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Chapter 1  

Introduction 
 

1.1   Multipass Optical Systems 

In order to measure low sample concentrations or weak transitions, it is necessary 

to employ a multiple-pass cell that will increase the optical path through the sample 

without increasing sample volume.  Such systems have been in use since before the 

advent of the laser, and in recent years there has been interest in further development of 

these systems to allow even longer path lengths and greater spectral precision.  Much of 

this work is focused on observing atmospheric lines in the controlled environment of a 

laboratory, and expanding the line parameters contained in well-known spectral line 

databases such as HITRAN1, JPL2,  and GEISA3. 

The first high path optical systems were simple implementations and consisted of 

a relatively small number of optics.  For example, in 1940, Kratz and Mack4 introduced a 

long path configuration that was based upon a 90° prism and a spherical mirror.  

However, soon thereafter Smith and Marshall5 replaced the prism with a pair of flat 

mirrors to eliminate complications due to reflections from the face of the prism.  White’s 

system6 came next and consists of three large aperture spherical mirrors with identical 

curvature arranged to form a one-to-one imaging system.  Some years later, Herriott7,8 
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introduced a 2 spherical mirror cell that requires holes to be drilled in the mirrors for 

beam entrance and exit. 

At this point, innovations split into two categories: modifications to the White 

Cell and modifications to the Herriott cell.  In order to increase the attainable path length 

in the White configuration, several groups introduced schemes to reinject the exit beam 

back into the cell.  Horn and Pimental9 and Doussin10 utilized rooftop retroreflectors, 

Shetter11 added a second set of spherical field mirrors, and Ballard12 reshaped the 

imaging mirror by adding a tab on its exit side.  Various combinations of these techniques 

have also been combined to aid in specific applications.  With long baseline systems and 

laser sources, path lengths of over 5 km have been demonstrated13. 

Adaptations of the Herriott cell consist of varying the distance between the two 

spherical mirrors or introducing aspheric mirrors.  Mirror separations of  have 

been utilized by various authors14-16 to achieve different path lengths and Herriott8 

proposed using astigmatic spherical mirrors to achieve the same result.  Using minimally 

divergent beams, path lengths of over 8 km have been achieved with such systems14. 

4f L f≤ ≤

 

1.2   Terahertz Spectral Region 

 Spectroscopic measurements in this region are primarily concerned with 

rotational transitions in molecules with permanent dipole moments, since it falls in the far 

infrared region of the spectrum.  Traditionally terahertz frequencies have been accessed 

by techniques such as frequency mixing, far infrared gas lasers, and Fourier Transform 

Spectroscopy.  More recently, ultra-broadband techniques have been developed that 
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detect the time-dependent electric field.  This technique — terahertz time-domain 

spectroscopy (THz-TDS) — has been used to detect a variety of gases such as water 

vapor, methyl halides, ammonia, and other molecules with rotational transitions.17-21  

This thesis demonstrates a multiple pass cell based upon the classic White cell that 

extends the path length for THz-TDS measurements from the typical value of 480 mm to 

a length of over 7 meters. 

 Compared to other techniques in the same frequency range, THz-TDS is a phase 

coherent measurement.  A single measurement of a sample measures both absorption and 

dispersion.22  Additionally, unlike the bolometer which is commonly used for incoherent 

THz detection, the time-gated receiver in the THz-TDS system is insensitive to 

incoherent thermal sources.  Photoconductively-switched THz generation and detection 

methods are broadband measurements.  Pulsewidths on the order of a fraction of a 

picosecond in the time-domain correspond to a bandwidth of several terahertz, allowing 

detection of multiple lines and multiple species simultaneously, in single time-domain 

measurement. 

 Because THz-TDS is a broadband, phase-coherent measurement, it enables water 

vapor spectroscopy across much of the rotational band.  Measurements have been made 

of absorption and dispersion lines at room temperature and for water vapor pressures of 

1.5 torr.17  Additionally, foreign and self pressure broadening has been investigated for 

hot water vapor.23-25  By employing a long path spectrometer, this thesis demonstrates 

measurements at lower sample concentrations and for weaker water absorption lines than 

previously measured using THz-TDS.   
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 A considerable amount of time has been spent on terahertz spectroscopy of 

symmetric molecules, particularly symmetric tops because they exhibit coherent 

transients in the time domain due to their evenly spaced rotational states.  Most of the 

time THz-TDS measurements are investigated in the frequency domain after performing 

a Fourier Transform; however, because TDS is a time-domain technique, species 

detection is possible directly in the time domain.  By looking at coherent transient pulses, 

different molecules can be distinguished by noting the location and separation of the 

pulses.  Taking advantage of the conspicuous time-domain structure, and employing a 

long path THz spectrometer, this thesis demonstrates for the first time near real-time part-

per-million species detection at terahertz frequencies. 

 Chapter 2 will provide an overview of the terahertz time-domain spectroscopy 

technique and will discuss the limitations to long-path propagation at these frequencies.  

The considerations which are taken when choosing the appropriate multipass optical 

system are also investigated. 

 Chapter 3 presents a Gaussian beam ABCD matrix treatment of the terahertz 

beam and the White Cell configuration.  Figures of merit are developed which provide 

practical parameters for THz White Cell design and application.  The implications of 

additional losses resulting from non-ideal beam profiles are introduced. 

 Results from spectroscopic measurements utilizing the THz White Cell are 

included in Chapter 4 for methyl chloride and water vapor.  Time and frequency-domain 

part-per-million detection is demonstrated both at vacuum and atmospheric pressure.  The 

final chapter includes interesting future applications stemming from these measurements 

and others.
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Chapter 2  

Terahertz Time-Domain Spectroscopy (THz-TDS) 
 

 An introduction to the terahertz time-domain spectroscopic technique is included 

in this chapter to serve as the basis for the long path length system that will be developed 

in subsequent chapters.  The limitation that beam divergence poses on long path 

propagation is presented with emphasis on matching both the beam waist radius and 

radius of curvature after propagation through an optical system. 

2.1   Experimental Setup 

In THz-TDS measurements, freely propagating THz pulses are generated by a 

photoconductively-switched transmitter that is gated with a focused femtosecond laser 

pulse.  As is seen in Figure 2.1, these pulses are coupled from the THz transmitter to the 

THz receiver by means of beam forming optics.  The beam that is emitted at the 

transmitter is collected by a silicon lens that is placed against the back of the chip.  The 

radiation then propagates to an off-axis parabolic mirror that collimates the THz beam.  

