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CHAPTER 1 

INTRODUCTION 

1.1 Register Files 

Advancements in VLSI technology have lead to many architectural innovations in 

processor design. As more and more room became available in the chip, processors 

designers began to add many parallel instruction pipelines to improve the performance of 

the processor. These processors are capable of executing more than one instruction in 

each clock cycle and are called superscalar processor. 

 

Register files are important components of Superscalar processor. They are on-chip data 

storage elements which are used to relay data between memory and the functional units. 

The access time of the registers is one of the important factors in the design of the 

register file since the register file has to run at the speed of the core processor. The 

processor operates much more efficiently when there are enough registers so that only 

occasionally does data need to be transferred between registers and memory. 

 

Register files in superscalar processors need to be interfaced with more than one 

functional unit. One approach would be to partition the register file and dedicate each 

partition to one functional unit. The problem with this approach is that many machine
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cycles are wasted in moving the data between the registers. The second, more efficient 

approach would be to provide many input / output ports to each of the individual registers 

in the register file, and these register files are called multi-port register files.  

 

Static RAM cells are used to implement on-chip register files. To implement multi-port 

register files, SRAM cells with more than one read/write port are required. The main 

focus of this thesis is to design a 32 bit x 32 word register file with 10-read/write ports 

using 0.6 micron technology. 

1.2 Design Issues 

Reliability is the main issue while designing a multi-port SRAM. The main figure of 

merit that defines the reliability of an SRAM is its noise margin. Noise Margin represents 

the immunity of an SRAM against external noise induced on the bit lines during both the 

read and write cycles. The noise margin of the SRAM has to be high to ensure proper 

working of SRAM. Both read and write margins are set by the sizes of the transistors in 

the SRAM cell. If the transistors are not sized appropriately, SRAM may not work 

correctly. 

 

Read access time of the SRAM is another important design issue to be considered. The 

read access time determines the speed of the microprocessor. In the worst case, the 10-

port SRAM will have to drive ten bit lines during a read operation. The transistors have 

to be sufficiently sized up so that the read access is not too large. 
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Area of the SRAM is another major concern. Since the SRAM cells are stacked to form 

the register file, an increase in the cell area of the SRAM will lead to significant increase 

in the area of the register file.  

 

The design issues listed above are all interdependent. For example, sizing up the 

transistors to decrease the read access delay will significantly increase the area of the 

register file. If the transistors are not appropriately sized, the reliability of the SRAM cell 

is greatly reduced. Therefore in this design, arriving at the right tradeoffs to obtain 

acceptable performance benefits for each of these design parameters is a major challenge. 

1.3 Thesis Organization 

This thesis is organized into five chapters starting with coverage of the literature 

available about the various memory cell topologies and their pros and cons in chapter 2. 

Chapter 3 starts with a detailed description of the proposed memory cell. It then goes on 

to describe in detail the various design issues and trade-offs and arrives at specific values 

for the various parameters of the memory cell. Finally the chapter ends with a discussion 

of the design methodology of the decoder and sense amplifier. A testing methodology is 

developed and the various simulation results for this methodology are detailed in Chapter 

4. The last chapter concludes by summarizing the design parameters and lists the 

strengths of the proposed design and gives a direction for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Many journal papers have been published about the design of Static RAM cells. 

Researchers are still coming up with new designs to reduce the read access time and 

improve the noise margin of the memory cell. This chapter summarizes some of the 

design styles adapted while designing an SRAM. 

2.2 6-Transistor (6T) SRAM Cell 

The 6-Transistor (6T) SRAM is one of the most commonly used SRAM cells. This 

SRAM cell uses a single word line and two data lines (bit and bitbar). The cell contains a 

pair of cross coupled inverters and an access transistor for each data line. 

bitbitbar

M1

M2

M3

M4

word

M5 M6

Figure 1: 6-Transistor (6T) SRAM cell 
 
Dr. Louis G. Johnson, in his lecture notes [1], has discussed in detail about the design of 

6T-SRAM cell. He has provided mathematical equations to find the optimum ratio
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between cell transistors (M1, M2, M3 and M4) and pass transistors (M5 and M6) to 

maximize noise margin and reduce access time delay. 

 

During the read cycle, the bit lines are pre-charged. While reading a stored ‘0’, the 

transistor M4 (as shown in Figure 1) has to discharge the charge stored in the bit lines 

during the pre-charge cycle. Hence the transistor M4 has to be sufficiently sized up for 

proper working of the SRAM. Writing into the SRAM is double ended i.e. data and 

inverted data is provided at the bit and bitbar lines respectively. The transistors of the 

memory cell are sized up so that only a ‘0’ on the bit (or bitbar) lines can overwrite a ‘1’ 

in the memory cell. A ‘1’ on the bit (or bitbar) line cannot overwrite a ‘0’ stored in the 

memory cell. If this condition is not satisfied, a ‘1’ may be written into the memory cell 

while reading a stored ‘0’. 

 

The main advantage of 6T SRAM cell is that it occupies small area and dissipates low 

power. The main limitation of this memory cell is that it’s read and write noise margin is 

very low. A register file constructed using 6T SRAM cell can be integrated with only one 

functional unit. Hence multi-port SRAM cells are preferred in superscalar processors.   

2.3 Quad Ported SRAM 

The authors of [2] have designed a quad ported SRAM which allows four concurrent 

read/write accesses simultaneously. It was designed in 0.35 µm CMOS process with three 

metal layers and a VDD voltage of 3.3V. The schematic of the one bit quad ported cell is 

shown in Figure 2. 
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Figure 2: Quad Ported SRAM 
 

The NMOS transistors of the two inverters are sized up to threefold area of a minimum 

sized transistor. The PMOS transistors are kept at minimum size. The bit lines are pre-

charged to 2.8V at every read cycle. A differential amplifier with current source load, as 

shown in Figure 3, is employed as the sense amplifier.  

Figure 3: Sense Amplifier 
 

It is mentioned that the optimum size for the PMOS transistor in the sense amplifier is 15 

times minimum size and that of NMOS is 4 times minimum size. The sense amplifier 

takes about 1.7 ns to drive the output to 0.9VDD (while reading a 1) or 0.1VDD (while 

reading a 0). The complete read cycle takes 2.1ns from applying the address to the output 

of the digital data. 

2.4 32–Word by 32–bit 3–Port Register File 

A 32–Word by 32–bit 3–Port Register File has been designed by the authors of [3]. 

Figure 4 shows how the register file is organized.  
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Figure 4: 32–Word by 32–bit 3–Port Register File 
 
The register file consist of a write clock driver (WCLKD), a read pre-charge pulse 

generator (RPPG), pre-charge circuits (PCs), decoders (XDECs, YDECs), memory cells 

(MCs), Y selectors, sense amplifiers (SAS), a write buffer (WB), a bypass circuit (BP), 

and address registers (REGS). Low threshold voltage n channel MOSFET was used in the 

design of decoders, memory cell read & write ports and pre-charge circuits to improve 

the read access time. The register file was fabricated using 0.4 µm CMOS process 

technology and occupied an area of 2.78mm x 0.72mm on chip. The measured delay time 

was 1.88ns. 

 

In the memory cells discussed in section 2.2, 2.3 and 2.4, during the read cycle, if the 

transistors are not appropriately sized up, there is a possibility that a wrong value gets 



8

stored in the memory cell. This situation is overcome by using different read and write 

busses as discussed in section 2.5 and 2.6. But these architectures require more area than 

the conventional multi-port SRAM. 

2.5 SRAM with three address word lines and data bit lines 

In conventional two port static RAM cells, a read-time error can take place if the 

transition of write/read mode and the transition of register address occur simultaneously. 

To overcome this problem, the authors of [4] have designed a new SRAM as shown in 

Figure 5. In this topology, two simultaneous single ended read operations are possible. 

Figure 5: SRAM with three address word lines and data bit lines 
 
The two complementary data bit lines, ADBL. and ADBL. and the address word 

line AAWL. are used for a write operation. One of the data bit lines, )(. RADBL or 

)(. RBDBL and one address word line )(. RAAWL or )(. RBAWL are used for two 

simultaneous read operations. The authors have mentioned that the cell occupies an area 

of 61 x 68 µm2 which is about 30 percent larger than a conventional two-port RAM.    
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2.6 Register File on the Itanium-2 Microprocessor 

As discussed in [5], the Itanium-2 microprocessor contains a 20-ported, 128-entry, 65-bit 

register file with 12 read and 8 write ports. Each register has 12 word lines instead of 20 

word lines as in a standard register file. There is a shared control wire (WRITEH) for 

every register which determines the read/write directionality of the word line. Figure 6 

shows the schematic of a SRAM cell. 

Figure 6: Schematic of 20-port SRAM in Itanium-2 microprocessor 
 

Different read and write bit lines are used in this SRAM cell. During the write cycle, the 

data to be written is available on the write bit line and the WRITEH signal is asserted 

high. The gate of the transistor M1 is asserted high and the transistor M1 is turned ON. 

The data on the write bit line is now available at the data node. While reading a 1 from 

the memory cell, the transistors M2 and M3 are ON and the charge stored on the bit lines 

during the pre-charge cycle is discharged. While reading a 0 from the memory cell, the 

transistor M3 is cut-off and the read bit line is not discharged.  
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2.7 Summary 

The 6T SRAM cell occupies much less area when compared to other multi-port SRAM 

cells, but it can be integrated to only one functional unit. Hence multi-port SRAM cells 

are preferred to design register files for superscalar processors. The transistors of multi-

port SRAM cells have to be appropriately sized up to avoid a wrong value being written 

into the memory cell during the read cycle. This situation can be avoided by using 

different read and write busses as discussed in section 2.5 and 2.6, but such designs 

occupy a larger area than conventional designs. A trade-off has to be achieved between 

the area, noise margin and access time of the memory cell. In this thesis, a new memory 

cell has been designed to achieve the right trade-off between these design parameters. 
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CHAPTER 3 

DESIGN OF REGISTER FILE 

3.1 Introduction 

A register file is an array of processor registers in a central processing unit. Modern 

integrated circuit-based register files are usually implemented using fast static RAMs 

with multiple ports. A register file consists of three main components: 

1. Memory cell array 

2. Address Decoder 

3. Sense Amplifier 

Memory cell arrays are constructed by arranging static RAM cells in the form of a 

matrix. Each column of this matrix shares common bit lines and each row shares 

common word lines. An address decoder decodes a valid address and asserts only one of 

the word lines high. A sense amplifier quickly detects the value on the bit line and helps 

in reducing the access time of the register file. This chapter describes in detail the design 

of these three components. 

3.2 Register file organization 

Figure 7 shows how the register file is organized. The register file that is designed can 

store 32 words where each word is 32 bits wide. 10 port SRAM cells are used to 
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construct the register file and words can be simultaneously written on any of the ten ports 

or simultaneously read from any of the 10 ports. This word addressable register file 

requires 5-to-32 decoder to address every word in the register file. Since there are 10 

ports in the register file, we require 10 decoders for addressing all ports. Each of the bit 

lines is connected to a sense amplifier. In this register file, an inverter is used as a sense 

amplifier. By using an inverter as a sense amplifier, the complexity of circuit and the chip 

area required are greatly reduced. In register files where read access time is critical, 

single ended analog sense amplifier like [6] is recommended. 

