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CHAPTER 1 

INTRODUCTION 

Network performance greatly affects most applications that use a network to 

transport data of some type.  How much an application is affected is largely dependent 

upon the type of data being sent and how closely the end user interacts with the data.  

Accurately and precisely measuring different metrics for network performance can give 

the network application developers valuable information to minimize the effects of the 

network.   

 

Measuring network performance, while valuable, can be costly.  The most accurate 

and precise methods to measure network performance require the use of specialized, 

dedicated hardware.  A hardware solution is not only expensive, it is also less versatile 

than a software solution.  With this in mind, it is both more cost-effective and practical to 

design a software network performance analyzer with sufficient accuracy and precision 

that will run on a standard Windows 2000 or Windows XP based personal computer with 

only moderate hardware support.  Because the application runs in this operating system 

environment, testing a particular configuration will not require the installation of a new 

operating system and subsequently bypasses the necessity to install any software support 

that hardware in the new operating system might require. 
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The application of interest in this case is low bit-rate Voice-over-IP 

communication, specifically Mixed Excitation Linear Prediction (MELP), which is a 

2400 bit-per-second voice coder.  The goal of this study is to create a system that will 

emulate the traffic of the application and accurately measure how that traffic is affected 

by the network.  Some of the typical metrics such as throughput and round-trip time are 

either not important or do not apply and will therefore not be discussed.  There are two 

metrics that are specifically of interest: jitter and latency.  These are discussed further in 

Chapter 2. 

 

Chapter 2 will discuss what measurements are important in this study as well as 

some of the fundamental options available when measuring network performance such as 

where the timestamp code can be implemented, what clock sources are available, and 

what synchronization options are available.  Chapter 3 will review some of the related 

work discussed in literature and discuss some of the approaches taken in the past.  The 

next five chapters will detail the development of the system used to perform the network 

tests.  Chapter 9 discusses the resulting system and validates its design.  In Chapter 10, 

the results of some network performance tests are analyzed and finally, in Chapter 11, 

some conclusions are made and future work is addressed. 
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CHAPTER 2 

FUNDAMENTALS OF NETWORK PERFORMANCE ANALYSIS 

Network performance analysis can take many forms.  This is because there are 

several different factors of network performance that affect each different type of 

network application.  Some of the performance metrics that can be measured include 

bandwidth, end-to-end latency, jitter, packet loss, and out-of-order packets (often caused 

by multi-path routing). A framework for IP Performance Metrics is given in RFC 2330 

[34]. 

 

2.1. Measurements 

In the case of streaming low bit-rate audio, the two primary performance measures 

of interest are jitter and end-to-end latency.  Jitter is defined by the RTP standard [37] 

and by RFC 3393 [14], which also refers to jitter as delay variation, to be the difference 

between the end-to-end latencies of two consecutive packets.  End-to-end latency, 

referred to as one-way delay in RFC 2679, is defined to be the time difference between 

the moment the first bit of a packet is transmitted to the moment the last bit is received 

[7].  The reason end-to-end latency is considered only secondary is that it does not have 

an adverse effect on the application’s ability to effectively deal with the network 

conditions. 
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The minimum end-to-end latency for a network path caused by the propagation 

through each link and processing by each router sets a baseline for the perceived round 

trip time for a conversation that the user experiences.  Jitter, on the other hand, refers to 

the random increases in the end-to-end latency on top of the baseline.  It is typically 

caused by queuing delays in routers along the path due to competing traffic. 

 

A typical Voice-over-IP application implements a jitter buffer on its receiving side 

to smooth the stream of audio frames before they are played.  Understanding the jitter 

characteristics of different networks is important in order to optimize the design of the 

jitter buffer in a Voice-over-IP application.  If the buffer is too large, the round-trip time 

that the user perceives is higher, causing the user experience to seem more like a 2-way 

radio conversation than a face-to-face conversation.  If too small, buffer starvation occurs 

and gaps in audio playback will severely reduce audio quality.  These parameters can 

vary with network conditions during a conversation.  Ideally, the jitter buffer should be 

designed to adapt to network conditions as they change [35].   

 

2.2. Requirements 

Useful measurement of jitter requires the measurements to be made as close to the 

wire as possible for reasons described in Section 2.3 in addition to a precise clock.  Only 

the clock’s precision is important for this measurement, and not its accuracy, because it is 

based on a difference of times, and any offset will cancel.  This is required on both ends 

of the test because the two differences are compared by the jitter calculation.  The end-to-

end measurements have the added requirement that both clocks must be accurate 
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(synchronized).  In addition to measurements, it is also necessary to generate traffic that 

closely resembles a system of interest.  In this case, we are interested in the network’s 

ability to support low bit-rate speech traffic.  This means that the traffic generated should 

closely resemble a Mixed Excitation Linear Prediction (MELP) audio stream.  The 

MELP audio codec generates a 7-byte frame of data for every 22.5ms of speech data.  

These frames are typically sent between two and five at a time in a UDP packet.  This 

number of frames per packet is referred to as the bundling factor.  For all of the tests 

conducted in this study, a bundling factor of two will be used.  This means that the data 

source should generate a 56-byte UDP packet comprised of 42 bytes of Ethernet/IP/UDP 

headers and 14 bytes of MELP data every 45ms as shown in Figure 2.1.  The minimum 

frame size for Ethernet is 64 bytes, which includes a frame-check sequence.  This means 

that the frames will also include 4 bytes of padding, which is completely wasted 

bandwidth.  It is clear that this is not very efficient, but sending more frames per packet 

would increase the perceived delay. 

MELP Stream

Network Stream

7 7 7 7 7 7

7

7

ETH

IP

UDP

7

7

ETH

IP

UDP

7

7

ETH

IP

UDP

0 22.5 45 67.5 90 112.5Time (ms)

 

Figure 2.1 – MELP Stream Packetization   
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2.3. Timing Location 

The location at which the measurements are taken is very important.  The notion of 

wire-time is defined in RFC 2330 [34] as the time the packet is transmitted or received on 

the network in contrast with the host-time which is the time that the timestamp is 

generated.  In RFC 2679 [7] the difference between host-time and wire-time is defined to 

be comprised of a systematic error and a random error.  The farther away from the 

Ethernet hardware the measurements are taken, the more the systematic and random error 

will be added.  High system utilization can greatly amplify the random error in Windows 

2000/XP because they are not real-time operating systems.  A real-time operating system 

gives the guarantee that the program flow is deterministic (to some degree) thereby 

eliminating a majority of the random timing errors that are location-related.  Not only do 

the number and priorities of other running processes affect the random error, but also the 

frequency and processing time of hardware and software interrupts.  There are at least 

four locations where packets can be timestamped: a user-mode application, a protocol 

driver, a NIC driver, or in the NIC hardware as shown in Figure 2.2. 
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Context Switch Required

User Mode

Kernel Mode

Network Test
Application

Windows Sockets 
Emulator

Windows Sockets 
Emulator

Network Protocol
Drivers

Transport Driver Interface

NIC DriverNDIS

Network Card

 

Figure 2.2 – Available Timing Locations 

2.3.2. User Mode Application 

The least desirable place to take measurements is in the user mode application after 

waiting to send or receive a packet through the Windows socket interface.  The packet is 

queued and processed for an unknown length of time by Winsock, the protocol drivers, 
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the NIC driver, and the NIC itself in addition to the context switch required to change to 

kernel mode.  When sending, these delays not only affect the measurement, but also the 

traffic generation. 

2.3.3. Protocol Driver 

A protocol driver sits just above the NIC driver and implements a network protocol 

such as TCP or UDP.  Timestamping packets in a protocol driver eliminates the context 

switching and queuing associated with transferring data and control from kernel-mode to 

user-mode.  This reduces both the systematic error and the random error. 

 

Unfortunately, when working with the kernel, there is typically not source code 

available for a particular driver, so customizing it is not feasible.  The only way to get 

packet timestamps for IP packets from an unmodified protocol driver is through the IP 

header option for timestamps.  This timing is done by the IP protocol driver using an 

unknown, implementation-specific clock.  As such, it is not possible to synchronize it 

with a reference clock except to assume it is based on the system clock and synchronize 

that.  The time format used is a 32-bit field that represents the number of microseconds 

since midnight UTC.   

 

There is an open source project known as WinPcap [6, 13, 36] which is 

implemented partly as a protocol driver.  WinPcap provides the framework for accessing 

the packets while they are still in the kernel.  It also provides a mechanism to return 
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timestamps with the packets as they are received.  Even if the timestamps were not 

applied to the packets in WinPcap directly, its interface would be required to return the 

timestamps since that is not possible through the Winsock interface. 

2.3.4. NIC Driver 

The NIC driver directly controls the NIC hardware and is notified with an interrupt 

when a packet is sent or received by the NIC.  The effects of the operating system on the 

timing measurements are quite low in the NIC driver because context switching and 

Network Driver Interface Specification (NDIS) queuing are eliminated.  Some NICs, in 

an effort to more efficiently communicate with the system by reducing the interrupt 

frequency, will buffer multiple packets in hardware before interrupting and transferring 

them to the host.  This is another source of random error that can be introduced into the 

measurements. 

 

The NDIS includes a mechanism for passing additional information, referred to as 

out-of-band (OOB) data, to higher level drivers.  This OOB data includes the time a 

packet was sent or received, formatted as the number of hundreds of nanoseconds since 

midnight January 1st 1601.  The existence of this mechanism means that the information 

could be retrieved in the WinPcap protocol driver and passed on to the user mode, 

allowing measurements that are closer to the wire.  Unfortunately, the generation of this 

information is optional and we have been unable to find any reference to any driver for 

any NIC which does generate it.  Without detailed hardware specifications of any 
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particular NIC, writing a replacement driver that includes this functionality is infeasible.  

Even with that detailed information it would be impractical. 

 

The Microsoft Windows 2000 DDK [4] ships with a sample NDIS driver for the 

Intel EtherExpress Pro/100+.  Having device driver source code for a NIC that is fully 

functional makes it possible to add small pieces of code without having to either know or 

have access to the detailed hardware specifications for the NIC.  The driver was modified 

in two ways to provide timestamps that are based on the Pentium Time Stamp Counter 

(chosen because if its extremely low call overhead). Within the interrupt service routine 

(ISR) for the NIC, a timestamp value is read from the Pentium Time Stamp Counter.  

This timestamp is stored until the type of interrupt is determined.  If determined to be a 

receive interrupt, then the raw timer value is stored in the OOB data.  The protocol driver 

can then check for the timestamp in the OOB data and, if present, read the Pentium Time 

Stamp Counter again to compute the time that passed.  If determined to be a 

transmission-completion interrupt, the protocol driver will have generated a raw 

timestamp made at the time that it generated its primary timestamp for the packet and 

stored the timestamp in the OOB data.  The timestamp generated in the ISR is subtracted 

from the timestamp already in the OOB data and the result stored in its place.  These 

timestamps can then be used to adjust the primary timestamps to reflect a time that is 

closer to the wire-time.  This is discussed further in Chapter 5.  
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2.3.5. NIC Hardware 

The ideal method of timestamping packets is using a hardware clock on the NIC 

that timestamps the packets as they arrive.  This eliminates all operating system effects 

and measures the wire-time exactly.  Unfortunately, most NICs do not have this 

capability and most often, one of the previous methods will need to be employed. 

 

Another possibility is to use devices such as the cards produced by Endace called 

DAG cards [10, 22].  These cards provide a hardware clock and timestamp the packet at 

the very beginning of its reception.  Donnelly et al. [15] use this card to measure the 

systematic and random delay errors of the RIPE NCC software-based measurement 

system [40].  The cards are capable of being synchronized to several different time 

sources including GPS or CDMA.   

 

The CDMA signal provides a time signal nearly as accurate (within approximately 

5µs)  as GPS (within approximately 100ns) and does not require the clear view of the sky 

that GPS does [1].  One limitation of these cards is that they only provide the ability to 

receive packets, not transmit them.  Another solution would still be needed to transmit the 

packets, though a host using this card could passively monitor the traffic as it is 

transmitted.  We have been unable to acquire one these cards to compare its performance 

with other methods and it is left as future work, though based on the design, it should be 

superior to all other methods described here. 
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2.4. Timing Methods 

In a Windows environment it is difficult to get accurate and precise time sources.  

There are several time sources natively available in Windows, but because Windows is 

not a real-time operating system, no one of them performs well enough to be useful in the 

tests.  To be at all useful in this study, a clock that is precise to approximately 100µs is 

needed.  To truly be able to see the fine-grained jitter, a timer with a 1µs resolution is 

required.  In addition, the clock needs to be synchronized to UTC for end-to-end latency 

measurements. 

2.4.1. Real-Time Clock 

The real-time clock, first added to the IBM-AT architecture in 1984, is relatively 

accurate, however long-term drift can occur due to an uncontrolled oscillator.  It is not a 

good tool for precise, short-term measurements because it is only updated once every 10 

to 15ms.  It is accessed through calls to GetSystemTime() or GetTickCount().  

