitter

Packet Number

Ji
tte

r (
s)

Missing Packet → ← Missing Packet

-6 -4 -2 0 2 4 6 8 10

x 10-3

0

50

100

150
Jitter Histogram

Jitter (s)

Average: -0.000009 s
Variance: 0.201510 s
Median: 0.000001 s
IQR: 0.000341 s

Figure 10.24 – 802.11b Access Point to NIC Jitter

0 200 400 600 800 1000 1200 1400
0

0.002

0.004

0.006

0.008

0.01

0.012
Latency

Packet Number

La
te

nc
y

(s
)

Missing Packet →
← Missing Packet

1 2 3 4 5 6 7 8 9 10 11

x 10-3

0

20

40

60

80

100
Latency Histogram

Latency (s)

Average: 0.001646 s
Variance: 0.262763 s
Median: 0.001703 s
IQR: 0.000609 s

Figure 10.25 – 802.11b Access Point to NIC Latency

 98

0 200 400 600 800 1000 1200 1400
-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Jitter

Packet Number

Ji
tte

r (
s)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

200

400

600

800

1000
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 0.168685 s
Median: 0.000000 s
IQR: 0.000020 s

Figure 10.26 – 802.11b NIC to Access Point Jitter

0 200 400 600 800 1000 1200 1400
0

0.002

0.004

0.006

0.008

0.01

0.012
Latency

Packet Number

La
te

nc
y

(s
)

0 0.002 0.004 0.006 0.008 0.01 0.012
0

500

1000

1500
Latency Histogram

Latency (s)

Average: 0.001113 s
Variance: 0.084130 s
Median: 0.001097 s
IQR: 0.000015 s

Figure 10.27 – 802.11b NIC to Access Point Latency

 99

The 802.11b wireless LAN standard is probably the most widely deployed wireless

LAN. It is capable of speeds up to 11 Mbps, though that says nothing of its delay and

loss rate. The data paths to and from the access point appear to be similar in Figures

10.24 through 10.27. The jitter is almost always below 1ms and the latency is typically

below 8ms. When the access point was transmitting, there was a steep step observed in

the latency from several tests, as visible in Figure 10.25. It is assumed that this is due to

internal delay in the access point for radio synchronization. Even with excellent signal

strength, a few packets are occasionally lost, also visible in Figure 10.25. The delay and

jitter characteristics of 802.11b are small enough to not adversely affect VoIP

applications.

10.2.4. 802.11g Tests

The 802.11g connections were established using the Microsoft wireless zero

configuration service in Windows XP.

 100

SMC 2835W
3c905B-TX

802.11g

SMC 2804WBR

Figure 10.28 – 802.11g Test Configuration

 101

Figure 10.29 – 802.11g Access Point to NIC Jitter

Figure 10.30 – 802.11g Access Point to NIC Latency

 102

Figure 10.31 – 802.11g NIC to Access Point Jitter

Figure 10.32 – 802.11g NIC to Access Point Latency

 103

104

The tests of the 802.11g network showed two different periodic aspects. The 63s

delay spikes were caused by the wireless zero configuration. The test was later rerun

with he wireless zero configuration service disabled, and the 63s periodic spikes no

longer existed. The other delays seen had a 10.24s period. This is assumed to derive

from some 10ms driven counter that causes an interference event every 1024 counts. The

exact cause is unknown. The typical latency is less than 600µs in both directions, but

unless the large jitter that was as high as 600ms is eliminated, this network will have poor

performance in a VoIP system.

10.2.5. 802.11b NIC with 802.11g Access Point Tests

The Microsoft wireless zero configuration was used in these tests.

Cisco Systems 350
3c905B-TX

802.11b

SMC 2804 WBR

Figure 10.33 – 802.11b NIC and 802.11g Access Point Test Configuration

0 2000 4000 6000 8000 10000 12000 14000
-2

-1

0

1

2
x 10-3 Jitter

Packet Number

Ji
tte

r (
s)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10-3

0

2000

4000

6000

8000

10000
Jitter Histogram

Jitter (s)

Average: -0.000004 s
Variance: 5.904193 s
Median: 0.000000 s
IQR: 0.000018 s

Figure 10.34 – 802.11g Access Point to 802.11b NIC Jitter

0 2000 4000 6000 8000 10000 12000 14000
0.5

1

1.5

2

2.5

3
x 10-3

La
te

nc
y

(s
)

Latency

Packet Number

1

2

3

4

5

P
ac

ke
t L

os
s

R
at

e

0.5 1 1.5 2 2.5

x 10-3

0

1000

2000

3000

4000
Latency Histogram

Latency (s)

Average: 0.000936 s
Variance: 12.165474 s
Median: 0.000926 s
IQR: 0.000253 s

63s

Figure 10.35 – 802.11g Access Point to 802.11b NIC Latency

 105

0 500 1000 1500 2000 2500 3000
-1.5

-1

-0.5

0

0.5

1

1.5
x 10-3 Jitter

Packet Number

Ji
tte

r (
s)

-1.5 -1 -0.5 0 0.5 1 1.5

x 10-3

0

500

1000

1500

2000
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 0.009504 s
Median: 0.000000 s
IQR: 0.000022 s

Figure 10.36 – 802.11b NIC to 802.11g Access Point Jitter

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2
x 10-3 Latency

Packet Number

La
te

nc
y

(s
)

0.5 1 1.5 2

x 10-3

0

500

1000

1500

2000
Latency Histogram

Latency (s)

Average: 0.000623 s
Variance: 0.004695 s
Median: 0.000614 s
IQR: 0.000015 s

2.97 sec period

Figure 10.37 – 802.11b NIC to 802.11g Access Point Latency

 106

In the configuration where an 802.11b device is operating in a network using an

802.11g access point, the access point is able to reduce its speeds to support the older

device. When the access point is transmitting, the packet loss rate is surprisingly high

considering that it is operating in a local network with its endpoints less than 10 feet from

one another. As seen in Figure 10.35, between 4 and 5 packets are lost every 63 seconds.