At this point, the terahertz is highly-directional, and is focused onto the receiver chip by a 

second paraboloidal mirror and silicon lens.  The terahertz receiver is gated by an 

identical femtosecond laser pulse, and is coupled to a current amplifier.  By changing the 
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relative delay between the two femtosecond pulses, a current proportional to the electric 

field amplitude of the THz pulses is detected. 

       

Figure 2.1 Terahertz Time-Domain Spectrometer 

For each sample that is to be measured, a reference scan is taken first.  Then, the 

sample of thickness, d, is introduced into the path of the terahertz radiation, and the 

resulting pulse is measured at the detector.  These time-dependent measurements are then 

numerically Fourier transformed to yield complex frequency spectra, ( )referenceE ω  and 

( )sampleE ω .  Taking the ratio of the sample spectrum to the reference spectrum, the effects 

of the sample on both the amplitude and phase of the THz pulse are determined according 

to the expression, 

 ( ) ( )( )exp 1sample
r i

reference

E j n jn
E c

ω ω ω d⎡ ⎤= − − −⎢ ⎥⎣ ⎦
, (2-1) 

where d is the length of the sample, ( ) ( ) ( )r in n jnω ω= − ω  is the complex refractive 

index of the sample, and the sign of the imaginary part is chosen to lead to power loss.  

Source Detector 

A 

B

A′ 
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Thus, the power absorption coefficient is defined as ( )2 inα ω ω= c  and the dispersion is 

proportional to the real part of the complex index.   

 

2.2   Generation and Detection of THz Radiation 

2.2.1   THz Transmitter 

The terahertz transmitter is composed of a coplanar stripline on semi-insulating 

GaAs biased at 80 volts DC, and gated with a 6 mW optical pulse (~50 fs at 805 nm) 

from a Ti:Sapphire laser.  When the femtosecond pulse hits the biased stripline structure, 

free carriers are generated between the lines which are, in turn, accelerated by the bias 

field.  The acceleration of the carriers generates a cone of terahertz radiation normal to 

the surface of the chip.  A high-resistivity silicon lens is mounted to the reverse side of 

the GaAs chip in order to collimate the radiation and form a usable beam.  Without this 

collimation and the subsequent off-axis parabolic reflectors to aid in forming a directional 

beam, the terahertz signal would become unusable after a short distance due to diffraction 

losses. 

 

2.2.2   Phase-sensitive THz Detection 

The THz receiver is an optically-gated 50 µm dipole antenna fabricated on ion-

implanted silicon-on-sapphire (SOS).  By changing the delay between the optical gating 

pulses in such a way that the THz pulse impinges the back side of the chip at the same 

time that the 820 nm femtosecond pulse hits the area between the dipole antenna 
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structure, a transient voltage is induced, which can be measured using a current amplifier 

coupled to a lock-in amplifier. 

Because the terahertz receiver detects a voltage (current), which is proportional to 

the electric field of the pulses, the THz measurement system is phase coherent.  In order 

to achieve optimal power transfer the beam that is detected at the receiver must have an 

identical phase and amplitude profile to the emitted THz beam.26  In other words, the 

optical system must be designed to match the beam waist radius and radius of curvature 

from the transmitter to the receiver, over the entire range of frequencies.  This is done by 

matching the transmitter’s Gaussian beam with that of the receiver at point B in Figure 

2.1.  The power coupling efficiency for two arbitrary Gaussian beams is given by 26, 

 2 2 1 1
2

4
eff

w w kww
w w R R

C
′ ′⎛ ⎞ ⎛ ⎞ ⎛+ −⎜ ⎟ ⎜ ⎟ ⎜′ ′⎝ ⎠ ⎝ ⎠ ⎝

=
+

2
⎞
⎟
⎠

 (2-2) 

where w is the waist radius and R is the radius of curvature of the beam at some given 

point along the optical axis.  The unprimed variables refer to the beam waist and phase 

curvature at point A in Figure 2.1, and the primed variables refer to the values at the 

detector.  It can be readily seen that when w w′=  and R R′= , the coupling efficiency 

becomes unity.  In order for the system to have 100% coupling efficiency overall, this 

must be true of all the frequencies in the pulse.  An expression for Ceff(ω) can be obtained 

by considering the fact that w and R are both functions of ω.   

 Figure 2.2 shows a pictorial representation of the effects of Gaussian beam 

mismatch.  Case 1 represents the situation when 1 2f f f= = , 1 3d d f= = , and 2 2d f= , 

as is the case for the standard terahertz time-domain spectrometer.  In this confocal 

configuration, there is no mismatch between the transmitter and receiver Gaussian beams.  
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Consider Case 2 in which any one of the focal lengths and/or distances has been changed 

such that the optics are no longer spaced confocally.  With the beam waist defined as the 

point where the radius of curvature is planar, the effect of such a change is that the 

location of the two beam waists no longer coincides.  Since the transmitter Gaussian 

beam exhibits its planar phase front at some point different than the receiver beam, there 

is phase curvature mismatch inherent in this system.  The transmitter beam will also have 

a different waist size than the receiver beam, as is seen in Figure 2.2. 

 

Figure 2.2 Effects of Gaussian beam mismatch 

When 1f  and 2f  are equivalent and 1 3d d f= = , Figure 2.3 shows how the power 

coupling efficiency ( )effC ω  changes as  is increased.  The signal strength tails off 2d

w1 

w2 

R1
R2 

w1 = w2 = wo

R1 = R2 = ∞

Case 1: Case 2:

d1 d3d2

f1 f2
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rapidly at higher frequencies as the distance is increased, with over 50% of the power 

above 1 THz being lost when the separation is 6 f .   

1.2

                  

Figure 2.3 Power coupling efficiency as a function of paraboloid separation 

 

2.3   Extension to Long Path Propagation 

2.3.1   Limitations 

It was seen previously that small concentrations of gas samples can be measured 

by increasing the distance that the beam travels through the sample.  Unfortunately, with 

a THz-TDS setup this cannot simply be done by allowing a greater distance between the 

transmitter and the receiver because of limitations imposed by diffraction.  The terahertz 

beam can be as small as two wavelengths in diameter, so diffraction causes the beam to 

diverge rapidly with increased propagation distance.   As a result, any design of an 

optical system for use at terahertz frequencies must minimize diffraction of the beam.  
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For example, with a starting beam diameter of 7.0 mm, the 0.3 THz component of the 

beam will be 454.8 mm in diameter after 2.5 m of propagation without collimating or 

focusing optics.  Recalling Figure 2.3 which showed the effect of increasing the distance 

between the off-axis parabolic mirrors in a standard THz-TDS setup, it is clear that this is 

also not a viable method of achieving long path lengths, as the high frequencies are lost 

due to phase and waist radius mismatches.  So, a new type of spectrometer must be 

designed in order to achieve efficient long path THz propagation. 

