
GPGPU PROGRAMMING AND THE PITFALLS OF

 NAIVE DATA HANDLING

 By

 BRIAN PATRICK GORDON

 Bachelor of Science in Electrical Engineering

 Oklahoma State University

 Stillwater, OK

 2010

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 May, 2010

 ii

 GPGPU PROGRAMMING AND THE PITFALLS OF

 NAIVE DATA HANDLING

 Thesis Approved:

 Dr. Sohum Sohoni

 Thesis Adviser

Dr. Louis Johnson

 Dr. Damon Chandler

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I’d like to thank both Dr. Sohum Sohoni and Dr. Damon Chandler for the opportunity to

work on the project that became this research topic. Dr. Chandler started the MBVR

project within his research lab and handed over the development of the project to me

when he and Dr. Sohoni became co-P.I.s on the project. Dr Sohoni provided me with all

the equipment and support I could ever need to work on this project.

 I’d also like to thank both Dr. Sohoni and Dr. Chandler as well as Dr. Louis

Johnson for agreeing to be on my committee and taking the time to accommodate me.

 I’d like to thank my fellow researchers in the CAESAR lab for being an ever

present source of knowledge whenever I needed guidance. I’d especially like to thank

Bradley Pesicka and Jeremy Smith who worked with me directly on the MBVR project.

 Finally, I’d like to thank my parents who always provided encouragement and

supported my desire to learn.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Motivation ..2
 1.2 GPU application interfaces ..3
 1.3 Contributions..3
 1.4 Thesis Outline ..4

II. REVIEW OF LITERATURE..6

 2.1 Model Based Video Representation...6
 2.2 GPU Architecture...7
 2.3 Programmable Rendering Engine ..9
 2.4 CUDA ..10

III. IMPLEMENTATION ..13

 3.1 Initial MBVR Implementation ...13
 3.2 Graphic Shaders in Direct3D ...14
 3.3 OpenGL Port ..17
 3.4 CUDA ..18
 3.4 Computation Time ...20

IV. METHODOLOGY ..21

 4.1 Testing Environment ..21
 4.2 Functional Timers ..22
 4.3 Performance Counters ..23
 4.4 Instruction Type Profiling ..24

 v

Chapter Page

IV. FINDINGS ...25

 5.1 Direct3D in Windows ..25
 5.2 OpenGL in Windows ...28
 5.3 OpenGL in Linux ...31
 5.4 Computation Time ...37

V. CONCLUSION ..39

 6.1 Value of Coprocessors ...39
 6.2 Discovery of Naive Data Handling within CUDA ..40
 6.3 Future Work ...41

REFERENCES ..42

APPENDIX A ..44

 vi

LIST OF TABLES

Table Page

 4.1 System Specifications ...21
 4.2 Performance Counter Events ..23
 5.1 Execution Time (Windows Direct3D) ..25
 5.2 Execution Time (Windows OpenGL) ...28
 5.3 Execution Time (Ubuntu OpenGL) ..31
 5.4 Store Unit Stalls in CUDA Programs (10,000 runs) ...36
 5.5 Time to Complete 100 Error Calculations ..38

 vii

LIST OF FIGURES

Figure Page

 2.1 Model Based Video Encoding Block Diagram ...7
 2.2 3D Rendering Pipeline ..9
 3.1 Shader Method Scene Setup ...16
 5.1 Windows Direct3D Time by Libraries ...26
 5.2 Windows Direct3D Cache Statistics ...27
 5.3 Windows Direct3D Normalized Stalls..28
 5.4 Windows OpenGL Time by Libraries ..29
 5.5 Windows OpenGL Cache Statistics ..30
 5.6 Windows OpenGL Normalized Stalls ..31
 5.7 Ubuntu OpenGL Time by Libraries ..32
 5.8 Ubuntu OpenGL Cache Statistics ...33
 5.9 Ubuntu OpenGL Normalized Stalls ..34
 5.10 Additional Store Stalls vs. Resolution ..35
 5.11 Normalized Comparison of Program Characteristics37

 1

CHAPTER I

INTRODUCTION

While microprocessors are generally designed to handle any type of computation in

software, increasingly complex algorithms and workloads can strain the processors

limited resources, requiring a significant amount of time to complete the calculations. To

compensate, co-processors are designed to offload these demanding computations and

perform them with specialized hardware. Floating point co-processors like the Intel 8087

[1], secure socket layer accelerators like IBM’s PCI Cryptographic Accelerator [2], and

physics accelerators like the Ageia PhysX P1 physics processor are all examples of

specialized hardware designed to offload the increasing burden of demanding workloads.

The most notable example of the co-processor found in most consumer computers

is the dedicated graphics processor which excels in handing massively parallel work like

3D rendering. The combination of multi-threaded programming and the massive

computational power of modern graphics processors can allow programs with high

computational requirements to finish in less time. This is especially advantageous for

real-time video applications that repeat those computations not only for every frame of

the video, but also many times within the same frame. While processing on just the main

processor is too slow to meet the real-time requirements of the application, moving the

 2

slowest and easiest to parallelize code to the graphics processor can reduce the processing

time to a more acceptable length.

1.1 Motivation

With the high data requirements for modern video transmission, users with limited

bandwidth would not be able to receive the data stream fast enough to play the video in

real-time. The alternative is to reduce the video quality drastically to reduce the data rate,

often resulting in unacceptable video quality. One alternative the author is currently

exploring is to animate a 3D model of the object in the video, a human head in particular,

to recreate the video sequence. The only data required to recreate the animation is how

the model changes to match the source images captured by the camera. This approach is

especially advantageous for video conferencing applications with either limited

bandwidth or multiple simultaneous connections.

However, the process of fitting the model to an image uses analysis-by-synthesis,

a computationally intensive process. One type of deformation changes the model’s face

and the resulting rendered image is compared against the source image to see if the visual

accuracy has improved. Previous incarnations of this process would require several

seconds to encode one frame of the video sequence. This is simply too long for real-time

encoding and transmission. By moving problematic code to the graphics processor, it is

possible to get a significant speedup to the encoding process and achieve the goal of real-

time encoding.

 3

1.2 GPU application interfaces.

There are two well-documented and well adopted methods of performing computations

on a modern graphics processor. Both of these are advantageous to this project since it

already incorporates an application interface in the form of a 3D rendering API and each

can easily operate with the output of the 3D renderer.

1. Graphics Shaders. Previously fixed stages of the 3D rendering pipeline have

become programmable, allowing programmers to write their own code to create

new visual effects. The pixel shader in particular is useful for computations

because any program attached to it will run against all the pixels on the final

image. When the output image is set to the dimension of the output data, each

program executed by the pixel shader calculates the final value for one element of

the output matrix

2. CUDA. nVidia’s Compute Unified Device Architecture allows programmers to

write their own code that will run natively on their graphics cards that support

their unified shader architecture. CUDA programs are written in a C style

language, compiled using nVidia's own compiler, and then linked into a standard

C or C++ program. Unlike the graphic shaders, the programmer can specify the

number of threads to allocate to a kernel. CUDA also includes optimized versions

of basic math functions for their hardware.

1.3 Contributions

This thesis provides contributions to the field of computer architecture and computer

science by exploring the benefits and pitfalls of rewriting a kernel of code for execution

 4

on a highly parallel coprocessor. For the field of computer architecture, this paper

examines the hardware utilization of each approach. This includes the efficiency of

resource utilization and how the data bottleneck moves with each implementation of the

encoder. These finding will help computer architects to design more efficient

architectures that utilize large amounts of data and to design more efficient buses for

transferring data between processors. This will also help graphic card drivers to make

more efficient decisions with data handling.

For the field of computer science, this thesis explores the costs and benefits of

utilizing graphics processors to improve the performance of time-constrained programs.

By showing how a code segment behaves in each implementation, computer scientists

can evaluate how their code will behave with each implementation.

1.4 Thesis Outline

The rest of the thesis is laid out as follows. Chapter 2 will discuss previous work with

regard to utilizing both graphic shaders as well as native code generation for graphics

cards. This chapter will also cover a brief history of the development of graphics cards

and model based video representation.