Decoder 0

Decoder 1

Decoder 2

Decoder 3

Decoder 4

Decoder 5

Decoder 6

Decoder 7

Sense amplifier

5

5

5

5

5

5

5

5

32

Decoder 6

Decoder 7

5

5

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address 7

Address 8

Address 9

32

32

32

32

32

32

32

32

32

Word 
lines

Bit lines

1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010

Memory cell array

Sense amplifier output
 

Figure 7: Register File 
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The timing sequence of write and read operations are shown in Figure 8 and Figure 9. A 

write operation occurs when both the clock and word signal is asserted high. A read 

operation occurs when the clock is asserted low and word is asserted high. Multiple 

simultaneous read operations from a register array are possible. But multiple 

simultaneous write operations to the same register array should not be done because this 

would result in unpredictable data being stored in the register array. 

clk

word
t

t

Figure 8: Write cycle 
 

clk

word
t

t

Figure 9: Read cycle 
 
3.3 Implementation of Data Storage Element 

Static RAM is used as the data storage elements in a register file. Dynamic RAM is not 

usually used for register files for the following reasons [7]: 
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1. The contents of the cell would fade away with time and must be refreshed at 

regular intervals. Additional refresh circuitry is required if dynamic RAM cells 

are used for implementing the data storage elements in a register file. 

 

2. The Dynamic RAM stores the charge on the floating node which is used to drive 

the column sense amplifiers connected to each bit line. The storage capacitance 

has to be very large to produce a change on the bit lines. But these large storage 

capacitances increase the capacitive load on the bit lines and which in turn 

increase the settling time of the bit lines. 

 

3. Dynamic RAM cells are implemented using specialized fabrication processes. 

Implementing DRAM cells using fabrication processes used for normal digital 

circuits will reduce its performance tremendously. Thus implementing register 

files using DRAM will not be a good idea especially when they need to be 

integrated with other components of a processor. 

3.4 Design of 10 port SRAM 

The 10-port SRAM cell described in this thesis was inspired by the SRAM cell of the 

Itanium-2 microprocessor discussed in section 2.6. Both these memory cells use single 

ended write and single ended read. In this thesis, an attempt was made to reduce the 

number of transistors involved in the design of SRAM when compared to that in the 

Itanium-2 microprocessor. As discussed in section 2.6, in the Itanium-2 microprocessor, a 

separate read/write signal (WRITEH) is used to write into or read from the SRAM cell. 

Here, we use clock and word signals to identify read and write operations. In the Itanium-
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2 microprocessor, there are separate read and write bit lines. On the other hand, in this 

design, the same bit line is used for both read and write operations.  In the Itanium-2 

microprocessor, separate transistors drive each bit line. But in this design a single large 

transistor is used to drive the capacitance associated with all the 10 bit lines.   

 

In the register file used in the Itanium-2 microprocessor, since there are separate read and 

write bit lines, read and write operations to different memory locations can take place 

simultaneously. But in the register file proposed in this thesis, since only one bit line is 

used per port for both read and write operation, simultaneous read and write operations 

are not possible. By using the same bit line for both read and write operation, we achieve 

a huge reduction in the area occupied by the memory cell array when compared to that in 

the Itanium-2 microprocessor.  

 

The schematic of the 10 port SRAM is shown in Figure 10. It has ten word lines (word0 

to word9) and ten bit lines (bit0 to bit9). During the write cycle, data can be written from 

only one of the ten ports to an individual memory cell and during the read cycle, data can 

be read from a single memory cell simultaneously from all the ten ports. 
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Figure 10: Ten port SRAM 

 
3.4.1 Writing into the memory cell 

During the write cycle, the word lines of one of the ports through which data is written 

will be asserted high. The data to be written is applied to the writedata pin of the 

corresponding port. Since clock is asserted high during the write cycle, the data to be 

written will be available at the data node after passing through the NMOS pass transistors 

(M15 to M25). Since the transistors M3 and M6 are OFF, writing the data into the 

memory cell is much easier. The transistors M8 and M11 are OFF and transistors M10 

and M12 are ON. Hence the drain of transistors M13 and M14 are in a high impedance 

state during the write cycle, irrespective of the value at the data node.  

 

Figure 11 shows the condition of each transistor when data is written through port 4. 
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Figure 11: Ten port SRAM – Write cycle 
 

3.4.2 Reading 0 from the memory cell 

While reading a 0 from the memory cell, the bit lines are pre-charged high for a time 

duration equal to the decoder delay. After the pre-charge cycle, the word line 

corresponding to the port through which data is read will be asserted high. The transistors 

M7, M8, M11 and M14 are ON, and the transistors M9, M10, M12 and M13 are OFF. 

The charge stored in the bit line during the pre-charge cycle, is discharged through the 

transistor M14 and the bit line is pulled low. 

 

Figure 12 shows the condition of each transistor when 0 is read through port 2, port 4 and 

port 6.   
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Figure 12: Read 0 from the memory cell 
 
3.4.3 Reading 1 from the memory cell 

While reading a 1 from the memory cell, the bit lines are pre-charged high. After the pre-

charge cycle, the word line corresponding to the port through which data is read will be 

asserted high. The transistors M8, M9, M11 and M13 are ON, and the transistors M7, 

M10, M12 and M14 are OFF. Since the bit lines are already pre-charged high, the 

transistor M13 need not drive the bit lines high. 

 

Figure 13 shows the condition of each transistor when 0 is read through port 2, port 4 and 

port 6. 
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Figure 13: Read 1 from the memory cell 
 

3.4.4 Transistor sizing 

During the read cycle, while reading a stored 0, the transistor M14 has to discharge the 

charge stored in the large bit line capacitance. In the worst case, it may have to discharge 

all the ten bit line capacitances. If the transistors are not appropriately sized, the memory 

cell will not work correctly. 

 

While reading a stored 1, as discussed in section 3.4.3, the transistor M13 need not drive 

the bit lines high. Hence the transistor M13 is kept at minimum width to minimize the 

area occupied by the SRAM cell. 
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Read access time is inversely proportional to the transistor size of M14. But increasing 

the transistor size considerably will increase the area of the register file. Hence a trade-off 

has to be made between the read access time and the memory cell area. 

 

Simulation studies were done to determine the time taken to discharge bit line 

capacitance for various widths of n-transistors. The following graph shows the simulation 

results. 

Figure 14: Discharge rate of bit line capacitance for various transistor widths 
 

The time taken to discharge the bit line capacitance from 5V to 3.5 V is given in Table 1. 

3.5V represents the switching voltage (Vinv) of the sense amplifier. The reason for 

choosing 3.5 V to be the switching voltage of sense amplifier is explained in section 3.6. 
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Table 1: Discharge rate of bit line capacitance for various transistor widths 
 

Width of 
n-transistor 

(µm) 

 
Time taken to discharge 
capacitance from 5V to 

3.5V (ns) 
 

21.6 
20.4 
19.2 
18 

16.8 
15.6 
14.4 
13.2 
12 

10.8 
9.6 
8.4 
7.2 
6

4.8 
3.6 
2.4 
1.2 

 
0.30 
0.31 
0.33 
0.36 
0.39 
0.42 
0.45 
0.50 
0.55 
0.61 
0.70 
0.81 
0.95 
1.17 
1.50 
2.10 
3.46 
9.15 

 

Figure 15 shows a plot of the data represented in Table 1. As the width of the transistor 

increases, the time taken to discharge the bit line capacitance decreases. But if the 

transistor width is increased beyond 14.4µm, the percentage decrease in discharge time is 

less than 9% and we are now in the region of diminishing returns. These simulation 

results are used to determine the width of the transistor M14. The width of transistor M14 

is set to 14.4 µm. 
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Figure 15: Time taken to discharge from 5V to 3.5V for various transistor widths 
 

3.4.5 Estimating the bit line capacitance 

The bit line capacitance consists of two components. 

1. The diffusion capacitance (Cdiff) of the pass transistors connected to the bit lines. 

2. The metal capacitance (Cm) on the bit lines. 

The diffusion capacitance consists of two components: bottom-plate junction capacitance 

(Cbottom) and the side wall junction capacitance (Csw)[8]. 

 

where  

CJ = Bottom plate junction capacitance per unit area  

)2.(.. LWCJSWLWCJ
CCC swbottomdiff

++=
+=
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CJSW = Side wall junction capacitance per unit perimeter 

L = Length of the drain region 

W = Width of the drain region 

L

W

n+

p-

n+

 
Figure 16:  Dimension of drain region 

 

CJ and CJSW are process parameters. The values for CJ and CJSW for 0.6 micron 

technology are given below. 

CJ = 4.234 x 10-4 F.m-2 

CJSW = 3.826 x 10-10 F.m-1 

3.5 Design of Decoder 

Each memory cell has 10 word lines. Hence the register file needs totally 10 address 

decoders. Each decoder has 5 input lines and 32 output lines. The decoder can accept 

address ranging from 00000 to 11111. According to the input to the decoder, one of the 

output lines is asserted high and all the other output lines remain low. 
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The behavioral code for the address decoder is presented in Appendix 1a which was 

synthesized using the OSU standard cell library. The synthesized structural code is 

presented in Appendix 1b. The test bench used to test the decoder and the simulation 

results are presented in Appendix 1c and 1d respectively. Figure 17 shows the schematic 

of the address decoder. 

Figure 17:  Schematic of Address Decoder 
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The decoder delay* was found to be 0.6ns. Address decoding and pre-charging of bit lines 

are done simultaneously to reduce the access time of the register file. The pre-charge 

transistors are sized up so that the bit lines are pre-charged within 0.6ns. 

3.6 Design of sense amplifiers 

In memory design, it is a common practice to read information from the memory cells by 

using an analog differential amplifier to sense the difference between the bit and bitbar 

lines quickly.   In this design since there is only one bit line for every word line, a 

specially designed inverter is used as the sense amplifier for single ended reads as shown 

in Figure 18. As the focus of this thesis is mainly on the design of the SRAM cell, this 

design uses an inverter as a sense amplifier although analog sense amplifiers are industry 

standard nowadays. 

 

Since the bit lines are pre-charged high, the inverters are designed to quickly detect a zero 

in the bit line. The switching voltage Vinv of the inverter has to be greater than Vdd/2 to 

minimize the read access time. This is achieved by using wider pFETs in the inverter 

sense amplifier [7]. 

Memory  
cell

Memory  
cell

pre

Vbit

Vout

Sense 
Amplifier

 
Figure 18:  Inverter as Sense Amplifier 

 

* Pre-layout delay calculated from simulation in Cadence Simvision. The post-layout back annotated delay was not calculated which 
is beyond the scope of this thesis. 
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Simulations were done to determine the switching voltage (Vinv) of a CMOS inverter for 

various widths of p-transistor. The n-transistors of inverters are kept at minimum width 

because sizing it up will not enhance the performance of sense amplifier. The Voltage 

Transfer Characteristics (VTC) of inverters with different p-transistor widths as shown in 

Figure 19. 
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Figure 19:  Voltage Transfer Characteristics (VTC) of inverter 

 

Table 2 shows the switching voltage of inverters for different PMOS width. 