 

2.3.2   Design Considerations 

As was seen in the example of the standard THz-TDS system, matching of waist 

radius and radius of curvature are the essential factors to maximizing system throughput.  

It follows that in order for an optical configuration to be considered as a candidate for a 

long path THz system, it must control both the amplitude and phase of the beam by 

minimizing the effects of diffraction by recollimating the THz beam and preserving the 

radius of curvature.  Many different long path optical systems exist for various frequency 

ranges9,12,27-29, but few of them would be candidates for application to THz pulses 

because they were designed for use at wavelengths where beam diffraction is not a 

limiting factor. 

The cell developed by White6 in 1942 has found widespread application9,11,13,30-32 

as a tool for spectroscopic measurements of low sample concentrations.  This optical 

configuration is viable for application at THz frequencies for a couple of reasons.  First, 

the White cell is a unity conjugate ratio imaging system so the beam size will be 

preserved after propagation through the cell.   Additionally, since the entire angular 
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aperture of the mirrors is unobstructed, it is well suited to the highly divergent millimeter 

and submillimeter THz wavelengths.  The design of such a system will be considered in 

the following sections. 

 

2.4   White cell:  Optical configuration 

Three spherical mirrors with identical radii of curvature make up the basic design 

of the White cell.6   These mirrors are separated by a distance equal to twice their focal 

length, resulting in a system of conjugate foci.  The beam size at the source will be 

imaged onto mirror B by mirror A, and so forth until the beam exits the cell, as is seen in 

Figure 2.4.  The cell is configured for multiple passes by rotating mirrors A and C such 

that the first reflection from mirror B moves closer to its exit edge, and subsequent 

reflections are evenly spaced across its face.  Defining a pass as four 2f traversals of the 

cell, Figure 2.4 shows the beam path for 1, 2, and 3 passes.   

 

 

Figure 2.4 White Cell configured for 1, 2, and 3 passes 

3 2 1 3 2 14 5 

1 Pass 2 Passes 3 Passes 

B

A C 

1 
Image 
plane 
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2.5   Diffraction 

The effect of diffraction as the terahertz beam propagates is considered by 

employing Gaussian beam techniques.33  By appropriately choosing optics prior to the 

input plane to the cell, the starting beam waist can be tailored to minimize clipping at the 

input/output plane.  If the choice for the initial beam waist is large, the beam will not 

diverge as quickly on its way to mirror A.  However, if it is too large, the beam will begin 

to clip on the edge of mirror B.  On the other hand, choosing a small input waist will 

cause the beam to diffract much more quickly and part of the beam will be lost around 

the edges of mirror A.  The design of a THz White cell becomes a process of balancing 

beam waists with physical apertures over multiple frequencies.  It becomes necessary to 

follow a Gaussian beam treatment when choosing appropriate optics.  Employing 

Gaussian beam theory allows both diffraction and phase curvature to be addressed by 

allowing investigations on both beam waist radius and radius of curvature.  As was seen 

previously, both of these parameters must be matched across the bandwidth at the input 

and output of the cell to attain unity coupling.  This treatment differs from that of White 

in the fact that the terahertz receiver is a phase sensitive detector.  Where White 

concentrated on maximizing optical power throughput, at THz both the amplitude and 

phase components of the electric field must be considered.  The Gaussian beam treatment 

of the White Cell will be described in the following chapter
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Chapter 3  

Theory:  Gaussian Beam Formalism 
 

This chapter addresses the diffraction of the terahertz beam by utilizing Gaussian 

beam theory.  After giving a general overview of the technique, calculations are 

performed for the three White Cell mirrors and are extended to include input and output 

optics.  The result of this treatment is the design a long-path THz spectrometer with 

minimal beam clipping and efficient power coupling across the bandwidth of the pulse. 

3.1   General overview of Gaussian beam theory 

 The terahertz beam is described by a waist which is defined by the effective 

aperture of the silicon lens mounted on the transmitter.  The THz electric field can be 

described by 34,35  

ow

 

2

0 2

2
1

( , , )
( ) ( )

exp tan exp
2 ( )

o

o
o

o

w rE x y z E
w z w z

k rzj k z j
z R

−

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎧ ⎫⎡ ⎤⎛ ⎞

z
⎡ ⎤⎪ ⎪× − − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

, (3-1) 

which is an exact TEM0,0 mode Gaussian-spherical beam solution to the paraxial wave 

equation.  In the above expression,  is the wave vector in free space, ok cω , and ( )w z  

and ( )R z  are defined in terms of the Rayleigh range, .   oz
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2

2 2 1o
o

zw z w
z

⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (3-2) 

 ( )
2

1 ozR z z
z

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (3-3) 

 
2
o

o
o

wz π
λ

=  (3-4) 

The radius and the phase curvature of a Gaussian beam are functions of frequency 

(wavelength), so both parameters can be calculated for each frequency in the THz pulse, 

as a function of the propagation distance, z.  The ( )R z  and ( )w z  variation with respect 

to z is given through a complex number, the q-parameter: 

 2

1 1
( ) ( ) ( )

j
q z R z w z

λ
π

≡ −  (3-5) 

where ( )R z  and  are defined as before, and ( )w z λ  is the wavelength of the radiation.   

  

 

3.2   General overview of ABCD Matrices 

By approximating the terahertz beam as a Gaussian, the standard geometrical 

optics picture can be used to describe the propagation.34,35  This allows the usage of a set 

of matrix operations to find the transfer function of an optical system.  The transfer 

function, T, is given by the ABCD ray matrix of the system, and transforms the Gaussian 

beam q-parameter according to  
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 1

2

1

1
1

1

C D q
q A B q

⎛ ⎞+ ⎜ ⎟
⎝=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

⎠ , (3-6) 

where q1 is the q-parameter at the transmitter and q2 is the value after propagation 

through the optical system.  This ABCD q-parameter treatment assumes paraxial 

propagation and ignores astigmatism and higher order aberrations.  Additionally, this 

simple picture does not take finite aperture size into account.  