This is due to the wireless zero configuration software probing for new access points. On

some hardware, this causes the active connection to be interrupted and hence causing the

packet loss. Aside from the packet loss, the latency and jitter are exceptionally low. The

average latency is below 1ms with jitter below 2ms. The step in the latency that existed

in the 802.11b tests appears in this test as well. The source of the 2.97s periodic delays in

the tests in which the 802.11b NIC is transmitting is unknown.

10.2.6. 802.11g NIC with 802.11b Access Point Tests

The Microsoft wireless zero configuration was used in these tests.

 107

108

SMC 2835W
3c905B-TX

802 .11b

BEFW11S4 V.2

Figure 10.38 – 802.11g NIC and 802.11b Access Point Test Configuration

Figure 10.39 – 802.11b Access Point to 802.11g NIC Jitter

Figure 10.40 – 802.11b Access Point to 802.11g NIC Latency

 109

Figure 10.41 – 802.11g NIC to 802.11b Access Point Jitter

Figure 10.42 – 802.11g NIC to 802.11b Access Point Latency

 110

In the case where an 802.11g NIC is using an 802.11b access point, many of the

periodic delays seen in previous tests show up again. When the access point is

transmitting, the 63s delays and packet losses appear again. This is again solved by

disabling the wireless zero configuration. The 30.7s delays are three times the 10.24s

delays. The 10.24s delays are seen when the NIC is transmitting. The source of these

10.24s delays is unknown.

Bluetooth is a reasonable technology for use in a VoIP system based on the

characteristics measured with these tests. 802.11 configurations had much lower typical

latencies than Bluetooth. Until the source of the large delay spikes can be identified and

eliminated, 802.11 hardware that experienced those delays will perform poorly in a VoIP

system. It is assumed that the existence of these delays is caused by some aspect of the

hardware or software used in the configurations and that the delays are not simply

inherent in 802.11g.

10.3. Cellular Data Networks

The primary reason to want VoIP traffic on a cellular data connection as opposed to

using the cellular voice service is to encrypt the speech data. Without the support of a

service provider, cellular data is the only option. These tests were run on the AT&T and

Sprint cellular data networks, which use EDGE and CDMA2000 1xRTT, respectively.

Enhanced Data rates for GSM Evolution (EDGE) is a GPRS-compatible data service

capable of up to 384 Kbps. Code Division Multiple Access (CDMA) 1x Radio

 111

112

Transmission Technology (RTT) is the first stage of the CDMA2000 deployment capable

of up to 144 kbps.

10.3.1. Windows XP Connection Sharing Tests

Internet

3c980c-TXM 3c905B-TX

3CCFE575BT-D

Broadcom 440x

Figure 10.43 – Connection Sharing Test Configuration

Due to limitations in WinPcap, it is not possible to access a dial-up networking

connection from within the WinPcap protocol driver. The CDMA driver for the Sprint

SPHA620 phone is implemented as a dial-up networking device. This means that it is not

possible to directly use the phone with the test software. To work around this, the two

wireless data connections were configured on a separate machine and the connections

were shared to an Ethernet port using Windows XP connection sharing. A standard

Ethernet PCMCIA card was shared to identify the overhead associated with the

connection sharing software. The connection sharing is a symmetric process that

113

imposes an additional 150 µs delay on average, but can be impulsive up to 2 ms and in a

few cases has had periodic impulsive spikes up to 1.6 ms with a period of 7.875 s. The

source of these delays is unknown, but assumed to be caused by other operations on the

Windows XP system. This additional noise is negligible because the delays typically

seen in the wireless data networks are at least 2 orders of magnitude greater than the

worst errors caused by the connection sharing.

10.3.2. Sprint CDMA 1xRTT Tests

Internet

3c980c-TXM 3c905B-TX

CDMA 1xRTT

Broadcom 440x

Samsung SPH-A620

Figure 10.44 – CDMA Test Configuration

0 200 400 600 800 1000 1200 1400
-0.1

0

0.1

0.2

0.3

0.4
Jitter

Packet Number

Ji
tte

r (
s)

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400
Jitter Histogram

Jitter (s)

Average: 0.000124 s
Variance: 1564.925974 s
Median: -0.005024 s
IQR: 0.040804 s

Figure 10.45 – CDMA to EDU Jitter (Upstream)

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8
Latency

Packet Number

La
te

nc
y

(s
)

← Missing Packet

←
 M

is
si

ng
 P

ac
ke

t

←
 M

is
si

ng
 P

ac
ke

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200
Latency Histogram

Latency (s)

Average: 0.198340 s
Variance: 7440.942333 s
Median: 0.156082 s
IQR: 0.061725 s

6.0075 s period

Figure 10.46 – CDMA to EDU Latency (Upstream)

