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CHAPTER I 
 
 

INTRODUCTION 

 

While microprocessors are generally designed to handle any type of computation in 

software, increasingly complex algorithms and workloads can strain the processors 

limited resources, requiring a significant amount of time to complete the calculations.  To 

compensate, co-processors are designed to offload these demanding computations and 

perform them with specialized hardware.  Floating point co-processors like the Intel 8087 

[1], secure socket layer accelerators like IBM’s PCI Cryptographic Accelerator [2], and 

physics accelerators like the Ageia PhysX P1 physics processor are all examples of 

specialized hardware designed to offload the increasing burden of demanding workloads.   

The most notable example of the co-processor found in most consumer computers 

is the dedicated graphics processor which excels in handing massively parallel work like 

3D rendering.  The combination of multi-threaded programming and the massive 

computational power of modern graphics processors can allow programs with high 

computational requirements to finish in less time.  This is especially advantageous for 

real-time video applications that repeat those computations not only for every frame of 

the video, but also many times within the same frame.  While processing on just the main 

processor is too slow to meet the real-time requirements of the application, moving the
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slowest and easiest to parallelize code to the graphics processor can reduce the processing 

time to a more acceptable length. 

 

1.1 Motivation 

With the high data requirements for modern video transmission, users with limited 

bandwidth would not be able to receive the data stream fast enough to play the video in 

real-time.  The alternative is to reduce the video quality drastically to reduce the data rate, 

often resulting in unacceptable video quality.  One alternative the author is currently 

exploring is to animate a 3D model of the object in the video, a human head in particular, 

to recreate the video sequence.  The only data required to recreate the animation is how 

the model changes to match the source images captured by the camera.  This approach is 

especially advantageous for video conferencing applications with either limited 

bandwidth or multiple simultaneous connections. 

However, the process of fitting the model to an image uses analysis-by-synthesis, 

a computationally intensive process. One type of deformation changes the model’s face 

and the resulting rendered image is compared against the source image to see if the visual 

accuracy has improved.  Previous incarnations of this process would require several 

seconds to encode one frame of the video sequence.  This is simply too long for real-time 

encoding and transmission.  By moving problematic code to the graphics processor, it is 

possible to get a significant speedup to the encoding process and achieve the goal of real-

time encoding. 
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1.2 GPU application interfaces. 

There are two well-documented and well adopted methods of performing computations 

on a modern graphics processor.  Both of these are advantageous to this project since it 

already incorporates an application interface in the form of a 3D rendering API and each 

can easily operate with the output of the 3D renderer. 

1. Graphics Shaders.  Previously fixed stages of the 3D rendering pipeline have 

become programmable, allowing programmers to write their own code to create 

new visual effects.  The pixel shader in particular is useful for computations 

because any program attached to it will run against all the pixels on the final 

image.  When the output image is set to the dimension of the output data, each 

program executed by the pixel shader calculates the final value for one element of 

the output matrix 

2. CUDA.  nVidia’s Compute Unified Device Architecture allows programmers to 

write their own code that will run natively on their graphics cards that support 

their unified shader architecture. CUDA programs are written in a C style 

language, compiled using nVidia's own compiler, and then linked into a standard 

C or C++ program. Unlike the graphic shaders, the programmer can specify the 

number of threads to allocate to a kernel. CUDA also includes optimized versions 

of basic math functions for their hardware. 

 

1.3 Contributions 

This thesis provides contributions to the field of computer architecture and computer 

science by exploring the benefits and pitfalls of rewriting a kernel of code for execution 
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on a highly parallel coprocessor.  For the field of computer architecture, this paper 

examines the hardware utilization of each approach.  This includes the efficiency of 

resource utilization and how the data bottleneck moves with each implementation of the 

encoder.  These finding will help computer architects to design more efficient 

architectures that utilize large amounts of data and to design more efficient buses for 

transferring data between processors.  This will also help graphic card drivers to make 

more efficient decisions with data handling. 

For the field of computer science, this thesis explores the costs and benefits of 

utilizing graphics processors to improve the performance of time-constrained programs.  

By showing how a code segment behaves in each implementation, computer scientists 

can evaluate how their code will behave with each implementation. 

 

1.4 Thesis Outline 

The rest of the thesis is laid out as follows.  Chapter 2 will discuss previous work with 

regard to utilizing both graphic shaders as well as native code generation for graphics 

cards.  This chapter will also cover a brief history of the development of graphics cards 

and model based video representation. 

Chapter 3 will discuss the full implementation of the model based video encoder 

as well as modifications to the base program to utilize the two methods of executing code 

on a graphics card.  This chapter will also provide a description of the methods used 

within each implementation to perform each part of the calculations. 
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Chapter 4 will cover the testing methodology used to analyze each 

implementation.  This will include the hardware used, program configuration, and data 

gathering methods along with justification for the choices made in this section. 

Chapter 5 will present the data collected from the experiments and provide 

analysis of the results.  Analysis will include a look at the results from each 

implementation including a comparison between each method. 

Chapter 6 will discuss the conclusions and future work for the GPU based code as 

well as the model based video encoder. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

This chapter covers background information about graphics processor architecture and 

efforts to utilize them for high performance computing.  

 

2.1 Model Based Video Representation 

Unlike traditional video representations, model based video representation recreates a 

video sequence by separately regenerating the video's content using models.  This type of 

video compression was explored by Eisert et. al. [3] as an alternative to image based 

compression found in traditional video compression.  The video encoder analyzes the 

input video and calculates specific scene parameters that will animate the same models in 

the decoder to recreate each of the input frames.  This method is more space and 

bandwidth efficient than traditional video encoding for simple subjects like talking heads 

due to the much smaller amount of data required to recreate the video. 

The encoder guesses the scene parameters using analysis-by-synthesis, recreating 

the head in 3D using a 3D model of a human head and the person’s face.  The same 3D 

model used to recreate the person in the video is also used within the encoder to compare 

against the camera’s reference image.  Following the process in Figure 2.1, the encoder 

changes one aspect of the head, renders the changed head, and compares the rendered 
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Figure 2.1 – Model Based Video Encoding Block Diagram   
 

image to a frame from the camera’s image of the person.  If the change makes the model 

appear more like the reference image, the encoder will continue until that feature matches 

the reference.  The process continues until all the features match the reference image for 

that frame and the feature modifications, called facial animation parameters, are sent to 

the receiving end.  The next frame of the video is brought in and the process repeats. 

 

2.2 GPU Architecture 

To render a 3D scene and capture the resulting scene on a two dimensional rasterized 

image that is displayed on a monitor, a series of calculations on a large data set need to 

finish in a reasonable amount of time [4].  First, scene parameters like camera position 

and perspective are combined into a series of transformational matrices.  These matrices, 

when multiplied with a vector containing the location of a vertex, will change the 

vertex’s location based on the camera position.  This process is repeated for every vertex 
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used in a scene in the vertex engine of the graphics card.  Vectors are then calculated 

from connecting vertices, creating the 3D mesh of the object.  This information is handed 

to the render output processors which calculate the points on the mesh that will be 

captured by each pixel in the output image.   