Another interface available in the kernel is KeQueryInterruptTime().  In 

Windows 2000, KeQueryInterruptTime() has a resolution of 15.625ms (the same 

resolution as GetTicks()), but in Windows XP the resolution is 976.6 µs.  It is 

implemented as simply a memory read from a periodically updated location, so call 

overhead is negligible (~8 cycles).  This resolution is still not high enough to be useful. 
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2.4.2. Multimedia Timer 

The multimedia timer that is available in Windows is typically capable of 

resolutions between 1 millisecond and 1,000 seconds.  This timer is typically used for 

timing in MIDI sequencers.  This timer does not provide measurements with high enough 

resolution to be useful.  In addition, setting the resolution to 1ms will degrade system 

performance.  It is accessed through calls to timeGetTime().  This function is part of 

the Windows Multimedia API which is not available in the kernel, making it of limited 

usefulness anyway. 

2.4.3. Pentium Time Stamp Counter 

The Pentium Time Stamp Counter is a 64-bit internal counter register in the 

processor.  It counts at the speed of the processor.  This means that on modern machines 

the resolution of these timers is very good (less than 1ns).  Unfortunately, modern 

processors also have features such as throttling of the processor speed to reduce heat and 

power consumption.  These large, numerous changes in frequency make the time stamp 

counter unreliable on some machines and therefore useless for timing.  With this feature 

disabled, the speed of the processor is observed to provide long-term accuracy (less than 

0.1 PPM) [29].  It is very efficient to call; only approximately 15 cycles are required.  

The time stamp counter is accessed through the rdtsc assembly instruction.  In some 

cases is it accessible through the performance counter API as discussed in Section 2.4.4. 
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Attila Pàsztor and Darryl Veitch [29] make use of the Pentium Time Stamp 

Counter to make a more accurate system clock in Linux, BSD, and RT-Linux.  They 

synchronize the clock using NTP, but focus on making a rate-stable clock as opposed to 

the “ntpd” which attempts to stabilize the offset.  This could be a good approach, but 

their system was designed to run in a UNIX environment, so testing this method in 

Windows is left as future work. 

2.4.4. Performance Counter 

The Performance Counter is typically a hardware counter in the chipset of the 

computer.  It is accessed through calls to QueryPerformanceCounter(), though it 

can be implemented in different ways[2].  Two common counters that are accessed 

through this API are the Programmable Interval Timer (PIT) provided by the 8254 

Programmable Interrupt Controller (PIC), and the Power Management Timer (PMT) that 

is part of the Advanced Configuration and Power Interface (ACPI).  The PIT was 

introduced in the IBM PC in 1981 and uses a 1,193,182Hz source, but the measurement 

of the call overhead is not available because the PIT is only used on Pentium class and 

older machines.  The PMT uses a 3,579,545Hz source and has an approximate call 

overhead of 600ns.   

 

Another timer included as part of some new PC chipsets is called the High 

Precision Even Timer (HPET).  This timer specification was jointly developed by 

Microsoft and Intel.  It is specified to have source clock of at least 10MHz[2] but in 
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practice, it is using a 14,318,180Hz clock [3].  We currently have no motherboard that 

includes the HPET, but Microsoft Test Engineers found a 61% performance increase in 

calls to KeQueryPerformanceCounter() [2]. 

 

In a Symmetric Multiprocessing Machine (SMP) the Performance Counter is 

implemented with the Pentium Time Stamp Counter, so it will have similar performance 

and slightly more overhead because it is accessed through the API.   

2.4.5. Dedicated Time and Frequency Processor 

A dedicated time and frequency processor, in this case the Symmetricom 

BC637PCI card, provides both accurate and precise timing over long time periods.  The 

software provided with the card is written to allow access to the card only from User-

Mode, so eventually it was necessary to write a device driver for it that allowed access to 

other drivers in the kernel, as discussed in the next chapter.  It uses a 10 MHz master 

clock and therefore has a resolution of 100ns.  It is accurate to less than 2 µs when 

synchronized to a GPS receiver and accurate to less than 5 µs when synchronized to other 

equipment via the IRIG-B time-signaling protocol.  The overhead required to access the 

card is relatively high, about 1.3 µs, because it requires a bus access. 
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2.5. Clock Synchronization 

Clock synchronization is required to compute latency.  Because latency is the time 

it takes a packet to travel from one computer to another, it must be possible to read from 

synchronized clocks on the two computers. 

2.5.1. NTP Synchronization 

The Network Time Protocol (NTP) is widely used on the Internet to synchronize 

clocks to the atomic time standard [24].  The protocol utilizes a tiered approach to 

synchronize clocks.  The servers that are synchronized either directly to a Cesium clock 

or to a GPS receiver are referred to at Stratum 1 servers.   Stratum 2 servers are 

synchronized to Stratum 1 servers and so on.  The typical end device will connect to a 

Stratum 2 server or higher, so as not to overload the primary servers. 

 

NTP is used for synchronization of clocks on a large time scale such as minutes or 

even days [31].  It makes use of changes at small time scales to provide the 

synchronization at larger time scales.  This means that NTP will actually make the clock 

less reliable on a small time scale due to its adjustments and is clearly not an appropriate 

technology for synchronization in this application. 

 

The NTP implementation that is built into the Windows “net time” application 

is only intended to keep the time synchronized to within a few minutes.  This level of 

synchronization is needed by the default authentication protocol (MIT Kerberos version 
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5) for Windows 2000.  Another option that comes with Windows 2000 is the 

“W32Time” service [23] which is a fully compliant SNTP client [25] with about the 

same synchronization target. 

 

The “ntpd” operating system daemon can potentially achieve synchronization to 

within a few milliseconds in ideal conditions, but in the networks of interest in this study 

its actual performance is rarely better than hundreds of milliseconds. 

 

Another implementation of NTP by Darryl Veitch et al. [41] makes use of the 

Pentium Time Stamp Counter and the timestamping of NTP server packets and focuses 

on rate synchronization and offset synchronization as separate problems.  Assuming a 

symmetric low-latency connection to a nearby NTP server, they were able to get 

synchronization results of within 30µs and a rate of within 0.02 PPM.  Even better offset 

results (within 1µs with rate stability of 0.1 PPM) were achieved when using a Real-Time 

operating system (RT-Linux) [29]. 

2.5.2. Time Processor Calls in User-Mode 

The time synchronization issue is can be handled in hardware, instead of software, 

if a dedicated time processing card, such as the Symmetricom BC637PCI is used.  The 

card can be synchronized to sources such as GPS, IRIG-B, IEEE-1344, or Pulse per 

Second (PPS) signals independently of the software.  Timestamps can then be directly 

read from registers on the card.  Due to the fact that the factory-supplied software does 
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not provide access to the time processor card from within the kernel, an attempt was 

made to relate system times that were measured in the kernel with those measured in 

user-mode.  The performance counter was synchronized to the system clock in user-mode 

[27] to give a high resolution version of the system clock in user-mode.  Plots of both the 

kernel-mode system time and the user mode system time proved to be for the most part 

linear.  The user-mode clock was compared with the time processor’s clock and found to 

be nearly linear, so it was assumed that the system clock was simply not running at quite 

the correct frequency.  To correct this using the time processor, a process was designed in 

which two readings were taken in user mode of both the system clock and the time 

processor’s clock: once at the beginning of the test and once at the end shown as events 

“x” and “y” in Figure 2.3.  This approach is similar to that taken by J. Curtis et al. [12] 

with the exception that they made a comparison reading every second.  These two points 

were used to calculate a frequency error and an offset error for the system clock with 

respect to the time processor’s clock by solving a linear system of equations.  After the 

test was over, all of the packet times were converted to times corresponding to the time 

processor’s clock.   
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Figure 2.3 – System Clock Correction using GPS 

 

The results of these tests were poor.  The latency measurements drifted and 

sometimes became negative.  It was clear that there was a serious problem with one of 

the clocks which caused the drift in the measurements.  Because of the drift, this method 

was not acceptable and it became necessary to write a replacement driver for the time 

processor card to allow access to the time processor’s clock from within the kernel as 

well as in user-mode. 

 

Using this new driver, it was possible to fully investigate the problem with the 

original algorithm.  In one case, shown in Figure 2.4, the user-mode system clock is seen 

to be drifting away from the kernel-mode system clock at approximately 1 µs/s (an error 

of 1 PPM).  Given the nature of the measurements being taken, this is significant.  Figure 

2.5 shows the latency computed by this method for a test run on a LAN.  It is clear that 

the latency is not reasonable due to its steady increase.  The rate of increase is based upon 

the clock synchronization errors on both machines involved in the test.  It was later 
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discovered in the WinPcap protocol driver source code that the kernel-mode system clock 

is not actually synchronized to the system clock, but is only initialized by the system 

clock and is free-running from then on. 
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Figure 2.4 – System Clock Comparison 
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Figure 2.5 – Latency Computed from System Clock Comparison Test 

2.5.3. Time Processor Calls in Kernel-Mode 

After a new driver for the time processor card was developed, it was used in the 

kernel to directly measure the timing of the packet transmission and reception.  Because 

the time stamps are taken directly from the time processor cards and the time processors 

are synchronized with one another, the time stamps are absolute (to within 2 µs) and can 

be directly compared.  
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2.5.4. Sub-Microsecond Synchronization 

If the time processors are in close proximity, then it is possible to synchronize the 

cards to within 100 nanoseconds.  The BC637PCI card is equipped with an external event 

pin and a register for adjusting for propagation delay.  The register allows for correction 

when using the IRIG-B time code bus between two Time Processors.  To compute the 

offset required for use in the propagation delay register, a pulse is generated external to 

the two cards and routed through two equal length wires to the external event pins on the 

cards.  The event time registers are then read and compared.  Because the event registers 

should represent the same event and refer to the same moment in time, the difference 

between the values should be used as the correction factor.  In testing this method, it was 

found that after setting the propagation delay register, the event times matched to within 

100 nanoseconds for all subsequent events. 
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CHAPTER 3 

RELATED WORK 

Researchers have focused on measuring many different aspects of Internet 

dynamics and performance and have taken different approaches at measuring them.  

Thomas Chen et al. review a majority of the different approaches for both active and 

passive performance measurement [8].  In all of the studies of network performance, 

some form of timestamping was required, though the choices varied greatly based on 

required accuracy, deployment capability, and cost. 

 

3.1. Original Network Performance Test Application 

It was initially developed by a senior design II team in the school of Electrical and 

Computer Engineering department at Oklahoma State University and was called Network 

Performance Application (NetPerf).  It has a Winsock network interface with user-mode 

timing.  The timing relied on NTP to synchronize the system clock which was then 

queried via the GetSystemTimeAsFileTime() API.  An attempt was made to 

improve the resolution by making a call to QueryPerformanceCounter() when a 

timestamp was needed but nothing was done to synchronize those calls with the system 

clock.  This means that the original system had large errors due to time measurements 

being so far from the wire in addition to the poor clock being used to generate the 

timestamps.  What little statistical analysis it had was poorly documented.  It was 
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frequently hacked by others in an attempt to correct errors, even though they did not 

understand how it was initially intended to work.  The user interface was very simplistic 

and utilitarian.  Many variables were uninitialized leaving unfriendly default values when 

requesting user input.  The “Connection Parameters” dialog would discard values after 

they were stored in the primary application, which meant that if a user needed to return to 

the dialog to change one setting, it would be necessary to reenter all of the parameters for 

the test.  The tests were limited to only being able to send data from the machine that 

originated the connection.  When a test actually begins, the parameters of the test are sent 

to the server, but in the original application, only integers were used to send data that 

included the packet send rate (a floating point variable) so the value was truncated to its 

integer part.  This was not significant, however, because as stated earlier the server was 

incapable of transmitting.  This test system demonstrated a naïve approach to network 

performance testing that was prone to significant errors as well as being unpredictable.  

This system aims to greatly improve the accuracy of the measurements made such that 

detailed information about the networks being tested is visible. 

 

3.2. Measurements Using Clocks Not Synchronized with GPS 

Clocks not synchronized with GPS are easy to deploy and are typically relatively 

low cost.  Unfortunately, these clocks suffer from poor accuracy and cause lots of extra 

post-processing work to compensate for that poor accuracy. 
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3.2.1. Vern Paxson’s Work 

Vern Paxson performed two experiments: one at the end of 1994 and one at the end 

of 1995.  The two experiments involved 35 different sites running his measurement 

daemon.  His PhD dissertation [31] discusses, in great detail, all aspects of his Internet 

measurement experiments.  He used TCP bulk transfers of 100 kilobyte files for traffic.  

At the end of these 20,800 tests, he analyzed properties such as the route asymmetries, 

bottleneck bandwidths, TCP implementation problems, packet loss patterns, and much 

more.  His measurement daemon uses libpcap [18] as the interface to the packet filter 

on many different architectures running UNIX or BSD operating systems.  This means 

that the clock available for each measurement is of questionable quality.  He later 

attempted to improve the quality of the measurements by removing timing artifacts from 

the data [32].  His work was followed by Sue Moon, et al. who approached the problem 

as a linear program [26] and subsequently by Li Zhang, et al. who took a convex hull 

approach [42]. 