 114

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

1

1.5
Jitter

Packet Number

Ji
tte

r (
s)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600
Jitter Histogram

Jitter (s)

Average: 0.000024 s
Variance: 7526.539348 s
Median: -0.031976 s
IQR: 0.052960 s

Figure 10.47 – EDU to CDMA Jitter (Downstream)

0 200 400 600 800 1000 1200 1400
0

1

2

3

4
Latency

Packet Number

La
te

nc
y

(s
)

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100
Latency Histogram

Latency (s)

Average: 0.521809 s
Variance: 246058.371051 s
Median: 0.403228 s
IQR: 0.348097 s

Figure 10.48 – EDU to CDMA Latency (Downstream)

 115

116

The CDMA tests reveal considerable delays on the upstream network path, with

levels reaching as high as 700ms but more often peaking at about 400ms. The jitter is

typically below 150ms. The downstream is far worse than the upstream. On several

occasions, latency as high as 3.25s was observed, though the average latency was

approximately 500ms. The jitter was typically around 200ms. For this connection to be

useful for VoIP, a relatively large jitter buffer will be required and the end-to-end delay

experienced by the user will probably be unacceptably high.

10.3.3. AT&T Wireless EDGE Tests

Internet

3c980c-TXM 3c905B-TX

Sony GC-82

EDGE

Broadcom 440x

Figure 10.49 – EDGE Test Configuration

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

1
Jitter

Packet Number

Ji
tte

r (
s)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800
Jitter Histogram

Jitter (s)

Average: -0.000203 s
Variance: 9858.696599 s
Median: -0.042748 s
IQR: 0.038299 s

Figure 10.50 – EDGE to EDU Jitter (Upstream)

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
Latency

Packet Number

La
te

nc
y

(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150
Latency Histogram

Latency (s)

Average: 0.268710 s
Variance: 25539.277842 s
Median: 0.222903 s
IQR: 0.222775 s

Figure 10.51 – EDGE to EDU Latency (Upstream)

 117

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

1

1.5
Jitter

Packet Number

Ji
tte

r (
s)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800
Jitter Histogram

Jitter (s)

Average: -0.000183 s
Variance: 11467.252282 s
Median: -0.044923 s
IQR: 0.090049 s

Figure 10.52 – EDU to EDGE Jitter (Downstream)

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5
Latency

Packet Number

La
te

nc
y

(s
)

0 0.5 1 1.5
0

50

100

150
Latency Histogram

Latency (s)

Average: 0.366607 s
Variance: 64394.756037 s
Median: 0.290950 s
IQR: 0.324511 s

Figure 10.53 – EDU to EDGE Latency (Downstream)

 118

The EDGE tests show large delay spikes just below 1s in the upstream channel and

jitter as high as 825ms. The downstream was even worse with delay spikes as large as

10s in some cases and jitter over 1s. With performance like this, the quality of service

will be greatly degraded. System will either suffer extreme end-to-end delay or the

system will lose audio for a few seconds at a time, or possibly both. As such, it will

probably not be a suitable network for VoIP.

Both of the cellular data services tested had poor performance as it pertains to

VoIP. They may be useable if it is decided that large delays are permissible. The CDMA

data was somewhat better than the EDGE service even though the EDGE service has a

higher available bandwidth. In both cases, the upstream had better properties than the

downstream which seems counter-intuitive. Perhaps 3G cellular data will be capable of

providing the service required by VoIP in the future.

10.4. Concatenated Networks

It is often necessary for data to traverse many networks with differing properties

before reaching its destination. In some cases concatenated networks can have effects

other than simply additive properties, such as when TCP is used and self-clocking, the

regulation of the packet transmission rate by the rate of acknowledgments, adjusts the

transmission to the rate capable by the lowest bandwidth link. In the case of UDP and

latency, the properties of concatenated networks should be additive. In this section, two

configurations of concatenated networks will be discussed. The first is a connection

through the AT&T EDGE data network to a computer on a Cox Cable connection. The

 119

120

second is a computer using Bluetooth to access Cox Cable Internet service to

communicate with a computer on an educational link.

10.4.1. EDGE and Cable Concatenated Tests

Internet

3c980c-TXM 3c905B-TX

Sony GC-82

EDGE

Dlink DCM-200 BEFW11S4 V.2
Broadcom 440x

Figure 10.54 – EDGE and Cable Concatenated Test Configuration

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

1
Jitter

Packet Number

Ji
tte

r (
s)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

400

500

600
Jitter Histogram

Jitter (s)

Average: -0.000327 s
Variance: 6402.284045 s
Median: -0.035129 s
IQR: 0.090163 s

Figure 10.55 – CABLE to EDGE Jitter

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5
Latency

Packet Number

La
te

nc
y

(s
)

0 0.5 1 1.5 2 2.5
0

50

100

150

200
Latency Histogram

Latency (s)

Average: 0.350168 s
Variance: 123132.016258 s
Median: 0.233403 s
IQR: 0.183839 s

Figure 10.56 – CABLE to EDGE Latency

 121

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

1
Jitter

Packet Number

Ji
tte

r (
s)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800
Jitter Histogram

Jitter (s)

Average: -0.000232 s
Variance: 5737.081178 s
Median: -0.028608 s
IQR: 0.058214 s

Figure 10.57 – EDGE to CABLE Jitter

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
Latency

Packet Number

La
te

nc
y

(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200
Latency Histogram

Latency (s)

