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CHAPTER 1 

 

 

INTRODUCTION 

 

 As the tools we use to approach computer vision problems become more 

sophisticated, implementing complex CV systems on commodity hardware becomes 

more feasible. Computers are faster, graphics processing is more powerful and 

versatile and other hardware components are cheaper and more readily available. 

Recently, portable handheld projectors became available to consumer markets. 

These miniature projectors use LED lamps and operate at lower resolution 

compared to larger (but still portable) projectors. Several companies are already 

attempting to adapt this technology for mobile devices such as smartphones in the 

future. This would complement the already ubiquitous camera, which has found its 

way into nearly every cell phone produced. These devices have modest 

specifications by the standards of other consumer cameras and projectors, as does 

commodity hardware. A piece of commodity hardware is readily available, but may 

not be ideal for a given situation, requiring special consideration to compensate.  

 Some of the most demanding CV tasks require the real-time processing of image 

data to produce interactive output. In this document, a volume visualization system 

and its implementation are described. It allows users to interactively view cross 

sections of a 3D dataset in real-time using a simple handheld display surface and a 

camera projector system. As a user moves the projection surface, the cross section 

image is augmented on the surface to reflect its location in 3D. The user experiences 

a volume dataset that exists in a specific region in space and by moving the display 

surface within that region a corresponding cross section of the set can be obtained.
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This process requires a number of computations on image data for every frame 

displayed on the surface. If these computations take too long to complete, the user 

will lose the sensation of interactively navigating a dataset. 

 Forming an implementation of such a system on commodity hardware—

specifically a DV camera, portable presentation projector and a laptop—presents a 

challenge. Real-time constraints must be met with the restricted CPU and graphics 

rendering power of a laptop, and using a DV camera requires compensating for the 

delay inherent in polling images.  Even with such limitations a real-time vision 

system is still possible with the right algorithm enhancements.  

 

1.1 Related Work 

 

 Producing the proposed volume visualization system requires a number of key 

components.  Central to the system is the work Visual Odometry [3], which 

describes an approach to localization and mapping for a mobile robot. A stereo 

camera obtains data from the scene as the robot moves around and features are 

extracted and matched between images at video rates. Feature tracks are built 

across time by matches that overlap sequences of frames.  Thus if a match spans the 

first two frames and the feature in the second frame also matches to a feature in the 

third frame, a track of length three is formed. Tracked features are used to 

reconstruct the motion of the robot by triangulation and camera pose estimation. 

Preemptive RANSAC is used to estimate the pose of the camera rig from frame to 

frame. This overall framework of feature matching followed by preemptive RANSAC 

for hypothesis refinement is adapted for the visualization system.  

 Preemptive RANSAC [4] is a hypothesis verification framework that limits the 

number of computations used for estimation by eliminating (preempting) poorly 

performing hypotheses. RANSAC is short for “Random Sample Consensus”, a well 

established algorithm that separates inliers from outliers by optimizing a 

performance function on data. The method selects a random sample of the available 

data and declares it as a hypothesis or representative set. Other data members are 

then tested against the set to generate a cumulative error score. A number of 
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hypotheses are tested and the best hypothesis is selected as the one with the lowest 

error. Preemptive RANSAC adds a layer of constraints and particular execution 

method to the generic algorithm to ensure the hypothesis selection occurs in a 

predictable amount of time. In a real-time system this is invaluable as the 

hypothesis verification step is only one of several that must be executed on every 

frame. The number of hypotheses is fixed and an iterative process begins. A single 

observation from the dataset is used to score all the generated hypotheses. It is 

assumed that the highest error hypotheses contain outliers and a specific number 

are rejected. A new observation is selected and the process repeats until a single 

hypothesis remains.  

 The volume visualization system implemented in this work was first developed 

as part of an augmented reality system called the Universal Media Book [1]. The 

UMB’s main mode is to act as a book displaying static images or video. Each time a 

page is turned the book would update the displayed data to reflect the next page. 

The user could browse through the virtual book much like a normal book. Within 

this book framework a page might contain a special element that indicates a volume 

dataset. When the user encounters such a page he can remove the page from the 

book and use it as the display surface to navigate the volume dataset. The book 

mode and volume display modes both function on the same procedure of geometric 

estimation frame by frame in real-time, but have different constraints. In book mode 

the page geometry is clamped at the spine and the outer edge of the page moves 

along a semicircle. In volume visualization mode the data is clamped to a region of 

space and a slice is determined by the intersection of the display surface with that 

region of space.  
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1.2 System Overview 

 This system’s function is to augment an unmarked surface with data determined 

by the location of the surface in 3D space. A projector and camera are used to 

project data onto the surface which is seen by the camera and used to estimate the 

location of the surface in the projection space. The first step to describing the 

system is to define the interface model. Volume data is modeled as a region of 3D 

space. During calibration the coordinate system for 3D space is defined with a 

particular origin and orientation. From the origin the volume extends in the positive 

x and y directions and the negative z direction. The user can see cross sections of 

this volume data by moving a display surface into the corresponding region of 3D 

space. As the user moves the display surface through the defined region it is 

updated with new images determined by the location of the surface in the volume. 

This gives a user visual feedback of the location of the display within the data, 

allowing them to adjust the surface to find interesting points in the volume.  

 

Figure 1: Left: Red rectangle is the handheld display surface, gray volume is the 

dataset of interest and green rectangle is the cross-section image that corresponds to 

the intersection of the dataset and display surface. Right: A user interacts with the 

Visible Human Database 
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1.2.1 Calibration 

 As the system requires knowledge of real 3D points, the projector/camera pair 

must be calibrated to a common 3D reference. This is the origin and orientation 

mentioned earlier. Calibration is the process of finding a set of parameters that 

allow an accurate mapping of points from the 3D universe to locations in the 

device’s image frame. Parameters are divided into two groups: intrinsic parameters 

that describe physical device properties and extrinsic parameters that describe the 

location and orientation of the device relative to the defined 3D coordinate system. 

There are a few possible techniques available to calibrate cameras; all depend on 

the use of 2D to 3D correspondences. In 2000 Zhang [9] proposed a method 

designed to minimize the amount of user input required. His method assumes a 3D 

reference frame defined by the pattern in view of the camera. This pattern has 

evenly spaced fiducials that are easily detected so they can be paired with given 3D 

points. The user moves either the camera or the pattern and acquires several views. 

All of the correspondences are then used to calculate a closed form solution for the 

intrinsics and extrinsics. This solution is then refined through maximum likelihood 

estimation to generate a set of intrinsics for the device and extrinsics for each view 

obtained. 

 One pass of the geometric calibration algorithm calibrates the camera, but 

another pass is required to calibrate the projector. The key difference between the 

camera and projector is that a camera receives light as a sensor along light vectors 

from objects in the scene where a projector generates light and imposes it on the 

scene along its image light vectors. To use Zhang’s calibration method on the 

projector a set of 2D to 3D correspondences must be made. While the camera could 

be directly calibrated with its own image data a projector can only impose data on 

the scene. If a pattern is projected on a known plane and the camera is calibrated 

and views this plane, the scene is sufficiently constrained to determine the 3D 

locations of the projected 2D data through the camera calibration. With the 

correspondences found, Zhang’s algorithm returns the intrinsics and extrinsics for 
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the projector as well.  With both the camera and projector calibrated to the same 3D 

frame, it is possible to map a point common to the camera and projector images to a 

3D location.  