 The ABCD matrix calculation must yield the identity matrix in order for q1 to 

equal q2 and to achieve unity coupling.  A unit cell for any THz system can be defined as 

the least number of optics and lengths of free space that meets this condition.  The 

standard THz-TDS setup is shown in Figure 3.1.  While the distance between the 

paraboloids must be held constant at 2f, the other two distances can be represented in 

terms of a fractional portion of a 2f length of free space, x, such that d1+d3=2f.  The 

distances are then 2fx and 2f(1- x), respectively, where 0 ≤ x ≤ 1.  Thus, the THz-TDS 

system represents the case where x = 0.5.  Performing the matrix calculations for the 

standard system and for any allowed value of x yields a transfer function of T = -I.  This 

is an important result because it means that if, for example, experimental constraints 

require that the distance between the transmitter and the parabolic mirror be less than f, 

unity coupling can be achieved by increasing the distance at the receiver end by the same 

amount. 
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f f 

d2 = 2fd1 = 2fx 

Figure 3.1 Definition of unit cell for standard THz-TDS system 

3.3   ABCD matrix calculations for White Cell 

To achieve maximum transfer it is necessary to introduce secondary optics into 

the design that will couple the THz beam into and out of the White Cell.  Supposing the 

focal length of mirror A is 300 mm and the waist size at the output face of the transmitter 

silicon lens is 3.5 mm 33, the diameter at mirror A will be approximately 110 mm at 0.3 

THz after 600 mm of propagation.  While this is within reasonable limits for 

commercially available spherical mirrors, the beam could not be steered easily and 

aligning the system would be difficult.  As a result, it is necessary to introduce secondary 

optics into the design that will couple an appropriate beam waist into and out of the 

q2 = q1 
d3 = 2f(1-x) q1 

for 0 ≤ x ≤ 1
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White cell.  It is helpful to consider the system in terms of three parts:  1) input optics 2) 

White Cell optics, and 3) output optics.  In this section, the second stage will be 

considered and the others will be left to subsequent sections. 

Investigating the White Cell in terms of the THz unit cell and beginning at the 

input plane, the first four elements of the White Cell compose one unit cell with a value 

of x = 1, as is shown in Figure 3.2.  The optical configuration is not symmetric, i.e. one 

pass through the system is not composed of an even number of mirrors and spaces, so it is 

not composed of an integer number of unit cells.  In order to find the transfer function for 

the system, the matrices for a 2f space, a lens of focal length f, and another 2f space must 

be multiplied together and then multiplied by –I, the transfer function for the unit cell.  

The ABCD transfer matrix for the White cell is then: 

 
1 0
1 1

A B
T

C D f

⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3-7) 

Translating this back into the form for the q-parameter in terms of  and w R , a simple 

mathematical manipulation shows that the imaginary part of  has remained unchanged; 

however, the real part is now frequency dependent rather than its initial value of 

2q

oR .   

 2
2

1 1 o

o

j
q f w

λ
π

= −  (3-8) 

This result means that while the beam size has not changed, there has been a change to 

the phase curvature of the beam as a result of propagation through the three mirrors of the 

White Cell. 
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q2 q1 

             Unit Cell

Figure 3.2 Definition of unit cell for 3-mirror White Cell configuration 

 

Some sort of corrective optic must be added to the three mirror cell configuration 

in order to give unity coupling across the bandwidth.  Recalling that the White Cell did 

not consist of an integer number of unit cells, it is seen by inspection that the necessary 

corrective optic is an additional lens with focal length f, since this addition would give 

two complete unit cells.  However, because these calculations are all performed on 

matrices, the corrective optic can also be found by determining the matrix that will 

convert the transfer function of the cell into the identity matrix.  This matrix manipulation 

amounts to finding the inverse of the transfer matrix ( )1TT I− = .  After this ABCD matrix 

is found, it can then be compared to the basic matrices for lenses or lengths of free 
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space34 to determine the appropriate optical element(s).  For the White cell, this matrix 

manipulation yields the ABCD matrix for a lens with identical focal length to the other 

three mirrors of the White cell, which is in agreement with the unit cell picture as well.  A 

revised experimental diagram is seen in Figure 3.3, showing the cell with a lens placed at 

the location of the output waist of the cell. 

                       

Figure 3.3 White Cell  including a lens to correct the beam phasefront 

 

 After performing these calculations it becomes clear that there are a few rules of 

thumb to keep in mind when designing a THz system for unity coupling.  First, it is 

possible to have one-to-one imaging of the beam waist size and still have poor coupling 

due to a deviation in the radius of curvature.  As a result it is important to consider both 

the real and the imaginary parts of the complex q-parameter.  It is also seen that in order 

Source 

2f

1 
2 
3 

Image  
Plane 
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to get maximum power transfer through the system, there must be sufficient symmetry to 

allow it to be completely defined in terms multiples of a THz unit cell which is defined as 

a basis for unity coupling. 

 

3.4   Extension of treatment to include input and output optics 

In a previous section, the THz White cell was defined in terms of 3 parts, input 

optics, White cell optics, and output optics.  The optics of the White cell have been 

considered assuming a planar radius of curvature at the input plane, so it is necessary to 

investigate a series of lenses (mirrors) and lengths of free space for the input stage that 

will give an appropriate waist radius and an infinite radius of curvature.   

 When designing an optimized configuration for the White cell section, corrective 

optics were chosen to produce a system whose transfer function was the identity matrix.  

By placing this constraint on the system, the White cell makes no changes to the beam 

parameters and, thus, can be inserted into any optical system that also has unity coupling 

(i.e. its transfer function is also identity).  Looking beyond this particular system, the 

general statement can be made that combining two THz systems which have 100% power 

coupling across the bandwidth, will produce a composite system with the same property.  

Of course, the inherent assumption is that there are no effects due to limiting apertures for 

any frequency in the bandwidth and that aberrations are negligible. 

Since the standard terahertz time-domain spectrometer possesses the quality of 

imaging the transmitted beam characteristics identically onto the receiver, it would be 

possible to use it as the basis for the input and output optics of the THz White cell 

composite system.  The most logical place to insert the three mirrors of the White cell 
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would be at the plane of symmetry in the system, that is, halfway between the two 

parabolic mirrors.  However, as is seen in Figure 2.1, this is a frequency dependent beam 

waist.  If the beam at this point were used at the input plane to a White cell, there would 

be clipping losses for the low frequencies due to their larger size. 

Consider a focused beam THz spectrometer, as is shown in Figure 3.4.  Such a 

system places a pair of lenses in a confocal arrangement with the standard off-axis 

parabolic mirrors of the THz-TDS system.  Due to the presence of focusing optics, the 

beam waists will alternate between frequency independent and frequency dependent.  The 

waist at the transmitter is assumed frequency independent, so the beam waist at this 

system’s plane of symmetry (between the two lenses) will also be frequency independent.  