Once points are chosen, the color of the surfaces affecting a pixel is calculated in 

the fragment engine by sampling the color of that surface.  Most times, this point is 

located in between sets of vertices, requiring interpolation of the correct color from either 

the specific color given to the vertices or from an image chosen to texture that image.  

Other simple post processing alterations like lighting and transparency, also called alpha 

blending, change the final color of that pixel.  Once every pixel color is calculated, the 

image is sent to the screen.  With modern video games displaying hundreds of thousands 

of vertices and generating 2 megapixel images at 60 frames per second, the volume of 

computations required would not be possible on general purpose processors.  Graphics 

processors, then, are designed as accelerators for the heavy computation load of the 3D 

rendering pipeline, which is illustrated in Figure 2.2.   

 

 



 

Figure 2.2 - 3D Rendering Pipeline
shader to draw polygons in 3D space.  The raster output processor captures the base color of the pixels 

from the polygons.  The pixel/fragment shader performs modifications to the pixel color and the blender 
combines all of the pixels that occupy the same location on the 2D image based on Z

 
 

2.3 Programmable Rendering Engine

Originally, these processors were fixed in their functions, particularly with the handling 

of vertex data and final pixel color 

was added, eventually leading to the ability to develop assembly programs for the vertex 

and pixel shader engines.  Shaders are designed to execute using a single instruction, 

multiple data (SIMD) approach

These processors also contain vector pipelines to further parallelize data execution by 

allowing a single ALU to process mu

In the 3D rendering pipeline, pixel shaders (or fragment shaders)

processing after the 3D model is captured on a 2 dimensional plane and undergoes 

rasterisation to create the individual pixels.  Pixel shaders are programs that are executed 
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3D Rendering Pipeline.  Vertex information and projection matrices are given to the vertex 
shader to draw polygons in 3D space.  The raster output processor captures the base color of the pixels 

from the polygons.  The pixel/fragment shader performs modifications to the pixel color and the blender 
the pixels that occupy the same location on the 2D image based on Z

value. 

2.3 Programmable Rendering Engine 

Originally, these processors were fixed in their functions, particularly with the handling 

of vertex data and final pixel color calculation.  Over time, more user programmability 

was added, eventually leading to the ability to develop assembly programs for the vertex 

and pixel shader engines.  Shaders are designed to execute using a single instruction, 

multiple data (SIMD) approach to parallelize execution among the multiple ALUs.  

These processors also contain vector pipelines to further parallelize data execution by 

allowing a single ALU to process multiple sets of data at once [5]. 

In the 3D rendering pipeline, pixel shaders (or fragment shaders) 

processing after the 3D model is captured on a 2 dimensional plane and undergoes 

rasterisation to create the individual pixels.  Pixel shaders are programs that are executed 

matrices are given to the vertex 
shader to draw polygons in 3D space.  The raster output processor captures the base color of the pixels 

from the polygons.  The pixel/fragment shader performs modifications to the pixel color and the blender 
the pixels that occupy the same location on the 2D image based on Z-depth and alpha 

Originally, these processors were fixed in their functions, particularly with the handling 

calculation.  Over time, more user programmability 

was added, eventually leading to the ability to develop assembly programs for the vertex 

and pixel shader engines.  Shaders are designed to execute using a single instruction, 

to parallelize execution among the multiple ALUs.  

These processors also contain vector pipelines to further parallelize data execution by 

 allow for post-

processing after the 3D model is captured on a 2 dimensional plane and undergoes 

rasterisation to create the individual pixels.  Pixel shaders are programs that are executed 
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in parallel for every pixel generated to change the final value based on any effects the 

programmer wants.  These programs can then use their location on the render surface as 

well as the color and texture information to determine the final pixel's color.  Pixel 

shaders are often used to determine the final color value of an object by modifying the 

base color with the lighting and material information of the object. 

Pixel shaders have been used to accelerate image processing.  Purde et al. [6] 

utilized pixel shaders to aid the processing of electronic speckle pattern interferometry.  

Utilizing an ATI 9700 AIW Pro, they were able to speed up their calculations to enough 

to process 11 frames per second.  ATI has also released papers [7-8] detailing how to use 

DirectX 9 shaders for a range of simple and advanced image processing techniques.  All 

of these papers do note that shader programs are limited in terms of their size and 

complexity, requiring several programs to perform more complex calculations like 

Fourier transforms. 

 

2.4 CUDA  

Because graphic shaders required learning to program in a new API, graphics card 

manufactures set out to create a more direct interface to run programs on their graphics 

processors.  nVidia's solution was CUDA which utilizes the C/C++ programming 

language and their own compiler to create subprograms, called kernels, for their 

hardware.  Standard CPU based programs invoke the CUDA kernels with two mandatory 

parameters:  the number of threads that will be executed in inside each thread block, and 

the number of blocks inside a grid of blocks.  These two numbers determine the total 

number of threads that will be executed for that kernel.  Threads scheduled within each 
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block will execute in parallel while blocks are scheduled based on the available 

processing units on the card.   This two tier hierarchy gives each thread a unique ID 

which allows each thread to address the specific data it is supposed to work on [9]. 

nVidia’s unified shader architecture present in their graphics cards from the 

GeForce 8 series on as well as their supercomputing based Telsa line of cards organize 

their processors into groups called streaming multiprocessors, or SMs.  The number of 

SMs can vary, determining the tier of the card, but each SM has 8 scalar processors, or 

SPs, giving the total number of processors advertized on the card.  Within each SM, 

groups of up to 32 threads are executed simultaneously in a grouping called a warp.  

Warps are scheduled as SPs become available and execute in a single instruction, 

multiple threaded manner.  While the entire warp is fed by a single instruction, the 

threads within the warp are free to follow their own path of execution based on their 

branching conditions.  Threads that do not follow a branched path are disabled till the 

paths reconverge [10]. 

There are many papers that discuss how utilizing CUDA decreased computation 

time.  Zhiyi et al. [11] looked at improving image processing performance using CUDA 

and saw improvements ranging from 8x up to 200x depending on the processing 

technique.  Wei-Nien and Hsueh-Ming [12] improved the efficiency of the motion 

estimation step of H.264/AVC encoding up to 12x using CUDA.  Changxin et. al [13] 

implemented an MD5-RC4 encryption algorithm in CUDA and saw a 3x-5x 

improvement in performance compared to a CPU based implementation.  Most of these 

papers only focus on the workload being implemented in CUDA, while the rest also 

touch on optimizing their code for CUDA's architecture. 
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Finally, Amorim et. al. [14] performed an analysis of utilizing both OpenGL 

shaders and CUDA to accelerate the calculation of a weighted Jacobian iteration.  They 

found that utilizing CUDA produced the greatest increase in speed, but they also 

investigated how changes in programming style and graphic memory interfacing affected 

the performance of their program.  Unlike the research in this paper, their data originated 

in system memory and OpenGL was only used to handle their computations.
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CHAPTER III 
 
 

IMPLEMENTAION 

 

This chapter will discuss each of the implementations of the MBVR encoder and the 

expected benefits of each implementation. 