Chapter 3 will discuss the full implementation of the model based video encoder

as well as modifications to the base program to utilize the two methods of executing code

on a graphics card. This chapter will also provide a description of the methods used

within each implementation to perform each part of the calculations.

 5

Chapter 4 will cover the testing methodology used to analyze each

implementation. This will include the hardware used, program configuration, and data

gathering methods along with justification for the choices made in this section.

Chapter 5 will present the data collected from the experiments and provide

analysis of the results. Analysis will include a look at the results from each

implementation including a comparison between each method.

Chapter 6 will discuss the conclusions and future work for the GPU based code as

well as the model based video encoder.

 6

CHAPTER II

REVIEW OF LITERATURE

This chapter covers background information about graphics processor architecture and

efforts to utilize them for high performance computing.

2.1 Model Based Video Representation

Unlike traditional video representations, model based video representation recreates a

video sequence by separately regenerating the video's content using models. This type of

video compression was explored by Eisert et. al. [3] as an alternative to image based

compression found in traditional video compression. The video encoder analyzes the

input video and calculates specific scene parameters that will animate the same models in

the decoder to recreate each of the input frames. This method is more space and

bandwidth efficient than traditional video encoding for simple subjects like talking heads

due to the much smaller amount of data required to recreate the video.

The encoder guesses the scene parameters using analysis-by-synthesis, recreating

the head in 3D using a 3D model of a human head and the person’s face. The same 3D

model used to recreate the person in the video is also used within the encoder to compare

against the camera’s reference image. Following the process in Figure 2.1, the encoder

changes one aspect of the head, renders the changed head, and compares the rendered

 7

Figure 2.1 – Model Based Video Encoding Block Diagram

image to a frame from the camera’s image of the person. If the change makes the model

appear more like the reference image, the encoder will continue until that feature matches

the reference. The process continues until all the features match the reference image for

that frame and the feature modifications, called facial animation parameters, are sent to

the receiving end. The next frame of the video is brought in and the process repeats.

2.2 GPU Architecture

To render a 3D scene and capture the resulting scene on a two dimensional rasterized

image that is displayed on a monitor, a series of calculations on a large data set need to

finish in a reasonable amount of time [4]. First, scene parameters like camera position

and perspective are combined into a series of transformational matrices. These matrices,

when multiplied with a vector containing the location of a vertex, will change the

vertex’s location based on the camera position. This process is repeated for every vertex

 8

used in a scene in the vertex engine of the graphics card. Vectors are then calculated

from connecting vertices, creating the 3D mesh of the object. This information is handed

to the render output processors which calculate the points on the mesh that will be

captured by each pixel in the output image.

Once points are chosen, the color of the surfaces affecting a pixel is calculated in

the fragment engine by sampling the color of that surface. Most times, this point is

located in between sets of vertices, requiring interpolation of the correct color from either

the specific color given to the vertices or from an image chosen to texture that image.

Other simple post processing alterations like lighting and transparency, also called alpha

blending, change the final color of that pixel. Once every pixel color is calculated, the

image is sent to the screen. With modern video games displaying hundreds of thousands

of vertices and generating 2 megapixel images at 60 frames per second, the volume of

computations required would not be possible on general purpose processors. Graphics

processors, then, are designed as accelerators for the heavy computation load of the 3D

rendering pipeline, which is illustrated in Figure 2.2.

Figure 2.2 - 3D Rendering Pipeline
shader to draw polygons in 3D space. The raster output processor captures the base color of the pixels

from the polygons. The pixel/fragment shader performs modifications to the pixel color and the blender
combines all of the pixels that occupy the same location on the 2D image based on Z

2.3 Programmable Rendering Engine

Originally, these processors were fixed in their functions, particularly with the handling

of vertex data and final pixel color

was added, eventually leading to the ability to develop assembly programs for the vertex

and pixel shader engines. Shaders are designed to execute using a single instruction,

multiple data (SIMD) approach

These processors also contain vector pipelines to further parallelize data execution by

allowing a single ALU to process mu

In the 3D rendering pipeline, pixel shaders (or fragment shaders)

processing after the 3D model is captured on a 2 dimensional plane and undergoes

rasterisation to create the individual pixels. Pixel shaders are programs that are executed

9

3D Rendering Pipeline. Vertex information and projection matrices are given to the vertex
shader to draw polygons in 3D space. The raster output processor captures the base color of the pixels

from the polygons. The pixel/fragment shader performs modifications to the pixel color and the blender
the pixels that occupy the same location on the 2D image based on Z

value.

2.3 Programmable Rendering Engine

Originally, these processors were fixed in their functions, particularly with the handling

of vertex data and final pixel color calculation. Over time, more user programmability

was added, eventually leading to the ability to develop assembly programs for the vertex

and pixel shader engines. Shaders are designed to execute using a single instruction,

multiple data (SIMD) approach to parallelize execution among the multiple ALUs.

These processors also contain vector pipelines to further parallelize data execution by

allowing a single ALU to process multiple sets of data at once [5].

In the 3D rendering pipeline, pixel shaders (or fragment shaders)

processing after the 3D model is captured on a 2 dimensional plane and undergoes

rasterisation to create the individual pixels. Pixel shaders are programs that are executed

matrices are given to the vertex
shader to draw polygons in 3D space. The raster output processor captures the base color of the pixels

from the polygons. The pixel/fragment shader performs modifications to the pixel color and the blender
the pixels that occupy the same location on the 2D image based on Z-depth and alpha

Originally, these processors were fixed in their functions, particularly with the handling

calculation. Over time, more user programmability

was added, eventually leading to the ability to develop assembly programs for the vertex

and pixel shader engines. Shaders are designed to execute using a single instruction,

to parallelize execution among the multiple ALUs.

These processors also contain vector pipelines to further parallelize data execution by

 allow for post-

processing after the 3D model is captured on a 2 dimensional plane and undergoes

rasterisation to create the individual pixels. Pixel shaders are programs that are executed

 10

in parallel for every pixel generated to change the final value based on any effects the

programmer wants. These programs can then use their location on the render surface as

well as the color and texture information to determine the final pixel's color. Pixel

shaders are often used to determine the final color value of an object by modifying the

base color with the lighting and material information of the object.

Pixel shaders have been used to accelerate image processing. Purde et al. [6]

utilized pixel shaders to aid the processing of electronic speckle pattern interferometry.

Utilizing an ATI 9700 AIW Pro, they were able to speed up their calculations to enough

to process 11 frames per second. ATI has also released papers [7-8] detailing how to use

DirectX 9 shaders for a range of simple and advanced image processing techniques. All

of these papers do note that shader programs are limited in terms of their size and

complexity, requiring several programs to perform more complex calculations like

Fourier transforms.

2.4 CUDA

Because graphic shaders required learning to program in a new API, graphics card

manufactures set out to create a more direct interface to run programs on their graphics

processors. nVidia's solution was CUDA which utilizes the C/C++ programming

language and their own compiler to create subprograms, called kernels, for their

hardware. Standard CPU based programs invoke the CUDA kernels with two mandatory

parameters: the number of threads that will be executed in inside each thread block, and

the number of blocks inside a grid of blocks. These two numbers determine the total

number of threads that will be executed for that kernel. Threads scheduled within each

 11

block will execute in parallel while blocks are scheduled based on the available

processing units on the card. This two tier hierarchy gives each thread a unique ID

which allows each thread to address the specific data it is supposed to work on [9].

nVidia’s unified shader architecture present in their graphics cards from the

GeForce 8 series on as well as their supercomputing based Telsa line of cards organize

their processors into groups called streaming multiprocessors, or SMs. The number of

SMs can vary, determining the tier of the card, but each SM has 8 scalar processors, or

SPs, giving the total number of processors advertized on the card. Within each SM,

groups of up to 32 threads are executed simultaneously in a grouping called a warp.

Warps are scheduled as SPs become available and execute in a single instruction,

multiple threaded manner. While the entire warp is fed by a single instruction, the

threads within the warp are free to follow their own path of execution based on their

branching conditions. Threads that do not follow a branched path are disabled till the

paths reconverge [10].