 Geometric estimates of the location of the display surface are formed by 

comparing a camera image to the estimate of the camera image. No static markers 

are used on the display surface to assist in determining its 3D position; it is 

determined entirely from correspondences found in the cross-section data between 

the camera and projector frames. With accurate correspondences a solution set of 

3D points is found that defines the location and orientation of the display surface 

within the volume display area. A new cross section of data is determined from this 

information and used to augment the display surface. By repeating this process of 

geometric estimation and reapplying a new image as fast as possible, real time 

navigation of the dataset is realized.  

 A photometric calibration step is necessary to ensure accurate correspondences 

can be generated in the online algorithm. As matching occurs between the camera 

and projector frames, it is necessary to correct for the color space change that 

occurs between sending an image to the projector and the resulting image in the 

camera. In the main algorithm this translates to correcting the grayscale image of 

the projector data to make it appear more like the grayscale of the camera image. 

The mapping is thus from a color image from the framebuffer to a grayscale image. A 

look-up table is generated that describes this mapping by collecting camera pixel 

intensity values that correspond to projected colors. A color pixel from the projector 

framebuffer appears as the sum of the intensities for each color value as determined 

by the LUT.  

 To find accurate correspondences a tracking method used on a stereo camera 

pair [3] is adapted to function using the image from the camera and the image sent 

to the projector. Features are extracted from the two images and matched. The set 

of matched features is refined to a solution set that determines the newest estimate 

for the geometry of the planar surface. Before feature extraction, the estimate of the 
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camera image must be generated. The camera views the projected data, so the 

geometry used to generate the projected data is used to generate the expected 

camera image.  

1.2.2 Feature Extraction and Matching 

  Features are extracted from the camera image and the warped projector 

framebuffer image using the Harris detector [5]. This detector creates a response 

image where high values correspond to sharp corners. A window around a given 

image patch is shifted in all directions. If the intensity of the window changes 

dramatically when moved in any direction, the result is a high response. If the 

window were to be shifted and not change intensity much, then the current image 

region might be low variance or a simple edge. Because the output of the detector is 

the corner response for every pixel in the image a refinement step is necessary to 

identify feature locations. A technique known as non-maximal suppression is 

applied to the response image. As a window is passed over the image, the central 

pixel is deemed to be a feature location if it has the highest intensity of all pixels 

within the window. This produces a predictable density of features determined by 

the size of the NMS window and the complexity of the image.  

 With feature locations identified for the camera image and the expected camera 

image, the next step is to identify features that exist in both images. A feature is 

determined to exist at a particular location identified by NMS, but that location by 

itself is insufficient to provide accurate feature matches. Accurate matches should 

have features spatially close to one another, so matches are only considered if they 

fall below a distance threshold. To enable matching a feature is described by an 

image patch surrounding the location found by NMS. If features are within the 

distance threshold they are compared by calculating the normalized correlation 

score between the images patches. This process is optimized to reduce the amount 

of per-match computation required. If the NC score is above a minimum threshold 

then it is possible a match is found. To verify a match a mutual consistency check is 
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made: if the features both select each other as the highest available NC score in their 

respective neighborhoods, then it is a match.  

1.2.3 Geometry Estimation 

 The set of match points contains inlier and outlier matches. Inlier matches can 

be triangulated accurately to locate a 3D point on the display surface. Outlier 

matches will produce triangulation results inconsistent with the orientation of the 

board. To determine which matches qualify as the most representative inliers a 

preemptive RANSAC [4] scheme refines the results to a set of four matches that 

likely reflect accurate 3D points on the display surface. Preemptive RANSAC is 

optimized for situations where producing a result in a limited amount of time is 

more important than an optimal result. A set of hypotheses are formed from random 

sets of four match points. Homographies are computed to describe the mapping 

from the features in the camera frame to the expected camera frame and back for 

each hypothesis. To determine if the hypothesis contains inlier matches it is tested 

against other matches. The homographies allow scoring by computing the 

reprojection error between the location of a point in a frame and the expected 

location. The expected location is computed by projecting a feature’s match back 

into its own frame. Each time error is computed the same match is used for all the 

generated hypotheses and the hypotheses with the highest error are preempted. 

Preempted hypotheses are removed from consideration. After a certain number of 

iterations only one hypothesis will remain which has survived each round of 

preemption, ending with the lowest score. This winning hypothesis is the final 

output of the preemptive RANSAC scheme for hypothesis creation and selection.  

 The winning hypothesis contains four match points which must be triangulated 

to find their corresponding 3D location. The calibration information for both devices 

is composited together with each triangulated point into a 4x4 matrix that 

undergoes singular value decomposition. The result is a 3D point lying on the 

display surface. With four of these 3D points a normal and centroid for a best fit 

plane are similarly found through SVD. This plane represents the latest geometric 
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estimate of the location of the display surface. With this data a new cross section is 

projected on the surface to start the process again.  

 In this implementation a DV camera is used that has an internal image buffer. 

Issuing a command to acquire an image from the camera shifts these buffers and 

returns the image stored in the last buffer. This presents a problem in implementing 

the algorithm such that each pass generates a new geometry which is used to 

compute a new image that is immediately displayed. Instead a certain number of 

estimates must be stored so that each time a camera image is acquired it can be 

matched to the appropriate estimation of its appearance according to the older 

geometric data. A simple geometry buffer is implemented to solve this issue. Each 

new estimate is immediately displayed on the board, but the geometric information 

must be stored so that when the camera finally returns an image with that 

geometric representation the warped projector image will contain the right data at 

the right orientation to allow matching and a new geometric estimate.  

1.3 Contributions 

 Using publicly available libraries and readily available hardware a real-time 

volume visualization system is implemented. The visualization system is 

computationally demanding and runs in a continuous feedback loop where camera 

images must be compared to constructions of the camera images to generate a new 

estimate. Requiring the camera to image the scene as part of an algorithm that 

completes execution several times a second places an important restriction on the 

camera. It must be able to image the scene very quickly and return the image to the 

algorithm very quickly. For machine vision cameras this is no problem as they can 

perform an operation like this in milliseconds. A digital video (DV) camera, however, 

was not designed for this task but was rather designed to capture and store video 

sequences. To overcome this problem a geometry buffer is implemented, allowing 

the estimates to queue and line up with the camera images. 
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 A camera capture library designed to allow frame capture from commodity 

cameras provides frame acquisition through a C++ function. When using the frame 

grabber function to get a specific image of a changing scene it becomes obvious that 

the images yielded by the camera are old compared to the images being placed in 

front of the camera. This delay is assumed to exist because an internal frame buffer 

stores three frames and shifts images along this buffer with the oldest image being 

sent to the computer. This assumption implies that a complementary buffer 

designed to delay estimation to match the camera delay could solve the problem. To 

compensate for the camera being late on providing the appropriate image, 

geometric estimates are placed into a buffer before they are used and the expected 

camera image is built from the stored estimates. As a result this real time volume 

visualization system can be used with a cheap and readily available DV camera.  

 The previously implemented system [1] uses such a machine vision camera. It 

was thus possible to set the system up as a loop where each iteration solved the 

current display geometry and updated the projected data. In my system this is not 

possible as the output camera image lags behind the scene it is imaging. The 

geometry buffer solves this problem, but complicates the algorithm at the stage of 

producing the expected camera image. The UMB assumes that the expected camera 

image can be created from the current projector image by warping it to the camera 

frame. Since the current projected image is several frames ahead of the camera’s 

image in my system, the data contained in each image can be radically different. 

Thus the expected camera image must be recreated from the stored geometric data 

each frame. This requires an extra call to the OpenGL display function without 

displaying the data to the projector. Even with this extra step the system is able to 

execute its necessary functions in real-time. 