 

3.1 Initial MBVR implementation 

The model based video encoder is an analysis-by-synthesis encoder that tries to match a 

3D model of a person's head to an input image from a video camera.  The encoder uses a 

set of facial animation parameters (FAP) that control specific parts of the face and how 

each part deforms.  The encoder changes one FAP, renders the changed head, and 

calculates the PSNR of the resulting guessed rendering.  If the change is closer to the 

reference image, the program continues changing the model till the rendered image stops 

improving its guess.  If the first direction of search proves fruitless, the encoder moves 

the FAP in the opposite direction and continues if the encoder sees improvements.  The 

encoder continues with the rest of the FAPs once each one settles on its best value.  Once 

all the FAPs have been optimized, the encoder looks at the total improvement.  If there 

was a significant improvement, the encoder loops through all the FAPs again to look for 

further improvements.  Once improvement in the PSNR falls below a certain threshold, 

the resulting FAP values are saved for that frame.  The next frame of the video is loaded
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as the new reference image and the best guess from the previous frame is used as the 

starting point for the new optimization. 

 

3.2 Graphic Shaders in Direct3D 

Unfortunately, the first incarnation of the MBVR encoder required several seconds to 

converge on a best guess for a single frame.  An initial investigation revealed that the 

peak signal-to-noise (PSNR) error calculation was the bottleneck for performance.  Since 

one of the inputs for the error calculation was originating on the graphics card, and since 

modern graphics card support simple programs, is made sense to move the slowest part of 

the encoding process to the graphics card to reduce the encoding time.  There are two 

main advantages to this strategy. 

1. Moving data between system memory and graphics memory is slow.  The 

baseline encoder requires the entire rendered image to be copied to system 

memory for each error calculation. 

2. The PSNR calculation is based on the mean square error (MSE) of the reference 

image and the current guess.  The bulk of the calculations are done between 

individual pixels in each image.  These independent calculations are being 

serialized on the CPU and can be executed in parallel, which the graphics card 

supports well. 

By moving the calculation to the graphics card, both of these bottlenecks can be 

mitigated and only a single value needs to be copied back to system memory.  To 

calculate the error for each guess using the main microprocessor, the 3D head is rendered 

to an off-screen buffer called the back buffer.  The image is then read from this buffer to 
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an array of sub-pixel values in the system memory.  The MSE calculation takes each sub-

pixel value from the reference image and from the rendered image and uses them in the 

MSE equation 

��� � 1
���	
� � 	��

�

���
 

where N represents the number of pixels, 	
� represents the reference image element, and 

	� represents the trial image element.   The MSE value is then fed into the PSNR equation 

���� � 10 � log�� ����
�

��� � 

where MAX is the maximum value for each color component.  Since the program is 

working with unsigned character values, this value is 255.  The GPU implementation will 

move a subset of the MSE calculation into GPU compatible code: 

���� ���	
� � 	��
�

���
 

The rest of the MSE calculation will be merged with the PSNR equation to give 

���� � 10 � log�� �� ����
�

���� � 

which will still be calculated on the CPU.  The C++ code used to calculate the modified 

MSE is located in Appendix A. 

The rendered image using the guessed parameters needs to be stored as a texture 

for a second rendering pass, which will perform the MSE calculation.  This is easily 

facilitated by copying the contents of the back buffer, only this time the destination target 

is a texture stored in the video card's memory.  Another method of accomplishing this is 

to render the 3D head to an off-screen rendering surface.  An off-screen rendering surface 



 

acts like the back buffer as the render target, but it can automatically 

other usable objects.  One of the objects that it can use as a storage object is a texture.  By 

rendering to an off-screen rendering surface with a texture attached to store the color 

information, that texture is automatically generated

pass. 

The second rendering pass creates a long sequence of squares equal in number to 

the pixel count of the two images. These squares will contain the mean square error for 

one pixel in the image.  These squares 

3.1.  Each square is colored with one pixel's color from both the reference image and the 

synthesized images, which are both mapped as textures to each square.  Once the 

rendering process gets to the pixel 

information from the two textures and performs the subtraction and squaring part of the 

MSE calculation. The resulting value is stored in the red channel, thus becoming the new 

color for that square.  The shader 

Once all the shader programs have finished in the second rendering pass, the 

rendering process uses alpha blending to perform the summation step and generate a final 

value. Alpha blending is normally used for rendering a t

Figure 3.1 - Shader Method Scene Setup
the other quads are placed directly behind the first.  An orthogonal 
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acts like the back buffer as the render target, but it can automatically store its data into 

other usable objects.  One of the objects that it can use as a storage object is a texture.  By 

screen rendering surface with a texture attached to store the color 

information, that texture is automatically generated from the results of the first rendering 

The second rendering pass creates a long sequence of squares equal in number to 

the pixel count of the two images. These squares will contain the mean square error for 

one pixel in the image.  These squares are arranged one behind another as seen in Figure 

3.1.  Each square is colored with one pixel's color from both the reference image and the 

synthesized images, which are both mapped as textures to each square.  Once the 

rendering process gets to the pixel shaders, the shader program takes the color 

information from the two textures and performs the subtraction and squaring part of the 

MSE calculation. The resulting value is stored in the red channel, thus becoming the new 

The shader program is located in Appendix A. 

Once all the shader programs have finished in the second rendering pass, the 

rendering process uses alpha blending to perform the summation step and generate a final 

value. Alpha blending is normally used for rendering a transparent object by calculating 

Shader Method Scene Setup.  The first quadrilateral fills the camera viewing area while all 
the other quads are placed directly behind the first.  An orthogonal projection is used to prevent the furthest 

quads from shrinking due to perspective. 

store its data into 

other usable objects.  One of the objects that it can use as a storage object is a texture.  By 

screen rendering surface with a texture attached to store the color 

from the results of the first rendering 

The second rendering pass creates a long sequence of squares equal in number to 

the pixel count of the two images. These squares will contain the mean square error for 

are arranged one behind another as seen in Figure 

3.1.  Each square is colored with one pixel's color from both the reference image and the 

synthesized images, which are both mapped as textures to each square.  Once the 

shaders, the shader program takes the color 

information from the two textures and performs the subtraction and squaring part of the 

MSE calculation. The resulting value is stored in the red channel, thus becoming the new 

Once all the shader programs have finished in the second rendering pass, the 

rendering process uses alpha blending to perform the summation step and generate a final 

ransparent object by calculating  

 

The first quadrilateral fills the camera viewing area while all 
is used to prevent the furthest 
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the final pixel value on the screen as a combination of the color of the surface closest the 

camera and the color of every surface behind it [15].  Normally the amount of color used 

from each polygon is determined by the front polygon's alpha value.  However, it is 

possible to tell the alpha blender to ignore the alpha value and simply add each value 

without the alpha weighting.  The entire rendering pass is done on a one pixel squared 

off-screen rendering surface that stores its color information as a 32-bit float. The pixel’s 

value, which is now the MSE, is read from this buffer and used for the remainder of the 

PSNR calculation. 