As a result, this system fulfills one of the qualities that were desired for the input and 

output phases of the system design.  The beam waist, ,  can be tailored to be almost 

any value at the input plane of the White cell by changing the focal lengths of the two 

lenses.   

2w

w2 

 

Figure 3.4 THz focused beam waist system 

 

wo wo 
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Figure 3.5 shows the completed THz White Cell system, without choosing 

specific values for 1f , 2f , and 3f .  Since the beam enters on one side of mirror B and 

diffracts until being refocused by mirror A, the size of mirror A is the limiting aperture in 

the system.  In order to determine how large mirror A must be in order to minimize 

clipping losses, the case is considered when the divergence angle, θ, of the Gaussian 

beam is equivalent to the mirror diameter, φA.  The divergence angle of a Gaussian beam 

is defined as the rate of change of the 1/e beam diameter with respect to the propagation 

distance.  This treatment leads to the result that the longest wavelength to not be clipped 

by the edge of the mirror is 

 2
max 4 ( #)

w
m F
πλ = , (3-9) 

where m is the fraction of the 1/e point in field given by 1/em, wo is the starting waist 

radius, and # / AF f φ≡  is the f-number of mirror A.  Thus, the minimum frequency to fill 

mirror A is min
max

cν λ= .   
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CA

              

Figure 3.5 THz White Cell including input, output, and corrective optics 

 

Since the beam size on mirror B is the same as the size at the input plane, this 

treatment can be extended to calculate the maximum theoretical path length.  The number 

of spots, N, across mirror B takes on odd integer values, and the optimal configuration is 

when the 1/em points of each spot are just touching.  So, the diameter of mirror B can be 

expressed in terms of w2 as φB = 2Nmw2 and the associated path length is ℓ = 4f(N+1).  

Using  Equation (3-9) it can be shown that the maximum number of spots on mirror B is 

given by 

wo wo 

B

Input/output 

f3 

w2 13 2

f2 

f1 
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 2
max8

A BN
fm
πφ φ

λ
= , (3-10) 

and the maximum attainable path length is 

 2
max

4
2

A B f
m
πφ φ

λ
= + . (3-11) 

Values m, λmax, and φA are design constraints of the system and define the acceptable 

losses in the system.  Holding these as constants, it is seen that as the diameter of mirror 

B increases, the number of reflections that will fit across its face also increases.  

However, if longer focal lengths are used for the same size mirrors, N will go down.  So, 

there are two ways to increase the propagation length: 1) increase the diameter of mirror 

B, and 2) increase the focal length of all the White Cell mirrors.   

 

3.5   Experimental Constraints 

For the THz White cell considered in this work, aluminum-coated spherical 

mirrors with a 304.8 mm focal length and 152.4 mm diameter were chosen as the three 

mirrors of the White cell.  This choice gave a propagation length of 2.43 m after one 

complete pass through the cell.  At the input and output, an off-axis parabolic mirror with 

a focal length of 119.6 mm was chosen to collimate the beam before the focusing lens.  

The lenses are fabricated from high-resistivity silicon, which is essentially lossless across 

the bandwidth.  A focal length of 200 mm was chosen to give an 11.66 mm frequency 

independent beam diameter at the input plane to the White cell.  With this starting waist 

diameter and mirror size, a value of λmax = 1.53 mm is calculated from Equation (3-9) 

with the commonly adopted value of m = 1.5.26  This corresponds to a low frequency 
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point of 0.19 THz and a maximum of 7 reflections from mirror B (9.75 m propagation).  

To illustrate the effect of choosing a longer focal length silicon focusing lens, a 400 mm 

focal length silicon lens gives a beam diameter at the input plane of the White Cell of 

23.3 mm, resulting in λmax = 3.05 mm and N = 3 (4.87 m propagation).   

While the phase correcting silicon lens needed to have a focal length of 304.8 mm 

in order to completely compensate for the phase error due to an odd number of 

reflections, a lens with a focal length of 247.5 mm was used.  This is 57 mm shorter than 

the desired values, but the associated loss is minimal.  Ideally this phase correcting lens is 

placed at the exit plane with the beam passing through the center of the optic to minimize 

beam steering.  This was not possible due to the large (75 mm) aperture of the lens, so it 

was placed approximately 75 mm behind mirror B.  This placement, combined with its 

shorted focal length, gives the coupling efficiency shown in red in Figure 3.6. 

 

3.6   Results from THz White Cell configuration 

Theoretical curves for the coupling efficiency calculated from Equation (2-2) are 

shown in Figure 3.6 for the following cases:  1) standard THz-TDS system with 455 mm 

between the paraboloids, 2) THz White Cell without Si focusing or phase correcting 

lenses, 3) THz White Cell with Si focusing lenses but without phase correcting lens, and 

4) THz White Cell with Si focusing lenses and phase correcting lens.  Since Equation 

(2-2) refers to the power coupling efficiency and THz-TDS measures the electric field, 

the curves represent the square root of the power coupling.  These calculations neglect 

clipping losses and losses due to aberrations.   
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Figure 3.6 Coupling efficiencies for various White Cell configurations 

 

In order to investigate the change in bandwidth with the addition of lenses, the 

frequency spectrum for the non-confocal standard TDS system was divided by its 

coupling efficiency, and this was assumed to be the input bandwidth for the THz White 

Cell (dashed black curve in Figure 3.7(a)).  Using the efficiency curves of Figure 3.6, the 

theoretical spectrum was calculated for each case.  For the configurations that include 

silicon lenses, the calculated spectra are multiplied by the amplitude transmission 

coefficient for silicon, (0.7)n, where n is the number of lenses.  Comparisons between 

theory and experiment are shown in Figure 3.7(b)-(d). 
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Figure 3.7 Comparisons between theoretical and measured spectra 

 

When only the focusing lenses are used (Figure 3.7(c)), the bandwidth of the 

measurement is lower than is expected from the simple coupling efficiency calculation.  

A treatment of the effect due to clipping on mirror A will not account for this, as it is the 

low frequencies that are preferentially lost in this situation.  These losses could partially 

be due to the higher order nature of the terahertz beam33, whose effect is greater at high 

frequencies. 

Figure 3.7(d) shows that the center frequency in the measurement is shifted 

towards lower frequencies by approximately 0.5 THz, with an associated loss of 
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bandwidth.  Since the phase correcting lens is not optimal and is placed behind the output 

plane of the White Cell, some of these losses could be due to higher order mode 

mismatch as was discussed above.  This system is also sensitive to differences in 

alignment.  Since the low frequencies are larger in spatial extent, it is easy to align the 

system for maximum signal at low frequencies and lose the high frequencies. 