 Additionally, the photometric calibration method used in the Universal Media 

Book to map projected color to camera intensity performed poorly due to the 

camera’s tendency to switch sensitivity modes as the image changed in overall 

intensity. A calibration pattern is devised to maintain an overall neutral intensity 
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and provide sharp edges, preventing the camera from changing the white balance or 

auto-focus. A simple method for calibrating the camera and projector using OpenCV 

calibration functions for both is also described.  
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CHAPTER 2 

 

 

SYSTEM IMPLEMENTATION 

 

 Several software libraries are used to provide important basic functionality such 

as hardware interfacing and to provide implementations of useful image processing 

and computer vision tasks. Access to the graphics hardware is provided through 

OpenGL with windowing in GLUT, which also dictates the program’s overall 

execution procedure. GLUT uses a system of callback functions to control the 

windowed graphics system. Callback functions are triggered by program events 

such as keyboard strokes or if a flag is set to update the display. Multiple events can 

be queued for execution such as a keyboard, redisplay and timed callback event. If 

no callbacks are waiting in the queue, then the default event is to trigger the idle 

callback repeatedly until a new event occurs. GLUT provides much of the interface 

used to initiate an OpenGL graphics environment. OpenGL contains definitions 

allowing 3D texture data to be stored on and used directly by the graphics card to 

texture a 2D scene.  

 The DV camera provides images over the Firewire bus at up to 15 frames per 

second. Accessing these images requires the ability to interpret the image data 

coming from the firewire bus. An independently developed camera capture library 

called VideoInput provides access to the camera as an image acquisition device. It is 

important to note that the DV camera used is not compatible with any acquisition 

standards where more advanced camera control libraries are available. While this 

library enables us to ask for an image from the camera, the camera does not 

necessarily deliver an up to date image. This is the main reason the DV camera is 

difficult to use in a real time setting.                
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Table 1: System platform specification. 

 
Camera 

 

Canon Elura 40MC 

Framerate: 15 fps 

Resolution: 1024 x 768 

Interface: FireWire 

Projector 

 

Toshiba TLP X100 

Framerate: 60 fps 

Resolution: 1024 x 768 

Interface: VGA 

Computer 

 

Toshiba Tecra M7 

CPU: Intel Core Duo, 2.0 GHz 

Main Memory: 1 GB 

Graphics  

 

NVidia Quadro NVS 110M 

Memory: 128 MB 

 

Software Libraries 

  

OpenCV, OpenGL, GLUT, VideoInput 
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 The OpenCV libraries provide a number of functions for common computer 

vision tasks. Portions of geometric calibration are provided by OpenCV as well as 

data structures used throughout the implementation to organize information. As 

well as controlling the overall program execution, OpenGL provides access to 

texturing functions and the ability to produce a virtual 3D scene and rasterize it into 

an image. GLUT provides all windowing related functionality and VideoInput 

provides a frame grabbing function to access the camera’s images.  

 This system is split into two main programs. The calibration program performs 

all the offline calibration steps and the volume display program contains the online 

algorithm for generating the display using the procam. The steps taken in the 

calibration program need to only be performed once or very occasionally, such as if 

the system were moved. The volume display program is designed to start displaying 

immediately, and can be used to navigate the dataset after a few seconds of camera 

setup. Upon starting, the volume display program loads all the stored calibration 

information. If the user specifies that extrinsics calculations are needed then some 

brief chessboard interaction is required before volume display commences. Once 

the display begins to update a few seconds after the first volume slice is shown, the 

user can move the display surface through the volume.  

 The volume visualization program operates in the framework of OpenGL. This 

means that all execution takes place in callback functions. An idle function is called 

when no other callbacks are waiting. The display callback is used to change the 

displayed scene and the keyboard callback is called when the keyboard is pressed. 

The idle function controls the overall program loop. As the system diagram shows, 

the volume visualization program is a loop with a geometry buffer. Starting from the 

geometry buffer a run through the program can be traced. The geometry buffer data 

is used to create an estimate of what the camera image should be. This is the same 

as the projector image warped to the camera frame. It is compared to the image 

acquired by the camera to find matches. These matches are refined to a set that are 

likely to produce a good estimate. They are triangulated and used to form an 
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estimate of the surface geometry. The new geometry is added to the geometry buffer 

and the process is started again. 

 

 

Figure 2: System flow diagram 

  

 

2.1  Calibration 

 

 The calibration program offers the option to calibrate a camera or projector or 

both. The resulting information is stored in a file to be read by the volume display 

program. These files can also be loaded by the calibration program to verify 

previous calibrations. Photometric calibration can be performed at this point as 

well, storing the look-up table to be read later by the volume display program.  
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 Camera calibration is a well studied problem in computer vision. The result of 

calibration is a mapping from 3D points to their locations in the 2D camera image. In 

this system a camera is calibrated using Zhang’s [9] method. Zhang wanted to 

describe a method that was simple to perform and highly robust, designed to allow 

anyone to calibrate a camera without special knowledge. Calibrating the camera 

requires one extra tool: a calibration chessboard. This board must be a rigid plane 

with a printed or drawn chessboard. It is easy to accurately identify the corners of 

the chessboard in the camera image, so it is used as a well defined reference plane in 

3D space. The key to a successful calibration is finding good correspondences 

between 3D points and where they show in the 2D camera frame. This is 

accomplished by assigning 3D values to the corners of the calibration pattern and 

associating them with detected corners from the camera image. 

2.1.1 Camera Calibration 

 

Figure 3: Pinhole camera model. An image is linearly projected onto the imaging 

surface inside the camera. 

 
 A pinhole camera model assumes that a camera is much like a tiny aperture 

where rays project an inverted image of the scene facing the pinhole onto the inside 

wall of the camera. This is a linear map from 3D coordinates to a 2D image location 



 17

on the back of the camera. Here �� is an image coordinate (2D) and �� is a scene 

coordinate (3D): 

�� � ���. (1) 

The matrix � is defined by the intrinsic and extrinsic parameters of the camera: 

� � ��	
|
�
. (2) 

The matrix K is composed of the intrinsic parameters: 

� � ��� 0 ��0 �� ��0 0 1 �, (3) 

Where �� and �� are the focal lengths in each dimension and (��, ��) is the camera 

center. The matrix R is a rotation matrix and t is a translation vector.  

 Intrinsics are physical definition of the camera’s internal geometry and 

extrinsics define the location of the camera in the 3D coordinate system. The 

intrinsic parameters are represented by the matrix K, and the extrinsics by �	
|
�
. By 

manipulating the equation for the camera matrix P, it is possible to arrive at a closed 

form solution for the intrinsics and extrinsics if enough correspondences are 

provided to properly constrain the parameters. 

 This solution is treated as an initial guess for a maximum likelihood approach to 

estimating the camera parameters. With the initial guess it is possible to project 3D 

points into the 2D image frame. An error function is defined to measure the 

difference between the projected 3D points and the locations of the corners in the 

image. The initial guess doesn’t contain provisions for lens distortion, so at this step 

distortion is assumed and initially guessed to be zero. By minimizing the error 

function through the Levenburg-Marquardt algorithm, a more accurate solution is 

found.  
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Figure 4: Calibration projection matrices provide a one-way mapping from 3D to 2D, 

but both projection matrices are required to go from 2D to 3D via triangulation. 

 
 To begin calibration, the user places the pattern in view of the camera. An image 

is acquired and processed to find the pattern in the image. OpenCV provides an 

implementation that can find a chessboard in an image based on the number of rows 

and columns on the board. To avoid rotational ambiguity one dimension should 

have an odd number of elements. Each found corner corresponds to a 3D coordinate 

defined by the dimensions of the calibration pattern. With the 19 by 14 board as an 

example the upper left corner corresponds to � � �0, 0, 0
 while the lower right 

corners is � � �18, 13, 0
. A number of views of the pattern are taken by moving it to 

different locations in the camera view and different depths relative to the camera. At 

minimum two views can provide calibration results, but more views are preferable. 