 

3.3 OpenGL port 

In the interest of comparing how different 3D rendering APIs handle data, and because 

CUDA cannot access pixel information in Direct3D, the base code was ported to 

OpenGL.  OpenGL offers the benefit of running on multiple operating systems whereas 

Direct3D requires Microsoft Windows.  In addition, OpenGL natively supports copying 

pixel information to a buffer in system memory via DMA  [16].  Direct3D required an 

explicit memcpy statement from a memory mapped address on the graphics card to copy 

the data from graphics memory to system memory.  Utilizing DMA allows the data copy 

to without requiring the CPU to perform the copy and should provide a large speed 

improvement if the data is accessible when it is needed. 

In order to keep the data files used between every implementation consistent, 

custom routines were written to read the Direct3D based file containing the 3D mesh for 

the head.  Methods for reading in other required files were copied from the Direct3D 

code.  To enable compilation on any operating system without modification, only cross 
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platform libraries like the standard C++ libraries, the OpenGL Utility Toolkit (GLUT) 

[17], and the OpenGL Extension Wrangler (GLEW) [18] were utilized.  The error 

calculations are still executed on the CPU for comparison’s sake. 

 

3.4 CUDA 

CUDA offers the most flexible interface to create code that runs on nVidia’s graphics 

cards.  nVidia’s libraries provide familiar memory allocation and copying commands to 

create and initialize variables inside CUDA.  In addition, CUDA offers integration with 

OpenGL to create or modify data in OpenGL buffer objects, allowing CUDA to perform 

more complex computations than OpenGL’s own vertex or fragment shaders without 

requiring the main program to handle the data transfer.  This is especially advantageous 

for the encoder since the majority of the data movement occurs between OpenGL and the 

processor performing the MSE calculation.  If the interoperability can move the data from 

OpenGL to CUDA while staying on the graphics card, the encoder can benefit from the 

reduction of the large data copy over the slow CPU-GPU link and the encoder can use 

CUDA to calculate the MSE much quicker. 

In order to get the pixel data into an object that CUDA can use, there are two 

options available to programmers.  The first requires the main program to read the pixel 

information back normally and use cudaMemcpy to copy the data back to CUDA 

controlled memory on the GPU.  The other is to use CUDA’s OpenGL interoperability to 

access OpenGL buffer objects by mapping the buffers onto its own address space.  To get 

the pixel data into a pixel buffer object, the buffer is first bound into the OpenGL 

workspace, setting itself as the copy target.  Then the back buffer's pixel data is read 
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using the OpenGL glReadPixels function and copied into the pixel buffer.  The pixel data 

is now accessible to CUDA to map the data into CUDA controlled memory.  Both 

methods were implemented to analyze the difference in the data handling and their 

effects on performance. 

The CUDA program is comprised of three separate kernels of code that 

procedurally process the MSE.  The first kernel reads the reference and synthesized 

images as full integer arrays comprising of 3 bytes of actual pixel data, 1 byte per color 

channel, and 1 byte of superfluous data. The superfluous data is comprised of the alpha 

channel, which is manually added to the reference frame since bitmap images do not 

store this information.  This additional padding data is used to align memory reads from 

global memory along consecutive four byte aligned addresses.  By aligning the memory 

reads with the thread index, the memory controller on the graphics card will coalesce the 

memory reads from the consecutively indexed threads into a single large memory read 

[19].  If global memory accesses do not follow this pattern, all the data retrieved from a 

single coalesced read would be split into individual reads.  Because there is a large 

latency penalty to access the global memory in CUDA, coalescing memory reads is 

essential to maximizing performance.  

After the data is read in, each thread performs the subtraction and multiplication 

of the three subpixel values for one pixel.  The resulting values are added together and 

stored into high speed, low latency shared memory.  Shared memory is a small on-chip 

memory that is accessible to every thread within a thread block to facilitate the fast 

sharing of data between threads.  To sum all the individual mean squared errors, each 

thread must add their result to a single location.  It is not possible to have each thread 
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attempt to add their value to a single memory location simultaneously.  Since each thread 

will read the current value from memory at the same time, each thread will add its value 

to the current value instead of each thread adding to the result of the previous thread's 

additions, resulting in a write after write hazard.   

To accomplish this summation efficiently, half of the threads in a thread block 

will add the value the other half of the threads to their own.  From there, the threads from 

the first subgroup continue to split into subgroups and sum the values till all the values 

are accumulated with the first thread result.  The first thread then writes the value back to 

global memory where the next set of CUDA kernels performs the same reduction on the 

intermediate results.  The final kernel combines the last of the intermediate values into a 

single value that is copied back to the main program and used to finish the PSNR 

calculation.  The entire CUDA kernel is located in Appendix A. 

 

3.5 Computation Time 

To compare the raw computation times, the error calculation was isolated and written into 

separate programs.  The calculation was split to the two major computations, the highly 

parallel subtraction and squaring and the highly serial cumulative summation. Each of 

these parts and the whole MSE calculation were timed to compare the computation times 

without the data transfer and other parts of the program.
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CHAPTER IV 
 
 

METHODOLOGY 

 

Due to the lack of simulation software that can simulate modern graphics hardware, all 

tests were run on a physical machine.  The test consisted of executing the programs 

described in Chapter 3 and analyzing the resource usage on the machine. 

 

4.1 Testing Environment 

All tests took place on a Nehalem-based Intel Core i7 920 processor running @ 2.66 

GHz.  The rest of the system specifications can be found in Table 1.  The graphics card 

used in the experiments is the nVidia GeForce 9800 GTX+.  This card features 128 

stream processors running at 1.836 GHz and 512 MB of GDDR3 memory operating at 

1.1 GHz. 

All the programs were tested on Windows XP with service pack 3 using nVidia’s 

closed source driver version 196.21.  All of the OpenGL programs were tested using 

Ubuntu Linux 9.04 using nVidia's closed source driver version 190.42.  The Windows  

 

Table 4.1 – System Specifications.   
L1 Instruction Cache 32 KB per core, 4-way associative, 64 B lines 
L1 Data Cache 32 KB per core, 8-way associative, 64 B lines 
L2 Cache  256 KB per core, 8-way associative, 64 B lines 
L3 Cache 8 MB shared, 8-way associative, 64 B lines 
System Memory 3 GB DDR3 @ 1066 MHz 
Chipset Intel X58 
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version of the programs were compiled using Visual Studio 2005 using the August 2008 

version of the DirectX SDK and the OpenGL Utility Toolkit version 3.7.6.  The CUDA 

implementations also utilized version 1.5.1 of the OpenGL Extension Wrangler to 

provide access to advanced OpenGL structures and functions.  The CUDA 

implementation was compiled using version 2.3 of the CUDA toolkit. 

For the model based video encoder, the encoder first played back a prerecorded 

set of facial animations called wow, a commonly used set in MPEG-4 facial animation 

research [20-22], and saved the first 300 generated images as 352x288 CIF resolution 

bitmap files.  These images acted as the source video sequence that the encoder will try to 

match the same 3D scene.  These images were stored and accessed from a RAM disk to 

simulate access from a video device and remove the performance penalty of hard drive 

access.  Since the accuracy of the encoding process is not the subject of this investigation, 

the FAPs generated from the encoding process were not stored after each set of 

optimizations. 