 

The design of Paxson’s system is focused on deploying software test daemons to 

many volunteer sites around the Internet.  All of the supporting test sites provide a 

machine on which to run the test software.  These machines consist of a wide variety of 

hardware architectures and operating systems, and as such, the software must be flexible 

and able to function well on a large variety of configurations.  Because of this, no 

specialized hardware can be used to provide superior timestamping capability. 
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3.2.2. ICMP Based Profiling 

The most common form of simple network test is to measure the Round Trip Time 

(RTT) using an ICMP ping packet.  This approach was modified by Kimberly Claffy et 

al. [9] to make use of ICMP Timestamp Request packets.  This allowed them to measure 

the end-to-end latency for both the outgoing and incoming path without requiring the 

deployment of dedicated hosts or daemons.  Naturally, the clocks used to make the 

remote timestamps were completely unknown and most likely unsynchronized and, as 

such, suffered from the same accuracy issues addressed by Paxson et al. 

 

3.3. Measurements Using Clocks Synchronized with GPS 

A clock synchronized with GPS has the obvious advantage of being accurate, but 

most GPS solutions are expensive, not readily available, and require rooftop antenna 

installation.  For widely deployed test systems, antenna installation often eliminates GPS 

as an option. 

3.3.1. NTP Software Clock Synchronized with GPS 

The RIPE Internet delay measurement project [40] was conducted at many ISPs in 

Europe, the Middle East and parts of Central Asia.  Each test point was an identical 

machine that was provided by RIPE and placed at the border router of the ISP.  Each test 

point is a PC running BSD and using “ntpd” as the software synchronization protocol.  

It is synchronized with an external GPS receiver through a “Totally Accurate Clock 2” 

 26



[5] interface board using a Pulse Per Second (PPS) signal read by the PC’s parallel or 

serial port.  This software clock solution is the least precise and efficient of the GPS 

solutions.  It requires the constant adjustment of a relatively unstable software clock by 

“ntpd” to maintain synchronization. 

 

J. Jeong, in his M.S. thesis [19], argued for the necessity of one-way delay 

measurements due to the asymmetric routes found commonly in the Internet.  He used a 

nearly identical configuration, with the exclusion of the “Totally Accurate Clock 2,” to 

measure one-way packet delay and loss.  This system was expected to be deployed within 

the Korean Commercial Network and the Asia Pacific Advanced Network. 

3.3.2. Time Processor Card 

The Surveyor project [20] aims to provide delay and loss information as well as 

routing information continuously and in near real-time (within 5 minutes of the current 

time), thus providing researchers or network engineers valuable information about 

current and past states of the Internet.  Each measurement PC runs BSDI and contains a 

TrueTime bus-level timing card that is similar to the BC637PCI to provide timestamps 

for network events.  Timestamps are recorded from within a modified BSDI network 

driver to get as close to the wire-time as possible.  This project by far most closely 

resembles the study discussed in this document. 
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3.3.3. DAG Based Measurements 

The most accurate and precise Internet performance measurements make use of the 

synchronized, hardware based timing solution provided by the DAG [10, 22] series cards.  

These cards have an onboard clock that can be synchronized to GPS or CDMA [1] and 

then used to timestamp each packet as it arrives in hardware.  This not only takes the load 

of generating timestamps and synchronizing the clock off of the CPU of the measurement 

machine, but also provides an accurate and precise timestamp that represents the wire-

time of the packet. 

 

Attila Pasztor et al. [30] use them in a receiver in conjunction with an RT-Linux 

based traffic generator to implement an active probing infrastructure.  They investigate 

several options including Linux and FreeBSD, but ultimately choose this to be the 

superior design.  With this configuration, they achieve impressive timing results which 

are necessary for determining link rates using low bit-rate probe streams that show 

spaced out inter-arrival times on the receiver.  This is the ideal solution for active probing 

short of a fully dedicated hardware solution.  The final configuration covered by this 

document would closely resemble that of this active probing infrastructure if it were not 

important to use Windows XP/2000 as described in Chapter 1. 

 

Doru Constantinescu et al. [11] use the DAG cards in independent measurement 

points to monitor traffic as well as actively probe the network.  Their tests measure router 

performance in loaded and unloaded conditions using UDP traffic that resembles TCP 
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traffic patterns.  The primary focus is on one-way transit time (end-to-end latency) and 

how it is affected by routers. 

 

Stephen Donnelly et al. [15] cover the use of DAG hardware to accurately measure 

the error of the RIPE NCC software based active probing system [40].  They determine 

the systematic error and the random error as described in RFC 2679 [7].  With this error 

information, the systematic error can be removed and the measurements improved.  The 

random error distribution gives a range for the confidence in the results obtained from the 

software system. 

3.3.4. Other GPS Solutions 

Ian Graham et al. [16] developed a system for passive measurement of network 

traffic which made use of a GPS receiver’s PPS signal.  This signal was read by the PC’s 

ring indicate (data carrier detect is sometimes used instead) input of its serial port to 

correct timestamps that were generated by libpcap in Linux. The packets were stored 

once a second along with the GPS corrections.  Any packets that could not be stored in 

that one second were discarded. 

 

Based upon the work of Ian Graham et al. [16], J. P. Curtis et al. [12] performed a 

passive measurement study of Voice-Over-IP network traffic using standard libpcap 

capturing and timestamping.  To correct the timestamps generated by libpcap, they 

inserted zero-length packets every second with the GPS interrupt.  These corrections take 
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care of inaccuracies in the system clock, but do nothing to address error introduced by the 

difference between wire-time and the time the measurements are made in libpcap.  

They took another approach with ATM traffic which allowed them to make use of some 

limited hardware timestamping capabilities in the ATM NIC and get timestamps that 

represent wire-time. 
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CHAPTER 4  

BC637PCI DRIVER 

The BC637PCI Time and Frequency Processor card from Symmetricom (formerly 

Datum (formerly Bancomm)) provides an independent hardware clock available through 

the PCI bus in a PC.  The original software provided with the card only included a simple 

driver that mapped the memory resources of the card to user mode and then relied on a 

user-mode DLL to implement all of the logic required to control the card.  This meant 

that, within the kernel, there was no way to access the driver. 

 

A lot of effort went into avoiding the development of a replacement driver for the 

BC637PCI, but after it was decided that the development was necessary, quick progress 

was made in a relatively short amount of time with the guidance of Programming the 

Microsoft Windows Driver Model by Walter Oney [28].  Some of the original reasons for 

avoiding the development were the anticipated problems with making a reliable driver in 

a reasonable amount of time, the added work of implementing the card configuration 

portions of the driver to replace the configuration capability of the provided software, and 

concerns about the required boilerplate code required for handling complex issues such as 

power management and Plug ’N Play.  The card configuration functions include setting 

various modes and communicating with the onboard GPS module for determining 

satellite coverage, which would be a majority of the work even though it is only needed 

initially.  It is possible to avoid this development by installing the old driver to configure 

 31



the card and then installing the new driver for use during testing, however it is also 

inconvenient. 

 

4.1. Getting Started 

To begin the development of the driver, the WDM Driver wizard supplied with 

Oney’s book [28] was used to generate as much of the relevant driver boilerplate as 

possible.  This was a huge timesaver.  Many of the functions that don’t need unique 

handling on this card were written automatically and did not need to be modified.  From 

this initial code base, the first step was to acquire all of the card’s resources and keep 

track of them.  This card has two memory resources (Dual-Port RAM and Device 

Registers) and an interrupt request line.  The card’s interrupt is not currently handled or 

enabled by the new driver because it is not needed for the testing system, but it is 

initialized and stored so that it is easily available for use in the future.   

 

It can be difficult to identify the two memory resources due to misleading 

documentation.  There are two other resources that get enumerated called device private 

resources, but they are undocumented.  They are interleaved with the memory resources 

during the enumeration process.  Each one only contains a single numeric parameter (one 

contains “0” and the other contains “1”) that is presumably intended to be used to identify 

which memory space is which, but it could just be circumstantial.  The documentation for 

the BC637PCI card [39] states that the Dual-Port RAM should be detected with a 0x1000 

byte size and the Device Registers should be detected with a 0x40 bytes size, but both are 

detected as 0x1000 bytes.  It also states in a different section that the current size of the 
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Dual-Port RAM is really only 0x800 bytes.  This discrepancy was a bit misleading and 

initially led to some implementation problems.  After discovering the true identities of the 

memory resources, they were mapped to kernel-mode memory space and stored in two 

pointers for future use. 

 

4.2. Read Time 

The primary purpose of the driver is to be able to read the current time from the 

card in both kernel mode and user mode.  To initiate a time capture event on the card 

from the driver, simply access the TIMEREQ register.  The time is then immediately 

latched into the TIME0 and TIME1 registers and can be read back.  The format of the 

TIME registers is selectable between a binary format and a decimal format.  The binary 

format provides the microseconds and the nanoseconds in TIME0 and a 32-bit UNIX 

time in TIME1.  The decimal format provides separate bits for the days of the year, 

hours, minutes, seconds, microseconds, and nanoseconds. For the purposes of this system 

and therefore this driver, the binary format will always be used for convenience. 

 

The user-mode implementation of ReadTime is a synchronous I/O Control 

(IOCTL) command.  This will allow the function to be available to any process in user 

mode that has access to open a handle to the kernel-mode driver.  It would also be 

possible to simply map the PCI memory to user space as the provided software did, but 

this is not as easy to control because it doesn’t use the constructs provided by the kernel 

interface.  It is also not as flexible to use for the same reason, but it has the advantage that 
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access to the card requires less overhead from user mode.  This could be implemented in 

parallel in the future if deemed necessary or useful. 

 

The kernel-mode implementation was originally a synchronous 

INTERNAL_IOCTL command to provide time services to other drivers in the system.  

This implementation suffers from several inherent problems based on the interface.  First 

of all, the overhead of the interface is non-negligible.  Also, because the interface is 

synchronous, it could possibly cause the calling driver to be required to wait for a result.  

This blocking is acceptable when running at PASSIVE_LEVEL, such as when timing 

something that is happening based on a call from user-mode, but if timing something 

generated by hardware, then it is not acceptable since the code is then run at 

DISPATCH_LEVEL.  Code running at DISPATCH_LEVEL cannot block! 

 

The typical solution to this problem is to simply use an asynchronous 

INTERNAL_IOCTL which will request the time and then call a completion routine when 

the measurement is acquired.  Because of the typical use of the time provider, this is 

unacceptable.  It would not be reasonable to try to handle the receipt of time 

measurements asynchronously because of the large overhead of keeping track of requests 

in the calling driver and trying to associate those with the events they are timing, which 

would require extra buffering to keep those events in memory until their timestamp is 

returned.  The asynchronous interface also has a higher overhead than the synchronous 

one because of its callback function. 
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These difficulties are a result of the interface, not the underlying time request 

function.  To avoid them, ReadTime was implemented last as a direct-call interface.  

This eliminated the limitations on IRQL and is more efficient because no IRP needs to be 

allocated.  This interface has similar overhead to that of the provided software in user 

mode. 

 

4.3. Configuration 

The interface to the configuration of the card is through a Dual-Port memory 

command protocol used in association with the ACK register.  There are a few things 

about accessing the Dual-Port RAM that are unlike accessing the PCI registers on the 

card.  For one thing, the Dual-Port RAM can’t be accessed more than one byte at a time 

from within the mapped memory space.  If larger accesses are attempted, then all bytes of 

that variable will be equal to the most significant byte of the memory.  Also, the memory 

is implemented as Big-Endian whereas the PCI registers are Little-Endian.  The top-most 

8 bytes of the Dual-Port RAM contain pointers into the memory-space in which to find 

the four main memory sections: the Input area, the Output area, the GPS Packet area, and 

the Year area.   

 

The main command protocol is implemented through the Input and Output areas.  

A command and its operands are written to the Input area and then bit 7 of the ACK 

register is set.  This tells the Time Processor to read the command.  When the command 

is completed, the Time Processor sets bit 0 of the ACK register, after which the Output 

area will contain any results from the command.  Packets can also be sent to or requested 
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from the GPS module on the card.  This is done by putting the GPS packet in the GPS 

Packet area of the Dual-Port RAM, writing the appropriate command to the Input area, 

and then setting bit 7 of the ACK register.  Any incoming GPS packets are signaled by the 

Time Processor in two ways: bit 2 of the ACK register is set and the GPS Packet interrupt 

is signaled. 

 

The configuration operations are written as IOCTL commands to provide access to 

user or kernel mode processes running at PASSIVE_LEVEL, though it is expected that 

calls will only occur from user mode.  The general command interface is implemented in 

the driver, but at this time, only the commands for setting the timing mode and setting the 

propagation delay are exposed.  The rest of the configuration command set can be 

implemented very easily, but are not needed at this time. 