There are many papers that discuss how utilizing CUDA decreased computation

time. Zhiyi et al. [11] looked at improving image processing performance using CUDA

and saw improvements ranging from 8x up to 200x depending on the processing

technique. Wei-Nien and Hsueh-Ming [12] improved the efficiency of the motion

estimation step of H.264/AVC encoding up to 12x using CUDA. Changxin et. al [13]

implemented an MD5-RC4 encryption algorithm in CUDA and saw a 3x-5x

improvement in performance compared to a CPU based implementation. Most of these

papers only focus on the workload being implemented in CUDA, while the rest also

touch on optimizing their code for CUDA's architecture.

 12

Finally, Amorim et. al. [14] performed an analysis of utilizing both OpenGL

shaders and CUDA to accelerate the calculation of a weighted Jacobian iteration. They

found that utilizing CUDA produced the greatest increase in speed, but they also

investigated how changes in programming style and graphic memory interfacing affected

the performance of their program. Unlike the research in this paper, their data originated

in system memory and OpenGL was only used to handle their computations.

 13

CHAPTER III

IMPLEMENTAION

This chapter will discuss each of the implementations of the MBVR encoder and the

expected benefits of each implementation.

3.1 Initial MBVR implementation

The model based video encoder is an analysis-by-synthesis encoder that tries to match a

3D model of a person's head to an input image from a video camera. The encoder uses a

set of facial animation parameters (FAP) that control specific parts of the face and how

each part deforms. The encoder changes one FAP, renders the changed head, and

calculates the PSNR of the resulting guessed rendering. If the change is closer to the

reference image, the program continues changing the model till the rendered image stops

improving its guess. If the first direction of search proves fruitless, the encoder moves

the FAP in the opposite direction and continues if the encoder sees improvements. The

encoder continues with the rest of the FAPs once each one settles on its best value. Once

all the FAPs have been optimized, the encoder looks at the total improvement. If there

was a significant improvement, the encoder loops through all the FAPs again to look for

further improvements. Once improvement in the PSNR falls below a certain threshold,

the resulting FAP values are saved for that frame. The next frame of the video is loaded

 14

as the new reference image and the best guess from the previous frame is used as the

starting point for the new optimization.

3.2 Graphic Shaders in Direct3D

Unfortunately, the first incarnation of the MBVR encoder required several seconds to

converge on a best guess for a single frame. An initial investigation revealed that the

peak signal-to-noise (PSNR) error calculation was the bottleneck for performance. Since

one of the inputs for the error calculation was originating on the graphics card, and since

modern graphics card support simple programs, is made sense to move the slowest part of

the encoding process to the graphics card to reduce the encoding time. There are two

main advantages to this strategy.

1. Moving data between system memory and graphics memory is slow. The

baseline encoder requires the entire rendered image to be copied to system

memory for each error calculation.

2. The PSNR calculation is based on the mean square error (MSE) of the reference

image and the current guess. The bulk of the calculations are done between

individual pixels in each image. These independent calculations are being

serialized on the CPU and can be executed in parallel, which the graphics card

supports well.

By moving the calculation to the graphics card, both of these bottlenecks can be

mitigated and only a single value needs to be copied back to system memory. To

calculate the error for each guess using the main microprocessor, the 3D head is rendered

to an off-screen buffer called the back buffer. The image is then read from this buffer to

 15

an array of sub-pixel values in the system memory. The MSE calculation takes each sub-

pixel value from the reference image and from the rendered image and uses them in the

MSE equation

��� � 1
���	
� � 	��

�

���

where N represents the number of pixels, 	
� represents the reference image element, and

	� represents the trial image element. The MSE value is then fed into the PSNR equation

���� � 10 � log�� ����
�

��� �

where MAX is the maximum value for each color component. Since the program is

working with unsigned character values, this value is 255. The GPU implementation will

move a subset of the MSE calculation into GPU compatible code:

���� ���	
� � 	��
�

���

The rest of the MSE calculation will be merged with the PSNR equation to give

���� � 10 � log�� �� ����
�

���� �

which will still be calculated on the CPU. The C++ code used to calculate the modified

MSE is located in Appendix A.

The rendered image using the guessed parameters needs to be stored as a texture

for a second rendering pass, which will perform the MSE calculation. This is easily

facilitated by copying the contents of the back buffer, only this time the destination target

is a texture stored in the video card's memory. Another method of accomplishing this is

to render the 3D head to an off-screen rendering surface. An off-screen rendering surface

acts like the back buffer as the render target, but it can automatically

other usable objects. One of the objects that it can use as a storage object is a texture. By

rendering to an off-screen rendering surface with a texture attached to store the color

information, that texture is automatically generated

pass.

The second rendering pass creates a long sequence of squares equal in number to

the pixel count of the two images. These squares will contain the mean square error for

one pixel in the image. These squares

3.1. Each square is colored with one pixel's color from both the reference image and the

synthesized images, which are both mapped as textures to each square. Once the

rendering process gets to the pixel

information from the two textures and performs the subtraction and squaring part of the

MSE calculation. The resulting value is stored in the red channel, thus becoming the new

color for that square. The shader

Once all the shader programs have finished in the second rendering pass, the

rendering process uses alpha blending to perform the summation step and generate a final

value. Alpha blending is normally used for rendering a t

Figure 3.1 - Shader Method Scene Setup
the other quads are placed directly behind the first. An orthogonal

16

acts like the back buffer as the render target, but it can automatically store its data into

other usable objects. One of the objects that it can use as a storage object is a texture. By

screen rendering surface with a texture attached to store the color

information, that texture is automatically generated from the results of the first rendering

The second rendering pass creates a long sequence of squares equal in number to

the pixel count of the two images. These squares will contain the mean square error for

one pixel in the image. These squares are arranged one behind another as seen in Figure

3.1. Each square is colored with one pixel's color from both the reference image and the

synthesized images, which are both mapped as textures to each square. Once the

rendering process gets to the pixel shaders, the shader program takes the color

information from the two textures and performs the subtraction and squaring part of the

MSE calculation. The resulting value is stored in the red channel, thus becoming the new

The shader program is located in Appendix A.

Once all the shader programs have finished in the second rendering pass, the

rendering process uses alpha blending to perform the summation step and generate a final

value. Alpha blending is normally used for rendering a transparent object by calculating

Shader Method Scene Setup. The first quadrilateral fills the camera viewing area while all
the other quads are placed directly behind the first. An orthogonal projection is used to prevent the furthest

quads from shrinking due to perspective.

store its data into

other usable objects. One of the objects that it can use as a storage object is a texture. By

screen rendering surface with a texture attached to store the color

from the results of the first rendering

The second rendering pass creates a long sequence of squares equal in number to

the pixel count of the two images. These squares will contain the mean square error for

are arranged one behind another as seen in Figure

3.1. Each square is colored with one pixel's color from both the reference image and the

synthesized images, which are both mapped as textures to each square. Once the

shaders, the shader program takes the color

information from the two textures and performs the subtraction and squaring part of the

MSE calculation. The resulting value is stored in the red channel, thus becoming the new

Once all the shader programs have finished in the second rendering pass, the

rendering process uses alpha blending to perform the summation step and generate a final

ransparent object by calculating

The first quadrilateral fills the camera viewing area while all
is used to prevent the furthest

 17

the final pixel value on the screen as a combination of the color of the surface closest the

camera and the color of every surface behind it [15]. Normally the amount of color used

from each polygon is determined by the front polygon's alpha value. However, it is

possible to tell the alpha blender to ignore the alpha value and simply add each value

without the alpha weighting. The entire rendering pass is done on a one pixel squared

off-screen rendering surface that stores its color information as a 32-bit float. The pixel’s

value, which is now the MSE, is read from this buffer and used for the remainder of the

PSNR calculation.