 

4.2 Functional Timers 

Utilizing the high precision timer in the operating system, functional timers were added 

to the applications testing the execution time of different implementations of the MSE 

code.  The time taken to execute each function was accumulated for the entire run to even 

out the microsecond resolution of the timer functions across the entire encoding process.  

In addition, the Linux application time and the Windows XP application timeit timed the 

execution of each application. 
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4.3 Performance Counters 

To analyze how the system is being utilized, Intel VTune and OProfile collected 

system data from CPU performance counters built into the processor.  These counters are 

monitored in the background while a target application or environment is running and 

monitor specific events chosen by the user.  Events can include execution time, cache 

accesses and misses, pipeline stalls, memory accesses, instruction types executed, and 

off-chip bus accesses.  The number of counters on a Core i7 processor is limited to 4, so 

multiple runs are necessary to collect every type of data available. 

VTune [23] monitored execution time of each the Windows programs to monitor 

where the most time is spent within the program.  Since the video encoder is memory 

intensive, VTune also monitored cache access and hit rates and pipeline stalls for each 

section.  VTune configuration for each session is provided in Table 2 with group numbers 

denoting the events that were run together. 

 
Table 4.2 – Performance Counter Events 

Group Event Name Events per count 
1 CPU _CLK_UNHALTED.P_THREAD 10000000 
1 RAT_STALLS.ANY 10000000 
2 MEM_LOAD_RETIRED.LLC_UNSHARED_HIT 100000 
2 MEM_LOAD_RETIRED.OTHER_CORE_L2_HIT_HITM 100000 
2 MEM_LOAD_RETIRED.LLC_MISS 100000 
3 L2_RQSTS.LD_HIT 1000000 
3 L2_RQSTS.LOADS 1000000 
3 MEM_LOAD_RETIRED.L1HIT 10000000 
3 L1D_CACHE_LD.ANY 10000000 
4 RESOURCE_STALLS.ANY 1000000 
4 RESOURCE_STALLS.RS 1000000 
4 RESOURCE_STALLS.ROB 1000000 
4 RESOURCE_STALLS.STORE 1000000 
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OProfile [24] collected system data for the Linux applications.  OProfile is an 

open-source system profiler for Linux that monitors the performance counters on modern 

Intel and AMD processors. 

 

4.4 Instruction Type Profiling 

For additional analysis of the difference between programs, the Pin instrumentation 

program [25] provided a breakdown of instruction types, memory transactions, and bytes 

of memory transferred in each program.  Pin dynamically inserts C/C++ code inside 

running programs to gather statistics about the target program while it program executes.  

One of the sample instrumentations, insmix, provided counts each type of instruction, 

memory accesses by data size, atomic memory accesses, and stack accesses throughout 

the entire program and by function.  Pin’s analysis of the program execution was used to 

compare the characteristics of the programs and their memory access patterns. 
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CHAPTER V 
 
 

FINDINGS 

 

This chapter will discuss the data found through the experiments outlined in the previous 

chapter.  The chapter is divided into four sections.  The first three sections will discuss 

the system performance of the encoder in three different environments.  The fourth 

section will analyze the raw computational performance of each processor on the error 

calculation. 

 

5.1 Direct3D in Windows 
 
Starting with the Direct3D implementations of the original code, there was a drastic 

reduction in the total execution time, which is shown in Table 5.1.  The CPU version of 

the code required Direct3D to copy the rendered image to system memory so that main 

program could calculate the mean square error between the reference image and the 

rendered image.  The Direct3D version of the program showed a large decrease in the 

total execution time, showing that the GPU based error calculation and the reduction of 

the amount of data transferred back to system memory.  While the reduction in time is  

 

Table 5.1 - Total Execution Time (Windows OpenGL) 
 CPU Direct3D 
Total Time (seconds) 463.687 83.562 
Frames per second 0.647 3.59 
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Figure 5.1 – Windows Direct3D Time by Libraries.  While the Direct3D code increased slightly from 
the additional code required to perform the error calculation, the number of cycles used in main program 
and other support libraries reduced considerably. 

 

substantial, it still did not come close to the desired real time performance goal of 30 

frames per second.  

Since the speedup was not sufficient, an investigation into the new bottleneck was 

needed.  Looking into where the most time was consumed, based on the unhalted cycle 

count during the execution, Figure 5.1 shows a clear reduction in the number of cycles 

within the main program. The only increase in the execution time in any library with the 

GPU version is the Direct3D library, which is expected since additional function calls 

were required to perform the calculation on the GPU.  However, 83.6% of the time is 

spent inside the display driver, which remained relatively unchanged.  

Moving on to the cache statistics, the drop in the execution time reduced the 

number of accesses to the cache, as expected.  The normalized number of cache access 

can be found in Figure 5.2.  The number of accesses in the main program dropped, 

signifying that the error calculation was memory intensive and that the movement of that  
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Figure 5.2 - Windows Direct3D Cache Statistics.  The bars on the left correspond to the total number of access for 
each level of the cache. The bars on the right correspond to the hit rate.  With the reduction in the total execution time, 
the number of L1 and L2 cache data access reduced accordingly.  The L3 cache remained relatively the same, 
suggesting that the error computation did not access the L3 cache. 

 

code reduced the burden of the main processor.  However, the number of L3 cache access 

remained relatively the same.  It turns out that the display drivers are again the culprit 

with the majority of the L3 cache accesses.  In fact, the display driver’s cache activity 

remains roughly the same between the two versions of the code.   

Finally, focusing on the location of the stalls in the CPU pipeline should illustrate 

what types of operations were slowing the overall execution.  In Figure 5.3, the two 

major sources of stalls were caused from a filled reservation station or an unavailable 

store unit.  Given the highly parallel nature of the MSE code, the reservation station stalls 

were likely caused by the out-of-order execution engine’s attempt to parallelize the code 

within its own superscalar architecture.  The reduction of these stalls lends further 

evidence to correlation of reservation stalls to the degree of parallelization of the code.  

The dramatic reduction in the store stalls gives correlation to the amount of data 

transferred between the main processor and the graphics processor.  Since the processor  
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Figure 5.3 - Windows Direct3D Normalized Stalls.  Moving the error calculation into Direct3D dramatically reduced 
the number of processor stalls, especially with the two largest sources of stalls.   
 

was only transferring the 4 byte result from the error calculation instead of the 304 

kilobytes in the synthesized image to perform the calculation on the main CPU. 

 

5.2 OpenGL in Windows 
 
Swapping out Direct3D for OpenGL and the shader computations for CUDA, there is a 

startling reduction in the total runtime for the CPU version of the code.  More startling is 

the increase in total runtime for CUDA, regardless of how data is moved from OpenGL 

to CUDA. 

Focusing on where the time is spent inside the program, Figure 5.4 breaks down 

the execution time in each of the major libraries.  As expected, the main program’s 

execution time reduced when the error calculation moved from the CPU to CUDA.   