A large number of views helps to ensure that the parameters of the camera are well 

constrained and lens distortion is modeled well. At this point the user has generated 

a set of 2D points across several views of the calibration pattern which are assumed 

to always correspond to 3D values lying on the � � 0 plane. With the 

correspondences stored, the OpenCV implementation of Zhang’s algorithm is used 

to find the intrinsics and extrinsics, including distortion parameters. 
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Figure 5: Top: Camera undergoing calibration with a physical calibration pattern. 

Middle: Physical pattern with found corners. Bottom: Reconstructed corners using 3D 

points and calibration information. 
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 Each time an image is acquired and the pattern is found within it, the image of 

the found corners is shown to the user calibrating the system. This ensures that 

each calibration image is unique and accurately finds the location of the chessboard 

in the image. If contrast in the image is low then the results can be bad enough to 

reject a camera image. When using cameras that automatically adjust white balance 

and focus, this verification step filters out the anomalies that would reduce the 

accuracy of the result. When pattern corner acquisition is complete, a camera image 

is augmented with all of the found corners from the calibration process. This is 

useful for determining if the chessboard was captured in a wide variety of positions 

or if they are relatively homogenous. If this point cloud looks good enough then the 

results of the calibration are showed one at a time. Each camera frame used to 

capture the chessboard is augmented with the reprojection of the chessboard 

corner locations. The image shows an x on or near the clearly visible chessboard 

corner, allowing the user to visibly assess the amount of error present in various 

locations for this calibration.  

 In summary, the user starts the calibration program and places the physical 

pattern in view of the camera. After deciding the number of calibration images the 

program begins to find chessboard patterns from the camera image interactively. 

The image of the found corners is shown and the user presses a key to accept or 

reject after repositioning the pattern. This is repeated until the decided number is 

acquired. An image of the cloud of points found is shown and accepted or rejected (if 

rejected the user must start over). Then each calibration image is shown in 

sequence with the reprojected 3D points to allow a last visual check of the 

calibration accuracy before it is used in the main program.  
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2.1.2 Projector Calibration 

 The projector has a more complex calibration procedure. Assuming the same 

pinhole camera model, a projector could be seen as the opposite concept: rays leave 

the box through the hole and impose a color on the scene. Using this model it makes 

sense to pursue the same calibration technique as is used on a camera. The problem 

is acquiring the correspondence points.  

 

Figure 6: Top: The projector is held in hand and pointed at the z=0 plane to project a 

pattern for calibration. Left: Resulting calibration image with found corners. Right: 

Reconstructed projector frame points using 3D points and calibration information. 

 



 22

 The camera forms an integral part of the solution as it is the most readily 

available way to measure the scene. Since the projector is designed to augment the 

scene, we would like to project the calibration pattern and find it somewhere in the 

scene. The 2D portion of the correspondences would be found from the image 

provided to the projector and the 3D points would have to be reconstructed from 

the view of the scene. The calibrated camera can map 3D points into its 2D image, 

but cannot do more than define a ray in 3D space. By constraining it to a known 

surface the ray can be reduced to a point: the 3D location of the pattern corner in 

space. The image from the camera will show the pattern projected onto a planar 

surface assumed to be the plan � � 0. This convenient assumption allows the 2D 

points found in the camera image to be converted to 3D points.  

 To transform the 2D camera locations into 3D coordinates residing on the � �0 plane, the transformation matrix for the camera is manipulated. This matrix, �, 

defines the mapping from 3D points to 2D points and is a 3x4 matrix, and thus not 

invertible. The � � 0 assumption means that a column of the � matrix can be 

removed as it would have no effect on the calculation. Given  
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Dcamcam XPx 3= . (4) 

 

This is the standard projection equation for determining where in an image a 3D 

point will be given a completed camera calibration. In this situation the camera is 

calibrated already so the camera matrix is available. Assume that DX 3  has a z 

coordinate of zero: 
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Where ΠP  is now invertible. This implies that 3D points located at the plane � � 0  
can be found based on their locations in the 2D camera image.   
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 This presents a very simple way to calibrate the projector using the same tools 

as were used to calibrate the camera. By converting all the camera locations to 3D 

points on the � � 0  plane, the 2D-3D point correspondence set is complete by using 

the locations of the corners in the pattern image provided to the projector. As 

before, the OpenCV implementation of Zhang’s algorithm provides intrinsics, 

extrinsics and distortion parameters from this correspondence set.  

 The user experience is similar to camera calibration, but requires repositioning 

of the projector rather than the physical calibration pattern. Also the user must 

orient the projector so that the projected pattern falls on the display surface in view 

of the camera. The camera to scene relationship must not change as it would 

invalidate the 3D points found and provide an invalid result. The user chooses a 

number of views to acquire and the program begins to search for the pattern image 

in the camera view. As with the camera, the projector calibration verifies that the 

found corners are accurate with the user by waiting for a key press. The user 

repositions the projector and acquires the next view. This is repeated until all views 

are acquired. As with the camera calibration, a point cloud shows how well 

projected patterns spanned the camera image and the locations of the reprojected 

camera points are shown for each frame. This verifies that the conversion from 2D 

camera points to 3D points works well in the camera frame. The projected pattern 

image is also augmented with the projections of 3D corners in the projector frame. 

These corners show how well the projector calibration works. 

 With projector and camera calibration complete, their intrinsic parameters and 

distortion coefficients are stored to be used as needed. These parameters do not 

need to be recalculated. Extrinsics may change over time as the camera and 

projector might move relative to each other. If this happens and extrinsics are not 

recalculated, then essential later steps will suffer from inaccurate results. Thus 

extrinsics are recalculated from time to time as part of the main algorithm.  
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2.1.3 Photometric Calibration 

 An important part of the main algorithm is matching features. The basis of this 

process is the comparison of grayscale image patches. When a pixel is projected 

onto a surface and then viewed by a camera, the color of the pixel in the camera 

image will not necessarily be the same as when it was projected. This implies a 

mapping from projected color intensity to camera image color intensity. As the 

images are converted to grayscale as part of the algorithm, the mapping is 

constructed from color directly to gray values. This photometric calibration step 

increases the likelihood of finding good matches.  

 

 

Table 2: A sample of the Look-Up Table generated by photometric calibration. The 

values in the color columns are the perceived camera gray value for a pixel with given 

input intensity in that color. 

 
Input Color Intensity Red Green Blue 

98 91.1514 135.402 176.858 

99 92.6463 136.805 181.2 

100 94.2715 137.6 182.896 

101 94.3026 138.993 185.509 
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Figure 7: Photometric calibration result versus standard grayscale conversion. Top: 

camera images. Bottom left: photometric calibration result applied to an expected 

camera image. Bottom right: expected camera image converted to grayscale. 

 
 The mapping is highly non-linear, so a look-up table is used to store individual 

data points for each projected color and perceived camera intensity. The simplest 

method of filling this table would be to project each color intensity individually in 

the full frame of the projector, and then average the camera’s perceived intensity in 

the projected region to store for that color value. The camera prevents this simple 

method from working effectively, however. The camera will attempt to focus, and if 

the scene is just a single color then the intensity will modulate with the focusing 

attempt. Also the camera will attempt to adjust its white balance as the scene 

intensity changes. This directly changes perceived intensity for a given color. To 

correct for these problems a pattern is introduced that is complex enough to 

maintain focus and keeps a constant intensity average to prevent the white balance 

from changing. In the pattern the bright regions lower in intensity as the dark 

regions increase in intensity. The outer border is a constant gray and keeps focus as 

the intensities in the two regions overlap. Calibration values are obtained by 

averaging the intensities in the color-varying parts of the pattern. Later, this data is 
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used to map a projected color image to the camera frame for comparison. Each pixel 

is computed from the values in the table according to this equation: 

3/)]0()0()0([

*2)()()(

bgr

bgr

LUTLUTLUTAvgZero

AvgZeroBLUTGLUTRLUTpixel

++=

−++=

. (7) 

The pixel returned is the gray value as seen in the camera for a given projected color 

pixel with values [R, G, B]. 