3.3 OpenGL port

In the interest of comparing how different 3D rendering APIs handle data, and because

CUDA cannot access pixel information in Direct3D, the base code was ported to

OpenGL. OpenGL offers the benefit of running on multiple operating systems whereas

Direct3D requires Microsoft Windows. In addition, OpenGL natively supports copying

pixel information to a buffer in system memory via DMA [16]. Direct3D required an

explicit memcpy statement from a memory mapped address on the graphics card to copy

the data from graphics memory to system memory. Utilizing DMA allows the data copy

to without requiring the CPU to perform the copy and should provide a large speed

improvement if the data is accessible when it is needed.

In order to keep the data files used between every implementation consistent,

custom routines were written to read the Direct3D based file containing the 3D mesh for

the head. Methods for reading in other required files were copied from the Direct3D

code. To enable compilation on any operating system without modification, only cross

 18

platform libraries like the standard C++ libraries, the OpenGL Utility Toolkit (GLUT)

[17], and the OpenGL Extension Wrangler (GLEW) [18] were utilized. The error

calculations are still executed on the CPU for comparison’s sake.

3.4 CUDA

CUDA offers the most flexible interface to create code that runs on nVidia’s graphics

cards. nVidia’s libraries provide familiar memory allocation and copying commands to

create and initialize variables inside CUDA. In addition, CUDA offers integration with

OpenGL to create or modify data in OpenGL buffer objects, allowing CUDA to perform

more complex computations than OpenGL’s own vertex or fragment shaders without

requiring the main program to handle the data transfer. This is especially advantageous

for the encoder since the majority of the data movement occurs between OpenGL and the

processor performing the MSE calculation. If the interoperability can move the data from

OpenGL to CUDA while staying on the graphics card, the encoder can benefit from the

reduction of the large data copy over the slow CPU-GPU link and the encoder can use

CUDA to calculate the MSE much quicker.

In order to get the pixel data into an object that CUDA can use, there are two

options available to programmers. The first requires the main program to read the pixel

information back normally and use cudaMemcpy to copy the data back to CUDA

controlled memory on the GPU. The other is to use CUDA’s OpenGL interoperability to

access OpenGL buffer objects by mapping the buffers onto its own address space. To get

the pixel data into a pixel buffer object, the buffer is first bound into the OpenGL

workspace, setting itself as the copy target. Then the back buffer's pixel data is read

 19

using the OpenGL glReadPixels function and copied into the pixel buffer. The pixel data

is now accessible to CUDA to map the data into CUDA controlled memory. Both

methods were implemented to analyze the difference in the data handling and their

effects on performance.

The CUDA program is comprised of three separate kernels of code that

procedurally process the MSE. The first kernel reads the reference and synthesized

images as full integer arrays comprising of 3 bytes of actual pixel data, 1 byte per color

channel, and 1 byte of superfluous data. The superfluous data is comprised of the alpha

channel, which is manually added to the reference frame since bitmap images do not

store this information. This additional padding data is used to align memory reads from

global memory along consecutive four byte aligned addresses. By aligning the memory

reads with the thread index, the memory controller on the graphics card will coalesce the

memory reads from the consecutively indexed threads into a single large memory read

[19]. If global memory accesses do not follow this pattern, all the data retrieved from a

single coalesced read would be split into individual reads. Because there is a large

latency penalty to access the global memory in CUDA, coalescing memory reads is

essential to maximizing performance.

After the data is read in, each thread performs the subtraction and multiplication

of the three subpixel values for one pixel. The resulting values are added together and

stored into high speed, low latency shared memory. Shared memory is a small on-chip

memory that is accessible to every thread within a thread block to facilitate the fast

sharing of data between threads. To sum all the individual mean squared errors, each

thread must add their result to a single location. It is not possible to have each thread

 20

attempt to add their value to a single memory location simultaneously. Since each thread

will read the current value from memory at the same time, each thread will add its value

to the current value instead of each thread adding to the result of the previous thread's

additions, resulting in a write after write hazard.

To accomplish this summation efficiently, half of the threads in a thread block

will add the value the other half of the threads to their own. From there, the threads from

the first subgroup continue to split into subgroups and sum the values till all the values

are accumulated with the first thread result. The first thread then writes the value back to

global memory where the next set of CUDA kernels performs the same reduction on the

intermediate results. The final kernel combines the last of the intermediate values into a

single value that is copied back to the main program and used to finish the PSNR

calculation. The entire CUDA kernel is located in Appendix A.

3.5 Computation Time

To compare the raw computation times, the error calculation was isolated and written into

separate programs. The calculation was split to the two major computations, the highly

parallel subtraction and squaring and the highly serial cumulative summation. Each of

these parts and the whole MSE calculation were timed to compare the computation times

without the data transfer and other parts of the program.

 21

CHAPTER IV

METHODOLOGY

Due to the lack of simulation software that can simulate modern graphics hardware, all

tests were run on a physical machine. The test consisted of executing the programs

described in Chapter 3 and analyzing the resource usage on the machine.

4.1 Testing Environment

All tests took place on a Nehalem-based Intel Core i7 920 processor running @ 2.66

GHz. The rest of the system specifications can be found in Table 1. The graphics card

used in the experiments is the nVidia GeForce 9800 GTX+. This card features 128

stream processors running at 1.836 GHz and 512 MB of GDDR3 memory operating at

1.1 GHz.

All the programs were tested on Windows XP with service pack 3 using nVidia’s

closed source driver version 196.21. All of the OpenGL programs were tested using

Ubuntu Linux 9.04 using nVidia's closed source driver version 190.42. The Windows

Table 4.1 – System Specifications.
L1 Instruction Cache 32 KB per core, 4-way associative, 64 B lines
L1 Data Cache 32 KB per core, 8-way associative, 64 B lines
L2 Cache 256 KB per core, 8-way associative, 64 B lines
L3 Cache 8 MB shared, 8-way associative, 64 B lines
System Memory 3 GB DDR3 @ 1066 MHz
Chipset Intel X58

 22

version of the programs were compiled using Visual Studio 2005 using the August 2008

version of the DirectX SDK and the OpenGL Utility Toolkit version 3.7.6. The CUDA

implementations also utilized version 1.5.1 of the OpenGL Extension Wrangler to

provide access to advanced OpenGL structures and functions. The CUDA

implementation was compiled using version 2.3 of the CUDA toolkit.

For the model based video encoder, the encoder first played back a prerecorded

set of facial animations called wow, a commonly used set in MPEG-4 facial animation

research [20-22], and saved the first 300 generated images as 352x288 CIF resolution

bitmap files. These images acted as the source video sequence that the encoder will try to

match the same 3D scene. These images were stored and accessed from a RAM disk to

simulate access from a video device and remove the performance penalty of hard drive

access. Since the accuracy of the encoding process is not the subject of this investigation,

the FAPs generated from the encoding process were not stored after each set of

optimizations.

4.2 Functional Timers

Utilizing the high precision timer in the operating system, functional timers were added

to the applications testing the execution time of different implementations of the MSE

code. The time taken to execute each function was accumulated for the entire run to even

out the microsecond resolution of the timer functions across the entire encoding process.

In addition, the Linux application time and the Windows XP application timeit timed the

execution of each application.

 23

4.3 Performance Counters

To analyze how the system is being utilized, Intel VTune and OProfile collected

system data from CPU performance counters built into the processor. These counters are

monitored in the background while a target application or environment is running and

monitor specific events chosen by the user. Events can include execution time, cache

accesses and misses, pipeline stalls, memory accesses, instruction types executed, and

off-chip bus accesses. The number of counters on a Core i7 processor is limited to 4, so

multiple runs are necessary to collect every type of data available.

VTune [23] monitored execution time of each the Windows programs to monitor

where the most time is spent within the program. Since the video encoder is memory

intensive, VTune also monitored cache access and hit rates and pipeline stalls for each

section. VTune configuration for each session is provided in Table 2 with group numbers

denoting the events that were run together.