Figure 20 shows a plot of the data represented in Table 6.  
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Table 2: Switching voltage for various p-transistor widths 

 

Width of PMOS 
(µm) 

 

Switching Voltage 
Vinv (V) 

1.2 
3.6 
7.2 
10.8 
14.4 
18.0 

 

2.23 
2.97 
3.32 
3.48 
3.58 
3.64 

As the width of the PMOS increases, the switching voltage Vinv value also increases. But 

when the width of PMOS increases beyond 10.8 µm, the rise in the switching voltage 

becomes negligible. Hence width of the PMOS is chosen to be 10.8 µm. 
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Figure 20:  Inverter switching voltage for various p-transistor widths 
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Figure 21 shows the timing diagram during the read cycle. During the read cycle, the 

word line is asserted high and clock is asserted low. The pre-charge signal is asserted low 

for duration equal to decoder delay. This will turn ON the pre-charge transistor and the 

bit lines are pre-charged high. After the pre-charge cycle, if zero is read from the memory 

cell, the transistor M12 discharges the bit line capacitance. Once the voltage at the bit line 

reaches the switching voltage (Vinv) of the sense amplifier, the output of the sense 

amplifier (Vout) begins to rise.  

pre

word

clk

Vbit

Vout

Read access time

t

t

t

t

t

Vinv (Sense Amplifier)

 
Figure 21:  Timing diagram – Read cycle 
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3.7 Summary 

An address decoder, a sense amplifier and a memory cell array were designed. The 

address decoder was designed using OSU standard cells. The delay of the decoder was 

found to be 0.6ns. An inverter with wider pFET was used as the sense amplifier. The 

switching voltage (Vinv) of the sense amplifier is 3.5 V and the width of the p-transistor 

used in sense amplifier is 10.8µm. The memory cell array was constructed using 10 port 

SRAM cells. All the pass transistors of the SRAM cell are kept at minimum width (1.2 

µm) to minimize the bit line capacitance. The width transistor M14 of the SRAM is 

14.4µm. 
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CHAPTER 4 

IMPLEMENTATION AND RESULTS 

4.1 Introduction 

In chapter 3, the design of memory cell, address decoder and the sense amplifier is 

explained in detail.  The focus of this chapter would be to explain the implementation of 

the memory cell, the testing methodology of the memory cell & register array, and to 

tabulate the simulation results obtained.  

4.2 10-port SRAM layout 

Figure 22 shows the layout of the 10-port SRAM cell. All the word lines are laid out in 

metal 2 and the bit lines are laid in metal 3. Most of the routing between transistors in the 

memory cell is achieved using metal 1. The area occupied by one memory cell is 1198.8 

µm2. The tools and process used in making the layout is listed below. 

� EDA (Electronic Design Automation) tool: Cadence 

� Layout editor: Virtuoso 

� Design rules: MOSIS Sub-micron, Scalable CMOS N-well technology (SCN_SUBM) 

� Process: AMI 0.6 micron 

� Waveform viewing tool : Analog artist waveform window (AWD) 
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Figure 22:  Layout of 10 port memory cell 
 
4.3 Testing 10-port SRAM cell 

The memory cell is tested by writing data through each port of the memory cell and 

reading the same from all the ports simultaneously. If the data being read matches with 

the data written, then the SRAM cell is working fine. As discussed in the previous 

chapter, reading a stored 0 through all the ports simultaneously represents the worst case 

scenario and hence has to be tested. 

 



32

The layout is tested using a simulation tool called Spectre. Spectre is a detailed circuit 

simulator similar to spice that accurately determines node voltages and currents as 

functions of time. The parasitic capacitances are extracted and a netlist with parasitic 

capacitance is generated. The netlist file is however not a complete Spectre file. We need 

to add the MOSFET transistor models and the input stimulus to perform the simulation.  

The pre-charge transistors, write drivers and sense amplifiers were simulated in the 

Spectre file. The Spectre file used to test the 10 port SRAM is presented in Appendix 2. 

 

The following sequences of operations were done to test the SRAM cell. 

1. Writing a 1 through port 0. 

2. Reading from all the ten ports simultaneously. 

3. Writing a 0 through port 1. 

4. Reading from all the ten ports simultaneously. 

5. Writing a 1 through port 2. 

6. Reading from all the ten ports simultaneously. 

7. Writing a 0 through port 3. 

8. Reading from all the ten ports simultaneously. 

9. Writing a 1 through port 4. 

10. Reading from all the ten ports simultaneously. 

11. Writing a 0 through port 5. 

12. Reading from all the ten ports simultaneously. 

13. Writing a 1 through port 6. 

14. Reading from all the ten ports simultaneously. 
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15. Writing a 0 through port 7. 

16. Reading from all the ten ports simultaneously. 

17. Writing a 1 through port 8. 

18. Reading from all the ten ports simultaneously. 

19. Writing a 0 through port 9. 

20. Reading from all the ten ports simultaneously. 

 

The storage node voltages, Vdata and Vdatabar, are monitored during each read and write 

cycle. The simulation waveforms are plotted using the AWD waveform viewing tool. 

Figure 23 shows the simulation results obtained while testing the 10 port SRAM cell 

using Spectre. 
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Figure 23:  10 port SRAM simulation results 
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4.4 Noise Margin 

While writing a ‘1’ into the memory cell, the maximum voltage achieved at the data node 

is 3.04 V and while writing a ‘0’ the maximum voltage achieved at the data node is 25.18 

mV. The storage inverter (M1 and M2) are designed using minimum width transistors. 

Hence the switching voltage (Vinv) of the storage inverter is 2.23 V as shown in Table 2. 

The write noise margin of the memory cell is  

NMwrite = 3.04 – 2.23 

 = 0.81 V. 

While reading the data from the memory cell, since the bit line is not directly driven by 

the storage inverter pair, the data stored in the memory cell is never destroyed. The read 

cycle is non-destructive and hence the read noise margin is infinite.  

NMread = ∞

4.5 Access time 

Access time is the interval between the time when an address is provided to the address 

decoder and the time when stable data is available at the sense amplifier output. It is the 

sum of delays of the address decoder, the memory cell array and the sense amplifier. 

Figure 24 explains how the access time is calculated. The access time is measured 

between 50% of the pre-charge signal transition and 50% of the sense amplifier output 

transition. From the Spectre simulations, the access time was found to be 1.96ns. 
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Figure 24:  Access time delay 
 

4.6 Testing the memory cell array 

The register file is simulated using the IRSIM simulator. IRSIM [9] is an event driven 

logic level simulator which can handle the RC delays on nets. Logic level simulation is a 

coarser simulation than SPICE. Signals are represented in one of the following states: 0, 

1, X (undefined). IRSIM simulations are much faster and use less memory than SPICE 

simulations.  

 

The IRSIM file used to test the memory cell array is represented in Appendix 3a and the 

simulation results are shown in Appendix 3b. In these tests, a 32 bit word is being written 
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to each row in the register file and is read back in the next consecutive cycle. The data 

read from the register file is compared with the expected data and mismatches are 

asserted. 

4.7 Summary 

The design of a 32 x 32 memory cell array was laid out using AMI 0.6 micron technology 

and simulated using Spectre and IRSIM. The design was found to meet the following 

specifications: 

� Read Noise Margin of Memory cell (NMwrite) = ∞

� Write Noise Margin of memory cell (NMwrite) = 0.81V. 

� Access time of the register file tacc = 1.96ns. 

� Pre-charge duration of bit lines = 0.6ns. 

� Decoder Delay = 0.6ns. 

� Area of SRAM cell = 1198.8 µm2.

� Area of memory cell array = 1.294mm2
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The objective of this thesis is to design a 32-bit 32-word 10-read/write port register file 

using AMI 0.6 µm technology.  The design issues involved in this design include 

reliability of the memory cell, access time of the register file and area occupied by the 

memory array.  Arriving at the right tradeoffs to obtain acceptable performance benefits 

for each of these design parameters is a major challenge.  

 

The following design approach was followed to design the register file: Simulation 

studies were done to arrive at an optimum width for the p-transistor in the sense 

amplifier. The width of the p-transistor was fixed to 14.4µm and the corresponding 

switching voltage of the sense amplifier was approximately 3.5V. Simulations were done 

to determine the time taken to discharge the bit line capacitance from 5V (Vdd) to 3.5V 

(switching voltage of sense amplifier). This simulation result was used to find the width 

of the transistor M12 of the SRAM cell.  

 

The layout of the SRAM cell was made using the Cadence Virtuoso Layout editor. 

Behavioral code for the address decoder was written in Verilog, synthesized and its worst
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case delay was found to be 0.6ns. The memory cell was simulated with the Spectre 

simulator. The write noise margin was found to be 0.81V and the access time of the 

register file was 1.96ns. The memory cell array occupies an area of 1.294mm2. The 

memory cell array was simulated using the IRSIM simulator and was checked for correct 

functionality. 

 
The following are the strengths of this register file design: 
 

1. There is only one bit line associated with each word line. In traditional memory 

cell designs, two bit lines are associated with every word line. The reduction in 

the number of bit lines will reduce the total area occupied by the memory cell. 

2. Since there are only half the number of bit lines when compared to that of 

traditional memory cells, the number of bit lines that needs to be pre-charged is 

reduced to half. This tremendously decreases the wastage of power during the 

pre-charge cycle. 

3. During the read cycle, the bit line is not directly coupled to the inverter pair of the 

memory cell. Hence the read cycle will not destroy the contents of the memory 

cell. 

5.2 Future Work 

Once the architecture of the memory cell has been characterized fully, a more generic 

analysis using models such as the Piece-Wise Linear Transistor Model [1] could be done. 

Also once a complete model for the memory cell and the bit-line delays is obtained, the 

entire process of designing the entire register file could be automated to meet a given 

specification. This automation of memory cell design and layout is a hot area of research.  
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The access time of the register file can be improved by using single ended analog sense 

amplifiers like [6] instead of using inverters as the sense amplifier.  The multi-port 

register file can be fabricated and tested on chip. This will enable us to observe the read 

access time and noise margin of the SRAM cell with real transistors. 
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APPENDIX 

Appendix 1a: Behavioral code – Address Decoder 

module decoder (  
 in ,  // 5 bit binary input  
 out ,  // 32-bit output   
 enable  // Enable for the decoder  
 );  
 

input [4:0] in;  
 input enable;   
 output [31:0] out;   
 

wire [31:0] out;   
 

assign out = (enable) ? (1 << in) : 32'b0 ;  
 
endmodule 
 



Appendix 1b: Structural code – Address Decoder 

module decoder (in, out, enable); 
 

input [4:0] in; 
 output [31:0] out; 
 input enable; 
 