Average: 0.217325 s
Variance: 17431.419327 s
Median: 0.168272 s
IQR: 0.127241 s

Figure 10.58 – EDGE to CABLE Latency

 122

123

The tests that measured an EDGE connection to cable Internet essentially replicated

the results of EDGE to an educational link. This is because the poor performance of the

wireless connection overwhelms the effects of the cable connection. The most drastic is

the data path from the EDGE device to the cable connection where EDGE averages

latencies well over 200ms and the cable averages less than 10ms. The jitter histograms of

the EDGE to cable and EDGE to EDU are almost identical. This is because, on the scale

of the histograms including EDGE, the cable jitter histograms are impulsive. Because of

the extent of the delay caused by EDGE, the cable connection’s effects can be ignored.

10.4.2. Bluetooth and Cable Concatenated Tests

Internet

Anycom 220 3c905B-TXDlink DCM-200BEFW11S4 V.2Axis 9010

Figure 10.59 – Bluetooth and Cable Concatenated Test Configuration

0 200 400 600 800 1000 1200 1400
-0.05

0

0.05
Jitter

Packet Number

Ji
tte

r (
s)

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25
Jitter Histogram

Jitter (s)

10ms 10ms 10ms 10ms
Average: -0.000009 s
Variance: 163.0042 s
Median: -0.001414 s
IQR: 0.019573 s

Figure 10.60 – Bluetooth to CABLE to EDU Jitter (Upstream)

0 200 400 600 800 1000 1200 1400
0.02

0.03

0.04

0.05

0.06

0.07

0.08
Latency

Packet Number

La
te

nc
y

(s
)

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

10

20

30

40
Latency Histogram

Latency (s)

Average: 0.040813 s
Variance: 64.303839 s
Median: 0.040737 s
IQR: 0.011173 s

Figure 10.61 – Bluetooth to CABLE to EDU Latency (Upstream)

 124

0 200 400 600 800 1000 1200 1400
-0.02

-0.01

0

0.01

0.02
Jitter

Packet Number

Ji
tte

r (
s)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

200

400

600

800

1000
Jitter Histogram

Jitter (s)

Average: 0.000000 s
Variance: 46.857120 s
Median: 0.001877 s
IQR: 0.000011 s

15.625s 15.625s

Figure 10.62 – EDU to CABLE to Bluetooth Jitter (Downstream)

0 200 400 600 800 1000 1200 1400
0.01

0.02

0.03

0.04

0.05
Latency

Packet Number

La
te

nc
y

(s
)

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50
Latency Histogram

Latency (s)

Average: 0.029887 s
Variance: 30.822059 s
Median: 0.029816 s
IQR: 0.008135 s

Figure 10.63 – EDU to CABLE to Bluetooth Latency (Downstream)

 125

The concatenated network consisting of cable Internet service and Bluetooth shows

very good additive properties. For the upstream case, the average latency is 40.8ms. The

independent Bluetooth tests averaged about 22ms and the independent cable internet tests

averaged about 18ms. This is very close considering the tests were not done in a

controlled environment. The jitter also shows the additive properties of the concatenated

network tests. The jitter histogram of the concatenated network should be convolution of

the jitter histograms of the independent tests, which appears to be the case. In the

downstream tests, the comparison between to independent networks and the concatenated

networks agree as well. The average latency in the concatenated test is 30ms. The

independent Bluetooth tests averaged about 19ms and the independent cable internet tests

averaged about 10ms. These latencies when added closely match those of the

concatenated test, even though the tests were not performed at the same time. The

convolution of the jitter histograms matches as well and is easy to verify because the

jitter histogram for the downstream cable Internet is impulsive (within ±0.5ms) when

compared with the jitter histogram of the Bluetooth connection. There is an increase in

the jitter spread, though its cause is unknown.

These two examples of concatenated networks support the hypothesis that the

effects of latency and jitter are additive. They also demonstrate the repeatability of the

system; its ability to provide accurate measurements of jitter and latency.

 126

CHAPTER 11

CONCLUSIONS

From the tests discussed in Chapter 10, the capability that the system has to reveal

detailed network properties is apparent. It can not only be used to profile the

performance of a network link, but also to detect problems with network configuration

that may be otherwise hidden. The testing system is versatile in that it can work with a

wide variety of NICs but can also improve accuracy by using a specific NIC.

11.1. System Performance

The error of the system was measured on two machines and shown in Table 11.1.

The baseline error is the error floor. The error was always seen to be at or above that

level. If these errors are measured for a machine, they can be subtracted from the

latencies to improve accuracy. The uncertainty of the measurements, the random part of

the error, is how far above the baseline the error was observed. This is the range within

which the measurements should not be considered valid. Every measurement should be

assumed to have an error within that range.

Table 11.1 – System Error
 Protocol

Baseline
e100b NIC
Baseline

Protocol
Uncertainty

e100b NIC
Uncertainty

Dual-processor 42µs 7µs 40µs 10µs
Single-processor 37µs 12µs 50µs 20µs

 127

11.2. Future Work

It is left as future work to validate the current validation techniques and the system

as a whole using DAG cards. After the system is shown to be valid, it would be useful to

add capability to store additional meta-data with the measurements, such as what the

route of the test was, the NIC driver used, and any comments about the configuration.