Table 4.2 – Performance Counter Events

Group Event Name Events per count
1 CPU _CLK_UNHALTED.P_THREAD 10000000
1 RAT_STALLS.ANY 10000000
2 MEM_LOAD_RETIRED.LLC_UNSHARED_HIT 100000
2 MEM_LOAD_RETIRED.OTHER_CORE_L2_HIT_HITM 100000
2 MEM_LOAD_RETIRED.LLC_MISS 100000
3 L2_RQSTS.LD_HIT 1000000
3 L2_RQSTS.LOADS 1000000
3 MEM_LOAD_RETIRED.L1HIT 10000000
3 L1D_CACHE_LD.ANY 10000000
4 RESOURCE_STALLS.ANY 1000000
4 RESOURCE_STALLS.RS 1000000
4 RESOURCE_STALLS.ROB 1000000
4 RESOURCE_STALLS.STORE 1000000

 24

OProfile [24] collected system data for the Linux applications. OProfile is an

open-source system profiler for Linux that monitors the performance counters on modern

Intel and AMD processors.

4.4 Instruction Type Profiling

For additional analysis of the difference between programs, the Pin instrumentation

program [25] provided a breakdown of instruction types, memory transactions, and bytes

of memory transferred in each program. Pin dynamically inserts C/C++ code inside

running programs to gather statistics about the target program while it program executes.

One of the sample instrumentations, insmix, provided counts each type of instruction,

memory accesses by data size, atomic memory accesses, and stack accesses throughout

the entire program and by function. Pin’s analysis of the program execution was used to

compare the characteristics of the programs and their memory access patterns.

 25

CHAPTER V

FINDINGS

This chapter will discuss the data found through the experiments outlined in the previous

chapter. The chapter is divided into four sections. The first three sections will discuss

the system performance of the encoder in three different environments. The fourth

section will analyze the raw computational performance of each processor on the error

calculation.

5.1 Direct3D in Windows

Starting with the Direct3D implementations of the original code, there was a drastic

reduction in the total execution time, which is shown in Table 5.1. The CPU version of

the code required Direct3D to copy the rendered image to system memory so that main

program could calculate the mean square error between the reference image and the

rendered image. The Direct3D version of the program showed a large decrease in the

total execution time, showing that the GPU based error calculation and the reduction of

the amount of data transferred back to system memory. While the reduction in time is

Table 5.1 - Total Execution Time (Windows OpenGL)
 CPU Direct3D
Total Time (seconds) 463.687 83.562
Frames per second 0.647 3.59

 26

Figure 5.1 – Windows Direct3D Time by Libraries. While the Direct3D code increased slightly from
the additional code required to perform the error calculation, the number of cycles used in main program
and other support libraries reduced considerably.

substantial, it still did not come close to the desired real time performance goal of 30

frames per second.

Since the speedup was not sufficient, an investigation into the new bottleneck was

needed. Looking into where the most time was consumed, based on the unhalted cycle

count during the execution, Figure 5.1 shows a clear reduction in the number of cycles

within the main program. The only increase in the execution time in any library with the

GPU version is the Direct3D library, which is expected since additional function calls

were required to perform the calculation on the GPU. However, 83.6% of the time is

spent inside the display driver, which remained relatively unchanged.

Moving on to the cache statistics, the drop in the execution time reduced the

number of accesses to the cache, as expected. The normalized number of cache access

can be found in Figure 5.2. The number of accesses in the main program dropped,

signifying that the error calculation was memory intensive and that the movement of that

0

100

200

300

400

500

600

CPU Direct3D

T
im

e
 (

se
c) Kernel

Direct3D

Display Drivers

Main program

 27

Figure 5.2 - Windows Direct3D Cache Statistics. The bars on the left correspond to the total number of access for
each level of the cache. The bars on the right correspond to the hit rate. With the reduction in the total execution time,
the number of L1 and L2 cache data access reduced accordingly. The L3 cache remained relatively the same,
suggesting that the error computation did not access the L3 cache.

code reduced the burden of the main processor. However, the number of L3 cache access

remained relatively the same. It turns out that the display drivers are again the culprit

with the majority of the L3 cache accesses. In fact, the display driver’s cache activity

remains roughly the same between the two versions of the code.

Finally, focusing on the location of the stalls in the CPU pipeline should illustrate

what types of operations were slowing the overall execution. In Figure 5.3, the two

major sources of stalls were caused from a filled reservation station or an unavailable

store unit. Given the highly parallel nature of the MSE code, the reservation station stalls

were likely caused by the out-of-order execution engine’s attempt to parallelize the code

within its own superscalar architecture. The reduction of these stalls lends further

evidence to correlation of reservation stalls to the degree of parallelization of the code.

The dramatic reduction in the store stalls gives correlation to the amount of data

transferred between the main processor and the graphics processor. Since the processor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU

Direct3D

 28

Figure 5.3 - Windows Direct3D Normalized Stalls. Moving the error calculation into Direct3D dramatically reduced
the number of processor stalls, especially with the two largest sources of stalls.

was only transferring the 4 byte result from the error calculation instead of the 304

kilobytes in the synthesized image to perform the calculation on the main CPU.

5.2 OpenGL in Windows

Swapping out Direct3D for OpenGL and the shader computations for CUDA, there is a

startling reduction in the total runtime for the CPU version of the code. More startling is

the increase in total runtime for CUDA, regardless of how data is moved from OpenGL

to CUDA.

Focusing on where the time is spent inside the program, Figure 5.4 breaks down

the execution time in each of the major libraries. As expected, the main program’s

execution time reduced when the error calculation moved from the CPU to CUDA.

Table 5.2 - Total Execution Time (Windows OpenGL)

 CPU CUDA CUDA w/ PBO
Total Time (seconds) 54.312 74.140 98.359
Frames per Second 5.52 4.05 3.05

0%

20%

40%

60%

80%

100%

120%

CPU Direct3D

Store

ROB Full

RS Full

 29

Figure 5.4 – Windows OpenGL Time by Libraries. Even though the CUDA versions were supposed to
reduce the total number of cycles, the overhead of utilizing CUDA moved execution time from the main
program to the Windows kernel and support libraries.

However, the amount of time spent in the Windows kernel increased when CUDA is

introduced to the program. In addition, number of cycles in the graphics driver and

OpenGL library increased dramatically depending on which library is moving the

synthesized image from OpenGL to CUDA. Based on these results, the process of

moving the calculation to the GPU increases the amount of work required of the main

processor.

Looking at the cache statistics, some interesting patterns appear. In Figure 5.5,

the total number of cache accesses stays approximately the same with the CUDA

implementation that did not utilize a PBO to move the image data. However, more of the

cache hits moved from the L1 and L2 caches to the L3 cache. The movement of cache

access is much more apparent in the second CUDA version. In addition to the lower L1

and L2 hit rates and the higher L3 cache hit rate, the total number of access to all levels is

much higher. Employing a PBO to utilize CUDA’s OpenGL interoperability as a method

0

20

40

60

80

100

120

140

160

180

CPU CUDA CUDA w/ PBO

T
im

e
(s

e
c)

Other

Kernel

CUDA

Graphics Drivers

OpenGL

Main Program

 30

Figure 5.5 – Windows OpenGL Cache Statistics. While the total number of access between the CPU and
CUDA without PBO remained the same, both CUDA versions saw lower hit rates. In addition, the CUDA
version with a PBO saw substantially more cache accesses.

of moving the pixel data from OpenGL to CUDA appears to be a more inefficient method

of moving data.

Finally, the pipeline stalls shed some additional light on the slowdowns. As seen

in Figure 5.6, the number of store unit stalls increased dramatically when CUDA was

utilized. However, the total number of stalls was lower with the CUDA program that did

not use a PBO than the CPU version. With the exception of the store stalls, this version of

the encoder appears to be more efficient with the processor. The CUDA version with the

PBO, however, showed over twice as many stalls as either of the other programs. In

addition, there were more reorder buffer stalls than the total number of stalls in either

program. While the OpenGL interoperability offers an easier means for programmers to

move data between OpenGL and CUDA, the overhead of utilizing a PBO and the

interoperability APIs adds to existing overhead of moving the data.

0%

50%

100%

150%

200%

250%

300%

350%

CPU

CUDA

CUDA w/ PBO

 31

Figure 5.6 – Windows OpenGL Normalized Stalls. Implementing CUDA increased the number of store unit stalls,
but utilizing the OpenGL interoperability built into CUDA more than doubled the total number of stalls.