Looking at the coupling efficiency plots of Figure 3.6, the bandwidth should 

increase with the addition of the focusing lenses and phase correcting lens into the White 

Cell setup.  The measurements from Figure 3.7(b)-(d) were each normalized to 

investigate the changes in bandwidth, and are shown in Figure 3.8.  The inset expands the 

region from 2.0 to 4.5 THz and the colors are defined as for Figure 3.6.  From the 

coupling efficiency curve, there should be approximately a 57% increase at 4.0 THz from 

the White Cell with no lenses to the completed system.  Figure 3.8 shows an increase of 

approximately 45%; however, this is near to the end of the usable bandwidth of the 

system. 
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Figure 3.8 Normalized frequency spectra for White Cell measurements 

 

3.7   Corrections to First Order Theory:  Laguerre-Gauss beam 

propagation 

Terahertz Gaussian beam calculations are typically performed by assuming a 

TEM0,0 mode36; however, the spatial profile of the THz beam has cylindrical symmetry 

and is composed of higher order modes.33  Figure 3.9 shows the spatial profile measured 

16 mm from the transmitter for frequencies of 0.18, 0.38, and 0.58 THz. 
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Figure 3.9 THz beam profiles measured at 16 mm from the transmitter Si lens 

 

The Gaussian solutions considered thus far are a subset of a larger set of functions 

which are also valid solutions to the paraxial wave equation.  In rectangular coordinates, 

these solutions are based upon the Hermite polynomials, and are called Hermite-Gauss 

beam modes.  These modes form a complete basis set, so any arbitrary function can be 

described in terms of a linear combination of the Hermite-Gauss distributions.  The 

Hermite modes are useful for describing systems with rectangular symmetry.  Since the 

Hermite modes are a valid basis set, propagation of the terahertz beam could be 

considered in terms of such modes; however, the problem is simplified by choosing 

functions that are cylindrically symmetric.  The Gaussian solutions can also be expressed 

in terms of Laguerre polynomials, forming the Laguerre-Gauss beam modes.  By 

choosing this basis set, the THz beam can be decomposed into a summation of 100 

modes,33 where the Hermite modes would have required three times as many.37 The field 

distribution of a Laguerre-Gauss mode at a given distance, z , is a function of the 
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frequency, ω , radial mode, , angular mode, , and position given in cylindrical 

coordinates by , 

n

r φ .  The distribution, ( ), , ,n oE r wφ ω , is given by 
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× −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
+

 (3-12) 

where  represents the Laguerre polynomials, nL ( )zψ  is the phase angle of  ( )q z

( ) ( ) ( )2tan ( )z w z R zψ π λ⎡ =⎣
⎤
⎦ , and  oψ  is the phase at the beam waist. The q-parameter 

is defined in the same manner as for the TEM0,0 mode. 

It is important to consider the multimode nature of the terahertz beam when 

performing imaging or ranging experiments since the profile of the beam will determine 

even target illumination.  The inherent assumption in THz-TDS measurements is that the 

spatial profile of the THz beam incident upon the detector is unchanged by the presence 

of a sample or any of the optical components.  In the case of thick samples with high 

index, the spatial beam profile does change.  To determine the effect the optics have on 

the spatial beam profile, it is useful to refer back to the concept of the transfer function of 

an optical system. 

As was seen in the previous sections, by applying ABCD matrix formalism to an 

optical system employing TEM0,0 Gaussian beams, a transfer function for the system can 

be attained in the form of a matrix.  All of the higher order modes have the same beam 

parameters as the TEM0,0 mode, so the ABCD treatment can be applied to beams of 

arbitrary modal composition.  Each orthogonal mode in the superposition can be 

propagated through any optical transfer function. 
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 Consider the THz White cell without the addition of the output lens to correct the 

phase curvature of the beam and without input or output optics.  The transfer function of 

this configuration is 

 
1 0
1 1

A B
T

C D f

⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. (3-13) 

The THz beam profile is accurately described by approximately 100 Laguerre-Gauss 

beam modes.33  Since the transfer function acts individually upon each mode, a low order 

mode and a higher order mode are shown in order to represent the effect the White Cell 

has on the terahertz beam.  Figure 3.10 shows the real part of the LG00 (TEM0,0) and 

LG3,2 modes for a starting waist radius of 5.5 mm and 304.8 mm focal length at 0.3 and 

3.0 THz. 

 

Figure 3.10 Real part of LG0,0 and LG3,2 modes before and after the White Cell 
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For the LG00 mode, the distortion at 0.3 THz is very minimal.  However, for higher 

frequencies and higher mode numbers the number of annular rings increases and the 

mismatch is significant. 

The ABCD matrix for the White Cell affects the radius of curvature of each mode 

in the beam, while leaving the waist radius the same.  The phase curvature at the input is 

planar (R = ∞), and after propagation through the uncorrected White Cell it is equal to the 

focal length of the mirrors.  The phase deviation is greater towards the edges of the beam, 

so a smaller choice for wo will reduce the coupling losses at the high frequencies.  This is 

depicted pictorially in Figure 3.11.  However, since a smaller starting beam waist will 

result in greater beam divergence, the losses at low frequencies will increase due to the 

size of mirror A. 
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R = flong

R = fshort
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Figure 3.11 Radius of curvature mismatch compared to wo 

 

Figure 3.12  shows a comparison between the TEM0,0 mode and the LG1,0 beam 

after propagating 609.6 mm.  This is equivalent to the distance between the input plane 

and Mirror A in a system utilizing 304.8 mm focal length spherical mirrors.  A circle 
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representing the 152.4 mm aperture of the White cell spherical mirrors is superimposed 

on each profile.  While both beams have the same waist radius and radius of curvature, 

the physical extent of the Laguerre-Gauss mode is larger than that of the lowest order 

mode.  As a result, the multimode nature of the beam imposes additional aperture effects 

than were allowed for in the simple TEM0,0 mode calculations and increases the value for 

minν  (decreases λmax) if m is held constant at 1.5. 