The route should also be monitored during the test by checking for a change in the time-

to-live of the packets that are received. A new user interface would make the system

significantly more user-friendly. It would also be useful to provide graphing capabilities

within the application. Currently, data is all written to a file and then graphed with

Matlab or Excel. In the testing, the packets were transmitted as close to 45ms apart as

possible. This could be improved to include the jitter normally introduced by a VOIP

system. This would be better than simply queuing the packets in user mode and letting

the system perturb the transmission times as it normally would because doing so would

not only be unrepeatable, but the computer load of the network test on the system would

not accurately represent that of a VoIP system. The system should be expanded to

support more than fixed-rate traffic generation so that it is applicable to other applications

such as instant messaging.

 128

REFERENCES

[1] "EndRun Technologies White Paper: UTC Time and Frequency Dissemination
via the IS-95 CDMA Mobile Telecommunications Infrastructure," November
2000, [on-line], available from
http://www.endruntechnologies.com/pdf/PTTI2000_WhitePaper.pdf; Internet;
accessed May 28, 2005.

[2] "Guidelines For Providing Multimedia Timer Support," 10-20-2002, [on-line],
available from http://www.microsoft.com/whdc/system/CEC/mm-
timer.mspx?pf=true#img1; Internet; accessed 05-30-2005.

[3] "Intel I/O Controller Hub 7 (ICH7) Family Datasheet," 05-2005, [on-line],
available from http://download.intel.com/design/chipsets/datashts/30701301.pdf;
Internet; accessed 05-30-2005.

[4] "Microsoft Windows Driver Development Kits," [on-line], available from
http://www.microsoft.com/ddk/; Internet; accessed May 12, 2005.

[5] "The W3IWI/TAPR TAC-2 (Totally Accurate Clock) Project," [on-line],
available from http://www.tapr.org/kits_tac2.html; Internet; accessed July 09,
2005.

[6] "Windows Packet Capture Library," 11-04-2004, [on-line], available from
http://winpcap.polito.it/; Internet; accessed 03-06-2005.

[7] G. Almes, S. Kalidindi, and M. Zekauskas, "A One-way Delay Metric for IPPM,"
September, [on-line], available from http://www.ietf.org/rfc/rfc2679.txt; Internet;
accessed June 08, 2005.

[8] T. M. Chen and L. Hu, "Internet Performance Monitoring," Proc. of IEEE, August
2002, 2002.

[9] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, "Measurement Considerations for
Assessing Unidirectional Latencies," Internetworking: Research and Experience,
vol. 4 (3), pp. 121-132, 1993.

[10] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson, "Design
Principals for Accurate Passive Measurement," Proc. of the Passive and Active
Measurement Workshop, 2000.

[11] D. Constantinescu, P. Carlsson, and A. Popescu, "One-Way Transit Time
Measurements," Blekinge Institute of Technology, Research Report 2004:06.

[12] J. P. Curtis, J. Cleary, A. McGregor, and M. Pearson, "Measurement of Voice
over IP Traffic," Proc. of PAM2000 Workshop on Passive and Active Networking,
2000.

[13] L. Degioanni, M. Baldi, F. Risso, and G. Varenni, "Profiling and Optimization of
Software-Based Network-Analysis Applications," Proc. of the 15th IEEE

 129

http://www.endruntechnologies.com/pdf/PTTI2000_WhitePaper.pdf;
http://www.microsoft.com/whdc/system/CEC/mm-timer.mspx?pf=true#img1;
http://www.microsoft.com/whdc/system/CEC/mm-timer.mspx?pf=true#img1;
http://download.intel.com/design/chipsets/datashts/30701301.pdf;
http://www.microsoft.com/ddk/;
http://www.tapr.org/kits_tac2.html;
http://winpcap.polito.it/;
http://www.ietf.org/rfc/rfc2679.txt;

Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD 2003), 2003.

[14] C. Demichelis and P. Chimento, "IP Packet Delay Variation Metric for IP
Performance Metrics (IPPM)," [on-line], available from
http://www.ietf.org/rfc/rfc3393.txt; Internet; accessed June 08, 2005.

[15] S. Donnelly, I. Graham, and R. Wilhelm, "Passive Calibration of an Active
Measurement System," Proc. of PAM2001, Workshop and Passive and Active
Measurements, 2001.

[16] I. D. Graham, S. F. Donnelly, S. Martin, J. Martens, and J. G. Cleary,
"Nonintrusive and Accurate Measurement of Unidirectional Delay and Delay
Variation on the Internet," Proc. of INET'98, 1998.

[17] G. Harris, [on-line], available from http://www.ethereal.com/lists/ethereal-
dev/200406/msg00355.html; Internet; accessed 07-02-2005.

[18] V. Jacobson, C. Leres, and S. McCanne, "libpcap," [on-line], available from
http://www.tcpdump.org/; Internet; accessed February 18, 2005.

[19] J. Jeong, S. Lee, and Y. Kim, "Design and Implementation of One-way IP
Performance Measurement Tool," ICOIN 2002, 2002.

[20] S. Kalindidi and M. J. Zekauskas, "Surveyor: An Infrastructure for Internet
Performance Measurements," Proc. of INET, 1999.

[21] S. McCanne and V. Jacobson, "The BSD Packet Filter: A New Architecture for
User-level Packet Capture," Proc. of the 1993 Winter USENIX Technical
Conference, 1993.