Table 5.2 - Total Execution Time (Windows OpenGL) 

 CPU CUDA CUDA w/ PBO 
Total Time (seconds) 54.312 74.140 98.359 
Frames per Second 5.52 4.05 3.05 
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Figure 5.4 – Windows OpenGL Time by Libraries.  Even though the CUDA versions were supposed to 
reduce the total number of cycles, the overhead of utilizing CUDA moved execution time from the main 
program to the Windows kernel and support libraries. 
 
However, the amount of time spent in the Windows kernel increased when CUDA is 

introduced to the program.  In addition, number of cycles in the graphics driver and 

OpenGL library increased dramatically depending on which library is moving the 

synthesized image from OpenGL to CUDA.  Based on these results, the process of 

moving the calculation to the GPU increases the amount of work required of the main 

processor. 

Looking at the cache statistics, some interesting patterns appear.  In Figure 5.5, 

the total number of cache accesses stays approximately the same with the CUDA 

implementation that did not utilize a PBO to move the image data.  However, more of the 

cache hits moved from the L1 and L2 caches to the L3 cache.  The movement of cache 

access is much more apparent in the second CUDA version.  In addition to the lower L1 

and L2 hit rates and the higher L3 cache hit rate, the total number of access to all levels is 

much higher.  Employing a PBO to utilize CUDA’s OpenGL interoperability as a method  
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Figure 5.5 – Windows OpenGL Cache Statistics.  While the total number of access between the CPU and 
CUDA without PBO remained the same, both CUDA versions saw lower hit rates.  In addition, the CUDA 
version with a PBO saw substantially more cache accesses. 
 
of moving the pixel data from OpenGL to CUDA appears to be a more inefficient method 

of moving data. 

Finally, the pipeline stalls shed some additional light on the slowdowns.  As seen 

in Figure 5.6, the number of store unit stalls increased dramatically when CUDA was 

utilized.  However, the total number of stalls was lower with the CUDA program that did 

not use a PBO than the CPU version. With the exception of the store stalls, this version of 

the encoder appears to be more efficient with the processor.  The CUDA version with the 

PBO, however, showed over twice as many stalls as either of the other programs.  In 

addition, there were more reorder buffer stalls than the total number of stalls in either 

program.  While the OpenGL interoperability offers an easier means for programmers to 

move data between OpenGL and CUDA, the overhead of utilizing a PBO and the 

interoperability APIs adds to existing overhead of moving the data. 
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Figure 5.6 – Windows OpenGL Normalized Stalls.  Implementing CUDA increased the number of store unit stalls, 
but utilizing the OpenGL interoperability built into CUDA more than doubled the total number of stalls. 

 
Based on the all this data, the OpenGL interoperability in CUDA adds substantial 

overhead to the data copy between the two application interfaces.  Compared with the 

CUDA version without using a PBO, the only difference in the implementation is the 

method of the data copy.  However, the requirement to copy the data from graphics 

memory to system memory and back to use CUDA negates one of the primary reasons 

for using CUDA in the first place: reduce the amount of data copied between system 

memory and graphics memory. 

 

5.3 OpenGL in Linux 

Switching to the Linux versions of the OpenGL code, there is a similar increase in total 

runtime, shown in Table 5.3, between the CPU and CUDA versions of the code that was  

 

Table 5.3 – Total Execution Time (Ubuntu OpenGL) 

 CPU CUDA CUDA w/ PBO 
Total Time (seconds) 56.367 71.929 81.787 
Frames per second 5.32 4.17 3.67 
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seen in the Windows versions of the same programs.  In addition, the CUDA version that 

utilized the OpenGL interoperability was about 10 seconds slower than the version that 

explicitly forced the pixel data to detour through system memory before jumping back to 

the graphics card for CUDA. 

The number of cycles from the main program drop drastically and the OpenGL 

and CUDA libraries use more cycles in both of the CUDA programs, as seen in Figure 

5.7.  This is similar to the results from the Windows version of these programs.  

However, the total number of unhalted cycles stays fairly consistent between each of the 

programs.  If every version of the encoder uses about the same number of cycles, there 

has to be a significant number of stalls to account for the additional amount of execution 

time. 

Looking at the cache statics shown in Figure 5.8, every cache level saw a lower 

hit rate, especially L1 data cache.  As a result, cache accesses are moving to the slower, 

lower levels of the cache.  Moreover, the additional number of accesses to the higher 

 

Figure 5.7 – Ubuntu OpenGL Time by Libraries.  While every version of the code displayed 
approximately the same number of unhalted cycles, a large portion of the cycles moved from the main 
program to the OpenGL and CUDA libraries. 
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Figure 5.8 – Ubuntu OpenGL Cache Statistics.  Cache access numbers are normalized to the number of 
accesses in the CPU version.  With the lower number of accesses and hits in the lower level caches, 
accesses in the CUDA versions are moving to the higher level caches.  This move in the location of the 
memory reads could account for some of the lost performance. 
 
level caches, especially the level 3 cache, suggests that the backend libraries are caching 

the large amount of data (352x288 pixels at 4 bytes per pixel to allow memory access 

coalescing in CUDA) as it moves from the system memory to the graphics memory.  If 

the programs are caching the images in the process of copying them, the rest of the 

program data is probably getting clobbered as well in the lower level caches, resulting in 

the lower hit rates in all the caches.  Since the entire image is copied to system memory 

before moving to CUDA, marking the data as uncacheable would only add to the latency 

since the image would have to come from main memory instead of the cache when then 

program copies the data to CUDA. 

Focusing on the processor stalls shown in Figure 5.9, the main source of stalls in 

the CPU version of the program come from a full reservation station during the error 

calculation.  This mirrors the results seen in the two Windows programs as the processor 

is probably trying to parallelize the error calculation.  Looking at the CUDA versions, the  
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Figure 5.9 - Ubuntu OpenGL Normalized Stalls.  Moving the error calculation increased the number of 
processor stalls significantly.  While there were additional stalls at the reservation station, the number of 
stalls due the store unit increased by an order of magnitude.  
 
number of stalls increase 2x-4x over the CPU version with additional stalls coming from 

the kernel, OpenGL, and CUDA libraries.  While the CUDA version without the PBO 

only saw a slight increase in reservation station stalls, the store unit stalls increased 22x, 

signifying that CUDA’s data copying is causing the additional execution time.  The 

CUDA version with PBO saw a 3x increase in reservation station stalls and a 40x 

increase in store unit stalls.  The apparent inefficiency with data handling can explain 

why the OpenGL interoperability built into CUDA is slower. 

When the CUDA programs were tested with different image sizes, the number of 

store unit stalls increased with the new number of pixels.  As seen in Figure 5.10, both 

CUDA programs saw a proportional increase in the store unit stalls with the increase in 

the amount of data required to encode the 300 frames. Based on the relationship of the 

increases, the CudaMemcpy functions are using the CPU to move the data to the graphics 

card.  In addition, the code utilized the asynchronous variant of the function, 

CudaMemcpyAsync, to reduce the overhead of the copy.  Looking at the libraries used in 
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Figure 5.10 – Additional Store Stalls vs. Resolution.  All the numbers are normalized to the smallest 
resolution.  While the number of stalls in either program did not scale at the same rate as the data size, the 
scaling still follows the linear trend with the data size 
 
the program, the multithreading library pthreads was used, despite the fact that the 

program never explicitly included or invoked that library.  Based on these observations, 

CUDA is probably creating additional threads in the background to service the 

asynchronous memory copy. 