 

A small configuration utility has been written to access the IOCTLs from user-

mode to facilitate testing and card configuration.  It is far from a complete 

implementation, but it does enough to allow a user to get the card ready to use with the 

current system.  A replacement DLL for that supplied with the card was also written to 

allow applications that use that old DLL interface to access the card through the new 

driver.  The functions exported by the DLL that are not implemented in the driver simply 

do nothing.  This allows the device capabilities to be easily extended and old software to 

function as well as new software written to directly access the driver. 
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CHAPTER 5 

WINPCAP 

WinPcap [6] is an open source library for packet capture and protocol analysis on 

Win32 platforms.   It was originally adapted from the libpcap BSD library [18], but 

now provides extended functionality on the Win32 platforms.  This is the protocol driver 

that is used by the test system to access packets from any NIC in the computer. 

 

5.1. Structure 

WinPcap includes a kernel-level packet filter named npf.sys, a low-level 

dynamic link library named packet.dll, and a high-level and system-independent 

library named wpcap.dll, which is based on libpcap [18].  

 

The packet filter is a device driver that enables Windows 95, 98, ME, NT, 2000, 

XP and 2003 to capture and send raw data from a network card.  It is implemented as an 

NDIS protocol driver.   

 

Packet.dll is an API that can be used to directly access the functions of the 

packet driver, offering a programming interface independent of the Microsoft OS. 
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Wpcap.dll exports a set of high level capture primitives that are compatible with 

libpcap, the well known UNIX capture library. These functions allow a developer to 

capture packets independent of the operating system and the underlying network 

hardware. 

 

5.2. Capabilities 

The WinPcap library provides an interface to the network subsystem in Windows 

that is typically hidden from user mode applications.  It allows all packets that arrive at 

the NIC to be captured using the NDIS before any processing is done to it by the typical 

protocol drivers such as TCP or UDP.  This allows even packets that are corrupted to be 

captured before they would be thrown away when the checksum is discovered to be bad.  

It is possible to configure the NIC in promiscuous mode so that even packets that are not 

destined for the NIC can be captured.  The driver in WinPcap is capable of efficiently 

filtering incoming packets as they are received.  The filter is implemented as a compiled 

string that is processed by a virtual machine in the driver.  The virtual machine code is 

then compiled to the host machine language just before execution.  It is an 

implementation of the Berkley Network Packet Filter [21]. 

 

WinPcap extends the functionality of libpcap specifically on Win32 platforms in 

several ways.  One, when incoming packets are captured, they are time-stamped by a 

precise clock that is synchronized to the RTC in the kernel as soon as it passes the filter.  

Another feature provided is the ability to inject packets directly into the network without 

going through the WinSock interface.  A subset of this feature allows a program to queue 
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packets with time-stamps and send them synchronously.  All of the packet send times are 

relative to their time-stamps based on the time-stamp of the first packet in the queue. 

 

5.3. Modifications 

The interface provided by WinPcap is great for packet capture and protocol 

analysis applications, but to analyze network performance there are a few more things 

that are needed.  Three changes were made to the transmission functionality of WinPcap 

to make it suitable. 

 

The first modification required changes to the driver and the packet DLL.  This 

modification causes the driver to time-stamp each packet as it is injected into the 

network.  The time-stamp is stored in the packet header and is then copied back to the 

packet DLL where it overwrites the buffer that was passed into the send function.  This 

allows an application to know when the packet was injected into the network.  The 

limitation here is that the timestamp is made when the NIC driver is asked to inject the 

packet, and is not directly related to when it is actually injected.  An improvement would 

be to use the OOB data in NDIS and a modified NIC driver to timestamp and return the 

actual time that the packet was injected.  Because packet injection is an asynchronous 

process, it required a structural change to the protocol driver.  It was necessary to cause 

the IOCTL that initiates the packet-queue transmission return a pending status to the 

protocol driver until the transmission-completion interrupt had triggered for every packet 

sent from the queue.  It was also necessary to keep track of the packets after they were 

transmitted so that the timestamp returned from the NIC driver could modify the 
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timestamp in the buffer and be returned to user mode.  It was then necessary to monitor 

when a queue had been fully transmitted so that the IRP could be completed and control 

returned to user-mode. 

 

When using the timestamp correction on an SMP computer, it is necessary to 

guarantee that both timestamps for the correction, meaning the timestamp in the protocol 

driver and the timestamp in the NIC driver, be processed by the same CPU.  This is 

because the timestamps are acquired from the Pentium Time Stamp Counter which is 

unique to each processor and so they are not guaranteed to be synchronized.  On the 

receive side, this is not a problem because the reception handler is initiated by an 

interrupt, which means that the computer is operating in an arbitrary thread context.  The 

received packet it then notified up to the protocol driver in the same context.  This means 

that the same processor must be recording the timestamps.  On the sending side, the 

application requests a transmission so the protocol driver is executed in the context of the 

application.  The completion interrupt, on the other hand, is executed in an arbitrary 

thread context, which means it could be executing on a different processor and the 

difference in the values read would have no meaning.  This can be avoided by assigning a 

processor affinity to the application, which will restrict it’s execution to a single 

processor.  This con be done directly using the task manager.  An affinity must also be set 

for the interrupts in the NIC driver so that they can be guaranteed to execute on the same 

processor.  To accomplish this, a filter driver supplied with the Windows 2003 Resource 

Kit called “IntFiltr” is used.  This filter driver is installed in the driver stack above the 
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NIC driver and provides a graphical interface to set the processor affinity for the 

interrupts in that driver.  

 

The second modification was to replicate the PacketSendPackets function in the 

packet DLL as PacketSendPacketsRef and change the new function to allow the reference 

times for synchronous transmission to be specified as parameters.  The reason this is 

important is that when sending a queue of packets synchronously with 

PacketSendPackets, the reference times are always the time-stamp of the first packet in 

the queue and the current time.  If all of the packets to be sent throughout a long 

transmission sequence are not available at the beginning of a transmission or if the 

number of packets to be sent is prohibitively large, there is no way to accurately set the 

time that should pass between the last packet in one queue and the first packet in the next 

queue.  By providing the reference times explicitly, that delay can be accurately 

implemented.  This change was later extended to propagate the timing reference all the 

way into the driver.  This way the transmission restart does not have the added delay of 

switching to kernel-mode after the appropriate send time is reached. 

 

The third modification was to replicate the pcap_sendqueue_transmit function in 

the wpcap DLL as pcap_sendqueue_transmit_persist.  The new function was then 

modified to retain the time-stamp of the first packet in the first queue passed to it as a 

reference.  In subsequent calls, that same reference is used instead of the time-stamp of 

the first packet in the current queue.  This reference in then passed to the 

PacketSendPacketsRef function in the packet DLL. 
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These changes extend WinPcap’s functionality to transmit packets close to the 

requested time while knowing what the error in transmission time is.  The reception 

capabilities provided by WinPcap are already sufficient and do not require modification 

with the exception of timestamping.  It was necessary to replace the time stamping call 

with a call to the time processor, if available, and to modify the primary timestamp with a 

timestamp from the NIC driver, if present. 
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CHAPTER 6 

GENERIC SOCKET EMULATION CLASS 

Simply having access to the network interface is not sufficient for sending packets 

across wide area networks.  Many other capabilities are required to traverse the varying 

topologies that are of interest.  The CPCapSocket class was developed to handle these 

issues and provide a simple interface to send and receive packets and collect the 

timestamps associated with those events.  It attempts to closely emulate the interface 

provided by the Winsock.   

 

6.1. Supported Protocols 

For the purposes of VoIP testing there are two protocols of interest that are 

supported by the CPCapSocket: UDP and a UDP variant that does not include the data 

payload in the checksum.  UDP is of interest because it is the most often used transport 

protocol for VoIP systems.  The variant is an ideal protocol because many voice codecs 

have the ability to handle bit errors and make use of the data that is preserved.  Some 

even have FEC capability and can actually fix errors.  If the checksum protects this data, 

then a bit-error in the data will cause the entire packet to be discarded.  In a real-time, 

low-latency system like VoIP there is no time to request a retransmission without 

creating an unacceptable delay for the user.  Therefore, retaining all possible data is far 

more desirable than discarding it all.  It is still necessary to have a checksum protect the 
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header, because if a bit error occurs in the header, it is possible that the packet is not even 

part of the stream and will corrupt the system. 

 

6.2. Establishing a Connection 

The communication channels used by this system are not technically connections, 

because they simply transfer datagrams between hosts.  However, if there is a NAT 

between the two machines that must communicate, a route must be established.  An 

association packet is used to establish that route and a return packet is sent to verify that 

the route is operational. 

6.2.1. Selecting a Device 

The first step in establishing a connection is deciding which NIC to use for the 

connection.  As the system exists now, any device that is registered as a NIC in Windows 

2000 can be used as a communication device.  Unfortunately, this excludes dial-up 

networking connections, which are used by modems, VPN connections, and some 

cellular devices.  This is an unfortunate limitation of the WinPcap, but may be available 

in the future.  Choosing a NIC is done by looking in the routing tables maintained by 

Windows to find the default gateway device.  This device is then opened with WinPcap 

and its MAC address and default IP address are stored as the local addresses for the 

device. 
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6.2.2. Bind a Socket in Winsock 

WinPcap is not a true reception interface; it is simply a sniffing interface.  Because 

of this, a socket on the desired local port must be allocated and bound in Winsock to 

prevent Winsock from sending “Destination Unreachable” ICMP packets back for every 

packet received.  A random local port number is selected between ports 2000 and 4000 

until a socket is successfully bound.   

6.2.3. Create Packet Template 

At this point, all of the initialization needed for the local side of the communication 

is complete.  Because the local host is establishing the connection, the remote IP address 

and port are provided by the user.  The only other information needed is the MAC 

address to send the packet to, such that the packet will reach the desired remote host.  

ARP is used to attempt to resolve the MAC address of the remote host from its IP 

address.  This will only be successful if the remote host is on the LAN and is reachable 

by the broadcast ARP packets.  In most non-trivial cases, such as those of interest in this 

study, this is not true.  If the ARP for the remote host fails, the routing tables are used to 

determine the best route to the remote host.  This route contains the IP address of the next 

hop of the route.  ARP is then used again to resolve the MAC address of the next hop in 

the route, based on its IP address.  If this does not succeed, then there is no route to the 

remote host and the connection will fail. 
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Now that a remote MAC address for the communication with the remote host has 

been determined, a packet template is generated that will be used for the creation of all 

packets.  It contains such things as the MAC address, IP address, and port for the local 

host and remote host or next hop in the route to the remote host.  The remote host IP 

address and the local host port number are used to create a receive filter for WinPcap so 

that only packets sent by the remote host and associated with this communication channel 

are sent to the opened interface on the local host.  Finally, the association packets are 

exchanged to finalize the connection process. 

 

6.3. Listening for a Connection 

For a client to successfully listen for an incoming connection, it must either have an 

Internet routable address or some other pre-established route such that the initial 

association packet will reach it. 

6.3.1. Selecting a Device 

When listening for a connection, it can be difficult to know what interface to listen 

on.  As the system is set up now, if the remote host IP address (or some IP address on the 

same network segment) is known, the device associated with the best route to that 

address is used.  If no address is provided, a device that is associated with a remote route 

is selected.  In the future it may be useful to allow a user to directly select which interface 

to listen on, but at this point that is unnecessary. 
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6.3.2. Bind a Socket in Winsock 

Just as in the connection process, it is necessary to allocate and bind a Winsock 

socket to the local port to prevent Winsock from sending “Destination Unreachable” 

ICMP packets in response to all received packets.  In this case, the local port that is 

bound is a fixed port number that is not random, but one requested by the user. 

6.3.3. Receive an Association Packet 

Before any further information about the connection can be determined, a packet 

from the connection host must be received.  A temporary receive filter is set in WinPcap 

so that only packets destined for the local port that is being listened on are sent to the 

opened interface.  When an association packet is received, the remote host’s IP address 

and port are garnered and stored.  The packet filter in WinPcap is then updated to include 

the remote host’s IP address in addition to the local port.  This has the effect of no longer 

listening for packets from any host but from then on only accepting packets from the 

associated host. 

6.3.4. Create Packet Template 

The packet template is created in the same way that it was on the connection side.  

It will be used to transmit all packets to the remote host. 
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6.3.5. Reply with Verification Packet 

At this point, the communication channel should be fully functional.  This is 

verified by sending the association packet back to the connecting host.  If this packet is 

successfully received by the connecting host, then the bidirectional channel is established 

and ready to use. 

 

6.4. Sending Packets 

The CPCapSocket class provides several interfaces for sending packets.  They each 

have their own advantages and limitations.  Individual circumstances dictate the best 

choice of interface. 

6.4.1. Creating the Packet 

Before data can be sent to a remote host, it must be wrapped up in a packet.  If the 

data is larger than the maximum allowed datagram size of 1500 bytes then it must be 

broken into separate packets before it is transmitted.  The packet template created during 

the connection process is used to initialize a majority of the packet header fields.  The 

only fields that must be generated for each packet are the various size and checksum 

fields. 
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6.4.2. Send 

The most basic interface allows the immediate transmission of one packet over the 

open socket.  Internally, this is implemented by creating a send queue, adding the packet, 

and sending the queue.  This interface is only used to send the association packet during 

the connection process. 