 

 

Figure 8: Photometric calibration pattern 

 

 

Figure 9: Photometric calibration using full frame color 
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Figure 10: Photometric calibration using pattern 

 

 The volume visualization program begins by offering the option to calculate new 

extrinsics for the camera and projector. The projector and camera can move relative 

to each other slightly and destroy the operation of the system, so this step allows 

extrinsics recalculation as needed. Only one view of the calibration pattern for each 

device is needed, so it can be performed relatively quickly. These values are stored 

so that subsequent starts of the program can immediately display volume data.  

 

2.2  Feature Matching 

 

 

 The feature matching stage takes calibration information, a camera image, and 

the oldest geometry from the geometry buffer to generate a set of matched points 

between the camera frame and the expected camera frame. This includes feature 

detection, localization, and matching steps. Before features can be detected, 

however, the constructed camera image must be created. 

2.2.1 Expected Camera Image 

 Once a camera image is acquired it must be paired with an expected camera 

image to generate match points. At program start, the projector is set to display a 

number of frames where the planar geometry is assumed to be � � 0. This pulls the 

cross section from the dataset corresponding to that plane and displays it. After the 

initial frames are up, the algorithm begins forming estimates but not storing them. 
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This gives enough time for the camera focus and white balance to normalize. When 

the estimation process has produced a few valid estimates they begin to be stored in 

the geometry buffer. The expected camera image is constructed by projecting the 

geometry of interest into the camera frame. This defines the quadrilateral where the 

data is expected to be in the camera image. The image is rendered in the backbuffer 

and never swapped to the front buffer. This means that the graphics hardware is 

used to generate the expected camera image without displaying it. This step 

increases the amount of time per frame over the baseline implementation because 

the image is not already in the framebuffer and ready to be warped and used. 

  

 

Figure 11: Top: Camera image in grayscale. Bottom: Expected camera image with 

color correction. By rendering the expected camera image in the backbuffer using a 

previously calculated geometry it matches nearly perfectly with the camera image. 
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 The reconstructed camera image must be converted to a grayscale image 

through the data in the look-up table from the calibration phase. Each pixel in the 

grayscale image is calculated from the color of the original pixel and the values in 

the look-up table. The look-up table was filled with calibrated camera intensity 

values reflecting the average intensity seen by the camera for a given projected 

color and intensity. Equation 7 shows that the expected intensity of a camera pixel is 

the sum of the calibrated intensity values for all the channels of the projected pixel. 

A black projected pixel will not correspond to a black camera pixel due to the white 

projection surface combined with light emanating from the projector when it is 

projecting black. A sum of three camera channels will thus have two extra black 

pixel values if the channels since the projector light will only be additive above the 

threshold of the black camera pixel.  

2.2.2 Harris Detector 

 Points of interest are identified by applying a Harris corner detector [5] and non-

maximal suppression [3]. The Harris detector is a simple feature locator that 

provides higher responses in areas where gradients in multiple directions and 

appear as corners versus intersecting edges. Non-maximal suppression finds the 

highest valued element in the Harris image within a 5x5 window and identifies it as 

a possible feature location. Many possible features can be found this way as a result 

of noise in relatively flat areas, so a threshold requires a minimum Harris response 

value. Features are described by useful parameters for normalized correlation: an 

11x11 image patch for each feature and its sum, sum squared and a coefficient used 

in the matching process. 

 The Harris detector produces a response image that contains peaks where the 

intensity gradient has more than one direction and appears like a corner. Depending 

on the tuning of the Harris detector’s parameters the response can range from 

appearing like an edge detector to returning very sharp peaks. Striking a good 

balance is key to extracting enough quality features to ensure matching and, 

ultimately, geometry estimation are successful.  
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Figure 12: Features detected for the camera and expected camera frames. 

 

 For each pixel the Harris detector calculates a 2x2 gradient covariance matrix 

M [5]. This represents how strong of dependency there is between the gradients 

around the pixel in a certain neighborhood. Smaller neighborhoods require less 

computation time, so the smallest value of 3 was chosen. M is then used to calculate 

the response at that pixel by the equation below. If the eigenvalues of M are strong, 

then a corner is detected. If the eigenvalues are weak, then the image is 

approximately uniform in this area. Asymmetrical eigenvalues indicate an edge. 

)*++,-�,�./ � det345 6 7 8 �+*�.345  (8) 



 32

The parameter k is set to 0.6 as a result of comparing matching results for changing 

values of k.  In a sense, k tunes the strength at which the eigenvalues of M cause the 

Harris response to start peaking. Lower values of k cause a stronger overall Harris 

response, but this is not desirable as the responses become far more prolific for the 

same threshold while also emphasizing image features that are less and less corner-

like. 

 To find feature locations from the Harris image a non-maximal suppression 

step identifies local maxima in the image. All the pixels in a 5x5 neighborhood are 

checked and the location for the pixel with maximum values is recorded provided 

this maximum is above the minimum threshold. Harris responses are rather low in 

magnitude, so thresholds are set around 0.00001. The expected camera image tends 

to produce a stronger response than the camera image, so its threshold is a little 

higher and the camera’s is a little lower. 

2.2.3 Matching 

 Two feature sets are now available, one from the camera image and one from the 

reconstructed camera image. Comparison between features starts by finding 

features in the reconstructed camera set that lie within a certain disparity window 

of a feature in the camera set. Normalized correlation scores are calculated for every 

feature that falls within this disparity window. The feature being checked for a 

match is then paired with its candidate match: the match with the highest 

correlation score. A final match is determined by a mutual consistency check [1]. 

The candidate match (from the expected camera image) is compared with the 

features from the camera set. If the feature most closely matching it from the 

camera set is the original feature then a match is verified.  
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Figure 13: Feature matching result. Nearly all found matches using this algorithm are 

visually accurate. 

 
 The disparity window is used to limit the number of features being scored in 

each matching attempt. The camera image and expected camera image are not likely 

to have very different appearances due to the slight deformations of the image that 

accompany comparatively large changes in the 3D orientation of the display surface 

in space. This makes it reasonable to assume that valid matched features will be 

spatially close in the two images. Valuable time is saved by eliminating most of the 

features from the scoring process and focusing on those features most likely to be 

matches. 

 Normalized correlation is a calculation on image patches. In the broadest sense 

the score could be computed directly from two image patches, but such a scheme 

would waste enough time to kill any prospect of real time interaction. As described 

above, the feature description is primarily made to aid and speed up the process of 

matching. Each feature contains values that are needed every time a normalized 

correlation score is computed: the sum of the image patch values, the sum of 

squared patch values and a constant coefficient. To compute normalized correlation 

with two such well equipped features, one must only compute one additional 

variable: the sum of the products of the values in the two image patches being 

tested. The equations below show the details of normalized correlation computation 

[3].  
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 The calculation of D in the above formula is reserved for features sharing a 

disparity window. This multiplication is the most computationally expensive part of 

the matching algorithm as all other values in the NC equation were computed as 

part of feature creation.  From this point all the features found within the disparity 

window are tested with normalized correlation. Once the highest scoring feature is 

found a mutual consistency check ensures that the match is supported by both 

features. If both features have the highest normalized correlation score with each 

other out of their respective disparity windows the probability of a good match is 

high. As a last check, a threshold is applied to the NC values.  