There could be two sources of the store unit stalls present in both CUDA 

programs.  The most likely source is the image data passing through the CPU and main 

memory as it is copied from OpenGL managed memory to CUDA managed memory.  

The other source of the stalls could be the CUDA kernels themselves, as these GPU 

instructions must be copied to the graphics card from main memory.  Since processing a 

larger image would require more instances of the kernel to execute, the additional store  
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Table 5.4 – Store Unit Stalls in CUDA Programs (10,000 runs) 
 Execute Kernel Transfer & Execute Kernel 

Store Unit Stalls 18,000,000 1,334,000,000 

 

unit stalls could have originated from the transfer of the CUDA kernel.  To test this, two 

simple CUDA programs were written to test the effect of the data transfer on the number 

of store unit stalls.  The first program only executed the kernel while the second program 

copied the equivalent amount of data as one of the rendered images before executing the 

kernel.  After each procedure was completed 10,000 times, the store unit stalls were 

collected.  The stalls are shown in Table 5.4.  Clearly, the source of the majority of these 

stalls originates in the data transfer. 

Finally, while no documentation could be found to confirm that normal use of 

OpenGL’s glReadPixels used DMA, reading the pixel information into a PBO is will use 

DMA if it is available. [16]  To confirm whether or not the CPU based OpenGL encoder 

is using DMA to transfer the image data back to the system memory, an additional 

encoder was written that used a PBO, and subsequently DMA, to copy the data back to 

system memory.  When the PBO is mapped into addressable memory, it will behave like 

the character array used in the original program, allowing the error calculation code to 

remain unchanged.  If the CPU program that does not use the PBO behaves similarly to 

the one that does, it will be assumed that the process of reading pixel data back using 

glReadPixels will use DMA, regardless of the target. 

Looking at the measurements taken from the time command, OProfile, and Pin in 

Figure 5.11, there is less than 1 percent difference in every metric between the two CPU 

based programs.  In addition, the program that used a PBO consistently came out higher 
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Figure 5.11 – Normalized Comparison of Program Characteristics.  There is very little difference 
between these two programs despite using different means of transferring the pixel data to system memory.  
Based on this, the program that used a PBO, and subsequently DMA transfers, and the program that did not 
use a PBO behaved almost identically. 
 
on almost every measurement, which either statistical noise or the small amount of 

additional code required to implement and use a PBO could account for.  If the program 

that did not use a PBO used the CPU to transfer the pixel data, there should have been 

substantially more memory transactions within that program.  Therefore, it is assumed 

that glReadPixels uses DMA to transfer the pixel data to system memory.  

 
5.4 Computation Time 
 
As expected, the highly parallel subtraction and squaring computation saw a dramatic 

speedup.  Since all the calculations are completely independent of each other, the code 

parallelized well.  Interestingly, there was only a 5% increase in cumulative sum time.  

The parallelized reduction sum algorithm used allowed the slower shader cores on the 

GPU to compete with the faster Core i7 processor.  In the end, the CUDA version was 

able to perform the MSE algorithm 70% faster. 
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Table 5.5 – Time to Complete 100 Error Calculations 

 CPU (µs) CUDA (µs) Speedup 
Subtract & Square  24529 1760 1290% 
Cumulative Summation 11201 11777 -4.89% 
Complete MSE 24641 14489 70.1% 
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CHAPTER VI 
 
 

CONCLUSION 

 

This chapter provides some discussion on the finding from this thesis and provides future 

means of implementing code on a graphics card. 

 
6.1 Value of Coprocessors 

 
This project has continuously focused on the second half of Amdahl’s law: optimize the 

bottleneck.  With the need for 3D rendering, an existing 3D rendering API and a modern 

graphics card made sense.  A software rendering engine would have been the bottleneck 

of the encoder.  With the original Windows program using Direct3D, the bottleneck was 

the error calculation.  Utilizing the computational power of the of the graphics card, the 

encoder finished in under 1/5 of the original time.  While the use of the graphics shaders 

was not ideal, it did provide a means for performing the error calculation on a more 

appropriate processor.  In addition, the CUDA version of the algorithm could perform the 

mean squared error computation faster than the CPU due to its highly parallelized code.  

If any part of a serialized code can be parallelized to any degree, total computation time 

can be reduced.   

However, as long as the data transfer time consumes any time gained from the 

coprocessor’s computation, adding a coprocessor to a solution will not produce any 

tangible benefits.  Due the large data size and the simple calculation, this project did not 
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see the 70% speedup of the error computation due to the time required to move the image 

into CUDA’s memory space. 

 

6.2 Discovery of Naive Data Handling within CUDA 

The biggest surprise of this study was the OpenGL version and its use of a DMA transfer 

for the pixel data.  Since both the Direct3D versions and the CUDA versions 

implemented some form of a memcpy instruction in their code to copy date to or from the 

graphics card, it would appear that utilizing the standard C memcpy command created the 

large number of store stalls seen in the processor.  This observation is supported by the 

fact that the number of store unit stalls scaled with the size of the image being copied.  

Based on these findings, it is extremely inefficient to tie up a single thread to copy data 

when DMA seems to provide a more efficient means of moving data.  The fact that the 

OpenGL version that computes the error on the CPU was the fastest version of the code 

was astounding considering the speed of the comparably coded Direct3D version. 

In addition, the lack of transparency with objects created in either OpenGL or 

CUDA created an inefficient means of moving data between the two libraries that utilize 

graphics memory.  Requiring the OpenGL image to detour through system memory when 

it is copied to CUDA controlled memory is very inefficient when both the source and 

destination points reside in memory on the graphics card.  In addition, the OpenGL 

interoperability functions in CUDA proved to be less efficient than explicitly handling 

the data copy.  nVidia needs to drastically improve this aspect of CUDA for any type of 

graphics library interoperability to be viable. 
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6.3 Future Work 

The data from the performance counters point to the 3D mesh alterations as the next 

slowest function within the encoder.  With the apparent parallelism in changing the 

location of over 3000 individual vertices, this section would be the next target to move to 

the GPU.  Since CUDA supports the creation of OpenGL vertex information, CUDA 

could provide an additional speedup to the encoding process if the problems discovered 

earlier do not overshadow the potential improvements. 