6.4.3. SendDelayed 

The sendDelayed() interface allows for the transmission of a packet a fixed 

amount of time after the transmission of the previous packet.  This is useful when it is 

desirable to specify the delay from one packet to the next without having to keep track of 

when the previous packet was transmitted and at what time the new packet should be 

transmitted.  This is also implemented as a queue with a single packet added before 

transmission, but it makes use of the new 

pcap_sendqueue_transmit_persist() function that was added to WinPcap to 

allow for the transmission time to be referenced from the previous transmission time.  

This interface is one possibility for the transmission of test packets.  It has the advantage 

of being able to update the status after each packet; however, it is far less efficient for 

sending a long sequence of packets and is far more likely to allow operating system 

delays to change the transmission time. 
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6.4.4. Queue / SendQueue / GetQueueSentTimes 

This interface allows a user to queue packets for transmission at set offsets using 

the queue() function.  That queue of packets can then be sent with the sendQueue() 

function.  It makes use of the same pcap_sendqueue_transmit_persist() 

function that allows the next queue that is sent to still be relative to the previous queue’s 

initial transmission time.  After a queue has been successfully transmitted, the exact times 

at which the packets were actually transmitted can be retrieved with the 

getQueueSentTimes() function.  Although the packets should be sent at the exact 

time specified, this is typically not the case due to the fact that the system does not run on 

a real-time operating system.  The actual times of transmission are used to compute the 

jitter and latency instead of the desired transmission time so that only the effects of the 

network are measured. 

 

6.5. Receiving Packets 

Packet reception makes use of a somewhat simpler interface.  The recv() 

function simply blocks, waiting for the receipt of a packet that passes the filter that was 

set in the connection process.  When a packet is received, the rest of the packet is 

validated.  The checksums are verified to match before the payload is copied into the 

output buffer.   The timestamp associated with the receipt of the packet is also passed 

back to the user. 
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CHAPTER 7 

LOW BIT-RATE NETWORK JITTER AND LATENCY TESTER 

The Low Bit-rate Network Jitter and Latency Tester (LoBiNeJiLaTe) is the 

software that makes use of all of the software described in previous chapters.  Then 

establishing a connection, all of the desired test settings are entered in the dialog pictured 

in Figure 7.1.  These settings are stored in the registry to that it is not necessary to reenter 

them if they are not to be changed.  It is not necessary to open the connection parameters 

dialog at all.  If the settings that were used the last time the application was used are still 

appropriate, then all that is necessary is opening the application and clicking the “Start 

Connection” button. 

 

It is a multithreaded application with the basic flow shown in Figure 7.2.  The 

control thread is responsible for managing the tests.  The scheduler will delay the 

execution of the control thread if desired.  The TCP thread is responsible for transferring 

the test parameters from the client to the server before a test begins and then transferring 

the server’s packet log file back to the client after the test is completed.  The UDP thread 

actually conducts the test by sending packets or receiving them.  The file thread is used to 

write the packet logs asynchronously during a test.  The main application thread is left to 

run the user interface. 
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Figure 7.1 – Test Parameters Dialog 
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Figure 7.2 – Application Flow Chart 
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The networking code for the test packets is implemented with the CConnection 

class.  This class implements Winsock code to create and use TCP and UDP connections 

in addition to containing the CPCapSocket class discussed in the last chapter.  This 

greatly simplifies the code required to run a test.  This means that is it possible to use the 

same object to communicate via Winsock or the WinPcap interface. 

 

The statistics are implemented in a simple, direct way such that modifying them 

and adding to them should be straightforward.  Four measurements are computed for each 

test: Jitter, Latency, Inter-Transmission Time, and Inter-Arrival Time.  The minimum, 

maximum, average, variance, median, and inter-quartile range are computed for each 

measurement as discussed in Chapter 8.
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CHAPTER 8 

STATISTICAL ANALYSIS TOOLS 

The results of the network tests are analyzed using three different classes of 

statistical tools.  The first is classical statistics: the minimum, maximum, mean, and 

standard deviation.  The second is robust statistics: the median and the inter-quartile 

range.  The final is the Probability Density Function (PDF) in the form of a histogram.  

Each of these measures is applied to the four metrics at the end of the test: the inter-

transmission time, inter-reception time, end-to-end latency, and jitter. 

 

8.1. Classical Statistics 

The minimum, maximum, mean, and standard deviation paint a good picture for the 

overall properties of a dataset.  This can be very informative if the data is consistent, 

however, if the data contains outliers, these functions can give misleading results as they 

are dominated by the outliers. 

 

8.2. Robust Statistics 

Robust statistics are highly immune to outliers.  They are often used when data is 

polluted with impulsive noise or otherwise abnormal points. 
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8.2.1. Median 

The median is a robust substitute for the mean.  It measures the 50th percentile of a 

series.  When the number of points in the series is odd, the median is the center point 

after the data is sorted.  When even, it is the mean of the two center points. 

8.2.2. Inter-Quartile Range 

The inter-quartile range, also known as the central variation, is a robust substitute 

for the standard deviation.  It gives a sense of the variation in the main body of the data, 

excluding outliers.  It is the difference between the 25th and the 75th percentile.  The IQR 

of a series can be directly compared to the variance of that series if the IQR is multiplied 

by 0.7413. 

 

8.3. Probability Density Function 

The probability density function, in the form of a histogram, is useful for 

determining how the data is distributed which is not obvious from the times series.  The 

x-axis is the sequence of bins for values found in the time series and the y-axis is the 

number of times a measurement was within one of those bins.  Figure 8.1 shows an 

example of a histogram and its associated time series.  The large spike at just over 25ms 

shows up as a small mark at 25ms on the histogram.  The majority of the data is around 

11.5ms and as such, the largest spike in the histogram is at about 11.5ms. 
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Figure 8.1 – A sample Histogram and its Associated Time Series 
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CHAPTER 9 

RESULTS 

All of the components described in the previous chapters combine to create a test 

system capable of accurately and precisely measuring the jitter and latency of a network 

connection in the context of low-bit-rate VoIP streams.  The resulting system is detailed 

in Figure 9.1.  The system, having precise and accurate timing, allows versatile network 

testing that utilizes a wide variety of NICs.  If the Intel EtherExpress Pro/100+ NIC is 

used when applicable, it is possible to achieve more accurate results.  The NIC can also 

be used to get a general idea of the magnitude of the error incurred by the NDIS interface 

and the interrupt processing. 

 

9.1. Final System 

The final system provides several options for testing networks depending on the 

required flexibility versus required accuracy.  For maximum flexibility, if the modified 

version of WinPcap does not detect a time processing card, it will automatically use the 

Pentium Time Stamp Counter instead.  This will allow measurements of jitter with 

reasonable precision.  However, without a synchronized clock the latency calculations 

will be meaningless.  Advanced software clock synchronization could possibly be used to 

get somewhat accurate timing in the future to produce meaningful latency data for low 

bandwidth links such as cellular data when the time processor is not available. 
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When the time processor is available, all packet timestamps are applied in the 

protocol driver, npf.sys, at the earliest and latest times possible for reception and 

transmission, respectively.  This produces results sufficient to measure all but the fastest 

of measurements without the error becoming noticeable.  This mode is used most 

frequently because the protocol driver is abstracted away from the hardware by the 

operating system and any device that appears as a NIC in the PC can be used in 

measurements.   

 

If further accuracy and precision are required and it is possible to use 10 or 

100Mbit Ethernet, then the Intel EtherExpress Pro/100+ NIC can be used.  The driver for 

this card is modified to record a timestamp as soon as the hardware interrupts the PC to 

notify it of a newly received packet or a transmission that has successfully completed.  

Because the Pentium Time Stamp Counter has low call overhead and high precision, it is 

used to generate a differential timestamp to correct the GPS timestamp for call 

placement.  This has the effect of recording the time in the interrupt of the NIC without 

slowing down the interrupt with a call to the timer processor. 
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Figure 9.1 – Layout of the Network Testing Application 
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9.2. System Validation 

Though no hardware timing solution, such as a DAG card, is available, we will 

attempt to show that the results of the network performance tests are sensible, or at least 

not obviously grossly incorrect.  Two issues will be addressed: the host-time to wire-time 

discrepancies and network latency scaling.  In all of the tests, the transmitter is running at 

real-time priority in an attempt to make the transmissions as accurate as possible.  All of 

the packets that are transmitted are queued up 60 seconds at a time.  This allows the 

transmitter to remain in kernel space for 60 seconds at a time, which greatly reduces 

context switches and improves accuracy.  This section will attempt to show the 

approximate error in the system.  As Vern Paxson states in Strategies for Sound Internet 

Measurement [33], it is important to state how accurate a test is when reporting its 

results.   

9.2.1. Timing-Location Error 

Though it is not possible to fully measure the wire-time to host-time error without a 

DAG card, a fairly good approximation can be made using the Intel EtherExpress 

Pro/100+ NIC (e100b) with the modified driver.  It modifies the timestamps generated in 

the protocol driver such that they represent the time that the NIC notifies the computer 

that it has received or started transmitting a packet.  This means that the only sources of 

error are the delay in the hardware itself and any interrupt processing delay caused by 

other frequently interrupting devices. 
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When transmitting packets, the e100b provides an interrupt when the packet data 

has been successfully copied out of memory and into the NIC’s controller.  This 

eliminates the delays in NDIS queuing the time required to copy the data.  The correction 

of this transmission time was tested on two computers: one having two processors and 

one having only one. 

The delay introduced between a packet notification and its processing in a protocol 

driver is dependent upon the PC on which the tests are run.  An SMP machine can much 

more efficiently process interrupts and as such, the performance is much better meaning 

that the packets are processed in the protocol driver relatively close to the wire-time.  In a 

single-processor machine, the CPU must handle all aspects of the system and will not 

have near the performance of an SMP machine for time critical operations because it will 

often be busy with system operations while a time critical function is pending.

Intel EtherExpress Pro/100+ Intel EtherExpress Pro/100+

Crossover Cable

Figure 9.2 – System Validation Test Configuration
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Figure 9.3 – 100Mb/s Dual-Processor Sourced NIC to Protocol Corrections 
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Figure 9.4 – 100Mb/s Single-Processor Sourced NIC to Protocol Corrections 
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On the dual-processor machine, the transmission error was relatively white with no 

structure to speak of.  The average delay is 20 µs.  The single processor machine showed 

delay that was much more structured.  This can be attributed to system interference with 

the processing of the transmission request.  There seem to be many instances in which 

another regularly timed process on the computer is apparently interfering with the testing.  

It is more prevalent on single processor machines, presumably because the system shares 

the processor with the testing software all of the time.  This supports the use of a real-

time operating system on such hardware, which would greatly reduce these effects.  The 

average delay on the single-processor machine is 21 µs. 
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Figure 9.5 – 100Mb/s Dual-Processor Sourced Inter-Transmission Time 
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Figure 9.6 – 100Mb/s Single-Processor Sourced Inter-Transmission Time 
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As a result of these adjustments, the timestamp data is less perfect than the original 

timestamps from the protocol driver, which should be expected.  It is not reasonable to 

expect that every packet is transmitted within 1 µs of the desired time.  This appears to be 

the case based on the fact that without the network driver correction, there are few 

options for variation.  The timestamping in the protocol driver is a small, fixed number of 

instructions away from the code which waits for the correct time to schedule the 

transmissions.  This means that the only transmission error the clock will measure is the 

amount of time that the scheduling clock delayed beyond the scheduled time.  The 

scheduler was not converted to use the time processor due to the fact that scheduling 

performance was already sufficient.  This means the timestamp measurement would 

measure any error in the scheduler since they are not based on the same clock.  

 

For these tests the inter-reception time should be the same as the inter-transmission 

time, 45ms, because the network is simply a crossover cable and should not produce any 

additional delays.  Figures 9.7 and 9.8 show that the corrections significantly reduce the 

deviations from 45ms.  This depends on the transmission, though, because if the packets 

were not sent at exactly 45ms intervals, then the reception of the packets will not 

approach 45ms intervals.   
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Figure 9.7 – 100Mb/s Dual-Processor Sourced Inter-Reception Time 
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Figure 9.8 – 100Mb/s Single-Processor Sourced Inter-Reception Time 
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It is not really possible to validate the packet reception or transmission timing 

capabilities independently.  The received packets are sent from an imperfect transmitter 

so both are needed to compute the effects of the network.  Without a good reference for 

the packets received and it is not possible to distinguish whether the error is in the 

reception timing or in the transmission timing.  If the packets are transmitted at a time 

other than the time they are believed to be transmitted, then it is correct for the receiver to 

see deviation from the specified transmission rate.  Because the reception test is run 

between two e100b cards at 100Mbits per second over a cross-over cable, it should not be 

possible for the network to inject any error other than a small, constant propagation delay.  

Anything other than this seen in the latency plots must be due to errors in the 

measurement system. 