 Matched features form the backbone of the estimation process. One of the best 

metrics for determining the success of the algorithm is the quality of the match 

points. A good match point correctly connects the expected and actual camera 

images, providing the basis for a geometric estimation. Match points are 

triangulated to obtain 3D points which represent the location of the display surface 

in the last part of the algorithm, but it is not possible to maintain interactive 

framerates by directly estimating from all available match points. Ideally a smaller 

set of match points could be triangulated to find the surface geometry in 3D while 

remaining accurate. For this reason match points are refined to a smaller 

representative set before they are triangulated for making a geometric estimate.  

2.3  Geometry Estimation 

 

 With a set of matches calculated, the geometry estimation portion of the 

algorithm seeks to quickly filter the match data into a geometric estimate of the 

display surface location. The first step is to refine the match points to a 

representative set through RANSAC. This smaller set of points can then be 
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triangulated to four 3D points. Plane fitting produces a normal and centroid that can 

be used to determine a projector image for the newly estimated display surface 

location.  

2.3.1 Preemptive RANSAC 

 An algorithm must be used to reduce the number of match points used to form 

an estimate of the plane geometry. The random sample and consensus approach 

(RANSAC) provides a framework where random samples of the match points can be 

compared with other match points to find a consensus on which random sampling 

best represents the overall set. This method has been used time and again to solve 

problems where robust estimation is needed to find a set of useful inliers among 

data containing both inliers and outliers.   

 

Figure 14: RANSAC error over a large number of iterations. These hypotheses 

represent the lowest error group of hypotheses for this run. Higher error hypotheses 

were removed to show separation. When an error track becomes flat and others are 

below it, it has been preempted by the algorithm. 

 
 Each hypothesis is composed of four match points. This makes it possible to 

calculate a homography from the expected camera image to the camera image and 

use it to evaluate the performance of the hypothesis. The homography generated by 
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a set of four such matches can be used to check how well other match points line up 

with them. This homography represents a perspective transformation from the 2D 

frame of the expected camera image to the camera image and is invertible to 

transfer points from the camera image to the expected camera image. Inliers would 

show low reprojection error when this homography is used to project the match 

from one frame to another. Any match not used to form the hypothesis can thus be 

used to evaluate the hypothesis through cumulative reprojection error. A match 

from the hypothesis set will have a reprojection error of zero. The formulation of the 

error accumulator is: 

∑3� 6 �:5 ; ∑3$ 6 $:5 . (10) 

 The Preemptive RANSAC algorithm [4] uses this as a method for finding an 

optimal estimation of the geometry in a minimal amount of time. After a number of 

hypotheses have been formed, preemptive RANSAC uses the reprojection error of 

randomly selected match points to accumulate scores for the hypotheses. After each 

random match is used to score the hypothesis set, some of the hypotheses with the 

highest errors are discarded to minimize the amount of calculation needed to arrive 

at the final estimate. The result is that significant outliers and poor performing 

hypotheses are rapidly rejected. Figure 13 shows this as flattening out of the error 

curve due to the algorithm skipping over the hypothesis.  

 The number of hypotheses H influences the time to execute the RANSAC 

algorithm more than other factors because each hypothesis requires the generation 

of a homography. Each round of RANSAC must eliminate N hypotheses, leading to a 

total of H/N rounds before a final estimate is reached. The hypothesis with the 

lowest error is determined to be the winner and represents the newest geometric 

estimate. 

 First RANSAC produces all the necessary hypotheses. For each hypothesis four 

random points are selected. Four matches in two frames of reference are enough to 

generate a homography between the two frames. This homography will indirectly 
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determine how well other matches fit the plane defined by these four randomly 

selected matches. Because points must be transferred between both frames, the 

homography’s inverse is also calculated. To begin scoring a random match point is 

selected and the points from either reference frame are projected to the opposite 

reference frame (from camera image to expected camera image and vice versa) 

using the hypothesis homography and inverse. If a hypothesis and random match 

point line up well then the projections of these points would line up with their 

match counterpart. This is rare; some error will exist for any match except the ones 

used to generate the homography. Reprojection error is calculated as the sum of 

squared differences between the matches and the projected points in their own 

frames. Large reprojection error indicates that the current match and hypothesis 

are not compatible. The error for all hypotheses are measured against this single 

observed match and the N hypotheses with the highest error are discarded. Another 

random match is selected and the process is repeated until N hypotheses can no 

longer be removed from the set, then the lowest error hypothesis is selected as the 

estimate. 

 This adaptation of the generic RANSAC algorithm provides the advantage of 

taking a nearly fixed amount of time each frame. With preemptive RANSAC 

estimation the system is guaranteed a quick, representative estimate from the 

available match point data.  

2.3.2 Triangulation and Plane Fitting 

 The final step is to convert the set of four matches into a form representing a 

new geometric estimate. First the match point locations in the expected camera 

image are warped to the projector frame. This can be performed by calculating the 

homography from the camera frame to the projector frame. Since a 3D geometry is 

given, it can be projected into each frame providing the four correspondences 

needed to calculate the homography. Triangulation is performed on the 

correspondences between the camera and projector frames by way of their stored 

calibration data. With four 3D points a plane can be estimated and a normal and 
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centroid are found to define the location of the display surface in space. At this point 

a geometric estimate is finalized by calculating the plane’s intersection with the 

volume extents and the resulting values are stored in the geometry buffer. Geometry 

buffer elements are smoothed across two frames before being used to display the 

projector image and are stored in the geometry buffer. 

 The triangulation method used here is based on singular value decomposition. 

Using OpenCV’s SVD function. The 3D to 2D projection matrices of the camera and 

projector provide a map to 2D, but as 3x4 matrices they are not simply invertible to 

go in the other direction. Instead the two matrices are used together to find a path to 

3D. A matrix A is formed that composes the information in the camera matrices with 

the match data and the smallest singular vector of A corresponds to the 3D location 

of the match point [1].  





















−

−

−

−

=

2
2

3
22

1
2

3
22

2
1

3
11

1
1

3
11

*

*

*

*

ppy

ppx

ppy

ppx

A

 (11) 

In this formulation of the SVD matrix A, x and y refer to the locations of the match 

points for two different frames and p represents different rows of the two camera 

matrices. The smallest singular valued vector of A corresponds to the 3D location of 

the match point on the display surface. 

 The next step in this processing chain is to find the normal and centroid of the 

triangulated 3D points. A standard method is used to calculate the normal and 

centroid. The centroid is simply the average of the points. The normal is solved from 

< · 3> 6 ?5 � @, (12) 

where n is the normal, X is the set of points on the plane and c is the centroid of the 

data. This equation is easily solvable with SVD.  The normal found in this step is 

stored in a buffer to be used for smoothing. This is the raw geometric estimate of the 
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orientation of the plane in 3D space. The average for all the normals in the 

smoothing buffer is calculated as the smoothed normal and this vector defines the 

geometry that will be shown on the display surface. Averaging normals across 

frames helps to mitigate the effect of intermittent poor estimates. The smoothed 

normal is now converted into a set of 3D points that are the corners of the dataset 

where the display surface cuts through the volume in real space. These values are 

added to the geometry buffer and a new estimation cycle is begun.  

2.3.3 Geometry Buffer 

 By implementing a simple three position buffer, using a cheap DV camera 

becomes possible. The geometry buffer delays the use of a calculated geometry 

estimate by three frames. The assumption is that the camera has an internal buffer 

structure that shifts images from the CMOS imaging array to the firewire bus where 

the computer reads the images. A three geometry delay works to keep the camera 

images synced to the geometric estimates even if the per frame time increases or 

decreases.  