[22] J. Micheel, S. Donnelly, and I. Graham, "Precision timestamping of network
packets," Proc. of the SIGCOMM IMW, 2001.

[23] Microsoft Inc., "Basic Operation of the Windows Time Service," [on-line],
available from http://support.microsoft.com/kb/q224799/; Internet; accessed.

[24] D. L. Mills, "Network Time Protocol (Version 3): Specification, Implementation
and Analysis." Menlo Park, CA: Network Information Center, SRI International,
1992, pp. RFC 1305.

[25] D. L. Mills, "Simple Network Time Protocol (SNTP) Version 4," [on-line],
available from http://www.apps.ietf.org/rfc/rfc2030.html; Internet; accessed June
8, 2005.

[26] S. B. Moon, P. Skelly, and D. Towsley, "Estimation and Removal of Clock Skew
from Network Delay Measurements," Proc. of the IEEE INFOCOM Conference
on Computer Communications, 1999.

[27] J. Nilsson, "Implement a Continuously Updating, High-Resolution Time Provider
for Windows," [on-line], available from
http://msdn.microsoft.com/msdnmag/issues/04/03/HighResolutionTimer/default.a
spx; Internet; accessed 03-09-2005.

[28] W. Oney, Programming the Microsoft Windows Driver Model, 2 ed: Microsoft
Press, 2003.

[29] A. Pàsztor and D. Veitch, "PC Based Precision Timing without GPS," Proc. of
ACM SIGMETRICS, 2002.

[30] A. Pàsztor and D. Veitch, "A Precision Infrastructure for Active Probing," Proc.
of PAM2001, Workshop and Passive and Active Measurements, 2001.

 130

http://www.ietf.org/rfc/rfc3393.txt;
http://www.ethereal.com/lists/ethereal-dev/200406/msg00355.html;
http://www.ethereal.com/lists/ethereal-dev/200406/msg00355.html;
http://www.tcpdump.org/;
http://support.microsoft.com/kb/q224799/;
http://www.apps.ietf.org/rfc/rfc2030.html;
http://msdn.microsoft.com/msdnmag/issues/04/03/HighResolutionTimer/default.aspx;
http://msdn.microsoft.com/msdnmag/issues/04/03/HighResolutionTimer/default.aspx;

[31] V. Paxson, "Measurements and Analysis of End-to-End Internet Dynamics," in
Computer Science, vol. PhD. Berkeley, CA: University of California, Berkeley,
1997, pp. 409.

[32] V. Paxson, "On Calibrating Measurements of Packet Transit Times," Proc. of
ACM SIGMETRICS, 1998.

[33] V. Paxson, "Strategies for Sound Internet Measurement," Proc. of the 4th ACM
SIGCOMM on Internet measurement, 2004.

[34] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, "Framework for IP
Performance Metrics," May 1998, [on-line], available from
http://www.ietf.org/rfc/rfc2330.txt; Internet; accessed June 08, 2005.

[35] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, "Adaptive Playout
Mechanisms for Packetized Audio Applications in Wide-Area Networks," Proc.
of IEEE INFOCOM, 1994.

[36] F. Risso and L. Degioanni, "An Architecture for High Performance Network
Analysis," Proc. of the 6th IEEE Symposium on Computers and Communications
(ISCC 2001), 2001.

[37] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: A Transport
Protocol for Real-Time Applications," in RFC 3550, 2003.

[38] S. Sharma, "Analysis of 802.11b MAC: A QoS, Fairness, and Performance
Perspective," ArXiv Computer Science e-prints, 2004.

[39] Symmetricomm Inc., BC637PCI Time and Frequency Processor - User's Guide -
Revision J, 2003.

[40] H. Uijterwaal and O. Kolkman, "Internet Delay Measurments using Test Traffic:
Design Note," RIPE NCC, Tech Report RIPE-158, June 1997.

[41] D. Veitch, S. Babu, and A. Pàsztor, "Robust Synchronization of Software Clocks
Across the Internet," Proc. of the 4th ACM SIGCOMM on Internet measurement,
2004.

[42] L. Zhang, Z. Liu, and C. H. Xia, "Clock Synchronization Algorithms for Network
Measurements," Proc. of the IEEE INFOCOM Conference on Computer
Communications, 2002.

 131

http://www.ietf.org/rfc/rfc2330.txt;

APPENDIXES

 132

APPENDIX A

INTRODUCTION TO NETWORKING

Networking between computers has been defined by the general model called the

Open Systems Interconnection (OSI) model. This model defines the seven layers shown

in Table A.1. These layers separate the network into different logical functionalities that

are not necessarily separate in implementation. The layers relevant to this work are

discussed in the following sections.

Table A.1 – OSI Model Layers
Layer 7 Application Layer
Layer 6 Presentation Layer
Layer 5 Session Layer
Layer 4 Transport Layer
Layer 3 Network Layer
Layer 2 Data Link Layer
Layer 1 Physical Layer

A.1. Physical Layer

The physical layer simply provides the connection from one piece of hardware to

another. The most common is the connection from a Network Interface Card (NIC) in a

PC to a port on an Ethernet switch. It defines the electrical standard required to

communicate.