 

After correcting the jitter calculations, the errors are less than 10µs for both the 

single-processor and dual-processor tests.  Because of the low level of jitter, the latency is 

consistent.  With consistent latency in these validation tests, the system is shown to 

provide precise measurements of network effects on packet transfer.  This means that any 

jitter revealed in network tests will reveal jitter that is actually caused by the network and 

not by the test system, above the margin of error in these validation tests. 
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Figure 9.9 – 100Mb/s Dual-Processor Sourced Jitter 
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Figure 9.10 – 100Mb/s Single-Processor Sourced Jitter 
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Figure 9.11 – 100Mb/s Dual-Processor Sourced Latency 
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Figure 9.12 – 100Mb/s Single-Processor Sourced Latency 
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9.2.2. Network-Latency Scaling 

The validation of jitter measurements is more straightforward than latency because 

they are differential.  Directly validating latency requires a known reference, such as a 

DAG card.  Without that option being available, the latency measurements can be 

indirectly validated by comparing the measurements made at different link speeds.  The 

e100b cards were configured to communicate at 10Mbits per second instead of 100Mbits 

per second.  The resulting latencies were then compared with the tests in Section 9.2.1 to 

evaluate the measurement error associated with the single-processor source and the dual-

processor source systems. 
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Figure 9.13 – 10Mb/s Dual-Processor Sourced NIC to Protocol Corrections 
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Figure 9.14 – 10Mb/s Single-Processor Sourced NIC to Protocol Corrections 
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Figure 9.15 – 10Mb/s Dual-Processor Sourced Inter-Transmission Times 
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Figure 9.16 – 10Mb/s Single-Processor Sourced Inter-Transmission Times 
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Figure 9.17 – 10Mb/s Dual-Processor Sourced Inter-Reception Times 
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Figure 9.18 – 10Mb/s Single-Processor Sourced Inter-Reception Times 
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Figure 9.19 – 10Mb/s Dual-Processor Sourced Jitter 
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Figure 9.20 – 10Mb/s Single-Processor Sourced Jitter 
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Figure 9.21 – 10Mb/s Dual-Processor Sourced Latency 
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Figure 9.22 – 10Mb/s Single-Processor Sourced Latency 
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The NIC to protocol driver corrections in Figures 9.13 and 9.14 almost identically 

match Figures 9.3 and 9.4.  This means that regardless of the speed of the network 

connection, the same delays are incurred by the communication between the protocol 

driver and the NIC.  To compute the remaining error, that introduced by the NIC 

hardware and interrupt processing latency, it is possible to compare the latencies of two 

tests whose only variation is the link speed.  The error should be independent of the link 

speed, while the true latency should be directly affected by the link speed.  In the case of 

the dual-processor tests, the latency at 10Mb/s was 75µs and at 100Mb/s was 14µs.  

Because the link speeds are known, the theoretical latencies can be computed.  They are 

dominated by the transmission rate (800ns/byte at 10Mb/s and 80ns/byte at 100Mb/s), 

because a short cable was used causing the propagation delay to be approximately 5ns.  

This can be described as a system of two linear equations with two unknowns.  The 

unknowns are the number of bytes transmitted and the amount of erroneous delay, which 

is independent of the link speed. 

 

758.0 =+⋅ en         (9.1) 

1408.0 =+⋅ en         (9.2) 

 

The solution to these equations is n = 85 bytes and e = 7µs.  The same process can 

be used for the single-processor tests which yield n = 85 bytes and e = 12µs.  These 

errors in general can be added to the NIC driver to Protocol driver errors found in Section 

9.2.1 to find the expected constant error for the measurements.  This agreement in n 

suggests that the link-based delay is constant regardless of machine setup.  The actual 
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data transmitted on the wire is 72 bytes, made up of a 7-byte preamble, a 1-byte start of 

frame delimiter, and the 64-byte payload.  The additional 13 bytes of time computed 

above are assumed to be the time required by the collision detection mechanism before 

the start of the preamble. 

9.2.3. Hardware Based Error 

The hardware can cause timing errors if it does not notify the computer after each 

packet it receives.  Some NICs are designed to hold packets in a buffer and notify the PC 

of multiple packets with a single interrupt to reduce the card’s interrupt frequency during 

heavy-load traffic conditions.  In Figure 9.23, two packets near the end of the test were 

processed by the same interrupt.  This is a rare occurrence; it was only encountered once 

in all of the testing conducted for this study. 
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Figure 9.23 – Packet Clustering by the NIC 
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CHAPTER 10 

EXAMPLE NETWORK TESTS 

There are many network configurations that a person may need support for when 

using a VoIP application.  In this chapter, we explore the VoIP performance of cellular 

connections, broadband connections, and wireless LAN connections.  In all of the tests, 

the educational network link at Oklahoma State University is assumed to represent the 

Internet without any additional network impairments due to its significantly higher link 

speed than those of the networks discussed here.  These tests are in no way meant to be 

exhaustive or fully representative of a given communication standard.  They are simply 

intended to demonstrate the capabilities of the measurement system and investigate some 

of the properties of the networks that are revealed by the tests.  They are all, however, 

believed to be accurate measurements of the given network conditions at the time. 

 

10.1. Broadband Networks 

Broadband network connections are widely replacing dial-up services providing 

Internet connectivity in homes and small offices.  Many of them are even using that 

broadband connection to replace their circuit-switched telephone connections with 

services such as Vonage and Cox digital telephone service.  These connections were 

originally designed to provide Web browsing and digital content download services.  The 

systems provide more downstream bandwidth than upstream bandwidth due to the 
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assumption that the endpoint will be primarily consuming content as opposed to 

producing it.  This asymmetric bandwidth is likely to cause asymmetric delay properties 

as well.  The two broadband connections tested were SBC Global ADSL Internet service 

and Cox High-Speed Cable Internet service.

10.1.1. SBC Global Asynchronous Digital Subscriber Line Internet Service Tests

The ADSL service does not allow a direct connection to the Internet through the 

DSL modem.  A connection must be made with an SBC server using the Point to Point 

Protocol over Ethernet (PPPOE).  This provides a separate IP address that is routable on 

the Internet.  The EnterNet 300 PPPOE software was used in these tests to establish the 

DSL connection.

Internet

3c980c-TXM 3c905B-TX
SpeedStream 5360

EnterNet 300 PPPOE

Figure 10.1 – DSL Broadband Test Configuration
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Figure 10.2 – EDU to DSL Jitter (Downstream) 
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Figure 10.3 – EDU to DSL Latency (Downstream) 
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Figure 10.4 – DSL to EDU Jitter (Upstream) 
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Figure 10.5 – DSL to EDU Latency (Upstream) 
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Figure 10.6 – DSL to EDU Jitter (Upstream) – Alternative Test 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.01

0.011

0.012

0.013

0.014

0.015

0.016
Latency

Packet Number

La
te

nc
y 

(s
)

0.0115 0.012 0.0125 0.013 0.0135 0.014 0.0145 0.015 0.0155
0

50

100

150

200

250
Latency Histogram

Latency (s)

Average:  0.012938 s
Variance:  0.415103 s
Median:  0.012935 s
IQR:  0.000576 s 

 

Figure 10.7 – DSL to EDU Latency (Upstream) – Alternative Test 
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The DSL tests revealed some periodic delay spikes in the downstream channel at 

40 second intervals.  It is unknown what would cause these spikes, but they will certainly 

have adverse effects on a VoIP application.  There was some inconsistency in the 

upstream that is possibly due to varying channel allocation or a non-static route.  The 

connection shown in Figures 10.6 and 10.7 ended less than one minute before the 

connection shown in Figures 10.4 and 10.5 was opened.  The test in Figures 10.6 and 

10.7 very closely resemble the downstream link with the exception of the impulsive 

delay. The most jitter seen in any test was less than 20ms, which is less than one frame.  

The longest delay seen was less than 70ms and typically below 40ms.  This suggests that 

DSL should be able to support VoIP well because of low levels of both jitter and latency.

10.1.2. Cox Cable Internet Service Tests

The cable modem Internet connection is made through a router which implements 

NAT for the computers on the internal LAN.

Internet

3c980 c-TXM 3c905B-TXLinksys BEFW11S4 V.2 Dlink DCM-200

Figure 10.8 – Cable Broadband Test Configuration
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Figure 10.9 – EDU to CABLE Jitter (Downstream) 
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Figure 10.10 – EDU to CABLE Latency (Downstream) 
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Figure 10.11 – CABLE to EDU Jitter (Upstream) 
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Figure 10.12 – CABLE to EDU Latency (Upstream) 
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The tests on the Cable connection were very consistent.  The downstream had a 

typical delay of around 10ms and rarely had a spike above 12ms.  The largest delay spike 

seen on the downstream was 60ms.  The typical jitter was less than 1ms.  On the 

upstream, delays were higher, as expected.  The average delay was around 18ms and 

rarely went above 35ms.  The largest delay seen in the upstream was 50ms.  The jitter 

was nearly always below 10ms.  From this data, it appears that a Cable Internet 

connection will easily support a VoIP system.  This is supported by its broad commercial 

use for that purpose. 

 

The DSL and Cable tests revealed that a Cable connection has better characteristics 

for VoIP, but only by a narrow margin.  The overall characteristics of DSL are actually 

superior if the upstream connection consistently produced results like those in Figures 

10.6 and 10.7.  The differences are negligible, though, as both systems are easily capable 

of providing excellent quality of service for VoIP. 

 

10.2. Wireless LANs 

Wireless LANs are fast appearing in many public places such as airports, coffee 

shops, stadiums, and libraries.  Some cell phones now support the ability to use a wireless 

LAN instead of cellular service for voice and data service in those areas with wireless 

LAN infrastructure.  They are also often used in homes to connect PCs to a broadband 

connection. The wireless LANs tested were Bluetooth, 802.11b, and 802.11g.  In 

addition, an 802.11b NIC was used to connect to an 802.11g access point and an 802.11g 

NIC to an 802.11b access point. 
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10.2.1. Bluetooth Tests

The Bluetooth connections were made using the Personal Area Network (PAN) 

profile to an Ethernet access point.

Anycom 220 3c905B-TXAxis 9010

Figure 10.13 – Bluetooth Test Configuration

.
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Figure 10.14 – Bluetooth Access Point to NIC Jitter 
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Figure 10.15 – Bluetooth Access Point to NIC Latency 
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Figure 10.16 – Bluetooth NIC to Access Point Jitter 
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Figure 10.17 – Bluetooth NIC to Access Point Latency 
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Bluetooth was originally designed to replace cables to devices such as mice, 

keyboards, and scanners on a desktop and as such, it was not designed with high 

bandwidth capabilities (only 721 kbps).  It is considered here because it is often used to 

connect handheld computers or cell-phones to a network connection or to share the 

network connection provided by the phone.  The average delay of a Bluetooth connection 

is about 20ms with peaks that are frequently above 50ms.  That is more than 2 frames of 

speech data so the jitter is non-negligible, but will most likely not severely degrade 

quality of service if the jitter buffer on the receiver is configured properly.  There is a 

very rigid structure in the Bluetooth data that is presumably due to the synchronization 

scheme used.  The access point was observed to only vary the delay by multiples of 

10.7ms offset from zero by 2.1ms as seen in Figure 10.14.  This results in the high 

frequency appearance of the latency in Figure 10.15.  The NIC apparently uses a slightly 

different timing scheme in which the delay is varied only in multiples of 10ms offset 

from zero by 4.8ms as seen in Figure 10.16.  Because the offset is so close to 5ms (half of 

the interval), the latency appears to have the slowly increasing structure seen in Figure 

10.17.  Because Bluetooth has a jitter of nearly 40ms, it should probably be avoided if 

convenient alternatives are available. 

10.2.2. 802.11a Tests 

The 802.11a connections were established using the Microsoft wireless zero 

configuration service in Windows XP. 
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SMC 2735W
3c905B-TX

802.11a

SMC 2755W

Figure 10.18 – 802.11a Test Configuration



 

Figure 10.19 – 802.11a Access Point to NIC Jitter 

 

Figure 10.20 – 802.11a Access Point to NIC Latency 
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Figure 10.21 – 802.11a NIC to Access Point Jitter 
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Figure 10.22 – 802.11a NIC to Access Point Latency 
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The tests of the 802.11a network showed excellent baseline latency (less than 

200µs).  When the NIC transmitted to the access point, the jitter was always less than 

12ms, which should not affect VoIP.  When packets were sent the other way, the jitter 

was nearly an order of magnitude higher.  With these delays of over 90ms the VoIP 

application would need to buffer an additional four frames to avoid buffer starvation.  

This is certainly doable, but it will add to the total latency perceived by the user.  The 

jitter spikes in both cases are periodic.  The small spikes generated by the NIC have a 

period of 71.69s and the large spikes generated by the access point have a period of 63s.  

The source of the 71.69s spikes is unknown and assumed to be caused by some feature of 

the access point.  The 63s spikes were determined to be caused by the wireless zero 

configuration scanning for new access points. 

 

In addition to the large delay, the traffic generated by the NIC included many 

duplicate receptions.  The timestamps on the duplicates were between 70µs and 110µs.  

Vern Paxson suggests that packet filter software can sometimes duplicate packets [33].  