        

Figure 3.12 Comparison between TEM00 and LG10 beam modes 
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Chapter 4  

Measurements 
 

4.1    Experimental Setup 

These measurements were taken before the full ABCD matrix treatment of the 

White Cell was performed.  As a result, the THz White Cell used for the measurements  

in this chapter (Figure 4.1) does not include the silicon focusing lenses or phase 

correcting lens that were discussed in the previous theoretical treatment.  Since both a 

reference and sample scan are taken, the spectroscopic lineshapes and line positions are 

unaffected by the optical configuration.  However, since the exclusion of the silicon 

optics results in a non-unity coupling efficiency, these results exhibit a lower signal-to-

noise ratio (SNR) than is achievable with the complete THz White Cell. 
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THz Source 

       

Figure 4.1 Unoptimized THz White Cell configuration 

 

For this configuration, the calculated power coupling efficiency to the detector – 

based upon an assumption of TEM0,0 mode propagation and = 2.5 mm (redo for 

3.5mm waist)– is approximately 12% integrated over the measured system bandwidth of 

0.1 to 1.8 THz.  The THz measurement system detects the time-varying electric field of 

the pulse, so the detected signal is proportional to the square root of the power transfer, or 

35% of an optimal system.  A frequency dependent plot of the power coupling efficiency 

is shown in Figure 4.2. 
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Figure 4.2 Power efficiency for unoptimized THz White Cell 

 

As is seen in Figure 4.1, the system for these measurements is configured for two 

passes to give a 5.0 m path length.  The THz White cell is contained in a vacuum 

chamber with a base pressure of less than 0.2 Pa.  The pressure was measured using a 

digital convection gauge accurate to 0.13 Pa for pressures below 266 Pa.  Both high-

resistivity silicon and high-density polyethylene (HDPE) windows are used for coupling 

the THz beam into the vacuum chamber.  While the silicon windows are essentially 

lossless across the bandwidth of the pulse, compared to the HDPE, they result in a 51% 

amplitude reflection loss due to Fresnel reflections.  All other components of this quasi-

optical system are outside the vacuum chamber in an airtight enclosure purged with dry 

air containing approximately 250 ppm H2O vapor.  After evacuating the vacuum to the 

base pressure, the valve to the mechanical pump is closed and the THz White cell is filled 

with a sample gas to a desired pressure using a mass flow controller.  The pressure is 

maintained to an accuracy of ±0.1 Pa during the duration of the measurement by simply 

leaving the vacuum sell closed; however, if necessary, the fine adjustments can be made 
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with the mass flow controller.  The water vapor partial pressure inside the vacuum 

enclosure is monitored using a hygrometer accurate to a number density better than 

2.7x1013 cm-3.  The accuracy of the measurements is determined by system drift; to 

ensure data accuracy, a reference THz pulse was measured with the cell under vacuum 

both before and after each measurement. 

 

4.2    Methyl Chloride 

Symmetric molecules with a permanent dipole moment, such as the methyl 

halides, produce a series of coherent transient pulses after the main excitation pulse.  The 

spacing between these pulses is given by the inverse of the frequency spacing of the 

rotational lines of the molecule.  For methyl chloride, the temporal spacing is 38 ps which 

corresponds to an approximately 0.026THz spacing of the rotational absorption lines.  

Additionally, by looking at the decay in the peak amplitude of the coherent transient 

pulses, the collisional dephasing time, τ , can be obtained.  Figure 4.3 shows 

measurements of methyl chloride vapor at a pressure of 100 Pa.  At these low pressures it 

is clear that the dephasing time is longer than the temporal extent of the data.  Since the 

linewidth is proportional to the inverse of the dephasing time, according to the equation 

1ν πτ∆ =  where ν∆  is the linewidth and τ  the dephasing time, larger values of τ  

result in broadened linewidths.  The collisional dephasing time can thus be calculated by 

 1
i

i

kTN 8
M

σ
τ π
=∑  (4-1) 
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where is the number density, N M the mass, 15 24.13 10x cmσ −=  is the collisional cross 

section of methyl chloride38, and the sum is done over the two major Cl isotopes of 

CH3Cl.  For a pressure of 100 Pa, the dephasing time is approximately 284 ns, nearly 

three orders of magnitude longer than the temporal extent of the data.  Looking at the 

time domain data, it can be seen that the coherent transients are reshaped with increasing 

time.  This is due to deviation from the rigid-rotator-model39, lifting of degeneracies for 

the K quantum number resulting in a K dependent line shift40, and the two naturally 

occurring isotopes of chlorine, Cl35 and Cl37. 

 

Figure 4.3 Reference and data scans for 100 Pa CH3Cl 
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For symmetric molecules such as CH3Cl, monitoring a specific temporal location 

for the presence of a particular echo of the free induction decay allows near real-time gas 

detection, illustrated in Figure 4.4.  Here two different methods of real-time signal 

averaging are used over a 5 ps window at 340 ps from the main pulse to detect the ninth 

coherent echo.  The upper trace in Figure 4.4 was performed using a lock-in amplifier 

(LIA) for 1 Pa of methyl chloride, and has been expanded by a factor of 3 for clarity.  

This measurement was obtained in approximately 8.5 minutes with a 1 second time 

constant on the LIA.  Using a rapid scanning (RS) delay line, the middle scan in Figure 

4.4 was acquired by averaging 5000 scans in 3.5 minutes (1500 scans per minute) at a 

pressure of 3 Pa of methyl chloride.  For both of these methods, an averaged reference 

scan was subtracted in order to eliminate the empty cell baseline caused by residual water 

vapor [Figure 4.3 (a)].  The dashed lines overlaying the two upper measurements of 

Figure 4.4 represent the RMS values of the reference scan. 
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The residual water vapor is the major factor affecting the baseline noise as illustrated by 

the lower curve in Figure 4.4 which shows the baseline noise level with no THz pulse.  

The difference in temporal position between the ninth echo between the LIA and RS 

techniques is due to temperature fluctuations that occurred during the course of the LIA 

measurement resulting in slight changes in the nonresonant index of air and/or thermal 

expansion of the White Cell.  Over the 5 m length of the THz White cell, a 0.25 ps shift 

corresponds to a change in optical path length – either n∆ or d∆ – of 7.5x10-5, which can 

be achieved by less than a 1°C change in ambient temperature. 

 

4.3    Water Vapor 

The long path length of the THz White cell allows ppm gas spectroscopy of non-

symmetric molecules with a permanent dipole moment, such as water vapor.  Because of 

the complex rotational spectrum of water vapor, its time signature does not yield the 

coherent transient pulses that are characteristic of symmetric top molecules.  As a result, 

time-domain detection is not practical.  The measurements shown in Figure 4.5 were 

taken by enclosing the entire terahertz system in a dry air enclosure at atmospheric 

pressure and purging with dry air containing 0.9 ppm of water vapor.  A scan was taken 

to give the reference spectrum before the addition of the sample.  Water vapor was then 

introduced into the enclosure by opening a flask containing liquid water which was 

placed inside before purging with dry air.  The dewpoint was monitored using a 

hygrometer until a steady state value of -63°C (~6.5 ppm) was reached, approximately 25 

minutes.  At this point a sample scan was taken using the lock-in amplifier and compared 
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to the reference. 