NOR2X1 i_8(.A(n_37), .B(n_51), .Y(out[7])); 
 AND2X1 i_7(.A(n_36), .B(n_27), .Y(out[6])); 
 NOR2X1 i_6(.A(n_34), .B(n_51), .Y(out[5])); 
 AND2X1 i_5(.A(n_33), .B(n_27), .Y(out[4])); 
 NOR2X1 i_4(.A(n_31), .B(n_51), .Y(out[3])); 
 AND2X1 i_3(.A(n_30), .B(n_27), .Y(out[2])); 
 NOR2X1 i_20(.A(n_28), .B(n_51), .Y(out[1])); 
 AND2X1 i_1(.A(n_27), .B(n_25), .Y(out[0])); 
 NAND3X1 i_33(.A(enable), .B(in[3]), .C(in[4]), .Y(n_41)); 
 NAND2X1 i_0(.A(in[4]), .B(n_26), .Y(n_40)); 
 NOR2X1 i_34(.A(in[4]), .B(n_38), .Y(n_39)); 
 NAND2X1 i_44(.A(in[3]), .B(enable), .Y(n_38)); 
 NAND3X1 i_74(.A(in[2]), .B(in[1]), .C(in[0]), .Y(n_37)); 
 NOR2X1 i_73(.A(in[0]), .B(n_35), .Y(n_36)); 
 NAND2X1 i_42(.A(in[1]), .B(in[2]), .Y(n_35)); 
 NAND2X1 i_72(.A(in[0]), .B(n_32), .Y(n_34)); 
 NOR2X1 i_71(.A(in[0]), .B(n_46), .Y(n_33)); 
 NOR2X1 i_40(.A(in[1]), .B(n_52), .Y(n_32)); 
 NAND2X1 i_70(.A(in[0]), .B(n_42), .Y(n_31)); 
 NOR2X1 i_69(.A(in[0]), .B(n_29), .Y(n_30)); 
 NAND2X1 i_3812(.A(in[1]), .B(n_52), .Y(n_29)); 
 NAND2X1 i_68(.A(in[0]), .B(n_24), .Y(n_28)); 
 NOR2X1 i_2(.A(in[4]), .B(n_49), .Y(n_27)); 
 NOR2X1 i_36(.A(in[3]), .B(n_53), .Y(n_26)); 
 NOR2X1 i_67(.A(in[0]), .B(n_45), .Y(n_25)); 
 NOR2X1 i_35(.A(in[1]), .B(in[2]), .Y(n_24)); 
 AND2X1 i_9(.A(n_39), .B(n_25), .Y(out[8])); 
 NOR2X1 i_10(.A(n_28), .B(n_50), .Y(out[9])); 
 NOR2X1 i_11(.A(n_43), .B(n_50), .Y(out[10])); 
 NOR2X1 i_12(.A(n_31), .B(n_50), .Y(out[11])); 
 NOR2X1 i_13(.A(n_44), .B(n_50), .Y(out[12])); 
 NOR2X1 i_14(.A(n_34), .B(n_50), .Y(out[13])); 
 NOR2X1 i_15(.A(n_48), .B(n_50), .Y(out[14])); 
 NOR2X1 i_16(.A(n_37), .B(n_50), .Y(out[15])); 
 NOR2X1 i_17(.A(n_40), .B(n_47), .Y(out[16])); 
 NOR2X1 i_18(.A(n_28), .B(n_40), .Y(out[17])); 
 NOR2X1 i_19(.A(n_40), .B(n_43), .Y(out[18])); 
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 NOR2X1 i_201(.A(n_31), .B(n_40), .Y(out[19])); 
 NOR2X1 i_21(.A(n_40), .B(n_44), .Y(out[20])); 
 NOR2X1 i_22(.A(n_34), .B(n_40), .Y(out[21])); 
 NOR2X1 i_23(.A(n_40), .B(n_48), .Y(out[22])); 
 NOR2X1 i_24(.A(n_37), .B(n_40), .Y(out[23])); 
 NOR2X1 i_25(.A(n_41), .B(n_47), .Y(out[24])); 
 NOR2X1 i_26(.A(n_41), .B(n_28), .Y(out[25])); 
 NOR2X1 i_27(.A(n_41), .B(n_43), .Y(out[26])); 
 NOR2X1 i_28(.A(n_41), .B(n_31), .Y(out[27])); 
 NOR2X1 i_29(.A(n_41), .B(n_44), .Y(out[28])); 
 NOR2X1 i_30(.A(n_41), .B(n_34), .Y(out[29])); 
 NOR2X1 i_31(.A(n_41), .B(n_48), .Y(out[30])); 
 NOR2X1 i_32(.A(n_41), .B(n_37), .Y(out[31])); 
 INVX1 i_122(.A(n_29), .Y(n_42)); 
 INVX1 i_123(.A(n_30), .Y(n_43)); 
 INVX1 i_124(.A(n_33), .Y(n_44)); 
 INVX1 i_125(.A(n_24), .Y(n_45)); 
 INVX1 i_126(.A(n_32), .Y(n_46)); 
 INVX1 i_127(.A(n_25), .Y(n_47)); 
 INVX1 i_128(.A(n_36), .Y(n_48)); 
 INVX1 i_129(.A(n_26), .Y(n_49)); 
 INVX1 i_130(.A(n_39), .Y(n_50)); 
 INVX1 i_131(.A(n_27), .Y(n_51)); 
 INVX1 i_132(.A(in[2]), .Y(n_52)); 
 INVX1 i_133(.A(enable), .Y(n_53)); 
 
endmodule  
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Appendix 1c: Test bench for testing Address Decoder 

 
`timescale 1ns/10ps 
module decoder_test(); 
reg [4:0] in1[31:0], in; 
reg [31:0] out1[31:0]; 
reg enable; 
wire [31:0] out; 
integer i, error; 
 
decoder dut (in, out, enable); 
 
initial begin 
 
enable = 1; 
 
in1[0]  = 5'b00000; 
in1[1]  = 5'b00001; 
in1[2]  = 5'b00010; 
in1[3]  = 5'b00011; 
in1[4]  = 5'b00100; 
in1[5]  = 5'b00101; 
in1[6]  = 5'b00110; 
in1[7]  = 5'b00111; 
in1[8]  = 5'b01000; 
in1[9]  = 5'b01001; 
in1[10] = 5'b01010; 
in1[11] = 5'b01011; 
in1[12] = 5'b01100; 
in1[13] = 5'b01101; 
in1[14] = 5'b01110; 
in1[15] = 5'b01111; 
in1[16] = 5'b10000; 
in1[17] = 5'b10001; 
in1[18] = 5'b10010; 
in1[19] = 5'b10011; 
in1[20] = 5'b10100; 
in1[21] = 5'b10101; 
in1[22] = 5'b10110; 
in1[23] = 5'b10111; 
in1[24] = 5'b11000; 
in1[25] = 5'b11001; 
in1[26] = 5'b11010; 
in1[27] = 5'b11011; 
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in1[28] = 5'b11100; 
in1[29] = 5'b11101; 
in1[30] = 5'b11110; 
in1[31] = 5'b11111; 
 
out1[0]   = 32'b00000000000000000000000000000001; 
out1[1]   = 32'b00000000000000000000000000000010; 
out1[2]   = 32'b00000000000000000000000000000100; 
out1[3]   = 32'b00000000000000000000000000001000; 
out1[4]   = 32'b00000000000000000000000000010000; 
out1[5]   = 32'b00000000000000000000000000100000; 
out1[6]   = 32'b00000000000000000000000001000000; 
out1[7]   = 32'b00000000000000000000000010000000; 
out1[8]   = 32'b00000000000000000000000100000000; 
out1[9]   = 32'b00000000000000000000001000000000; 
out1[10]  = 32'b00000000000000000000010000000000; 
out1[11]  = 32'b00000000000000000000100000000000; 
out1[12]  = 32'b00000000000000000001000000000000; 
out1[13]  = 32'b00000000000000000010000000000000; 
out1[14]  = 32'b00000000000000000100000000000000; 
out1[15]  = 32'b00000000000000001000000000000000; 
out1[16]  = 32'b00000000000000010000000000000000; 
out1[17]  = 32'b00000000000000100000000000000000; 
out1[18]  = 32'b00000000000001000000000000000000; 
out1[19]  = 32'b00000000000010000000000000000000; 
out1[20]  = 32'b00000000000100000000000000000000; 
out1[21]  = 32'b00000000001000000000000000000000; 
out1[22]  = 32'b00000000010000000000000000000000; 
out1[23]  = 32'b00000000100000000000000000000000; 
out1[24]  = 32'b00000001000000000000000000000000; 
out1[25]  = 32'b00000010000000000000000000000000; 
out1[26]  = 32'b00000100000000000000000000000000; 
out1[27]  = 32'b00001000000000000000000000000000; 
out1[28]  = 32'b00010000000000000000000000000000; 
out1[29]  = 32'b00100000000000000000000000000000; 
out1[30]  = 32'b01000000000000000000000000000000; 
out1[31]  = 32'b10000000000000000000000000000000; 
 
$timeformat(-9,1,"ns",12); 
 
end 
 
initial begin 
 

error = 0; 
 for(i=0; i<=31; i=i+1) begin 
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in = in1[i]; 

 

#0.58 
 $display("TIME = %t",$realtime); 
 $display ("    Test %d", i+1); 
 $display ("    *****************\n"); 
 $display ("    Decoder Input =    %b", in); 
 $display ("    Decoder Enable  =    %b", enable); 
 $display ("    Your Output  =     %b", out); 
 $display ("    Correct Output  =  %b", out1[i]); 
 

if(out1[i] !== out) begin 
 $display ("    -------------ERROR. A Mismatch Has Occured-----------"); 
 error = error + 1; 

end 
 

end 
 

if ( error !== 0) begin 
$display("-- SIMULATION UNSUCCESFUL - MISMATCHES HAVE 
OCCURED -"); 

 $display(" No. Of Errors = %d\n\n\n", error); 
 end 
 

if ( error == 0) begin 
$display("--YOU DID IT!! SIMULATION SUCCESFULLY FINISHED---- \n"); 

 end 
 
end 
 
initial begin 
$shm_open("decoder.shm"); 
$shm_probe ("AS"); 
end 
endmodule 
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Appendix 1d: Simulation results of Address Decoder 

 
TIME =        0.6ns 
 Test   1 
 ****** 
 Decoder Input   =    00000 
 Decoder Enable    =    1 
 Your Output   =   00000000000000000000000000000001 
 Correct Output   =   00000000000000000000000000000001 
 
TIME =        1.2ns 
 Test   2 
 ****** 
 Decoder Input   =    00001 
 Decoder Enable   =    1 
 Your Output   =   00000000000000000000000000000010 
 Correct Output   =   00000000000000000000000000000010 
 
TIME =        1.7ns 
 Test   3 
 ****** 
 Decoder Input   =    00010 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000000000000100 
 Correct Output   =    00000000000000000000000000000100 
 
TIME =        2.3ns 
 Test   4 
 ****** 
 Decoder Input  =    00011 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000000000001000 
 Correct Output   =    00000000000000000000000000001000 
 
TIME =        2.9ns 
 Test   5 
 ****** 
 Decoder Input   =    00100 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000000000010000 
 Correct Output   =    00000000000000000000000000010000 
 

TIME =        3.5ns 
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 Test   6 
 ****** 
 Decoder Input   =    00101 
 Decoder Enable    =    1 
 Your Output   =   00000000000000000000000000100000 
 Correct Output   =   00000000000000000000000000100000 
 
TIME =        4.1ns 
 Test   7 
 ****** 
 Decoder Input   =    00110 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000000001000000 
 Correct Output   =    00000000000000000000000001000000 
 
TIME =        4.6ns 
 Test   8 
 ****** 
 Decoder Input   =    00111 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000000010000000 
 Correct Output   =    00000000000000000000000010000000 
 
TIME =        5.2ns 
 Test   9 
 ****** 
 Decoder Input   =    01000 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000000100000000 
 Correct Output   =    00000000000000000000000100000000 
 
TIME =        5.8ns 
 Test   10 
 ******* 
 Decoder Input   =    01001 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000001000000000 
 Correct Output   =    00000000000000000000001000000000 
 

TIME =        6.4ns 
 Test   11 
 ******* 
 Decoder Input   =    01010 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000010000000000 
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 Correct Output   =    00000000000000000000010000000000 
 
TIME =        7.0ns 
 Test   12 
 ******* 
 Decoder Input   =    01011 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000000100000000000 
 Correct Output   =    00000000000000000000100000000000 
 
TIME =        7.5ns 
 Test   13 
 ******* 
 Decoder Input   =    01100 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000001000000000000 
 Correct Output   =    00000000000000000001000000000000 
 