Guy Harris posted on the Ethereal forum that many wireless drivers will errantly provide 

two copies of each packet to WinPcap [17].  The large difference in timestamps leads me 

to believe that these two possibilities are probably not true.  Srikant Sharma explains that 

802.11 will retransmit packets on a wireless link at MAC level if an acknowledgment is 

not received [38].  This is below the transport layer and is therefore transparent to UDP.  

However, the 802.11 endpoint is responsible for removing duplicate packets based on 

sequence numbers in the 802.11 header.  It is possible that the access point is failing 

remove unneeded retransmissions.  The duplicate packets come in a single large chunk.  
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In one test, 5111 packets were duplicated all consecutively, all with similar delays from 

the original, with each duplicated exactly once.  This doesn’t seem likely to be caused by 

network error.

10.2.3. 802.11b Tests

The 802.11b connections were established using the Microsoft wireless zero 

configuration service in Windows XP.

Cisco Systems 350
3c905B-TX

802.11b

BEFW11S4 V.2

 

Figure 10.23 – 802.11b Test Configuration
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Figure 10.24 – 802.11b Access Point to NIC Jitter 
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Figure 10.25 – 802.11b Access Point to NIC Latency 
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Figure 10.26 – 802.11b NIC to Access Point Jitter 
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Figure 10.27 – 802.11b NIC to Access Point Latency 
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The 802.11b wireless LAN standard is probably the most widely deployed wireless 

LAN.  It is capable of speeds up to 11 Mbps, though that says nothing of its delay and 

loss rate.  The data paths to and from the access point appear to be similar in Figures 

10.24 through 10.27.  The jitter is almost always below 1ms and the latency is typically 

below 8ms.  When the access point was transmitting, there was a steep step observed in 

the latency from several tests, as visible in Figure 10.25.  It is assumed that this is due to 

internal delay in the access point for radio synchronization.  Even with excellent signal 

strength, a few packets are occasionally lost, also visible in Figure 10.25.  The delay and 

jitter characteristics of 802.11b are small enough to not adversely affect VoIP 

applications. 

10.2.4. 802.11g Tests 

The 802.11g connections were established using the Microsoft wireless zero 

configuration service in Windows XP. 
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Figure 10.28 – 802.11g Test Configuration 

 

 

 

 

 101



 

Figure 10.29 – 802.11g Access Point to NIC Jitter 

 

Figure 10.30 – 802.11g Access Point to NIC Latency 
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Figure 10.31 – 802.11g NIC to Access Point Jitter 

 

Figure 10.32 – 802.11g NIC to Access Point Latency 
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The tests of the 802.11g network showed two different periodic aspects. The 63s 

delay spikes were caused by the wireless zero configuration.  The test was later rerun 

with he wireless zero configuration service disabled, and the 63s periodic spikes no 

longer existed.  The other delays seen had a 10.24s period.  This is assumed to derive 

from some 10ms driven counter that causes an interference event every 1024 counts.  The 

exact cause is unknown.  The typical latency is less than 600µs in both directions, but 

unless the large jitter that was as high as 600ms is eliminated, this network will have poor 

performance in a VoIP system.

10.2.5. 802.11b NIC with 802.11g Access Point Tests

The Microsoft wireless zero configuration was used in these tests.

Cisco Systems 350
3c905B-TX

802.11b

SMC 2804 WBR

Figure 10.33 – 802.11b NIC and 802.11g Access Point Test Configuration
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Figure 10.34 – 802.11g Access Point to 802.11b NIC Jitter 
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Figure 10.35 – 802.11g Access Point to 802.11b NIC Latency 
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Figure 10.36 – 802.11b NIC to 802.11g Access Point Jitter 
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Figure 10.37 – 802.11b NIC to 802.11g Access Point Latency 
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In the configuration where an 802.11b device is operating in a network using an 

802.11g access point, the access point is able to reduce its speeds to support the older 

device.  When the access point is transmitting, the packet loss rate is surprisingly high 

considering that it is operating in a local network with its endpoints less than 10 feet from 

one another.  As seen in Figure 10.35, between 4 and 5 packets are lost every 63 seconds.  

This is due to the wireless zero configuration software probing for new access points.  On 

some hardware, this causes the active connection to be interrupted and hence causing the 

packet loss.  Aside from the packet loss, the latency and jitter are exceptionally low.  The 

average latency is below 1ms with jitter below 2ms.  The step in the latency that existed 

in the 802.11b tests appears in this test as well.  The source of the 2.97s periodic delays in 

the tests in which the 802.11b NIC is transmitting is unknown. 

10.2.6. 802.11g NIC with 802.11b Access Point Tests 

The Microsoft wireless zero configuration was used in these tests. 
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Figure 10.38 – 802.11g NIC and 802.11b Access Point Test Configuration



 

Figure 10.39 – 802.11b Access Point to 802.11g NIC Jitter 

 

Figure 10.40 – 802.11b Access Point to 802.11g NIC Latency 
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Figure 10.41 – 802.11g NIC to 802.11b Access Point Jitter 

 

Figure 10.42 – 802.11g NIC to 802.11b Access Point Latency 

 110



In the case where an 802.11g NIC is using an 802.11b access point, many of the 

periodic delays seen in previous tests show up again.  When the access point is 

transmitting, the 63s delays and packet losses appear again.  This is again solved by 

disabling the wireless zero configuration.  The 30.7s delays are three times the 10.24s 

delays.  The 10.24s delays are seen when the NIC is transmitting.  The source of these 

10.24s delays is unknown. 

 

Bluetooth is a reasonable technology for use in a VoIP system based on the 

characteristics measured with these tests.  802.11 configurations had much lower typical 

latencies than Bluetooth.  Until the source of the large delay spikes can be identified and 

eliminated, 802.11 hardware that experienced those delays will perform poorly in a VoIP 

system.  It is assumed that the existence of these delays is caused by some aspect of the 

hardware or software used in the configurations and that the delays are not simply 

inherent in 802.11g. 

 

10.3. Cellular Data Networks 

The primary reason to want VoIP traffic on a cellular data connection as opposed to 

using the cellular voice service is to encrypt the speech data.  Without the support of a 

service provider, cellular data is the only option.  These tests were run on the AT&T and 

Sprint cellular data networks, which use EDGE and CDMA2000 1xRTT, respectively.  

Enhanced Data rates for GSM Evolution (EDGE) is a GPRS-compatible data service 

capable of up to 384 Kbps.  Code Division Multiple Access (CDMA) 1x Radio 
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Transmission Technology (RTT) is the first stage of the CDMA2000 deployment capable 

of up to 144 kbps.

10.3.1. Windows XP Connection Sharing Tests

Internet

3c980c-TXM 3c905B-TX

3CCFE575BT-D

Broadcom 440x

Figure 10.43 – Connection Sharing Test Configuration

Due to limitations in WinPcap, it is not possible to access a dial-up networking 

connection from within the WinPcap protocol driver.  The CDMA driver for the Sprint 

SPHA620 phone is implemented as a dial-up networking device.  This means that it is not 

possible to directly use the phone with the test software.  To work around this, the two 

wireless data connections were configured on a separate machine and the connections 

were shared to an Ethernet port using Windows XP connection sharing.  A standard 

Ethernet PCMCIA card was shared to identify the overhead associated with the 

connection sharing software.  The connection sharing is a symmetric process that 
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imposes an additional 150 µs delay on average, but can be impulsive up to 2 ms and in a 

few cases has had periodic impulsive spikes up to 1.6 ms with a period of 7.875 s.  The 

source of these delays is unknown, but assumed to be caused by other operations on the 

Windows XP system.  This additional noise is negligible because the delays typically 

seen in the wireless data networks are at least 2 orders of magnitude greater than the 

worst errors caused by the connection sharing.

10.3.2. Sprint CDMA 1xRTT Tests

Internet

3c980c-TXM 3c905B-TX

CDMA 1xRTT

Broadcom 440x

Samsung SPH-A620

Figure 10.44 – CDMA Test Configuration
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Figure 10.45 – CDMA to EDU Jitter (Upstream) 
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Figure 10.46 – CDMA to EDU Latency (Upstream) 
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Figure 10.47 – EDU to CDMA Jitter (Downstream) 
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Figure 10.48 – EDU to CDMA Latency (Downstream) 
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The CDMA tests reveal considerable delays on the upstream network path, with 

levels reaching as high as 700ms but more often peaking at about 400ms.  The jitter is 

typically below 150ms.  The downstream is far worse than the upstream.  On several 

occasions, latency as high as 3.25s was observed, though the average latency was 

approximately 500ms.  The jitter was typically around 200ms.  For this connection to be 

useful for VoIP, a relatively large jitter buffer will be required and the end-to-end delay 

experienced by the user will probably be unacceptably high.  

10.3.3. AT&T Wireless EDGE Tests

Internet

3c980c-TXM 3c905B-TX

Sony GC-82

EDGE

Broadcom 440x

Figure 10.49 – EDGE Test Configuration
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Figure 10.50 – EDGE to EDU Jitter (Upstream) 
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Figure 10.51 – EDGE to EDU Latency (Upstream) 
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Figure 10.52 – EDU to EDGE Jitter (Downstream) 
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Figure 10.53 – EDU to EDGE Latency (Downstream) 
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The EDGE tests show large delay spikes just below 1s in the upstream channel and 

jitter as high as 825ms.  The downstream was even worse with delay spikes as large as 

10s in some cases and jitter over 1s.  With performance like this, the quality of service 

will be greatly degraded.  System will either suffer extreme end-to-end delay or the 

system will lose audio for a few seconds at a time, or possibly both.  As such, it will 

probably not be a suitable network for VoIP. 

 

Both of the cellular data services tested had poor performance as it pertains to 

VoIP.  They may be useable if it is decided that large delays are permissible. The CDMA 

data was somewhat better than the EDGE service even though the EDGE service has a 

higher available bandwidth.  In both cases, the upstream had better properties than the 

downstream which seems counter-intuitive.  Perhaps 3G cellular data will be capable of 

providing the service required by VoIP in the future. 

 

10.4. Concatenated Networks 

It is often necessary for data to traverse many networks with differing properties 

before reaching its destination.  In some cases concatenated networks can have effects 

other than simply additive properties, such as when TCP is used and self-clocking, the 

regulation of the packet transmission rate by the rate of acknowledgments, adjusts the 

transmission to the rate capable by the lowest bandwidth link.  In the case of UDP and 

latency, the properties of concatenated networks should be additive.  In this section, two 

configurations of concatenated networks will be discussed.  The first is a connection 

through the AT&T EDGE data network to a computer on a Cox Cable connection.  The 
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second is a computer using Bluetooth to access Cox Cable Internet service to 

communicate with a computer on an educational link.

10.4.1. EDGE and Cable Concatenated Tests

Internet

3c980c-TXM 3c905B-TX

Sony GC-82

EDGE

Dlink DCM-200 BEFW11S4 V.2
Broadcom 440x

Figure 10.54 – EDGE and Cable Concatenated Test Configuration
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Figure 10.55 – CABLE to EDGE Jitter 
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Figure 10.56 – CABLE to EDGE Latency 
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Figure 10.57 – EDGE to CABLE Jitter 

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
Latency

Packet Number

La
te

nc
y 

(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200
Latency Histogram

Latency (s)

Average:  0.217325 s
Variance:  17431.419327 s
Median:  0.168272 s
IQR:  0.127241 s 

 

Figure 10.58 – EDGE to CABLE Latency 
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The tests that measured an EDGE connection to cable Internet essentially replicated 

the results of EDGE to an educational link.  This is because the poor performance of the 

wireless connection overwhelms the effects of the cable connection.  The most drastic is 

the data path from the EDGE device to the cable connection where EDGE averages 

latencies well over 200ms and the cable averages less than 10ms.  The jitter histograms of 

the EDGE to cable and EDGE to EDU are almost identical.  This is because, on the scale 

of the histograms including EDGE, the cable jitter histograms are impulsive. Because of 

the extent of the delay caused by EDGE, the cable connection’s effects can be ignored.

10.4.2. Bluetooth and Cable Concatenated Tests

Internet

Anycom 220 3c905B-TXDlink DCM-200BEFW11S4 V.2Axis 9010

Figure 10.59 – Bluetooth and Cable Concatenated Test Configuration
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Figure 10.60 – Bluetooth to CABLE to EDU Jitter (Upstream) 
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Figure 10.61 – Bluetooth to CABLE to EDU Latency (Upstream) 
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Figure 10.62 – EDU to CABLE to Bluetooth Jitter (Downstream) 
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Figure 10.63 – EDU to CABLE to Bluetooth Latency (Downstream) 
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The concatenated network consisting of cable Internet service and Bluetooth shows 

very good additive properties.  For the upstream case, the average latency is 40.8ms.  The 

independent Bluetooth tests averaged about 22ms and the independent cable internet tests 

averaged about 18ms.  This is very close considering the tests were not done in a 

controlled environment.  The jitter also shows the additive properties of the concatenated 

network tests.  The jitter histogram of the concatenated network should be convolution of 

the jitter histograms of the independent tests, which appears to be the case.  In the 

downstream tests, the comparison between to independent networks and the concatenated 

networks agree as well.  The average latency in the concatenated test is 30ms.  The 

independent Bluetooth tests averaged about 19ms and the independent cable internet tests 

averaged about 10ms.  These latencies when added closely match those of the 

concatenated test, even though the tests were not performed at the same time.  The 

convolution of the jitter histograms matches as well and is easy to verify because the 

jitter histogram for the downstream cable Internet is impulsive (within ±0.5ms) when 

compared with the jitter histogram of the Bluetooth connection.  There is an increase in 

the jitter spread, though its cause is unknown. 