 133

A.2. Data Link Layer

The data link layer allows multiple machines to communicate using unicast or

broadcast packets. At the data link layer, a NIC for Ethernet is assigned a Medium

Access Control (MAC) address by the card manufacturer, but it can typically be

overridden by the PC. This address is used to directly communicate with another NIC on

the same Local Area Network (LAN). If a packet is sent to the reserved address

ff:ff:ff:ff:ff:ff it is transmitted to every NIC on the LAN. A LAN is distinguished from a

Wide Area Network (WAN) in that all computers are separated only by switches or

passive devices that will not make level-3 (Network Layer) routing decisions and hence

will not limit Address Resolution Protocol (ARP) traffic.

A.3. Network Layer

The network layer allows devices to communicate across vast networks having

limitless topologies. This is possible because devices called routers direct traffic through

various network links in the Internet until the packet arrives at its destination. At the

network layer, an Internet Protocol (IP) address can be bound to a NIC. This address is

typically a unique address on the Internet assigned by a Dynamic Host Configuration

Protocol (DHCP) server. Address ranges for these DHCP servers are assigned by the

Internet Assigned Numbers Authority (IANA). The IP address could however be in one

of three non-routable address ranges, shown in Table A.2.

 134

Table A.2 – Non-Routable IP Address Ranges
 Class Address Range
Range 1 Class A 10.0.0.0 - 10.255.255.255
Range 2 Class B 172.16.0.0 - 172.31.255.255
Range 3 Class C 192.168.0.0 - 192.168.255.255

Addresses from these three ranges should always be ignored by a router. This

allows for addresses in the non-routable ranges to be reused in many independent LANs

without causing conflict. Of course, to allow the computers with these non-routable

addresses to communicate with other computers on the internet, a process such as

Network Address Translation (NAT) must be performed by the router, as is further

explained in Section 1.2.2.

A.4. Transport Layer

At the transport layer, a protocol such as Transmission Control Protocol (TCP),

User Datagram Protocol (UDP), or Real-time Transport Protocol (RTP) organizes and

manages the transmission of data from one port on a computer to another port on another

computer. TCP is a reliable transport protocol, which means that the data is guaranteed

to arrive uncorrupted and in order at the destination. The packet header and the payload

are protected by a 32-bit checksum. If the packet arrives in error, the receiver requests

that the data be retransmitted. If a packet or its acknowledgment is lost entirely, a timer

will expire, causing a retransmission of the missing packet. A fast retransmission can

also happen if three duplicate acknowledgments are received, indicating the missing

packet.

 135

For a real-time streaming application like Voice-over-IP, reliable transport is

undesirable because the data being transported has a lifetime associated with it. Beyond

that lifetime, the data is invalid and is a waste of bandwidth. This is discussed further in

Chapter 2. UDP is more desirable for Voice-over-IP because it has a small overhead (8-

byte header instead of TCP’s 28-byte header) and does not retransmit when an error is

detected. In both cases the data is protected by a checksum in the header. RTP is a

transport layer protocol that is designed to use UDP and provide additional information in

its 14-byte header such as a time stamp, a sequence number, the type of data, the

synchronization source, and a list of the contributing sources. Although RTP has more

overhead, it provides information to more reliably reconstruct the streams in the receiving

application. For the purpose of this work, I will focus only on UDP because it is the base

transport protocol used for Voice-over-IP. I will also investigate a slightly modified

implementation of UDP, which protects only the header with a checksum.

A.5. Address Resolution Protocol

When attempting to send a packet to an IP address, the network subsystem must

have a way to find out what MAC address to send the packet to. The ARP sends a data-

link-layer broadcast on the LAN asking for the MAC address of the NIC to which an IP

address is bound. If a NIC with that IP address is on the LAN, it will respond with a

message stating its MAC address. This information is added to the ARP cache table so

that the next time the computer would like to send a packet to that same IP address it can

simply look the address up in its table without having to send another ARP request. If

there is no response to a broadcast ARP request, it can be assumed that the IP address is

 136

not bound to any NIC on the LAN. If this is the case, the packet should be sent to the

default gateway. The IP address of the default gateway must now be looked up in the

ARP cache or, if not there, a broadcast requesting its MAC address must be sent. The

packet is then sent to the MAC address of the default gateway.

 137

APPENDIX B

INTRODUCTION TO ROUTING

Routing is used to direct packets from one LAN to another. There are several

routing protocols and many backbone transports that exist across the Internet, but for the

purpose of this work, only the immediate routing that must be considered by the network

performance application is relevant.

B.1. Default Gateway

When a computer is not located on the same LAN as another computer it is

attempting to send a packet to, the sending computer must instead send the packet to its

default gateway. The default gateway is responsible for determining the next hop that the

packet must make, and the next router for the next hop, etcetera, until the packet reaches

its destination. The IP address of the default gateway is typically received from the

DHCP server when the computer’s IP address is assigned.

B.2. Network Address Translation

In most cases, the computers on a home LAN do not use routable IP addresses.

They typically use non-routable IP addresses that are assigned by the DHCP server in a

small router, selected from the ranges in Table 1.2. These routers also do Network

Address Translation (NAT) when it serves as a gateway between the computers on that

 138

LAN and other computers on the Internet. To perform the NAT, the router will replace

the IP address in the header of the packet with its own external IP address and store a

record of the packet header. This establishes a route between that remote server and the

internal machine based on the source and destination ports. When a packet is received

from a server on the external interface of the gateway, the source IP address is compared

with all existing routes. If the source IP address, the source port, and the destination port

match a route that is stored, the internal IP address that was stored in the route replaces

the destination IP address in the header, and the packet is transmitted on the internal LAN

to that machine.