TIME =        8.1ns 
 Test   14 
 ******* 
 Decoder Input   =    01101 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000010000000000000 
 Correct Output   =    00000000000000000010000000000000 
 
TIME =        8.7ns 
 Test   15 
 ******* 
 Decoder Input   =    01110 
 Decoder Enable    =    1 
 Your Output   =    00000000000000000100000000000000 
 Correct Output   =    00000000000000000100000000000000 
 

TIME =        9.3ns 
 Test   16 
 ******* 
 Decoder Input   =    01111 
 Decoder Enable    =    1 
 Your Output   =    00000000000000001000000000000000 
 Correct Output   =    00000000000000001000000000000000 
 
TIME =        9.9ns 
 Test   17 
 ******* 
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 Decoder Input   =    10000 
 Decoder Enable   =    1 
 Your Output   =    00000000000000010000000000000000 
 Correct Output   =    00000000000000010000000000000000 
 
TIME =       10.4ns 
 Test   18 
 ******* 
 Decoder Input   =    10001 
 Decoder Enable    =    1 
 Your Output   =    00000000000000100000000000000000 
 Correct Output   =    00000000000000100000000000000000 
 
TIME =       11.0ns 
 Test   19 
 ******* 
 Decoder Input   =    10010 
 Decoder Enable    =    1 
 Your Output   =    00000000000001000000000000000000 
 Correct Output   =    00000000000001000000000000000000 
 
TIME =       11.6ns 
 Test   20 
 ******* 
 Decoder Input   =    10011 
 Decoder Enable    =    1 
 Your Output   =    00000000000010000000000000000000 
 Correct Output   =    00000000000010000000000000000000 
 

TIME =       12.2ns 
 Test   21 
 ******* 
 Decoder Input   =    10100 
 Decoder Enable    =    1 
 Your Output   =    00000000000100000000000000000000 
 Correct Output   =    00000000000100000000000000000000 
 
TIME =       12.8ns 
 Test   22 
 ******* 
 Decoder Input   =    10101 
 Decoder Enable    =    1 
 Your Output   =    00000000001000000000000000000000 
 Correct Output   =    00000000001000000000000000000000 
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TIME =       13.3ns 
 Test   23 
 ******* 
 Decoder Input   =    10110 
 Decoder Enable    =    1 
 Your Output   =    00000000010000000000000000000000 
 Correct Output   =    00000000010000000000000000000000 
 
TIME =       13.9ns 
 Test   24 
 ******* 
 Decoder Input   =    10111 
 Decoder Enable    =    1 
 Your Output   =    00000000100000000000000000000000 
 Correct Output   =    00000000100000000000000000000000 
 
TIME =       14.5ns 
 Test   25 
 ******* 
 Decoder Input   =    11000 
 Decoder Enable    =    1 
 Your Output   =    00000001000000000000000000000000 
 Correct Output   =    00000001000000000000000000000000 
 

TIME =       15.1ns 
 Test   26 
 ******* 
 Decoder Input   =    11001 
 Decoder Enable    =    1 
 Your Output   =    00000010000000000000000000000000 
 Correct Output   =    00000010000000000000000000000000 
 
TIME =       15.7ns 
 Test   27 
 ******* 
 Decoder Input   =    11010 
 Decoder Enable    =    1 
 Your Output   =    00000100000000000000000000000000 
 Correct Output   =    00000100000000000000000000000000 
 
TIME =       16.2ns 
 Test   28 
 ******* 
 Decoder Input   =    11011 
 Decoder Enable    =    1 
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 Your Output   =    00001000000000000000000000000000 
 Correct Output   =    00001000000000000000000000000000 
 
TIME =       16.8ns 
 Test   29 
 ******* 
 Decoder Input   =    11100 
 Decoder Enable    =    1 
 Your Output   =    00010000000000000000000000000000 
 Correct Output   =    00010000000000000000000000000000 
 
TIME =       17.4ns 
 Test   30 
 ******* 
 Decoder Input   =    11101 
 Decoder Enable    =    1 
 Your Output   =    00100000000000000000000000000000 
 Correct Output   =    00100000000000000000000000000000 
 

TIME =       18.0ns 
 Test   31 
 ******* 
 Decoder Input   =    11110 
 Decoder Enable    =    1 
 Your Output   =    01000000000000000000000000000000 
 Correct Output   =    01000000000000000000000000000000 
 
TIME =       18.6ns 
 Test   32 
 ******* 
 Decoder Input   =    11111 
 Decoder Enable    =    1 
 Your Output   =    10000000000000000000000000000000 
 Correct Output   =    10000000000000000000000000000000 
 
---------YOU DID IT!! SIMULATION SUCCESFULLY FINISHED---------- 
 
7 warnings 
0 simulation events (use +profile or +listcounts option to count) + 1201 accelerated 
events + 62 timing check events 
CPU time: 0.7 secs to compile + 0.1 secs to link + 0.2 secs in simulation 
End of Tool: VERILOG-XL 05.30.007-s   Mar 29, 2006  13:31:45 
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Appendix 2: Spectre file used to test the 10 port SRAM 

simulator lang=spectre 
 
model ami06N bsim3v3 type = n 
+version = 3.1              tnom    = 27               tox     = 1.41E-8 
+xj      = 1.5E-7           nch     = 1.7E17           vth0    = 0.7086 
+k1      = 0.8354582       k2      = -0.088431       k3      = 41.4403818 
+k3b     = -14              w0      = 6.480766E-7     nlx     = 1E-10 
+dvt0w   = 0                dvt1w   = 5.3E6           dvt2w   = -0.032 
+dvt0    = 3.6139113       dvt1    = 0.3795745      dvt2    = -0.1399976 
+u0      = 533.6953445     ua      = 7.558023E-10    ub      = 1.181167E-18 
+uc      = 2.582756E-11    vsat    = 1.300981E5      a0      = 0.5292985 
+ags     = 0.1463715       b0      = 1.283336E-6     b1      = 1.408099E-6 
+keta    = -0.0173166      a1      = 0                a2      = 1 
+rdsw    = 2.268366E3      prwg    = -1E-3            prwb    = 6.320549E-5 
+wr      = 1                wint    = 2.043512E-7     lint    = 3.034496E-8 
+xl      = 0                xw      = 0                dwg     = -1.446149E-8 
+dwb     = 2.077539E-8     voff    = -0.1137226      nfactor = 1.2880596 
+cit     = 0                cdsc    = 1.506004E-4     cdscd   = 0 
+cdscb   = 0                eta0    = 3.815372E-4     etab    = -1.029178E-3 
+dsub    = 2.173055E-4     pclm    = 0.6171774       pdiblc1 = 0.185986 
+pdiblc2 = 3.473187E-3     pdiblcb = -1E-3            drout   = 0.4037723 
+pscbe1  = 5.998012E9      pscbe2  = 3.788068E-8     pvag    = 0.012927 
+delta   = 0.01             mobmod  = 1                prt     = 0 
+ute     = -1.5            kt1     = -0.11            kt1l    = 0 
+kt2     = 0.022            ua1     = 4.31E-9          ub1     = -7.61E-18 
+uc1     = -5.6E-11        at      = 3.3E4            wl      = 0 
+wln     = 1                ww      = 0                wwn     = 1 
+wwl     = 0                ll      = 0                lln     = 1 
+lw      = 0                lwn     = 1                lwl     = 0 
+capmod  = 2               xpart   = 0.4              cgdo    = 1.99E-10 
+cgso    = 1.99E-10        cgbo    = 0                cj      = 4.233802E-4 
+pb      = 0.9899238       mj      = 0.4495859       cjsw    = 3.825632E-10 
+pbsw    = 0.1082556       mjsw    = 0.1083618       pvth0   = 0.0212852 
+prdsw   = -16.1546703     pk2     = 0.0253069       wketa   = 0.0188633 
+lketa   = 0.0204965 
model ami06P bsim3v3 type = p 
+version = 3.1              tnom    = 27               tox     = 1.41E-8 
+xj      = 1.5E-7           nch     = 1.7E17           vth0    = -0.9179952 
+k1      = 0.5575604       k2      = 0.010265         k3      = 14.0655075 
+k3b     = -2.3032921      w0      = 1.147829E-6     nlx     = 1.114768E-10 
+dvt0w   = 0                dvt1w   = 5.3E6            dvt2w   = -0.032 
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+dvt0    = 2.2896412       dvt1    = 0.5213085       dvt2    = -0.1337987 
+u0      = 202.4540953     ua      = 2.290194E-9     ub      = 9.779742E-19 
+uc      = -3.69771E-11    vsat    = 1.307891E5      a0      = 0.8356881 
+ags     = 0.1568774       b0      = 2.365956E-6     b1      = 5E-6 
+keta    = -5.769328E-3    a1      = 0                a2      = 1 
+rdsw    = 2.746814E3      prwg    = 2.34865E-3      prwb    = 0.0172298 
+wr      = 1                wint    = 2.586255E-7     lint    = 7.205014E-8 
+xl      = 0                xw      = 0                dwg     = -2.133054E-8 
+dwb     = 9.857534E-9     voff    = -0.0837499      nfactor = 1.2415529 
+cit     = 0                cdsc    = 4.363744E-4     cdscd   = 0 
+cdscb   = 0                eta0    = 0.11276          etab    = -2.9484E-3 
+dsub    = 0.3389402       pclm    = 4.9847806       pdiblc1 = 2.481735E-5 
+pdiblc2 = 0.01            pdiblcb = 0                drout   = 0.9975107 
+pscbe1  = 3.497872E9      pscbe2  = 4.974352E-9     pvag    = 10.9914549 
+delta   = 0.01             mobmod  = 1                prt     = 0 
+ute     = -1.5             kt1     = -0.11            kt1l    = 0 
+kt2     = 0.022            ua1     = 4.31E-9          ub1     = -7.61E-18 
+uc1     = -5.6E-11        at      = 3.3E4            wl      = 0 
+wln     = 1                ww      = 0                wwn     = 1 
+wwl     = 0                ll      = 0                lln     = 1 
+lw      = 0                lwn     = 1                lwl     = 0 
+capmod  = 2               xpart   = 0.4              cgdo    = 2.4E-10 
+cgso    = 2.4E-10         cgbo    = 0                cj      = 7.273568E-4 
+pb      = 0.9665597       mj      = 0.4959837       cjsw    = 3.114708E-10 
+pbsw    = 0.99             mjsw    = 0.2653654       pvth0   = 9.420541E-3 
+prdsw   = -231.2571566    pk2     = 1.396684E-3     wketa   = 1.862966E-3 
+lketa   = 5.728589E-3      
 