Based on the all this data, the OpenGL interoperability in CUDA adds substantial

overhead to the data copy between the two application interfaces. Compared with the

CUDA version without using a PBO, the only difference in the implementation is the

method of the data copy. However, the requirement to copy the data from graphics

memory to system memory and back to use CUDA negates one of the primary reasons

for using CUDA in the first place: reduce the amount of data copied between system

memory and graphics memory.

5.3 OpenGL in Linux

Switching to the Linux versions of the OpenGL code, there is a similar increase in total

runtime, shown in Table 5.3, between the CPU and CUDA versions of the code that was

Table 5.3 – Total Execution Time (Ubuntu OpenGL)

 CPU CUDA CUDA w/ PBO
Total Time (seconds) 56.367 71.929 81.787
Frames per second 5.32 4.17 3.67

0%

50%

100%

150%

200%

250%

CPU CUDA CUDA w/ PBO

Store

ROB Full

RS Full

 32

seen in the Windows versions of the same programs. In addition, the CUDA version that

utilized the OpenGL interoperability was about 10 seconds slower than the version that

explicitly forced the pixel data to detour through system memory before jumping back to

the graphics card for CUDA.

The number of cycles from the main program drop drastically and the OpenGL

and CUDA libraries use more cycles in both of the CUDA programs, as seen in Figure

5.7. This is similar to the results from the Windows version of these programs.

However, the total number of unhalted cycles stays fairly consistent between each of the

programs. If every version of the encoder uses about the same number of cycles, there

has to be a significant number of stalls to account for the additional amount of execution

time.

Looking at the cache statics shown in Figure 5.8, every cache level saw a lower

hit rate, especially L1 data cache. As a result, cache accesses are moving to the slower,

lower levels of the cache. Moreover, the additional number of accesses to the higher

Figure 5.7 – Ubuntu OpenGL Time by Libraries. While every version of the code displayed
approximately the same number of unhalted cycles, a large portion of the cycles moved from the main
program to the OpenGL and CUDA libraries.

0

10

20

30

40

50

60

CPU CUDA CUDA w/ PBO

T
im

e
 (

se
c)

Other

CUDA

OpenGL

Kernel

Main program

 33

Figure 5.8 – Ubuntu OpenGL Cache Statistics. Cache access numbers are normalized to the number of
accesses in the CPU version. With the lower number of accesses and hits in the lower level caches,
accesses in the CUDA versions are moving to the higher level caches. This move in the location of the
memory reads could account for some of the lost performance.

level caches, especially the level 3 cache, suggests that the backend libraries are caching

the large amount of data (352x288 pixels at 4 bytes per pixel to allow memory access

coalescing in CUDA) as it moves from the system memory to the graphics memory. If

the programs are caching the images in the process of copying them, the rest of the

program data is probably getting clobbered as well in the lower level caches, resulting in

the lower hit rates in all the caches. Since the entire image is copied to system memory

before moving to CUDA, marking the data as uncacheable would only add to the latency

since the image would have to come from main memory instead of the cache when then

program copies the data to CUDA.

Focusing on the processor stalls shown in Figure 5.9, the main source of stalls in

the CPU version of the program come from a full reservation station during the error

calculation. This mirrors the results seen in the two Windows programs as the processor

is probably trying to parallelize the error calculation. Looking at the CUDA versions, the

0%

50%

100%

150%

200%

250%

300%

350%

400%

CPU

CUDA

CUDA w/ PBO

 34

Figure 5.9 - Ubuntu OpenGL Normalized Stalls. Moving the error calculation increased the number of
processor stalls significantly. While there were additional stalls at the reservation station, the number of
stalls due the store unit increased by an order of magnitude.

number of stalls increase 2x-4x over the CPU version with additional stalls coming from

the kernel, OpenGL, and CUDA libraries. While the CUDA version without the PBO

only saw a slight increase in reservation station stalls, the store unit stalls increased 22x,

signifying that CUDA’s data copying is causing the additional execution time. The

CUDA version with PBO saw a 3x increase in reservation station stalls and a 40x

increase in store unit stalls. The apparent inefficiency with data handling can explain

why the OpenGL interoperability built into CUDA is slower.

When the CUDA programs were tested with different image sizes, the number of

store unit stalls increased with the new number of pixels. As seen in Figure 5.10, both

CUDA programs saw a proportional increase in the store unit stalls with the increase in

the amount of data required to encode the 300 frames. Based on the relationship of the

increases, the CudaMemcpy functions are using the CPU to move the data to the graphics

card. In addition, the code utilized the asynchronous variant of the function,

CudaMemcpyAsync, to reduce the overhead of the copy. Looking at the libraries used in

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

CPU CUDA CUDA w/ PBO

Store

ROB Full

RS Full

 35

Figure 5.10 – Additional Store Stalls vs. Resolution. All the numbers are normalized to the smallest
resolution. While the number of stalls in either program did not scale at the same rate as the data size, the
scaling still follows the linear trend with the data size

the program, the multithreading library pthreads was used, despite the fact that the

program never explicitly included or invoked that library. Based on these observations,

CUDA is probably creating additional threads in the background to service the

asynchronous memory copy.

There could be two sources of the store unit stalls present in both CUDA

programs. The most likely source is the image data passing through the CPU and main

memory as it is copied from OpenGL managed memory to CUDA managed memory.

The other source of the stalls could be the CUDA kernels themselves, as these GPU

instructions must be copied to the graphics card from main memory. Since processing a

larger image would require more instances of the kernel to execute, the additional store

0%

20%

40%

60%

80%

100%

320x240 392x294 452x339

Windows

0%

20%

40%

60%

80%

100%

320x240 392x294 452x339

Ubuntu

additional bytes transferred additional store stalls - CUDA

additional store stalls - CUDA w/ PBO

 36

Table 5.4 – Store Unit Stalls in CUDA Programs (10,000 runs)
 Execute Kernel Transfer & Execute Kernel

Store Unit Stalls 18,000,000 1,334,000,000

unit stalls could have originated from the transfer of the CUDA kernel. To test this, two

simple CUDA programs were written to test the effect of the data transfer on the number

of store unit stalls. The first program only executed the kernel while the second program

copied the equivalent amount of data as one of the rendered images before executing the

kernel. After each procedure was completed 10,000 times, the store unit stalls were

collected. The stalls are shown in Table 5.4. Clearly, the source of the majority of these

stalls originates in the data transfer.

Finally, while no documentation could be found to confirm that normal use of

OpenGL’s glReadPixels used DMA, reading the pixel information into a PBO is will use

DMA if it is available. [16] To confirm whether or not the CPU based OpenGL encoder

is using DMA to transfer the image data back to the system memory, an additional

encoder was written that used a PBO, and subsequently DMA, to copy the data back to

system memory. When the PBO is mapped into addressable memory, it will behave like

the character array used in the original program, allowing the error calculation code to

remain unchanged. If the CPU program that does not use the PBO behaves similarly to

the one that does, it will be assumed that the process of reading pixel data back using

glReadPixels will use DMA, regardless of the target.

Looking at the measurements taken from the time command, OProfile, and Pin in

Figure 5.11, there is less than 1 percent difference in every metric between the two CPU

based programs. In addition, the program that used a PBO consistently came out higher

 37

Figure 5.11 – Normalized Comparison of Program Characteristics. There is very little difference
between these two programs despite using different means of transferring the pixel data to system memory.
Based on this, the program that used a PBO, and subsequently DMA transfers, and the program that did not
use a PBO behaved almost identically.

on almost every measurement, which either statistical noise or the small amount of

additional code required to implement and use a PBO could account for. If the program

that did not use a PBO used the CPU to transfer the pixel data, there should have been

substantially more memory transactions within that program. Therefore, it is assumed

that glReadPixels uses DMA to transfer the pixel data to system memory.