In addition, several other general purpose GPU based API have been introduced 

to make GPU more accessible.  During the testing process, nVidia released version 3.0 of 

their CUDA toolbox [26], allowing CUDA to directly access objects created within 

OpenGL and Direct3D.  Many of these changes were mirrored from the Khronos Group’s 

Open Computing Language (OpenCL) [27] which allows programmers to create code 

that will run on any supported processors, including CPUs and GPUs.  nVidia has already 

released drivers and libraries to allow OpenCL code to run on their CUDA enabled video 

cards.  Microsoft also added the ability to execute arbitrary code inside of their DirectX 

11 framework, calling their API DirectCompute [28].  However, this framework requires 

Window 7 since DirectX 11 is only available for that version of Windows. 
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APPENDIX A 
 

 

MSE code – CPU based C++  

for(int i = 0; i < NUM_SUBPIXELS; i++)  
{ 
  temp  = src_face[i] - dst_face[i]; 
  MSE  += temp*temp; 
} 

 

MSE code – Direct3D HLSL Pixel Shader 

// Pixel shader input structure 
struct PS_INPUT 
{ 
    float4 Position   : POSITION; 
    float2 Texture    : TEXCOORD0; 
}; 
 
 
// Pixel shader output structure 
struct PS_OUTPUT 
{ 
    float4 Color   : COLOR0; 
}; 
 
 
// Global variables 
sampler2D Tex0; 
sampler2D Tex1; 
 
 
// Name: MSE Pixel Shader 
// Type: Pixel shader 
// Desc: Calculates the mean square error between two pixel from the 
//       two texture samplers and returns the error as the color for  
//       that pixel.   
//       R = MSE result; 
//       G,B = 0;  
//       Alpha = 1; 
// 
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PS_OUTPUT ps_main( in PS_INPUT In ) 
{ 
    PS_OUTPUT Out; 
    Out.Color =  tex2D(Tex0, In.Texture); 
    Out.Color -= tex2D(Tex1, In.Texture); 
    Out.Color *= Out.Color; 
     
    Out.Color.a = 1; 
    Out.Color.r = Out.Color.r + Out.Color.g + Out.Color.b; 
    Out.Color.gb = 0; 
 
    return Out; 
} 

 
 
MSE code - CUDA 

/******************************************************************** 
*  MSE.cu 
*********************************************************************/ 
 
#define BLOCK_SIZE_1 96 
#define BLOCK_SIZE_2 48 
#define MAX_BLOCK_SIZE 512 
 
union pixel 
{ 
  unsigned int iVal; 
  unsigned char cVal[4]; 
}; 
 
 
__global__ static void ComputeMSE1(unsigned int* reference,  
                                   unsigned int* guess,  
                                   unsigned int num_pixels,  
                                   unsigned int* result) 
{ 
  int temp; 
  unsigned int x = __mul24(blockIdx.x,blockDim.x) + threadIdx.x; 
  unsigned int resultSum = 0; 
  pixel ref_pixel, guess_pixel; 
 
  __shared__ unsigned int sharedResult[MAX_BLOCK_SIZE]; 
 
  if (x < num_pixels) 
  { 
    ref_pixel.iVal   = reference[x]; 
    guess_pixel.iVal = guess[x]; 
 
    temp = ref_pixel.cVal[0] - guess_pixel.cVal[0]; // Blue 
    resultSum  = __mul24(temp,temp); 
 
    temp = ref_pixel.cVal[1] - guess_pixel.cVal[1]; // Green 
    resultSum += __mul24(temp,temp); 
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    temp = ref_pixel.cVal[2] - guess_pixel.cVal[2]; // Red 
    resultSum += __mul24(temp,temp); 
  } 
 
  sharedResult[threadIdx.x] = resultSum; 
 
  __syncthreads(); 
 
  unsigned int a = blockDim.x; 
 
  while (a & 0x00000001 == 0)  // While even (divisible by 2) 
  { 
    a >>= 1; 
 
    if (threadIdx.x < a)  // Parallelized Summation 
      sharedResult[threadIdx.x] += sharedResult[threadIdx.x + a]; 
 
    __syncthreads(); 
  } 
 
  if (threadIdx.x == 0)  // Perform serial summation for the rest 
  { 
    resultSum = 0; 
 
    for (unsigned int i = 0; i < a; i++) 
      resultSum += sharedResult[i]; 
 
    result[blockIdx.x] = resultSum; 
  } 
} 
 
__global__ static void ComputeMSE2(unsigned int* result, 
                                   unsigned int numberOfsharedResults) 
{ 
  unsigned int x = __mul24(blockIdx.x,blockDim.x) + threadIdx.x; 
  __shared__ unsigned int sharedResult[MAX_BLOCK_SIZE]; 
 
  if (x < numberOfsharedResults) 
    sharedResult[threadIdx.x] = result[x]; 
  else 
    sharedResult[threadIdx.x] = 0; 
 
  __syncthreads(); 
 
  unsigned int a = blockDim.x; 
 
  while (a & 0x00000001 == 0) // While even (divisible by 2) 
  { 
    a >>= 1; 
 
    if (threadIdx.x < a) // Parallelized Summation 
      sharedResult[threadIdx.x] += sharedResult[threadIdx.x + a]; 
 
    __syncthreads(); 
  } 
 
  if (threadIdx.x == 0) // Perform serial summation for the rest 
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  { 
    unsigned int resultSum = 0; 
 
    for (unsigned int i = 0; i < a; i++) 
      resultSum += sharedResult[i]; 
 
    result[blockIdx.x] = resultSum; 
  } 
} 
 
__global__ static void ComputeMSE3(unsigned int* result, 
                                   unsigned int* final) 
{ 
  __shared__ unsigned int sharedResult[MAX_BLOCK_SIZE]; 
 
  sharedResult[threadIdx.x] = result[threadIdx.x]; 
 
  __syncthreads(); 
 
  unsigned int a = blockDim.x; 
 
  while (a & 0x00000001 == 0) // While even (divisible by 2) 
  { 
    a >>= 1; 
    if (threadIdx.x < a) // Parallelized Summation 
      sharedResult[threadIdx.x] += sharedResult[threadIdx.x + a]; 
 
    __syncthreads(); 
  } 
 
  if (threadIdx.x == 0) // Perform serial summation for the rest 
  { 
    unsigned int resultSum = 0; 
 
    for (unsigned int i = 0; i < a; i++) 
      resultSum += sharedResult[i]; 
 
    *final = resultSum; 
  } 
} 
 
extern "C" void launch_kernel(unsigned int* reference, 
                              unsigned int* guess,  
                              unsigned int num_pixels,  
                              unsigned int* result,  
                              unsigned int* final,  
                              int blockSize1,  
                              int blockSize2) 
{ 
    // execute the kernel 
    int threadsPerBlock = blockSize1;  
    int blocksPerGrid = (num_pixels + threadsPerBlock - 1) /   
                         threadsPerBlock; 
 
    ComputeMSE1<<< blocksPerGrid, threadsPerBlock >>>(reference, 
                                                      guess,  
                                                      num_pixels,  
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                                                      result); 
 
    while (blocksPerGrid > MAX_BLOCK_SIZE) 
    { 
      unsigned int numberOfsharedResults = blocksPerGrid; 
      threadsPerBlock = blockSize2; 
      blocksPerGrid = (blocksPerGrid + threadsPerBlock - 1) /  
                       threadsPerBlock; 
      ComputeMSE2<<< blocksPerGrid, threadsPerBlock >>>(result,  
                                                numberOfsharedResults); 
    } 
 
    ComputeMSE3<<< 1, blocksPerGrid >>>(result, final); 
}
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