// Library name: sramV4 
// Cell name: sram 
// View name: extracted 
\+26 (_30 clkbar vdd! vdd!) ami06P w=1.2e-06 l=6e-07 as=1.8e-12 \ 
 ad=1.08e-12 ps=4.2e-06 pd=1.8e-06 m=1 region=sat 
\+25 (_30 clk _29 vdd!) ami06P w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+24 (data databar _31 vdd!) ami06P w=1.2e-06 l=6e-07 as=1.08e-12 \ 
 ad=1.8e-12 ps=1.8e-06 pd=4.2e-06 m=1 region=sat 
\+23 (_31 clk vdd! vdd!) ami06P w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.08e-12 \ 
 ps=4.2e-06 pd=1.8e-06 m=1 region=sat 
\+22 (vdd! data databar vdd!) ami06P w=1.2e-06 l=6e-07 as=1.8e-12 \ 
 ad=1.8e-12 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+28 (_27 _30 vdd! vdd!) ami06P w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+27 (vdd! data _30 vdd!) ami06P w=1.2e-06 l=6e-07 as=1.08e-12 ad=1.8e-12 \ 
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 ps=1.8e-06 pd=4.2e-06 m=1 region=sat 
\+13 (_27 _29 0 0) ami06N w=5.4e-06 l=6e-07 as=8.1e-12 ad=8.1e-12 \ 
 ps=8.4e-06 pd=8.4e-06 m=1 region=sat 
\+12 (0 _29 _27 0) ami06N w=5.4e-06 l=6e-07 as=4.86e-12 ad=8.1e-12 \ 
 ps=1.8e-06 pd=8.4e-06 m=1 region=sat 
\+11 (_27 _29 0 0) ami06N w=5.4e-06 l=6e-07 as=8.1e-12 ad=4.86e-12 \ 
 ps=8.4e-06 pd=1.8e-06 m=1 region=sat 
\+10 (0 _29 _27 0) ami06N w=5.4e-06 l=6e-07 as=8.1e-12 ad=8.1e-12 \ 
 ps=8.4e-06 pd=8.4e-06 m=1 region=sat 
\+18 (_29 data 0 0) ami06N w=1.8e-06 l=6e-07 as=2.7e-12 ad=2.7e-12 \ 
 ps=4.8e-06 pd=4.8e-06 m=1 region=sat 
\+15 (0 data _29 0) ami06N w=1.8e-06 l=6e-07 as=1.53e-12 ad=2.7e-12 \ 
 ps=2.1e-06 pd=4.8e-06 m=1 region=sat 
\+20 (data clk _27 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+17 (_27 word7 bit7 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+16 (_27 word4 bit4 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+8 (_27 word3 bit3 0) ami06N w=1.2e-06 l=6e-07 as=2.16e-12 ad=1.8e-12 \ 
 ps=4.8e-06 pd=4.2e-06 m=1 region=sat 
\+4 (_27 word2 bit2 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+21 (bit5 word5 _27 0) ami06N w=1.2e-06 l=6e-07 as=1.08e-12 ad=1.8e-12 \ 
 ps=1.8e-06 pd=4.2e-06 m=1 region=sat 
\+19 (_27 word6 bit6 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.08e-12 \ 
 ps=4.2e-06 pd=1.8e-06 m=1 region=sat 
\+14 (_29 clk 0 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.53e-12 \ 
 ps=4.2e-06 pd=2.1e-06 m=1 region=sat 
\+9 (_30 clkbar _29 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+7 (data databar _28 0) ami06N w=1.2e-06 l=6e-07 as=1.08e-12 ad=1.8e-12 \ 
 ps=1.8e-06 pd=4.2e-06 m=1 region=sat 
\+6 (bit9 word9 _27 0) ami06N w=1.2e-06 l=6e-07 as=1.08e-12 ad=1.8e-12 \ 
 ps=1.8e-06 pd=4.2e-06 m=1 region=sat 
\+5 (_28 clkbar 0 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.08e-12 \ 
 ps=4.2e-06 pd=1.8e-06 m=1 region=sat 
\+3 (_27 word8 bit8 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.08e-12 \ 
 ps=4.2e-06 pd=1.8e-06 m=1 region=sat 
\+2 (bit1 word1 _27 0) ami06N w=1.2e-06 l=6e-07 as=1.08e-12 ad=1.8e-12 \ 
 ps=1.8e-06 pd=4.2e-06 m=1 region=sat 
\+1 (0 data databar 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.8e-12 \ 
 ps=4.2e-06 pd=4.2e-06 m=1 region=sat 
\+0 (_27 word0 bit0 0) ami06N w=1.2e-06 l=6e-07 as=1.8e-12 ad=1.08e-12 \ 
 ps=4.2e-06 pd=1.8e-06 m=1 region=sat 
M38 (senseout9 bit9 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
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 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M36 (senseout8 bit8 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M34 (senseout7 bit7 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M32 (senseout6 bit6 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M31 (senseout5 bit5 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M44 (senseout0 bit0 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M43 (senseout1 bit1 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M42 (senseout2 bit2 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M41 (senseout3 bit3 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M40 (senseout4 bit4 vdd! vdd!) ami06P w=9*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M29 (bit1 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M28 (bit0 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M27 (bit4 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M26 (bit3 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M25 (bit8 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M24 (bit9 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M23 (bit7 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M22 (bit6 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M21 (bit5 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M20 (bit2 pre vdd! vdd!) ami06P w=13*1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M12 (bit0 clkbar writedata0 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M6 (bit4 clkbar writedata4 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M1 (bit1 clkbar writedata1 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M3 (bit2 clkbar writedata2 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
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 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M7 (bit3 clkbar writedata3 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M14 (bit8 clkbar writedata8 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M15 (bit9 clkbar writedata9 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M16 (bit7 clkbar writedata7 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M17 (bit6 clkbar writedata6 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M19 (bit5 clkbar writedata5 vdd!) ami06P w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M39 (senseout9 bit9 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M37 (senseout8 bit8 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M35 (senseout7 bit7 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M33 (senseout6 bit6 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M30 (senseout5 bit5 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M49 (senseout0 bit0 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M48 (senseout1 bit1 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M47 (senseout2 bit2 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M46 (senseout3 bit3 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M45 (senseout4 bit4 0 gnd!) ami06N w=1.2u l=600n as=2.25e-12 ad=2.25e-12 \ 
 ps=6u pd=6u m=1 region=sat 
M8 (writedata0 clk bit0 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M4 (writedata4 clk bit4 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M5 (writedata3 clk bit3 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M0 (writedata1 clk bit1 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M2 (writedata2 clk bit2 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M9 (writedata8 clk bit8 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M10 (writedata9 clk bit9 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
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 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M11 (writedata7 clk bit7 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M13 (writedata6 clk bit6 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
M18 (writedata5 clk bit5 gnd!) ami06N w=10*1.2u l=600n as=2.25e-12 \ 
 ad=2.25e-12 ps=6u pd=6u m=1 region=sat 
 

// simulate load cap on bit lines 
crbit0 (bit0 0) capacitor c=200f 
crbit1 (bit1 0) capacitor c=200f 
crbit2 (bit2 0) capacitor c=200f 
crbit3 (bit3 0) capacitor c=200f 
crbit4 (bit4 0) capacitor c=200f 
crbit5 (bit5 0) capacitor c=200f 
crbit6 (bit6 0) capacitor c=200f 
crbit7 (bit7 0) capacitor c=200f 
crbit8 (bit8 0) capacitor c=200f 
crbit9 (bit9 0) capacitor c=200f 
 
// simulate load cap on word lines 
crword0 (word0 0) capacitor c=100f 
crword1 (word1 0) capacitor c=100f 
crword2 (word2 0) capacitor c=100f 
crword3 (word3 0) capacitor c=100f 
crword4 (word4 0) capacitor c=100f 
crword5 (word5 0) capacitor c=100f 
crword6 (word6 0) capacitor c=100f 
crword7 (word7 0) capacitor c=100f 
crword8 (word8 0) capacitor c=100f 
crword9 (word9 0) capacitor c=100f 
 

//percharge 
 
vpre(pre 0) vsource dc=5.0 type=pulse val0=0.0 val1=5.0\ 
 period=10n rise=0.1n fall=0.1n width=9.4n delay=-4.5n 
 
//power supplies 
 
VPWR(vdd! 0) vsource dc=5.0 
VGND(gnd! 0) vsource dc=0.0 
 
//clock and clockbar signals 
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vclk(clk 0) vsource dc=5.0 type=pulse val0=0.0 val1=5.0\ 
 period=10n rise=0.1n fall=0.1n width=4.9n 
 
vclkbar(clkbar 0) vsource dc=5.0 type=pulse val0=5.0 val1=0.0\ 
 period=10n rise=0.1n fall=0.1n width=4.9n 
 
// write 1 on bit0, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 0 on bit1, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 1 on bit2, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 0 on bit3, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 1 on bit4, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 0 on bit5, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 1 on bit6, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 0 on bit7, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 1 on bit8, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
// write 0 on bit9, read from bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9 
 
vword0 (word0 0) vsource type=pwl wave=[0n 0 0.1n 5 9.9n 5 10n 0 15n 0 \ 
15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5 39.9n 5 \ 
40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword1 (word1 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 \ 
19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5 39.9n 5 \ 
40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword2 (word2 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 29.9n 5 30n 0 35n 0 35.1n 5 39.9n 5 \ 
40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword3 (word3 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 39.9n 5 \ 
40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
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vword4 (word4 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5\ 
49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword5 (word5 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5\ 
39.9n 5 40n 0 45n 0 45.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword6 (word6 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5\ 
39.9n 5 40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 69.9n 5 \ 
70n 0 75n 0 75.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword7 (word7 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5\ 
39.9n 5 40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 79.9n 5 \ 
80n 0 85n 0 85.1n 5 89.9n 5 90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword8 (word8 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5\ 
39.9n 5 40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 89.9n 5 \ 
90n 0 95n 0 95.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
vword9 (word9 0) vsource type=pwl wave=[0n 0 5n 0 5.1n 5 9.9n 5 10n 0\ 
15n 0 15.1n 5 19.9n 5 20n 0 25n 0 25.1n 5 29.9n 5 30n 0 35n 0 35.1n 5\ 
39.9n 5 40n 0 45n 0 45.1n 5 49.9n 5 50n 0 55n 0 55.1n 5 59.9n 5 \ 
60n 0 65n 0 65.1n 5 69.9n 5 70n 0 75n 0 75.1n 5 79.9n 5 80n 0 85n 0 \ 
85.1n 5 99.9n 5 100n 0] \ 
pwlperiod=100n 
 
//bit lines 
 
vwbit0 (writedata0 0) vsource type=pwl wave=[0n 0 0.1n 5 5n    5 5.1n 0] \ 
pwlperiod=100n 
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vwbit1 (writedata1 0) vsource type=pwl wave=[0n 5 10n  5 10.1n 0 15n  0 15.1n 5] \ 
pwlperiod=100n 
 
vwbit2 (writedata2 0) vsource type=pwl wave=[0n 0 20n  0 20.1n 5 25n  5 25.1n 0] \ 
pwlperiod=100n 
 
vwbit3 (writedata3 0) vsource type=pwl wave=[0n 5 30n  5 30.1n 0 35n  0 35.1n 5] \ 
pwlperiod=100n 
 
vwbit4 (writedata4 0) vsource type=pwl wave=[0n 0 40n  0 40.1n 5 45n  5 45.1n 0] \ 
pwlperiod=100n 
 
vwbit5 (writedata5 0) vsource type=pwl wave=[0n 5 50n  5 50.1n 0 55n  0 55.1n 5] \ 
pwlperiod=100n 
 
vwbit6 (writedata6 0) vsource type=pwl wave=[0n 0 60n  0 60.1n 5 65n  5 65.1n 0] \ 
pwlperiod=100n 
 
vwbit7 (writedata7 0) vsource type=pwl wave=[0n 5 70n  5 70.1n 0 75n  0 75.1n 5] \ 
pwlperiod=100n 
 
vwbit8 (writedata8 0) vsource type=pwl wave=[0n 0 80n  0 80.1n 5 85n  5 85.1n 0] \ 
pwlperiod=100n 
 
vwbit9 (writedata9 0) vsource type=pwl wave=[0n 5 90n  5 90.1n 0 95n  0 95.1n 5] \ 
pwlperiod=100n 
 