5.4 Computation Time

As expected, the highly parallel subtraction and squaring computation saw a dramatic

speedup. Since all the calculations are completely independent of each other, the code

parallelized well. Interestingly, there was only a 5% increase in cumulative sum time.

The parallelized reduction sum algorithm used allowed the slower shader cores on the

GPU to compete with the faster Core i7 processor. In the end, the CUDA version was

able to perform the MSE algorithm 70% faster.

0.985

0.99

0.995

1

1.005

1.01

CPU

CPU /w PBO

 38

Table 5.5 – Time to Complete 100 Error Calculations

 CPU (µs) CUDA (µs) Speedup
Subtract & Square 24529 1760 1290%
Cumulative Summation 11201 11777 -4.89%
Complete MSE 24641 14489 70.1%

 39

CHAPTER VI

CONCLUSION

This chapter provides some discussion on the finding from this thesis and provides future

means of implementing code on a graphics card.

6.1 Value of Coprocessors

This project has continuously focused on the second half of Amdahl’s law: optimize the

bottleneck. With the need for 3D rendering, an existing 3D rendering API and a modern

graphics card made sense. A software rendering engine would have been the bottleneck

of the encoder. With the original Windows program using Direct3D, the bottleneck was

the error calculation. Utilizing the computational power of the of the graphics card, the

encoder finished in under 1/5 of the original time. While the use of the graphics shaders

was not ideal, it did provide a means for performing the error calculation on a more

appropriate processor. In addition, the CUDA version of the algorithm could perform the

mean squared error computation faster than the CPU due to its highly parallelized code.

If any part of a serialized code can be parallelized to any degree, total computation time

can be reduced.

However, as long as the data transfer time consumes any time gained from the

coprocessor’s computation, adding a coprocessor to a solution will not produce any

tangible benefits. Due the large data size and the simple calculation, this project did not

 40

see the 70% speedup of the error computation due to the time required to move the image

into CUDA’s memory space.

6.2 Discovery of Naive Data Handling within CUDA

The biggest surprise of this study was the OpenGL version and its use of a DMA transfer

for the pixel data. Since both the Direct3D versions and the CUDA versions

implemented some form of a memcpy instruction in their code to copy date to or from the

graphics card, it would appear that utilizing the standard C memcpy command created the

large number of store stalls seen in the processor. This observation is supported by the

fact that the number of store unit stalls scaled with the size of the image being copied.

Based on these findings, it is extremely inefficient to tie up a single thread to copy data

when DMA seems to provide a more efficient means of moving data. The fact that the

OpenGL version that computes the error on the CPU was the fastest version of the code

was astounding considering the speed of the comparably coded Direct3D version.

In addition, the lack of transparency with objects created in either OpenGL or

CUDA created an inefficient means of moving data between the two libraries that utilize

graphics memory. Requiring the OpenGL image to detour through system memory when

it is copied to CUDA controlled memory is very inefficient when both the source and

destination points reside in memory on the graphics card. In addition, the OpenGL

interoperability functions in CUDA proved to be less efficient than explicitly handling

the data copy. nVidia needs to drastically improve this aspect of CUDA for any type of

graphics library interoperability to be viable.

 41

6.3 Future Work

The data from the performance counters point to the 3D mesh alterations as the next

slowest function within the encoder. With the apparent parallelism in changing the

location of over 3000 individual vertices, this section would be the next target to move to

the GPU. Since CUDA supports the creation of OpenGL vertex information, CUDA

could provide an additional speedup to the encoding process if the problems discovered

earlier do not overshadow the potential improvements.

In addition, several other general purpose GPU based API have been introduced

to make GPU more accessible. During the testing process, nVidia released version 3.0 of

their CUDA toolbox [26], allowing CUDA to directly access objects created within

OpenGL and Direct3D. Many of these changes were mirrored from the Khronos Group’s

Open Computing Language (OpenCL) [27] which allows programmers to create code

that will run on any supported processors, including CPUs and GPUs. nVidia has already

released drivers and libraries to allow OpenCL code to run on their CUDA enabled video

cards. Microsoft also added the ability to execute arbitrary code inside of their DirectX

11 framework, calling their API DirectCompute [28]. However, this framework requires

Window 7 since DirectX 11 is only available for that version of Windows.

 42

REFERENCES

[1] J. Palmer, "The Intel® 8087 numeric data processor," presented at the
Proceedings of the 7th annual symposium on Computer Architecture, La Baule,
United States, 1980.

[2] IBM. March 5). IBM PCI Cryptographic Accelerator. Available: http://www-
03.ibm.com/security/cryptocards/pcica/overview.shtml

[3] P. Eisert, et al., "Model-aided coding: a new approach to incorporate facial
animation into motion-compensated video coding," Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 10, pp. 344-358, 2000.

[4] J. D. Foley, et al., Computer graphics: principles and practice (2nd ed.):
Addison-Wesley Longman Publishing Co., Inc., 1990.

[5] M. Doggett, "Programmability Features of Graphics Hardware," 2002.
[6] A. Purde, et al., "Pixel shader based real-time image processing for surface

metrology," in Instrumentation and Measurement Technology Conference, 2004.
IMTC 04. Proceedings of the 21st IEEE, 2004, pp. 1116-1119 Vol.2.

[7] W. F. Engel, Direct3d Shaderx: Vertex and Pixel Shader Tips and Tricks with
Cdrom. Plano, TX: Wordware Publishing Inc., 2002.

[8] W. Engel, ShaderX2: Shader Programming Tips and Tricks with DirectX 9.0.
Plano, TX: Wordware Publishing Inc., 2003.

[9] D. Luebke, "CUDA: Scalable parallel programming for high-performance
scientific computing," in Biomedical Imaging: From Nano to Macro, 2008. ISBI
2008. 5th IEEE International Symposium on, 2008, pp. 836-838.

[10] J. Nickolls, et al., "Scalable Parallel Programming with CUDA," Queue, vol. 6,
pp. 40-53, 2008.

[11] Y. Zhiyi, et al., "Parallel Image Processing Based on CUDA," in Computer
Science and Software Engineering, 2008 International Conference on, 2008, pp.
198-201.

[12] C. Wei-Nien and H. Hsueh-Ming, "H.264/AVC motion estimation implmentation
on Compute Unified Device Architecture (CUDA)," in Multimedia and Expo,
2008 IEEE International Conference on, 2008, pp. 697-700.

[13] L. Changxin, et al., "Efficient implementation for MD5-RC4 encryption using
GPU with CUDA," in Anti-counterfeiting, Security, and Identification in
Communication, 2009. ASID 2009. 3rd International Conference on, 2009, pp.
167-170.

[14] R. Amorim, et al., "Comparing CUDA and OpenGL implementations for a Jacobi
iteration," Universität Graz, Graz, Austria, Technical Report SFB 2008-025,
2008.

[15] O. A. R. Board, OpenGL(R) Reference Manual: The Official Reference Document
to OpenGL, Version 1.2 (3rd Edition). Boston: Addison Wesley, 2000.

[16] K. Group, "ARB_pixel_buffer_object," vol. ARB Extension #42, ed, 2004.

 43

[17] K. Group. April 14). GLUT - The OpenGL Utility Toolkit. Available:

http://www.opengl.org/resources/libraries/glut/
[18] April 14). GLEW: The OpenGL Extension Wrangler Library. Available:

http://glew.sourceforge.net/
[19] NVIDIA. (2009, CUDA Programming Guide 2.3. Available:

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_C
UDA_Programming_Guide_2.3.pdf

[20] F. Lavagetto and R. Pockaj, "An efficient use of MPEG-4 FAP interpolation for
facial animation at 70 bits/frame," Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 11, pp. 1085-1097, 2001.

[21] MPEG-4 Facial Animation: The Standard, Implementation and Applications:
John Wiley & Sons, Inc., 2003.

[22] I. S. Pandzic, "Facial motion cloning," Graphical Models, vol. 65, pp. 385-404,
2003.