 Before an estimation of the display surface geometry is made the camera image 

is acquired and an expected camera image is created from the estimated geometry 

of the display surface and the projected image. Using the commodity camera causes 

trouble here as the camera will not return the current image when asked for an 

image of the scene. Details on the camera’s internal hardware specifications and 

how frames are moved from the CMOS sensor to the firewire bus are not available. 

From empirical observation, however, the camera has an internal buffer of three 

images. When the user polls the camera for an image, the camera acquires a new 

image, but places an older image stored in the last buffer location onto the firewire 

bus. It is possible to make multiple image polls to force the camera to catch up, but 

results in a very slow algorithm. To compensate, a geometry buffer is implemented 

so that every estimation is made using geometry estimated three frames before the 

currently available camera image. The result is that the camera images line up 

temporally with the geometries used to construct the data appearing in them. When 
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an expected camera image is constructed using this geometry it will closely match 

the actual camera image and produce valid match points.  

 It is possible for an estimation to fail, and this has consequences in the geometry 

buffer. If an estimate is attempted on an image pair and for some reason too few 

matches are found then the algorithm does not record a new geometry in the buffer. 

The result is an attempt to use the geometry again in the next frame against a 

camera image that should belong to the next geometry in the buffer. For this reason 

when an estimate fails no shifts are made in the buffer. If estimation continues to fail 

the buffer will retain its current contents until enough matches are available to 

make an estimate. If the orientation can be recaptured by the user, then the system 

will begin estimating new geometries again.  

Table 3: How the geometry buffer works. At startup some frames are used to estimate 

the geometry without storing the estimate, subsequent estimates are added to the 

geometry buffer. The latest estimate is used to calculate the current display once new 

estimates are stored. 

 
Current 

Estimated 

Geometry 

Current 

Displayed 

Geometry 

Geometry 

Camera Sees 

Geometry 

Compared 

Buffer 

Contents 

B 0 0 0 [0 0 0] 

C 0 0 0 [0 0 0] 

D D 0 0 [0 0 D] 

E E 0 0 [0 D E] 

F F 0 0 [D E F] 

G G D D [E F G] 

H H E E [F G H] 

 
 

2.4 Data Preparation and OpenGL 
 
 This is a volume data visualization system that uses a set of large images to form 

a 3D dataset. These images must be processed in order to be useful to the OpenGL 

3D texture framework. A 14 gigabyte set of numbered images is thus downsampled 

into a texture object of approximately 100 megabytes. This allows the 3D texture to 

fit on the video card’s memory while leaving enough texture memory for displaying 

2D textures in the scene. An OpenGL scene is a virtual 3D environment where 
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graphics primitives can be positioned and textured to form arbitrary 3D scenes. A 

scene is rasterized into an image based on the assumption of a specific view 

orientation and displayed on the screen, giving a view of the 3D environment. 

 The OpenGL scene for this system is as simple as possible to ensure quick 

processing. A plane is created orthogonal to the view direction so that it extends 

beyond the viewable area. This is an OpenGL primitive called a quad. This quad is 

the only geometric primitive used in the scene, and the scene does not change 

during the operation of the system. The effect of altering the projected image to fit a 

specific display surface orientation is achieved by texturing the dataset image on 

this quad within the bounds of four points defined by the projection of the volume 

extents in 3D to the projector frame.  

 The same scene is used to form the expected camera image. As a result of the DV 

camera and geometry buffering process, it isn’t possible to simply take the current 

framebuffer and warp it to the camera frame and directly compare them as the 

current camera image is older than the current projector frame. This means that an 

extra OpenGL display call is made which rasterizes the textured quad into an image. 
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CHAPTER 3 

 

 

RESULTS 

 

3.1 Calibration 

 

Geometric calibration can be measured by the mean squared error between the 

locations of 2D points found in a calibration image and the projection of their 

corresponding 3D locations into the image frame. Error between points tends to increase 

toward the outer edges of the image, but remains low for both the camera and projector.  

 
Table 4: MSE of x and y directions for the camera and projector over 3 calibration 

runs. 

 
Calibration Run  x MSE y MSE 

Run 1 Camera 0.118228 0.081468 

Projector 0.06583 0.118696 

Run 2 Camera 0.124685 0.080831 

Projector 0.057336 0.099057 

Run 3 Camera 0.117633 0.083330 

Projector 0.088556 0.176183 
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  Figures 14 and 15 show the absolute error in pixels of the calibration pattern. 

Each 2D point was compared to the projection of the corresponding 3D point into the 

image frame. The result is that nearly all the points fall below one pixel of error while 

mostly remaining within 0.5 pixels of error.  

 

 

Figure 15: Absolute x and y error from camera calibration. 

 

 

Figure 16: Absolute x and y error from projector calibration. 
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3.2 Feature Matching 

 

 Feature matching accuracy can be visually discerned by taking a sample and 

individually counting correct matches and incorrect matches. Incorrect matches will be 

obvious outliers and correct matches will be likely inliers. The ratio of correct to 

incorrect matches provides a good metric for evaluating performance of the steps leading 

up the feature matching stage. A minimum of four matches can still produce an estimate, 

but estimates are not made unless more than 5 matches are available. This provides the 

ability to estimate the geometry even under occlusion. 

 Matching is affected by ten parameters which change the makeup of feature locations 

and how closely the system requires image patches to match. The Harris feature detector 

has  a variable block an aperture size which determine how large of a neighborhood is 

used to find corners and how far outside of the local neighborhood the image affects the 

corner response respectively. These parameters are fixed at their minimum requirements 

for speed. A larger window and aperture allow for more consistent feature locations, but 

also reduce the number of features with high corner responses at the cost of processing 

time. A larger number of high corner responses give a more even distribution of feature 

locations after the non-maximal suppression step. The Harris operator has a parameter k 

that can change the output to resemble an edge detector when its value is low and a strict 

corner detector when the value is high. Varying this parameter has little effect on match 

accuracy (except at extreme values), but the number of matches found in a given frame 

will be lower if the value is set higher. In the UMB, the value for k is set at 0.6, as it is in 

this work. Higher and lower values affect orientations of the display surface farther away 

from the camera the matches become less accurate despite large numbers of them or the 

number of matches declines to the point of generating more noisy hypotheses.  
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Table 5: Total matches and good matches for four values of k, taken for four 

orientations of the display surface. 

 
k =0.01 k =0.04 k =0.06 k =0.1 

Total 
Matches 

Good 
Matches 

Total 
Matches 

Good 
Matches 

Total 
Matches 

Good 
Matches 

Total 
Matches 

Good 
Matches 

135 123 63 59 69 68 26 26 
101 89 86 85 86 84 34 34 
70 64 37 33 75 73 37 37 
83 72 47 39 40 39 20 20 

 

Table 6: Total matches and good matches for four values of the match threshold, 

taken for four orientations of the display surface. 

 
M_THRESH =0.9 M_THRESH =0.94 M_THRESH =0.97 M_THRESH =0.99 
Total 

Matches 
Good 

Matches 
Total 

Matches 
Good 

Matches 
Total 

Matches 
Good 

Matches 
Total 

Matches 
Good 

Matches 
174 61 88 52 61 59 10 10 
169 83 93 48 53 51 8 8 
133 54 73 47 41 40 15 15 
145 65 99 56 32 32 12 12 

 

3.3 Geometry Estimation 

 

 RANSAC must provide a reasonable representative set in the shortest time possible. 