//initial conditions 
 
ic data=0 databar=5 bit0=5 bit1=5 bit2=5 bit3=5 bit4=5 bit5=5 
 
sram tran stop=101n 
 
save data databar bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 bit9 pre 
save word0 word1 word2 word3 word4 word5 word6 word7 word8 word9 clk clkbar 
save writedata0 writedata1 writedata2 writedata3 writedata4 writedata5 writedata6  
save writedata7 writedata8 writedata9 
save senseout0 senseout1 senseout2 senseout3 senseout4 senseout5 senseout6 senseout7 
save senseout8 senseout9 



64

Appendix 3a: IRSIM File used to test the memory cell array 

vector bit0v bit0_{31:0} 
vector bit1v bit1_{31:0} 
vector bit2v bit2_{31:0} 
vector bit3v bit3_{31:0} 
vector bit4v bit4_{31:0} 
vector bit5v bit5_{31:0} 
vector bit6v bit6_{31:0} 
vector bit7v bit7_{31:0} 
vector bit8v bit8_{31:0} 
vector bit9v bit9_{31:0} 
 
vector word0v word0_{31:0} 
vector word1v word1_{31:0} 
vector word2v word2_{31:0} 
vector word3v word3_{31:0} 
vector word4v word4_{31:0} 
vector word5v word5_{31:0} 
vector word6v word6_{31:0} 
vector word7v word7_{31:0} 
vector word8v word8_{31:0} 
vector word9v word9_{31:0} 
 
w word0v word1v word2v word3v word4v word5v word6v word7v word8v word9v  
w bit0v bit1v bit2v bit3v bit4v bit5v bit6v bit7v bit8v bit9v 
w clk clkbar 
 

| TEST 1 
| write 00000000000000000000000000000000 
 
h clk 
l clkbar 
 
set word0v  00000000000000000000000000000001 
set word1v  00000000000000000000000000000010 
set word2v  00000000000000000000000000000100 
set word3v  00000000000000000000000000001000 
set word4v  00000000000000000000000000010000 
set word5v  00000000000000000000000000100000 
set word6v  00000000000000000000000001000000 
set word7v  00000000000000000000000010000000 
set word8v  00000000000000000000000100000000 
set word9v  00000000000000000000001000000000 
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set bit0v  00000000000000000000000000000000 
set bit1v  00000000000000000000000000000000 
set bit2v  00000000000000000000000000000000 
set bit3v  00000000000000000000000000000000 
set bit4v  00000000000000000000000000000000 
set bit5v  00000000000000000000000000000000 
set bit6v  00000000000000000000000000000000 
set bit7v  00000000000000000000000000000000 
set bit8v  00000000000000000000000000000000 
set bit9v  00000000000000000000000000000000 
 
|Precharge bit lines  
 
s 5
l clk 
h clkbar 
 
set word0v  00000000000000000000000000000000 
set word1v  00000000000000000000000000000000 
set word2v  00000000000000000000000000000000 
set word3v  00000000000000000000000000000000 
set word4v  00000000000000000000000000000000 
set word5v  00000000000000000000000000000000 
set word6v  00000000000000000000000000000000 
set word7v  00000000000000000000000000000000 
set word8v  00000000000000000000000000000000 
set word9v  00000000000000000000000000000000 
 
set bit0v  11111111111111111111111111111111 
set bit1v  11111111111111111111111111111111 
set bit2v  11111111111111111111111111111111 
set bit3v  11111111111111111111111111111111 
set bit4v  11111111111111111111111111111111 
set bit5v  11111111111111111111111111111111 
set bit6v  11111111111111111111111111111111 
set bit7v  11111111111111111111111111111111 
set bit8v  11111111111111111111111111111111 
set bit9v  11111111111111111111111111111111 
 

|read 00000000000000000000000000000000  
 
s 5
l clk 
h clkbar 
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x bit0v bit1v bit2v bit3v bit4v bit5v bit6v bit7v bit8v bit9v 
 
set word0v  00000000000000000000000000000001 
set word1v  00000000000000000000000000000010 
set word2v  00000000000000000000000000000100 
set word3v  00000000000000000000000000001000 
set word4v  00000000000000000000000000010000 
set word5v  00000000000000000000000000100000 
set word6v  00000000000000000000000001000000 
set word7v  00000000000000000000000010000000 
set word8v  00000000000000000000000100000000 
set word9v  00000000000000000000001000000000 
 
s 5

assert bit0v  00000000000000000000000000000000 
assert bit1v  00000000000000000000000000000000 
assert bit2v  00000000000000000000000000000000 
assert bit3v  00000000000000000000000000000000 
assert bit4v  00000000000000000000000000000000 
assert bit5v  00000000000000000000000000000000 
assert bit6v  00000000000000000000000000000000 
assert bit7v  00000000000000000000000000000000 
assert bit8v  00000000000000000000000000000000 
assert bit9v  00000000000000000000000000000000 
 
| TEST 2 
| write 00000000000000000000000000000000 
 
h clk 
l clkbar 
 
set word0v  00000000000000000000010000000000 
set word1v  00000000000000000000100000000000 
set word2v  00000000000000000001000000000000 
set word3v  00000000000000000010000000000000 
set word4v  00000000000000000100000000000000 
set word5v  00000000000000001000000000000000 
set word6v  00000000000000010000000000000000 
set word7v  00000000000000100000000000000000 
set word8v  00000000000001000000000000000000 
set word9v  00000000000010000000000000000000 
 
set bit0v  00000000000000000000000000000000 
set bit1v  00000000000000000000000000000000 
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set bit2v  00000000000000000000000000000000 
set bit3v  00000000000000000000000000000000 
set bit4v  00000000000000000000000000000000 
set bit5v  00000000000000000000000000000000 
set bit6v  00000000000000000000000000000000 
set bit7v  00000000000000000000000000000000 
set bit8v  00000000000000000000000000000000 
set bit9v  00000000000000000000000000000000 
 
|Precharge bit lines  
 
s 5
l clk 
h clkbar 
 
set word0v  00000000000000000000000000000000 
set word1v  00000000000000000000000000000000 
set word2v  00000000000000000000000000000000 
set word3v  00000000000000000000000000000000 
set word4v  00000000000000000000000000000000 
set word5v  00000000000000000000000000000000 
set word6v  00000000000000000000000000000000 
set word7v  00000000000000000000000000000000 
set word8v  00000000000000000000000000000000 
set word9v  00000000000000000000000000000000 
 
set bit0v  11111111111111111111111111111111 
set bit1v  11111111111111111111111111111111 
set bit2v  11111111111111111111111111111111 
set bit3v  11111111111111111111111111111111 
set bit4v  11111111111111111111111111111111 
set bit5v  11111111111111111111111111111111 
set bit6v  11111111111111111111111111111111 
set bit7v  11111111111111111111111111111111 
set bit8v  11111111111111111111111111111111 
set bit9v  11111111111111111111111111111111 
 

|read 00000000000000000000000000000000  
 
s 5
l clk 
h clkbar 
 
x bit0v bit1v bit2v bit3v bit4v bit5v bit6v bit7v bit8v bit9v 
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set word0v  00000000000000000000010000000000 
set word1v  00000000000000000000100000000000 
set word2v  00000000000000000001000000000000 
set word3v  00000000000000000010000000000000 
set word4v  00000000000000000100000000000000 
set word5v  00000000000000001000000000000000 
set word6v  00000000000000010000000000000000 
set word7v  00000000000000100000000000000000 
set word8v  00000000000001000000000000000000 
set word9v  00000000000010000000000000000000 
 
s 5

assert bit0v  00000000000000000000000000000000 
assert bit1v  00000000000000000000000000000000 
assert bit2v  00000000000000000000000000000000 
assert bit3v  00000000000000000000000000000000 
assert bit4v  00000000000000000000000000000000 
assert bit5v  00000000000000000000000000000000 
assert bit6v  00000000000000000000000000000000 
assert bit7v  00000000000000000000000000000000 
assert bit8v  00000000000000000000000000000000 
assert bit9v  00000000000000000000000000000000 
 
| TEST 3 
| write 00000000000000000000000000000000 
 
h clk 
l clkbar 
 
set word0v  00000000000100000000000000000000 
set word1v  00000000001000000000000000000000 
set word2v  00000000010000000000000000000000 
set word3v  00000000100000000000000000000000 
set word4v  00000001000000000000000000000000 
set word5v  00000010000000000000000000000000 
set word6v  00000100000000000000000000000000 
set word7v  00001000000000000000000000000000 
set word8v  00010000000000000000000000000000 
set word9v  00100000000000000000000000000000 
 
set bit0v  00000000000000000000000000000000 
set bit1v  00000000000000000000000000000000 
set bit2v  00000000000000000000000000000000 
set bit3v  00000000000000000000000000000000 
set bit4v  00000000000000000000000000000000 
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set bit5v  00000000000000000000000000000000 
set bit6v  00000000000000000000000000000000 
set bit7v  00000000000000000000000000000000 
set bit8v  00000000000000000000000000000000 
set bit9v  00000000000000000000000000000000 
 
|Precharge bit lines  
 
s 5
l clk 
h clkbar 
 
set word0v  00000000000000000000000000000000 
set word1v  00000000000000000000000000000000 
set word2v  00000000000000000000000000000000 
set word3v  00000000000000000000000000000000 
set word4v  00000000000000000000000000000000 
set word5v  00000000000000000000000000000000 
set word6v  00000000000000000000000000000000 
set word7v  00000000000000000000000000000000 
set word8v  00000000000000000000000000000000 
set word9v  00000000000000000000000000000000 
 
set bit0v  11111111111111111111111111111111 
set bit1v  11111111111111111111111111111111 
set bit2v  11111111111111111111111111111111 
set bit3v  11111111111111111111111111111111 
set bit4v  11111111111111111111111111111111 
set bit5v  11111111111111111111111111111111 
set bit6v  11111111111111111111111111111111 
set bit7v  11111111111111111111111111111111 
set bit8v  11111111111111111111111111111111 
set bit9v  11111111111111111111111111111111 
 

|read 00000000000000000000000000000000  
 
s 5
l clk 
h clkbar 
 
x bit0v bit1v bit2v bit3v bit4v bit5v bit6v bit7v bit8v bit9v 
 
set word0v  00000000000100000000000000000000 
set word1v  00000000001000000000000000000000 
set word2v  00000000010000000000000000000000 
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set word3v  00000000100000000000000000000000 
set word4v  00000001000000000000000000000000 
set word5v  00000010000000000000000000000000 
set word6v  00000100000000000000000000000000 
set word7v  00001000000000000000000000000000 
set word8v  00010000000000000000000000000000 
set word9v  00100000000000000000000000000000 
 
s 5

assert bit0v  00000000000000000000000000000000 
assert bit1v  00000000000000000000000000000000 
assert bit2v  00000000000000000000000000000000 
assert bit3v  00000000000000000000000000000000 
assert bit4v  00000000000000000000000000000000 
assert bit5v  00000000000000000000000000000000 
assert bit6v  00000000000000000000000000000000 
assert bit7v  00000000000000000000000000000000 
assert bit8v  00000000000000000000000000000000 
assert bit9v  00000000000000000000000000000000 
 