 

These two examples of concatenated networks support the hypothesis that the 

effects of latency and jitter are additive.  They also demonstrate the repeatability of the 

system; its ability to provide accurate measurements of jitter and latency. 
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CHAPTER 11 

CONCLUSIONS 

From the tests discussed in Chapter 10, the capability that the system has to reveal 

detailed network properties is apparent.  It can not only be used to profile the 

performance of a network link, but also to detect problems with network configuration 

that may be otherwise hidden.  The testing system is versatile in that it can work with a 

wide variety of NICs but can also improve accuracy by using a specific NIC. 

 

11.1. System Performance 

The error of the system was measured on two machines and shown in Table 11.1.  

The baseline error is the error floor.  The error was always seen to be at or above that 

level.  If these errors are measured for a machine, they can be subtracted from the 

latencies to improve accuracy.  The uncertainty of the measurements, the random part of 

the error, is how far above the baseline the error was observed.  This is the range within 

which the measurements should not be considered valid.  Every measurement should be 

assumed to have an error within that range.  

 

Table 11.1 – System Error 
 Protocol 

Baseline 
e100b NIC 
Baseline 

Protocol 
Uncertainty 

e100b NIC 
Uncertainty 

Dual-processor 42µs 7µs 40µs 10µs 
Single-processor 37µs 12µs 50µs 20µs 
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11.2. Future Work 

It is left as future work to validate the current validation techniques and the system 

as a whole using DAG cards.  After the system is shown to be valid, it would be useful to 

add capability to store additional meta-data with the measurements, such as what the 

route of the test was, the NIC driver used, and any comments about the configuration.  

The route should also be monitored during the test by checking for a change in the time-

to-live of the packets that are received.  A new user interface would make the system 

significantly more user-friendly.  It would also be useful to provide graphing capabilities 

within the application.  Currently, data is all written to a file and then graphed with 

Matlab or Excel.  In the testing, the packets were transmitted as close to 45ms apart as 

possible.  This could be improved to include the jitter normally introduced by a VOIP 

system.  This would be better than simply queuing the packets in user mode and letting 

the system perturb the transmission times as it normally would because doing so would 

not only be unrepeatable, but the computer load of the network test on the system would 

not accurately represent that of a VoIP system.  The system should be expanded to 

support more than fixed-rate traffic generation so that it is applicable to other applications 

such as instant messaging. 
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APPENDIX A 

INTRODUCTION TO NETWORKING 

Networking between computers has been defined by the general model called the 

Open Systems Interconnection (OSI) model.  This model defines the seven layers shown 

in Table A.1.  These layers separate the network into different logical functionalities that 

are not necessarily separate in implementation.  The layers relevant to this work are 

discussed in the following sections. 

Table A.1 – OSI Model Layers 
Layer 7 Application Layer 
Layer 6 Presentation Layer 
Layer 5 Session Layer 
Layer 4 Transport Layer 
Layer 3 Network Layer 
Layer 2 Data Link Layer 
Layer 1 Physical Layer 

 

 

A.1. Physical Layer 

The physical layer simply provides the connection from one piece of hardware to 

another.  The most common is the connection from a Network Interface Card (NIC) in a 

PC to a port on an Ethernet switch.  It defines the electrical standard required to 

communicate. 
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A.2. Data Link Layer 

The data link layer allows multiple machines to communicate using unicast or 

broadcast packets.  At the data link layer, a NIC for Ethernet is assigned a Medium 

Access Control (MAC) address by the card manufacturer, but it can typically be 

overridden by the PC.  This address is used to directly communicate with another NIC on 

the same Local Area Network (LAN).  If a packet is sent to the reserved address 

ff:ff:ff:ff:ff:ff it is transmitted to every NIC on the LAN.  A LAN is distinguished from a 

Wide Area Network (WAN) in that all computers are separated only by switches or 

passive devices that will not make level-3 (Network Layer) routing decisions and hence 

will not limit Address Resolution Protocol (ARP) traffic. 

 

A.3. Network Layer 

The network layer allows devices to communicate across vast networks having 

limitless topologies.  This is possible because devices called routers direct traffic through 

various network links in the Internet until the packet arrives at its destination.  At the 

network layer, an Internet Protocol (IP) address can be bound to a NIC.  This address is 

typically a unique address on the Internet assigned by a Dynamic Host Configuration 

Protocol (DHCP) server.  Address ranges for these DHCP servers are assigned by the 

Internet Assigned Numbers Authority (IANA).  The IP address could however be in one 

of three non-routable address ranges, shown in Table A.2. 
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Table A.2 – Non-Routable IP Address Ranges 
 Class Address Range 
Range 1 Class A 10.0.0.0 - 10.255.255.255 
Range 2 Class B 172.16.0.0 - 172.31.255.255 
Range 3 Class C 192.168.0.0 - 192.168.255.255 

 

Addresses from these three ranges should always be ignored by a router.  This 

allows for addresses in the non-routable ranges to be reused in many independent LANs 

without causing conflict.  Of course, to allow the computers with these non-routable 

addresses to communicate with other computers on the internet, a process such as 

Network Address Translation (NAT) must be performed by the router, as is further 

explained in Section 1.2.2. 

 

A.4. Transport Layer 

At the transport layer, a protocol such as Transmission Control Protocol (TCP), 

User Datagram Protocol (UDP), or Real-time Transport Protocol (RTP) organizes and 

manages the transmission of data from one port on a computer to another port on another 

computer.  TCP is a reliable transport protocol, which means that the data is guaranteed 

to arrive uncorrupted and in order at the destination.  The packet header and the payload 

are protected by a 32-bit checksum.  If the packet arrives in error, the receiver requests 

that the data be retransmitted.  If a packet or its acknowledgment is lost entirely, a timer 

will expire, causing a retransmission of the missing packet.  A fast retransmission can 

also happen if three duplicate acknowledgments are received, indicating the missing 

packet. 
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For a real-time streaming application like Voice-over-IP, reliable transport is 

undesirable because the data being transported has a lifetime associated with it.  Beyond 

that lifetime, the data is invalid and is a waste of bandwidth.  This is discussed further in 

Chapter 2.  UDP is more desirable for Voice-over-IP because it has a small overhead (8-

byte header instead of TCP’s 28-byte header) and does not retransmit when an error is 

detected.  In both cases the data is protected by a checksum in the header.  RTP is a 

transport layer protocol that is designed to use UDP and provide additional information in 

its 14-byte header such as a time stamp, a sequence number, the type of data, the 

synchronization source, and a list of the contributing sources.  Although RTP has more 

overhead, it provides information to more reliably reconstruct the streams in the receiving 

application.  For the purpose of this work, I will focus only on UDP because it is the base 

transport protocol used for Voice-over-IP.  I will also investigate a slightly modified 

implementation of UDP, which protects only the header with a checksum. 

 

A.5. Address Resolution Protocol 

When attempting to send a packet to an IP address, the network subsystem must 

have a way to find out what MAC address to send the packet to.  The ARP sends a data-

link-layer broadcast on the LAN asking for the MAC address of the NIC to which an IP 

address is bound.  If a NIC with that IP address is on the LAN, it will respond with a 

message stating its MAC address.  This information is added to the ARP cache table so 

that the next time the computer would like to send a packet to that same IP address it can 

simply look the address up in its table without having to send another ARP request.  If 

there is no response to a broadcast ARP request, it can be assumed that the IP address is 
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not bound to any NIC on the LAN.  If this is the case, the packet should be sent to the 

default gateway.  The IP address of the default gateway must now be looked up in the 

ARP cache or, if not there, a broadcast requesting its MAC address must be sent.  The 

packet is then sent to the MAC address of the default gateway. 
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APPENDIX B 

INTRODUCTION TO ROUTING 

Routing is used to direct packets from one LAN to another.  There are several 

routing protocols and many backbone transports that exist across the Internet, but for the 

purpose of this work, only the immediate routing that must be considered by the network 

performance application is relevant. 

 

B.1. Default Gateway 

When a computer is not located on the same LAN as another computer it is 

attempting to send a packet to, the sending computer must instead send the packet to its 

default gateway.  The default gateway is responsible for determining the next hop that the 

packet must make, and the next router for the next hop, etcetera, until the packet reaches 

its destination.  The IP address of the default gateway is typically received from the 

DHCP server when the computer’s IP address is assigned. 

 

B.2. Network Address Translation 

In most cases, the computers on a home LAN do not use routable IP addresses.  

They typically use non-routable IP addresses that are assigned by the DHCP server in a 

small router, selected from the ranges in Table 1.2.  These routers also do Network 

Address Translation (NAT) when it serves as a gateway between the computers on that 
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LAN and other computers on the Internet.  To perform the NAT, the router will replace 

the IP address in the header of the packet with its own external IP address and store a 

record of the packet header.  This establishes a route between that remote server and the 

internal machine based on the source and destination ports.  When a packet is received 

from a server on the external interface of the gateway, the source IP address is compared 

with all existing routes.  If the source IP address, the source port, and the destination port 

match a route that is stored, the internal IP address that was stored in the route replaces 

the destination IP address in the header, and the packet is transmitted on the internal LAN 

to that machine. 

Network Address Translation

Source Destination

Internal PC Router Internet Server

Non-Routable IP Server IPPC Port Server Port

Source Destination

Router IP Server IPPC Port Server Port

Request

Response
Source Destination

Server IP Router IPServer Port PC Port

Source Destination

Server IP Non-Routable IPServer Port PC Port

 

Figure B.1 – Network Address Translation 
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APPENDIX C 

INTRODUCTION TO WINDOWS DEVICE DRIVERS 

There are many differences between developing device drivers and developing 

application software.  This section does not attempt to be a reference for device driver 

development but only to identify those aspects that are required to understand the 

discussions in Chapter 4.  For a full reference, see Walter Oney’s book Programming the 

Microsoft Windows Driver Model [28]. 

 

C.1. User Mode versus Kernel Mode 

Typical application software runs in user mode.  By contrast, most device drivers 

run in the context of kernel mode along with the operating system.  Microsoft Windows 

3.0 was the first operating system which made that distinction [28].  Kernel mode 

software is privileged, trusted software that has the ability to access any memory or 

resource that it pleases.  This means that bugs in a device driver can quite easily be fatal 

to the operating system.  It also means that there are many restrictions which the driver 

must impose upon itself.  Failure to do so will often corrupt the operating system. 

 

C.2. Interrupt Request Level 

Within the kernel, software can run at different priorities, called interrupt request 

levels (IRQL).  A program cannot be interrupted by another program running at an equal 
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or lower IRQL.  Only two levels are needed discussion here: PASSIVE_LEVEL and 

DISPATCH_LEVEL.  All user-mode programs run at PASSIVE_LEVEL as do many 

kernel functions.  The thread scheduler, which is responsible for preempting threads at 

the expiration of a time slice, runs at DISPATCH_LEVEL.  A time slice is an allotted 

amount of time that a selected thread is allowed to execute before it is preempted and 

another thread is selected for execution.  This allows many programs to play nicely with 

one another and share CPU time whether they want to or not.  Because the thread 

scheduler runs at DISPATCH_LEVEL, any driver code running at DISPATCH_LEVEL 

or higher cannot be preempted.  This means that, to maintain system integrity and 

responsiveness, any software running at DISPATCH_LEVEL or higher must voluntarily 

relinquish control of the CPU as soon as possible. 

 

C.3. I/O Control Operations 

One of the primary methods of communicating with a device driver is through I/O 

Control operations.  When a program calls an I/O Control, the system generates an I/O 

Request Packet (IRP) which contains the control code, the data buffers, and their sizes.  

The IRP is then passed to the driver which executes the function associated with the 

control code.   

 

These can either be accessed synchronously or asynchronously.  If the I/O Control 

is accessed synchronously, then in the event that the driver or the hardware it is 

controlling cannot complete a request immediately, the driver will retain control of the 

CPU until it is able to complete the request.  This means that the software that calls the 
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I/O Control will be blocked, waiting for control to be returned.  If the I/O Control is 

accessed asynchronously, then in the event of a request that cannot be completed 

immediately, a STATUS_PENDING error code will be returned to notify the calling code 

that the request is being handled but is not yet complete.  The calling program is then free 

to execute other code and later check the status of the request. 

 

C.4. Direct-Call Interface 

A direct-call interface allows a driver to export a standard set of function pointers 

to be called directly by another driver, instead of creating an IRP and adding it to the 

driver’s queue.  This interface has much lower overhead than the I/O Control interface 

and no restriction on IRQL, though it is less controlled and not available to user-mode 

applications. 
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