The number of hypotheses H influences the time to execute the RANSAC algorithm 

more than N because each hypothesis requires the generation of a homography. 

Each round of RANSAC must eliminate N hypotheses, leading to a total of H/N 

rounds before a final estimate is reached. The hypothesis with the lowest score is 

determined to be the winner and represents the newest geometric estimate. This 

happens in a nearly fixed amount of time each frame due to the specific number of 

calculations made.  

 By choosing a large N, the total number of scoring operations will be lower, but 

the results may not be as stable as lower values. If H is large, then the amount of 

time computing the winning hypotheses increases. If H is small, then there may not 

be enough hypotheses generated to guarantee a representative set.  
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Figure 17: A close-in look at the lowest scoring hypotheses in a RANSAC run. 

Preempted hypotheses flatten out toward the right end of the graph. 

 
 
 The result of the RANSAC refinement represents the new geometric estimate of 

the location of the display surface. The first step to translating the match points to 

the estimate is to triangulate the match points to 3D points. In this stage calibration 

error is injected. Also the triangulation method is linear. To increase the accuracy of 

linear triangulation, an undistortion map generated from the distortion coefficients 

is used to correct for lens distortion before triangulation. The result is that a 

triangulated 3D point will be conservatively accurate to within one unit of the 

calibration pattern. The units are measured from one corner to its neighbor on the 

pattern. Figure 17 shows this and that the z error dominates. Each unit is 

approximately one inch and the dimensions of the dataset in space are 19 x 14 x 55. 
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Figure 18: x, y and z error from triangulating the calibration pattern locations from 

camera and projector frame locations. The vertical axis represents the distance 

between two corners on the calibration pattern. 

 

The triangulated 3D points are then used to compute a normal and a centroid. From these 

the coordinates of the intersection of the display surface with the volume extents can be 

computed which becomes the final geometric estimate. These estimates are smoothed by 

two frames as this helps to stabalize the display image and does not noticably slow the 

algorithm.  

3.4 Overall Performance 

 The algorithm runs at between 3 and 7 frames per second. This is sufficient for 

interacting with the display and navigating to specific locations within it. Table 7 shows a 

significant startup time of 14 seconds followed by a framerate of somewhat less than 5 

fps.  

Table 7: Frame times and startup time. (milliseconds) 

 
Frame 0 1 2 3 4 5 6 7 8 9 Ave 

Time 13875 203 203 204 203 187 235 202 204 250 210.11 

  

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

x Error

y Error

z Error



 48

 The framerate is allowed to float and can be adjusted somewhat by tuning 

parameters. The above example of frame times is typical for stable operation with 

little jitter while the display surface is being held in a particular place. Most runtime 

framerate variance comes from the number of features generated for a given frame. 

If the display surface is closer to the camera then both the camera and expected 

camera images take up more of the frame, leading to more features. With more 

features it is also more likely that there will be more matches, so the matching phase 

will also take more time in this situation. Once the algorithm reaches the RANSAC 

phase there aren’t any factors that change execution time per frame. Transient 

effects can also cause frame times to change. If the camera changes white balance 

then the system may lose tracking until the balance change is finished due to a 

washed out camera image. The system is robust to occlusions that occur close to the 

display surface, even to the point of covering most of the important data, but 

occlusions between the camera and surface can cause the focus to change enough to 

lose tracking, also causing the frame time to increase until the focus is stable. 

Dramatic changes in illumination, such as turning on the room lights, cause similar 

effects, often resulting in the system losing the ability to track further.  
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Figure 19: Display surface in default position. Cross section shows the brain and eyes. 

The figure to the right shows the relative location of the cross section in the volume 

data if the human is facing to the right. 

 
 
 
 
 

 
Figure 20: Display surface in action. The cross section shows an angular cut through 

the left shoulder, lungs, heart  and right upper arm. 
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Figure 21: Angular cut through the neck and right shoulder. 

 
 
 
 

 
Figure 22: More vertical slice showing the lower back, elbows, liver, kidneys, and 

heart. 
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Figure 23: Slice from opposite angle, showing the muscles around the collar bone, 

lungs and some of the upper intenstine. 

 
 
 
 

 
Figure 24: Near vertical slice showing the lower back, spine, kidneys, lungs, neck, jaw 

and nose.
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CHAPTER 4 
 
 

CONCLUSIONS AND FUTURE RESEARCH 

 

 A volume visualization system is implemented allowing a user to interact with 

data in an intuitive, hands-on way. The system is implemented on commodity 

hardware: a laptop with an adequate graphics card, a common presentation 

projector and a DV camera. Publicly available software libraries were used to 

implement parts of the system under windows using the Visual Studio IDE. 

Challenges related to the use of a DV camera are explored and overcome using a 

geometry buffer to fix temporal mismatch and a new color pattern for photometric 

calibration. Implementation details and the effects of implementation decisions on 

performance in the context of the overall system goals are explored, illuminating the 

most critical aspects.  

4.1. Conclusion 

 There are two measures to the quality of the volume visualization system. 

First is accurate estimation and second is framerate. If estimation is too noisy then 

the user will be unable to gain any useful experiences from using the system as it 

may not appear to even function correctly. If the estimation process runs too slowly 

then the user will find it frustrating and difficult to use for visualizing the dataset. 

The system nominally operates at between 3.5 and 7 frames per second on a 2 GHz 

Intel Core Duo laptop with an NVidia Quadro 110M graphics accelerator. The
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display can be moved at interactive rates to navigate the dataset. The overall noise 

level depends on environmental factors such as room illumination, but the system 

remains robust and able to track reasonably paced motion in most conditions while 

located in a room subject to variable daylight.  

 

4.2 Future Work 

 

 This system could be modified to provide more tools, such as the ability to save 

frames of data from the set or to change the orientation of the volume in 3D space. 

With these a user could move the volume to a desirable position and navigate to an 

interesting area where images can be acquired. Locking the display in a specific 

position would be useful for adding features like the ability to draw on the data. 

Implementing such tools would require an additional input method. If the display 

surface is in the hands then the interface should use the display surface through 

some form of occlusion detection. Currently occlusion only hurts estimations when 

the occluded area covers most of the complex portions of the image, so the main 

idea would be to find a way to use what is already available in the algorithm and 

minimize the processing cost of detecting the input.  

 Frame rate performance could be increased slightly through small changes in 

implementation details, but an interesting option for a major boost would be to 

swap the Harris detector for the FAST feature detector [11]. This could dramatically 

decrease the amount of time spent per frame finding feature locations. The authors 

claim that their method is many times faster than the Harris detector specifically 

and can function the same way, returning the locations of features in the image. It 

would be interesting to see if matching the FAST features with the normalized 

correlation method would return as good of results as the Harris detector.  

 Another interesting route to follow in improving the system would be to model 

the motion of the display surface over time. This can be useful for two reasons: 

speed and smooth frame transitions. The motion model would be used to refine the 
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estimates produced by adding information about the expected location of the 

display surface given its historical location.  If the motion model is accurate, then it 

could be expected that each frame would have a larger number of matches. The data 

area processed could be reduced under these conditions, reducing the amount of 

time required per frame. If the number of matches found is lower than a threshold 

then the area could be increased again as the motion model updates to increase 

accuracy. Adding the motion model means the system would be predicting the 

location of the display surface where before it was simply an observation. This 

creates the possibility for over and undershoot and the system becomes more like a 

control system. The estimator provides input to the motion model that predicts the 

variable user input before producing output. The output is then used as input data 

for the estimator. This implies that the system could over and undershoot on the 

estimate if the display surface is moved too quickly or at a frequency beyond half 

the frame rate. These weaknesses would be the tradeoff for the possible 

performance gain of adding the motion model.  
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