| TEST 4 
| write 00000000000000000000000000000000 
 
h clk 
l clkbar 
 
set word0v  01000000000000000000000000000000 
set word1v  10000000000000000000000000000000 
set word2v  00000000000000000000000000000000 
set word3v  00000000000000000000000000000000 
set word4v  00000000000000000000000000000000 
set word5v  00000000000000000000000000000000 
set word6v  00000000000000000000000000000000 
set word7v  00000000000000000000000000000000 
set word8v  00000000000000000000000000000000 
set word9v  00000000000000000000000000000000 
 
set bit0v  00000000000000000000000000000000 
set bit1v  00000000000000000000000000000000 
set bit2v  00000000000000000000000000000000 
set bit3v  00000000000000000000000000000000 
set bit4v  00000000000000000000000000000000 
set bit5v  00000000000000000000000000000000 
set bit6v  00000000000000000000000000000000 
set bit7v  00000000000000000000000000000000 
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set bit8v  00000000000000000000000000000000 
set bit9v  00000000000000000000000000000000 
 
|Precharge bit lines  
 
s 5
l clk 
h clkbar 
 
set word0v  00000000000000000000000000000000 
set word1v  00000000000000000000000000000000 
set word2v  00000000000000000000000000000000 
set word3v  00000000000000000000000000000000 
set word4v  00000000000000000000000000000000 
set word5v  00000000000000000000000000000000 
set word6v  00000000000000000000000000000000 
set word7v  00000000000000000000000000000000 
set word8v  00000000000000000000000000000000 
set word9v  00000000000000000000000000000000 
 
set bit0v  11111111111111111111111111111111 
set bit1v  11111111111111111111111111111111 
set bit2v  11111111111111111111111111111111 
set bit3v  11111111111111111111111111111111 
set bit4v  11111111111111111111111111111111 
set bit5v  11111111111111111111111111111111 
set bit6v  11111111111111111111111111111111 
set bit7v  11111111111111111111111111111111 
set bit8v  11111111111111111111111111111111 
set bit9v  11111111111111111111111111111111 
 

|read 00000000000000000000000000000000  
 
s 5
l clk 
h clkbar 
 
x bit0v bit1v bit2v bit3v bit4v bit5v bit6v bit7v bit8v bit9v 
 
set word0v  01000000000000000000000000000000 
set word1v  10000000000000000000000000000000 
set word2v  00000000000000000000000000000000 
set word3v  00000000000000000000000000000000 
set word4v  00000000000000000000000000000000 
set word5v  00000000000000000000000000000000 
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set word6v  00000000000000000000000000000000 
set word7v  00000000000000000000000000000000 
set word8v  00000000000000000000000000000000 
set word9v  00000000000000000000000000000000 
 
s 5

assert bit0v  00000000000000000000000000000000 
assert bit1v  00000000000000000000000000000000 
assert bit2v  11111111111111111111111111111111 
assert bit3v  11111111111111111111111111111111 
assert bit4v  11111111111111111111111111111111 
assert bit5v  11111111111111111111111111111111 
assert bit6v  11111111111111111111111111111111 
assert bit7v  11111111111111111111111111111111 
assert bit8v  11111111111111111111111111111111 
assert bit9v  11111111111111111111111111111111 
 

exit 
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Appendix 3b: Simulation results of memory cell array 

 
Read Design.sim lambda:0.30u format:SU 
7812 nodes; transistors: n-channel=22528 p-channel=7168 
parallel txtors: n-channel=6144 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00000000000000000000001000000000  
word8v=00000000000000000000000100000000  
word7v=00000000000000000000000010000000  
word6v=00000000000000000000000001000000  
word5v=00000000000000000000000000100000  
word4v=00000000000000000000000000010000  
word3v=00000000000000000000000000001000  
word2v=00000000000000000000000000000100  
word1v=00000000000000000000000000000010  
word0v=00000000000000000000000000000001 clkbar=0 clk=1  
time = 5.00ns 
bit9v=11111111111111111111111111111111 
bit8v=11111111111111111111111111111111  
bit7v=11111111111111111111111111111111 
bit6v=11111111111111111111111111111111  
bit5v=11111111111111111111111111111111 
bit4v=11111111111111111111111111111111  
bit3v=11111111111111111111111111111111 
bit2v=11111111111111111111111111111111  
bit1v=11111111111111111111111111111111 
bit0v=11111111111111111111111111111111  
word9v=00000000000000000000000000000000  
word8v=00000000000000000000000000000000  
word7v=00000000000000000000000000000000  
word6v=00000000000000000000000000000000  
word5v=00000000000000000000000000000000  
word4v=00000000000000000000000000000000  
word3v=00000000000000000000000000000000  
word2v=00000000000000000000000000000000  
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word1v=00000000000000000000000000000000  
word0v=00000000000000000000000000000000 clkbar=1 clk=0  
time = 10.00ns 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00000000000000000000001000000000  
word8v=00000000000000000000000100000000  
word7v=00000000000000000000000010000000  
word6v=00000000000000000000000001000000  
word5v=00000000000000000000000000100000  
word4v=00000000000000000000000000010000  
word3v=00000000000000000000000000001000  
word2v=00000000000000000000000000000100  
word1v=00000000000000000000000000000010  
word0v=00000000000000000000000000000001 clkbar=1 clk=0  
time = 15.00ns 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00000000000010000000000000000000  
word8v=00000000000001000000000000000000  
word7v=00000000000000100000000000000000  
word6v=00000000000000010000000000000000  
word5v=00000000000000001000000000000000  
word4v=00000000000000000100000000000000  
word3v=00000000000000000010000000000000  
word2v=00000000000000000001000000000000  
word1v=00000000000000000000100000000000  
word0v=00000000000000000000010000000000 clkbar=0 clk=1  
time = 20.00ns 
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bit9v=11111111111111111111111111111111 
bit8v=11111111111111111111111111111111  
bit7v=11111111111111111111111111111111 
bit6v=11111111111111111111111111111111  
bit5v=11111111111111111111111111111111 
bit4v=11111111111111111111111111111111  
bit3v=11111111111111111111111111111111 
bit2v=11111111111111111111111111111111  
bit1v=11111111111111111111111111111111 
bit0v=11111111111111111111111111111111  
word9v=00000000000000000000000000000000  
word8v=00000000000000000000000000000000  
word7v=00000000000000000000000000000000  
word6v=00000000000000000000000000000000  
word5v=00000000000000000000000000000000  
word4v=00000000000000000000000000000000  
word3v=00000000000000000000000000000000  
word2v=00000000000000000000000000000000  
word1v=00000000000000000000000000000000  
word0v=00000000000000000000000000000000 clkbar=1 clk=0  
time = 25.00ns 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00000000000010000000000000000000  
word8v=00000000000001000000000000000000  
word7v=00000000000000100000000000000000  
word6v=00000000000000010000000000000000  
word5v=00000000000000001000000000000000  
word4v=00000000000000000100000000000000  
word3v=00000000000000000010000000000000  
word2v=00000000000000000001000000000000  
word1v=00000000000000000000100000000000  
word0v=00000000000000000000010000000000 clkbar=1 clk=0  
time = 30.00ns 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
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bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00100000000000000000000000000000  
word8v=00010000000000000000000000000000  
word7v=00001000000000000000000000000000  
word6v=00000100000000000000000000000000  
word5v=00000010000000000000000000000000  
word4v=00000001000000000000000000000000  
word3v=00000000100000000000000000000000  
word2v=00000000010000000000000000000000  
word1v=00000000001000000000000000000000  
word0v=00000000000100000000000000000000 clkbar=0 clk=1  
time = 35.00ns 
bit9v=11111111111111111111111111111111 
bit8v=11111111111111111111111111111111  
bit7v=11111111111111111111111111111111 
bit6v=11111111111111111111111111111111  
bit5v=11111111111111111111111111111111 
bit4v=11111111111111111111111111111111  
bit3v=11111111111111111111111111111111 
bit2v=11111111111111111111111111111111  
bit1v=11111111111111111111111111111111 
bit0v=11111111111111111111111111111111  
word9v=00000000000000000000000000000000  
word8v=00000000000000000000000000000000  
word7v=00000000000000000000000000000000  
word6v=00000000000000000000000000000000  
word5v=00000000000000000000000000000000  
word4v=00000000000000000000000000000000  
word3v=00000000000000000000000000000000  
word2v=00000000000000000000000000000000  
word1v=00000000000000000000000000000000  
word0v=00000000000000000000000000000000 clkbar=1 clk=0  
time = 40.00ns 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
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bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00100000000000000000000000000000  
word8v=00010000000000000000000000000000  
word7v=00001000000000000000000000000000  
word6v=00000100000000000000000000000000  
word5v=00000010000000000000000000000000  
word4v=00000001000000000000000000000000  
word3v=00000000100000000000000000000000  
word2v=00000000010000000000000000000000  
word1v=00000000001000000000000000000000  
word0v=00000000000100000000000000000000 clkbar=1 clk=0  
time = 45.00ns 
bit9v=00000000000000000000000000000000 
bit8v=00000000000000000000000000000000  
bit7v=00000000000000000000000000000000 
bit6v=00000000000000000000000000000000  
bit5v=00000000000000000000000000000000 
bit4v=00000000000000000000000000000000  
bit3v=00000000000000000000000000000000 
bit2v=00000000000000000000000000000000  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00000000000000000000000000000000  
word8v=00000000000000000000000000000000  
word7v=00000000000000000000000000000000  
word6v=00000000000000000000000000000000  
word5v=00000000000000000000000000000000  
word4v=00000000000000000000000000000000  
word3v=00000000000000000000000000000000  
word2v=00000000000000000000000000000000  
word1v=10000000000000000000000000000000  
word0v=01000000000000000000000000000000 clkbar=0 clk=1  
time = 50.00ns 
bit9v=11111111111111111111111111111111 
bit8v=11111111111111111111111111111111  
bit7v=11111111111111111111111111111111 
bit6v=11111111111111111111111111111111  
bit5v=11111111111111111111111111111111 
bit4v=11111111111111111111111111111111  
bit3v=11111111111111111111111111111111 
bit2v=11111111111111111111111111111111  
bit1v=11111111111111111111111111111111 
bit0v=11111111111111111111111111111111  
word9v=00000000000000000000000000000000  
word8v=00000000000000000000000000000000  
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word7v=00000000000000000000000000000000  
word6v=00000000000000000000000000000000  
word5v=00000000000000000000000000000000  
word4v=00000000000000000000000000000000  
word3v=00000000000000000000000000000000  
word2v=00000000000000000000000000000000  
word1v=00000000000000000000000000000000  
word0v=00000000000000000000000000000000 clkbar=1 clk=0  
time = 55.00ns 
bit9v=11111111111111111111111111111111 
bit8v=11111111111111111111111111111111  
bit7v=11111111111111111111111111111111 
bit6v=11111111111111111111111111111111  
bit5v=11111111111111111111111111111111 
bit4v=11111111111111111111111111111111  
bit3v=11111111111111111111111111111111 
bit2v=11111111111111111111111111111111  
bit1v=00000000000000000000000000000000 
bit0v=00000000000000000000000000000000  
word9v=00000000000000000000000000000000  
word8v=00000000000000000000000000000000  
word7v=00000000000000000000000000000000  
word6v=00000000000000000000000000000000  
word5v=00000000000000000000000000000000  
word4v=00000000000000000000000000000000  
word3v=00000000000000000000000000000000  
word2v=00000000000000000000000000000000  
word1v=10000000000000000000000000000000  
word0v=01000000000000000000000000000000 clkbar=1 clk=0  
time = 60.00ns 
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