Network Address Translation

Source Destination

Internal PC Router Internet Server

Non-Routable IP Server IPPC Port Server Port

Source Destination

Router IP Server IPPC Port Server Port

Request

Response
Source Destination

Server IP Router IPServer Port PC Port

Source Destination

Server IP Non-Routable IPServer Port PC Port

Figure B.1 – Network Address Translation

 139

APPENDIX C

INTRODUCTION TO WINDOWS DEVICE DRIVERS

There are many differences between developing device drivers and developing

application software. This section does not attempt to be a reference for device driver

development but only to identify those aspects that are required to understand the

discussions in Chapter 4. For a full reference, see Walter Oney’s book Programming the

Microsoft Windows Driver Model [28].

C.1. User Mode versus Kernel Mode

Typical application software runs in user mode. By contrast, most device drivers

run in the context of kernel mode along with the operating system. Microsoft Windows

3.0 was the first operating system which made that distinction [28]. Kernel mode

software is privileged, trusted software that has the ability to access any memory or

resource that it pleases. This means that bugs in a device driver can quite easily be fatal

to the operating system. It also means that there are many restrictions which the driver

must impose upon itself. Failure to do so will often corrupt the operating system.

C.2. Interrupt Request Level

Within the kernel, software can run at different priorities, called interrupt request

levels (IRQL). A program cannot be interrupted by another program running at an equal

 140

or lower IRQL. Only two levels are needed discussion here: PASSIVE_LEVEL and

DISPATCH_LEVEL. All user-mode programs run at PASSIVE_LEVEL as do many

kernel functions. The thread scheduler, which is responsible for preempting threads at

the expiration of a time slice, runs at DISPATCH_LEVEL. A time slice is an allotted

amount of time that a selected thread is allowed to execute before it is preempted and

another thread is selected for execution. This allows many programs to play nicely with

one another and share CPU time whether they want to or not. Because the thread

scheduler runs at DISPATCH_LEVEL, any driver code running at DISPATCH_LEVEL

or higher cannot be preempted. This means that, to maintain system integrity and

responsiveness, any software running at DISPATCH_LEVEL or higher must voluntarily

relinquish control of the CPU as soon as possible.

C.3. I/O Control Operations

One of the primary methods of communicating with a device driver is through I/O

Control operations. When a program calls an I/O Control, the system generates an I/O

Request Packet (IRP) which contains the control code, the data buffers, and their sizes.

The IRP is then passed to the driver which executes the function associated with the

control code.

These can either be accessed synchronously or asynchronously. If the I/O Control

is accessed synchronously, then in the event that the driver or the hardware it is

controlling cannot complete a request immediately, the driver will retain control of the

CPU until it is able to complete the request. This means that the software that calls the

 141

I/O Control will be blocked, waiting for control to be returned. If the I/O Control is

accessed asynchronously, then in the event of a request that cannot be completed

immediately, a STATUS_PENDING error code will be returned to notify the calling code

that the request is being handled but is not yet complete. The calling program is then free

to execute other code and later check the status of the request.

C.4. Direct-Call Interface

A direct-call interface allows a driver to export a standard set of function pointers

to be called directly by another driver, instead of creating an IRP and adding it to the

driver’s queue. This interface has much lower overhead than the I/O Control interface

and no restriction on IRQL, though it is less controlled and not available to user-mode

applications.

 142

VITA

Joseph Ryan Hershberger

Candidate for the Degree of

Master of Science

Thesis: ACCURATE AND PRECISE NETWORK PERFORMANCE TESTING IN

WINDOWS 2000

Major Field: Electrical Engineering

Biographical:

Education: Graduated from Jenks High School, Jenks, Oklahoma in May 1998;
received Bachelors of Science Degree in Electrical Engineering
Technology from Oklahoma State University in May 2003. Completed
the requirements for the Master of Science degree with a major in
Electrical Engineering at Oklahoma State University in December, 2005.

Experience: Research Assistant for Dr. Keith Teague at Oklahoma State

University from May 2002 through August 2005

Professional Memberships: Institute of Electrical and Electronics Engineers,
Society of Automotive Engineers.

Name: Joseph Ryan Hershberger

Institution: Oklahoma State University

Date of Degree: December 2005

Location: Stillwater, OK

Title of Study: ACCURATE AND PRECISE NETWORK PERFORMANCE TESTING
 IN WINDOWS 2000

Pages in Study: 142 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: The purpose of this study is to develop a network
performance test system which measures jitter and latency of low bit-rate voice
over IP traffic. The system is capable of making accurate and precise
measurements in a Windows 2000 Operating System environment. Precise, GPS-
synchronized timing is achieved with the use of a dedicated bus-level time
processing card. Packets are timestamped in a protocol driver for versatility but
can be timestamped in a network card driver for more accurate timing.

Findings and Conclusions: The overall error associated with the system’s measurement

was assessed and was found to be less than 90µs in the worst case and less than
10µs in the best case. Example network tests such as broadband Internet service,
wireless LANs, and wireless data service are analyzed. Concatenated networks
were tested as well. The work is applicable to not only voice over IP systems, but
any real-time, low bandwidth systems.

ADVISER’S APPROVAL: Dr. Keith A. Teague