 

Figure 4.5 Sample scan and absorption spectrum for 6.5 ppm water vapor 

 

Figure 4.5(a) shows the THz pulse and corresponding frequency spectrum after 

propagating 5.0 meters through a White cell with 6.5 ppm (1.59x1014 cm-3) of water 

vapor.  The fine structure in the frequency domain is the result of transmission line 

reflections.  The ripples following the main pulse represent the effects of the water vapor 
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and the decay of these ripples give the dephasing time for the system.  The corresponding 

plot of absorption coefficient is shown in Figure 4.5(b), and the arrows mark the 

absorption peaks that are above the noise level.  The plot was obtained by taking the 

natural logarithm of the ratio of the reference and sample spectra, and is thus directly 

comparable to the measurement by van Exter.17  At each line, the measured line position 

is given along with the accepted literature value shown in parentheses.  They are found to 

be within ±0.001 THz of previously published values.17,41  Due to the low concentration 

of water vapor in this measurement, the low intensity lines at 0.988, 1.115, 1.209, and 

1.230 THz are no longer resolvable. However, increased usable system bandwidth allows 

the detection of four strong lines past 1.5 THz. 

 Terahertz time-domain spectroscopy is a phase coherent technique, so with a 

single measurement knowledge about both the absorption coefficient and the dispersion 

are obtained.  As a result, the terahertz White Cell is a tool for precisely investigating 

both absorption and dispersion far-wing line shapes for small sample concentrations.  

These measurements were performed by placing the THz White Cell in a vacuum 

enclosure and evacuating to a base pressure of less than 0.2 Pa, using the same procedure 

as for the methyl chloride measurements described above.  Once the base pressure is 

reached, a reference scan is taken.  The length of the reference scan is 764 ps, with the 

first 26 ps taken with a 7.5 µm step size and the remainder at 30 µm/step.  The last part of 

the scan is numerically interpolated using the cubic spline method to give 7.5 µm/step for 

the entire scan.  The maximum resolvable frequency is limited by the 30 µm/step section 

to 2.5 THz using the Nyquist sampling theorem, which is sufficient for the 1.8 THz 

system bandwidth in these measurements.   
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Once both parts of the reference scan have been measured, a vacuum cell 

containing liquid water at room temperature is opened and the water vapor above the 

liquid is allowed to enter the THz White Cell.  At 20°C, the vapor pressure of water 

vapor is 17.535 torr.42  The water cell is then closed and the White Cell enclosure is 

slowly pumped out until the pressure is approximately 26.6 Pa (6.44x1015 cm-3).  A 

sample scan is taken using the same method as for the reference scan.  The pressure is 

maintained to an accuracy of approximately 1 Pa for the duration of the sample scan by 

opening or closing the valve to the mechanical pump as needed. 

 Figure 4.6 shows the reference and sample pulses and the corresponding 

frequency spectra for 26.6 Pa of water vapor.  The fine structure in the frequency domain 

is due to the transmission line reflections and HDPE window reflections, which are 

expanded in the time domain scan.  It is seen that the sample spectrum exceeds the 

magnitude of the reference spectrum for frequencies corresponding with water absorption 

lines.  An example of this behavior is shown in the inset to Figure 4.6(b). 
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Figure 4.6 Time scans and frequency spectra for 26.6 Pa H2O vapor 

 The unexpected structure in the sample spectrum is investigated by plotting the 

absorption and dispersion, shown in Figure 4.7.  It is seen that all of the absorption lines 

exhibit the anomalous behavior, however, it is more pronounced with increased 

frequency.  The insets to Figure 4.7(a) expand the 0.753 THz and 0.988 THz absorption 

lines.  Each of the lines has a negative dip on the high frequency side of the line in the 
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absorption plot.  This dip is deeper for higher frequency lines, as is seen by comparing 

the two insets.  The plots of the phase shift in Figure 4.7 show behavior that is consistent 

with what would be expected qualitatively for this sort of anomalous lineshape from the 

Kramers-Kronig relations. 
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Figure 4.7 Absorption and dispersion plots for 26.6 Pa H2O vapor 
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 The cause of these lineshapes is not yet determined.  Simple simulations were 

performed to investigate the potential effects of: different sampling rates for different 

parts of the time scan (i.e. undersampling), different humidity in different parts of the 

THz White Cell enclosures, and the lock-in time constant.  None of these simple pictures 

were able to duplicate the lineshapes that were seen experimentally.  Some other areas 

that could be explored are pressure drifts in the White Cell vacuum enclosure, thermal 

expansion due to room temperature fluxuations, and relating the motion controller 

resolution to the width of the absorption lines. 
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Chapter 5  

Conclusions 
 

The extension of Terahertz Time-Domain Spectroscopy to path lengths of over 

5.0 meters has been accomplished by investigating the concept of unity coupling 

efficiency and how it relates to the ABCD matrix formulism for Gaussian beams.  The 

tradeoffs between beam size, mirror diameter, and propagation length have been explored 

with regards to real world implementation.  An extension to this work would be a 

treatment of astigmatism in the THz White Cell and the effect on beam coupling.  Several 

authors43-46 have performed calculations and proposed corrections to the astigmatism 

from the three White Cell mirrors and it would be interesting to investigate the problem 

considering the highly divergent THz beams. 

In order to achieve longer path lengths, several schemes have been used by which 

the beam is reinjected into the White Cell.  By replacing mirror B with a T-shaped mirror 

constructed from a spherical mirror with twice the diameter of the existing optics, more 

passes could be attained without much change in the difficulty to align the system or the 

volume of the cell. 

 The long absorption path allows spectroscopic measurements of far-wing 

absorption and dispersion.  Preliminary measurements of water vapor exhibited 

anomalous lineshapes, and further investigation into this phenomenon would be a natural 

extension.  However, it would also be interesting to perform precise laboratory 
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measurements of water vapor continuum absorption at THz frequencies.  Measurements 

of both absorption and dispersion are needed in this spectral region to help determine the 

source of the continuum.  Additionally, ground-based millimeter-wave telescopes are 

greatly affected by phase differences due to inhomogeneous distributions of atmospheric 

water vapor.47  Since THz-TDS is a phase coherent technique, controlled laboratory 

measurements can be performed which measure these phase contributions. 
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