[23] Intel. March 5). Intel® VTune - Intel® Software Network. Available:
http://software.intel.com/en-us/intel-vtune/

[24] March 5). OProfile: A System Profiler for Linux. Available:
http://oprofile.sourceforge.net

[25] Intel. April 15). Pin - A Dynamic Binary Instrumentation Tool. Available:
http://www.pintool.org/

[26] March 29). CUDA 3.0 Downloads. Available:
http://developer.nvidia.com/object/cuda_3_0_downloads.html

[27] K. Group. March 5). The Khronos Group: Open Standards, Royalty Free,
Dynamic Media Technologies. Available: http://www.khronos.org/

[28] March 29). DirectCompute. Available:
http://www.nvidia.com/object/cuda_directcompute.html

 44

APPENDIX A

MSE code – CPU based C++

for(int i = 0; i < NUM_SUBPIXELS; i++)
{
 temp = src_face[i] - dst_face[i];
 MSE += temp*temp;
}

MSE code – Direct3D HLSL Pixel Shader

// Pixel shader input structure
struct PS_INPUT
{
 float4 Position : POSITION;
 float2 Texture : TEXCOORD0;
};

// Pixel shader output structure
struct PS_OUTPUT
{
 float4 Color : COLOR0;
};

// Global variables
sampler2D Tex0;
sampler2D Tex1;

// Name: MSE Pixel Shader
// Type: Pixel shader
// Desc: Calculates the mean square error between two pixel from the
// two texture samplers and returns the error as the color for
// that pixel.
// R = MSE result;
// G,B = 0;
// Alpha = 1;
//

 45

PS_OUTPUT ps_main(in PS_INPUT In)
{
 PS_OUTPUT Out;
 Out.Color = tex2D(Tex0, In.Texture);
 Out.Color -= tex2D(Tex1, In.Texture);
 Out.Color *= Out.Color;

 Out.Color.a = 1;
 Out.Color.r = Out.Color.r + Out.Color.g + Out.Color.b;
 Out.Color.gb = 0;

 return Out;
}

MSE code - CUDA

/**
* MSE.cu
***/

#define BLOCK_SIZE_1 96
#define BLOCK_SIZE_2 48
#define MAX_BLOCK_SIZE 512

union pixel
{
 unsigned int iVal;
 unsigned char cVal[4];
};

__global__ static void ComputeMSE1(unsigned int* reference,
 unsigned int* guess,
 unsigned int num_pixels,
 unsigned int* result)
{
 int temp;
 unsigned int x = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;
 unsigned int resultSum = 0;
 pixel ref_pixel, guess_pixel;

 __shared__ unsigned int sharedResult[MAX_BLOCK_SIZE];

 if (x < num_pixels)
 {
 ref_pixel.iVal = reference[x];
 guess_pixel.iVal = guess[x];

 temp = ref_pixel.cVal[0] - guess_pixel.cVal[0]; // Blue
 resultSum = __mul24(temp,temp);

 temp = ref_pixel.cVal[1] - guess_pixel.cVal[1]; // Green
 resultSum += __mul24(temp,temp);

 46

 temp = ref_pixel.cVal[2] - guess_pixel.cVal[2]; // Red
 resultSum += __mul24(temp,temp);
 }

 sharedResult[threadIdx.x] = resultSum;

 __syncthreads();

 unsigned int a = blockDim.x;

 while (a & 0x00000001 == 0) // While even (divisible by 2)
 {
 a >>= 1;

 if (threadIdx.x < a) // Parallelized Summation
 sharedResult[threadIdx.x] += sharedResult[threadIdx.x + a];

 __syncthreads();
 }

 if (threadIdx.x == 0) // Perform serial summation for the rest
 {
 resultSum = 0;

 for (unsigned int i = 0; i < a; i++)
 resultSum += sharedResult[i];

 result[blockIdx.x] = resultSum;
 }
}

__global__ static void ComputeMSE2(unsigned int* result,
 unsigned int numberOfsharedResults)
{
 unsigned int x = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;
 __shared__ unsigned int sharedResult[MAX_BLOCK_SIZE];

 if (x < numberOfsharedResults)
 sharedResult[threadIdx.x] = result[x];
 else
 sharedResult[threadIdx.x] = 0;

 __syncthreads();

 unsigned int a = blockDim.x;

 while (a & 0x00000001 == 0) // While even (divisible by 2)
 {
 a >>= 1;

 if (threadIdx.x < a) // Parallelized Summation
 sharedResult[threadIdx.x] += sharedResult[threadIdx.x + a];

 __syncthreads();
 }

 if (threadIdx.x == 0) // Perform serial summation for the rest

 47

 {
 unsigned int resultSum = 0;

 for (unsigned int i = 0; i < a; i++)
 resultSum += sharedResult[i];

 result[blockIdx.x] = resultSum;
 }
}

__global__ static void ComputeMSE3(unsigned int* result,
 unsigned int* final)
{
 __shared__ unsigned int sharedResult[MAX_BLOCK_SIZE];

 sharedResult[threadIdx.x] = result[threadIdx.x];

 __syncthreads();

 unsigned int a = blockDim.x;

 while (a & 0x00000001 == 0) // While even (divisible by 2)
 {
 a >>= 1;
 if (threadIdx.x < a) // Parallelized Summation
 sharedResult[threadIdx.x] += sharedResult[threadIdx.x + a];

 __syncthreads();
 }

 if (threadIdx.x == 0) // Perform serial summation for the rest
 {
 unsigned int resultSum = 0;

 for (unsigned int i = 0; i < a; i++)
 resultSum += sharedResult[i];

 *final = resultSum;
 }
}

extern "C" void launch_kernel(unsigned int* reference,
 unsigned int* guess,
 unsigned int num_pixels,
 unsigned int* result,
 unsigned int* final,
 int blockSize1,
 int blockSize2)
{
 // execute the kernel
 int threadsPerBlock = blockSize1;
 int blocksPerGrid = (num_pixels + threadsPerBlock - 1) /
 threadsPerBlock;

 ComputeMSE1<<< blocksPerGrid, threadsPerBlock >>>(reference,
 guess,
 num_pixels,

 48

 result);

 while (blocksPerGrid > MAX_BLOCK_SIZE)
 {
 unsigned int numberOfsharedResults = blocksPerGrid;
 threadsPerBlock = blockSize2;
 blocksPerGrid = (blocksPerGrid + threadsPerBlock - 1) /
 threadsPerBlock;
 ComputeMSE2<<< blocksPerGrid, threadsPerBlock >>>(result,
 numberOfsharedResults);
 }

 ComputeMSE3<<< 1, blocksPerGrid >>>(result, final);
}

VITA

Brian Patrick Gordon

Candidate for the Degree of

Master of Science

Thesis: GPGPU PROGRAMMING AND THE PITFALLS OF NAIVE DATA

HANDLING

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Amarillo, TX on August, 13 1984, the son of Bruce and
Joan Gordon.

Education: Received a Bachelor of Science in Electrical Engineering from

Oklahoma State University, Stillwater, Oklahoma in December 2007.
Completed the requirements for the Master of Science in Electrical
Engineering at Oklahoma State University, Stillwater, Oklahoma in
May, 2010.

Experience: Employed by Oklahoma State University, School of Electrical and

Computer Engineering, as a research assistant and a teaching assistant,
2007-Present.

ADVISER’S APPROVAL: Dr. Sohum Sohoni

Name: Brian Patrick Gordon Date of Degree: May, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: GPGPU PROGRAMMING AND THE PITFALLS OF NAIVE DATA

HANDLING

Pages in Study: 48 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: The purpose of this study was to implement a known

bottleneck of a model based video encoder in code that runs on a modern graphics
card using various methods. The study then looks the degree of speedup as well
as the new bottlenecks for each implementation. The study also compares and
contrasts the effectiveness of each method at improving the performance of the
encoder.

Findings and Conclusions: While moving the highly parallel error calculation to the

graphics card reduced the time required to perform the computation, the program
still ran slower. Through analysis of the processors performance counters, the
image data appears to move through system memory even though its origin and
destination are in graphics memory. This inefficient handling of the data that
should remain in graphics memory is removing any potential speedup from using
the graphics card as a highly parallel coprocessor to accelerate the slowest part of
the original program.

